WO2022001056A1 - 一种聚酰胺组合物及其制备方法和应用 - Google Patents

一种聚酰胺组合物及其制备方法和应用 Download PDF

Info

Publication number
WO2022001056A1
WO2022001056A1 PCT/CN2020/140814 CN2020140814W WO2022001056A1 WO 2022001056 A1 WO2022001056 A1 WO 2022001056A1 CN 2020140814 W CN2020140814 W CN 2020140814W WO 2022001056 A1 WO2022001056 A1 WO 2022001056A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
aluminum
polyamide composition
polyamide
containing inorganic
Prior art date
Application number
PCT/CN2020/140814
Other languages
English (en)
French (fr)
Inventor
常欢
叶南飚
刘鑫鑫
李成
朱秀梅
苏榆钧
唐磊
周沃华
黄险波
Original Assignee
金发科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司 filed Critical 金发科技股份有限公司
Publication of WO2022001056A1 publication Critical patent/WO2022001056A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/22Expanded, porous or hollow particles
    • C08K7/24Expanded, porous or hollow particles inorganic
    • C08K7/26Silicon- containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • C08K2003/166Magnesium halide, e.g. magnesium chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/24Acids; Salts thereof
    • C08K3/26Carbonates; Bicarbonates
    • C08K2003/267Magnesium carbonate

