WO2022001286A1 - 冰箱 - Google Patents

冰箱 Download PDF

Info

Publication number
WO2022001286A1
WO2022001286A1 PCT/CN2021/086983 CN2021086983W WO2022001286A1 WO 2022001286 A1 WO2022001286 A1 WO 2022001286A1 CN 2021086983 W CN2021086983 W CN 2021086983W WO 2022001286 A1 WO2022001286 A1 WO 2022001286A1
Authority
WO
WIPO (PCT)
Prior art keywords
air flow
temperature
air
evaporator
return air
Prior art date
Application number
PCT/CN2021/086983
Other languages
English (en)
French (fr)
Inventor
李晓峰
徐同
王铭
何胜涛
刘建
Original Assignee
青岛海尔电冰箱有限公司
海尔智家股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔电冰箱有限公司, 海尔智家股份有限公司 filed Critical 青岛海尔电冰箱有限公司
Publication of WO2022001286A1 publication Critical patent/WO2022001286A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D11/00Self-contained movable devices, e.g. domestic refrigerators
    • F25D11/02Self-contained movable devices, e.g. domestic refrigerators with cooling compartments at different temperatures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • F25D17/045Air flow control arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/04Preventing the formation of frost or condensate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D21/00Defrosting; Preventing frosting; Removing condensed or defrost water
    • F25D21/14Collecting or removing condensed and defrost water; Drip trays
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • F25D2317/041Treating air flowing to refrigeration compartments by purification
    • F25D2317/0411Treating air flowing to refrigeration compartments by purification by dehumidification

