WO2022001055A1 - 一种聚酰胺复合材料及其制备方法和应用 - Google Patents

一种聚酰胺复合材料及其制备方法和应用 Download PDF

Info

Publication number
WO2022001055A1
WO2022001055A1 PCT/CN2020/140813 CN2020140813W WO2022001055A1 WO 2022001055 A1 WO2022001055 A1 WO 2022001055A1 CN 2020140813 W CN2020140813 W CN 2020140813W WO 2022001055 A1 WO2022001055 A1 WO 2022001055A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide
magnesium
aluminum
composite material
waste
Prior art date
Application number
PCT/CN2020/140813
Other languages
English (en)
French (fr)
Inventor
叶南飚
常欢
周沃华
李成
朱秀梅
苏榆钧
唐磊
刘鑫鑫
黄险波
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Publication of WO2022001055A1 publication Critical patent/WO2022001055A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/20Recycled plastic

Definitions

  • the invention relates to the technical field of green polymer materials, in particular to a polyamide composite material and a preparation method and application thereof.
  • polyamide materials are also widely used in interior and exterior trim parts, functional parts and structural parts. Lightweight as the development trend of automotive materials, there are more and more plastic parts under the hood of automobiles. In order to obtain auto parts with high structural strength, most of the polyamide composite materials used in vehicles are now laser welded, and the obtained parts have small seams, high strength and long service life. At the same time, due to the continuous development of the economy, the used polyamide waste products are usually discarded directly as garbage, resulting in a huge amount of energy waste and environmental pollution. Therefore, the subject of recycling of recovered polyamide has been proposed on a global scale.
  • Laser welding parts generally include an upper body and a lower body.
  • the upper body requires the laser to reach the interface of the upper and lower bodies through the laser, while the lower body needs to absorb the laser to convert the light source into heat energy.
  • pigments that can transmit or absorb the laser are selected. Realize the function of laser welding the upper and lower body.
  • the recovered polyamide resin was laser welded with the primary color spline after adding the professional pigment for laser welding, and the welding strength and welding appearance were unqualified.
  • the defects of laser welding include: 1) weak welding strength; 2) unsatisfactory appearance.
  • the reasons for the weakening of the welding strength are: the thickness of the part passing through the laser is too high or the laser transmittance is not good, so that the laser energy cannot fully reach the welding interface; there is a resin interface that is not fully melted and connected at the joint, which causes heat generation. Mass conduction, or the presence of gas generated by laser ablation decomposition to form voids at the connection.
  • the appearance of flash There are several reasons for the flash: 1.
  • the material has high fluidity, and the melting point or plasticizing temperature is low, that is, it is easy to overflow; 2.
  • the material decomposes to generate gas to promote melting Partial overflow; 3.
  • High transmittance or high input laser power of the device promotes the occurrence of points 1 and 2.
  • European patent EP0862595B1 discloses a polyamide composition in which the melt viscosity can be reduced by adding 0.05-5wt% of magnesium salt (eg magnesium acetate), and the screening resin is PA66: when PA6 is 1-40 , the impact strength will increase.
  • Japanese patent JP0853618A discloses a flame retardant polyamide.
  • the gas, foaming and coloring problems caused by the decomposition of the flame retardant can be suppressed, and the heat resistance can be improved. for flame retardancy.
  • the object of the present invention is to provide a polyamide composite material, which contains 20-150 ppm of magnesium element and 60-300 ppm of aluminum element.
  • the presence of magnesium and aluminum elements can improve the laser welding performance of polyamide composites.
  • Another object of the present invention is to provide a preparation method and application of the above-mentioned polyamide composite material.
  • a polyamide composite material comprising a polyamide resin, based on the total weight of the polyamide composite material, containing 20-150 ppm of magnesium and 60-300 ppm of aluminum, the magnesium is derived from magnesium-containing organic salts, and the aluminum is derived from magnesium-containing organic salts.
  • Aluminum organic salt
  • the magnesium content is 60-120 ppm, and the aluminum content is 80-190 ppm.
  • the magnesium content is 70-100 ppm, and the aluminum content is 100-160 ppm.
  • the test method for the content of magnesium and aluminum is: ICP-OES. Specifically, after the polyamide composite material is completely dissolved in a solvent, a filter with a pore size of less than or equal to 50 microns is used to filter, and the filtered polyamide is filtered.
  • the solution is added into deionized water to form a solid sample; the sample is processed into a thin strip or powder with a diameter of no more than 2mm and a length of no more than 5mm by crushing equipment, and mixed evenly; take 0.1 ⁇ 0.005g (accurate to 0.001g) sample Put it into a microwave digestion tank, in a chemical fume hood, add 8 mL of digestion acid (concentrated nitric acid) to the digestion tank to completely immerse the sample, then slowly add 2 mL of hydrogen peroxide, let the sample react for 1-2 min, cover the lid, and seal it.
