WO2022001019A1 - 压缩机和制冷装置 - Google Patents

压缩机和制冷装置 Download PDF

Info

Publication number
WO2022001019A1
WO2022001019A1 PCT/CN2020/136363 CN2020136363W WO2022001019A1 WO 2022001019 A1 WO2022001019 A1 WO 2022001019A1 CN 2020136363 W CN2020136363 W CN 2020136363W WO 2022001019 A1 WO2022001019 A1 WO 2022001019A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
cavity
compressor
housing
cross
Prior art date
Application number
PCT/CN2020/136363
Other languages
English (en)
French (fr)
Inventor
李洋
卢林高
曹红军
Original Assignee
广东美芝精密制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东美芝精密制造有限公司 filed Critical 广东美芝精密制造有限公司
Priority to EP20937175.6A priority Critical patent/EP3964712A4/en
Priority to US17/561,149 priority patent/US11971036B2/en
Publication of WO2022001019A1 publication Critical patent/WO2022001019A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/02Compressor arrangements of motor-compressor units
    • F25B31/026Compressor arrangements of motor-compressor units with compressor of rotary type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/028Means for improving or restricting lubricant flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0284Constructional details, e.g. reservoirs in the casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/0042Driving elements, brakes, couplings, transmissions specially adapted for pumps
    • F04C29/005Means for transmitting movement from the prime mover to driven parts of the pump, e.g. clutches, couplings, transmissions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B31/00Compressor arrangements
    • F25B31/002Lubrication
    • F25B31/004Lubrication oil recirculating arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/30Casings or housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/50Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/805Fastening means, e.g. bolts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/809Lubricant sump

Definitions

  • the present application relates to the technical field of compression equipment, and in particular, to a compressor and a refrigeration device.
  • a cavity is formed in the closed casing of the compressor, and the cavity is divided into an oil cavity and a motor cavity by the compression assembly in the compressor. It is often realized by setting an oil return channel on the compression assembly. Circulation of lubricating oil between the oil chamber and the motor chamber.
  • the oil level of the lubricating oil stored at the bottom of the closed casing fluctuates greatly, especially when the lubricating oil in the motor cavity is pressed to the oil cavity under the action of the pressure difference , the drop of the oil level in the motor cavity will cause part of the refrigerant to enter the oil cavity with the lubricating oil through the oil return channel, which will lead to low recovery efficiency of the lubricating oil, and the oil level of the oil cavity will fluctuate greatly, which will lead to an increase in oil discharge.
  • the present application aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • a first aspect of the present application is to propose a compressor.
  • a second aspect of the present application is to provide a refrigeration device.
  • a compressor including a casing, a compression assembly, a motor, an oil pool and an oil return passage.
  • the casing forms a cavity; a part of the compression assembly is fixedly connected with the casing and located in the cavity, and the compression assembly divides the cavity into a first cavity and a second cavity.
  • a part of the motor is arranged in the first cavity; the oil pool is arranged in the second cavity; the oil return channel is arranged on the compression assembly, and the oil return channel is used for connecting the first cavity and the second cavity.
  • a portion of the housing below the central axis of the motor is the first housing.
  • the oil return passage has an oil inlet facing the first cavity, and the oil inlet has a dividing line parallel to the horizontal plane of the central axis of the motor.
  • the dividing line divides the oil inlet into two areas.
  • the dividing line has two sides, the side close to the central axis of the motor, the side away from the central axis of the motor, and the side of the dividing line away from the central axis of the motor is the oil pass Area.
  • the distance between the separation line and the inner side wall of the first casing is the first relative distance
  • the first relative distance is greater than 0mm and less than or equal to 12% of the inner diameter of the casing
  • the area of the oil passage area is greater than or equal to the area of the oil inlet 90% and less than or equal to the area of the oil inlet.
  • the compressor provided by the present application includes a casing, a compression assembly, a motor, an oil pool and an oil return passage, wherein the casing is a sealed casing, and some of the compression assemblies are fixedly connected to the casing. Specifically, some of the compression assemblies may be welded by welding The method is fixedly connected with the casing, so that the reliable connection performance between the compression assembly and the casing can be ensured.
  • the compression assembly is arranged in the cavity and divides the cavity into a first cavity and a second cavity, the first cavity is located on the left side of the compression assembly, the second cavity is located on the right side of the compression assembly, and part of the motor is located in the first cavity In the cavity, an oil pool is arranged in the second cavity, and lubricating oil is stored in the oil pool.
  • the compression assembly can compress the refrigerant, a part of the refrigerant gas after the compression can be discharged through the exhaust structure provided on the casing, and the other part of the refrigerant gas after the compression can enter the first cavity to carry out the operation of the motor. After cooling, the refrigerant can enter the second cavity and be discharged through the exhaust structure.
  • the lubricating oil in the oil pool can be circulated through the oil return channel.
  • the pressure in the first cavity rises, and under the action of the pressure, the first The lubricating oil in the cavity can enter the second cavity through the oil return channel.
  • the design structure is simple and reasonable, and the recovery efficiency of the lubricating oil can be improved, so that the fluctuation of the oil level in the oil pool is relatively stable, thereby reducing the oil discharge of the compressor, making The oil sump can supply sufficient oil to the compression components, further improving the reliability and energy efficiency of the compressor.
  • the oil in the motor cavity can be returned to the oil cavity through the oil return passage on the compression assembly, which ensures the oil supply from the oil pool to the compression parts and the stability of the oil stored in the oil cavity. Oil output is reduced and compressor performance is improved.
  • the lubricating oil in the oil return passage can also enter into the compression assembly to lubricate the compression assembly, thereby making the compressor run more smoothly.
  • the compressor is a horizontal compressor.
  • the housing is divided into a first housing and a second housing connected with the first housing, the first housing and the second housing both extend along the direction of the central axis of the motor, when the housing is cylindrical , the first shell and the second shell are both partial arc segments.
  • the first housing is located just below the central axis of the motor.
  • the oil return channel has an oil inlet facing the first cavity and an oil outlet facing the second cavity, and the lubricating oil in the first cavity enters the oil return channel through the oil inlet and is discharged into the oil through the oil outlet in the pool.
  • the overall pressure in the first cavity is higher than the pressure in the second cavity, and under the action of the pressure difference, the lubricating oil in the first cavity will be pressed into the second cavity through the oil return passage.
  • the flow rate inside the compressor is large, and the pressure difference between the two sides of the compression assembly is large, and the oil level in the first cavity is likely to be lower than the inlet of the return passage. The condition of the oil port.
  • the refrigerant will also enter the second cavity through the oil return channel, and form a large number of air bubbles in the lubricating oil in the oil pool, which will affect the violent fluctuation of the oil level in the oil pool, which will lead to the compressor.
  • the increase in oil output reduces the performance of the compressor.
  • the oil inlet of the oil return passage is difficult to be exposed to the refrigerant, which can effectively improve the ventilation of the oil pool, thereby reducing the oil output.
  • the area of the oil passage area is greater than or equal to 90% of the area of the oil inlet, and less than or equal to the area of the oil inlet, which can further ensure that the lubricating oil flows from the oil inlet to the oil pool.