Definitions

  • the invention relates to refrigeration and freezing technology, in particular to a refrigerator.
  • air-cooled refrigerators usually defrost the evaporator by arranging a defrost heater under the evaporator.
  • the process of defrosting the evaporator will generate a lot of heat.
  • the temperature of the space (evaporator room) where the evaporator is located is high.
  • the power consumption of the refrigerator is additionally added to the power consumption for eliminating the excess heat in the evaporator room during the cooling process.
  • the hot air generated by the defrosting of the evaporator will also enter the storage compartment of the refrigerator, causing the temperature in the storage compartment to rise, affecting the preservation and freezing time of food, and further increasing the refrigerator's ability to reduce storage during the cooling process.
  • a first air return port and a second air return port are respectively provided in the evaporator upstream and downstream of the evaporator in the evaporator chamber, and a flow guide plate is arranged at the second air return port located downstream of the evaporator, In order to make the return air flow entering the evaporator room through the second return air port and the air flow entering the evaporator room through the first return air port and after heat exchange by the evaporator mix at the guide plate, thereby generating frost at the guide plate.
  • This solution can only condense the moisture in the return air flow that enters the evaporator room through the second return air outlet at the guide plate in advance, and can only reduce the amount of frost in the evaporator to a certain extent.
  • Most of the return air flowing into the evaporator room first flows through the evaporator and then flows to the guide plate. Before this part of the return air encounters the guide plate, the moisture in it has already condensed into frost on the evaporator, so , the effect of this solution in solving the problem of reducing evaporator frosting is very limited.
  • part of the return air flow in this solution flows to the storage compartment without passing through the evaporator for heat exchange, which is equivalent to sacrificing the refrigeration effect and refrigeration efficiency of the refrigerator.
  • One object of the present invention is to overcome at least one defect of the prior art, and to provide a refrigerator that can reduce the frosting of the evaporator to a greater extent or even avoid the frosting of the evaporator.
  • Another object of the present invention is to accurately and effectively avoid frosting of the pre-condensing device, so as to ensure that the pre-condensing device has a continuously good condensing capacity.
  • a further object of the present invention is to avoid affecting the normal flow of the return air flow.
  • the present invention provides a refrigerator, comprising a box body, the box body defines a refrigerating compartment for storing articles, an evaporator room accommodating an evaporator, and a refrigerator connected to the evaporator room and the A return air duct between the refrigerating compartments for the return air flow in the refrigerating compartment to return to the evaporator compartment;
  • the return air duct is provided with a pre-condensation device that allows airflow to pass through, so that the return air flow passes through the pre-condensation device and then returns to the evaporator chamber.
  • a temperature acquisition device for the temperature of the precondensation device;
  • the box is also defined with an air induction channel for guiding part of the cooling airflow after heat exchange by the evaporator to the pre-condensation device, so as to cool the pre-condensation device;
  • an electronically controlled damper which is arranged to controllably adjust the amount of cooling airflow flowing to the pre-condensing device through the induced draft passage in accordance with the temperature of the pre-condensing device, so that the The temperature is maintained above zero so that the moisture in the return air stream condenses into condensed water on the pre-condensation device as the return air stream flows through the pre-condensation device.
  • the air induction channel has an airflow outlet adjacent to the pre-condensing device, and the electronically controlled damper is arranged at the airflow outlet to adjust the airflow of the airflow outlet according to the temperature of the pre-condensing device. area, thereby adjusting the amount of cooling air flow through the air flow outlet to the pre-condensing device so that the temperature of the pre-condensing device is maintained above zero.
  • the box is further defined with an air supply duct connected between the evaporator room and the refrigerating compartment for the cooling airflow in the evaporator room to flow to the refrigerating compartment, the The air introduction passage communicates with the air supply air passage and the pre-condensation device.
  • the air induction channel has an air flow inlet adjacent to the air supply air duct, and the electronically controlled damper is arranged at the air flow inlet to adjust the air flow of the air flow inlet according to the temperature of the pre-condensing device.
  • the flow area is adjusted to adjust the amount of cooling airflow flowing into the air induction channel through the airflow inlet so that the temperature of the pre-condensation device is maintained above zero.
  • the temperature acquiring device is disposed on the surface of the pre-condensing device, so that the obtained temperature of the surface of the pre-condensing device is used as the temperature of the pre-condensing device.
  • the air return air duct includes an air return port opened on the inner wall of the refrigerating compartment, and the pre-condensation device is arranged at the air return port.
  • the pre-condensation device includes a reticulated heat-conducting frame, and the heat-conducting frame is formed by a plurality of mutually parallel horizontal grid bars, a plurality of mutually parallel vertical grid bars, and a plurality of mutually parallel vertical grid bars.
  • the inner space of the heat-conducting frame is divided into several interconnected sub-spaces.
  • both the return air flow and the cooling air flow pass through a plurality of the subspaces, and the air flow direction of the return air flow through the plurality of subspaces is the same as that of the cooling air flow.
  • the included angle between the airflow directions of the subspaces is less than or equal to 90 degrees.
  • the return air flow passes through the pre-condensation device through a plurality of subspaces
  • the pre-condensation device further includes a plurality of guide pipes, the plurality of guide pipes are penetrated in the heat conduction frame at intervals, and the airflow outlet of the air guide channel is communicated with the guide pipes, so that the air flow outlet is connected to the guide pipe.
  • the cooling airflow flowing out of the air induction channel flows toward the guide tube, so as to be fluidly isolated from the return air flow through the guide tube.
  • a water receiving tray is provided below the pre-condensation device to receive the condensed water dripping from the pre-condensation device;
  • the bottom of the water receiving tray has a drain port for discharging the condensed water received in the water receiving tray to the outside of the box.
  • the refrigerator of the present invention is provided with a pre-condensing device for the return air to flow through in the return air duct that communicates with the refrigerating compartment, and is specially designed in the box to divert part of the cooling air after heat exchange by the evaporator to the
  • the air introduction channel of the pre-condensation device subtly cools the pre-condensation device through this part of the cooling airflow.
  • the temperature of the return air returning from the refrigerated room to the evaporator room is higher than the temperature of the cooling air after heat exchange by the evaporator, and the return air carries a large amount of water vapor from the refrigerated room, resulting in higher humidity, so the temperature is higher than After the return air with high and high humidity encounters the pre-condensation device with lower temperature, the water vapor (moisture) in it will condense on the pre-condensation device, thus achieving the purpose of effectively removing the moisture in it.
  • the present application is also provided with a temperature acquisition device capable of detecting its temperature in real time on the pre-condensation device, and an electronically controlled damper is set in the induced air passage, and the electronically controlled damper can be controlled according to the temperature of the pre-condensation device detected by the temperature acquisition device.
  • the opening of the pre-condensation device can be adjusted in real time to ensure that the temperature of the pre-condensation device is kept above zero. Therefore, when the return air flow passes through the pre-condensation device, the moisture in the return air flow will condense into condensed water on the pre-condensation device, and will not condense into frost and adhere to the pre-condensation device.
  • the device is defrosted, with low energy consumption and precise control, which is not affected by other factors, ensuring that the pre-condensing device has a continuous and good condensing capacity.
  • the pre-condensation device of the present invention includes a heat-conducting frame in which a plurality of interconnected subspaces are formed. Both the return air flow and part of the cooling air flow out of the air induction channel flow through the subspaces within, and the angle between the flow direction of the return air flow and the flow direction of the part of the cooling air flow is less than or equal to 90 degrees, thus avoiding the Part of the cooling air flow produces a large reverse resistance to the return air flow and affects the normal flow of the return air flow.
  • only the return air flow flows through the subspaces in the heat conduction frame, and part of the cooling air flow out of the air induction channel flows through the guide tube inserted in the heat conduction frame.
  • the purpose of the heat conduction frame temperature can be fluidly isolated from the return air flow through the guide pipe, so as to avoid affecting the normal flow of the return air flow.
  • FIG. 1 is a schematic perspective view of a refrigerator without a pre-condensing device installed according to an embodiment of the present invention
  • FIG. 2 is a schematic perspective view of a refrigerator after installing a pre-condensing device according to an embodiment of the present invention