  • digestion acid concentrated nitric acid
  • the digestion tank into the microwave digestion furnace for digestion; after the digestion is completed, take out the digestion tank, cool it to room temperature, transfer the solution in the microwave digestion tank to a volumetric flask with a 0.45um filter membrane, and rinse the microwave several times with an appropriate amount of distilled water.
  • the described magnesium-containing organic salt is selected from at least one of magnesium acetate and magnesium fatty acid, and the described fatty acid magnesium is selected from at least one of magnesium stearate and magnesium montanate;
  • the aluminum-containing organic salt is selected from At least one of aluminum acetate and aluminum fatty acid, the fatty acid aluminum is selected from at least one of aluminum stearate and aluminum montanate.
  • the polyamide is selected from one or more of aliphatic polyamide, semi-aromatic polyamide and copolyamide; the aliphatic polyamide is selected from PA6, PA66, PA46, PA56, PA12, PA1010, At least one of PA1012, PA1212, the semi-aromatic polyamide is selected from at least one of PA4T, PA6T, PA9T, PA10T, the copolyamide is selected from at least one of PA10T1010, PA6T610, PA10T1012 .
  • the preparation method of the above-mentioned polyamide composite material includes the following two:
  • the designed magnesium/aluminum element content is added with magnesium-containing organic salt and aluminum-containing organic salt, stirred and dissolved, and filtered to obtain a polyamide solution; then the polyamide solution is added into deionized water, and the liquid is separated to obtain a polyamide composite material;
  • the compound solvent in parts by weight, includes 10-30 parts of phenol and 15-40 parts of toluene; the weight ratio of the polyamide-containing raw material to the compounded solvent is 1:10-1:2.
  • a decolorization step is also included. Before adding the polyamide solution into the deionized water, a decolorizing agent is added, and the temperature of the solution is heated to 50 ° C until the reflux temperature of the solution is maintained at 0.5-2 hours, and then cooled to below 50°C, filtered (the decolorizing agent includes at least one of activated clay and activated carbon, and the weight ratio of the decolorizing agent to the polyamide waste is (1:8)-(1:12)).
  • the polyamide is at least one of polyamide waste, polyamide recycled material, and polyamide new material.
  • the new polyamide material is newly synthesized and contains more than or equal to 99wt% of polyamide resin;
  • the polyamide recycled material is the polyamide obtained by processing polyamide waste through a recycling process, which contains more than or equal to 99wt% of polyamide resin;
  • Polyamide wastes are discarded polyamide products, wherein the content of polyamide resin ranges from 25 to 90 wt%.
  • the second type including the following steps: according to the designed magnesium/aluminum element content, mix polyamide-containing raw materials (at least one of polyamide waste, polyamide recycled material, and polyamide new material), magnesium-containing organic salts, aluminum-containing raw materials After the organic salt is evenly mixed, it is extruded and granulated by a twin-screw extruder to obtain a polyamide composite material, wherein the temperature range of the screw is 20°C-30°C higher than the melting point of the polyamide resin, and the length-diameter ratio of the screw is 40:1 ⁇ 52:1.
  • the polyamide is at least one of polyamide waste, polyamide recycled material, and polyamide new material.
  • the new polyamide material is newly synthesized and contains more than or equal to 99wt% of polyamide resin;
  • the polyamide recycled material is the polyamide obtained by processing polyamide waste through a recycling process, which contains more than or equal to 99wt% of polyamide resin;
  • Polyamide wastes are discarded polyamide products, wherein the content of polyamide resin ranges from 25 to 90 wt%.
  • the application of the polyamide composite material prepared by the present invention is used for preparing laser welding parts.
  • the laser part includes an upper part that allows the laser to pass through to the interface of the lower body, and the lower part is required to absorb the laser and convert the light source into heat energy.
  • the lower body parts contain laser-absorbing pigments, which convert the light energy into heat energy after absorbing the laser light to achieve the effect of welding the upper and lower parts.
  • the invention can improve the laser welding performance of the polyamide composite material by adding a certain amount of aluminum-containing organic salt and magnesium-containing organic salt to the polyamide composite material to control the content of aluminum and magnesium elements.
  • the invention provides two preparation methods at the same time, wherein a method for recovering polyamide recycling material from polyamide waste material and controlling the content of magnesium/aluminum element in the resin matrix is provided, so as to improve the utilization value of polyamide waste material.