Definitions

  • the invention relates to the technical field of green polymer materials, in particular to a polyamide composition and a preparation method and application thereof.
  • polyamide Because of its excellent mechanical properties, heat resistance, wear resistance, chemical resistance and self-lubricating properties, polyamide is widely used in electrical and electronic, automobile, home appliances, sporting goods and other fields, and is currently the most widely used.
  • Engineering plastics High temperature-resistant polyamides, mainly semi-aromatic polyamides, have broad application prospects in the electrical and electronic industries because of their higher heat-resistant temperature and dimensional stability.
  • polyamide composite materials are mostly laser welded, and the obtained accessories have small seams, high strength and long service life.
  • Laser welding parts generally include an upper body and a lower body. The upper body requires the laser to reach the interface of the upper and lower bodies through the laser, while the lower body needs to absorb the laser to convert the light source into heat energy.
  • pigments that can transmit or absorb the laser are selected. Realize the function of laser welding the upper and lower body.
  • the defects of laser welding include: 1) weak welding strength; 2) unsatisfactory appearance.
  • the reasons for the weakening of the welding strength are: the thickness of the part passing through the laser is too high or the laser transmittance is not good, so that the laser energy cannot fully reach the welding interface; there is a resin interface that is not fully melted and connected at the joint, which causes heat generation. Mass conduction, or the presence of gas generated by laser ablation decomposition to form voids at the connection.
  • flash through laser welding, it will also lead to the appearance of flash: There are several reasons for the flash: 1.
  • the material has high fluidity, and the melting point or plasticizing temperature is low, that is, it is easy to overflow; 2.
  • the material decomposes to generate gas to promote melting Partial overflow; 3.
  • High transmittance or high input laser power of the device promotes the occurrence of points 1 and 2.
  • European patent EP0862595B1 discloses a polyamide composition, in which the melt viscosity can be reduced by adding 0.05-5wt% of magnesium salt (for example, magnesium acetate), and the screening resin is PA66: when PA6 is 1-40 , the impact strength will increase.
  • Japanese patent JP0853618A discloses a flame retardant polyamide.
  • the gas, foaming and coloring problems caused by the decomposition of the flame retardant can be suppressed, and the heat resistance can be improved. for flame retardancy.
  • the purpose of the present invention is to provide a polyamide composition containing 45-310 ppm of magnesium and 130-600 ppm of aluminum, which can improve the laser welding performance of the polyamide composition.
  • Another object of the present invention is to provide a preparation method and application of the above-mentioned polyamide composition.
  • a polyamide composition comprising a polyamide resin, based on the total weight of the polyamide composition, containing 45-310 ppm of magnesium and 130-600 ppm of aluminum, wherein the magnesium and aluminum are derived from a diameter of less than or equal to 50 ppm
  • magnesium and aluminum are derived from a diameter of less than or equal to 50 ppm
  • the polyamide composition Preferably, based on the total weight of the polyamide composition, it contains 90-250 ppm of magnesium and 200-500 ppm of aluminum.
  • the polyamide composition contains 130-190 ppm of magnesium and 260-400 ppm of aluminum.
  • the test method for the content of magnesium and aluminum is: ICP-OES. Specifically, after the polyamide composition is completely dissolved in a solvent, a filter with a pore size of less than or equal to 50 microns is used to filter, and the filtered polyamide is filtered.
  • the solution is added to deionized water to form a solid sample; the sample is processed into a thin strip or powder with a diameter of no more than 2mm and a length of no more than 5mm by crushing equipment, and mixed evenly; take 0.1 ⁇ 0.005g (accurate to 0.001g) sample Put it into a microwave digestion tank, in a chemical fume hood, add 8 mL of digestion acid (concentrated nitric acid) to the digestion tank to completely immerse the sample, then slowly add 2 mL of hydrogen peroxide, let the sample react for 1-2 min, cover the lid, and seal it.
  • digestion acid concentrated nitric acid
  • the digestion tank into the microwave digestion furnace for digestion; after the digestion is completed, take out the digestion tank, cool it to room temperature, transfer the solution in the microwave digestion tank to a volumetric flask with a 0.45um filter membrane, and rinse the microwave several times with an appropriate amount of distilled water.
  • the magnesium and aluminum elements are derived from one or more combinations of magnesium-aluminum-containing inorganic compounds, magnesium-containing inorganic compounds, and aluminum-containing inorganic compounds; the magnesium-aluminum-containing inorganic compounds are selected from activated clay, metaaluminate At least one in magnesium, basic aluminum magnesium carbonate; Described magnesium-containing inorganic compound is selected from at least one in magnesium oxide, magnesium hydroxide, magnesium borate, magnesium silicate, magnesium chloride, magnesium carbonate, magnesium sulfate; The aluminum-containing compound is selected from at least one of aluminum silicate, aluminum sulfate, aluminum oxide, aluminum hypophosphite, and aluminum hydroxide.
