WO2022001634A1 - 一种三极耳叠片式复合型电池 - Google Patents

一种三极耳叠片式复合型电池 Download PDF

Info

Publication number
WO2022001634A1
WO2022001634A1 PCT/CN2021/099782 CN2021099782W WO2022001634A1 WO 2022001634 A1 WO2022001634 A1 WO 2022001634A1 CN 2021099782 W CN2021099782 W CN 2021099782W WO 2022001634 A1 WO2022001634 A1 WO 2022001634A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
positive electrode
electrode sheet
current collector
positive
Prior art date
Application number
PCT/CN2021/099782
Other languages
English (en)
French (fr)
Inventor
伍鹏
李素丽
Original Assignee
珠海冠宇电池股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海冠宇电池股份有限公司 filed Critical 珠海冠宇电池股份有限公司
Priority to EP21833847.3A priority Critical patent/EP4175026A1/en
Publication of WO2022001634A1 publication Critical patent/WO2022001634A1/zh
Priority to US17/988,243 priority patent/US20230282949A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • H01G11/28Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features arranged or disposed on a current collector; Layers or phases between electrodes and current collectors, e.g. adhesives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/10Multiple hybrid or EDL capacitors, e.g. arrays or modules
    • H01G11/12Stacked hybrid or EDL capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M16/00Structural combinations of different types of electrochemical generators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of lithium ion batteries, in particular to a three-pole-tab laminated type composite battery.
  • Lithium-ion batteries have the advantages of large specific energy, high operating voltage, environmental friendliness, and no memory effect, but their power density is often only a fraction or even less than one-tenth of that of supercapacitor batteries, and the capacity can be exerted at lower temperatures. lower rate issues.
  • supercapacitor batteries have short charge and discharge times, and can reach more than 95% of their rated capacity after charging for 1 second to 10 minutes; good ultra-low temperature characteristics, and a wide normal operating temperature range of -40°C to +70°C; high current discharge Strong capability, the power density is as high as 300-10000W/Kg, which is equivalent to several times or even dozens of times that of lithium-ion batteries.
  • supercapacitors are widely used in high current, data backup, hybrid vehicles and other fields. However, at the same time, its energy density is not high, only a fraction or even less than one-tenth of the energy density of lithium-ion batteries, which seriously limits its application in many fields with high energy density requirements.
  • the purpose of the present invention is to prepare a new type of battery that combines the advantages of lithium ion batteries and supercapacitors.
  • the inventor found that the combination of the positive electrode sheet for lithium ion batteries and the positive electrode sheet for supercapacitors is used, and two positive electrode tabs are respectively drawn out as the positive electrode of the composite battery, and then used in combination with the negative electrode sheet to form a lithium ion battery that can provide different lithium ions.
  • This combination of cathode sheets for lithium ion batteries and cathode sheets for supercapacitors can be adjusted by simply changing the number of cathode sheets for lithium ion batteries and cathode sheets for supercapacitors to achieve different mass energy densities in hybrid batteries.
  • this composite battery can better adapt to the use of different environments, and has both the high energy density of lithium-ion batteries and the high power density of supercapacitors.
  • the unique arrangement of the three-pole tab enables the composite battery to have a much smaller self-discharge effect than the supercapacitor and the composite battery of the lithium ion battery and the supercapacitor in the prior art, and the composite battery of the embodiment of the present invention can realize Different modes of power management for Li-ion batteries and supercapacitors to better leverage their respective strengths.
  • the embodiment of the present invention provides a three-pole-tab laminated composite battery, which includes a positive electrode sheet, a negative electrode sheet, a separator and an electrolyte.
  • the positive electrode sheet and the negative electrode sheet are alternately stacked, and adjacent positive electrode sheets and negative electrode sheets are separated by a separator.
  • the positive electrode sheet includes a first positive electrode sheet and a second positive electrode sheet; the first positive electrode sheet includes a first positive electrode current collector and a supercapacitor positive electrode material arranged on both sides of the first positive electrode current collector;
  • the second positive electrode sheet includes a second positive electrode current collector and a lithium ion battery positive electrode material disposed on both surfaces of the second positive electrode current collector; the first positive electrode sheet is connected to the first positive electrode tab, and the second positive electrode sheet is connected to the first positive electrode tab.
  • Two positive electrode tabs, the first positive electrode tab and the second positive electrode tab are independent of each other, and the negative electrode tab is connected to the negative electrode tab.
  • the positive electrode sheet further includes a third positive electrode sheet
  • the third positive electrode sheet includes a third positive electrode current collector, a lithium ion battery positive electrode material disposed on the first surface of the third positive electrode current collector, and a third positive electrode current collector.
  • the positive electrode material of the supercapacitor is provided on the second surface of the positive electrode current collector opposite to the first surface, and the third positive electrode sheet is connected to the first positive electrode tab or the second positive electrode tab.
  • the positive electrode sheet further comprises a fourth positive electrode sheet, the fourth positive electrode sheet comprises a fourth positive electrode current collector and a supercapacitor positive electrode material disposed on one side surface of the fourth positive electrode current collector, the fourth positive electrode sheet
  • the positive electrode sheet is arranged on the outermost layer of the composite battery, and the fourth positive electrode sheet is connected to the first positive electrode tab.
  • the positive electrode sheet further comprises a fifth positive electrode sheet
  • the fifth positive electrode sheet comprises a fifth positive electrode current collector and a lithium ion battery positive electrode material provided on one side surface of the fifth positive electrode current collector
  • the first positive electrode sheet Five positive electrode tabs are arranged on the outermost layer of the composite battery, and the fifth positive electrode tab is connected to the second positive electrode tab.
  • the negative electrode sheet includes a first negative electrode sheet, the first negative electrode sheet includes a first negative electrode current collector and a bifunctional negative electrode material provided on both sides of the first negative electrode current collector, the bifunctional negative electrode
  • the material is capable of adsorbing/desorbing lithium ions and capable of intercalating/deintercalating lithium ions of lithium ion batteries.
  • the negative electrode sheet includes a second negative electrode sheet
  • the second negative electrode sheet includes a second negative electrode current collector and a bifunctional negative electrode material provided on one side surface of the second negative electrode current collector, the bifunctional negative electrode
  • the material is capable of adsorbing/desorbing lithium ions, and capable of intercalating/deintercalating lithium ions of the lithium ion battery
  • the second negative electrode sheet is arranged on the outermost layer of the composite battery.
  • the negative electrode sheet includes a third negative electrode sheet
  • the third negative electrode sheet includes a third negative electrode current collector and a supercapacitor negative electrode material provided on both sides of the third negative electrode current collector.
  • the negative electrode sheet includes a fourth negative electrode sheet, the fourth negative electrode sheet includes a fourth negative electrode current collector and a supercapacitor negative electrode material disposed on one side surface of the fourth negative electrode current collector, the fourth negative electrode sheet A sheet is provided on the outermost layer of the composite battery.
  • the negative electrode sheet includes a fifth negative electrode sheet
  • the fifth negative electrode sheet includes a fifth negative electrode current collector and a lithium ion battery negative electrode material provided on both sides of the fifth negative electrode current collector.
  • the negative electrode sheet includes a sixth negative electrode sheet, the sixth negative electrode sheet includes a sixth negative electrode current collector and a lithium ion battery negative electrode material disposed on one side surface of the sixth negative electrode current collector, the sixth negative electrode sheet The negative electrode sheet is arranged on the outermost layer of the composite battery.
  • the negative electrode sheet includes a seventh negative electrode sheet
  • the seventh negative electrode sheet includes a seventh negative electrode current collector and a first negative electrode material disposed on a first surface of the seventh negative electrode current collector
  • the The second negative electrode material of the second surface opposite to the first surface of the seventh negative electrode current collector, the first negative electrode material and the second negative electrode material are both selected from bifunctional negative electrode materials, supercapacitor negative electrode materials and lithium ion battery negative electrode materials
  • the first negative electrode material is different from the second negative electrode material
  • the bifunctional negative electrode material is capable of adsorbing/desorbing lithium ions, and capable of intercalating/deintercalating lithium ions of a lithium ion battery.
  • the composite battery of the embodiment of the present invention not only has the advantages of high energy density, high average output voltage, high charging efficiency, low self-discharge efficiency, good safety performance, long cycle and service life, etc.
  • Supercapacitors have the advantages of stable performance, short charge and discharge time, long cycle life, and high power density.
  • the positive electrode of the lithium ion battery and the positive electrode of the supercapacitor are independently connected to two positive electrode tabs, which reduces the self-discharge effect of such composite batteries in the prior art.
  • the hybrid battery in the prior art has only one positive electrode tab. Due to the serious self-discharge defect of the supercapacitor, when the electric energy stored in the supercapacitor is consumed due to self-discharge, there is only one positive electrode tab and the positive electrode of the lithium ion battery.
  • the composite battery of the embodiment of the present invention adopts two independent positive electrode tabs, which can select different charging systems and voltages for the lithium ion positive electrode and the supercapacitor positive electrode of the composite battery to ensure its energy density. and power density to achieve compatibility that is difficult to achieve with the existing common technology, so that the battery can achieve the best performance, and can use different modes for power management of lithium-ion batteries and supercapacitors according to actual needs, so as to better play their respective advantages,
  • the traditional single-positive tab cannot achieve this function.
  • FIG. 1 is a schematic structural diagram of a positive electrode sheet for supercapacitors according to an embodiment of the present invention, (a) is a front view of a positive electrode sheet for supercapacitors, (b) and (c) are side views, and 11 is a first positive electrode collector Fluid, 12 is a fourth positive electrode current collector, and the surface of the positive electrode current collector is coated with a supercapacitor positive electrode material (the shaded part in the figure).
  • FIG. 2 is a schematic structural diagram of a positive electrode sheet for a lithium ion battery according to an embodiment of the present invention, (a) is a front view of the positive electrode sheet for a lithium ion battery, (b) and (c) are side views, and 21 is a second The positive electrode current collector, 22 is the fifth positive electrode current collector, and the surface of the positive electrode current collector is coated with a lithium ion battery positive electrode material (the shaded part in the figure).
  • FIG. 3 is a schematic structural diagram of a positive electrode sheet for lithium ion batteries and supercapacitors according to an embodiment of the present invention, (a) is a front view of the positive electrode sheet in the first direction, (b) is a side view, and (c) is a positive electrode
  • the front view of the sheet in the opposite direction to the first direction, 30 is the third positive current collector, the first surface 31 of the third positive current collector is coated with the positive electrode material of the lithium ion battery (the shaded part in the figure), the third positive current collector
  • the two surfaces 32 are coated with supercapacitor positive electrode material (the shaded part in the figure).
  • FIG. 4 is a schematic structural diagram of a compatible negative electrode sheet according to an embodiment of the present invention, (a) is a front view of a compatible negative electrode sheet, (b) and (c) are side views, and 41 is a first negative electrode current collector , 42 is the second negative electrode current collector, and the surface of the negative electrode current collector is coated with bifunctional negative electrode material (the shaded part in the figure).
  • FIG. 5 is a schematic structural diagram of a negative electrode sheet for a supercapacitor according to an embodiment of the present invention, (a) is a front view of the negative electrode sheet for a supercapacitor, (b) and (c) are side views, and 51 is a third negative electrode The current collector, 52 is the fourth negative electrode current collector, and the surface of the negative electrode current collector is coated with a negative electrode material for supercapacitor (the shaded part in the figure).
  • FIG. 6 is a schematic structural diagram of a transition negative electrode sheet according to an embodiment of the present invention, (a) is a front view of the negative electrode sheet in the first direction, (b) is a side view, and (c) is the first direction of the negative electrode sheet
  • the front view of the opposite direction, 70 is the seventh negative current collector
  • the first surface 71 of the seventh negative current collector is coated with the negative electrode material of the lithium ion battery (the shaded part in the figure)
  • the second surface 72 of the seventh negative current collector is coated Supercapacitor anode material (shaded area in the figure).
  • FIG. 7 is a schematic structural diagram of a composite battery with a symmetric supercapacitor according to an embodiment of the present invention, and (a) is a front view of the battery.
  • FIG. 8 is a schematic structural diagram of a composite battery containing an asymmetric supercapacitor according to an embodiment of the present invention, and (a) is a front view of the battery.
  • FIG. 9 is a schematic structural diagram of a composite battery including an asymmetric supercapacitor and a symmetric supercapacitor according to an embodiment of the present invention, and (a) is a front view of the battery.
  • FIG. 10 is a schematic diagram of a tab structure of a hybrid battery according to an embodiment of the present invention.
  • the three-pole-tab laminated composite battery of the embodiment of the present invention includes a positive electrode sheet, a negative electrode sheet, a separator and an electrolyte, the positive electrode sheet and the negative electrode sheet are alternately stacked, and adjacent positive electrode sheets and negative electrode sheets are stacked.
  • the sheets are separated by a diaphragm;
  • the positive electrode sheet includes a first positive electrode sheet and a second positive electrode sheet;
  • the first positive electrode sheet includes a first positive electrode current collector and supercapacitors arranged on both sides of the first positive electrode current collector positive electrode material;
  • the second positive electrode sheet includes a second positive electrode current collector and a lithium ion battery positive electrode material disposed on both surfaces of the second positive electrode current collector;
  • the first positive electrode sheet is connected to the first positive electrode tab, the The second positive electrode tab is connected to the second positive electrode tab, the first positive electrode tab and the second positive electrode tab are independent of each other, and the negative electrode tab is connected to the negative electrode tab.
  • the positive electrode sheet further includes a third positive electrode sheet, the third positive electrode sheet includes a third positive electrode current collector, and a lithium ion battery positive electrode material disposed on the first surface of the third positive electrode current collector, and a supercapacitor positive electrode material disposed on the second surface of the third positive electrode current collector opposite to the first surface, the third positive electrode sheet is connected to the first positive electrode tab or the second positive electrode tab.
  • the positive electrode sheet further includes a fourth positive electrode sheet, and the fourth positive electrode sheet includes a fourth positive electrode current collector and a supercapacitor positive electrode material disposed on one surface of the fourth positive electrode current collector, The fourth positive electrode sheet is arranged on the outermost layer of the composite battery, and the fourth positive electrode sheet is connected to the first positive electrode tab.
  • the positive electrode sheet further includes a fifth positive electrode sheet
  • the fifth positive electrode sheet includes a fifth positive electrode current collector and a lithium ion battery positive electrode material disposed on one surface of the fifth positive electrode current collector
  • the fifth positive electrode sheet is arranged on the outermost layer of the composite battery
  • the fifth positive electrode sheet is connected to the second positive electrode tab.
  • the negative electrode sheet includes a first negative electrode sheet
  • the first negative electrode sheet includes a first negative electrode current collector and a bifunctional negative electrode material provided on both sides of the first negative electrode current collector, so
  • the bifunctional negative electrode material can adsorb/desorb lithium ions, and can intercalate/deintercalate lithium ions of lithium ion batteries.
  • the negative electrode sheet includes a second negative electrode sheet
  • the second negative electrode sheet includes a second negative electrode current collector and a bifunctional negative electrode material disposed on one surface of the second negative electrode current collector, so
  • the bifunctional negative electrode material can adsorb/desorb lithium ions, and can intercalate/deintercalate lithium ions of the lithium ion battery, and the second negative electrode sheet is arranged on the outermost layer of the composite battery.
  • the negative electrode sheet includes a third negative electrode sheet
  • the third negative electrode sheet includes a third negative electrode current collector and a supercapacitor negative electrode material disposed on both sides of the third negative electrode current collector.
  • the negative electrode sheet includes a fourth negative electrode sheet
  • the fourth negative electrode sheet includes a fourth negative electrode current collector and a supercapacitor negative electrode material disposed on one surface of the fourth negative electrode current collector, so The fourth negative electrode sheet is arranged on the outermost layer of the composite battery.
  • the negative electrode sheet includes a fifth negative electrode sheet
  • the fifth negative electrode sheet includes a fifth negative electrode current collector and a lithium ion battery negative electrode material disposed on both sides of the fifth negative electrode current collector.
  • the negative electrode sheet includes a sixth negative electrode sheet, and the sixth negative electrode sheet includes a sixth negative electrode current collector and a lithium ion battery negative electrode material disposed on one surface of the sixth negative electrode current collector, The sixth negative electrode sheet is arranged on the outermost layer of the composite battery.
  • the negative electrode sheet includes a seventh negative electrode sheet
  • the seventh negative electrode sheet includes a seventh negative electrode current collector and a first negative electrode material disposed on a first surface of the seventh negative electrode current collector
  • the second negative electrode material on the second surface opposite to the first surface of the seventh negative electrode current collector, the first negative electrode material and the second negative electrode material are all selected from bifunctional negative electrode materials, supercapacitor negative electrode materials and lithium
  • the first negative electrode material is different from the second negative electrode material
  • the bifunctional negative electrode material can adsorb/desorb lithium ions, and can insert/deintercalate lithium ions of lithium ion batteries.
  • the three-pole-tab laminated composite battery of the embodiment of the present invention includes a positive electrode sheet, and the positive electrode sheet includes a first positive electrode sheet C1, and the first positive electrode sheet C1 is a positive electrode sheet for supercapacitors , the first positive electrode sheet C1 includes a first positive electrode current collector for a supercapacitor and a supercapacitor positive electrode material disposed on both sides of the first positive electrode current collector.
  • the positive electrode sheet in the embodiment of the present invention further includes a fourth positive electrode sheet C2, the fourth positive electrode sheet C2 is a positive electrode sheet for super capacitors, and the fourth positive electrode sheet C2 includes a fourth positive electrode current collector for super capacitors and a The supercapacitor cathode material on the surface of one side of the four cathode current collectors. Only one side of the fourth positive electrode sheet C2 is provided with a supercapacitor positive electrode material, and the fourth positive electrode sheet C2 can be used as the outermost positive electrode sheet of the composite battery.
  • the fourth positive electrode sheet C2 for supercapacitors coated with supercapacitor positive electrode material on the surface of the fourth positive electrode current collector is defined as C-single ((b) in FIG. 1 );
  • the first positive electrode sheet C1 for supercapacitors in which both surfaces of the first positive electrode current collector for supercapacitors are coated with a positive electrode material for supercapacitors is defined as C-bi ((c) in FIG. 1 ).
  • the purpose of setting the first positive electrode sheet C1 and the fourth positive electrode sheet C2 for the supercapacitor is to form a supercapacitor positive and negative electrode pair with the matched negative electrode sheet F1, F2 or F3, so as to realize the storage of electric energy by the supercapacitor laminated unit.
  • C-single and C-double are mainly used in different structures to maximize the utilization of active materials, where C-single is mainly used in the lamination unit of the outermost supercapacitor, and C-double is mainly used in the non-outermost supercapacitor. in the laminated unit of the capacitor.
  • the first positive electrode current collector and the fourth positive electrode current collector for the supercapacitor are both selected from aluminum foils.
  • the supercapacitor positive electrode material includes a positive electrode active material for a supercapacitor, a positive electrode binder for a supercapacitor, and a positive electrode conductive agent for a supercapacitor.
  • the compaction density of the first positive electrode sheet and the fourth positive electrode sheet for supercapacitors is 0.5-4.3 g/cm 3 .
  • the positive electrode active material for supercapacitors accounts for 70-99% of the total mass of the positive electrode material of the supercapacitor
  • the positive electrode conductive agent for supercapacitors accounts for 0.5-15% of the total mass of the positive electrode material for the supercapacitor
  • the The positive electrode binder for supercapacitor accounts for 0.5-15% of the total mass of the positive electrode material of the supercapacitor.
  • the positive electrode active material for supercapacitors is selected from activated porous carbon materials (activated carbon powder, activated carbon fiber, carbon aerogel, carbon nanotube, carbide-derived carbon, graphite ring, graphene oxide, graphene one or more); metal oxides (such as RuO 2 , MnO 2 , ZnO, PbO 2 , WO 3 , NiO, Co 3 O 4 , MoO 2 , etc.); metal sulfides (such as MnS 2 , PbO 2 , WS 3 , NiS, MoS 2 , TiS 2 , FeS, FeS 2 , etc.); mixed metal oxides (such as NiCo 2 O 4 , ZnCo 2 O 4 , FeCo 2 O 4 , MnCo 2 O 4 , CoNi 2 O 4 , ZnNi 2 O 4 , etc.); mixed metal sulfides (such as NiCo 2 S 4 , ZnCo 2 S 4 , FeCo 2 S 4 , FeCo 2 S
  • the positive electrode binder for supercapacitors may be polymer materials, including but not limited to polyvinylidene fluoride and polyimide.
  • the positive electrode conductive agent for supercapacitors may be at least one of conductive carbon black, acetylene black, Ketjen black, carbon nanotubes and graphene.
  • the positive electrode sheet of the hybrid battery according to the embodiment of the present invention further includes a second positive electrode sheet L1, the second positive electrode sheet L1 is a positive electrode sheet for a lithium ion battery, and the second positive electrode sheet L1 includes lithium ion A second positive electrode current collector for a battery and a lithium ion battery positive electrode material disposed on both sides of the second positive electrode current collector for a lithium ion battery.