  • the sources of raw materials used in the present invention are as follows:
  • PA12 waste It comes from recycled materials such as plumbing pipes and peripheral parts of automobile engines, and contains a small amount of toner. Theoretically, the PA12 content is about 95%-97%.
  • PA66 waste recycled materials from gears, bearings and other parts in mechanical equipment, containing glass fiber reinforcement, the theoretical PA66 content is about 65%-70%.
  • PA10T waste Recycling material from parts around the engine, containing glass fiber reinforcement, the theoretical PA10T content is 60-70%.
  • PA12 new material Arkema, P201TL;
  • Phenol industrial pure, commercially available
  • Magnesium chloride 40-50 micron particle size, obtained by sieving.
  • Magnesium stearate commercially available.
  • Aluminum stearate commercially available.
  • Aluminum hypophosphite 40-50 micron particle size, obtained by sieving.
  • Magnesium acetate commercially available.
  • Aluminum montanate commercially available.
  • Black Pigment Carbon Black, Raven M, available from BIRLA;
  • the black splines and the primary color splines are laser welded, and then corresponding evaluation tests are carried out.
  • the ratio of the laser-welded splines, the difference between the black splines and the primary color splines is only whether black pigment is added.
  • the recipes for black splines are given in the table below.
  • polyamide raw material 100g polyamide raw material (embodiment 1-4 is PA12 waste material, embodiment 5 is PA12 recycle material, embodiment 6 is PA66 waste material, embodiment 7 is PA10T waste, and comparative examples 1-5 are PA12 waste) add 100g phenol/200g toluene compound solvent, heat to 100 °C and stir to dissolve, add aluminum-containing organic salt and magnesium-containing organic salt according to the set amount of magnesium-aluminum element , then add 10 g of activated carbon to keep stirring for 1 hour, cool down to below 50 ° C and filter to obtain a polyamide solution; then add the polyamide solution to 5000 g of deionized water, the polyamide is precipitated in the deionized water as a solid, and separated to obtain a polyamide composite Material.
  • Embodiment 8 add 100g PA12 new material to 100g phenol/200g toluene compound solvent, heat to 100 °C and stir until dissolved, add aluminum-containing organic salt and magnesium-containing organic salt according to the set amount of magnesium and aluminum elements, and cool to 50 °C After filtering, a polyamide solution was obtained; the polyamide solution was then added to 5000 g of deionized water, the polyamide was precipitated and precipitated into a solid in the deionized water, and a polyamide composite material was obtained by separation.
  • Example 9-11 and Comparative Example 6 According to the set content of magnesium and aluminum elements, the polyamide-containing raw materials (Example 9 and Comparative Example 6 are PA12 waste materials, Example 10 is PA12 recycled material, and Example 11 is PA12 new material). ), magnesium-containing organic salts, aluminum-containing organic salts (comparative example 6 is magnesium chloride, aluminum hypophosphite) are extruded and granulated by a twin-screw extruder after mixing uniformly to obtain a polyamide composite material, wherein the temperature range of the screw is 240 °C -260°C, the screw length-diameter ratio is 44:1.
  • Preparation of laser-welded black splines Mix 99.7 parts of the above-mentioned polyamide composite material and 0.3 parts of black pigment uniformly through a twin-screw extruder, extrude and granulate, and then carry out the magnesium-aluminum content test and laser welding performance according to the above test method. test.
  • Table 1 The content of magnesium and aluminum elements in the polyamide composite materials of the examples and comparative examples and the test results of laser welding performance after being prepared into laser welding splines
  • Example 18 Example 19 Example 20 Example 21 Example 22 Sources of Polyamide Composites Example 7 Example 8 Example 9 Example 10
  • Example 11 Magnesium, ppm 97 40 65 110 68 source of magnesium Magnesium stearate Magnesium acetate Magnesium acetate Magnesium acetate Magnesium acetate Magnesium acetate Aluminum element, ppm 150 83 170 93 87 source of aluminum Aluminum stearate Aluminum stearate Aluminum stearate Aluminum stearate Aluminum stearate Aluminum stearate Aluminum stearate Welding strength (MPa) 75.2 67.9 70.9 71.2 71.5 Welding appearance flashing degree 1 3 2 2 2 2 2
  • Comparative Example 6 Comparative Example 7 Comparative Example 8 Comparative Example 9 Comparative Example 10 Comparative Example 11 Sources of Polyamide Composites Comparative Example 1 Comparative Example 2 Comparative Example 3 Comparative Example 4 Comparative Example 5 Comparative Example 6 Magnesium, ppm 18 74 5 5 420 45 source of magnesium Magnesium stearate Magnesium stearate N/A N/A Magnesium stearate Magnesium chloride Aluminum element, ppm 53 6 68 482 6 78 source of aluminum Aluminum stearate N/A Aluminum stearate Aluminum stearate N/A Aluminum hypophosphite Welding strength (MPa) 59.1 58.7 58.3 56.7 57.1 59.7 Welding appearance flashing degree 4 5 5 5 5 5 5 5 5 5