  • the diameter of the magnesium-aluminum-containing inorganic compound, magnesium-containing inorganic compound, and aluminum-containing inorganic compound is less than or equal to 12 microns.
  • the polyamide resin is selected from one or more of aliphatic polyamide, semi-aromatic polyamide and copolyamide; the aliphatic polyamide is selected from PA6, PA66, PA46, PA56, PA12, PA1010 , at least one of PA1012, PA1212, the semi-aromatic polyamide is selected from at least one of PA4T, PA6T, PA9T, PA10T, the copolyamide is selected from at least one of PA10T1010, PA6T610, PA10T1012 kind.
  • the preparation method of the above-mentioned polyamide composition includes the following steps: according to the set content of magnesium and aluminum elements, the components are mixed uniformly and then extruded and granulated through a twin-screw extruder to obtain a polyamide composition, wherein the screw The temperature range is 20°C-30°C higher than the melting point of the polyamide resin, and the screw length-diameter ratio is 40:1 to 52:1.
  • the laser part includes an upper part that allows the laser to pass through to the interface of the lower body, and the lower part is required to absorb the laser and convert the light source into heat energy.
  • the lower body parts contain laser-absorbing pigments, which convert the light energy into heat energy after absorbing the laser light to achieve the effect of welding the upper and lower parts.
  • the present invention has the following beneficial effects
  • magnesium-aluminum-containing inorganic compounds, magnesium-containing inorganic compounds, and aluminum-containing inorganic compounds with a diameter of less than or equal to 50 microns (preferably less than or equal to 12 microns) in the polyamide composition to disperse them in the resin matrix, it is possible to disperse them in the resin matrix. Improves laser welding performance of polyamide compositions.
  • PA12 Arkema, P201TL;
  • PA66 DuPont, 70G35HSL;
  • PA10T Kingfa Technology, Vicnyl6130;
  • Activated clay A diameter distribution 10-12 microns.
  • Activated clay B diameter distribution 40-50 microns.
  • Activated clay C diameter distribution 100-150 microns.
  • Magnesium chloride A diameter distribution 10-12 microns.
  • Magnesium chloride B diameter distribution 40-50 microns.
  • Magnesium chloride C diameter distribution 100-150 microns.
  • Magnesium carbonate 20-25 microns in diameter distribution.
  • Aluminum hypophosphite 10-12 microns in diameter distribution.
  • Aluminum hydroxide 10-12 microns in diameter distribution.
  • Alumina Diameter distribution 10-12 microns in diameter.
  • the above inorganic powders are obtained by repeated screening after repurchasing commercial products.
  • Black Pigment Carbon Black, Raven M, available from BIRLA;
  • the black splines and the primary color splines are laser welded, and then corresponding evaluation tests are carried out.
  • the ratio of the laser-welded splines, the difference between the black splines and the primary color splines is only whether black pigment is added.
  • the recipes for black splines are given in the table below.
  • the preparation method of the polyamide composition of Examples and Comparative Examples according to the content of each component, the polyamide resin, magnesium-aluminum-containing material (magnesium-aluminum-containing inorganic compound, magnesium-containing inorganic compound, aluminum-containing inorganic compound), and black pigment are mixed After homogenization, it is extruded and granulated through a twin-screw extruder to obtain a polyamide composition, wherein the temperature range of the screw is (PA12 is 240°C-300°C, PA66 is 260°C-290°C, PA10T is 300°C-330°C ), the screw aspect ratio is 48:1.
  • the temperature range of the screw is (PA12 is 240°C-300°C
  • PA66 is 260°C-290°C
  • PA10T 300°C-330°C
  • the screw aspect ratio is 48:1.
  • Table 1 The proportion of each component of the polyamide composition of the embodiment and the comparative example and the test results of each performance (the magnesium and aluminum element content test of the examples 1-5 and 7-10 and the comparative example 1/3/4/5 The method follows the above-mentioned test method; Example 3/6 and Comparative Example 2 are tested twice, the first time is tested with reference to the magnesium-aluminum element test method of the present invention, and the second time the magnesium-aluminum element test method does not include a pore size 50 micron filter screen. filter step).
  • Example 6 it can be seen from Example 6 that even if the resin matrix contains magnesium chloride C with a diameter of 150 ⁇ m, the magnesium-aluminum elements derived from magnesium chloride B with a diameter of 40-50 ⁇ m and aluminum hypophosphite reach the scope of the present invention, and can improve the Laser welding performance diameter.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明公开了一种聚酰胺组合物,通过添加一定含量的直径小于等于50微米的含镁铝无机化合物、直径小于等于50微米的含镁无机化合物、直径小于等于50微米的含铝无机化合物,使得镁/铝元素在组合物中的含量达到含有45-310ppm的镁元素、130-600ppm的铝元素,能够提升聚酰胺组合物的激光焊接性能。