  • the positive electrode sheet in the embodiment of the present invention further includes a fifth positive electrode sheet L2, the fifth positive electrode sheet L2 is a positive electrode sheet for lithium ion batteries, and the fifth positive electrode sheet L2 includes a fifth positive electrode current collector for lithium ion batteries and a A lithium ion battery positive electrode material on one side surface of the fifth positive electrode current collector. Only one side of the fifth positive electrode sheet L2 is provided with a lithium ion battery positive electrode material, and the fifth positive electrode sheet L2 can be used as the outermost positive electrode sheet of the composite battery.
  • the fifth positive electrode sheet L2 for lithium ion batteries coated with the positive electrode material of lithium ion batteries on one side surface of the fifth positive electrode current collector for lithium ion batteries is defined as L-single (( in FIG. 2 ).
  • the second positive electrode sheet L1 for lithium ion batteries coated with positive electrode material for lithium ion batteries on both sides of the second positive electrode current collector for lithium ion batteries is defined as L-double ((c) in FIG. 2 ) ).
  • the purpose of setting the second positive electrode sheet L1 and the fifth positive electrode sheet L2 for the lithium ion battery is to form a positive and negative electrode pair of the lithium ion battery with the matched negative electrode sheets F1 and F2, so as to realize the lithium ion battery during charging and discharging.
  • the intercalation and deintercalation of the lithium-ion battery form the lamination unit.
  • L-single and L-double are mainly used in different structures to maximize the utilization of active materials, in which L-single is mainly used in the lamination unit of the outermost Li-ion battery, and L-double is mainly used in the non-outermost layer. in the laminated unit of the lithium-ion battery.
  • the second positive electrode current collector and the fifth positive electrode current collector for the lithium ion battery are selected from aluminum foils.
  • the lithium ion battery positive electrode material includes a positive electrode active material for a lithium ion battery, a positive electrode binder for a lithium ion battery, and a positive electrode conductive agent for a lithium ion battery.
  • the compaction densities of the second positive electrode sheet and the fifth positive electrode sheet for lithium ion batteries are both 2-4.3 g/cm 3 .
  • the positive electrode active material for lithium ion battery accounts for 75-99% of the total mass of the positive electrode material of the lithium ion battery
  • the positive electrode conductive agent for lithium ion battery accounts for 0.5-15% of the total mass of the positive electrode material for the lithium ion battery %
  • the positive electrode binder for lithium ion battery accounts for 0.5-10% of the total mass of the positive electrode material of the lithium ion battery.
  • the nickel-cobalt-manganese ternary composite cathode material is LiNi 1/3 Co 1/3 Mn 1/3 , LiNi 0.5 Co 0.2 Mn 0.3 , LiNi 0.4 Co 0.2 Mn 0.4 , LiNi 0.6 Co 0.2 Mn 0.2 , LiNi 0.4 Co 0.2 Mn 0.4 , 0.8 Co 0.1 Mn 0.1 , LiNi 0.7 Co 0.2 Mn 0.1 , LiNi 0.7 Co 0.15 Mn 0.15 , LiNi x Co y Mn 1-xy O 2 (wherein 0.95 ⁇ z ⁇ 1.05, 0.8 ⁇ x ⁇ 0.95, 0.03 ⁇ x ⁇ 0.2, At least one of x+y ⁇ 1).
  • the positive electrode binder for lithium ion batteries may be a polymer material, including but not limited to polyvinylidene fluoride and polyimide.
  • the positive electrode conductive agent for lithium ion batteries may be at least one of conductive carbon black, acetylene black, Ketjen black, carbon nanotubes, graphene oxide, and graphene.
  • the positive electrode sheet further includes a third positive electrode sheet H
  • the third positive electrode sheet H is a positive electrode sheet for lithium ion batteries and supercapacitors, including a third positive electrode collector for lithium ion batteries and supercapacitors Fluid, lithium ion battery positive electrode material disposed on the first surface of the third positive electrode current collector for lithium ion batteries and supercapacitors, and A supercapacitor cathode material on a second surface opposite one surface.
  • the first surface of the third positive electrode current collector for lithium ion batteries and supercapacitors is coated with positive electrode material for lithium ion batteries, and the second surface opposite to the first surface is coated with positive electrode material for supercapacitors to form a lithium ion battery.
  • the third positive electrode sheet H for ion batteries and supercapacitors wherein, the third positive electrode sheet H for lithium ion batteries and supercapacitors can be used as a transitional positive electrode sheet, and the third positive electrode sheet H for lithium ion batteries and supercapacitors
  • One side can form a lithium-ion battery lamination unit, and the other side can form a supercapacitor lamination unit, realizing the transition between lithium-ion batteries and supercapacitors.
  • the third positive electrode can be connected to the first positive electrode tab or the second positive electrode tab. When there are multiple third positive electrode tabs in the composite battery, they can be connected to the same positive electrode tab or to different ones. the positive tab.
  • the third current collector for lithium ion batteries and supercapacitors is selected from aluminum foils.
  • the definition of the positive electrode material of the lithium ion battery is the same as above.
  • the definition of the supercapacitor positive electrode material is the same as above.
  • the negative electrode sheet of the composite battery includes a first negative electrode sheet F1, and the first negative electrode sheet F1 includes a first negative electrode current collector and is disposed on both sides of the first negative electrode current collector.
  • bifunctional anode material can not only adsorb/desorb lithium ions, but also be capable of intercalating/deintercalating lithium ions of a lithium ion battery.
  • the bifunctional negative electrode material has dual properties, so that the first negative electrode sheet can be used not only as a negative electrode sheet for supercapacitors, but also as a negative electrode sheet for lithium ion batteries, that is, the first negative electrode sheet is a compatible negative electrode sheet.
  • the negative electrode sheet further includes a second negative electrode sheet F2, and the second negative electrode sheet F2 includes a second negative electrode current collector and a bifunctional negative electrode material disposed on one surface of the second negative electrode current collector. Only one side of the second negative electrode sheet F2 is provided with a bifunctional negative electrode material, and the second negative electrode sheet F2 can be used as the outermost negative electrode sheet of the composite battery.
  • the second negative electrode sheet is also a compatible negative electrode sheet.
  • the second negative electrode sheet F2 coated with bifunctional negative electrode material on one surface of the second negative electrode current collector is defined as F2-single ((b) in FIG. 4 ) on the first negative electrode
  • the first negative electrode sheet F1 coated with bifunctional negative electrode material on both sides of the current collector is defined as F1-bi ((c) in FIG. 4 ).
  • the first negative electrode sheet F1 and the second negative electrode sheet F2 can be adapted to the above-mentioned positive electrode sheets L1 and L2 for lithium ion batteries, positive electrode sheets C1 and C2 for supercapacitors, or positive electrode sheets H for lithium ion batteries and supercapacitors, And form a lithium-ion battery stack unit or a supercapacitor stack unit, so that when the composite battery is charged and discharged, there are both physical energy storage of the supercapacitor and chemical energy storage of the lithium ion battery.
  • the first negative electrode current collector and the second negative electrode current collector are both selected from copper foils, such as electrolytic copper foils or rolled copper foils.
  • the bifunctional negative electrode material includes a first negative electrode active material, a first negative electrode binder and a first negative electrode conductive agent.
  • the first negative electrode active material accounts for 70-99% of the total mass of the bifunctional negative electrode material
  • the first negative electrode conductive agent accounts for 0.5-15% of the total mass of the bifunctional negative electrode material
  • the first negative electrode material accounts for 0.5-15% of the total mass of the bifunctional negative electrode material.
  • the negative electrode binder accounts for 0.5-15% of the total mass of the bifunctional negative electrode material.
  • the first negative electrode active material is any material that can deintercalate metal ions such as lithium ions, for example, the first negative electrode active material may be graphite, silicon material, silicon carbon composite material, silicon oxide material, One or more of alloy materials and lithium-containing metal composite oxide materials.
  • the first negative electrode binder includes, but is not limited to, one or more of styrene-butadiene rubber, fluorine-based rubber, ethylene propylene diene, and hydroxymethyl cellulose.
  • the first negative electrode conductive agent may be at least one of conductive carbon black, acetylene black, Ketjen black, carbon nanotubes and graphene.
  • the negative electrode sheet includes a third negative electrode sheet F3, the third negative electrode sheet is a negative electrode sheet for supercapacitors, and the third negative electrode sheet F3 includes a third negative electrode current collector and is disposed on the Supercapacitor anode material on both sides of the third anode current collector.
  • the negative electrode sheet further includes a fourth negative electrode sheet F4, the fourth negative electrode sheet is a negative electrode sheet for super capacitors, and the fourth negative electrode sheet F4 includes a fourth negative electrode current collector and a Supercapacitor anode material on the fluid side surface. Only one side of the fourth negative electrode sheet F4 is provided with a supercapacitor negative electrode material, and the fourth negative electrode sheet F4 can be used as the outermost negative electrode sheet of the composite battery.
  • the fourth negative electrode sheet F4 for supercapacitors coated with supercapacitor negative electrode material on the surface of the fourth negative electrode current collector is defined as F4-single ((b) in FIG. 5 );
  • the third negative electrode sheet F3 for supercapacitors whose surfaces on both sides of the third negative electrode current collector are coated with supercapacitor negative electrode material is defined as F3-bi ((c) in FIG. 5 ).
  • the third negative electrode sheet F3 and the fourth negative electrode sheet F4 can be matched with the above-mentioned positive electrode sheets C1 and C2 for supercapacitors, or the positive electrode sheets H for lithium ion batteries and supercapacitors to form a supercapacitor laminated unit, in particular, when the supercapacitor negative electrode material of the third negative electrode sheet F3 and the fourth negative electrode sheet F4 and the supercapacitor positive electrode material of the supercapacitor positive electrode sheet are the same material, a symmetrical supercapacitor laminated unit can be formed.
  • the supercapacitor uses the third negative electrode sheet
  • the supercapacitor negative electrode material of the fourth negative electrode sheet F4 and the supercapacitor positive electrode material of the supercapacitor positive electrode sheet are different materials but both are supercapacitor active materials, they can form an asymmetric supercapacitor laminated unit.
  • the third negative electrode current collector and the fourth negative electrode current collector are selected from copper foils, such as electrolytic copper foils or rolled copper foils.
  • the supercapacitor negative electrode material includes a negative electrode active material for a supercapacitor, a negative electrode binder for a supercapacitor, and a negative electrode conductive agent for a supercapacitor.
  • the negative electrode active material for supercapacitors accounts for 70-99% of the total mass of the supercapacitor negative electrode material
  • the negative electrode conductive agent for supercapacitors accounts for 0.5-15% of the total mass of the supercapacitor negative electrode material
  • the The negative electrode binder for supercapacitor accounts for 0.5-15% of the total mass of the negative electrode material of the supercapacitor.
  • the negative active material for supercapacitors is selected from activated porous carbon materials (activated carbon powder, activated carbon fiber, carbon aerogel, carbon nanotube, carbide-derived carbon, graphite ring, graphene oxide, graphene one or more); metal oxides (such as RuO 2 , MnO 2 , ZnO, PbO 2 , WO 3 , NiO, Co 3 O 4 , MoO 2 , etc.); metal sulfides (such as MnS 2 , PbO 2 , WS 3 , NiS, MoS 2 , TiS 2 , FeS, FeS 2 , etc.); mixed metal oxides (such as NiCo 2 O 4 , ZnCo 2 O 4 , FeCo 2 O 4 , MnCo 2 O 4 , CoNi 2 O 4 , ZnNi 2 O 4 , etc.); mixed metal sulfides (such as NiCo 2 S 4 , ZnCo 2 S 4 , FeCo 2 S 4 , M
  • the negative electrode binder for supercapacitors may be polymer materials, including but not limited to polyvinylidene fluoride and polyimide.
  • the negative electrode conductive agent for supercapacitors may be at least one of graphite, carbon black, acetylene black, Ketjen black, carbon nanotubes and graphene.
  • the negative electrode sheet includes a fifth negative electrode sheet
  • the fifth negative electrode sheet is a negative electrode sheet for lithium ion batteries
  • the fifth negative electrode sheet includes a fifth negative electrode current collector and a Five lithium-ion anode materials on both sides of the anode current collector.
  • the negative electrode sheet further includes a sixth negative electrode sheet, the sixth negative electrode sheet is a negative electrode sheet for lithium ion batteries, and the sixth negative electrode sheet includes a sixth negative electrode current collector and a sixth negative electrode current collector disposed on the sixth negative electrode current collector.
  • Supercapacitor anode material on one side surface. Only one side of the sixth negative electrode sheet is provided with a lithium ion battery negative electrode material, and the sixth negative electrode sheet can be used as the outermost negative electrode sheet of the composite battery.
  • the structures of the fifth negative electrode sheet and the sixth negative electrode sheet are respectively the same as those of the third negative electrode sheet and the fourth negative electrode sheet, and only the negative electrode materials are different.
  • the fifth negative electrode sheet and the sixth negative electrode sheet can be matched with the above-mentioned positive electrode sheets L1 and L2 for lithium ion batteries, or positive electrode sheets H for lithium ion batteries and supercapacitors to form a lithium ion battery structural unit.
  • positive electrode sheets L1 and L2 for lithium ion batteries or positive electrode sheets H for lithium ion batteries and supercapacitors to form a lithium ion battery structural unit.
  • negative electrode materials for lithium ion batteries there are many kinds of negative electrode materials for lithium ion batteries, and those skilled in the art can select suitable negative electrode materials for lithium ion batteries in the prior art according to actual needs.
  • the fifth negative electrode current collector and the sixth negative electrode current collector are both selected from copper foils, such as electrolytic copper foils or rolled copper foils.
  • the negative electrode sheet further includes a seventh negative electrode sheet F5, the seventh negative electrode sheet is a transitional negative electrode sheet, and the seventh negative electrode sheet F5 includes a seventh negative electrode current collector and a The first negative electrode material on the first surface of the negative electrode current collector, and the second negative electrode material on the second surface of the seventh negative electrode current collector opposite to the first surface, the first negative electrode material and the second negative electrode material are both One selected from the above-mentioned bifunctional negative electrode material, supercapacitor negative electrode material and lithium ion battery negative electrode material, the first negative electrode material is different from the second negative electrode material.
  • a lithium ion battery negative electrode material is coated on the first surface of the fifth negative electrode current collector, and a second surface of the fifth negative electrode current collector opposite to the first surface is coated.
  • Supercapacitor anode material The first surface side of the seventh negative electrode sheet F5 can be adapted with the above-mentioned positive electrode sheets L1 and L2 for lithium ion batteries, and the positive electrode sheets H for lithium ion batteries and supercapacitors, and the second surface side can be used with supercapacitors.
  • the positive electrode sheet C1 and C2 are adapted.
  • the seventh negative electrode sheet F5 can be used as a transitional negative electrode sheet, forming a lithium ion battery stack unit on one side, and a supercapacitor stack unit on the other side, so that when the composite battery is charged and discharged, both the supercapacitor and the supercapacitor are formed.
  • a transitional negative electrode sheet forming a lithium ion battery stack unit on one side, and a supercapacitor stack unit on the other side, so that when the composite battery is charged and discharged, both the supercapacitor and the supercapacitor are formed.
  • the seventh negative electrode current collector is selected from copper foil, such as electrolytic copper foil or rolled copper foil.
  • the definitions of the bifunctional negative electrode material, the supercapacitor negative electrode material and the lithium ion battery negative electrode material are as described above.
  • the lithium ion battery positive electrode sheet L1, the separator and the compatible negative electrode sheet F1 can form a lithium ion battery laminate unit A1
  • the lithium ion battery laminate unit A1 contains Lithium ion battery cell structure Y1 formed by positive electrode material for lithium ion battery, separator and negative electrode material for lithium ion battery.
  • the compatible negative electrode sheet F1 can also be replaced with a negative electrode sheet for lithium ion batteries.
  • the supercapacitor positive electrode sheet C1, the separator and the compatible negative electrode sheet F1 can form a supercapacitor laminated unit B1; the supercapacitor laminated unit B1 includes a supercapacitor laminated unit B1.
  • the compatible negative plate F1 can also be replaced by a negative plate for a supercapacitor.
  • the supercapacitor positive electrode sheet, the separator, and the supercapacitor negative electrode sheet F3 can form a supercapacitor laminated unit B2;
  • the supercapacitor lamination unit contains a symmetrical supercapacitor elementary structure Y2-D;
  • the supercapacitor lamination unit contains the asymmetric supercapacitor element structure Y2-F.
  • the positive electrode sheet L1 for lithium ion batteries, the separator and the seventh negative electrode sheet F5 can form a transition unit G1;
  • the transition unit G1 includes a positive electrode material for lithium ion batteries, a separator Lithium-ion battery cell structure Y1 formed with negative electrode material for lithium-ion battery.
  • the positive electrode sheet H for lithium ion batteries and supercapacitors, the separator and the compatible negative electrode sheet F1 can form a transition unit G2;
  • the transition unit G2 includes a positive electrode for lithium ion batteries Materials, separators and negative electrode materials for lithium ion batteries form a lithium ion battery elementary structure Y1, or a supercapacitor elementary structure Y2 comprising a positive electrode material for supercapacitors, a separator and a negative electrode material for supercapacitors.
  • the positive electrode sheet H for lithium ion batteries and supercapacitors, the separator and the seventh negative electrode sheet F5 can form a transition unit G3; the transition unit G3 includes a positive electrode for lithium ion batteries.
  • Materials, separators and negative electrode materials for lithium ion batteries form a lithium ion battery elementary structure Y1, or a supercapacitor elementary structure Y2 comprising a positive electrode material for supercapacitors, a separator and a negative electrode material for supercapacitors.
  • the positive electrode sheet C1 for supercapacitors, the separator and the seventh negative electrode sheet F5 can form a transition unit G4;
  • the transition unit G4 includes a positive electrode material for supercapacitors, a separator and a supercapacitor.
  • the positive electrode sheet H for lithium ion batteries and supercapacitors, the separator and the negative electrode sheet F3 for supercapacitors can form a transition unit G5; the transition unit G5 includes a positive electrode for supercapacitors.
  • the positive electrode material of the lithium ion battery needs to correspond to the compatible negative electrode material; the supercapacitor positive electrode material needs to correspond to the supercapacitor negative electrode material or the compatible negative electrode material.
  • a separator is also provided between the lithium ion battery laminated unit, the supercapacitor laminated unit, and the transition unit to avoid direct contact between the positive electrode material and the negative electrode material, resulting in a short circuit.
  • the separators disposed between the adjacent lithium-ion battery laminated units, supercapacitor laminated units and transition units can also form a lithium-ion battery cell structure Y1 or a supercapacitor base structure.
  • Element structure Y2 specifically, when the two sides of the separator are respectively the positive electrode material for lithium ion battery and the negative electrode material for lithium ion battery, the primary structure Y1 of lithium ion battery can be formed; when the two sides of the separator are respectively the positive electrode material for supercapacitor and When the supercapacitor is used as a negative electrode material, the supercapacitor element structure Y2 can be formed.
  • the number of the lithium ion battery elementary structures Y1 is greater than or equal to the number of the supercapacitor elementary structures Y2.
  • the composite battery includes at least one of a lithium-ion battery stack unit A1, a supercapacitor stack unit B1, a supercapacitor stack unit B2, and transition units G1, G2, G3, G4, and G5 and at the same time ensure that the composite battery includes at least one positive electrode sheet for lithium ion batteries and at least one positive electrode sheet for supercapacitors; and/or, at least one positive electrode sheet H for lithium ion batteries and supercapacitors.
  • the lithium-ion battery laminate unit A1, the supercapacitor laminate unit B1, and the supercapacitor laminate unit B2 can be transitionally connected through a separator and an optional transition unit to form a laminate type composite battery.
  • the transition connection should satisfy that the positive electrode material of the lithium ion battery corresponds to the compatible negative electrode material; the supercapacitor positive electrode material corresponds to the supercapacitor negative electrode material or the compatible negative electrode material.
  • the composite battery comprises transition units-m lithium-ion battery lamination units A1-transition units; wherein, the transition units are the same or different, and are independently selected from the above transition units G1-G5, m is an integer greater than or equal to 1;
  • the composite battery comprises transition units-n supercapacitor lamination units B1-transition units; wherein, the transition units are the same or different, and are independently selected from the above transition units G1-G5, and n is an integer greater than or equal to 1;
  • the composite battery includes transition units-n supercapacitor lamination units B2-transition units; wherein, the transition units are the same or different, and are independently selected from the above transition units G1-G5, and n is an integer greater than or equal to 1;
  • the composite battery comprises transition units-n1 supercapacitor lamination units B1-n2 supercapacitor lamination units B2-transition units; wherein the transition units are the same or different, and are independently selected from each other.
  • transition units G1-G5 n1 is an integer greater than or equal to 1, and n2 is an integer greater than or equal to 1;
  • the composite battery includes transition units-m lithium-ion battery lamination units A1-transition units-n supercapacitor lamination units B1-transition units; wherein, the transition units are the same or different, and each other Independently selected from the above transition units G1-G5, n is an integer greater than or equal to 1, m is an integer greater than or equal to 1;
  • the composite battery includes transition units-m lithium-ion battery lamination units A1-transition units-n supercapacitor lamination units B2-transition units; wherein, the transition units are the same or different, and each other Independently selected from the above transition units G1-G5, n is an integer greater than or equal to 1, m is an integer greater than or equal to 1;
  • the composite battery includes transition units-n1 supercapacitor lamination units B1-transition unit-m lithium-ion battery lamination units A1-transition unit-n2 supercapacitor lamination units B2-transition unit ;
  • the transition units are the same or different, and are independently selected from the above transition units G1-G5, n1+n2 is an integer greater than or equal to 1, and m is an integer greater than or equal to 1;
  • the transition unit can select a suitable transition unit from the above transition units G1-G5 according to the difference of adjacent repeating units, so as to ensure that the positive electrode material of the lithium ion battery needs to correspond to the compatible negative electrode material;