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

本发明提供一种聚酰胺复合材料,通过添加含镁有机盐含铝有机盐使得聚酰胺树脂基体中含有一定量的镁元素和铝元素,能够提升制件的激光焊接性能。本发明同时提供了两种制备方法,其中公开了一种能够同时用于回收聚酰胺废料,提高了由聚酰胺废料提取得到的回收聚酰胺的利用价值。

Description

一种聚酰胺复合材料及其制备方法和应用 技术领域
本发明涉及绿色高分子材料技术领域,特别是涉及一种聚酰胺复合材料及其制备方法和应用。
背景技术
在汽车行业领域,聚酰胺材料亦在内外饰件、功能件、结构件广泛应用。轻量化作为汽车材料的发展趋势,在汽车发动机罩下零件也出现越来越多的塑料件。为了得到结构强度高的汽车配件,现在车用聚酰胺复合材料多采用激光焊接的方式,得到的配件接缝细小、强度高、使用寿命长。同时,由于经济的不断发展,使用后的聚酰胺废品通常被当作垃圾直接丢弃,数量庞大,造成能源浪费和环境污染。因此,在全球范围内提出了回收聚酰胺的循环利用课题。
如今,为了得到结构强度高的配件,聚酰胺复合材料多采用激光焊接的方式,得到的配件接缝细小、强度高、使用寿命长。激光焊接零件一般包括上体和下体部分,上体要求能透过激光让激光到达上下体的界面,而下体要求能吸收激光让光源转化为热能,一般会选择能够透过或吸收激光的颜料来实现激光焊接上下体的功能。但是,经过实测,通过回收得到的聚酰胺树脂在加入激光焊接专业颜料后与原色样条进行激光焊接,焊接强度和焊接外观都不合格。
根据焊接效果,激光焊接存在的缺陷包括:1)薄弱的焊接强度;2)不理想的外观。致使焊接强度弱化的原因有:透过激光部分的厚度过高或者激光透过率不佳,导致激光能量无法充分到达焊接界面;在连接处存在未经充分熔融并连接的树脂界面使其发生热质传导,或在连接处存在因激光烧蚀而分解产生的气体形成空洞。并且,通过激光焊接,还会导致溢料的出现:产生溢料的原因有几点:1,材料流动性过高,熔点或者塑化温度低,即容易溢出;2.材料分解产生气体推动熔融部分溢出;3.透过率高或者设备输入激光能力量高,而促进第1、2点的发生。
现阶段,研究人员对于聚酰胺复合材料中微量元素对材料性能的影响主要集中在耐高温、提高流动性、提高阻燃性能的方面,并没有考察微量元素的含量对于聚酰胺激光焊接性能的影响。如欧洲专利EP0862595B1公开了一种聚酰胺组合物,其中通过加入0.05-5wt%的镁盐(实例醋酸镁),能够降低熔体粘度,并且筛选了树脂是由PA66:PA6为1-40的时候,冲击强度会提高。日本专利JP0853618A公开了一种阻燃聚酰胺,通过在溴锑阻燃体系中加入 一定量的镁铝盐能够抑制阻燃剂的分解而带来的气体、发泡、着色问题,提升耐热性于阻燃性。
发明内容
本发明的目的在于,提供一种聚酰胺复合材料,其中含有20-150ppm的镁元素、60-300ppm的铝元素。镁元素与铝元素的存在能够提升聚酰胺复合材料的激光焊接性能。
本发明的另一目的在于,提供上述聚酰胺复合材料的制备方法以及应用。
本发明是通过以下技术方案实现的:
一种聚酰胺复合材料,包括聚酰胺树脂,基于聚酰胺复合材料的总重量,含有20-150ppm的镁元素、60-300ppm的铝元素,镁元素来源于含镁有机盐、铝元素来源于含铝有机盐。
优选的,所述的镁元素含量为60-120ppm、铝元素含量为80-190ppm。
更优选的,所述的镁元素含量为70-100ppm、铝元素含量为100-160ppm。
所述的镁元素、铝元素含量的测试方法为:ICP-OES,具体的,将聚酰胺复合材料用溶剂完全溶解后,采用孔径小于等于50微米的过滤网过滤,并将过滤后的聚酰胺溶液加入去离子水中析出成固体样品;用破碎设备将样品处理成直径不超过2mm,长度不超过5mm的细条状或粉末状,混合均匀;取0.1±0.005g(精确到0.001g)样品,放入微波消解罐中,在化学通风橱里,向消解罐加入消解酸(浓硝酸)8mL,使其完全浸没样品,再缓慢加入过氧化氢2mL,让样品反应1-2min,盖上盖子,密封消解罐,放入微波消解炉中进行消解;消解完成后,取出消解罐,冷至室温,将微波消解罐中的溶液用0.45um的过滤膜转移至容量瓶中,用适量蒸馏水多次冲洗微波消解罐并将冲洗液转移至容量瓶中,再用蒸馏水稀释至刻度线(50mL),摇匀,待测;消解液定容后转移至待测试管中用电感耦合等离子体原子发射光谱仪进行测定。
所述的含镁有机盐选自乙酸镁、脂肪酸镁中的至少一种,所述的脂肪酸镁选自硬脂酸镁、褐煤酸镁中的至少一种;所述的含铝有机盐选自乙酸铝、脂肪酸铝中的至少一种,所述的脂肪酸铝选自硬脂酸铝、褐煤酸铝中的至少一种。