Description

一种聚酰胺组合物及其制备方法和应用 技术领域
本发明涉及绿色高分子材料技术领域,特别是涉及一种聚酰胺组合物及其制备方法和应用。
背景技术
聚酰胺因其优良的力学性能、耐热性、耐磨损性、耐化学药品性和自润滑性等特点,广泛应用于电子电气、汽车、家电、体育用品等领域,是目前使用量最大的工程塑料。以半芳香聚酰胺为主的耐高温聚酰胺,因其耐热温度及尺寸稳定性更高,在电气及电子工业领域具有广阔的应用前景。如今,为了得到结构强度高的配件,聚酰胺复合材料多采用激光焊接的方式,得到的配件接缝细小、强度高、使用寿命长。激光焊接零件一般包括上体和下体部分,上体要求能透过激光让激光到达上下体的界面,而下体要求能吸收激光让光源转化为热能,一般会选择能够透过或吸收激光的颜料来实现激光焊接上下体的功能。
中国专利申请CN201910925177.5描述了激光焊接存在的缺陷以及产生缺陷的原因,同时该专利对于提升聚酰胺复合材料的激光焊接的关键主要在于多种不同聚酰胺树脂的复配。具体的,根据焊接效果,激光焊接存在的缺陷包括:1)薄弱的焊接强度;2)不理想的外观。致使焊接强度弱化的原因有:透过激光部分的厚度过高或者激光透过率不佳,导致激光能量无法充分到达焊接界面;在连接处存在未经充分熔融并连接的树脂界面使其发生热质传导,或在连接处存在因激光烧蚀而分解产生的气体形成空洞。并且,通过激光焊接,还会导致溢料的出现:产生溢料的原因有几点:1,材料流动性过高,熔点或者塑化温度低,即容易溢出;2.材料分解产生气体推动熔融部分溢出;3.透过率高或者设备输入激光能力量高,而促进第1、2点的发生。
现阶段,研究人员对于聚酰胺复合材料中微量元素对材料性能的影响主要集中在耐高温、提高流动性、提高阻燃性能的方面,并没有考察微量元素的含量对于聚酰胺激光焊接性能的影响。如欧洲专利EP0862595B1公开了一种聚酰胺组合物,其中通过加入0.05-5wt%的镁盐(实例醋酸镁),能够降低熔体粘度,并且筛选了树脂是由PA66:PA6为1-40的时候,冲击强度会提高。日本专利JP0853618A公开了一种阻燃聚酰胺,通过在溴锑阻燃体系中加入一定量的镁铝盐能够抑制阻燃剂的分解而带来的气体、发泡、着色问题,提升耐热性于阻燃性。
发明内容
本发明的目的在于,提供一种聚酰胺组合物,其中含有45-310ppm的镁元素、130-600ppm的铝元素,能够提升聚酰胺组合物的激光焊接性能。
本发明的另一目的在于,提供上述聚酰胺组合物的制备方法和应用。
本发明是通过以下技术方案实现的:
一种聚酰胺组合物,包括聚酰胺树脂,基于聚酰胺组合物的总重量,含有45-310ppm的镁元素、130-600ppm的铝元素,所述的镁元素和铝元素来源于直径小于等于50微米的含镁铝无机化合物、直径小于等于50微米的含镁无机化合物、直径小于等于50微米的含铝无机化合物中的一种或多种组合。
优选的,基于聚酰胺组合物的总重量,含有90-250ppm的镁元素、铝元素含量为200-500ppm。
更优选的,基于聚酰胺组合物的总重量,含有130-190ppm的镁元素、铝元素含量为260-400ppm。