  • the supercapacitor positive electrode material needs to correspond to the supercapacitor negative electrode material or compatible negative electrode material.
  • the applicable range and application of the composite battery can be adjusted by adjusting the ratio of x/y.
  • the ratio of x/y can be adjusted according to the requirements of energy density and power density in a wide range of application environments, so as to meet the application requirements.
  • x ⁇ y the number of the supercapacitor element structures Y2 is less than or equal to the number of the lithium ion battery element structures Y1.
  • the separator is selected from porous films.
  • the separator is prepared from a separator material that is ionically conductive but electronically insulating, and the separator is mostly a porous film made of a polymer.
  • the polymers include, but are not limited to: polyethylene terephthalate, polybutylene terephthalate, polyether, polyacetal, polyamide, polycarbonate, polyimide Amines, polyetheretherketone, polyethersulfone, polyphenylene oxide, polyphenylene sulfide, polyethylene naphthalene, high density polyethylene, low density polyethylene, linear low density polyethylene, ultra-high molecular weight polyethylene and polypropylene.
  • the separator further includes an organic or inorganic coating disposed on one or both surfaces of the above-mentioned porous membrane.
  • An organic or inorganic coating applied to the surface of a substrate usually to enhance the resistivity of the separator, prevent direct electrical contact between opposing layers of negative electrode material and layers of positive electrode material, and remain available for immersion electrolysis Insulator material of porous structure that transports lithium ions between battery electrodes.
  • the insulating separator can be in the form of a sheet adapted to the structure of the battery, or can be in the form of a bag adapted to the structure of the battery.
  • the inorganic substances may specifically include but are not limited to: BaTiO 3 , Pb(Zr, Ti)O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 , PB ( Mg 3 Nb 2/3 )O 3 -PbTiO 3 , hafnium dioxide (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , SiO 2 , Y 2 O 3 , Al 2 O 3 , SiC, TiO 2 and mixtures thereof.
  • the organic substances may specifically include but are not limited to: cyanoethyl pullulan, cyanoethyl polyvinyl alcohol, cyanoethyl cellulose, cyanoethyl sucrose, polyvinylidene fluoride-co- Hexafluoropropylene, polyvinylidene fluoride-co-trichloroethylene, polymethyl methacrylate, polyacrylonitrile, polyvinylpyrrolidone, polyvinyl acetate, polyethylene-co-vinyl acetate, polyimide, Polyethylene oxide, cellulose acetate, cellulose acetate butyrate and cellulose acetate propionate and mixtures thereof.
  • the composite battery includes a positive electrode sheet for lithium ion batteries, a positive electrode sheet for supercapacitors, a positive electrode sheet for lithium ion batteries and supercapacitors, and a negative electrode sheet.
  • the above-mentioned positive electrode sheet and negative electrode sheet are assembled with the tabs, the diaphragm, the electrolyte, and the packaging shell to form a finished battery cell.
  • the electrolyte solution includes a lithium salt, an organic solvent and an additive.
  • the organic solvent is selected from carbonates (such as cyclic carbonates, chain carbonates), carboxylates (such as cyclic carboxylates, chain carboxylates), ether compounds (such as at least one of cyclic ether compounds, chain ether compounds), phosphorus-containing compounds and sulfur-containing compounds.
  • the carbonate is selected from dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, methyl-n-propyl carbonate, ethyl-n-propyl carbonate, di-n-propyl carbonate, bis(fluoromethyl) ) carbonate, bis(difluoromethyl)carbonate, bis(trifluoromethyl)carbonate, bis(2-fluoroethyl)carbonate, bis(2,2-difluoroethyl)carbonate, bis(2,2-difluoroethyl)carbonate (2,2,2-Trifluoroethyl)carbonate, 2-fluoroethylmethylcarbonate, 2,2-difluoroethylmethylcarbonate and 2,2,2-trifluoroethylmethylcarbonate at least one of carbonates.
  • the carboxylate is selected from methyl acetate, ethyl acetate, propyl acetate, isopropyl acetate, butyl acetate, sec-butyl acetate, isobutyl acetate, tert-butyl acetate, methyl propionate, Ethyl propionate, propyl propionate, isopropyl propionate, methyl butyrate, ethyl butyrate, propyl butyrate, methyl isobutyrate, ethyl isobutyrate, methyl valerate, valeric acid Ethyl, methyl and ethyl pivalate, methyl trifluoroacetate, ethyl trifluoroacetate, propyl trifluoroacetate, butyl trifluoroacetate, trifluoroacetic acid and 2,2,2-trifluoroacetate At least one of fluoroethyl esters.
  • the ether compound is selected from tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 2-methyl-1,3-dioxolane, 4-methyl 1,3-dioxolane pentane, 1,3-dioxane, 1,4-dioxane, dimethoxypropane, dimethoxymethane, 1,1-dimethoxyethane, 1,2-dimethyl Oxyethane, diethoxymethane, 1,1-diethoxyethane, 1,2-diethoxyethane, ethoxymethoxymethane, 1,1-ethoxymethoxy At least one of ethyl ethane and 1,2-ethoxymethoxyethane.
  • the phosphorus-containing compound is selected from trimethyl phosphate, triethyl phosphate, dimethyl ethyl phosphate, methyl diethyl phosphate, ethylene methyl phosphate, ethylene ethyl phosphate, triphenyl phosphate ester, trimethyl phosphite, triethyl phosphite, triphenyl phosphite, tris(2,2,2-trifluoroethyl) phosphate and tris(2,2,3,3,3-pentaphosphate) at least one of fluoropropyl) esters.
  • the sulfur-containing compound is selected from sulfolane, 2-methyl sulfolane, 3-methyl sulfolane, dimethyl sulfone, diethyl sulfone, ethyl methyl sulfone, methyl propyl sulfone, dimethyl sulfoxide , at least one of methyl methanesulfonate, ethyl methanesulfonate, methyl ethanesulfonate, ethyl ethanesulfonate, dimethyl sulfate, diethyl sulfate and dibutyl sulfate.
  • the organic solvent accounts for 82-88% of the total mass of the electrolyte.
  • the lithium salt is selected from at least one of inorganic lithium salts, fluorine-containing organic lithium salts, and dicarboxylic acid complex-containing lithium salts.
  • the inorganic lithium salt is selected from at least one of LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiSbF 6 , LiSO 3 F, and LiN(FSO 2 ) 2 .
  • the fluorine-containing organic lithium salt is selected from LiCF 3 SO 3 , LiN(FSO 2 )(CF 3 SO 2 ), LiN(CF 3 SO 2 ) 2 , LiN(C 2 F 5 SO 2 ) 2 , cyclic Lithium 1,3-hexafluoropropanedisulfonimide, Lithium Cyclic 1,2-tetrafluoroethanedisulfonimide, LiN(CF 3 SO 2 )(C 4 F 9 SO 2 ), LiC(CF 3 SO 2 ) 3 , LiPF 4 (CF 3 ) 2 , LiPF 4 (C 2 F 5 ) 2 , LiPF 4 (CF 3 SO 2 ) 2 , LiPF 4 (C 2 F 5 SO 2 ) 2 , LiBF 2 (CF 3 ) 2 , LiBF 2 (C 2 F 5 ) 2 , LiBF 2 (CF 3 SO 2 ) 2 , LiBF 2 (CF 3 SO 2 ) 2 , LiBF 2 (C 2 F 5 ) 2
  • the lithium salt containing dicarboxylic acid complex is selected from lithium bis(oxalato)borate, lithium difluorooxalatoborate, lithium tris(oxalato)phosphate, lithium difluorobis(oxalato)phosphate , at least one of tetrafluoro(oxalato) lithium phosphate.
  • the lithium salt accounts for 13-18 wt% of the total mass of the electrolyte.
  • the additives are conventional additives known in the art.
  • the present invention also provides a method for preparing the above-mentioned composite battery, the method comprising the following steps:
  • Two independent positive electrode tabs are drawn from the positive electrode sheet for lithium ion batteries and the positive electrode sheet for supercapacitors, or two independent positive electrode tabs are drawn from the positive electrode sheets for lithium ion batteries and supercapacitors respectively;
  • a negative electrode tab is drawn out of the negative electrode sheet to form a three-pole tab structure with two mutually independent positive electrode tabs and a shared negative electrode tab;
  • the positive electrode sheet for supercapacitors can be prepared by the following method:
  • the positive electrode slurry for supercapacitors is prepared and coated on one or both sides of the positive electrode current collector for supercapacitors to prepare the positive electrode sheet for supercapacitors.
  • the positive electrode sheet for the lithium ion battery can be prepared by the following method:
  • the positive electrode slurry for lithium ion battery is prepared and coated on one side or both sides of the positive electrode current collector for lithium ion battery to prepare the positive electrode sheet for lithium ion battery.
  • the positive electrode sheets for lithium ion batteries and supercapacitors can be prepared by the following methods:
  • the positive electrode slurry for lithium ion batteries and the positive electrode slurry for supercapacitors are prepared, and they are respectively coated on the surface of one side of the positive electrode current collector for lithium ion batteries and supercapacitors to prepare the lithium ion batteries and supercapacitors. Use positive pads.
  • a composite battery is formed by alternately stacking a negative electrode sheet, a separator G, a positive electrode sheet, a separator G, and a negative electrode sheet, as shown in FIG. 7 , FIG. 8 and FIG. 9 .
  • FIG. 7 is a schematic structural diagram of a composite capacitor containing a symmetric supercapacitor according to an embodiment of the present invention, and its stacking method is F2-single, diaphragm, (L-double, diaphragm, F1-double, diaphragm), ( L-Dual, Diaphragm, F5, Diaphragm), (C-Dual, Diaphragm, F3-Dual, Diaphragm), (C-Dual, Diaphragm, F5, Diaphragm), m (L-Dual, Diaphragm, F1-Dual, Diaphragm), L-double, diaphragm, and F2-single are alternately combined.
  • the diaphragm adopts Z-type lamination, and the positive and negative electrodes are separated and stacked to form a bare cell, which contains A1-G1-B2-G4-(A1) m
  • the stacked structure, wherein, F2-single, diaphragm, L-double includes lithium ion battery cell structure Y1; lithium ion battery stack unit A1 includes lithium ion battery cell structure Y1; A1-G1 forms lithium ion battery cell structure Y1
  • FIG. 8 is a schematic structural diagram of a composite capacitor containing asymmetric supercapacitors according to an embodiment of the present invention, and the stacking method is F2-single, diaphragm, (L-double, diaphragm, F1-double, diaphragm), (C-Double, Diaphragm, F1-Double, Diaphragm), m (L-Double, Diaphragm, F1-Double, Diaphragm), L-Double, Diaphragm, F2-Single Mode Alternate Combination, Diaphragm adopts Z-type lamination , the positive and negative electrodes are separated and stacked to form a bare cell, forming a stacked structure containing A1-B1-(A1) m ; wherein, F2-single, diaphragm, and L-double include lithium-ion battery cell structure Y1; lithium
  • the ion battery stack unit A1 includes a lithium ion battery cell structure Y
  • FIG. 9 is a schematic structural diagram of a composite capacitor containing asymmetric supercapacitors and symmetric supercapacitors according to an embodiment of the present invention, and the stacking method is F2-single, diaphragm, (L-double, diaphragm, F1- Double, Diaphragm), (L-Dual, Diaphragm, F5, Diaphragm), (C-Dual, Diaphragm, F1-Dual, Diaphragm), (C-Dual, Diaphragm, F5, Diaphragm), m (L-Dual, Diaphragm) Diaphragm, F1-Double, Diaphragm), L-Double, Diaphragm, and F2-Single are alternately combined.
  • the stacked structure of G4-(A1) m wherein the F2-single, diaphragm, and L-double include the lithium-ion battery cell structure Y1;
  • the lithium-ion battery stack unit A1 includes the lithium-ion cell cell structure Y1;
  • A1 Lithium-ion battery cell structure Y1 is formed between G1;
  • transition unit G1 includes lithium-ion cell cell structure Y1;
  • supercapacitor cell structure Y2 is formed between G1-B1;
  • supercapacitor lamination unit B1 includes supercapacitor cell structure Y2 Capacitor elementary structure Y2; supercapacitor elementary structure Y2 is formed between B1-G4;
  • the transition unit G4 includes supercapacitor elementary structure Y2;
  • lithium ion battery elementary structure Y1 is formed between G4-A1; lithium ion battery
  • the laminated unit A1 includes a lithium-ion battery cell structure Y1;
  • two independent positive electrode tabs are drawn from the positive electrode sheet for lithium ion batteries and the positive electrode sheet for supercapacitors, or two independent positive electrode tabs are drawn from the positive electrode sheets for lithium ion batteries and supercapacitors respectively.
  • a negative electrode tab is drawn from the negative electrode sheet to form a three-pole-tab structure with two independent positive electrode tabs and a shared negative electrode tab; it can effectively solve the problem of fast self-discharge of supercapacitor batteries , and to achieve the purpose of optimal use of the hybrid electrochemical cell.
  • the first positive electrode tab is drawn from the positive electrode sheet for supercapacitors; the second positive electrode tab is drawn from the positive electrode sheet for lithium ion batteries; the first positive electrode tab is drawn from the positive electrode sheet for lithium ion batteries and supercapacitors
  • a positive electrode tab or a second positive electrode tab when using multiple positive electrode tabs for lithium ion batteries and supercapacitors, some of the positive electrode tabs can also lead out the first positive tab, and some positive tabs can lead out the second positive tab.
  • the negative electrode tabs are drawn out independently or cross-connected to form negative electrode tabs.
  • the positions of the above-mentioned three tabs are not particularly limited. As shown in Figure 10, for example, the first positive tab connected to the positive electrode piece of the supercapacitor and the second positive electrode tab connected to the positive electrode piece of the lithium ion battery are arranged on the same side of the battery. side (as shown in a in FIG. 10 ), or, the first positive electrode tab and the second positive electrode tab are arranged on opposite sides of the battery (as shown in b in FIG. 10 ), or the first positive electrode The lugs and the second positive electrode lugs are provided on adjacent sides of the battery (as shown by c and d in FIG. 10 ).
  • the width of the positive electrode tab can be appropriately increased according to different use environments, and the positive electrode tab can be used as an excellent heat conduction medium, which can improve the heat dissipation effect of the battery.
  • porous carbon activated carbon powder (specific surface area ⁇ 1000m 2 /g), binder PVDF, conductive carbon black, and carbon nanotubes in NMP (N-methylpyrrolidone), which is a positive active material for supercapacitors.
  • the positive electrode slurry for supercapacitor is prepared by vacuum stirring to obtain a uniform dispersion.
  • the solid content contains 93wt% of positive active material, 4wt% of binder PVDF, 2wt% of conductive carbon black and 1wt% of carbon nanotubes.
  • the total solids content in the positive electrode slurry for supercapacitors was 40 wt%.
  • the positive electrode slurry for supercapacitors is evenly coated on both sides of the aluminum foil, vacuum-dried at 100-120° C. for 10-24 hours, and rolled to be compacted to 1.0-2.1 g/cm 3 to obtain a number of positive electrode sheets for supercapacitors C1. is C-double (as shown in (c) in Figure 1).
  • the positive electrode slurry for supercapacitors is evenly coated on one side of the aluminum foil, vacuum-dried at 100-120° C. for 10-24 hours, and rolled to be compacted to 0.9-2.1 g/cm 3 to obtain a number of positive electrode sheets for supercapacitors C2. is C-single (as shown in (b) in Figure 1).
  • the positive electrode active material for lithium ion battery (LiNi 0.8 Co 0.1 Mn 0.1 O 2 ), binder PVDF, conductive carbon black, and carbon nanotubes are mixed and dispersed in NMP. After mixing, vacuum stirring is performed to obtain uniform dispersion to make lithium ion battery. Use positive paste.
  • the solid content contains 94 wt % of positive active material, 3 wt % of binder PVDF, 2 wt % of conductive carbon black and 1 wt % of carbon nanotubes.
  • the total solid content in the positive electrode slurry for lithium ion batteries was 70 wt %.
  • the positive electrode slurry for lithium ion batteries is evenly coated on both sides of the aluminum foil, vacuum-dried at 100-120° C. for 10-24 hours, and rolled to be compacted to 2-4.8 g/cm 3 to obtain a positive electrode sheet L1 for lithium ion batteries Denoted as L-double (as shown in (c) in Figure 2).
  • the positive electrode slurry for lithium ion batteries is evenly coated on one side of the aluminum foil, vacuum-dried at 100-120° C. for 10-24 hours, and rolled to be compacted to 2-4.8 g/cm 3 to obtain a positive electrode sheet L2 for lithium ion batteries.
  • L-single as shown in (b) in Figure 2).
  • the positive electrode slurry for supercapacitors of Preparation Example 1 and the positive electrode slurry for lithium ion batteries of Preparation Example 2 were evenly coated on both sides of the aluminum foil, vacuum dried at 100-120 ° C for 10-24 hours, and compacted to 0.9 by a roller press. -3.8 g/cm 3 to obtain a positive electrode sheet H for lithium ion batteries and supercapacitors (as shown in FIG. 3 ).
  • the compatible negative electrode slurry was evenly coated on both sides of the copper foil, dried in a vacuum at 100-120°C for 10-24 hours, and compacted to 0.9-2.1 g/cm 3 by a roller press to obtain several compatible negative electrode sheets F1 and recorded as F1- Double (as shown in (c) in Figure 4).
  • porous carbon activated carbon powder (specific surface area ⁇ 1000m 2 /g), binder PVDF, conductive carbon black, and carbon nanotubes in NMP (N-methylpyrrolidone), which is a negative active material for supercapacitors.
  • NMP N-methylpyrrolidone
  • the solid content contains 93wt% of negative active material, 4wt% of binder PVDF, 2wt% of conductive carbon black and 1wt% of carbon nanotubes.
  • the total solids content in the negative electrode slurry for supercapacitors was 40 wt%.
  • the negative electrode slurry for supercapacitors and the compatible negative electrode slurry of Preparation Example 4 were uniformly coated on both sides of the copper foil, dried in a vacuum at 100-120 ° C for 10-24 h, and compacted to 0.9-2.1 g/cm by a roller press. 3 , to obtain several seventh negative electrode sheets F5 (as shown in Fig. 5).
  • the negative electrode slurry for supercapacitors of Preparation Example 5 was evenly coated on both sides of the copper foil, dried in a vacuum at 100-120°C for 10-24h, and compacted to 0.9-2.1g/cm 3 by a roller press to obtain several supercapacitors for
  • the negative electrode sheet F3 is denoted as F3-bi (as shown in (c) in FIG. 6 ).
  • the negative electrode slurry for supercapacitors of Preparation Example 5 was evenly coated on one side of the copper foil, dried in a vacuum at 100-120° C. for 10-24 h, and compacted to 0.9-2.1 g/cm 3 by a roller press to obtain several supercapacitors for
  • the negative electrode sheet F4 is denoted as F4-single (as shown in (b) in FIG. 6 ).
  • Example 1 A combination of lithium-ion batteries and symmetrical supercapacitors
  • the positive electrode sheet and the above-mentioned preparation examples 1-3 were punched into 60mm ⁇ 45mm sheets; the negative electrode sheets of the above-mentioned preparation examples 4-6 were punched into 62mm ⁇ 47mm sheets;
  • F2-single, diaphragm and L-double include lithium-ion battery cell structure Y1; lithium-ion battery stack unit A1 includes lithium-ion cell cell structure Y1; A1-G1 forms a lithium-ion cell cell structure Y1; the transition unit G1 includes a lithium-ion battery cell structure Y1; a supercapacitor cell structure Y2 is formed between G1-B2; the supercapacitor lamination unit B2 includes a supercapacitor cell structure Y2; between B2-B2 A supercapacitor cell structure Y2 is formed; the supercapacitor lamination unit B2 includes a supercapacitor cell structure Y2; a supercapacitor cell structure Y2 is formed between B2-G4; the transition unit G4 includes a supercapacitor cell structure Y2; Li-ion battery cell structure Y1 is formed between G4-A1; lithium-ion cell stack unit A1 includes lithium-ion cell cell structure
  • the separator made of polypropylene (PP) or polyethylene (PE) adopts Z-type lamination, and the positive and negative electrodes are separated and stacked to form a bare cell C-1. Then, transfer the positive electrode piece L for lithium ion battery and the positive electrode piece C for supercapacitor in the bare cell C-1 out of two independent aluminum tabs, and transfer the negative electrode tab out of copper nickel-plated tabs or nickel electrodes. ear, forming a three-pole-tab bare cell C-1 with two mutually independent positive pole tabs and one common negative pole tab.
  • PP polypropylene
  • PE polyethylene
  • the electrolyte is a 1M lithium hexafluorophosphate electrolyte
  • the solvent of the electrolyte is a mixed solvent of ethylene carbonate: dimethyl carbonate: 1,2 propylene carbonate in a volume ratio of 1:1:1.
  • Example 2 A combination of lithium-ion batteries and asymmetric supercapacitors
  • the positive and negative pole pieces are as follows: F2-single, diaphragm, 2 (L-double, diaphragm, F1-double, diaphragm), 3 (C-double, diaphragm, F1-double, diaphragm), 1 ( The patterns of L-Double, Diaphragm, F1-Double, Diaphragm), L-Double, Diaphragm, and F2-Single are alternately combined to form a stacked structure containing (A1) 2 -(B1) 3 -(A1) 1 .
  • F2-single, separator and L-double include lithium-ion battery cell structure Y1; lithium-ion battery stack unit A1 includes lithium-ion cell cell structure Y1; A1-A1 forms a lithium-ion cell cell structure Y1; the lithium-ion battery stack unit A1 includes a lithium-ion battery cell structure Y1; a supercapacitor cell structure Y2 is formed between A1-B1; the supercapacitor cell structure B1 includes a supercapacitor cell structure Y2; B1 A supercapacitor elementary structure Y2 is formed between B1; the supercapacitor lamination unit B1 includes a supercapacitor elementary structure Y2; a supercapacitor elementary structure Y2 is formed between B1 and B1; the supercapacitor lamination unit B1 Include supercapacitor element structure Y2; B1-A1 forms supercapacitor element structure Y2; Li-ion battery stack unit A1 includes lithium-ion battery stack
  • the separator made of polypropylene (PP) or polyethylene (PE) adopts Z-type lamination, and the positive and negative electrodes are separated and stacked to form a bare cell C-2. Then, transfer the positive electrode piece L for lithium ion battery and the positive electrode piece C for supercapacitor in the bare cell C-2 out of two independent aluminum tabs, and transfer the negative electrode tab out of copper nickel-plated tabs or nickel electrodes. ear, forming a three-pole bare cell C-2 with two independent positive poles and one common negative pole.
  • PP polypropylene
  • PE polyethylene
  • Example 3 A combination of lithium-ion batteries, symmetric supercapacitors, and asymmetrical supercapacitors
  • the separator made of polypropylene (PP) or polyethylene (PE) adopts Z-type lamination, and the positive and negative electrodes are separated and stacked to form a bare cell C-3. Then, transfer the positive electrode piece L for lithium ion battery and the positive electrode piece C for supercapacitor in the bare cell C-3 out of two independent aluminum tabs, and transfer the negative electrode tab out of copper nickel-plated tabs or nickel electrodes. ear, forming a three-pole-tab bare cell C-3 with two mutually independent positive pole tabs and one common negative pole tab.
  • PP polypropylene
  • PE polyethylene
  • the positive and negative pole pieces are alternately combined according to the pattern of: F4-single, diaphragm, 7 (C-double, diaphragm, F3, diaphragm), C-double, diaphragm, F4-single to form a pattern containing -(B2) 7 -
  • the stacked structure contains 16 supercapacitor cell structures Y2.
  • the separator made of polypropylene (PP) or polyethylene (PE) adopts Z-type lamination, and the positive and negative electrodes are separated and stacked to form DBL-1 containing a symmetrical supercapacitor bare cell. Then, the supercapacitor in the bare cell DBL-1 is transferred out of an aluminum tab from the positive electrode sheet C, and the negative electrode sheet is transferred out of a copper nickel-plated tab or a nickel tab to form a two-pole tab bare cell DBL-1.
  • PP polypropylene
  • PE polyethylene
  • the positive and negative pole pieces are alternately combined in the pattern of: F2-single, diaphragm, 7 (C-double, diaphragm, F1-double, diaphragm), C-double, diaphragm, F2-single to form a pattern containing -(B1) 7-
  • the stacked structure which contains 16 supercapacitor cell structures Y2.
  • the separator made of polypropylene (PP) or polyethylene (PE) adopts Z-type lamination, and the positive and negative electrodes are separated and stacked to form a DBL-2 containing a symmetrical supercapacitor bare cell. Then, the supercapacitor in the bare cell DBL-2 is transferred out of an aluminum tab from the positive electrode sheet C, and the negative electrode sheet is transferred out of a copper nickel-plated tab or a nickel tab to form a two-tab bare cell DBL-2.
  • PP polypropylene
  • PE polyethylene
  • the positive and negative pole pieces are alternately combined in the mode of: F2-single, diaphragm, 7 (L-double, diaphragm, F1-double, diaphragm), L-double, diaphragm, F2-single to form a pattern containing -(A1) 7 -
  • the stacked structure which contains 16 lithium-ion battery cell structure Y1.
  • the separator made of polypropylene (PP) or polyethylene (PE) adopts Z-type lamination, and the positive and negative electrodes are separated and stacked to form a DBL-3 containing a symmetrical supercapacitor bare cell. Then, transfer the positive electrode sheet L of the lithium-ion battery in the bare cell DBL-2 out of an aluminum tab, and transfer the negative electrode sheet out of a copper nickel-plated tab or a nickel tab to form a two-pole bare cell DBL-3 .
  • the separator made of polypropylene (PP) or polyethylene (PE) adopts Z-type lamination, and the positive and negative electrodes are separated and stacked to form a bare cell DBL-4, and all lithium-ion batteries are used for positive plates L and supercapacitors.
  • the aluminum tabs transferred from the positive electrode sheet C are welded together to form a common lead-out terminal positive electrode tab, and the negative electrode sheet is transferred out of the copper nickel-plated tabs or nickel tabs to form a two-tab bare cell DBL-4.
  • the "capacity retention rate (%) of 60-day storage at 4.2V full charge" of the three-pole-tab laminated composite battery of Examples 1-3 of the present invention is significantly better than that of the two-pole laminated composite type Battery (Comparative Example 4).
  • the supercapacitor is a symmetric supercapacitor (Example 1), its power density is significantly greater than that of an asymmetrical supercapacitor (Examples 2 and 3).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)