  • the dividing line When the area of the oil passage area is equal to the area of the oil inlet, the dividing line is located at the highest point of the oil inlet (the highest point refers to the highest point in the oil inlet that is close to the horizontal plane of the central axis of the motor). When the area of the oil passage area is less than the oil inlet area and greater than or equal to 90% of the oil inlet area, the dividing line can divide the oil inlet into two areas, one of which is located on the side of the dividing line away from the central axis of the motor In the oil passage area, the lubricating oil will enter the oil pool through the oil passage area.
  • the distance between the dividing line and the inner side wall of the first casing is the first relative distance H1.
  • the distance between the dividing line and the inner sidewall of the first casing is the plane between the dividing line and the inner sidewall of the first casing. distance.
  • the oil return channel is located below the horizontal plane where the central axis of the motor is located, and the lubricating oil is deposited on the bottom of the cavity under the action of gravity, and the oil return channel located at the bottom can facilitate the circulation of the lubricating oil.
  • the oil return passage is flared in the direction of the central axis of the motor, and at this time, the area of the oil outlet is larger than that of the oil inlet.
  • the cross section of the oil return passage can also be equal everywhere in the direction of the central axis of the motor, as long as the distance between the oil inlet of the oil return passage and the first housing satisfies the aforementioned relationship, a good oil circulation rate can be achieved.
  • the first relative distance is greater than 0 mm and less than or equal to 7 mm.
  • making the first relative distance H1 satisfy 0mm ⁇ H1 ⁇ 7mm can further reduce the highest point of the oil inlet in the oil return channel, making it more difficult for the oil inlet to be exposed to the refrigerant, thereby effectively improving the ventilation of the oil pool. situation, thereby reducing the oil output.
  • the oil inlet has a vertex away from the horizontal plane where the central axis of the motor is located, and the distance between the vertex and the inner side wall of the first housing is a second relative distance, and the second relative distance is greater than or equal to 0mm and less than or equal to 3mm.
  • the oil inlet has a vertex away from the horizontal plane of the central axis of the motor, and the distance between the vertex and the inner side wall of the first casing is the second relative distance.
  • the second The relative distance H2 is greater than 0mm and less than or equal to 3mm, that is, the inner sidewall of the compression assembly and the outer sidewall of the compression assembly that constitute the oil inlet are independent of each other, and there is no connection between the two.
  • the second The relative distance H2 is equal to 0 mm, and at this time, the outer side wall of the compression assembly is connected with the inner side wall of the compression assembly constituting the oil inlet.
  • the separation line and the inner wall of the first casing satisfy 0mm ⁇ H1 ⁇ 10mm, and the distance between the top vertex of the oil inlet and the inner wall of the first casing satisfies 0mm ⁇ H2 ⁇ 3mm, the separation of the oil inlet
  • the apex (the lowest point in the direction of gravity) on the line and the oil inlet is limited, so that the oil inlet of the oil return channel is difficult to be exposed to the refrigerant under the premise of ensuring the flow effect of the lubricating oil, which can effectively improve the oil pool ventilation. condition, thereby reducing the oil output.
  • part of the compression assembly is recessed in a direction close to the central axis of the motor to form an oil return passage.
  • part of the compression assembly is recessed toward the central axis of the motor, thereby forming an oil return channel, that is, the oil return channel has an oil inlet and an oil outlet along the motor axis, and at the same time, the oil return channel also has a direction toward the motor axis.
  • the opening of the casing at this time, since the part of the compression assembly with the oil return channel is fixedly connected to the casing, the second relative distance H2 between the vertex on the oil inlet and the inner side wall of the first casing is: 0mm.
  • the projection of the oil return passage on the cross section of the crankshaft of the electric machine is in the form of a circle, a triangle or a polygon.
  • the motor includes a crankshaft, a rotor and a stator, wherein the first end of the crankshaft is located in the first cavity, and the second end of the crankshaft is connected with the compression assembly.
  • the rotor is sleeved on the first end of the crankshaft;
  • the stator is sleeved on the outer wall of the rotor, and at least part of the outer side wall of the stator and the inner side wall of the casing have a space.
  • the cross-sectional area of the interval on the cross-section of the crankshaft is the first cross-sectional area
  • the cross-sectional area of the oil return passage on the cross-section of the crankshaft is the second cross-sectional area
  • the second cross-sectional area is less than or equal to 30% of the first cross-sectional area
  • the first end of the crankshaft is located in the first cavity and is connected with the rotor and stator of the motor, the second end of the crankshaft is connected with the compression assembly, the rotor is sleeved on the first end of the crankshaft, and the rotor rotates In order to drive the crankshaft movement, and then realize the movement of the compression assembly.
  • the stator is sleeved on the outer wall of the rotor, and at least a part of the outer side wall of the stator is spaced from the inner side wall of the housing, wherein the number of the space is at least one.
  • the cross section of the crankshaft is a cross section perpendicular to the axial direction of the crankshaft.
  • the cross-sectional area of the interval on the cross-section of the crankshaft is the first cross-sectional area
  • the cross-sectional area of the oil return passage on the cross-section of the crankshaft is the second cross-sectional area
  • the second cross-sectional area is less than or equal to 30% of the first cross-sectional area.
  • the number of intervals is at least two, and the first cross-sectional area is the sum of the cross-sectional areas of the at least two intervals; the number of oil return passages is at least two, and the second cross-sectional area is at least two The sum of the cross-sectional areas of the two oil return passages.
  • the number of intervals is multiple
  • the first cross-sectional area is the sum of the cross-sectional areas of the multiple intervals
  • the number of oil return passages is multiple
  • the second cross-sectional area is the sum of the cross-sectional areas of the multiple oil return passages , so that the sum of the cross-sectional areas of the multiple intervals and the sum of the cross-sectional areas of the multiple oil return passages satisfy the above relationship, so as to ensure smooth circulation of the lubricating oil in the first cavity, the oil return passage and the second cavity.
  • the compression assembly includes a cylinder and a main bearing, the main bearing is arranged on the side of the cylinder facing the motor, and part of the motor is connected to the cylinder through the main bearing.
  • one of the main bearing and the cylinder which is fixedly connected with the casing is a fixing piece, and the oil return passage is arranged on the fixing piece.
  • the compression assembly includes a cylinder and a main bearing, the main bearing is arranged on the side of the cylinder facing the motor, and the second end of the crankshaft is connected to the cylinder through the main bearing.
  • the main bearing can be fixedly connected to the inner peripheral wall of the casing by welding, and the cylinder can also be fixedly connected to the inner peripheral wall of the casing by welding.
  • the main bearing or cylinder can be selected according to the actual assembly requirements. Fixed connection to the housing. If the main bearing is welded to the housing, the cylinder is not fixedly connected to the housing. At this time, the oil return channel is set on the main bearing, and the lubricating oil will enter the oil return channel from the first cavity through the oil inlet, and pass through the oil return channel.
  • the compressor further includes an exhaust pipe and an airflow channel, wherein the exhaust pipe is arranged on the casing corresponding to the compression assembly; the airflow channel is arranged on the compression assembly, and the airflow channel, the first The cavity is communicated with the exhaust pipe.
  • the compression assembly when the compressor is working, can compress the refrigerant, and a part of the compressed refrigerant gas can be directly discharged through the exhaust pipe, and another part of the compressed refrigerant gas can enter the first cavity through the airflow channel In order to cool the motor, the refrigerant can enter the second cavity and be discharged through the exhaust pipe.