所述的镁元素、铝元素含量的测试方法为:ICP-OES,具体的,将聚酰胺组合物用溶剂完全溶解后,采用孔径小于等于50微米的过滤网过滤,并将过滤后的聚酰胺溶液加入去离子水中析出成固体样品;用破碎设备将样品处理成直径不超过2mm,长度不超过5mm的细条状或粉末状,混合均匀;取0.1±0.005g(精确到0.001g)样品,放入微波消解罐中,在化学通风橱里,向消解罐加入消解酸(浓硝酸)8mL,使其完全浸没样品,再缓慢加入过氧化氢2mL,让样品反应1-2min,盖上盖子,密封消解罐,放入微波消解炉中进行消解;消解完成后,取出消解罐,冷至室温,将微波消解罐中的溶液用0.45um的过滤膜转移至容量瓶中,用适量蒸馏水多次冲洗微波消解罐并将冲洗液转移至容量瓶中,再用蒸馏水稀释至刻度线(50mL),摇匀,待测;消解液定容后转移至待测试管中用电感耦合等离子体原子发射光谱仪进行测定。
所述的镁元素和铝元素来源于含镁铝无机化合物、含镁无机化合物、含铝无机化合物中的一种或多种组合;所述的含镁铝无机化合物选自活性白土、偏铝酸镁、碱式碳酸铝镁中的至少一种;所述的含镁无机化合物选自氧化镁、氢氧化镁、硼酸镁、硅酸镁、氯化镁、碳酸镁、硫酸镁中的至少一种;所述的含铝化合物选自硅酸铝、硫酸铝、氧化铝、次磷酸铝、氢氧化铝的至少一种。
优选的,所述的含镁铝无机化合物、含镁无机化合物、含铝无机化合物的直径小于等于12微米。
所述的聚酰胺树脂选自脂肪族聚酰胺、半芳香族聚酰胺、共聚聚酰胺中的一种或几种; 所述的脂肪族聚酰胺选自PA6、PA66、PA46、PA56、PA12、PA1010、PA1012、PA1212中的至少一种,所述的半芳香族聚酰胺选自PA4T、PA6T、PA9T、PA10T中的至少一种,所述的共聚聚酰胺选自PA10T1010、PA6T610、PA10T1012中的至少一种。
上述的聚酰胺组合物的制备方法,包括以下步骤:按照设定的镁铝元素含量,将各组分混合均匀后通过双螺杆挤出机挤出造粒,得到聚酰胺组合物,其中,螺杆的温度范围是高于聚酰胺树脂熔点20℃-30℃,螺杆长径比为40:1~52:1。
上述的聚酰胺组合物的应用,用于制备激光焊接制件。激光制件包括能够让激光透过到达下体界面的上体制件,而下体制件要求能吸收激光让光源转化为热能。下体制件含有激光吸收颜料,吸收激光后将光能转化成热能,达到上、下制件焊接的效果。
本发明与现有技术相比,具有如下有益效果
本发明通过在聚酰胺组合物中添加一定量的直径小于等于50微米(优选小于等于12微米)的含镁铝无机化合物、含镁无机化合物、含铝无机化合物使其分散在树脂基体中,能够提高聚酰胺组合物的激光焊接性能。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
PA12:阿科玛,P201TL;
PA66:杜邦,70G35HSL;
PA10T:金发科技,Vicnyl6130;
活性白土A:直径分布10-12微米。
活性白土B:直径分布40-50微米。
活性白土C:直径分布100-150微米。
氯化镁A:直径分布10-12微米。
氯化镁B:直径分布40-50微米。
氯化镁C:直径分布100-150微米。
碳酸镁:直径分布20-25微米。
次磷酸铝:直径分布10-12微米。
氢氧化铝:直径分布10-12微米。
氧化铝:直径分布10-12微米直径。上述无机粉末为市售产品购回后通过反复筛选得到。
黑颜料:炭黑,Raven M,购自BIRLA;
各项性能测试方法