Abstract

本发明实施例提出一种三极耳叠片式复合型电池,包括正极片、负极片、隔膜和电解液,正极片和负极片交替堆叠,相邻的正极片和负极片之间以隔膜相隔;所述正极片包括第一正极片、第二正极片;所述第一正极片包括第一正极集流体和在第一正极集流体的两侧表面上设置的超级电容器正极材料;所述第二正极片包括第二正极集流体和在第二正极集流体的两个表面上设置的锂离子电池正极材料;所述第一正极片连接第一正极极耳,所述第二正极片连接第二正极极耳,第一正极极耳和第二正极极耳相互独立,所述负极片连接负极极耳。该复合型电池兼具锂离子电池和超级电容器的优点,能够避免自放电效应。

Description

一种三极耳叠片式复合型电池 技术领域
本发明涉及锂离子电池技术领域,尤其涉及一种三极耳叠片式复合型电池。
背景技术
近年来,随着电动汽车、电动自行车、大功率启停设备等领域的兴起和发展,对于兼具高能量密度和高功率密度电源的需求越来越大。锂离子电池具有比能量大、工作电压高、环境友好、无记忆效应等优点,但其功率密度往往只有超级电容器电池的几分之一甚至十分之一不到,以及较低温度下容量发挥率较低的问题。
与此相反,超级电容器电池,具有充放电时间短,充电1秒~10分钟可达到其额定容量的95%以上;超低温特性好,正常使用温度范围宽-40℃~+70℃;大电流放电能力强,功率密度高达300-10000W/Kg相当于锂离子电池的数倍甚至数十倍等特点。现在,超级电容广泛地应用在大电流、数据备份、混合动力汽车等领域。但同时其存在能量密度不高,只有锂离子电池几分之一甚至十分之一不到的能量密度,严重地限制了其在诸多对能量密度有较高要求的领域的应用。
因此,发展一种兼具锂离子电池和超级电容器优点,同时具有功率和能量密度高、倍率特性好、循环效率高、使用寿命长、单位功率成本低等优点的复合型电池,对工业的应用和发展有着至关重要的作用。
发明内容
本发明的目的是制备兼具锂离子电池和超级电容器优点的新型电池。
发明人经过研究发现,利用锂离子电池用正极片与超级电容器用正极片的组合,并分别引出两个正极极耳作为复合型电池的正极,再与负极片组合使用,以形成可提供不同锂离子电池性质和超级电容器性质的预定组合的三极耳复合型电池。锂离子电池用正极片和超级电容器用正极片的这种组合可以通过简单的锂离子电池用正极片和超级电容器用正极片数量的变换进行调整,以实现在复合型电池中产生不同质量能量密度(Wh/kg)和质量功率密度(W/kg),这种复合型电池能更好地适应不同环境的使用,兼具了锂离子电池的高能量密度和超级电容器的高功率密度特点,同时采用三极耳的独特设置使复合型电池拥有比超级电容器以及现有技术中的锂离子电池与超级电容器的复合型电池小得多的自放电效应,且本发明实施例的复合型电池能够实现对锂离子电池和超级电容器进行不同模式的电源管理,从而更好地发挥各自的优势。
为实现上述目的,本发明采取的技术方案如下:
本发明实施例提供一种三极耳叠片式复合型电池,包括正极片、负极片、隔膜和电解液,正极片和负极片交替堆叠,相邻的正极片和负极片之间以隔膜相隔;所述正极片包括第一正极片、第二正极片;所述第一正极片包括第一正极集流体和在第一正极集流体的两 侧表面上设置的超级电容器正极材料;所述第二正极片包括第二正极集流体和在第二正极集流体的两个表面上设置的锂离子电池正极材料;所述第一正极片连接第一正极极耳,所述第二正极片连接第二正极极耳,第一正极极耳和第二正极极耳相互独立,所述负极片连接负极极耳。
根据本发明,所述正极片还包括第三正极片,所述第三正极片包括第三正极集流体,在第三正极集流体的第一表面设置的锂离子电池正极材料,以及在第三正极集流体的与第一表面相对的第二表面设置的超级电容器正极材料,所述第三正极片连接第一正极极耳或第二正极极耳。
根据本发明,所述正极片还包括第四正极片,所述第四正极片包括第四正极集流体和在第四正极集流体的一侧表面上设置的超级电容器正极材料,所述第四正极片设置在所述复合型电池的最外层,所述第四正极片连接第一正极极耳。
根据本发明,所述正极片还包括第五正极片,所述第五正极片包括第五正极集流体和在第五正极集流体的一侧表面上设置的锂离子电池正极材料,所述第五正极片设置在所述复合型电池的最外层,所述第五正极片连接第二正极极耳。
根据本发明,所述负极片包括第一负极片,所述第一负极片包括第一负极集流体和在第一负极集流体的两侧表面上设置的双功能负极材料,所述双功能负极材料能够吸附/解吸附锂离子,并能够嵌入/脱嵌锂离子电池的锂离子。
根据本发明,所述负极片包括第二负极片,所述第二负极片包括第二负极集流体和在第二负极集流体的一侧表面上设置的双功能负极材料,所述双功能负极材料能够吸附/解吸附锂离子,并能够嵌入/脱嵌锂离子电池的锂离子,所述第二负极片设置在所述复合型电池的最外层。
根据本发明,所述负极片包括第三负极片,所述第三负极片包括第三负极集流体和在第三负极集流体的两侧表面上设置的超级电容器负极材料。
根据本发明,所述负极片包括第四负极片,所述第四负极片包括第四负极集流体和在第四负极集流体的一侧表面上设置的超级电容器负极材料,所述第四负极片设置在所述复合型电池的最外层。
根据本发明,所述负极片包括第五负极片,所述第五负极片包括第五负极集流体和在第五负极集流体的两侧表面上设置的锂离子电池负极材料。
根据本发明,所述负极片包括第六负极片,所述第六负极片包括第六负极集流体和在第六负极集流体的一侧表面上设置的锂离子电池负极材料,所述第六负极片设置在所述复合型电池的最外层。
根据本发明,所述负极片包括第七负极片,所述第七负极片包括第七负极集流体和设置在所述第七负极集流体的第一表面的第一负极材料,以及在所述第七负极集流体的与第一表面相对的第二表面的第二负极材料,所述第一负极材料和第二负极材料均选自双功能负极材料、超级电容器负极材料和锂离子电池负极材料中的一种,第一负极材料与第二负极材料不同,所述双功能负极材料能够吸附/解吸附锂离子,并能够嵌入/脱嵌锂离子电池的锂离子。
本发明实施例的三极耳叠片式复合型电池至少具有如下有益效果:
(1)本发明实施例的复合型电池,既具有锂离子电池的能量密度高、平均输出电压 高、充电效率高、自放电效率低、安全性能好、循环和使用寿命长等优点,还具有超级电容器的性能稳定、充放电时间短、循环寿命长、功率密度大等优点。
(2)本发明实施例的复合型电池,将锂离子电池正极和超级电容器正极分别独立地连接两个正极极耳,减小了现有技术中的此类复合型电池的自放电效应。现有技术中的复合型电池仅具有一个正极极耳,由于超级电容器严重的自放电缺陷,当超级电容器储存的电能由于自放电而消耗完毕时,由于仅有一个正极极耳与锂离子电池正极直接相连,此时,锂离子电池所储存的电能将通过超级电容器持续微弱放电,最后造成整个复合电池自放电效应过大而影响正常使用,而本发明采用两个独立的正极极耳,能够避免和大幅减弱这种现象。
(3)本发明实施例的复合型电池,采用两个相互独立的正极极耳,能够对复合型电池的锂离子用正极和超级电容器用正极选用不同的充电制式和电压,以保证其能量密度和功率密度达到现有普通技术难以实现的兼容性,使电池达到最佳性能,并能够根据实际需要采用不同模式对锂离子电池和超级电容器进行电源管理,从而能够更好地发挥各自的优势,而传统的单正极极耳无法实现此功能。
附图说明
图1是本发明的一个实施例所述的超级电容器用正极片的结构示意图,(a)为超级电容器用正极片正视图,(b)、(c)为侧视图,11为第一正极集流体、12为第四正极集流体,正极集流体表面上涂覆超级电容器正极材料(图中阴影部分)。
图2是本发明的一个实施例所述的锂离子电池用正极片的结构示意图,(a)为锂离子电池用正极片正视图,(b)、(c)为侧视图,21为第二正极集流体、22为第五正极集流体,正极集流体表面上涂覆锂离子电池正极材料(图中阴影部分)。
图3是本发明的一个实施例所述的锂离子电池和超级电容器用正极片的结构示意图,(a)为正极片的第一方向正视图,(b)为侧视图、(c)为正极片的第一方向相反方向的正视图,30为第三正极集流体,第三正极集流体的第一表面31涂覆锂离子电池正极材料(图中阴影部分),第三正集流体的第二表面32涂覆超级电容器正极材料(图中阴影部分)。
图4是本发明的一个实施例所述的兼容性负极片的结构示意图,(a)为兼容性负极片的正视图,(b)、(c)为侧视图,41为第一负极集流体,42为第二负极集流体,负极集流体的表面上涂覆双功能负极材料(图中阴影部分)。
图5是本发明的一个实施例所述的超级电容器用负极片的结构示意图,(a)为超级电容器用负极片的正视图,(b)、(c)为侧视图,51为第三负极集流体,52为第四负极集流体,负极集流体的表面上涂覆超级电容器用负极材料(图中阴影部分)。
图6是本发明的一个实施例所述的过渡用负极片的结构示意图,(a)为负极片的第一方向正视图,(b)为侧视图、(c)为负极片的第一方向相反方向的正视图,70为第七负极集流体,第七负极集流体的第一表面71涂覆锂离子电池负极材料(图中阴影部分),第七负集流体的第二表面72涂覆超级电容器负极材料(图中阴影部分)。
图7是本发明的一个实施例所述的含对称型超级电容器的复合型电池的结构示意图,(a)为电池正视图。
图8是本发明的一个实施例所述含非对称型超级电容器的复合型电池的结构示意图, (a)为电池正视图。
图9是本发明的一个实施例所述含非对称型超级电容器和对称型超级电容器的复合型电池的结构示意图,(a)为电池正视图。
图10是本发明的一个实施例所述的复合型电池的极耳结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。但本领域技术人员知晓,本发明并不局限于说明书附图和以下实施例。如本文中所述,术语“包括”及其各种变体可以被理解为开放式术语,其意味着“包括但不限于”。术语“第一”、“第二”及其类似表达方式仅用于表示不同的技术特征,并无实质含义。
<复合型电池>
在本发明的一个方案中,本发明实施例的三极耳叠片式复合型电池,包括正极片、负极片、隔膜和电解液,正极片和负极片交替堆叠,相邻的正极片和负极片之间以隔膜相隔;所述正极片包括第一正极片、第二正极片;所述第一正极片包括第一正极集流体和在第一正极集流体的两侧表面上设置的超级电容器正极材料;所述第二正极片包括第二正极集流体和在第二正极集流体的两个表面上设置的锂离子电池正极材料;所述第一正极片连接第一正极极耳,所述第二正极片连接第二正极极耳,第一正极极耳和第二正极极耳相互独立,所述负极片连接负极极耳。
在本发明的一个方案中,所述正极片还包括第三正极片,所述第三正极片包括第三正极集流体,在第三正极集流体的第一表面设置的锂离子电池正极材料,以及在第三正极集流体的与第一表面相对的第二表面设置的超级电容器正极材料,所述第三正极片连接第一正极极耳或第二正极极耳。
在本发明的一个方案中,所述正极片还包括第四正极片,所述第四正极片包括第四正极集流体和在第四正极集流体的一侧表面上设置的超级电容器正极材料,所述第四正极片设置在所述复合型电池的最外层,所述第四正极片连接第一正极极耳。
在本发明的一个方案中,所述正极片还包括第五正极片,所述第五正极片包括第五正极集流体和在第五正极集流体的一侧表面上设置的锂离子电池正极材料,所述第五正极片设置在所述复合型电池的最外层,所述第五正极片连接第二正极极耳。
在本发明的一个方案中,所述负极片包括第一负极片,所述第一负极片包括第一负极集流体和在第一负极集流体的两侧表面上设置的双功能负极材料,所述双功能负极材料能够吸附/解吸附锂离子,并能够嵌入/脱嵌锂离子电池的锂离子。
在本发明的一个方案中,所述负极片包括第二负极片,所述第二负极片包括第二负极集流体和在第二负极集流体的一侧表面上设置的双功能负极材料,所述双功能负极材料能够吸附/解吸附锂离子,并能够嵌入/脱嵌锂离子电池的锂离子,所述第二负极片设置在所述复合型电池的最外层。
在本发明的一个方案中,所述负极片包括第三负极片,所述第三负极片包括第三负极集流体和在第三负极集流体的两侧表面上设置的超级电容器负极材料。
在本发明的一个方案中,所述负极片包括第四负极片,所述第四负极片包括第四负极 集流体和在第四负极集流体的一侧表面上设置的超级电容器负极材料,所述第四负极片设置在所述复合型电池的最外层。
在本发明的一个方案中,所述负极片包括第五负极片,所述第五负极片包括第五负极集流体和在第五负极集流体的两侧表面上设置的锂离子电池负极材料。
在本发明的一个方案中,所述负极片包括第六负极片,所述第六负极片包括第六负极集流体和在第六负极集流体的一侧表面上设置的锂离子电池负极材料,所述第六负极片设置在所述复合型电池的最外层。
在本发明的一个方案中,所述负极片包括第七负极片,所述第七负极片包括第七负极集流体和设置在所述第七负极集流体的第一表面的第一负极材料,以及在所述第七负极集流体的与第一表面相对的第二表面的第二负极材料,所述第一负极材料和第二负极材料均选自双功能负极材料、超级电容器负极材料和锂离子电池负极材料中的一种,第一负极材料与第二负极材料不同,所述双功能负极材料能够吸附/解吸附锂离子,并能够嵌入/脱嵌锂离子电池的锂离子。
<超级电容器用正极片>
在本发明的一个方案中,本发明实施例的三极耳叠片式复合型电池包括正极片,所述正极片包括第一正极片C1,所述第一正极片C1为超级电容器用正极片,第一正极片C1包括超级电容器用第一正极集流体和设置在所述第一正极集流体两侧表面上的超级电容器正极材料。
优选的,本发明实施例的正极片还包括第四正极片C2,第四正极片C2为超级电容器用正极片,第四正极片C2包括超级电容器用第四正极集流体和设置在所述第四正极集流体的一侧表面上的超级电容器正极材料。该第四正极片C2仅有一侧设置有超级电容器正极材料,该第四正极片C2可作为复合型电池的最外层的正极片使用。
如图1所示,在所述第四正极集流体一侧表面涂覆超级电容器正极材料的超级电容器用第四正极片C2定义为C-单(图1中的(b));在所述超级电容器用第一正极集流体两侧表面涂覆超级电容器正极材料的超级电容器用第一正极片C1定义为C-双(图1中的(c))。所述超级电容器用第一正极片C1和第四正极片C2设置的目的是为了与适配的负极片F1、F2或F3形成超级电容器正负极对,实现超级电容器叠片单元对电能的储存。此外C-单和C-双主要在不同的结构中最大程度地利用活性材料,其中C-单主要应用在最外层超级电容器的叠片单元中,C-双主要应用在非最外层超级电容器的叠片单元中。
在一个实施方式中,所述超级电容器用第一正极集流体和第四正极集流体均选自铝箔。
其中,所述超级电容器正极材料包括超级电容器用正极活性物质、超级电容器用正极粘结剂和超级电容器用正极导电剂。
在一些实施例中,所述超级电容器用第一正极片和第四正极片的压实密度为0.5-4.3g/cm 3
在一些实施例中,所述超级电容器用正极活性物质占超级电容器正极材料总质量的70-99%,所述超级电容器用正极导电剂占超级电容器正极材料总质量的0.5-15%,所述超级电容器用正极粘结剂占超级电容器正极材料总质量的0.5-15%。
在一些实施例中,所述超级电容器用正极活性物质选自活性多孔碳材料(活性炭粉末、活性炭纤维、碳气凝胶、碳纳米管、碳化物衍生碳、石墨环、氧化石墨烯、石墨烯等一种 或多种);金属氧化物(如RuO 2、MnO 2、ZnO、PbO 2、WO 3、NiO、Co 3O 4、MoO 2等);金属硫化物(如MnS 2、PbO 2、WS 3、NiS、MoS 2、TiS 2、FeS、FeS 2等);混合金属氧化物(如NiCo 2O 4、ZnCo 2O 4、FeCo 2O 4、MnCo 2O 4、CoNi 2O 4、ZnNi 2O 4等);混合金属硫化物(如NiCo 2S 4、ZnCo 2S 4、FeCo 2S 4、MnCo 2S 4、CoNi 2S 4、ZnNi 2S 4等);导电聚合物(如聚(3-甲基-噻吩)、聚苯胺、聚吡咯、聚对苯、多并苯、聚噻吩和聚乙炔等)。
在一些实施例中,所述超级电容器用正极粘结剂可以为高分子材料,包括但不限于聚偏氟乙烯和聚酰亚胺。
在一些实施例中,所述超级电容器用正极导电剂可以为导电炭黑、乙炔黑、科琴黑、碳纳米管和石墨烯中的至少一种。
<锂离子电池用正极片>
在本发明的一个方案中,本发明实施例的复合型电池的正极片还包括第二正极片L1,所述第二正极片L1为锂离子电池用正极片,第二正极片L1包括锂离子电池用第二正极集流体和设置在所述锂离子电池用第二正极集流体两侧表面上的锂离子电池正极材料。
优选的,本发明实施例的正极片还包括第五正极片L2,第五正极片L2为锂离子电池用正极片,第五正极片L2包括锂离子电池用第五正极集流体和设置在所述第五正极集流体的一侧表面上的锂离子电池正极材料。该第五正极片L2仅有一侧设置有锂离子电池正极材料,该第五正极片L2可作为复合型电池的最外层的正极片使用。
如图2所示,在所述锂离子电池用第五正极集流体一侧表面上涂覆锂离子电池正极材料的锂离子电池用第五正极片L2定义为L-单(图2中的(b));在所述锂离子电池用第二正极集流体两侧表面上涂覆锂离子电池正极材料的锂离子电池用第二正极片L1定义为L-双(图2中的(c))。所述锂离子电池用第二正极片L1和第五正极片L2设置的目的是为了与适配的负极片F1、F2形成锂离子电池正负极对,实现其在充、放电过程中锂离子的嵌入和脱出,形成锂离子电池的叠片单元。此外L-单和L-双主要在不同的结构中最大程度地利用活性材料,其中L-单主要应用在最外层锂离子电池的叠片单元中,L-双主要应用在非最外层锂离子电池的叠片单元中。
在一个实施方式中,所述锂离子电池用第二正极集流体和第五正极集流体选自铝箔。
其中,所述锂离子电池正极材料包括锂离子电池用正极活性物质、锂离子电池用正极粘结剂和锂离子电池用正极导电剂。
在一些实施例中,所述锂离子电池用第二正极片和第五正极片的压实密度均为2-4.3g/cm 3
在一些实施例中,所述锂离子电池用正极活性物质占锂离子电池正极材料总质量的75-99%,所述锂离子电池用正极导电剂占锂离子电池正极材料总质量的0.5-15%,所述锂离子电池用正极粘结剂占锂离子电池正极材料总质量的0.5-10%。
在一些实施例中,所述锂离子电池用正极活性物质选自磷酸铁锂(LiFePO 4)、镍钴锰酸锂(Li zNi xCo yMn 1-x-yO 2,其中0.95≤z≤1.05,x>0,y>0,x+y<1)、镍钴铝酸锂(Li zNi xCo yAl 1-x-yO 2,其中0.95≤z≤1.05,x>0,y>0,0.8≤x+y<1)、镍钴酸锂(LiNi xCo yO 2,其中x>0,y>0,x+y=1)、镍钛镁酸锂(LiNi xTi yMg zO 2,其中,x>0,y>0,z>0,x+y+z=1)、镍钴锰铝酸锂(Li zNi xCo yMn wAl 1-x-y-wO 2,其中0.95≤z≤1.05,x>0,y>0,w>0,0.8≤x+y+w<1)、钛酸锂(LiTiO 2)、层状锰酸锂(LiMnO 2)、镍酸锂(Li 2NiO 2)、尖晶石锰酸锂(LiMn 2O 4)、 富锂锰基固溶体正极材料xLi 2MnO 3·(1-x)LiMO 2,其中M=Ni/Co/Mn。
示例性地,所述镍钴锰三元复合正极材料为LiNi 1/3Co 1/3Mn 1/3、LiNi 0.5Co 0.2Mn 0.3、LiNi 0.4Co 0.2Mn 0.4、LiNi 0.6Co 0.2Mn 0.2、LiNi 0.8Co 0.1Mn 0.1、LiNi 0.7Co 0.2Mn 0.1、LiNi 0.7Co 0.15Mn 0.15、LiNi xCo yMn 1-x-yO 2(其中0.95≤z≤1.05,0.8≤x≤0.95,0.03≤x≤0.2,x+y<1)中的至少一种。
在一些实施例中,所述锂离子电池用正极粘结剂可以为高分子材料,包括但不限于聚偏二氟乙烯和聚酰亚胺。
在一些实施例中,所述锂离子电池用正极导电剂可以为导电炭黑、乙炔黑、科琴黑、碳纳米管、氧化石墨烯和石墨烯中的至少一种。
<锂离子电池和超级电容器用正极片>
在本发明的一个方案中,所述正极片还包括第三正极片H,所述第三正极片H为锂离子电池和超级电容器用正极片,包括锂离子电池和超级电容器用第三正极集流体、设置在所述锂离子电池和超级电容器用第三正极集流体的第一表面上的锂离子电池正极材料,以及设置在所述锂离子电池和超级电容器用第三正极集流体的与第一表面相对的第二表面上的超级电容器正极材料。