  • the compressor further includes a base and a mounting bracket, the mounting bracket is connected to the side of the base facing the casing, and the mounting bracket is adapted and connected to the casing.
  • the base can be parallel to the crankshaft, ie the housing is placed horizontally on the base.
  • the base can also be arranged at a certain angle with the crankshaft, that is, the casing is arranged on the base obliquely.
  • the central axis of the motor has its horizontal plane.
  • the central axis is at a certain angle with the horizontal plane.
  • the base can be tilted and fixed on the horizontal bottom surface, so that the central axis (crankshaft) of the motor is parallel to the horizontal plane.
  • the positional relationship between the oil inlet on the compression assembly in the compressor and the first casing should also satisfy the aforementioned relationship.
  • a refrigeration device comprising the compressor provided in any of the above designs.
  • the refrigeration device provided in the present application includes the compressor provided in any of the above designs, and thus has all the beneficial effects of the compressor, which will not be repeated here.
  • the refrigeration device further includes a casing, an installation cavity is formed in the casing, and the compressor is connected to the casing and located in the installation cavity, and the compressor is protected by the casing to avoid the influence of the external environment on the compressor and ensure the compression. precise operation of the machine.
  • Fig. 1 shows a structural cross-sectional view of a compressor according to an embodiment of the present application
  • Figure 2 shows a structural cross-sectional view of a compressor according to another embodiment of the present application
  • FIG. 3 shows a schematic structural diagram of a compressor according to an embodiment of the present application
  • FIG. 4 shows a schematic structural diagram of a compressor according to another embodiment of the present application.
  • Figure 5 shows a schematic structural diagram of a compressor according to yet another embodiment of the present application.
  • FIG. 6 shows a schematic structural diagram of a compressor according to yet another embodiment of the present application.
  • FIG. 7 shows a schematic structural diagram of a compressor according to yet another embodiment of the present application.
  • FIG. 8 shows a schematic structural diagram of a compressor according to still another embodiment of the present application.
  • FIG. 9 shows a simulation graph of the gas flow in the oil return passage in the compressor according to an embodiment of the present application.
  • FIG. 10 shows a histogram of test data of the oil discharge rate of the compressor according to an embodiment of the present application.
  • a compressor 1 is provided. As shown in FIG. 1 and FIG. 2 , the compressor 1 includes a casing 10 , a compression assembly 12 , a motor 13 , an oil pool 14 and an oil return passage 15 ,
  • the casing 10 forms a cavity 11 ; a part of the compression assembly 12 is fixedly connected to the casing 10 and located in the cavity 11 , and the compression assembly 12 divides the cavity 11 into a first cavity 111 and a second cavity 112 .
  • the motor 13, a part of the motor 13 is arranged in the first cavity 111; the oil pool 14 is arranged in the second cavity 112; the oil return channel 15 is arranged on the compression assembly 12, and the oil return channel 15 is used to communicate with the first cavity 112.
  • the cavity 111 and the second cavity 112 The part of the housing 10 located below the central axis of the motor 13 is the first housing 101 ; the oil return passage 15 has an oil inlet 151 facing the first cavity 111 , and the oil inlet 151 has a horizontal plane parallel to the central axis of the motor 13 . separation line.
  • the dividing line divides the oil inlet into two areas, the dividing line has two sides, the side close to the central axis of the motor 13, the side away from the central axis of the motor 13, and the side of the dividing line away from the central axis of the motor 13 For the oil pass area.
  • the distance between the dividing line and the inner wall of the first casing 101 is the first relative distance, the first relative distance is greater than 0 mm and less than or equal to 12% of the inner diameter of the casing 10, and the area of the oil passage area is greater than or equal to the oil intake 90% of the area of the port 151 is equal to or less than the area of the oil inlet port 151 .
  • the compressor 1 provided in this application includes a casing 10, a compression assembly 12, a motor 13, an oil pool 14 and an oil return passage 15, wherein the casing 10 is a sealed casing 10, and part of the compression assembly 12 is fixedly connected to the casing 10. Specifically, part of the compression assembly 12 may be fixedly connected to the casing 10 by welding, so as to ensure reliable connection performance between the compression assembly 12 and the casing 10 .
  • the compression assembly 12 is arranged in the cavity 11 and divides the cavity 11 into a first cavity 111 and a second cavity 112 , the first cavity 111 is located on the left side of the compression assembly 12 , and the second cavity 112 is located in the compression assembly 12 On the right side, part of the motor 13 is located in the first cavity 111, the oil pool 14 is arranged in the second cavity 112, and the oil pool 14 stores lubricating oil.
  • the compression assembly 12 can compress the refrigerant, a part of the refrigerant gas after the compression can be discharged through the exhaust structure provided on the casing 10, and another part of the refrigerant gas after the compression can enter the first cavity
  • the motor 13 is cooled in 111, and then the refrigerant can enter the second cavity 112 and be discharged through the exhaust structure.
  • the oil return channel 15 is provided on the compression assembly 12, and the lubricating oil in the oil pool 14 can be circulated through the oil return channel 15.
  • the pressure in the first cavity 111 rises If the pressure is high, the lubricating oil in the first cavity 111 can enter the second cavity 112 through the oil return passage 15 under the action of the pressure.
  • the design structure is simple and reasonable and can improve the recovery efficiency of lubricating oil, so that the fluctuation of the oil level in the oil pool 14 is relatively stable, thereby reducing the oil output of the compressor 1, so that the oil pool 14 can supply enough oil to the compression assembly 12, and further Improve the reliability and energy efficiency level of compressor 1.
  • the oil in the cavity of the motor 13 can be returned to the oil cavity through the oil return passage 15 on the compression assembly 12 to ensure the oil supply from the oil pool 14 to the compression components, and to ensure that the oil cavity can store oil. Therefore, the oil output is reduced, and the performance of compressor 1 is improved.
  • the lubricating oil in the oil return passage 15 can also enter into the compression assembly 12 to lubricate the compression assembly 12, thereby making the operation of the compressor 1 smoother.
  • the compressor 1 is a horizontal compressor.
  • the housing 10 is divided into a first housing 101 and a second housing 10 connected with the first housing 101 , and the first housing 101 and the second housing 10 are both along the motor 13 .
  • the shell 10 is cylindrical, the first shell 101 and the second shell 10 are both partial arc segments.
  • the first housing 101 is located just below the central axis of the motor 13 .
  • the horizontal compressor is placed horizontally on the ground, the outer side wall of the first casing 101 is in contact with the ground.
  • the oil return channel 15 has an oil inlet 151 facing the first cavity 111 and an oil outlet facing the second cavity 112 , and the lubricating oil in the first cavity 111 enters the oil return channel 15 through the oil inlet 151 And discharged into the oil pool 14 through the oil outlet.
  • the overall pressure in the first cavity 111 is higher than the pressure in the second cavity 112. Under the action of the pressure difference, the lubricating oil in the first cavity 111 will be pressurized through the oil return passage 15. into the second cavity 112 .
  • the flow rate inside the compressor 1 is relatively large, and the pressure difference between the two sides of the compression assembly 12 is relatively large, and the oil level in the first cavity 111 is likely to be low.
  • the refrigerant will also enter the second cavity 112 through the oil return channel 15, and form a large number of air bubbles in the lubricating oil in the oil pool 14.
  • the influence causes violent fluctuations in the oil level of the oil pool 14 , which in turn leads to an increase in the oil output of the compressor 1 , which reduces the performance of the compressor 1 .