所述的聚酰胺选自脂肪族聚酰胺、半芳香族聚酰胺、共聚聚酰胺中的一种或几种;所述的脂肪族聚酰胺选自PA6、PA66、PA46、PA56、PA12、PA1010、PA1012、PA1212中的至少一种,所述的半芳香族聚酰胺选自PA4T、PA6T、PA9T、PA10T中的至少一种,所述的共聚聚酰胺选自PA10T1010、PA6T610、PA10T1012中的至少一种。
上述的聚酰胺复合材料的制备方法包括以下两种:
第一种:将含聚酰胺原料(聚酰胺废料、聚酰胺回收料、聚酰胺新料中的至少一种)加入复 配溶剂中,加热达到50℃至溶液的回流温度并搅拌至溶解,按照设计的镁/铝元素含量加入含镁有机盐、含铝有机盐,搅拌溶解,过滤,得到聚酰胺溶液;再将聚酰胺溶液加入去离子水中,分离掉液体得到聚酰胺复合材料;所述的复配溶剂,按重量份计,包括10-30份苯酚、15-40份甲苯;含聚酰胺原料与复配溶剂重量比为1:10-1:2。
当含聚酰胺原料为聚酰胺废料、聚酰胺回收料时还包括脱色步骤,在将聚酰胺溶液加入去离子水中之前,加入脱色剂,将溶液升温达到50℃至溶液的回流温度保持0.5-2小时,再降温至低于50℃后,过滤(脱色剂包括活性白土、活性炭中的至少一种,脱色剂与聚酰胺废料的重量比范围是(1:8)-(1:12))。
所述的聚酰胺为聚酰胺废料、聚酰胺回收料、聚酰胺新料中的至少一种。聚酰胺新料是新合成得到的,其中含有大于等于99wt%的聚酰胺树脂;聚酰胺回收料是将聚酰胺废料通过回收工艺处理得到的聚酰胺,其中含有大于等于99wt%的聚酰胺树脂;聚酰胺废料为报废丢弃的聚酰胺制品,其中聚酰胺树脂含量范围是25-90wt%。
第二种:包括以下步骤:按照设计的镁/铝元素含量,将含聚酰胺原料(聚酰胺废料、聚酰胺回收料、聚酰胺新料中的至少一种)、含镁有机盐、含铝有机盐混合均匀后通过双螺杆挤出机挤出造粒,得到聚酰胺复合材料,其中,螺杆的温度范围是高于聚酰胺树脂熔点20℃-30℃,螺杆长径比为40:1~52:1。所述的聚酰胺为聚酰胺废料、聚酰胺回收料、聚酰胺新料中的至少一种。聚酰胺新料是新合成得到的,其中含有大于等于99wt%的聚酰胺树脂;聚酰胺回收料是将聚酰胺废料通过回收工艺处理得到的聚酰胺,其中含有大于等于99wt%的聚酰胺树脂;聚酰胺废料为报废丢弃的聚酰胺制品,其中聚酰胺树脂含量范围是25-90wt%。
本发明制备的聚酰胺复合材料的应用,用于制备激光焊接制件。激光制件包括能够让激光透过到达下体界面的上体制件,而下体制件要求能吸收激光让光源转化为热能。
下体制件含有激光吸收颜料,吸收激光后将光能转化成热能,达到上、下制件焊接的效果。
本发明具有如下有益效果
本发明通过在聚酰胺复合材料中添加一定量的含铝有机盐、含镁有机盐,控制铝元素与镁元素的含量,能够提升聚酰胺复合材料的激光焊接性能。本发明同时提供了两种制备方法,其中提供了一种可以从聚酰胺废料中回收得到聚酰胺回收料并且控制其树脂基体中镁/铝元素含量的方法,提升聚酰胺废料的利用价值。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进 一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
本发明所用原料来源如下:
PA12废料:来自水暖管道、汽车发动机周边零件等回收料,含有少量色粉,理论上PA12含量约为95%-97%。
PA66废料:来自机械设备中齿轮、轴承等零部件的回收料,含有玻纤增强,理论上PA66含量约为65%-70%。
PA10T废料:来自发动机周边零部件回收料,含有玻纤增强,理论上PA10T含量为60-70%。
PA12新料:阿科玛,P201TL;
PA12回收料:自制,将上述聚酰胺废料PA12粉碎,加入3倍聚酰胺废料重量的复配溶剂(重量比苯酚:甲苯=1:1),加热至80℃搅拌溶解,降温至30℃后过滤得到聚酰胺溶液;再将聚酰胺溶液加入去离子水中,分离掉液体得到PA12回收料。
苯酚:工业纯,市售;
甲苯:工业纯,市售;
氯化镁:40-50微米粒径,过筛获得。
硬脂酸镁:市售。
硬脂酸铝:市售。
次磷酸铝:40-50微米粒径,过筛获得。
乙酸镁:市售。
褐煤酸铝:市售。
黑颜料:炭黑,Raven M,购自BIRLA;
各项性能测试方法
(1)激光焊接性能测试:将材料模制成尺寸为2×13×120mm的样条,将本色的上体和黑色的下体,在2mm厚度方向叠加,置于激光焊接样品载台上,确保在长度方向叠放好的样条的整体长度约为160mm,使用功率为20W的激光对叠加的部分沿着宽度方向进行焊接,形成5道平行的焊缝。焊接结合面积根据激光理论半径进行计算。对于完成上述焊接的样条,在25℃50%相对湿度条件下存放24小时后使用万能测试仪进行拉伸测试,横梁速度为5mm/min。测得的强度为焊接强度,单位:MPa。