如图3所示,在锂离子电池和超级电容器用第三正极集流体的第一表面涂覆锂离子电池正极材料,在与第一表面相对的第二表面涂覆超级电容器正极材料,形成锂离子电池和超级电容器用第三正极片H;其中,所述锂离子电池和超级电容器用第三正极片H可以作为过渡正极片使用,所述锂离子电池和超级电容器用第三正极片H的一侧可以形成锂离子电池叠片单元,另一侧可以形成超级电容器叠片单元,实现锂离子电池和超级电容器的过渡。所述第三正极片既可以连接第一正极极耳,也可以连接第二正极极耳,当复合型电池中具有多个第三正极片时,可以连接同一个正极极耳,也可以连接不同的正极极耳。
在一个实施方式中,所述锂离子电池和超级电容器用第三集流体选自铝箔。
其中,所述锂离子电池正极材料的定义同上。
其中,所述超级电容器正极材料的定义同上。
<兼容性负极片>
在本发明的一个方案中,所述复合型电池的负极片包括第一负极片F1,所述第一负极片F1包括第一负极集流体和设置在所述第一负极集流体两侧表面上的双功能负极材料。所述双功能负极材料既能够吸附/解吸附锂离子,又能够嵌入/脱嵌锂离子电池的锂离子。该双功能负极材料具有双重特性,由此,第一负极片既能作为超级电容器的负极片使用,也能够作为锂离子电池的负极片使用,即第一负极片为兼容性负极片。
优选的,所述负极片还包括第二负极片F2,所述第二负极片F2包括第二负极集流体和设置在所述第二负极集流体一侧表面上的双功能负极材料。该第二负极片F2仅有一侧设置有双功能负极材料,该第二负极片F2可作为复合型电池的最外层的负极片使用。该第二负极片同样为兼容性负极片。
如图4所示,在所述第二负极集流体的一侧表面涂覆双功能负极材料的第二负极片F2定义为F2-单(图4中的(b))在所述第一负极集流体两侧表面涂覆双功能负极材料的第一负极片F1定义为F1-双(图4中的(c))。所述第一负极片F1和第二负极片F2可以和上述的锂离子电池用正极片L1和L2、超级电容器用正极片C1和C2、或锂离子电池和超级电容器用正极片H适配,并形成锂离子电池叠片单元或形成超级电容器叠片单元,实现在复合型电池 充放电时,既有超级电容器物理储能,又有锂离子电池化学储能的两种方式。
在一个实施方式中,所述第一负极集流体和第二负极集流体均选自铜箔,例如为电解铜箔或压延铜箔。
其中,所述双功能负极材料包括第一负极活性物质、第一负极粘结剂和第一负极导电剂。
在一些实施例中,所述第一负极活性物质占双功能负极材料总质量的70-99%,所述第一负极导电剂占双功能负极材料总质量的0.5-15%,所述第一负极粘结剂占双功能负极材料总质量的0.5-15%。
在一些实施例中,所述第一负极活性物质为任何能够脱嵌锂离子等金属离子的物质,例如所述第一负极活性物质可以为石墨、硅材料、硅碳复合材料、硅氧材料、合金材料和含锂金属复合氧化物材料中的一种或多种。
在一些实施例中,所述第一负极粘结剂包含但不限于丁苯橡胶、氟类橡胶和乙烯丙烯二烯、羟甲基纤维素中的一种或多种。
在一些实施例中,所述第一负极导电剂可以为导电炭黑、乙炔黑、科琴黑、碳纳米管和石墨烯中的至少一种。
<超级电容器用负极片>
在本发明的一个方案中,所述负极片包括第三负极片F3,所述第三负极片为超级电容器用负极片,所述第三负极片F3包括第三负极集流体和设置在所述第三负极集流体两侧表面上的超级电容器负极材料。
优选的,所述负极片还包括第四负极片F4,所述第四负极片为超级电容器用负极片,所述第四负极片F4包括第四负极集流体和设置在所述第四负极集流体一侧表面上的超级电容器负极材料。该第四负极片F4仅有一侧设置有超级电容器负极材料,该第四负极片F4可作为复合型电池的最外层的负极片使用。
如图5所示,在所述第四负极集流体一侧表面涂覆超级电容器负极材料的超级电容器用第四负极片F4定义为F4-单(图5中的(b));在所述第三负极集流体两侧表面涂覆超级电容器负极材料的超级电容器用第三负极片F3定义为F3-双(图5中的(c))。所述第三负极片F3和第四负极片F4可以和上述的超级电容器用正极片C1和C2、或锂离子电池和超级电容器用正极片H适配形成超级电容器叠片单元,特别地,当第三负极片F3、第四负极片F4的超级电容器负极材料与超级电容器用正极片的超级电容器正极材料为相同物质时,可形成对称型超级电容器叠片单元,当超级电容器用第三负极片F3、第四负极片F4的超级电容器负极材料与超级电容器用正极片的超级电容器正极材料为不相同物质但都为超级电容器活性物质时,其可形成非对称型超级电容器叠片单元。
在一个实施方式中,所述第三负极集流体和第四负极集流体选自铜箔,例如为电解铜箔或压延铜箔。
在一些实施例中,所述超级电容器负极材料包括超级电容器用负极活性物质、超级电容器用负极粘结剂和超级电容器用负极导电剂。
在一些实施例中,所述超级电容器用负极活性物质占超级电容器负极材料总质量的70-99%,所述超级电容器用负极导电剂占超级电容器负极材料总质量的0.5-15%,所述超级电容器用负极粘结剂占超级电容器负极材料总质量的0.5-15%。
在一些实施例中,所述超级电容器用负极活性物质选自活性多孔碳材料(活性炭粉末、活性炭纤维、碳气凝胶、碳纳米管、碳化物衍生碳、石墨环、氧化石墨烯、石墨烯等一种或多种);金属氧化物(如RuO 2、MnO 2、ZnO、PbO 2、WO 3、NiO、Co 3O 4、MoO 2等);金属硫化物(如MnS 2、PbO 2、WS 3、NiS、MoS 2、TiS 2、FeS、FeS 2等);混合金属氧化物(如NiCo 2O 4、ZnCo 2O 4、FeCo 2O 4、MnCo 2O 4、CoNi 2O 4、ZnNi 2O 4等);混合金属硫化物(如NiCo 2S 4、ZnCo 2S 4、FeCo 2S 4、MnCo 2S 4、CoNi 2S 4、ZnNi 2S 4等);导电聚合物(如聚(3-甲基-噻吩)、聚苯胺、聚吡咯、聚对苯、多并苯、聚噻吩和聚乙炔等)。
在一些实施例中,所述超级电容器用负极粘结剂可以为高分子材料,包括但不限于聚偏二氟乙烯和聚酰亚胺。
在一些实施例中,所述超级电容器用负极导电剂可以为石墨、炭黑、乙炔黑、科琴黑、碳纳米管和石墨烯中的至少一种。
<锂离子电池用负极片>
在本发明的一个方案中,所述负极片包括第五负极片,所述第五负极片为锂离子电池用负极片,所述第五负极片包括第五负极集流体和设置在所述第五负极集流体两侧表面上的锂离子负极材料。
优选的,所述负极片还包括第六负极片,所述第六负极片为锂离子电池用负极片,所述第六负极片包括第六负极集流体和设置在所述第六负极集流体一侧表面上的超级电容器负极材料。该第六负极片仅有一侧设置有锂离子电池负极材料,该第六负极片可作为复合型电池的最外层的负极片使用。
所述第五负极片和第六负极片的结构分别与上述第三负极片和第四负极片相同,仅负极材料不同。所述第五负极片和第六负极片可以和上述的锂离子电池用正极片L1和L2、或锂离子电池和超级电容器用正极片H适配形成锂离子电池结构单元。锂离子电池负极材料种类繁多,本领域技术人员能够根据实际需要在现有技术中选择合适的锂离子电池负极材料。
在一个实施方式中,所述第五负极集流体和第六负极集流体均选自铜箔,例如为电解铜箔或压延铜箔。
<过渡用负极片>
在本发明的一个方案中,所述负极片还包括第七负极片F5,所述第七负极片为过渡用负极片,第七负极片F5包括第七负极集流体和设置在所述第七负极集流体的第一表面的第一负极材料,以及在所述第七负极集流体的与第一表面相对的第二表面的第二负极材料,所述第一负极材料和第二负极材料均选自上述双功能负极材料、超级电容器负极材料和锂离子电池负极材料中的一种,第一负极材料与第二负极材料不同。
示例性的,如图6所示,在所述第五负极集流体的第一表面上涂覆锂离子电池负极材料,在所述第五负极集流体与第一表面相对的第二表面上涂覆超级电容器负极材料。所述第七负极片F5的第一表面侧可以和上述的锂离子电池用正极片L1和L2、锂离子电池和超级电容器用正极片H适配,第二表面侧可以和超级电容器用正极片C1和C2适配。由此,所述第七负极片F5可以作为过渡负极片使用,一侧形成锂离子电池叠片单元,另一侧形成超级电容器叠片单元,实现在复合型电池充放电时,既有超级电容器物理储能,又有锂离子电池化学储能的两种方式。
其中,所述第七负极集流体选自铜箔,例如为电解铜箔或压延铜箔。
其中,所述双功能负极材料、超级电容器负极材料和锂离子电池负极材料的定义如上所述。
<锂离子电池叠片单元>
示例性的,在本发明的一个方案中,所述锂离子电池用正极片L1、隔膜和兼容性负极片F1可以形成锂离子电池叠片单元A1,所述锂离子电池叠片单元A1中包含锂离子电池用正极材料、隔膜和锂离子电池用负极材料形成的锂离子电池基元结构Y1。兼容性负极片F1还可以用锂离子电池用负极片替换。
<超级电容器叠片单元>
示例性的,在本发明的一个方案中,所述超级电容器用正极片C1、隔膜和兼容性负极片F1可以形成超级电容器叠片单元B1;所述超级电容器叠片单元B1中包含超级电容器用正极材料、隔膜和超级电容器用负极材料形成的超级电容器基元结构Y2;同时,所述超级电容器用正极片和兼容性负极片F1的材料都为相同材料时该超级电容器叠片单元含有对称型超级电容器基元结构Y2-D;所述正极片C和兼容性负极片F1的材料为非同种超级电容器活性材料时,该超级电容器叠片单元含有非对称型超级电容器基元结构Y2-F。兼容性负极片F1还可以由超级电容器用负极片替换。
示例性的,在本发明的一个方案中,所述超级电容器用正极片、隔膜和超级电容器用负极片F3可以形成超级电容器叠片单元B2;所述超级电容器叠片单元B2中包含超级电容器用正极材料、隔膜和超级电容器用负极材料形成的超级电容器基元结构Y2;
同时,所述超级电容器用正极片和超级电容器用负极片F3的材料都为相同材料时该超级电容器叠片单元含有对称型超级电容器基元结构Y2-D;所述超级电容器用正极片和超级电容器用负极片F3的材料为非同种超级电容器活性材料时,该超级电容器叠片单元含有非对称型超级电容器基元结构Y2-F。
本领域技术人员能够理解,上述电池单元仅为示例性说明,根据本说明书披露的内容,本领域技术人员知晓如何选择相应的正极片和负极片以构成锂离子电池叠片单元或超级电容器叠片单元。
<过渡单元>
示例性的,在本发明的一个方案中,所述锂离子电池用正极片L1、隔膜和第七负极片F5可以形成过渡单元G1;所述过渡单元G1中包含锂离子电池用正极材料、隔膜和锂离子电池用负极材料形成的锂离子电池基元结构Y1。
示例性的,在本发明的一个方案中,所述锂离子电池和超级电容器用正极片H、隔膜和兼容性负极片F1可以形成过渡单元G2;所述过渡单元G2中包含锂离子电池用正极材料、隔膜和锂离子电池用负极材料形成的锂离子电池基元结构Y1,或者包含超级电容器用正极材料、隔膜和超级电容器用负极材料形成的超级电容器基元结构Y2。
示例性的,在本发明的一个方案中,所述锂离子电池和超级电容器用正极片H、隔膜和第七负极片F5可以形成过渡单元G3;所述过渡单元G3中包含锂离子电池用正极材料、隔膜和锂离子电池用负极材料形成的锂离子电池基元结构Y1,或者包含超级电容器用正极材料、隔膜和超级电容器用负极材料形成的超级电容器基元结构Y2。
示例性的,在本发明的一个方案中,所述超级电容器用正极片C1、隔膜和第七负极片 F5可以形成过渡单元G4;所述过渡单元G4中包含超级电容器用正极材料、隔膜和超级电容器用负极材料形成的超级电容器基元结构Y2。
示例性的,在本发明的一个方案中,所述锂离子电池和超级电容器用正极片H、隔膜和超级电容器用负极片F3可以形成过渡单元G5;所述过渡单元G5中包含超级电容器用正极材料、隔膜和超级电容器用负极材料形成的超级电容器基元结构Y2。
上述方案中,所述锂离子电池正极材料需要与兼容性负极材料对应;所述超级电容正极材料需要与超级电容器负极材料或兼容性负极材料对应。
在本发明的一个方案中,所述锂离子电池叠片单元、超级电容器叠片单元、和过渡单元之间还设置有隔膜,避免正极材料和负极材料直接接触,造成短路。
示例性的,在本发明的一个方案中,相邻设置的锂离子电池叠片单元、超级电容器叠片单元和过渡单元之间设置的隔膜还可以形成锂离子电池基元结构Y1或超级电容器基元结构Y2,具体地,当隔膜两侧分别为锂离子电池用正极材料和锂离子电池用负极材料时,可以形成锂离子电池基元结构Y1;当隔膜两侧分别为超级电容器用正极材料和超级电容器用负极材料时,可以形成超级电容器基元结构Y2。
在本发明的一个方案中,本发明实施例所述的复合型电池中,锂离子电池基元结构Y1的数量大于等于超级电容器基元结构Y2的数量。
<复合型电池中正负极的叠放>
在本发明的一个方案中,所述复合型电池包含锂离子电池叠片单元A1、超级电容器叠片单元B1、超级电容器叠片单元B2和过渡单元G1、G2、G3、G4、G5中的至少一种;且同时保证所述复合型电池包含至少一个锂离子电池用正极片和至少一个超级电容器用正极片;和/或,至少一个锂离子电池和超级电容器用正极片H。
在本发明的一个方案中,所述锂离子电池叠片单元A1、所述超级电容器叠片单元B1、超级电容器叠片单元B2可以通过隔膜和任选地过渡单元进行过渡连接,形成叠片式的复合型电池。
上述方案中,所述的过渡连接要满足所述锂离子电池正极材料与兼容性负极材料对应;所述超级电容正极材料与超级电容器负极材料或兼容性负极材料对应。
示例性地方案,所述复合型电池包含过渡单元-m个锂离子电池叠片单元A1-过渡单元;其中,所述过渡单元相同或不同,彼此独立地选自上述过渡单元G1-G5,m为大于等于1的整数;
示例性地方案,所述复合型电池包含过渡单元-n个超级电容器叠片单元B1-过渡单元;其中,所述过渡单元相同或不同,彼此独立地选自上述过渡单元G1-G5,n为大于等于1的整数;
示例性地方案,所述复合型电池包含过渡单元-n个超级电容器叠片单元B2-过渡单元;其中,所述过渡单元相同或不同,彼此独立地选自上述过渡单元G1-G5,n为大于等于1的整数;
示例性地方案,所述复合型电池包含过渡单元-n1个超级电容器叠片单元B1-n2个超级电容器叠片单元B2-过渡单元;其中,所述过渡单元相同或不同,彼此独立地选自上述过渡单元G1-G5,n1为大于等于1的整数,n2为大于等于1的整数;
示例性地方案,所述复合型电池包含过渡单元-m个锂离子电池叠片单元A1-过渡单元 -n个超级电容器叠片单元B1-过渡单元;其中,所述过渡单元相同或不同,彼此独立地选自上述过渡单元G1-G5,n为大于等于1的整数,m为大于等于1的整数;
示例性地方案,所述复合型电池包含过渡单元-m个锂离子电池叠片单元A1-过渡单元-n个超级电容器叠片单元B2-过渡单元;其中,所述过渡单元相同或不同,彼此独立地选自上述过渡单元G1-G5,n为大于等于1的整数,m为大于等于1的整数;
示例性地方案,所述复合型电池包含过渡单元-n1个超级电容器叠片单元B1-过渡单元-m个锂离子电池叠片单元A1-过渡单元-n2个超级电容器叠片单元B2-过渡单元;其中,所述过渡单元相同或不同,彼此独立地选自上述过渡单元G1-G5,n1+n2为大于等于1的整数,m为大于等于1的整数;
上述示例性地方案中,过渡单元可以根据相邻的重复单元的不同,在上述过渡单元G1-G5中选择合适的过渡单元,保证所述锂离子电池正极材料、需要与兼容性负极材料对应;所述超级电容正极材料、需要与超级电容器负极材料或兼容性负极材料对应。
上述示例性地方案中,若同时含有x个锂离子电池基元结构Y1、y个超级电容器基元结构Y2,可以通过调整x/y的比值,调整所述复合型电池的适用范围和应用场合,例如当x/y的比值越大该复合型电池的能量密度越大;x/y的比值越趋近于1,该复合型电池的功率密度越大。可以在广泛的应用环境中根据能量密度和功率密度的需求进行x/y的比值进行调节,以满足应用需求,本发明中x≥y≥1。即所述超级电容器基元结构Y2的数量小于等于所述锂离子电池基元结构Y1的数量。
<隔膜>
在本发明的一个方案中,所述隔膜选自多孔薄膜。
其中,所述隔膜用于离子导通但电子绝缘的隔膜材料制备得到,所述隔膜多为聚合物制成的多孔薄膜。
在一些实施例中,所述聚合物包括但不限于:聚对苯二甲酸乙二酯、聚对苯二甲酸丁二酯、聚醚、聚缩醛、聚酰胺、聚碳酸酯、聚酰亚胺、聚醚醚酮、聚醚砜、聚苯醚、聚苯硫、聚乙烯萘、高密度聚乙烯、低密度聚乙烯、线型低密度聚乙烯、超高分子量聚乙烯和聚丙烯。
在一些实施例中,所述隔膜还包括设置在所述上述多孔薄膜的一个或两个表面上的有机物或无机物涂层。涂覆于基材表面的有机物或无机物涂层,通常为以增强隔离物的电阻率,防止相对的负电极材料层与正电极材料层之间的直接电接触,并保持用于浸有电解液并在电池电极之间传递锂离子多孔结构的绝缘体材料。该种绝缘隔膜的形式可以是适应电池结构的片状、也可以是是适应电池结构的袋状。
在一些实施例中,所述的无机物具体可以包括但不限于:BaTiO 3、Pb(Zr,Ti)O 3(PZT)、Pb 1-xLa xZr 1-yTi yO 3、PB(Mg 3Nb 2/3)O 3-PbTiO 3、二氧化铪(HfO 2)、SrTiO 3、SnO 2、CeO 2、MgO、NiO、CaO、ZnO、ZrO 2、SiO 2、Y 2O 3、Al 2O 3、SiC、TiO 2及其混合物。
在一些实施例中,所述的有机物具体可以包括但不限于:氰乙基普鲁兰、氰乙基聚乙烯醇、氰乙基纤维素、氰乙基蔗糖、聚偏二氟乙烯-共-六氟丙烯、聚偏二氟乙烯-共-三氯乙烯、聚甲基丙烯酸甲酯、聚丙烯腈、聚乙烯吡咯烷酮、聚乙酸乙烯酯、聚乙烯-共-乙酸乙烯酯、聚酰亚胺、聚环氧乙烷、乙酸纤维素、乙酸丁酸纤维素和乙酸丙酸纤维素及其混合物。
<复合型电池>
在本发明的一个方案中,所述复合型电池包括锂离子电池用正极片、超级电容器用正极片、锂离子电池和超级电容器用正极片,以及负极片。上述的正极片和负极片与极耳、隔膜、电解液、封装壳组装为成品电芯。
<电解液>
在本发明的一个方案中,所述电解液包括锂盐、有机溶剂和添加剂。
在一些实施例中,所述有机溶剂选自碳酸酯(如环状碳酸酯、链状碳酸酯)、羧酸酯(如环状羧酸酯、链状羧酸酯)、醚类化合物(如环状醚类化合物、链状醚类化合物)、含磷化合物和含硫化合物中的至少一种。
其中,所述碳酸酯选自碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、碳酸甲基正丙基酯、碳酸乙基正丙基酯、碳酸二正丙酯、双(氟甲基)碳酸酯、双(二氟甲基)碳酸酯、双(三氟甲基)碳酸酯、双(2-氟乙基)碳酸酯、双(2,2-二氟乙基)碳酸酯、双(2,2,2-三氟乙基)碳酸酯、2-氟乙基甲基碳酸酯、2,2-二氟乙基甲基碳酸酯和2,2,2-三氟乙基甲基碳酸酯中的至少一种。
其中,所述羧酸酯选自乙酸甲酯、乙酸乙酯、乙酸丙酯、乙酸异丙酯、乙酸丁酯、乙酸仲丁酯、乙酸异丁酯、乙酸叔丁酯、丙酸甲酯、丙酸乙酯、丙酸丙酯、丙酸异丙酯、丁酸甲酯、丁酸乙酯、丁酸丙酯、异丁酸甲酯、异丁酸乙酯、戊酸甲酯、戊酸乙酯、特戊酸甲酯和特戊酸乙酯、三氟乙酸甲酯、三氟乙酸乙酯、三氟乙酸丙酯、三氟乙酸丁酯、三氟乙酸和2,2,2-三氟乙酯中的至少一种。
其中,所述醚类化合物选自四氢呋喃、2-甲基四氢呋喃、1,3-二氧戊环、2-甲基-1,3-二氧戊环、4-甲基1,3-二氧戊环、1,3-二氧六环、1,4-二氧六环、二甲氧基丙烷、二甲氧基甲烷、1,1-二甲氧基乙烷、1,2-二甲氧基乙烷、二乙氧基甲烷、1,1-二乙氧基乙烷、1,2-二乙氧基乙烷、乙氧基甲氧基甲烷、1,1-乙氧基甲氧基乙烷和1,2-乙氧基甲氧基乙烷中的至少一种。
其中,所述含磷化合物选自磷酸三甲酯、磷酸三乙酯、磷酸二甲基乙酯、磷酸甲基二乙酯、磷酸亚乙基甲酯、磷酸亚乙基乙酯、磷酸三苯酯、亚磷酸三甲酯、亚磷酸三乙酯、亚磷酸三苯酯、磷酸三(2,2,2-三氟乙基)酯和磷酸三(2,2,3,3,3-五氟丙基)酯中的至少一种。
其中,所述含硫化合物选自环丁砜、2-甲基环丁砜、3-甲基环丁砜、二甲基砜、二乙基砜、乙基甲基砜、甲基丙基砜、二甲基亚砜、甲磺酸甲酯、甲磺酸乙酯、乙磺酸甲酯、乙磺酸乙酯、硫酸二甲酯、硫酸二乙酯和硫酸二丁酯中的至少一种。