  • the distance between the separation line and the inner side wall of the first housing 101 is the first relative distance H1
  • the first relative distance H1 satisfies 0mm ⁇ H1 ⁇ 10mm , which can greatly improve the oil circulation rate under high frequency (bad) conditions. It is difficult for the oil inlet 151 of the oil return passage 15 to be exposed to the refrigerant, which can effectively improve the ventilation of the oil pool 14, thereby reducing the oil output.
  • the distance H1 between the dividing line in the oil inlet 151 of the compressor 1 and the inner side wall of the first casing 101 is set as a variable, thereby forming three groups
  • other operating parameters of compressor 1 are the same.
  • the operating parameters of compressor 1 include: suction temperature is -1 °C, suction pressure is 0.38MPa, discharge temperature is 70 °C, and discharge pressure is 1.53 MPa, rotating speed 60Hz.
  • the distance H1 between the dividing line of the oil inlet 151 in the oil return passage 15 and the inner wall of the first casing 101 is reduced, and the oil discharge rate of the compressor 1 can be slightly reduced.
  • the operating frequency of the compressor 1 is 90 Hz
  • H1 it can be found that the oil discharge rate of the compressor 1 is greatly reduced.
  • the distance H1 between the line and the inner side wall of the first casing 101 can greatly improve the oil circulation rate of the compressor 1 under high frequency (severe) working conditions.
  • the oil inlet 151 of the oil return passage 15 When the first relative distance H1 and the inner diameter of the casing 10 satisfy the aforementioned relationship, it is difficult for the oil inlet 151 of the oil return passage 15 to be exposed to the refrigerant, which can effectively improve the ventilation of the oil pool 14, thereby reducing the oil discharge of the compressor. . Further, the area of the oil passage area is greater than or equal to 90% of the area of the oil inlet 151 and less than or equal to the area of the oil inlet 151 , which can further ensure that the lubricating oil flows from the oil inlet 151 to the oil pool 14 .
  • the dividing line When the area of the oil passage area is equal to the area of the oil inlet 151, the dividing line is located at the highest point of the oil inlet 151 (the highest point refers to the highest point in the oil inlet 151 that is close to the horizontal plane of the central axis of the motor 13).
  • the dividing line can divide the oil inlet 151 into two areas, one of which is located at the center of the dividing line away from the motor In the oil passage area on one side of the axis, the lubricating oil will enter the oil pool 14 through the oil passage area.
  • the distance between the dividing line and the inner side wall of the first casing 101 is where the dividing line and the inner side wall of the first casing 101 are located. distance between planes.
  • the oil return passage 15 is located below the horizontal plane where the central axis of the motor 13 is located, and the lubricating oil is deposited on the bottom of the cavity 11 by gravity.
  • the oil return passage 15 at the bottom can facilitate the circulation of the lubricating oil.
  • the oil return passage 15 has a flared shape in the direction of the central axis of the motor 13 , and at this time, the area of the oil outlet is larger than that of the oil inlet 151 .
  • the oil return passage 15 may also have the same cross-section everywhere in the direction of the central axis of the motor 13 , as long as the distance between the oil inlet 151 of the oil return passage 15 and the first housing 101 satisfies the aforementioned relationship, a good oil circulation rate.
  • the first relative distance is greater than 0 mm and less than or equal to 7 mm.
  • making the first relative distance H1 satisfy 0mm ⁇ H1 ⁇ 7mm can further reduce the highest point of the oil inlet 151 in the oil return passage 15, making it more difficult for the oil inlet 151 to be exposed to the refrigerant, thereby effectively improving the When the oil pool 14 is ventilated, the oil discharge amount is further reduced.
  • the oil inlet 151 has a vertex away from the horizontal plane of the central axis of the motor 13 , and the distance between the vertex and the inner side wall of the first housing 101 is a second relative distance, the second relative distance Greater than or equal to 0mm and less than or equal to 3mm.
  • the oil inlet 151 has a vertex away from the horizontal plane where the central axis of the motor 13 is located, and the distance between the vertex and the inner wall of the first housing 101 is the second opposite distance.
  • the second relative distance H2 is greater than 0 mm and less than or equal to 3 mm, that is, the distance between the inner wall of the compression assembly 12 and the compression assembly 12 constituting the oil inlet 151
  • the outer side walls are independent of each other, and there is no connection between the two.
  • the oil inlet 151 is a non-closed opening, as shown in FIGS.
  • the second relative distance H2 is equal to 0 mm.
  • the outer side wall of the compression assembly 12 and the inner side wall of the compression assembly 12 constituting the oil inlet 151 connected.
  • the separation line and the inner side wall of the first casing 101 satisfy 0mm ⁇ H1 ⁇ 10mm, and the distance between the top vertex of the oil inlet 151 and the inner side wall of the first casing 101 satisfies 0mm ⁇ H2 ⁇ 3mm, the The dividing line on the oil port 151 and the apex on the oil inlet port 151 (the lowest point in the direction of gravity) are restricted, so that the oil inlet port 151 of the oil return passage 15 is difficult to be Exposure to the refrigerant can effectively improve the ventilation of the oil pool 14, thereby reducing the oil output.
  • part of the compression assembly 12 is recessed in a direction close to the central axis of the motor 13 to form an oil return passage 15 .
  • part of the compression assembly 12 is concave in the direction close to the central axis of the motor 13, so as to form the oil return passage 15, that is, the oil return passage 15 has an oil inlet 151 and an oil outlet along the axis of the motor 13, and at the same time , the oil return passage 15 also has an opening towards the housing 10 .
  • the second relative distance H2 between the vertex on the oil inlet 151 and the inner side wall of the first casing 101 is 0mm.
  • the projection of the oil return passage 15 on the cross section of the crankshaft 131 of the motor 13 is a circle, a triangle or a polygon.
  • the motor 13 includes a crankshaft 131 , a rotor 132 and a stator 133 , wherein the first end of the crankshaft 131 is located in the first cavity 111 , The second end of the crankshaft 131 is connected with the compression assembly 12; the rotor 132 is sleeved on the first end of the crankshaft 131; There is a space 134 therebetween; wherein, the cross-sectional area of the space 134 on the cross-section of the crankshaft 131 is the first cross-sectional area, the cross-sectional area of the oil return passage 15 on the cross-section of the crankshaft 131 is the second cross-sectional area, and the second cross-sectional area Less than or equal to 30% of the first cross-sectional area.
  • the first end of the crankshaft 131 is located in the first cavity 111 and is connected to the rotor 132 and the stator 133 of the electric motor 13 in a mating manner, and the second end of the crankshaft 131 is connected to the compression assembly 12 .
  • the rotor 132 is sleeved on the first end of the crankshaft 131 , and the rotor 132 rotates to drive the crankshaft 131 to move, thereby realizing the movement of the compression assembly 12 .
  • the stator 133 is sleeved on the outer wall of the rotor 132 , and at least part of the outer wall of the stator 133 and the inner wall of the housing 10 have a space 134 , wherein the number of the space 134 is at least one.
  • the cross section of the crankshaft 131 is a cross section perpendicular to the axial direction of the crankshaft 131 .
  • the cross-sectional area of the spacer 134 on the cross-section of the crankshaft 131 is the first cross-sectional area
  • the cross-sectional area of the oil return passage 15 on the cross-section of the crankshaft 131 is the second cross-sectional area
  • the second cross-sectional area is less than or equal to 30% of the first cross-sectional area.