(2)焊接外观评价:由于采用的是气泵夹具,对激光熔融后膨胀的样品容易被挤出焊接样 条上下体间隙之外,形成溢料。对于溢料情况进行评价,等级判断根据溢料的任一维度直径大小进行判断,没有溢料为1级,0mm<d≤0.5mm为2级,0.5mm<d≤1mm为3级,1mm<d≤1.5mm为4级,1.5mm<d为5级。
(3)镁铝元素含量测试:ICP-OES,具体的,将聚酰胺复合材料用溶剂完全溶解后,采用孔径为50微米的过滤网过滤,并将过滤后的聚酰胺溶液加入去离子水中析出成固体样品;用破碎设备将样品处理成直径不超过2mm,长度不超过5mm的细条状或粉末状,混合均匀;取0.1±0.005g(精确到0.001g)样品,放入微波消解罐中,在化学通风橱里,向消解罐加入消解酸(浓硝酸)8mL,使其完全浸没样品,再缓慢加入过氧化氢2mL,让样品反应1-2min,盖上盖子,密封消解罐,放入微波消解炉中进行消解;消解完成后,取出消解罐,冷至室温,将微波消解罐中的溶液用0.45um的过滤膜转移至容量瓶中,用适量蒸馏水多次冲洗微波消解罐并将冲洗液转移至容量瓶中,再用蒸馏水稀释至刻度线(50mL),摇匀,待测;消解液定容后转移至待测试管中用电感耦合等离子体原子发射光谱仪进行测定。
根据本发明的激光焊接对比,是将黑色的样条与原色的样条通过激光焊接后,再进行相应的评价测试。以下实施例和对比例中,激光焊接的样条的配比,黑色样条与原色样条的差别仅在于黑色颜料是否添加。下列表格中给出黑色样条的配方。
聚酰胺复合材料的制备:
实施例1-7和对比例1-5聚酰胺复合材料的制备:将100g聚酰胺原料(实施例1-4为PA12废料,实施例5为PA12回收料,实施例6为PA66废料、实施例7为PA10T废料,对比例1-5为PA12废料)加入100g苯酚/200g甲苯复配溶剂中,加热至100℃搅拌至溶解,按照镁铝元素设定量加入含铝有机盐和含镁有机盐,再加入10g活性炭保温搅拌1小时,降温至50℃以下后过滤,得到聚酰胺溶液;再将聚酰胺溶液加入5000g去离子水中,聚酰胺在去离子水中沉淀析出为固体,分离得到聚酰胺复合材料。
实施例8:将100g PA12新料加入100g苯酚/200g甲苯复配溶剂中,加热至100℃搅拌至溶解,按照镁铝元素设定量加入含铝有机盐和含镁有机盐,降温至50℃以下后过滤,得到聚酰胺溶液;再将聚酰胺溶液加入5000g去离子水中,聚酰胺在去离子水中沉淀析出为固体,分离得到聚酰胺复合材料。
实施例9-11与对比例6:按照镁铝元素设定含量,将含聚酰胺原料(实施例9与对比例6为PA12废料,实施例10为PA12回收料,实施例11为PA12新料)、含镁有机盐、含铝有机盐(对比例6为氯化镁、次磷酸铝)混合均匀后通过双螺杆挤出机挤出造粒,得到聚酰胺复合材料,其中,螺杆的温度范围是240-260℃,螺杆长径比为44:1。
激光焊接黑色样条的制备:将99.7份上述聚酰胺复合材料、0.3份黑颜料通过双螺杆挤出机混合均匀,挤出造粒,再根据上述测试方法进行镁铝元素含量测试、激光焊接性能测试。
表1:实施例和对比例聚酰胺复合材料镁铝元素含量以及制备成激光焊接样条后激光焊接性能测试结果
Figure PCTCN2020140813-appb-000001
续表1
  实施例18 实施例19 实施例20 实施例21 实施例22
聚酰胺复合材料来源 实施例7 实施例8 实施例9 实施例10 实施例11
镁元素,ppm 97 40 65 110 68
镁元素来源 硬脂酸镁 乙酸镁 乙酸镁 乙酸镁 乙酸镁
铝元素,ppm 150 83 170 93 87
铝元素来源 硬脂酸铝 硬脂酸铝 硬脂酸铝 硬脂酸铝 硬脂酸铝
焊接强度(MPa) 75.2 67.9 70.9 71.2 71.5
焊接外观溢料程度 1 3 2 2 2
由实施例12-18与对比例6-10可知,本发明通过加入一定量的含镁有机盐与含铝有机盐,能够提升聚酰胺复合材料的激光焊接性能。镁铝元素含量落在进一步优选的范围则提升效果更好。
由实施例15/20/21/22可知,采用两种制备方法得到的聚酰胺复合材料,都能够提升激光焊接性能。
续表1
  对比例6 对比例7 对比例8 对比例9 对比例10 对比例11
聚酰胺复合材料来源 对比例1 对比例2 对比例3 对比例4 对比例5 对比例6
镁元素,ppm 18 74 5 5 420 45
镁元素来源 硬脂酸镁 硬脂酸镁 N/A N/A 硬脂酸镁 氯化镁
铝元素,ppm 53 6 68 482 6 78
铝元素来源 硬脂酸铝 N/A 硬脂酸铝 硬脂酸铝 N/A 次磷酸铝
焊接强度(MPa) 59.1 58.7 58.3 56.7 57.1 59.7
焊接外观溢料程度 4 5 5 5 5 5