在一些实施例中,所述有机溶剂占电解液总质量的82-88%。
在本发明的一个方案中,所述锂盐选自无机锂盐、含氟有机锂盐、含二羧酸配合物锂盐中的至少一种。
其中,所述无机锂盐选自LiClO 4、LiAsF 6、LiPF 6、LiBF 4、LiSbF 6、LiSO 3F、LiN(FSO 2) 2中的至少一种。
其中,所述含氟有机锂盐选自LiCF 3SO 3、LiN(FSO 2)(CF 3SO 2)、LiN(CF 3SO 2) 2、LiN(C 2F 5SO 2) 2、环状1,3-六氟丙烷二磺酰亚胺锂、环状1,2-四氟乙烷二磺酰亚胺锂、LiN(CF 3SO 2)(C 4F 9SO 2)、LiC(CF 3SO 2) 3、LiPF 4(CF 3) 2、LiPF 4(C 2F 5) 2、LiPF 4(CF 3SO 2) 2、LiPF 4(C 2F 5SO 2) 2、LiBF 2(CF 3) 2、LiBF 2(C 2F 5) 2、LiBF 2(CF 3SO 2) 2、LiBF 2(C 2F 5SO 2) 2等。
其中,所述含二羧酸配合物锂盐选自双(草酸根合)硼酸锂、二氟草酸根合硼酸锂、三(草 酸根合)磷酸锂、二氟双(草酸根合)磷酸锂、四氟(草酸根合)磷酸锂中的至少一种。
在一些实施例中,所述锂盐占电解液总质量的13-18wt%。
在本发明的一个方案中,所述添加剂为本领域已知的常规添加剂。
<复合型电池的制备方法>
示例性的,本发明还提供上述复合型电池的制备方法,所述方法包括如下步骤:
(1)制备锂离子电池用正极片和超级电容器用正极片;和/或,制备锂离子电池和超级电容器用正极片;
(2)制备负极片;
(3)在锂离子电池用正极片和超级电容器用正极片中分别引出两个独立的正极极耳,或在锂离子电池用和超级电容器用正极片中分别引出两个独立的正极极耳;在负极片中引出一个负极极耳,形成一个具有相互独立的两个正极极耳和一个共用负极极耳的三极耳式结构;
(4)按照负极片、隔膜、正极片、隔膜、负极片的模式交替堆叠形成复合型电池。
在本发明的一个方案中,所述超级电容器用正极片可以通过如下方法制备得到:
配制超级电容器用正极浆料,并将其涂覆在超级电容器用正极集流体一侧或两侧表面,制备得到所述超级电容器用正极片。
在本发明的一个方案中,所述锂离子电池用正极片可以通过如下方法制备得到:
配制锂离子电池用正极浆料,并将其涂覆在锂离子电池用正极集流体一侧或两侧表面,制备得到所述锂离子电池用正极片。
在本发明的一个方案中,所述锂离子电池和超级电容器用正极片可以通过如下方法制备得到:
配制锂离子电池用正极浆料和超级电容器用正极浆料,并将其分别涂覆在锂离子电池用和超级电容器用正极集流体一侧表面,制备得到所述锂离子电池用和超级电容器用用正极片。
在本发明的一个方案中,按照负极片、隔膜G、正极片、隔膜G、负极片的模式交替堆叠形成复合型电池,例如图7、图8和图9所示。
图7是本发明的一个实施例所述含对称型超级电容器的复合型电容器的结构示意图,其叠片方式为F2-单、隔膜、(L-双、隔膜、F1-双、隔膜)、(L-双、隔膜、F5、隔膜)、(C-双、隔膜、F3-双、隔膜)、(C-双、隔膜、F5、隔膜)、m个(L-双、隔膜、F1-双、隔膜)、L-双、隔膜、F2-单的模式交替组合,隔膜采用Z型叠片,将正负极分开叠成形成裸电芯,形成含有A1-G1-B2-G4-(A1) m的叠放结构,其中,F2-单、隔膜、L-双中包括锂离子电池基元结构Y1;锂离子电池叠片单元A1中包括锂离子电池基元结构Y1;A1-G1之间形成锂离子电池基元结构Y1;过渡单元G1中包括锂离子电池基元结构Y1;G1-B2之间形成超级电容器基元结构Y2;所述超级电容器叠片单元B2中包括超级电容器基元结构Y2;B2-G4之间形成超级电容器基元结构Y2;所述过渡单元G4中包括超级电容器基元结构Y2;G4-A1之间形成锂离子电池基元结构Y1;锂离子电池叠片单元A1中包括锂离子电池基元结构Y1;A1-A1之间形成锂离子电池基元结构Y1;L-双、隔膜、F2-单中包括锂离子电池基元结构Y1。
图8是本发明的一个实施例所述含非对称型超级电容器的复合型电容器的结构示意 图,其叠片方式为F2-单、隔膜、(L-双、隔膜、F1-双、隔膜)、(C-双、隔膜、F1-双、隔膜)、m个(L-双、隔膜、F1-双、隔膜)、L-双、隔膜、F2-单的模式交替组合,隔膜采用Z型叠片,将正负极分开叠成形成裸电芯,形成含有A1-B1-(A1) m的叠放结构;其中,F2-单、隔膜、L-双中包括锂离子电池基元结构Y1;锂离子电池叠片单元A1中包括锂离子电池基元结构Y1;A1-B1之间形成超级电容器基元结构Y2;超级电容器叠片单元B1中包括超级电容器基元结构Y2;B1-A1之间形成锂离子电池基元结构Y1;锂离子电池叠片单元A1中包括锂离子电池基元结构Y1;A1-A1之间形成锂离子电池基元结构Y1;L-双、隔膜、F2-单中包括锂离子电池基元结构Y1。
图9是本发明的一个实施例所述含非对称型超级电容器和对称型超级电容器的复合型电容器的结构示意图,其叠片方式为F2-单、隔膜、(L-双、隔膜、F1-双、隔膜)、(L-双、隔膜、F5、隔膜)、(C-双、隔膜、F1-双、隔膜)、(C-双、隔膜、F5、隔膜)、m个(L-双、隔膜、F1-双、隔膜)、L-双、隔膜、F2-单的模式交替组合,隔膜采用Z型叠片,将正负极分开叠成形成裸电芯,形成含有A1-G1-B1-G4-(A1) m的叠放结构,其中,F2-单、隔膜、L-双中包括锂离子电池基元结构Y1;锂离子电池叠片单元A1中包括锂离子电池基元结构Y1;A1-G1之间形成锂离子电池基元结构Y1;过渡单元G1中包括锂离子电池基元结构Y1;G1-B1之间形成超级电容器基元结构Y2;所述超级电容器叠片单元B1中包括超级电容器基元结构Y2;B1-G4之间形成超级电容器基元结构Y2;所述过渡单元G4中包括超级电容器基元结构Y2;G4-A1之间形成锂离子电池基元结构Y1;锂离子电池叠片单元A1中包括锂离子电池基元结构Y1;A1-A1之间形成锂离子电池基元结构Y1;L-双、隔膜、F2-单中包括锂离子电池基元结构Y1。
在本发明的一个方案中,在锂离子电池用正极片和超级电容器用正极片中分别引出两个独立的正极极耳,或在锂离子电池用和超级电容器用正极片中分别引出两个独立的正极极耳;在负极片中引出一个负极极耳,形成一个具有相互独立的两个正极极耳和一个共用负极极耳的三极耳式结构;可以有效解决超级电容器电池自放电快的问题,以及达到最优使用该种混合电化学电池的目的。
在本发明的一个方案中,在超级电容器用正极片中引出第一正极极耳;在锂离子电池用正极片中引出第二正极极耳;在锂离子电池和超级电容器用正极片中引出第一正极极耳或第二正极极耳,使用多个锂离子电池和超级电容器用正极片时,也可以其中一些正极片引出第一正极极耳,另一些正极片引出第二正极极耳。
在本发明的一个方案中,在负极片中引出独立或交叉连接成负极极耳。
上述三个极耳设置的位置没有特别的限定,如图10所示,例如,连接超级电容器正极片的第一正极极耳与连接锂离子电池正极片的第二正极极耳设置在电池的同一侧(如图10中的a所示),或者,第一正极极耳和第二正极极耳设置在电池的相对的两侧(如图10中的b所示),或者,第一正极极耳和第二正极极耳设置在电池的相邻的两侧(如图10中的c和d所示)。两个正极极耳设置在电池的相邻的两侧时,能够根据不同的使用环境适当增加正极极耳的宽度,正极极耳可以作为优良的热传导媒介,能够提高电池散热效果。
下文将结合具体实施例对本发明的制备方法做更进一步的详细说明。应当理解,下列实施例仅为示例性地说明和解释本发明,而不应被解释为对本发明保护范围的限制。凡基于本发明上述内容所实现的技术均涵盖在本发明旨在保护的范围内。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
制备例1 超级电容器用正极片
将超级电容器用正极活性物质多孔碳活性炭粉末(比表面积≥1000m 2/g)、粘结剂PVDF、导电炭黑、碳纳米管混合、分散于NMP(N-甲基吡咯烷酮)中,经混合后真空搅拌得到分散均匀制成超级电容器用正极浆料。其中固体成分包含93wt%的正极活性物质、4wt%的粘结剂PVDF、2wt%的导电炭黑和1wt%的碳纳米管。超级电容器用正极浆料中的总固体含量为40wt%。
将所述超级电容器用正极浆料均匀地涂在铝箔两面,经过100-120℃真空干燥10-24h、辊压至压实为1.0-2.1g/cm 3,得到若干超级电容器用正极片C1记为C-双(如图1中的(c)所示)。
将所述超级电容器用正极浆料均匀地涂在铝箔一面,经过100-120℃真空干燥10-24h、辊压至压实为0.9-2.1g/cm 3,得到若干超级电容器用正极片C2记为C-单(如图1中的(b)所示)。
制备例2 锂离子电池用正极片
将锂离子电池用正极活性物质(LiNi 0.8Co 0.1Mn 0.1O 2)、粘结剂PVDF、导电炭黑、碳纳米管混合、分散于NMP,经混合后真空搅拌得到分散均匀制成锂离子电池用正极浆料。其中固体成分包含94wt%的正极活性物质、3wt%的粘结剂PVDF、2wt%的导电炭黑和1wt%的碳纳米管。锂离子电池用正极浆料中的总固体含量为70wt%。
将所述锂离子电池用正极浆料均匀地涂在铝箔两面,经过100-120℃真空干燥10-24h、辊压至压实为2-4.8g/cm 3,得到锂离子电池用正极片L1记为L-双(如图2中的(c)所示)。
将所述锂离子电池用正极浆料均匀地涂在铝箔一面,经过100-120℃真空干燥10-24h、辊压至压实为2-4.8g/cm 3,得到锂离子电池用正极片L2记为L-单(如图2中的(b)所示)。
制备例3 锂离子电池和超级电容器用正极片H
将制备例1的超级电容器用正极浆料和制备例2的锂离子电池用正极浆料分别均匀地涂在铝箔两侧,经过100-120℃真空干燥10-24h,辊压机压实至0.9-3.8g/cm 3,得到锂离子电池和超级电容器用正极片H(如图3所示)。
制备例4 兼容性负极片
将95wt%人造石墨、2wt%粘结剂SBR(聚苯乙烯丁二烯共聚物)和3wt%导电剂导电炭黑混合在去离子水中,经搅拌分散均匀制成兼容性负极浆料,所述兼容性负极浆料中固含量为45-55wt%。
将兼容性负极浆料均匀地涂在铜箔两面,经过100-120℃真空干燥10-24h、辊压机压实至0.9-2.1g/cm 3,得到若干兼容性负极片F1记为F1-双(如图4中的(c)所示)。
将兼容性负极浆料均匀地涂在铜箔一面,经过100-120℃真空干燥10-24h、辊压机压实至0.9-2.1g/cm 3,得到若干兼容性负极片F2记为F2-单(如图4中的(b)所示)。
制备例5 第七负极片
将超级电容器用负极活性物质多孔碳活性炭粉末(比表面积≥1000m 2/g)、粘结剂PVDF、导电炭黑、碳纳米管混合、分散于NMP(N-甲基吡咯烷酮)中,经混合后真空搅拌得到分散均匀制成超级电容器用负极浆料。其中固体成分包含93wt%的负极活性物质、4wt%的粘结剂PVDF、2wt%的导电炭黑和1wt%的碳纳米管。超级电容器用负极浆料中的总固体含量为40wt%。
将超级电容器用负极浆料和制备例4的兼容性负极浆料分别均匀地涂覆于铜箔两面,经过100-120℃真空干燥10-24h、辊压机压实至0.9-2.1g/cm 3,得到若干第七负极片F5(如图5所示)。
制备例6 超级电容器用负极片
将制备例5的超级电容器用负极浆料均匀地涂覆于铜箔两面,经过100-120℃真空干燥10-24h、辊压机压实至0.9-2.1g/cm 3,得到若干超级电容器用负极片F3记为F3-双(如图6中的(c)所示)。
将制备例5的超级电容器用负极浆料均匀地涂覆于铜箔一面,经过100-120℃真空干燥10-24h、辊压机压实至0.9-2.1g/cm 3,得到若干超级电容器用负极片F4记为F4-单(如图6中的(b)所示)。
实施例1 含有锂离子电池、对称型超级电容器的组合
将上述制备例1-3的正极片和冲切成60mm×45mm的片;将上述制备例4-6的负极片冲切成62mm×47mm的片;
将正负极极片按照:F2-单、隔膜、(L-双、隔膜、F1-双、隔膜)、(L-双、隔膜、F5、隔膜)、2个(C-双、隔膜、F3-双、隔膜)、(C-双、隔膜、F5、隔膜)、(L-双、隔膜、F1-双、隔膜)、L-双、隔膜、F2-单的模式交替组合,其中,过渡性负极F5的一个表面上设置有超级电容器负极材料,另一个表面上设置有锂离子电池负极材料,从而形成含有A1-G1-(B2) 2-G4-A1的叠放结构,超级电容器正极材料与超级电容器负极材料的活性物质相同。其中,F2-单、隔膜、L-双中包括锂离子电池基元结构Y1;锂离子电池叠片单元A1中包括锂离子电池基元结构Y1;A1-G1之间形成锂离子电池基元结构Y1;过渡单元G1中包括锂离子电池基元结构Y1;G1-B2之间形成超级电容器基元结构Y2;所述超级电容器叠片单元B2中包括超级电容器基元结构Y2;B2-B2之间形成超级电容器基元结构Y2;所述超级电容器叠片单元B2中包括超级电容器基元结构Y2;B2-G4之间形成超级电容器基元结构Y2;所述过渡单元G4中包括超级电容器基元结构Y2;G4-A1之间形成锂离子电池基元结构Y1;锂离子电池叠片单元A1中包括锂离子电池基元结构Y1;F1-双、隔膜、L-双中包括锂离子电池基元结构Y1;L-双、隔膜、F2-单中包括锂离子电池基元结构Y1。
用聚丙烯(PP)或聚乙烯(PE)制备的隔膜采用Z型叠片,将正负极分开叠成形成裸电芯C-1。再分别将裸电芯C-1中的锂离子电池用正极片L、超级电容器用正极片C分别转出独立的两个铝极耳,以及将负极片转出铜镀镍极耳或镍极耳,形成一个具有相互独立的两个正极极耳和一个共用的负极极耳的三极耳裸电芯C-1。
随后将裸电芯使用玻璃夹夹紧,玻璃夹的力度为100MPa/m 2,并在85℃高温真空烘烤24小时后,再用铝塑膜封装,并加注电解液、封装后对电池进行化成和老化,得到长宽厚为70mm×50mm×7mm的软包装电池。电解液采用含1M的六氟磷酸锂电解液,所述电解液的溶剂为体积比为1:1:1的碳酸乙烯酯:碳酸二甲酯:1,2丙二醇碳酸酯的混合溶剂。
实施例2 含有锂离子电池、非对称型超级电容器的组合
其他操作同实施例1,区别在于:
将正负极极片按照:为F2-单、隔膜、2个(L-双、隔膜、F1-双、隔膜)、3个(C-双、隔膜、F1-双、隔膜)、1个(L-双、隔膜、F1-双、隔膜)、L-双、隔膜、F2-单的模式交替组合,形成含有(A1) 2-(B1) 3-(A1) 1的叠放结构。其中,F2-单、隔膜、L-双中包括锂离子 电池基元结构Y1;锂离子电池叠片单元A1中包括锂离子电池基元结构Y1;A1-A1之间形成锂离子电池基元结构Y1;锂离子电池叠片单元A1中包括锂离子电池基元结构Y1;A1-B1之间形成超级电容器基元结构Y2;所述超级电容器叠片单元B1中包括超级电容器基元结构Y2;B1-B1之间形成超级电容器基元结构Y2;所述超级电容器叠片单元B1中包括超级电容器基元结构Y2;B1-B1之间形成超级电容器基元结构Y2;所述超级电容器叠片单元B1中包括超级电容器基元结构Y2;B1-A1之间形成超级电容器基元结构Y2;锂离子电池叠片单元A1中包括锂离子电池基元结构Y1;F1-双、隔膜、L-双中包括锂离子电池基元结构Y1;L-双、隔膜、F2-单中包括锂离子电池基元结构Y1。
用聚丙烯(PP)或聚乙烯(PE)制备的隔膜采用Z型叠片,将正负极分开叠成形成裸电芯C-2。再分别将裸电芯C-2中的锂离子电池用正极片L、超级电容器用正极片C分别转出独立的两个铝极耳,以及将负极片转出铜镀镍极耳或镍极耳,形成一个具有相互独立的两个正极极耳和一个共用的负极极耳的三极耳裸电芯C-2。
实施例3 含有锂离子电池、对称型超级电容器、非对称型超级电容器的组合
其他操作同实施例1,区别在于:
将正负极极片按照:F2-单、隔膜、(L-双、隔膜、F1-双、隔膜)、(L-双、隔膜、F5、隔膜)、2个(C-双、隔膜、F1-双、隔膜)、(C-双、隔膜、F5、隔膜)、(L-双、隔膜、F1-双、隔膜)、L-双、隔膜、F2-单的模式交替组合,形成含有A1-G1-(B1) 2-G4-A1的叠放结构,其中,F2-单、隔膜、L-双中包括锂离子电池基元结构Y1;锂离子电池叠片单元A1中包括锂离子电池基元结构Y1;A1-G1之间形成锂离子电池基元结构Y1;过渡单元G1中包括锂离子电池基元结构Y1;G1-B1之间形成超级电容器基元结构Y2;所述超级电容器叠片单元B1中包括超级电容器基元结构Y2;B1-B1之间形成超级电容器基元结构Y2;所述超级电容器叠片单元B1中包括超级电容器基元结构Y2;B1-G4之间形成超级电容器基元结构Y2;所述过渡单元G4中包括超级电容器基元结构Y2;G4-A1之间形成锂离子电池基元结构Y1;锂离子电池叠片单元A1中包括锂离子电池基元结构Y1;F1-双、隔膜、L-双中包括锂离子电池基元结构Y1;L-双、隔膜、F2-单中包括锂离子电池基元结构Y1。
用聚丙烯(PP)或聚乙烯(PE)制备的隔膜采用Z型叠片,将正负极分开叠成形成裸电芯C-3。再分别将裸电芯C-3中的锂离子电池用正极片L、超级电容器用正极片C分别转出独立的两个铝极耳,以及将负极片转出铜镀镍极耳或镍极耳,形成一个具有相互独立的两个正极极耳和一个共用的负极极耳的三极耳裸电芯C-3。
对比例1 对称型超级电容器
其他操作同实施例1,区别在于:
将正负极极片按照:F4-单、隔膜、7个(C-双、隔膜、F3、隔膜)、C-双、隔膜、F4-单的模式交替组合,形成含有-(B2) 7-的叠放结构,其中,含有16个超级电容器基元结构Y2。
用聚丙烯(PP)或聚乙烯(PE)制备的隔膜采用Z型叠片,将正负极分开叠成形成含有对称型超级电容器裸电芯DBL-1。再将裸电芯DBL-1中的超级电容器用正极片C转出一个铝极耳,以及将负极片转出铜镀镍极耳或镍极耳,形成一个两极耳裸电芯DBL-1。
对比例2 非对称型超级电容器
其他操作同实施例1,区别在于:
将正负极极片按照:F2-单、隔膜、7个(C-双、隔膜、F1-双、隔膜)、C-双、隔膜、 F2-单的模式交替组合,形成含有-(B1) 7-的叠放结构,其中,含有16个超级电容器基元结构Y2。
用聚丙烯(PP)或聚乙烯(PE)制备的隔膜采用Z型叠片,将正负极分开叠成形成含有对称型超级电容器裸电芯DBL-2。再将裸电芯DBL-2中的超级电容器用正极片C转出一个铝极耳,以及将负极片转出铜镀镍极耳或镍极耳,形成一个两极耳裸电芯DBL-2。
对比例3 锂离子电池
其他操作同实施例1,区别在于:
将正负极极片按照:F2-单、隔膜、7个(L-双、隔膜、F1-双、隔膜)、L-双、隔膜、F2-单的模式交替组合,形成含有-(A1) 7-的叠放结构,其中,含有16个锂离子电池基元结构Y1。
用聚丙烯(PP)或聚乙烯(PE)制备的隔膜采用Z型叠片,将正负极分开叠成形成含有对称型超级电容器裸电芯DBL-3。再将裸电芯DBL-2中的锂离子电池用正极片L转出一个铝极耳,以及将负极片转出铜镀镍极耳或镍极耳,形成一个两极耳裸电芯DBL-3。
对比例4 混合锂离子电池、非对称型超级电容器两极耳电池
其他操作同实施例2,区别在于:
用聚丙烯(PP)或聚乙烯(PE)制备的隔膜采用Z型叠片,将正负极分开叠成形成裸电芯DBL-4,并将所有锂离子电池用正极片L、超级电容器用正极片C转出的铝极耳焊接在一起形成一个共用的引出端正极极耳,以及将负极片转出铜镀镍极耳或镍极耳,形成一个两极耳裸电芯DBL-4。
表1 实施例和对比例制备得到的电容器的性能测试结果
Figure PCTCN2021099782-appb-000001
显然,根据表1可知,本发明实施例1-3的三极耳叠片式复合型电池的“4.2V满电储存60天容量保持率(%)”显著优于两极耳叠片式复合型电池(对比例4)。超级电容器为对称型超级电容器时(实施例1),其功率密度显著大于超级电容器为非对称型超级电容器的功率密度(实施例2、3)。
以上,对本发明的实施方式进行了说明。但是,本发明不限定于上述实施方式。凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (11)