  • the lubricating oil in the first cavity 111 can flow to the oil return passage 15 through the interval 134, thereby ensuring that the lubricating oil in the The first cavity 111 , the oil return channel 15 and the second cavity 112 circulate smoothly in the first cavity 111 , which can also make it difficult for the oil inlet 151 of the oil return channel 15 to be exposed to the refrigerant, which can effectively improve the ventilation of the oil pool 14 , and further Reduce oil output.
  • the number of intervals 134 is at least two, and the first cross-sectional area is the sum of the cross-sectional areas of the at least two intervals 134; the number of oil return passages 15 is at least two, and the second cross-sectional area is at least two oil return passages The sum of the cross-sectional areas of 15.
  • the number of the spacers 134 is multiple
  • the first cross-sectional area is the sum of the cross-sectional areas of the multiple spacers 134
  • the number of the oil return passages 15 is multiple
  • the second cross-sectional area is the multiple oil return passages 15 .
  • the sum of the cross-sectional areas of the plurality of intervals 134 and the sum of the cross-sectional areas of the plurality of oil return passages 15 satisfy the above relationship, so that the lubricating oil can be ensured in the first cavity 111, the oil return passage 15 and the second oil return passage 15.
  • the two cavities 112 circulate and circulate smoothly.
  • the compression assembly 12 includes a cylinder 121 and a main bearing 122 , and the main bearing 122 is disposed on the side of the cylinder 121 facing the motor 13 . , part of the motor 13 is connected to the cylinder 121 through the main bearing 122; wherein the main bearing 122 and the cylinder 121 fixedly connected to the housing 10 is a fixed piece, and the oil return passage 15 is provided on the fixed piece.
  • the compression assembly 12 includes a cylinder 121 and a main bearing 122 , the main bearing 122 is disposed on the side of the cylinder 121 facing the motor 13 , and the second end of the crankshaft 131 is connected to the cylinder 121 through the main bearing 122 .
  • the main bearing 122 can be fixedly connected to the inner peripheral wall of the housing 10 by welding, and the cylinder 121 can also be fixedly connected to the inner peripheral wall of the housing 10 by welding, which can be selected according to actual assembly requirements.
  • the main bearing 122 or the cylinder 121 is fixedly connected to the housing 10 .
  • the cylinder 121 is not fixedly connected to the housing 10, and the oil return passage 15 is arranged on the main bearing 122, and the lubricating oil will flow from the first cavity 111 through the oil inlet 151 enters the oil return passage 15 and flows into the oil pool 14 through the gap between the cylinder 121 and the casing 10 .
  • the lubricating oil will enter the oil return passage 15 from the first cavity 111 through the gap between the main bearing 122 and the housing 10 , and finally flow into the oil pool 14 .
  • the compressor 1 further includes an exhaust pipe 16 and an air flow channel 17, wherein the exhaust pipe 16 is arranged on the casing 10 corresponding to the compression assembly 12; A cavity 111 communicates with the exhaust pipe 16 .
  • the compression assembly 12 can compress the refrigerant, a part of the refrigerant gas after the compression can be directly discharged through the exhaust pipe 16 , and another part of the refrigerant gas after the compression can enter through the airflow channel 17 into the first cavity 111 to cool the motor 13 , and then the refrigerant can enter the second cavity 112 and be discharged through the exhaust pipe 16 .
  • the compressor 1 further includes a base and a mounting bracket 19 .