Claims (12)

  1. 一种聚酰胺复合材料,其特征在于,包括聚酰胺树脂,基于聚酰胺复合材料的总重量,含有20-150ppm的镁元素、60-300ppm的铝元素,镁元素来源于含镁有机盐、铝元素来源于含铝有机盐。
  2. 根据权利要求1所述的聚酰胺复合材料,其特征在于,基于聚酰胺复合材料的总重量,所述的镁元素含量为60-120ppm、铝元素含量为80-190ppm。
  3. 根据权利要求2所述的聚酰胺复合材料,其特征在于,基于聚酰胺复合材料的总重量,所述的镁元素含量为70-100ppm、铝元素含量为100-160ppm。
  4. 根据权利要求1-3任一项所述的聚酰胺复合材料,其特征在于,所述的一定重量的镁元素、铝元素含量的测试方法为:ICP-OES,具体的,将聚酰胺复合材料用溶剂完全溶解后,采用孔径小于等于50微米的过滤网过滤,并将过滤后的聚酰胺溶液加入去离子水中析出成固体样品;用破碎设备将样品处理成直径不超过2mm,长度不超过5mm的细条状或粉末状,混合均匀;取0.1±0.005g(精确到0.001g)样品,放入微波消解罐中,在化学通风橱里,向消解罐加入消解酸(浓硝酸)8mL,使其完全浸没样品,再缓慢加入过氧化氢2mL,让样品反应1-2min,盖上盖子,密封消解罐,放入微波消解炉中进行消解;消解完成后,取出消解罐,冷至室温,将微波消解罐中的溶液用0.45微米的过滤膜转移至容量瓶中,用适量蒸馏水多次冲洗微波消解罐并将冲洗液转移至容量瓶中,再用蒸馏水稀释至刻度线(50mL),摇匀,待测;消解液定容后转移至待测试管中用电感耦合等离子体原子发射光谱仪进行测定。
  5. 根据权利要求1-3任一项所述的聚酰胺复合材料,其特征在于,所述的含镁有机盐选自乙酸镁、脂肪酸镁中的至少一种,所述的脂肪酸镁选自硬脂酸镁、褐煤酸镁中的至少一种;所述的含铝有机盐选自乙酸铝、脂肪酸铝的至少一种,所述的脂肪酸铝选自硬脂酸铝、褐煤酸铝中的至少一种。
  6. 根据权利要求1-3任一项所述的聚酰胺复合材料,其特征在于,所述的聚酰胺树脂选自脂肪族聚酰胺、半芳香族聚酰胺、共聚聚酰胺中的一种或几种;所述的脂肪族聚酰胺选自PA6、PA66、PA46、PA56、PA12、PA1010、PA1012、PA1212中的至少一种,所述的半芳香族聚酰胺选自PA4T、PA6T、PA9T、PA10T中的至少一种,所述的共聚聚酰胺选自PA10T1010、PA6T610、PA10T1012中的至少一种。
  7. 权利要求1-6任一项所述的聚酰胺复合材料的制备方法,其特征在于,包括以下步骤:将含聚酰胺原料(聚酰胺废料、聚酰胺回收料、聚酰胺新料中的至少一种)加入复配溶剂中,加热达到50℃至溶液的回流温度并搅拌至溶解,按照设计的镁/铝元素含量加入含镁有机盐、含铝有机盐,搅拌溶解,过滤,得到聚酰胺溶液;再将聚酰胺溶液加入去离子水中,分离掉 液体得到聚酰胺复合材料;所述的复配溶剂,按重量份计,包括10-30份苯酚、15-40份甲苯;含聚酰胺原料与复配溶剂重量比为1:10-1:2。
  8. 根据权利要求7所述的聚酰胺复合材料的制备方法,其特征在于,当含聚酰胺原料为聚酰胺废料、聚酰胺回收料时还包括脱色步骤,在将聚酰胺溶液加入去离子水中之前,加入脱色剂,将溶液升温达到50℃至溶液的回流温度保持0.5-2小时,再降温至低于50℃后,过滤,脱色剂包括活性白土、活性炭中的至少一种,脱色剂与聚酰胺废料的重量比范围是(1:8)-(1:12)。
  9. 根据权利要求7或8所述的聚酰胺复合材料的制备方法,其特征在于,所述的聚酰胺树脂来源于聚酰胺废料、聚酰胺回收料、聚酰胺新料中的至少一种;聚酰胺新料是新合成得到的,其中含有大于等于99wt%的聚酰胺树脂;聚酰胺回收料是将聚酰胺废料通过回收工艺处理得到的聚酰胺,其中含有大于等于99wt%的聚酰胺树脂;聚酰胺废料为报废丢弃的聚酰胺制品,其中聚酰胺树脂含量范围是25-90wt%。
  10. 权利要求1-6任一项所述的聚酰胺复合材料的制备方法,其特征在于,包括以下步骤:按照设计的镁/铝元素含量,将含聚酰胺原料(聚酰胺废料、聚酰胺回收料、聚酰胺新料中的至少一种)、含镁有机盐、含铝有机盐混合均匀后通过双螺杆挤出机挤出造粒,得到聚酰胺复合材料,其中,螺杆的温度范围是高于聚酰胺树脂熔点20℃-30℃,螺杆长径比为40:1~52:1。
  11. 根据权利要求10所述的聚酰胺复合材料的制备方法,其特征在于,所述的聚酰胺树脂来源于聚酰胺废料、聚酰胺回收料、聚酰胺新料中的至少一种;聚酰胺新料是新合成得到的,其中含有大于等于99wt%的聚酰胺树脂;聚酰胺回收料是将聚酰胺废料通过回收工艺处理得到的聚酰胺,其中含有大于等于99wt%的聚酰胺树脂;聚酰胺废料为报废丢弃的聚酰胺制品,其中聚酰胺树脂含量范围是25-90wt%。
  12. 权利要求1-6任一项所述的聚酰胺复合材料的应用,其特征在于,用于制备激光焊接制件。
PCT/CN2020/140813 2020-06-29 2020-12-29 一种聚酰胺复合材料及其制备方法和应用 WO2022001055A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010603901.5 2020-06-29
CN202010603901.5A CN111849152B (zh) 2020-06-29 2020-06-29 一种聚酰胺复合材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022001055A1 true WO2022001055A1 (zh) 2022-01-06

Family

ID=72989129

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140813 WO2022001055A1 (zh) 2020-06-29 2020-12-29 一种聚酰胺复合材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN111849152B (zh)
WO (1) WO2022001055A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111849152B (zh) * 2020-06-29 2022-02-18 金发科技股份有限公司 一种聚酰胺复合材料及其制备方法和应用
CN111892743B (zh) * 2020-06-30 2022-02-18 金发科技股份有限公司 一种聚酰胺回收工艺与通过回收工艺得到的聚酰胺
CN112662172B (zh) * 2020-12-09 2022-10-18 珠海万通特种工程塑料有限公司 一种半芳香族聚酰胺树脂组合物及其制备方法与应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024923A (ja) * 2006-06-22 2008-02-07 Toray Ind Inc 長尺物固定治具用熱可塑性樹脂組成物およびその製造方法
WO2009151145A1 (ja) * 2008-06-10 2009-12-17 宇部興産株式会社 新規なポリアミド樹脂組成物及びポリアミド樹脂含有製品
CN107163571A (zh) * 2017-05-17 2017-09-15 江苏金发科技新材料有限公司 激光焊接用长寿命扁平纤维改性聚酰胺复合材料
CN111040443A (zh) * 2019-12-27 2020-04-21 湖南华曙高科技有限责任公司 一种选择性激光烧结用聚酰胺粉末材料及其制备方法
CN111117235A (zh) * 2019-12-31 2020-05-08 会通新材料(上海)有限公司 一种增加激光透射率的聚酰胺56组合物及其应用
CN111849152A (zh) * 2020-06-29 2020-10-30 金发科技股份有限公司 一种聚酰胺复合材料及其制备方法和应用