  1. 一种三极耳叠片式复合型电池,其特征在于,包括正极片、负极片、隔膜和电解液,正极片和负极片交替堆叠,相邻的正极片和负极片之间以隔膜相隔;所述正极片包括第一正极片、第二正极片;所述第一正极片包括第一正极集流体和在第一正极集流体的两侧表面上设置的超级电容器正极材料;所述第二正极片包括第二正极集流体和在第二正极集流体的两个表面上设置的锂离子电池正极材料;所述第一正极片连接第一正极极耳,所述第二正极片连接第二正极极耳,第一正极极耳和第二正极极耳相互独立,所述负极片连接负极极耳。
  2. 如权利要求1所述的电池,其特征在于,所述正极片还包括第三正极片,所述第三正极片包括第三正极集流体,在第三正极集流体的第一表面设置的锂离子电池正极材料,以及在第三正极集流体的与第一表面相对的第二表面设置的超级电容器正极材料,所述第三正极片连接第一正极极耳或第二正极极耳。
  3. 如权利要求1所述的电池,其特征在于,所述正极片还包括第四正极片,所述第四正极片包括第四正极集流体和在第四正极集流体的一侧表面上设置的超级电容器正极材料,所述第四正极片设置在所述复合型电池的最外层,所述第四正极片连接第一正极极耳。
  4. 如权利要求1所述的电池,其特征在于,所述正极片还包括第五正极片,所述第五正极片包括第五正极集流体和在第五正极集流体的一侧表面上设置的锂离子电池正极材料,所述第五正极片设置在所述复合型电池的最外层,所述第五正极片连接第二正极极耳。
  5. 如权利要求1所述的电池,其特征在于,所述负极片包括第一负极片,所述第一负极片包括第一负极集流体和在第一负极集流体的两侧表面上设置的双功能负极材料,所述双功能负极材料能够吸附/解吸附锂离子,并能够嵌入/脱嵌锂离子电池的锂离子。
  6. 如权利要求1所述的电池,其特征在于,所述负极片包括第二负极片,所述第二负极片包括第二负极集流体和在第二负极集流体的一侧表面上设置的双功能负极材料,所述双功能负极材料能够吸附/解吸附锂离子,并能够嵌入/脱嵌锂离子电池的锂离子,所述第二负极片设置在所述复合型电池的最外层。
  7. 如权利要求1所述的电池,其特征在于,所述负极片包括第三负极片,所述第三负极片包括第三负极集流体和在第三负极集流体的两侧表面上设置的超级电容器负极材料。
  8. 如权利要求1所述的电池,其特征在于,所述负极片包括第四负极片,所述第四负极片包括第四负极集流体和在第四负极集流体的一侧表面上设置的超级电容器负极材料,所述第四负极片设置在所述复合型电池的最外层。
  9. 如权利要求1所述的电池,其特征在于,所述负极片包括第五负极片,所述第五负极片包括第五负极集流体和在第五负极集流体的两侧表面上设置的锂离子电池负极材料。
  10. 如权利要求1所述的电池,其特征在于,所述负极片包括第六负极片,所述第六负极片包括第六负极集流体和在第六负极集流体的一侧表面上设置的锂离子电池负极材料,所述第六负极片设置在所述复合型电池的最外层。
  11. 如权利要求1所述的电池,其特征在于,所述负极片包括第七负极片,所述第七负极片包括第七负极集流体和设置在所述第七负极集流体的第一表面的第一负极材料,以及在所述第七负极集流体的与第一表面相对的第二表面的第二负极材料,所述第一负极材料 和第二负极材料均选自双功能负极材料、超级电容器负极材料和锂离子电池负极材料中的一种,第一负极材料与第二负极材料不同,所述双功能负极材料能够吸附/解吸附锂离子,并能够嵌入/脱嵌锂离子电池的锂离子。
PCT/CN2021/099782 2020-06-30 2021-06-11 一种三极耳叠片式复合型电池 WO2022001634A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21833847.3A EP4175026A1 (en) 2020-06-30 2021-06-11 Laminated composite battery having three lugs
US17/988,243 US20230282949A1 (en) 2020-06-30 2022-11-16 Three-tab laminated composite battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010615092.X 2020-06-30
CN202010615092.XA CN111916842B (zh) 2020-06-30 2020-06-30 一种三极耳叠片式复合型电池