  • the mounting bracket 19 is connected to the side of the base 18 facing the housing 10 , and the mounting bracket 19 is adapted to be connected to the housing 10 .
  • the base may be parallel to the crankshaft 131 , that is, the casing 10 is disposed horizontally on the base.
  • the base can also be arranged at a certain angle with the crankshaft 131 , that is, the housing 10 is obliquely arranged on the base.
  • the central axis of the motor 13 has the horizontal plane where it is located.
  • the central axis is at a certain angle with the horizontal plane, and the base can be tilted and fixed on the horizontal bottom surface, so that the central axis (crankshaft 131 ) of the motor 13 and the horizontal If the surfaces are parallel, the positional relationship between the oil inlet 151 on the compression assembly 12 in the compressor 1 and the first housing 101 should also satisfy the aforementioned relationship.
  • a refrigeration device comprising the compressor 1 provided in any of the above designs.
  • the refrigeration device provided by the present application includes the compressor 1 provided in any of the above designs, and thus has all the beneficial effects of the compressor, which will not be repeated here.
  • the refrigeration device further includes a casing, an installation cavity is formed in the casing, the compressor 1 is connected to the casing and located in the installation cavity, and the compressor 1 is protected by the casing to avoid the influence of the external environment on the compressor 1. , to ensure the accurate operation of compressor 1.
  • the refrigeration device may be a household appliance such as a refrigerator, an air conditioner, or the like.
  • the term “plurality” refers to two or more, unless expressly defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense.
  • “connected” can be a fixed connection, a detachable connection, or an integral connection;
  • “connected” can be It is directly connected or indirectly connected through an intermediary.
  • the specific meanings of the above terms in this application can be understood according to specific situations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Compressor (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

一种压缩机和制冷装置,压缩机(1)包括壳体(10)、压缩组件(12)、电机(13)、油池(14)和回油通道(15)。壳体(10)构造出腔体(11);压缩组件(12)的一部分与壳体(10)连接并位于腔体(11)内,压缩组件(12)将腔体(11)分为第一腔体(111)和第二腔体(112)。电机(13)的一部分设置在第一腔体(111)内,位于电机(13)的中心轴线下方的部分壳体(10)为第一壳体(101)。油池(14)设置在第二腔体(112)内。回油通道(15)设置在压缩组件(12)上,回油通道(15)具有朝向第一腔体(111)的进油口(151)。通过令进油口(151)内的分隔线与第一壳体(101)的内侧壁之间的距离与壳体(10)的内径满足预设关系,且位于分隔线下的通油区的面积与进油口(151)面积满足一定关系,从而使进油口(151)难以暴露在冷媒中,提升润滑油的回收效率,使得油面波动相对平稳,降低压缩机(1)的吐油量并提升压缩机(1)的可靠性和能效等级。

Description

压缩机和制冷装置
本申请要求于2020年06月30日提交中国国家知识产权局、申请号为“202010613519.2”、发明名称为“压缩机和制冷装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及压缩设备技术领域,具体而言,涉及一种压缩机和一种制冷装置。
背景技术
目前,在压缩机的结构中,压缩机的封闭壳体内形成有腔体,该腔体被压缩机中的压缩组件分隔为油腔和电机腔,常采用在压缩组件上设置回油通道来实现润滑油在油腔和电机腔之间的循环。然而,随着压缩机运行的工况变化,储存在封闭壳体的底部的润滑油的油面的波动很大,特别是电机腔的润滑油在压差作用下被压向油腔的过程中,电机腔内油面下降会导致部分冷媒随润滑油一起经回油通道进入油腔,这将导致润滑油的回收效率低,油腔油面波动大,进而导致吐油量增多。
发明内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的第一个方面在于,提出一种压缩机。
本申请的第二个方面在于,提出一种制冷装置。
有鉴于此,根据本申请的第一个方面,提供了一种压缩机,包括壳体、压缩组件、电机、油池和回油通道。其中,壳体构造出腔体;压缩组件的一部分与壳体固定连接并位于腔体内,压缩组件将腔体分隔为第一腔体和第二腔体。电机的一部分设置在第一腔体内;油池设置在第二腔体内;回油通道设置在压缩组件上,回油通道用于连通第一腔体和第二腔体。位于 电机的中心轴线下方的部分壳体为第一壳体。回油通道具有朝向第一腔体的进油口,进油口内具有平行电机的中心轴线所在水平面的分隔线。分隔线将进油口划分为两个区域,分隔线具有两侧,靠近电机的中心轴线的一侧,背离电机的中心轴线的一侧,位于分隔线背离电机的中心轴线的一侧为通油区。其中,分隔线与第一壳体的内侧壁之间的距离为第一相对距离,第一相对距离大于0mm并小于等于壳体的内径的12%,通油区的面积大于等于进油口面积的90%并小于等于进油口的面积。
本申请提供的压缩机包括壳体、压缩组件、电机、油池和回油通道,其中,壳体为密封壳体,部分压缩组件与壳体固定连接,具体地,部分压缩组件可以通过焊接的方式与壳体固定连接,从而可以确保压缩组件与壳体之间的可靠连接性能。压缩组件设置在腔体内并将腔体分隔为第一腔体和第二腔体,第一腔体位于压缩组件的左侧,第二腔体位于压缩组件的右侧,其中部分电机位于第一腔体内,油池设置在第二腔体中,油池内存储有润滑油。当压缩机工作时,压缩组件可以对冷媒进行压缩,压缩完成的其中一部分冷媒气体可以通过壳体上设置的排气结构排出,压缩完成的另一部分冷媒气体可以进入到第一腔体内对电机进行冷却,然后冷媒可以进入到第二腔体内并通过排气结构排出。本申请通过在压缩组件上设置回油通道,油池内的润滑油可以通过回油通道进行流通,当冷媒进入第一腔体内时,第一腔体内的压力升高,在压力的作用下第一腔体内的润滑油可以通过回油通道进入到第二腔体内,该设计结构简单合理且可以提升润滑油的回收效率,使得油池中油面波动相对平稳,进而降低压缩机的吐油量,使得油池能够供给压缩组件足有的油量,进一步提升压缩机的可靠性和能效等级。无论压缩机的工况如何,电机腔内的油都可以通过压缩组件上的回油通道回到油腔,保证油池对压缩部件的供油,并可以保证油腔储存油的稳定性,因此吐油量减少,压缩机性能表现有所改善。