  • Fig. 3 is a partial structural schematic diagram of a refrigerator according to an embodiment of the present invention.
  • Figure 4 is a schematic left side view of the structure shown in Figure 3;
  • FIG. 5 is a schematic structural diagram of a pre-condensation device according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of a pre-condensation device according to another embodiment of the present invention.
  • FIG. 1 is a schematic perspective view of a refrigerator according to an embodiment of the present invention without a pre-condensation device installed
  • FIG. 2 is a schematic perspective view of a refrigerator according to an embodiment of the present invention with a pre-condensation device installed
  • FIG. 3 is a schematic diagram of the present invention
  • FIG. 4 is a schematic left side view of the structure shown in FIG. 3 .
  • the refrigerator 1 of the present invention includes a box body 10 .
  • the box body 10 defines a refrigerating compartment 110 for storing items, an evaporator room 120 that accommodates the evaporator 20 , and is connected to the evaporator room 120 .
  • a return air duct 140 between the refrigerating compartment 110 and the refrigerating compartment 110 returns the return air flow in the refrigerating compartment 110 to the evaporator compartment 120 .
  • the box body 10 may further define an air supply duct 130 connected between the evaporator chamber 120 and the refrigerating compartment 110 for the cooling airflow in the evaporator chamber 120 to flow to the refrigerating compartment 110 .
  • the supply air duct 130 may have a plurality of air outlets 131 communicating with the refrigerating compartment 110
  • the return air duct 140 may have a return air opening 141 communicating with the refrigerating compartment 110.
  • the refrigerator 1 may further include a fan 40 disposed in the evaporator chamber 120 for driving the cooling airflow after heat exchange by the evaporator 20 to flow to the air supply duct 130 .
  • a fan 40 disposed in the evaporator chamber 120 for driving the cooling airflow after heat exchange by the evaporator 20 to flow to the air supply duct 130 .
  • the evaporator 20 exchanges heat with the airflow passing through it to generate cooling airflow, and the cooling airflow generated by the evaporator 20 flows to the air supply duct 130 and is sent to the refrigerating compartment 110 through the air outlet 131
  • the return air flow in the refrigerating compartment 110 flows to the return air duct 140 through the return air duct 141, and returns to the evaporator chamber 120 through the return air duct 140 to continue heat exchange with the evaporator 20. Since the air circulation path of the refrigerator and its principle are well known to those skilled in the art, they will not be repeated here.
  • the return air duct 140 is provided with a pre-condensing device 30 that allows airflow to pass through, so that the return air flowing through the return air duct 140 flows through the pre-condensing device 30 and then returns to the evaporator chamber 120 .
  • the pre-condensation device 30 is provided with a temperature acquisition device 60 for detecting the temperature of the pre-condensation device 30 .
  • the temperature acquisition device 60 may be a temperature sensor, an infrared sensor, a temperature sensor or other detection devices capable of accurately detecting the temperature of the pre-condensation device 30 .
  • the box body 10 also defines an air induction channel 150 for guiding part of the cooling air flow after heat exchange by the evaporator 20 to the pre-condensing device 30, so as to cool the pre-condensing device 30, so as to reduce the temperature of the pre-condensing device 30.
  • the moisture in the return air flow is condensed on the pre-condensing device 30 .
  • the temperature of the precondensing device 30 after cooling by this part of the cooling airflow is at least lower than that of the precondensing device when only the return airflow flows through the precondensing device 30. 30, only when the return air flows through the pre-condensation device 30, the temperature of the pre-condensation device 30 is close to the temperature of the return air.
  • the air induction channel 150 is provided with an electronically controlled damper 70, and the electronically controlled damper 70 is set to controllably adjust the amount of cooling air flowing through the air induction channel 150 to the pre-condensing device 30 according to the temperature of the pre-condensing device 30, so that the pre-condensing device 30 is pre-condensed.
  • the temperature of the condensing device 30 is kept above zero, so that the moisture in the return air stream is condensed into condensed water on the pre-condensing device 30 when the return air stream flows through the pre-condensing device 30 .
  • part of the cooling airflow after heat exchange by the evaporator 20 can be diverted to the pre-condensing device 30 through the air-inducing channel 150.
  • the pre-condensation device 30 is cooled.
  • the temperature of the return air flow from the refrigerating compartment 110 back to the evaporator room 120 (usually above zero) is higher than the temperature of the cooling air after heat exchange by the evaporator (usually below zero), and also higher than the temperature of the cooled air
  • the temperature of the pre-condensing device 30 after the rear is lower, and the return air flow carries a large amount of water vapor from the refrigerating compartment 110, resulting in higher humidity. Therefore, the return air flow with higher temperature and higher humidity encounters the pre-condensing device with lower temperature. After 30, the moisture in it will condense on the pre-condensation device 30, so as to achieve the purpose of effectively removing the moisture in it.
  • all the return air flowing to the evaporator 20 is the air after condensation and dehumidification, which greatly reduces the frosting of the evaporator 20. Even the frosting of the evaporator 20 is avoided, and the cooling efficiency and cooling effect of the evaporator 20 are improved.
  • the present application is also provided with a temperature acquisition device 60 capable of detecting its temperature in real time on the pre-condensation device 30 , and an electronically controlled damper 70 is set in the air induction channel 150 , and the pre-condensation device 30 can be detected according to the temperature acquisition device 60 .
  • the opening degree of the electronically controlled damper 70 is controlled by the temperature of the controller, so as to adjust the cooling air flow to the pre-condensation device 30 through the air induction channel 150 in real time, so as to ensure that the temperature of the pre-condensation device 30 is kept above zero.
  • the moisture in the return air flow will condense into condensed water on the pre-condensation device 30, and will not condense into frost and adhere to the pre-condensation device 30, so there is no need to Defrosting the pre-condensing device 30 has low energy consumption, and the temperature closed-loop control formed by the temperature acquisition device 60 and the electronically controlled damper 70 is more accurate and less susceptible to other factors, ensuring that the pre-condensing device 30 has continuous and better condensation ability.
  • the term "above zero" in the embodiment of the present invention refers to a temperature higher than zero, so that the moisture in the return air flow can be condensed into condensed water when it encounters the pre-condensing device 30 .
  • the electronically controlled damper 70 can be controlled through the temperature feedback detected by the temperature acquisition device 60 so that the temperature of the pre-condensation device 30 is just above zero.
  • the material of the pre-condensing device 30 can be a metal material to ensure that it has good thermal conductivity, so that the cold energy of the cooling airflow can be quickly transferred to the pre-condensing device 30 , and after the cold energy is transferred to the pre-condensing device 30 , It can be quickly and uniformly transmitted to the entire pre-condensation device 30, which improves the uniformity of condensation and dehumidification of the return air flow.
  • the air induction channel 150 has an airflow outlet 151 adjacent to the pre-condensing device 30 , and the electronically controlled damper 70 is disposed at the airflow outlet 151 (eg, the embodiment shown in FIG. 4 ) to adjust according to the temperature of the pre-condensing device 30
  • the airflow area of the airflow outlet 151 is adjusted to adjust the amount of cooling airflow flowing through the airflow outlet 151 to the pre-condensing device 30 so that the temperature of the pre-condensing device 30 is maintained above zero.
  • the airflow flow area of the airflow outlet 151 can be adjusted at any time according to the measured temperature of the pre-condensation device 30 , so as to control the flow of cooling air flowing to the pre-condensation device 30 through the airflow flow area of the airflow outlet 151 , so that the pre-condensation device 30 temperature remains above zero.
  • the box body 10 further defines an air supply air duct 130 connected between the evaporator chamber 120 and the refrigerating compartment 110 for the cooling airflow in the evaporator chamber 120 to flow to the refrigerating compartment 110, leading to
  • the air passage 150 communicates with the air supply air passage 130 and the pre-condensation device 30 .
  • the air induction channel 150 has an air flow inlet 152 adjacent to the air supply air duct 130, and the electronically controlled damper 70 is arranged at the air flow inlet 152 to adjust the air flow area of the air flow inlet 152 according to the temperature of the pre-condensing device 30, thereby adjusting the air flow through the air flow inlet 152.
  • the amount of cooling air flow from the air inlet 152 into the air induction channel 150 keeps the temperature of the precondensing device 30 above zero.
  • the airflow flow area of the airflow inlet 152 can be adjusted at any time according to the measured temperature of the pre-condensation device 30 , so that the airflow flow area of the airflow inlet 152 can be used to control the cooling airflow flowing into the air induction channel 150 , thereby controlling the flow direction of the pre-condensation.
  • the cooling air flow of the device 30 keeps the temperature of the pre-condensation device 30 above zero.