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/988,243 Continuation US20230282949A1 (en) 2020-06-30 2022-11-16 Three-tab laminated composite battery

Publications (1)

Publication Number Publication Date
WO2022001634A1 true WO2022001634A1 (zh) 2022-01-06

Family

ID=73226997

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099782 WO2022001634A1 (zh) 2020-06-30 2021-06-11 一种三极耳叠片式复合型电池

Country Status (4)

Country Link
US (1) US20230282949A1 (zh)
EP (1) EP4175026A1 (zh)
CN (1) CN111916842B (zh)
WO (1) WO2022001634A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111916842B (zh) * 2020-06-30 2022-06-14 珠海冠宇电池股份有限公司 一种三极耳叠片式复合型电池
CN115084794B (zh) * 2021-03-15 2024-06-11 荣耀终端有限公司 一种电池和电子设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118036A (ja) * 2000-10-10 2002-04-19 Sanshin:Kk 蓄電用電子部品および複合電極体
JP2004355823A (ja) * 2003-05-27 2004-12-16 Nec Tokin Corp ハイブリッド型蓄電部品
CN102696144A (zh) * 2010-01-28 2012-09-26 三菱电机株式会社 电力储存设备单元及其制造方法以及蓄电设备
US20130224533A1 (en) * 2012-02-28 2013-08-29 Amperex Technology Limited Merged Battery Cell with Interleaved Electrodes
CN104466259A (zh) * 2014-12-06 2015-03-25 西南科技大学 一种基于锂离子电容器和锂电池混合储能单体的制备方法
CN110729529A (zh) * 2019-10-21 2020-01-24 中国科学院电工研究所 具有复合电极结构的储能电芯及电芯预嵌锂的方法
CN111916842A (zh) * 2020-06-30 2020-11-10 珠海冠宇电池股份有限公司 一种三极耳叠片式复合型电池
CN111916816A (zh) * 2020-06-30 2020-11-10 珠海冠宇电池股份有限公司 一种叠片式复合型电池

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20030014988A (ko) * 2001-08-14 2003-02-20 한국전자통신연구원 하이브리드 전원소자 및 그 제조방법
CN104008893B (zh) * 2014-04-11 2016-10-19 中国科学院电工研究所 锂离子混合型电容器的制备方法及其锂离子混合型电容器
CN209691893U (zh) * 2019-05-22 2019-11-26 重庆九环新越新能源科技发展有限公司 复合动力储能电芯

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002118036A (ja) * 2000-10-10 2002-04-19 Sanshin:Kk 蓄電用電子部品および複合電極体
JP2004355823A (ja) * 2003-05-27 2004-12-16 Nec Tokin Corp ハイブリッド型蓄電部品
CN102696144A (zh) * 2010-01-28 2012-09-26 三菱电机株式会社 电力储存设备单元及其制造方法以及蓄电设备
US20130224533A1 (en) * 2012-02-28 2013-08-29 Amperex Technology Limited Merged Battery Cell with Interleaved Electrodes
CN104466259A (zh) * 2014-12-06 2015-03-25 西南科技大学 一种基于锂离子电容器和锂电池混合储能单体的制备方法
CN110729529A (zh) * 2019-10-21 2020-01-24 中国科学院电工研究所 具有复合电极结构的储能电芯及电芯预嵌锂的方法
CN111916842A (zh) * 2020-06-30 2020-11-10 珠海冠宇电池股份有限公司 一种三极耳叠片式复合型电池
CN111916816A (zh) * 2020-06-30 2020-11-10 珠海冠宇电池股份有限公司 一种叠片式复合型电池

Also Published As

Publication number Publication date
CN111916842A (zh) 2020-11-10
CN111916842B (zh) 2022-06-14
US20230282949A1 (en) 2023-09-07
EP4175026A1 (en) 2023-05-03

Similar Documents

Publication Publication Date Title
CN111916816B (zh) 一种叠片式复合型电池
KR20190008100A (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
KR20190024761A (ko) 리튬 이차전지
JP2015524992A (ja) 多層の活物質層を含むリチウム二次電池
KR101749508B1 (ko) 리튬 이차 전지용 전극 활물질, 이를 포함한 리튬 이차 전지용 전극 및 이를 구비한 리튬 이차 전지
JP6249497B2 (ja) 面積が互いに異なる電極を含んでいる電極積層体及びこれを含む二次電池
US20230282949A1 (en) Three-tab laminated composite battery
JP7282925B2 (ja) リチウム二次電池用正極、その製造方法、及びそれを含むリチウム二次電池
KR20130117718A (ko) 다층구조 전극 및 그 제조방법
KR20160005555A (ko) 리튬전지
KR102510888B1 (ko) 리튬 이차전지용 양극, 이의 제조방법 및 이를 포함한 리튬 이차전지
CN112335089A (zh) 电化学装置及电池组
CN110419137B (zh) 电极组件和包括其的锂电池
CN114930577A (zh) 负极活性材料、以及包含该负极活性材料的负极和二次电池
JP6656370B2 (ja) リチウムイオン二次電池および組電池
CN115458707A (zh) 二次电池及用电设备
KR20110100301A (ko) 비수전해질 이차전지 및 그 충전 방법
US20230102905A1 (en) Nonaqueous electrolyte energy storage device
KR101291050B1 (ko) 고밀도 음극 활물질 및 이를 포함하는 리튬 이차전지용 음극
JP2014049292A (ja) リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
JP5614433B2 (ja) リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池
KR20190008099A (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
CN112447941B (zh) 非水电解质二次电池
CN115152058A (zh) 电化学装置和包含其的电子装置
JP5655828B2 (ja) リチウムイオン二次電池用非水電解液及びリチウムイオン二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833847

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021833847

Country of ref document: EP

Effective date: 20230130