此外,回油通道内的润滑油还可以进入到压缩组件内部以对压缩组件进行润滑,由此可以使得压缩机的运行更加顺畅。具体地,压缩机为卧式压缩机。
进一步地,将壳体划分为第一壳体和与第一壳体相连的第二壳体,第一壳 体和第二壳体均沿电机的中心轴线方向延伸,当壳体呈圆筒状时,则第一壳体和第二壳体均为部分圆弧段。其中,第一壳体位于电机的中心轴线的正下方。当卧式压缩机水平放置于地面时,则第一壳体的外侧壁与地面接触。其中,回油通道具有朝向第一腔体的进油口和朝向第二腔体的出油口,第一腔体内的润滑油经进油口进入回油通道内并经出油口排入油池中。在压缩机工作过程中,第一腔体内的整体压力高于第二腔体内的压力,在压差作用下,第一腔体内的润滑油会通过回油通道压入第二腔体中。然而,当压缩机处于高转速或低压比的工况下时,压缩机内部的流量较大、压缩组件两侧的压差较大,容易出现第一腔体内的油面低于回流通道的进油口的情形。而此时,在压差作用下,冷媒也会通过回油通道进入第二腔体,并在油池内的润滑油中形成大量气泡而影响引起油池油面的剧烈波动,进而会导致压缩机吐油量的增加,使得压缩机的性能表现下降。
通过大量实验观察发现,当第一相对距离与壳体的内径满足前述关系时,则回油通道的进油口难以暴露在冷媒中可以有效改善油池通气的情况,进而降低吐油量。进一步地,通油区的面积大于等于进油口面积的90%,并小于等于进油口的面积,可以进一步确保润滑油从进油口流向油池。
当通油区的面积等于进油口面积时,则分隔线位于进油口的最高点(最高点是指进油口内具有靠近电机的中心轴线所在水平面的最高点)。当通油区的面积小于进油口面积且大于等于进油口面积的90%时,则分隔线能够将进油口划分为两个区域,其中一个为位于分隔线背离电机的中心轴线一侧的通油区,润滑油会通过通油区进入油池。
进一步地,通过大量实验观察发现,分隔线与第一壳体的内侧壁之间的距离为第一相对距离H1,第一相对距离H1满足0mm<H1≤10mm时,可以大幅改善高频(恶劣)工况下的油循环率。使回油通道的进油口难以暴露在冷媒中可以有效改善油池通气的情况,进而降低吐油量。
值得说明的是,当分隔线并未位于第一壳体的正上方时,则分隔线与第一壳体的内侧壁之间的距离为分隔线与第一壳体的内侧壁所在平面之间的距离。
具体地,回油通道位于电机的中心轴线所在水平面的下方,润滑油受重力 作用则沉积在腔体的底部,位于底部的回油通道能够便于润滑油的流通。
进一步地,回油通道在电机的中心轴线的方向上呈扩口状,此时,出油口的面积大于进油口的面积。当然,回油通道也可以在电机的中心轴线的方向上各处横截面相等,只要回油通道的进油口与第一壳体之间的距离满足前述关系即可实现良好的油循环率。
在一种可能的设计中,进一步地,第一相对距离大于0mm并小于等于7mm。
在该设计中,令第一相对距离H1满足0mm<H1≤7mm能够进一步降低回油通道中进油口的最高点,使得进油口更加难以暴露在冷媒中,从而可以有效改善油池通气的情况,进而降低吐油量。
在一种可能的设计中,进一步地,进油口内具有远离电机的中心轴线所在水平面的顶点,顶点与第一壳体的内侧壁之间的距离为第二相对距离,第二相对距离大于等于0mm且小于等于3mm。
在该设计中,进油口内具有远离电机的中心轴线所在水平面的顶点,顶点与第一壳体的内侧壁之间的距离为第二相对距离,当进油口为闭合开口时,则第二相对距离H2大于0mm且小于等于3mm,即构成进油口的压缩组件的内侧壁与压缩组件的外侧壁相互独立,二者不存在连接关系,当进油口为非闭合开口时,则第二相对距离H2等于0mm,此时压缩组件的外侧壁与构成进油口的压缩组件的内侧壁相连接。在分隔线与第一壳体的内侧壁满足0mm<H1≤10mm、进油口上顶点与第一壳体的内侧壁之间的距离满足0mm≤H2≤3mm的基础上,对进油口上的分隔线、进油口上的顶点(重力方向上的最低点)进行限制,从而在确保润滑油的通流效果的前提下,使回油通道的进油口难以暴露在冷媒中可以有效改善油池通气的情况,进而降低吐油量。
在一种可能的设计中,进一步地,部分压缩组件朝靠近电机的中心轴线的方向凹陷以形成回油通道。
在该设计中,部分压缩组件朝靠近电机的中心轴线的方向凹陷,从而形成回油通道,即回油通道则具有沿电机轴线的进油口和出油口,同时,回油通道还具有朝向壳体的开口,此时,由于设有回油通道的这部分压缩组件固定连接在壳体上,此时进油口上的顶点与第一壳体的内侧壁之间的第二相对距离H2 为0mm。进一步地,回油通道在电机的曲轴的横截面上的投影呈圆形、三角形、多边形。
在一种可能的设计中,进一步地,电机包括曲轴、转子和定子,其中,曲轴的第一端位于第一腔体内,曲轴的第二端与压缩组件相连接。转子套设在曲轴的第一端;定子套设在转子的外壁上,至少部分定子的外侧壁与壳体的内侧壁之间具有间隔。其中,间隔在曲轴的横截面上的截面积为第一截面积,回油通道在曲轴的横截面上的截面积为第二截面积,第二截面积小于等于第一截面积的30%。
在该设计中,曲轴的第一端位于第一腔体内,并与电机的转子和定子配合连接,曲轴的第二端与压缩组件相连接,转子套设在曲轴的第一端上,转子转动以带动曲轴运动,进而实现压缩组件的运动。定子套设在转子的外壁上,且至少部分定子的外侧壁与壳体的内侧壁之间具有间隔,其中,间隔的数量为至少一个。曲轴的横截面为垂直于曲轴的轴向的截面。间隔在曲轴横截面上的截面积为第一截面积,而回油通道在曲轴的横截面上的截面积为第二截面积,第二截面积小于等于第一截面积的30%,当回油通道和间隔在曲轴的横截面上的截面积满足上述关系,则第一腔体内的润滑油可以经过间隔流向回油通道,从而能够确保润滑油在第一腔体、回油通道和第二腔体内顺利地循环流通,也能够使回油通道的进油口难以暴露在冷媒中可以有效改善油池通气的情况,进而降低吐油量。
在一种可能的设计中,进一步地,间隔的数量为至少两个,第一截面积为至少两个间隔的截面积之和;回油通道的数量为至少两个,第二截面积为至少两个回油通道的截面积之和。
在该设计中,间隔的数量为多个,第一截面积为多个间隔的截面积之和,回油通道的数量为多个,第二截面积为多个回油通道的截面积之和,令多个间隔的截面积之和与多个回油通道的截面积之和满足上述关系,从而能够确保润滑油在第一腔体、回油通道和第二腔体内顺利地循环流通。
在一种可能的设计中,进一步地,压缩组件包括气缸和主轴承,主轴承设置在气缸上朝向电机的一侧,部分电机穿过主轴承与气缸相连接。其中,主轴承和气缸中与壳体固定连接的一个为固定件,回油通道设置在固定件上。
在该设计中,压缩组件包括气缸和主轴承,主轴承设置在气缸上朝向电机的一侧,曲轴的第二端穿过主轴承与气缸相连接。其中,主轴承可以通过焊接连接的方式固定连接在壳体的内周壁上,气缸也可以通过焊接连接的方式固定连接在壳体的内周壁上,可以根据实际的装配需求来选择主轴承或气缸与壳体固定连接。若主轴承与壳体焊接连接时,则气缸并未于壳体固定连接,此时回油通道设置在主轴承上,润滑油会从第一腔体经进油口进入回油通道,并经气缸与壳体之间的间隙流入油池中。相反,若气缸与壳体固定连接,则润滑油会从第一腔体经主轴承与壳体之间的间隙,进入回油通道中,最后流入油池内。
在一种可能的设计中,进一步地,压缩机还包括排气管和气流通道,其中,排气管对应于压缩组件设置在壳体上;气流通道设置在压缩组件上,气流通道、第一腔体和排气管相连通。
在该设计中,当压缩机工作时,压缩组件可以对冷媒进行压缩,压缩完成的一部分冷媒气体可以直接通过排气管排出,压缩完成的另一部分冷媒气体可以通过气流通道进入到第一腔体内以对电机进行冷却,然后冷媒可以进到第二腔体内并通过排气管排出。
在一种可能的设计中,进一步地,压缩机还包括基座和安装架,安装架连接在机座上朝向壳体的一侧,安装架与壳体适配连接。
在该设计中,基座可以与曲轴相平行,即壳体水平设置在基座上。基座也可以与曲轴呈一定角度设置,即壳体倾斜设置在基座上。当壳体设置在基座上时,此时,电机的中心轴线具有其所在的水平面。而当壳体倾斜设置在基座上时,此时中心轴线与水平面呈一定夹角,此时可将基座倾斜固定在水平底面上,从而令电机的中心轴线(曲轴)与水平面相平行,则此时压缩机内压缩组件上的进油口、第一壳体之间的位置关系也应当满足前述关系。
根据本申请的第二个方面,提供了一种制冷装置,包括上述任一设计中所提供的压缩机。
本申请提供的制冷装置,包括上述任一设计中所提供的压缩机,因而具有该压缩机的全部有益效果,在此不再赘述。
进一步地,制冷装置还包括机壳,机壳内形成安装腔,压缩机连接在机壳上并位于安装腔内,通过机壳对压缩机进行保护,避免外界环境对压缩机造成 影响,确保压缩机的精准运行。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了根据本申请的一个实施例中压缩机的结构剖视图;