  • the electronically controlled damper 70 may also be disposed at other positions of the air induction channel 150 , for example, the electronically controlled damper 70 may be disposed on a certain section of the air induction channel 150 to adjust the area The airflow area of the segment is adjusted, so as to adjust the cooling airflow flow through the induced air passage 150 to the pre-condensation device 30, so that the temperature of the pre-condensation device 30 is kept above zero.
  • the temperature acquisition device 60 may be disposed on the surface of the precondensation device 30 , so that the obtained surface temperature of the precondensation device 30 is used as the temperature of the precondensation device 30 to facilitate the setting and installation of the temperature acquisition device 60 . Since the material of the pre-condensation device 30 is usually a metal material, the heat transfer ability is good, and the cooling capacity is distributed evenly on the pre-condensation device 30 . Therefore, the surface temperature of the pre-condensation device 30 can accurately represent the temperature of the entire pre-condensation device 30 .
  • the return air duct 140 includes an air return port 141 opened on the inner wall of the refrigerating compartment 110 , and the pre-condensation device 30 is disposed at the air return port 141 to facilitate the installation of the pre-condensation device 30 .
  • the pre-condensing device 30 is equivalent to being located at the most upstream position of the return air duct 140 .
  • condensed water is avoided in the return air duct 140, and when the moisture in the return air flow after passing through the pre-condensation device 30 is not completely removed, the return air flow can be further processed through the return air duct 140.
  • the pre-condensing device 30 can be clamped at the air return port 141, and the shape of the pre-condensing device 30 matches the shape of the air return port 141, so that all the air returning from the refrigerating compartment 110 flows through the pre-condensing device
  • the device 30 is installed to ensure the completeness of condensation and dehumidification of the return air flow.
  • FIG. 5 is a schematic structural diagram of a pre-condensation device according to an embodiment of the present invention
  • FIG. 6 is a schematic structural diagram of a pre-condensation device according to another embodiment of the present invention.
  • the pre-condensation device 30 includes a mesh-shaped heat-conducting frame 31, and the heat-conducting frame 31 is composed of a plurality of mutually parallel transverse grid bars 311, a plurality of mutually parallel longitudinal grid bars 312, and a plurality of mutually parallel vertical grid bars 313 are formed in a staggered manner, so as to divide the inner space of the heat-conducting frame 31 into several sub-spaces that are communicated with each other.
  • the transverse grid bars 311 may extend in the lateral direction
  • the longitudinal grid bars 312 may extend in the longitudinal direction
  • the vertical grid bars 313 may extend in the vertical direction. The two are perpendicular to each other, so that the structure of the heat-conducting frame 31 is more stable.
  • the return air flow through the pre-condensation device 30 and the cooling air flow to the pre-condensation device 30 both flow through several of the above-mentioned subspaces, that is,
  • the return air flow and the cooling air flow passing through the pre-condensing device 30 have a fluid cross, so that the cooling air flow after cooling the pre-condensing device 30 is mixed into the return air air flow, and returns to the evaporator chamber 120 with the return air air flow to participate in heat exchange , so as to make up for the problem that the flow of cooling air supplied to the refrigerating compartment is reduced by diverting part of the cooling air to the pre-condensing device 30 .
  • the present application specifically designs the angle between the airflow direction of the return airflow flowing through the several subspaces and the airflow direction of the cooling airflow flowing through the several subspaces as less than or equal to 90 degrees. In this way, it can be avoided that the cooling airflow at the pre-condensation device 30 produces a large reverse resistance to the return air flow there, thereby affecting the normal flow of the return air flow.
  • the return air flows through the pre-condensing device 30 through several subspaces in the heat-conducting frame 31 .
  • the pre-condensation device 30 further includes a plurality of guide pipes 32, and the plurality of guide pipes 32 are penetrated in the heat conduction frame 31 at intervals.
  • the cooling air flow out of the air passage 150 flows into the guide pipe 32 so as to be separated from the return air flow by the guide pipe 32 . That is to say, only the return air flow flows through the subspace in the heat conduction frame 31 , and part of the cooling air flow out of the air induction channel 150 flows through the guide pipe 32 penetrated in the heat conduction frame 31 .
  • the tube 32 conducts cooling to the heat conduction frame 31 to reduce the temperature of the heat conduction frame 31, and can be fluidly isolated from the return air flow through the guide tube 32, so as to avoid affecting the normal flow of the return air flow.
  • the other end of the guide pipe 32 can be communicated with the return air duct 140, so that the cooling airflow after the cooling of the pre-condensing device 30 can be mixed into the return air airflow, and returned to the evaporator chamber 120 with the return air airflow. Participate in heat exchange to make up for the problem of reducing the flow of cooling air to the refrigerated compartment caused by directing part of the cooling air to the pre-condensing device 30 .
  • the arrangement direction of the guide tubes 32 is arranged at an angle of less than or equal to 90 degrees with respect to the airflow direction of the return airflow passing through the several subspaces. In this way, it can be avoided that the cooling airflow flowing out of the guide tube 32 produces a large reverse resistance to the return air flow, thereby affecting the normal flow of the return air flow.
  • the pre-condensation device 30 has an inlet for the supply and return air flow to flow into it and an outlet for the supply and return air flow to flow out. That is to say, in the flow direction of the return air flow in the pre-condensing device 30, the airflow outlet 152 of the air-inducing channel 150 is closer to the downstream side of the pre-condensing device 30, so that the cooling air flow drawn by the air-inducing channel 150 is in the cooling pre-condensation device 30. At the same time, the condensation device 30 does not affect the return air flow as much as possible.
  • a water receiving tray 50 is provided below the pre-condensing device 30 for receiving the condensed water dripping from the pre-condensing device 30 . In this way, it can be avoided that the condensed water directly drips below the pre-condensing device 30 to cause the accumulated water to affect the user's use experience.
  • the bottom of the water receiving pan 50 has a drain port 51 for discharging the condensed water received in the water receiving pan 50 to the outside of the box 10 to avoid excessive condensed water in the water receiving pan 50 from overflowing.
  • the bottom of the evaporator chamber 120 may be provided with a drain hole
  • the refrigerator 1 further includes a drain pipe connecting the drain hole and the outside of the case, so as to discharge the condensed water generated by the defrosting of the evaporator 20 to the tank through the drain hole and the drain pipe outside of the body 10 . Since the design of the drainage hole and the drainage pipe at the bottom of the evaporator chamber 120 is a common structure in existing refrigerators, it is not repeated here.
  • the drain port 51 at the bottom of the water receiving tray 50 may be communicated with a drain pipe, so as to discharge the condensed water in the water receiving tray 50 to the outside of the box through the drain pipe.
  • the refrigerator 1 may be additionally provided with an additional drain pipe that communicates with the outside of the box body 10, and the drain port 51 at the bottom of the water receiving tray 50 is connected to the additional drain pipe, so as to drain the water receiving tray 50 through the additional drain pipe.
  • the condensed water inside is discharged to the outside of the box.
  • Additional drains can be arranged parallel to the drains.
  • the box 10 may further define other storage compartments, such as a freezer compartment.
  • the refrigerator compartment 110 may be located above the freezer compartment, and the evaporator compartment 120 may be located at the top of the freezer compartment. rear side.
  • the relative positions between the refrigerating compartment 110 and the evaporator compartment 120 are different, and the extension paths of the supply air duct 130, the return air duct 140 and the air introduction duct 150 are slightly different, but the refrigerating compartment
  • the refrigeration process in 110 and the functions and roles played by the pre-condensing device 30 and the air induction channel 150 are all the same.
  • the above technical solutions of the present invention are not only applicable to refrigerators with only the refrigerating compartment 110, but also to refrigerators having other storage compartments besides the refrigerating compartment 110.
  • the relative positional relationship between the chambers 120 is not limited or required.
  • a part of the cooling airflow generated by the heat exchange of the evaporator 20 is sent to the refrigerating compartment 110 through the air supply air duct 130 and the air outlet 131, and this part of the airflow flows through the refrigerating compartment 110 and reaches the return air.
  • the tuyere 141 is turned into a return air flow with a temperature higher than that of the cooling airflow, and the humidity is relatively high; the other part is sent to the pre-condensing device 30 through the induced air passage 150, and the pre-condensing device 30 is cooled and cooled so that its temperature is close to the cooling airflow temperature, i.e. close to the evaporator temperature.
  • the moisture in it will be condensed on the pre-condensing device 30, reducing the blowing rate to the evaporator 20. high air humidity, thereby reducing or even avoiding frosting of the evaporator 20.
  • the condensed water produced by condensation drops into the water receiving tray 50 below the pre-condensation device 30 and is discharged out of the box through the drain hole 51 .
  • the refrigerator 1 of the present invention not only includes a refrigerator in the general sense, but also includes other refrigerating and freezing devices having functions similar to refrigerators, such as a freezer, a freezer, a refrigerator, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)