(1)激光焊接性能测试:将材料模制成尺寸为2×13×120mm的样条,将本色的上体和黑色的下体,在2mm厚度方向叠加,置于激光焊接样品载台上,确保在长度方向叠放好的样条的整体长度约为160mm,使用功率为20W的激光对叠加的部分沿着宽度方向进行焊接,形成5道平行的焊缝。焊接结合面积根据激光理论半径进行计算。对于完成上述焊接的样条,在25℃50%相对湿度条件下存放24小时后使用万能测试仪进行拉伸测试,横梁速度为5mm/min。测得的强度为焊接强度,单位:MPa。
(2)焊接外观评价:由于采用的是气泵夹具,对激光熔融后膨胀的样品容易被挤出焊接样条上下体间隙之外,形成溢料。对于溢料情况进行评价,等级判断根据溢料的任一维度直径大小进行判断,没有溢料为1级,0mm<d≤0.5mm为2级,0.5mm<d≤1mm为3级,1mm<d≤1.5mm为4级,1.5mm<d为5级。
(3)镁铝元素含量测试:ICP-OES,具体的,将聚酰胺组合物用溶剂完全溶解后,采用孔径50微米的过滤网过滤,并将过滤后的聚酰胺溶液加入去离子水中析出成固体样品;用破碎设备将样品处理成直径不超过2mm,长度不超过5mm的细条状或粉末状,混合均匀;取0.1±0.005g(精确到0.001g)样品,放入微波消解罐中,在化学通风橱里,向消解罐加入消解酸(浓硝酸)8mL,使其完全浸没样品,再缓慢加入过氧化氢2mL,让样品反应1-2min,盖上盖子,密封消解罐,放入微波消解炉中进行消解;消解完成后,取出消解罐,冷至室温,将微波消解罐中的溶液用0.45um的过滤膜转移至容量瓶中,用适量蒸馏水多次冲洗微波消解罐并将冲洗液转移至容量瓶中,再用蒸馏水稀释至刻度线(50mL),摇匀,待测;消解液定容后转移至待测试管中用电感耦合等离子体原子发射光谱仪进行测定。
根据本发明的激光焊接对比,是将黑色的样条与原色的样条通过激光焊接后,再进行相应的评价测试。以下实施例和对比例中,激光焊接的样条的配比,黑色样条与原色样条的差别仅在于黑色颜料是否添加。下列表格中给出黑色样条的配方。
实施例和对比例聚酰胺组合物的制备方法:按照各组分含量,将聚酰胺树脂、含/镁铝物质(含镁铝无机化合物、含镁无机化合物、含铝无机化合物)、黑颜料混合均匀后通过双螺杆挤出机挤出造粒,得到聚酰胺组合物,其中,螺杆的温度范围是(PA12为240℃-300℃、PA66为260℃-290℃、PA10T为300℃-330℃),螺杆长径比为48:1。
表1:实施例和对比例聚酰胺组合物各组分配比及各项性能测试结果(实施例1-5和实施例 7-10与对比例1/3/4/5的镁铝元素含量测试方法遵循上述测试方法;实施例3/6和对比例2采用两次检测,第一次参照本发明镁铝元素测试方法测试,第二次镁铝元素测试方法中不包含孔径50微米滤网的过滤步骤)。
Figure PCTCN2020140814-appb-000001
由实施例可知,通过本发明的方法测试得到的镁铝元素含量分布在本发明优选范围内,激光焊接性能更好。
续表1:
Figure PCTCN2020140814-appb-000002
从由实施例6可知,即使树脂基体中含有直径直径为150微米的氯化镁C,但是来源于直径40-50微米的氯化镁B和次磷酸铝的镁铝元素达到本发明的范围内,也能够提升激光焊接性能直径。
续表1:
Figure PCTCN2020140814-appb-000003
由对比例1/3/4/5可知,聚酰胺树脂基体中来自于小于等于50微米的含镁/铝无机盐的镁 铝元素含量不在本发明的范围内,对于激光焊接的性能提升不明显。由对比例2可知,虽然采用直径150微米的活性白土C使镁铝元素的含量在本发明的范围内,无法提升激光焊接性能。