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2677236B2 (ja) * 1995-03-31 1997-11-17 東レ株式会社 難燃性ポリアミド樹脂組成物
US7645825B2 (en) * 2005-05-16 2010-01-12 Mitsui Chemicals, Inc. Flame-retardant polyamide composition
CN103665844A (zh) * 2013-11-29 2014-03-26 天津金发新材料有限公司 高焊接性能的玻纤增强聚酰胺复合材料及其制备和应用
JP6817197B2 (ja) * 2014-05-30 2021-01-20 アセンド・パフォーマンス・マテリアルズ・オペレーションズ・リミテッド・ライアビリティ・カンパニーAscend Performance Materials Operations Llc 低リン低色調ポリアミド
CN107057349B (zh) * 2017-05-17 2020-01-14 江苏金发科技新材料有限公司 可激光焊接的聚酰胺复合材料
CN109401219A (zh) * 2018-05-22 2019-03-01 宁波聚特普新材料有限公司 一种用于激光焊接的聚酯复合材料及其制备方法
CN109401315A (zh) * 2018-05-22 2019-03-01 宁波聚特普新材料有限公司 一种锂离子电池用可激光焊接聚芳硫醚材料及制备方法
CN109735099A (zh) * 2018-12-27 2019-05-10 会通新材料(上海)有限公司 一种改善耐光老化特性的聚酰胺56组合物及其应用
CN109679339A (zh) * 2018-12-27 2019-04-26 会通新材料(上海)有限公司 一种改善脱模性和柔性的聚酰胺56组合物及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008024923A (ja) * 2006-06-22 2008-02-07 Toray Ind Inc 長尺物固定治具用熱可塑性樹脂組成物およびその製造方法
WO2009151145A1 (ja) * 2008-06-10 2009-12-17 宇部興産株式会社 新規なポリアミド樹脂組成物及びポリアミド樹脂含有製品
CN107163571A (zh) * 2017-05-17 2017-09-15 江苏金发科技新材料有限公司 激光焊接用长寿命扁平纤维改性聚酰胺复合材料
CN111040443A (zh) * 2019-12-27 2020-04-21 湖南华曙高科技有限责任公司 一种选择性激光烧结用聚酰胺粉末材料及其制备方法
CN111117235A (zh) * 2019-12-31 2020-05-08 会通新材料(上海)有限公司 一种增加激光透射率的聚酰胺56组合物及其应用
CN111849152A (zh) * 2020-06-29 2020-10-30 金发科技股份有限公司 一种聚酰胺复合材料及其制备方法和应用

Also Published As

Publication number Publication date
CN111849152A (zh) 2020-10-30
CN111849152B (zh) 2022-02-18

Similar Documents

Publication Publication Date Title
WO2022001055A1 (zh) 一种聚酰胺复合材料及其制备方法和应用
JP6256487B2 (ja) ポリアミド微粒子
CN105295241B (zh) 一种可陶瓷化的聚氯乙烯电线电缆料及其制备方法
CN110204890A (zh) 一种开孔降噪耐热聚酰胺材料及其制备方法和应用
WO2022001056A1 (zh) 一种聚酰胺组合物及其制备方法和应用
CN107254104A (zh) 一种汽车内饰用低气味低浮纤长玻纤增强聚丙烯复合材料及其制备方法
WO2018092686A1 (ja) ポリアミド樹脂組成物およびそれを含む成形品
CN109055797A (zh) 一种铝合金复合精炼剂的制备方法
CN105821257A (zh) 一种发动机排气门用复合材料
CN103450753A (zh) 一种氟橡胶涂料及其制备方法
CN105802011A (zh) 一种改性石墨烯提高抗静电性的汽车仪表板材料
CN105778285A (zh) 一种碳纳米管改性的耐热汽车仪表板材料
CN105802097A (zh) 一种废旧pvb材料循环再利用制造pvb膜的方法
JP5271026B2 (ja) アラミドポリマー溶液の製造方法、製造システム、およびアラミドポリマー成形物
CN104277328A (zh) 一种lft-d汽车座椅骨架及其制造方法
EP4003691A1 (de) Polybutylenterephthalat mit niedrigem thf gehalt
CN108864676B (zh) 一种耐候性雾面聚碳酸酯再生料及其制备方法
CN105970024A (zh) 一种用于汽车刹车片耐磨复合材料
CN111363304A (zh) 一种汽车电机配件及线圈骨架用无氨玻璃纤维复合增强材料
CN105838933A (zh) 一种高耐冲击汽车部件用复合材料
CN101704997A (zh) 无卤防翘曲变形增强高温尼龙及其制作工艺
CN105906934A (zh) 一种添加改性纤维素的共混型汽车仪表板材料
EP4004108A1 (de) Polybutylenterephthalat mit niedrigem thf gehalt
CN105885219A (zh) 一种加工性能好的耐磨型汽车仪表板材料
KR101588236B1 (ko) 집진 장치로부터 포집된 포집 충전제를 재활용한 고무 제품용 배합 조성물 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942965

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20942965

Country of ref document: EP

Kind code of ref document: A1