Abstract

一种冰箱,包括箱体,箱体内限定有用于储存物品的冷藏间室、容置有蒸发器的蒸发器室、以及连接在蒸发器室与冷藏间室之间的回风风道。回风风道设有允许气流穿过的预凝结装置,以使得回风气流流经预凝结装置后再返回蒸发器室,预凝结装置上设有用于检测预凝结装置温度的温度获取装置。箱体内还限定有用于将经蒸发器换热后的部分冷却气流引流至预凝结装置的引风通道,以对预凝结装置进行降温;引风通道内设有电控风门,电控风门设置成受控地根据预凝结装置的温度调节经引风通道流向预凝结装置的冷却气流的量,以使得预凝结装置的温度保持在零度以上,从而在回风气流流经预凝结装置时使得回风气流中的湿气在预凝结装置上凝结成冷凝水。

Description

冰箱 技术领域
本发明涉及冷藏冷冻技术,特别是涉及一种冰箱。
背景技术
目前,风冷冰箱通常采用在蒸发器下方布置除霜加热器的方式对蒸发器进行除霜。然而,蒸发器除霜的过程会产生大量的热量,当除霜停止时,蒸发器所处的空间(蒸发器室)温度较高,在压缩机开机后的制冷过程中,需要损耗较多的能量来带走蒸发器室内的多余热量。因此,冰箱的能耗又额外新增了制冷过程中为消除蒸发器室内多余热量的功耗。另外,蒸发器除霜时产生的热气还会进入冰箱的储物间室内,导致储物间室内的温度上升,影响食物的保鲜和冷冻时间,同时也会进一步增加冰箱在制冷过程中为降低储物间室内的温度所需要的能耗。因此,最好能够减少或者避免蒸发器结霜。
为了解决上述技术问题,现有技术中在蒸发器室内的蒸发器上游和蒸发器下游分别开设第一回风口和第二回风口,并在位于蒸发器下游的第二回风口处设置引流板,以使得经第二回风口进入蒸发器室内的回风气流与经第一回风口进入蒸发器室并经蒸发器换热后的气流在引流板处混合,从而在引流板处产生凝霜。这种方案仅能够将通过第二回风口进入蒸发器室内的回风气流中的湿气在引流板处提前凝霜,仅能够在一定程度上减少蒸发器的结霜量,经第一回风口流入蒸发器室内的大部分回风气流都先流经蒸发器后再流向引流板,这部分回风气流在遇到引流板之前,其内的湿气早已在蒸发器上凝结成霜了,因此,该方案在解决减少蒸发器结霜这一问题时的效果是非常有限的。况且,该方案中的部分回风气流并不经过蒸发器换热就流向储物间室,相当于牺牲了冰箱的制冷效果和制冷效率。
发明内容
本发明的一个目的旨在克服现有技术的至少一个缺陷,提供一种能够较大程度地减少蒸发器结霜甚至避免蒸发器结霜的冰箱。
本发明的另一个目的是精准有效地避免预凝结装置结霜,以确保其具有持续较好的冷凝能力。
本发明的一个进一步的目的是避免对回风气流的正常流动产生影响。
为了实现上述目的,本发明提供一种冰箱,包括箱体,所述箱体内限定有用于储存物品的冷藏间室、容置有蒸发器的蒸发器室、以及连接在所述蒸发器室与所述冷藏间室之间以供所述冷藏间室内的回风气流返回所述蒸发器室的回风风道;其中
所述回风风道设有允许气流穿过的预凝结装置,以使得所述回风气流流经所述预凝结装置后再返回所述蒸发器室,所述预凝结装置上设有用于检测所述预凝结装置温度的温度获取装置;且
所述箱体内还限定有用于将经所述蒸发器换热后的部分冷却气流引流至所述预凝结装置的引风通道,以对所述预凝结装置进行降温;所述引风通道内设有电控风门,所述电控风门设置成受控地根据所述预凝结装置的温度调节经所述引风通道流向所述预凝结装置的冷却气流的量,以使得所述预凝结装置的温度保持在零度以上,从而在所述回风气流流经所述预凝结装置时使得所述回风气流中的湿气在所述预凝结装置上凝结成冷凝水。
可选地,所述引风通道具有邻近所述预凝结装置的气流出口,所述电控风门设置在所述气流出口处,以根据所述预凝结装置的温度调节所述气流出口的气流流动面积,从而调节经所述气流出口流向所述预凝结装置的冷却气流的量使得所述预凝结装置的温度保持在零度以上。
可选地,所述箱体内还限定有连接在所述蒸发器室与所述冷藏间室之间以供所述蒸发器室内的冷却气流流向所述冷藏间室的送风风道,所述引风通道连通所述送风风道和所述预凝结装置。
可选地,所述引风通道具有邻近所述送风风道的气流入口,所述电控风门设置在所述气流入口处,以根据所述预凝结装置的温度调节所述气流入口的气流流动面积,从而调节经所述气流入口流入所述引风通道的冷却气流的量使得所述预凝结装置的温度保持在零度以上。
可选地,所述温度获取装置设置于所述预凝结装置的表面,以将获得到的所述预凝结装置表面的温度作为所述预凝结装置的温度。
可选地,所述回风风道包括开设在所述冷藏间室的内胆壁上的回风口,所述预凝结装置设置在所述回风口处。
可选地,所述预凝结装置包括网状的导热框架,所述导热框架由若干个相互平行的横栅条、若干个相互平行的纵栅条和若干个相互平行的竖栅条交错形成,从而将所述导热框架的内部空间分隔成若干个相互连通的子空间。
可选地,所述回风气流和所述冷却气流均流经多个所述子空间,且所述回风气流流经多个所述子空间的气流流动方向与所述冷却气流流经多个所述子空间的气流流动方向之间的夹角小于等于90度。
可选地,所述回风气流经多个子空间穿过所述预凝结装置;且
所述预凝结装置还包括多个导流管,所述多个导流管间隔地穿设在所述导热框架中,所述引风通道的气流出口与所述导流管连通,以使得从所述引风通道流出的冷却气流流向所述导流管,从而通过所述导流管与所述回风气流流体隔离。
可选地,所述预凝结装置的下方设有接水盘,以用于承接从所述预凝结装置上滴落的冷凝水;且
所述接水盘的底部具有排水口,以用于将所述接水盘内承接的冷凝水排放至所述箱体外部。
本发明的冰箱在连通冷藏间室的回风风道内设有供回风气流流过的预凝结装置,并且在箱体内特别地设计有用于将经过蒸发器换热后的部分冷却气流引流至预凝结装置的引风通道,巧妙地通过该部分冷却气流对预凝结装置进行降温。由于从冷藏间室返回蒸发器室的回风气流的温度高于经蒸发器换热后的冷却气流的温度,且回风气流从冷藏间室内携带大量水气导致湿度较大,因此,温度较高且湿度较高的回风气流遇到温度较低的预凝结装置后,其内的水气(湿气)会在预凝结装置上凝结,从而达到了有效除去其内湿气的目的。由于回风风道内的全部回风气流都会流经预凝结装置,因此流向蒸发器的全部回风气流都是经过冷凝除湿后的气流,较大程度地减少了蒸发器结霜甚至避免了蒸发器结霜,提高了蒸发器的制冷效率和制冷效果。
同时,本申请还在预凝结装置上设置能够实时地检测其温度的温度获取装置,并在引风通道内设置电控风门,可根据温度获取装置检测到的预凝结装置的温度控制电控风门的开度,从而实时地调节经引风通道流向预凝结装置的冷却气流量,以确保预凝结装置的温度保持在零度以上。由此,在回风气流流经预凝结装置时,回风气流中的湿气会在预凝结装置上凝结成冷凝水,而不会凝结成霜附着在预凝结装置上,不需要对预凝结装置进行除霜,能耗低,且控制精准、不受其他因素的影响,确保了预凝结装置具有持续较好的冷凝能力。
进一步地,本发明的预凝结装置包括导热框架,其内形成有多个相互连 通的子空间。回气气流和引风通道流出的部分冷却气流均流经其内的子空间,回风气流的流动方向与该部分冷却气流的流动方向之间的夹角小于等于90度,由此可避免该部分冷却气流对回风气流产生较大的逆向阻力而影响回风气流的正常流动。或者,仅回风气流流经导热框架内的子空间,引风通道流出的部分冷却气流流经穿设在导热框架中的导流管,既能够通过导流管向导热框架传冷以达到降低导热框架温度的目的,又可通过导流管与回风气流流体隔离,从而避免对回风气流的正常流动产生影响。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的冰箱未安装预凝结装置时的示意性透视图;
图2是根据本发明一个实施例的冰箱安装预凝结装置后示意性透视图;
图3是根据本发明一个实施例的冰箱的部分结构示意图;
图4是图3所示结构的示意性左侧视图;
图5是根据本发明一个实施例的预凝结装置的示意性结构图;
图6是根据本发明另一个实施例的预凝结装置的示意性结构图。
具体实施方式