Claims (9)

  1. 一种聚酰胺组合物,其特征在于,包括聚酰胺树脂,基于聚酰胺组合物的总重量,含有45-310ppm的镁元素、130-600ppm的铝元素,所述的镁元素和铝元素来源于直径小于等于50微米的含镁铝无机化合物、直径小于等于50微米的含镁无机化合物、直径小于等于50微米的含铝无机化合物中的一种或多种组合。
  2. 根据权利要求1所述的聚酰胺组合物,其特征在于,基于聚酰胺组合物的总重量,含有90-250ppm的镁元素、铝元素含量为200-500ppm。
  3. 根据权利要求2所述的聚酰胺组合物,其特征在于,基于聚酰胺组合物的总重量,含有130-190ppm的镁元素、铝元素含量为260-400ppm。
  4. 根据利要求1-3任一项所述的聚酰胺组合物,其特征在于,所述的镁元素、铝元素含量的测试方法为:ICP-OES,具体的,将聚酰胺组合物用溶剂完全溶解后,采用孔径小于等于50微米的过滤网过滤,并将过滤后的聚酰胺溶液加入去离子水中析出成固体样品;用破碎设备将样品处理成直径不超过2mm,长度不超过5mm的细条状或粉末状,混合均匀;取0.1±0.005g(精确到0.001g)样品,放入微波消解罐中,在化学通风橱里,向消解罐加入消解酸(浓硝酸)8mL,使其完全浸没样品,再缓慢加入过氧化氢2mL,让样品反应1-2min,盖上盖子,密封消解罐,放入微波消解炉中进行消解;消解完成后,取出消解罐,冷至室温,将微波消解罐中的溶液用0.45微米的过滤膜转移至容量瓶中,用适量蒸馏水多次冲洗微波消解罐并将冲洗液转移至容量瓶中,再用蒸馏水稀释至刻度线(50mL),摇匀,待测;消解液定容后转移至待测试管中用电感耦合等离子体原子发射光谱仪进行测定。
  5. 根据利要求1-3任一项所述的聚酰胺组合物,其特征在于,所述的含镁铝无机化合物选自活性白土、偏铝酸镁、碱式碳酸铝镁中的至少一种;所述的含镁无机化合物选自氧化镁、氢氧化镁、硼酸镁、硅酸镁、氯化镁、碳酸镁、硫酸镁中的至少一种;所述的含铝无机化合物选自硅酸铝、氧化铝、硫酸铝、次磷酸铝、氢氧化铝的至少一种。
  6. 根据权利要求1所述的聚酰胺组合物,其特征在于,所述的含镁铝无机化合物、含镁无机化合物、含铝无机化合物直径小于等于12微米。
  7. 根据利要求1-3任一项所述的聚酰胺组合物,其特征在于,所述的聚酰胺树脂选自脂肪族聚酰胺、半芳香族聚酰胺、共聚聚酰胺中的一种或几种;所述的脂肪族聚酰胺选自PA6、PA66、PA46、PA56、PA12、PA1010、PA1012、PA1212中的至少一种,所述的半芳香族聚酰胺选自PA4T、PA6T、PA9T、PA10T中的至少一种,所述的共聚聚酰胺选自PA10T1010、PA6T610、PA10T1012中的至少一种。
  8. 权利要求1-7任一项所述的聚酰胺组合物的制备方法,其特征在于,包括以下步骤:按照 设定的镁铝元素含量,将各组分混合均匀后通过双螺杆挤出机挤出造粒,得到聚酰胺组合物,其中,螺杆的温度范围是高于聚酰胺树脂熔点20℃-30℃,螺杆长径比为40:1~52:1。
  9. 权利要求1-7任一项所述的聚酰胺组合物的应用,其特征在于,用于制备激光焊接制件。
PCT/CN2020/140814 2020-06-29 2020-12-29 一种聚酰胺组合物及其制备方法和应用 WO2022001056A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010603885.X 2020-06-29
CN202010603885.XA CN111875957A (zh) 2020-06-29 2020-06-29 一种聚酰胺组合物及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2022001056A1 true WO2022001056A1 (zh) 2022-01-06

Family

ID=73157201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/140814 WO2022001056A1 (zh) 2020-06-29 2020-12-29 一种聚酰胺组合物及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN111875957A (zh)
WO (1) WO2022001056A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111875957A (zh) * 2020-06-29 2020-11-03 金发科技股份有限公司 一种聚酰胺组合物及其制备方法和应用
CN112662172B (zh) * 2020-12-09 2022-10-18 珠海万通特种工程塑料有限公司 一种半芳香族聚酰胺树脂组合物及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0853618A (ja) * 1995-03-31 1996-02-27 Toray Ind Inc 難燃性ポリアミド樹脂組成物
WO2009151145A1 (ja) * 2008-06-10 2009-12-17 宇部興産株式会社 新規なポリアミド樹脂組成物及びポリアミド樹脂含有製品
JP5272337B2 (ja) * 2006-06-22 2013-08-28 東レ株式会社 長尺物固定治具用熱可塑性樹脂組成物およびその製造方法
CN107163571A (zh) * 2017-05-17 2017-09-15 江苏金发科技新材料有限公司 激光焊接用长寿命扁平纤维改性聚酰胺复合材料
CN111040443A (zh) * 2019-12-27 2020-04-21 湖南华曙高科技有限责任公司 一种选择性激光烧结用聚酰胺粉末材料及其制备方法
CN111117235A (zh) * 2019-12-31 2020-05-08 会通新材料(上海)有限公司 一种增加激光透射率的聚酰胺56组合物及其应用
CN111875957A (zh) * 2020-06-29 2020-11-03 金发科技股份有限公司 一种聚酰胺组合物及其制备方法和应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL1008443C2 (nl) * 1998-03-02 1999-09-03 Dsm Nv Hoogsmeltende polyamidesamenstelling voor electronicatoepassingen.
CN103865057A (zh) * 2012-12-17 2014-06-18 东丽先端材料研究开发(中国)有限公司 一种聚酰胺树脂及其制备方法以及聚酰胺树脂组合物
JP6523650B2 (ja) * 2014-10-16 2019-06-05 旭化成株式会社 ポリアミド樹脂組成物とその成形体、及びポリアミド樹脂組成物の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0853618A (ja) * 1995-03-31 1996-02-27 Toray Ind Inc 難燃性ポリアミド樹脂組成物
JP5272337B2 (ja) * 2006-06-22 2013-08-28 東レ株式会社 長尺物固定治具用熱可塑性樹脂組成物およびその製造方法
WO2009151145A1 (ja) * 2008-06-10 2009-12-17 宇部興産株式会社 新規なポリアミド樹脂組成物及びポリアミド樹脂含有製品
CN107163571A (zh) * 2017-05-17 2017-09-15 江苏金发科技新材料有限公司 激光焊接用长寿命扁平纤维改性聚酰胺复合材料
CN111040443A (zh) * 2019-12-27 2020-04-21 湖南华曙高科技有限责任公司 一种选择性激光烧结用聚酰胺粉末材料及其制备方法
CN111117235A (zh) * 2019-12-31 2020-05-08 会通新材料(上海)有限公司 一种增加激光透射率的聚酰胺56组合物及其应用
CN111875957A (zh) * 2020-06-29 2020-11-03 金发科技股份有限公司 一种聚酰胺组合物及其制备方法和应用