图1是根据本发明一个实施例的冰箱未安装预凝结装置时的示意性透视图,图2是根据本发明一个实施例的冰箱安装预凝结装置后示意性透视图,图3是根据本发明一个实施例的冰箱的部分结构示意图,图4是图3所示结构的示意性左侧视图。参见图1至图4,本发明的冰箱1包括箱体10,箱体10内限定有用于储存物品的冷藏间室110、容置有蒸发器20的蒸发器室120、连接在蒸发器室120与冷藏间室110之间以供冷藏间室110内的回风气流返回蒸发器室120的回风风道140。进一步地,箱体10内还可限定有连接在蒸发器室120与冷藏间室110之间以供蒸发器室120内的冷却气流流向冷藏间室110的送风风道130。并且,送风风道130可具有与冷藏间室110连通的 多个出风口131,回风风道140可具有与冷藏间室110连通的回风口141。冰箱1还可包括设置在蒸发器室120内的风机40,用于驱动经蒸发器20换热后的冷却气流流向送风风道130。在冷藏间室110制冷时,蒸发器20与流经其的气流进行热交换从而产生冷却气流,蒸发器20产生的冷却气流流向送风风道130,并经出风口131送往冷藏间室110;冷藏间室110内的回风气流经回风口141流向回风风道140,并通过回风风道140返回蒸发器室120继续与蒸发器20进行换热。由于冰箱的气流循环路径及其原理是本领域技术人员习知的,因此这里不再赘述。
特别地,回风风道140设有允许气流穿过的预凝结装置30,以使得流经回风风道140的回风气流流经预凝结装置30后再返回蒸发器室120。预凝结装置30上设有用于检测预凝结装置30温度的温度获取装置60。具体地,温度获取装置60可以为温度传感器、红外传感器、感温器或其他能够准确地检测预凝结装置30温度的检测装置。
进一步地,箱体10内还限定有用于将经蒸发器20换热后的部分冷却气流引流至预凝结装置30的引风通道150,以对预凝结装置30进行降温,从而在回风气流流经预凝结装置30时使得回风气流中的湿气在预凝结装置30上冷凝。可以理解的是,因为冷却气流的温度低于回风气流的温度,因此经该部分冷却气流降温后的预凝结装置30的温度至少低于只有回风气流流过预凝结装置30时预凝结装置30的温度,只有回风气流流过预凝结装置30时,预凝结装置30的温度接近回风气流的温度。
并且,引风通道150内设有电控风门70,电控风门70设置成受控地根据预凝结装置30的温度调节经引风通道150流向预凝结装置30的冷却气流的量,以使得预凝结装置30的温度保持在零度以上,从而在回风气流流经预凝结装置30时使得回风气流中的湿气在预凝结装置30上凝结成冷凝水。
本发明的冰箱1通过设计预凝结装置30和引风通道150,可通过引风通道150将经过蒸发器20换热后的部分冷却气流引流至预凝结装置30,巧妙地通过该部分冷却气流对预凝结装置30进行降温。由于从冷藏间室110返回蒸发器室120的回风气流的温度(通常高于零度)高于经蒸发器换热后的冷却气流的温度(通常低于零度),也高于经冷却气流降温后的预凝结装置30的温度,且回风气流从冷藏间室110内携带大量水气导致湿度较大,因此,温度较高且湿度较高的回风气流遇到温度较低的预凝结装置30后,其内的 湿气会在预凝结装置30上凝结,从而达到了有效除去其内湿气的目的。由于回风风道140内的全部回风气流都会流经预凝结装置30,因此流向蒸发器20的全部回风气流都是经过冷凝除湿后的气流,较大程度地减少了蒸发器20结霜甚至避免了蒸发器20结霜,提高了蒸发器20的制冷效率和制冷效果。
并且,本申请还在预凝结装置30上设置能够实时地检测其温度的温度获取装置60,并在引风通道150内设置电控风门70,可根据温度获取装置60检测到的预凝结装置30的温度控制电控风门70的开度,从而实时地调节经引风通道150流向预凝结装置30的冷却气流量,以确保预凝结装置30的温度保持在零度以上。由此,在回风气流流经预凝结装置30时,回风气流中的湿气会在预凝结装置30上凝结成冷凝水,而不会凝结成霜附着在预凝结装置30上,不需要对预凝结装置30进行除霜,能耗低,且温度获取装置60与电控风门70形成的温度闭环控制更加精准、不易受其他因素的影响,确保了预凝结装置30具有持续较好的冷凝能力。
本发明实施例中所称的“零度以上”意指高于零度的温度,以使得回风气流中的湿气遇到预凝结装置30时能够冷凝成冷凝水。为了提高回风气流中的湿气冷凝速率,可通过温度获取装置60检测到的温度反馈控制电控风门70使得预凝结装置30的温度恰好高于零度。
具体地,预凝结装置30的材质可以为金属材质,以确保其具有良好的导热能力,从而使得冷却气流的冷量快速地传递至预凝结装置30,并且,冷量传递至预凝结装置30后可快速均匀地传递至整个预凝结装置30,提高了回风气流冷凝除湿的均匀性。
在一些实施例中,引风通道150具有邻近预凝结装置30的气流出口151,电控风门70设置在气流出口151处(例如图4所示实施例),以根据预凝结装置30的温度调节气流出口151的气流流动面积,从而调节经气流出口151流向预凝结装置30的冷却气流的量使得预凝结装置30的温度保持在零度以上。也就是说,气流出口151的气流流动面积可根据预凝结装置30的实测温度随时可调,以通过气流出口151的气流流动面积控制流向预凝结装置30的冷却气流量,从而使得预凝结装置30的温度保持在零度以上。
在另一些实施例中,箱体10内还限定有连接在蒸发器室120与冷藏间室110之间以供蒸发器室120内的冷却气流流向冷藏间室110的送风风道130,引风通道150连通送风风道130和预凝结装置30。
进一步地,引风通道150具有邻近送风风道130的气流入口152,电控风门70设置在气流入口152处,以根据预凝结装置30的温度调节气流入口152的气流流动面积,从而调节经气流入口152流入引风通道150的冷却气流的量使得预凝结装置30的温度保持在零度以上。也就是说,气流入口152的气流流动面积可根据预凝结装置30的实测温度随时可调,以通过气流入口152的气流流动面积控制流向引风通道150内的冷却气流量,从而控制流向预凝结装置30的冷却气流量,进而使得预凝结装置30的温度保持在零度以上。
在一些替代性实施例中,电控风门70还可以设置在引风通道150的其他位置处,例如,电控风门70可设置在引风通道150内的某一区段上,以调节该区段的气流流动面积,从而调节经引风通道150流向预凝结装置30的冷却气流量,使得预凝结装置30的温度保持在零度以上。
在一些实施例中,温度获取装置60可设置于预凝结装置30的表面,以将获得到的预凝结装置30表面的温度作为预凝结装置30的温度,便于温度获取装置60的设置和安装。由于预凝结装置30的材质通常是金属材质,传热能力较好,冷量在预凝结装置30上分布比较均匀,因此,预凝结装置30的表面温度可以准确地表示整个预凝结装置30的温度。
在一些实施例中,回风风道140包括开设在冷藏间室110的内胆壁上的回风口141,预凝结装置30设置在回风口141处,以便于预凝结装置30的安装。同时,在回风气流的流动方向上,预凝结装置30相当于处于回风风道140的最上游位置处,可以在回风风道140的最上游就对回风气流进行冷凝除湿,可以在一定程度上避免回风风道140内产生冷凝水,并且,在经过预凝结装置30后的回风气流中的湿气没有彻底去除时,还可以通过回风风道140进一步对回风气流进行一定程度的除湿。
进一步地,预凝结装置30可卡设在回风口141处,且预凝结装置30的外形与回风口141的形状相匹配,以使得从冷藏间室110返回的全部回风气流都流经预凝结装置30,从而确保对回风气流进行冷凝除湿的彻底性。
图5是根据本发明一个实施例的预凝结装置的示意性结构图,图6是根据本发明另一个实施例的预凝结装置的示意性结构图。在一些实施例中,预凝结装置30包括网状的导热框架31,导热框架31由若干个相互平行的横栅条311、若干个相互平行的纵栅条312和若干个相互平行的竖栅条313交错 形成,从而将导热框架31的内部空间分隔成若干个相互连通的子空间。具体地,横栅条311可沿横向延伸,纵栅条312可沿纵向延伸,竖栅条313可沿竖向延伸,横栅条311、纵栅条312和竖栅条313三者中的任两者相互垂直,以使得导热框架31的结构更加稳固。
在一些实施例中,例如具有图5所示预凝结装置的冰箱,流经预凝结装置30的回风气流和流向预凝结装置30的冷却气流均流经若干个上述子空间,也就是说,流经预凝结装置30的回风气流和冷却气流存在流体交叉,便于使对预凝结装置30进行降温后的冷却气流混合到回风气流中,并随回风气流返回蒸发器室120参与换热,以弥补将部分冷却气流引流至预凝结装置30产生的供向冷藏间室的冷却气流量减少的问题。
进一步地,为了避免冷却气流对回风气流产生影响,本申请特别地将回风气流流经若干个子空间的气流流动方向与冷却气流流经若干个子空间的气流流动方向之间的夹角设计成小于等于90度。由此,可避免预凝结装置30处的冷却气流对该处的回风气流产生较大的逆向阻力而影响回风气流的正常流动。