Also Published As

Publication number Publication date
CN111875957A (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
WO2022001056A1 (zh) 一种聚酰胺组合物及其制备方法和应用
WO2022001055A1 (zh) 一种聚酰胺复合材料及其制备方法和应用
CN102321338B (zh) 聚醚醚酮基复合电磁屏蔽材料及其制备方法
CN102911499B (zh) 一种高稳定性抗紫外耐高温尼龙及其制备方法
CN105602245A (zh) 阻燃导电尼龙66材料及其制备方法
EP3792312A1 (en) Resin composition, kit, method for producing resin composition, method for producing molded article, and molded article
WO2022110666A1 (zh) 一种红磷阻燃聚酰胺组合物及其制备方法和应用
CN104672897A (zh) 一种阻燃导热抗静电尼龙66复合材料及其制备方法
CN107868337A (zh) 一种具有高导热系数的聚丙烯复合材料
CN105860525A (zh) 一种低气味聚苯硫醚复合材料及其制备方法
CN114644815B (zh) 一种新能源汽车用锂电池绝缘膜及其制备方法
CN110845843A (zh) 一种聚酰胺复合材料及其制备方法
CN114015229A (zh) 一种尼龙阻燃导热复合材料及其制备方法
Hou et al. Preparation of iron oxide–coated aramid fibres for improving the mechanical performance and flame retardancy of multi jet fusion–printed polyamide 12 composites
JP2017014388A (ja) ポリアミド樹脂組成物及び成形体
JPWO2002044277A1 (ja) 放射線シールド用樹脂成形品
BR112014006744B1 (pt) Revestimento de pré-fluxo, e, aplicação do revestimento em um componente de alumínio
CN105733181A (zh) 一种高强度、高模量聚醚醚酮复合材料及制备方法
WO2017063406A1 (zh) 一种铝合金压铸件缺陷修补剂
US11746234B2 (en) Polyamide resin composition and molded article
CN109852051B (zh) 一种尼龙/聚苯硫醚合金材料及其制备方法
JP2011208017A (ja) レーザー溶着用樹脂組成物、レーザー溶着用成形体および複合成形体
CN111363304A (zh) 一种汽车电机配件及线圈骨架用无氨玻璃纤维复合增强材料
JP2007204616A (ja) 円筒形状部位保有成形品用ポリアリーレンサルファイド樹脂組成物及び円筒形状部位保有成形品
CN108752926A (zh) 尼龙阻燃导电材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943355

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.05.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20943355

Country of ref document: EP

Kind code of ref document: A1