在另一些实施例中,例如具有图6所示预凝结装置的冰箱,回风气流经导热框架31内的若干个子空间穿过预凝结装置30。并且,预凝结装置30还包括多个导流管32,多个导流管32间隔地穿设在导热框架31中,引风通道150的气流出口151与导流管32连通,以使得从引风通道150流出的冷却气流流向导流管32,从而通过导流管32与回风气流隔开。也就是说,仅回风气流流经导热框架31内的子空间,引风通道150流出的部分冷却气流流经穿设在导热框架31中的导流管32,由此,既能够通过导流管32向导热框架31传冷以达到降低导热框架31温度的目的,又可通过导流管32与回风气流流体隔离,从而避免对回风气流的正常流动产生影响。
进一步地,导流管32的另一端可与回风风道140连通,以便于使对预凝结装置30进行降温后的冷却气流混合到回风气流中,并随回风气流返回蒸发器室120参与换热,以弥补将部分冷却气流引流至预凝结装置30产生的供向冷藏间室的冷却气流量减少的问题。具体地,导流管32的布置方向与回风气流流经若干个子空间的气流流动方向呈小于等于90度的角度设置。由此,可避免从导流管32流出的冷却气流对回风气流产生较大的逆向阻力而影响回风气流的正常流动。
在一些实施例中,预凝结装置30具有用于供回风气流流入其中的进口和用于供回风气流流出的出口,引风通道150的气流出口151更加靠近预凝结装置30的出口。也就是说,在预凝结装置30内的回风气流的流动方向上,引风通道150的气流出口152更加靠近预凝结装置30的下游侧,以使得引风通道150引流的冷却气流在冷却预凝结装置30的同时尽可能地不会对回风气流产生影响。
在一些实施例中,预凝结装置30的下方设有接水盘50,以用于承接从预凝结装置30上滴落的冷凝水。由此,可避免冷凝水直接滴落在预凝结装置30的下方造成积水影响用户的使用体验。
进一步地,接水盘50的底部具有排水口51,以用于将接水盘50内承接的冷凝水排放至箱体10外部,避免接水盘50内的冷凝水过多而溢出。
具体地,蒸发器室120的底部可设有排水孔,冰箱1还包括连通排水孔和箱体外部的排水管,以通过排水孔和排水管将蒸发器20化霜产生的冷凝水排放至箱体10外部。由于蒸发器室120底部排水孔和排水管的设计是现有冰箱中普遍具有的结构,因此这里不再赘述。
在一些实施例中,接水盘50底部的排水口51可与排水管连通,以通过排水管将接水盘50内的冷凝水排放至箱体外。
在另一些实施例中,冰箱1还可以另外设置一个与箱体10外部连通的附加排水管,接水盘50底部的排水口51与附加排水管相连,以通过附加排水管将接水盘50内的冷凝水排放至箱体外。附加排水管可与排水管平行设置。
需要说明的是,图1和图2所示实施例中,箱体10内仅限定有冷藏间室110一个储物间室,此时,蒸发器室120可处于冷藏间室110的后侧。在另一些实施例中,箱体10内还可限定有其他储物间室,例如冷冻间室,此时冷藏间室110可处于冷冻间室的上方,蒸发器室120可处于冷冻间室的后侧。对于这些不同的实施例,冷藏间室110与蒸发器室120之间的相对位置不同,送风风道130、回风风道140和引风通道150的延伸路径稍有区别,但冷藏间室110内的制冷过程以及预凝结装置30和引风通道150发挥的功能和作用都是相同的。也就是说,本发明的上述技术方案不但适用于只具有冷藏间室110的冰箱,还适用于除了冷藏间室110之外,还具有其他储物间室的冰箱,对于冷藏间室110与蒸发器室120之间的相对位置关系没有限制 或要求。
本发明的冰箱1在制冷过程中,经蒸发器20换热产生的冷却气流一部分通过送风风道130和出风口131送往冷藏间室110,这部分气流流经冷藏间室110后达到回风口141时变成温度高于冷却气流温度的回风气流,且湿度较大;另一部分通过引风通道150送往预凝结装置30,对预凝结装置30进行制冷降温,使其温度接近冷却气流温度,即接近蒸发器温度。由于预凝结装置30的温度较低,温度较高且湿度较大的回风气流流经预凝结装置30时,其内的湿气会在预凝结装置30上冷凝,降低了吹到蒸发器20的空气湿度,从而减少甚至避免了蒸发器20结霜。冷凝产生的冷凝水滴落在预凝结装置30下方的接水盘50内,并通过排水孔51排出箱体外。
本领域技术人员还应理解,本发明的冰箱1不但包括普通意义上的冰箱,还可包括其他具有类似于冰箱功能的冷藏冷冻装置,例如,冰柜、冷柜、冷藏箱等。
本发明实施例中所称的“横”、“纵”、“竖”、“前”、“后”等用于表示方位或位置关系的用语是以冰箱1的实际使用状态为基准而言的,这些用语仅是为了便于描述和理解本发明的技术方案,而不是指示或暗示所指的装置或部件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种冰箱,包括箱体,所述箱体内限定有用于储存物品的冷藏间室、容置有蒸发器的蒸发器室、以及连接在所述蒸发器室与所述冷藏间室之间以供所述冷藏间室内的回风气流返回所述蒸发器室的回风风道;其中
    所述回风风道设有允许气流穿过的预凝结装置,以使得所述回风气流流经所述预凝结装置后再返回所述蒸发器室,所述预凝结装置上设有用于检测所述预凝结装置温度的温度获取装置;且
    所述箱体内还限定有用于将经所述蒸发器换热后的部分冷却气流引流至所述预凝结装置的引风通道,以对所述预凝结装置进行降温;所述引风通道内设有电控风门,所述电控风门设置成受控地根据所述预凝结装置的温度调节经所述引风通道流向所述预凝结装置的冷却气流的量,以使得所述预凝结装置的温度保持在零度以上,从而在所述回风气流流经所述预凝结装置时使得所述回风气流中的湿气在所述预凝结装置上凝结成冷凝水。
  2. 根据权利要求1所述的冰箱,其中
    所述引风通道具有邻近所述预凝结装置的气流出口,所述电控风门设置在所述气流出口处,以根据所述预凝结装置的温度调节所述气流出口的气流流动面积,从而调节经所述气流出口流向所述预凝结装置的冷却气流的量使得所述预凝结装置的温度保持在零度以上。
  3. 根据权利要求1所述的冰箱,其中
    所述箱体内还限定有连接在所述蒸发器室与所述冷藏间室之间以供所述蒸发器室内的冷却气流流向所述冷藏间室的送风风道,所述引风通道连通所述送风风道和所述预凝结装置。
  4. 根据权利要求3所述的冰箱,其中
    所述引风通道具有邻近所述送风风道的气流入口,所述电控风门设置在所述气流入口处,以根据所述预凝结装置的温度调节所述气流入口的气流流动面积,从而调节经所述气流入口流入所述引风通道的冷却气流的量使得所述预凝结装置的温度保持在零度以上。
  5. 根据权利要求1所述的冰箱,其中
    所述温度获取装置设置于所述预凝结装置的表面,以将获得到的所述预凝结装置表面的温度作为所述预凝结装置的温度。
  6. 根据权利要求1所述的冰箱,其中
    所述回风风道包括开设在所述冷藏间室的内胆壁上的回风口,所述预凝结装置设置在所述回风口处。
  7. 根据权利要求1所述的冰箱,其中
    所述预凝结装置包括网状的导热框架,所述导热框架由若干个相互平行的横栅条、若干个相互平行的纵栅条和若干个相互平行的竖栅条交错形成,从而将所述导热框架的内部空间分隔成若干个相互连通的子空间。
  8. 根据权利要求7所述的冰箱,其中
    所述回风气流和所述冷却气流均流经多个所述子空间,且所述回风气流流经多个所述子空间的气流流动方向与所述冷却气流流经多个所述子空间的气流流动方向之间的夹角小于等于90度。
  9. 根据权利要求7所述的冰箱,其中
    所述回风气流经多个子空间穿过所述预凝结装置;且
    所述预凝结装置还包括多个导流管,所述多个导流管间隔地穿设在所述导热框架中,所述引风通道的气流出口与所述导流管连通,以使得从所述引风通道流出的冷却气流流向所述导流管,从而通过所述导流管与所述回风气流流体隔离。
  10. 根据权利要求1所述的冰箱,其中
    所述预凝结装置的下方设有接水盘,以用于承接从所述预凝结装置上滴落的冷凝水;且
    所述接水盘的底部具有排水口,以用于将所述接水盘内承接的冷凝水排放至所述箱体外部。
PCT/CN2021/086983 2020-06-28 2021-04-13 冰箱 WO2022001286A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010598148.5 2020-06-28
CN202010598148.5A CN113847769B (zh) 2020-06-28 2020-06-28 冰箱

Publications (1)

Publication Number Publication Date
WO2022001286A1 true WO2022001286A1 (zh) 2022-01-06

Family

ID=78972091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086983 WO2022001286A1 (zh) 2020-06-28 2021-04-13 冰箱

Country Status (2)

Country Link
CN (1) CN113847769B (zh)
WO (1) WO2022001286A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100506603B1 (ko) * 2003-05-02 2005-08-08 삼성전자주식회사 냉장고
WO2007023474A2 (en) * 2005-08-26 2007-03-01 Arcelik Anonim Sirketi A cooling device
CN107289706A (zh) * 2016-03-31 2017-10-24 松下知识产权经营株式会社 冰箱
CN208012195U (zh) * 2017-12-29 2018-10-26 松下电器研究开发(苏州)有限公司 冰箱
CN109974377A (zh) * 2019-03-29 2019-07-05 青岛海尔电冰箱有限公司 冰箱的回风格栅及冰箱
CN109974376A (zh) * 2019-03-29 2019-07-05 青岛海尔电冰箱有限公司 冰箱的回风格栅及冰箱
CN111076473A (zh) * 2020-01-03 2020-04-28 珠海格力电器股份有限公司 蒸发器的风道结构及冰箱

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102313426A (zh) * 2011-09-30 2012-01-11 合肥美的荣事达电冰箱有限公司 冰箱
CN104831780B (zh) * 2015-05-13 2016-06-15 长江水利委员会长江科学院 一种高效率冷凝结露式空气取水系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100506603B1 (ko) * 2003-05-02 2005-08-08 삼성전자주식회사 냉장고
WO2007023474A2 (en) * 2005-08-26 2007-03-01 Arcelik Anonim Sirketi A cooling device
CN107289706A (zh) * 2016-03-31 2017-10-24 松下知识产权经营株式会社 冰箱
CN208012195U (zh) * 2017-12-29 2018-10-26 松下电器研究开发(苏州)有限公司 冰箱
CN109974377A (zh) * 2019-03-29 2019-07-05 青岛海尔电冰箱有限公司 冰箱的回风格栅及冰箱
CN109974376A (zh) * 2019-03-29 2019-07-05 青岛海尔电冰箱有限公司 冰箱的回风格栅及冰箱
CN111076473A (zh) * 2020-01-03 2020-04-28 珠海格力电器股份有限公司 蒸发器的风道结构及冰箱

Also Published As

Publication number Publication date
CN113847769A (zh) 2021-12-28
CN113847769B (zh) 2023-01-20

Similar Documents

Publication Publication Date Title
US20110011118A1 (en) Refrigerator
WO2018006572A1 (zh) 风冷冰箱及其除湿方法
KR20110006997A (ko) 냉장고
CN106716030A (zh) 具有多个存放室的制冷器具
CN112097439A (zh) 用于冷藏冷冻装置的气流除湿模块及冷藏冷冻装置
CN212132998U (zh) 冰箱
EP4030127A1 (en) Refrigerator
US20110252816A1 (en) Refrigerator icemaker moisture removal and defrost assembly
CN105972903A (zh) 冷冻装置
WO2022001286A1 (zh) 冰箱
CN107062748B (zh) 冰箱
WO2021258819A1 (zh) 冰箱
WO2023124631A1 (zh) 冰箱
CN111197901A (zh) 冰箱及风道结构
CN215597871U (zh) 冷藏冷冻装置
WO2021258818A1 (zh) 冰箱
KR20190008964A (ko) 제빙기 및 제빙기를 포함하는 냉장고
KR101097974B1 (ko) 에너지 절약형 냉장냉동창고
CN210425711U (zh) 冷藏冷冻装置
CN210425710U (zh) 用于冷藏冷冻装置的气流除湿模块及冷藏冷冻装置
CN210425712U (zh) 用于冷藏冷冻装置的气流除湿模块及冷藏冷冻装置
JP2007205633A (ja) 冷凍・冷蔵ケース
CN112097441A (zh) 冷藏冷冻装置
KR100674531B1 (ko) 비착상식 냉각 시스템
JPH02272286A (ja) 冷却貯蔵庫

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21833812

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21833812

Country of ref document: EP

Kind code of ref document: A1