图2示出了根据本申请的另一个实施例中压缩机的结构剖视图;
图3示出了根据本申请的一个实施例中压缩机的结构示意图;
图4示出了根据本申请的另一个实施例中压缩机的结构示意图;
图5示出了根据本申请的又一个实施例中压缩机的结构示意图;
图6示出了根据本申请的又一个实施例中压缩机的结构示意图;
图7示出了根据本申请的又一个实施例中压缩机的结构示意图;
图8示出了根据本申请的又一个实施例中压缩机的结构示意图;
图9示出了根据本申请的一个实施例中压缩机中回油通道内气体流量的仿真曲线图;
图10示出了根据本申请的一个实施例中压缩机的吐油率的测试数据柱状图。
其中,图1至图8中附图标记与部件名称之间的对应关系为:
1压缩机,
10壳体,101第一壳体,
11腔体,111第一腔体,112第二腔体,
12压缩组件,121气缸,122主轴承,
13电机,131曲轴,132转子,133定子,134间隔,
14油池,
15回油通道,151进油口,
16排气管,
17气流通道,
18机座,
19安装架。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图10描述根据本申请一些实施例所提供的压缩机1和制冷装置。
实施例一
根据本申请的第一个方面,提供了一种压缩机1,如图1和图2所示,压缩机1包括壳体10、压缩组件12、电机13、油池14和回油通道15,其中,壳体10构造出腔体11;压缩组件12的一部分与壳体10固定连接并位于腔体11内,压缩组件12将腔体11分隔为第一腔体111和第二腔体112。电机13,电机13的一部分设置在第一腔体111内;油池14,设置在第二腔体112内;回油通道15,设置在压缩组件12上,回油通道15用于连通第一腔体111和第二腔体112。位于电机13的中心轴线下方的部分壳体10为第一壳体101;回油通道15具有朝向第一腔体111的进油口151,进油口151内具有平行电机13的中心轴线所在水平面的分隔线。分隔线将进油口划分为两个区域,分隔线具有两侧,靠近电机13的中心轴线的一侧,背离电机13的中心轴线的一侧,位于分隔线背离电机13的中心轴线的一侧为通油区。其中,分隔线与第一壳体101的内侧壁之间的距离为第一相对距离,第一相对距离大于0mm并小于等于壳体10的内径的12%,通油区的面积大于等于进油口151面积的90%并小于等于进油口151的面积。
本申请提供的压缩机1包括壳体10、压缩组件12、电机13、油池14和回油通道15,其中,壳体10为密封壳体10,部分压缩组件12与壳体 10固定连接。具体地,部分压缩组件12可以通过焊接的方式与壳体10固定连接,从而可以确保压缩组件12与壳体10之间的可靠连接性能。压缩组件12设置在腔体11内并将腔体11分隔为第一腔体111和第二腔体112,第一腔体111位于压缩组件12的左侧,第二腔体112位于压缩组件12的右侧,其中部分电机13位于第一腔体111内,油池14设置在第二腔体112中,油池14内存储有润滑油。当压缩机1工作时,压缩组件12可以对冷媒进行压缩,压缩完成的其中一部分冷媒气体可以通过壳体10上设置的排气结构排出,压缩完成的另一部分冷媒气体可以进入到第一腔体111内对电机13进行冷却,然后冷媒可以进入到第二腔体112内并通过排气结构排出。本申请通过在压缩组件12上设置回油通道15,油池14内的润滑油可以通过回油通道15进行流通,当冷媒进入第一腔体111内时,第一腔体111内的压力升高,在压力的作用下第一腔体111内的润滑油可以通过回油通道15进入到第二腔体112内。该设计结构简单合理且可以提升润滑油的回收效率,使得油池14中油面波动相对平稳,进而降低压缩机1的吐油量,使得油池14能够供给压缩组件12足有的油量,进一步提升压缩机1的可靠性和能效等级。无论压缩机1的工况如何,电机13腔内的油都可以通过压缩组件12上的回油通道15回到油腔,保证油池14对压缩部件的供油,并可以保证油腔储存油的稳定性,因此吐油量减少,压缩机1性能表现有所改善。
此外,回油通道15内的润滑油还可以进入到压缩组件12内部以对压缩组件12进行润滑,由此可以使得压缩机1的运行更加顺畅。具体地,压缩机1为卧式压缩机。
进一步地,如图3所示,将壳体10划分为第一壳体101和与第一壳体101相连的第二壳体10,第一壳体101和第二壳体10均沿电机13的中心轴线方向延伸,当壳体10呈圆筒状时,则第一壳体101和第二壳体10均为部分圆弧段。其中,第一壳体101位于电机13的中心轴线的正下方。当卧式压缩机水平放置于地面时,则第一壳体101的外侧壁与地面接触。其中,回油通道15具有朝向第一腔体111的进油口151和朝向第二腔体112的出油口,第一腔体111内的润滑油经进油口151进入回油通道15内并经 出油口排入油池14中。在压缩机1工作过程中,第一腔体111内的整体压力高于第二腔体112内的压力,在压差作用下,第一腔体111内的润滑油会通过回油通道15压入第二腔体112中。然而,当压缩机1处于高转速或低压比的工况下时,压缩机1内部的流量较大、压缩组件12两侧的压差较大,容易出现第一腔体111内的油面低于回流通道的进油口151的情形,而此时,在压差作用下,冷媒也会通过回油通道15进入第二腔体112,并在油池14内的润滑油中形成大量气泡而影响引起油池14油面的剧烈波动,进而会导致压缩机1吐油量的增加,使得压缩机1的性能表现下降。
如图9和图10所示,通过大量实验观察发现,令分隔线与第一壳体101的内侧壁之间的距离为第一相对距离H1,第一相对距离H1满足0mm<H1≤10mm时,可以大幅改善高频(恶劣)工况下的油循环率。使回油通道15的进油口151难以暴露在冷媒中可以有效改善油池14通气的情况,进而降低吐油量。
具体地,如图9所示,在仿真实验中,将压缩机1的令进油口151内的分隔线与第一壳体101的内侧壁之间的距离H1设为变量,从而形成3组对比实验,而压缩机1的其他运行参数均相同,压缩机1的运行参数具体包括:吸气温度为-1℃,吸气压力为0.38MPa,排气温度为70℃,排气压力为1.53MPa,转速60Hz。其中,当H1=22.3mm时,参照曲线C1可看出,在一段运行时长内,回油通道15内的气体流量(即冷媒气体的流量)呈现规律性起伏,也就是说,此时回油通道15内存在冷媒气体,这将会影响油池14内润滑油的油面平稳。当第一相对距离H1降低至17mm时,参照曲线C2可知,回油通道15内存在部分冷媒气体,然而,当第一相对距离H1=10mm时,此时参照曲线C3可知,回油通道15内气体流量趋向于0,也就是说,当回油通道15中进油口151的分隔线与第一壳体101的内侧壁之间的距离满足0mm<H1≤10mm时,则可以令回油通道15的进油口151难以暴露在冷媒中,从而可以有效改善油池14通气的情况,进而降低吐油量,可以大幅改善高频(恶劣)工况下的油循环率。
参照图10可知,当压缩机1运行频率为60Hz时,降低回油通道15中进油口151的分隔线与第一壳体101的内侧壁之间的距离H1,压缩机1 吐油率可以小幅度降低。而当压缩机1运行频率为90Hz时,当降低H1时,则可以发现,压缩机1的吐油率大幅下降。当H1=22.3mm时,压缩机1的吐油率为4.9,而当H1=10mm时,压缩机1的吐油率则降低为1.42,因此,降低回油通道15中进油口151的分隔线与第一壳体101的内侧壁之间的距离H1可以大幅改善压缩机1在高频(恶劣)工况下的油循环率。
当第一相对距离H1与壳体10的内径满足前述关系时,则回油通道15的进油口151难以暴露在冷媒中可以有效改善油池14通气的情况,进而降低压缩机的吐油量。进一步地,通油区的面积大于等于进油口151面积的90%,并小于等于进油口151的面积,可以进一步确保润滑油从进油口151流向油池14。
当通油区的面积等于进油口151面积时,则分隔线位于进油口151的最高点(最高点是指进油口151内具有靠近电机13的中心轴线所在水平面的最高点)。当通油区的面积小于进油口151面积且大于等于进油口151面积的90%时,则分隔线能够将进油口151划分为两个区域,其中一个为位于分隔线背离电机的中心轴线一侧的通油区,润滑油会通过通油区进入油池14。
值得说明的是,当分隔线并未位于第一壳体101的正上方时,则分隔线与第一壳体101的内侧壁之间的距离为分隔线与第一壳体101的内侧壁所在平面之间的距离。
具体地,回油通道15位于电机13的中心轴线所在水平面的下方,润滑油受重力作用则沉积在腔体11的底部,位于底部的回油通道15能够便于润滑油的流通。
进一步地,回油通道15在电机13的中心轴线的方向上呈扩口状,此时,出油口的面积大于进油口151的面积。当然,回油通道15也可以在电机13的中心轴线的方向上各处横截面相等,只要回油通道15的进油口151与第一壳体101之间的距离满足前述关系即可实现良好的油循环率。
进一步地,第一相对距离大于0mm并小于等于7mm。
在该实施例中,令第一相对距离H1满足0mm<H1≤7mm能够进一步降低回油通道15中进油口151的最高点,使得进油口151更加难以暴露在 冷媒中,从而可以有效改善油池14通气的情况,进而降低吐油量。
进一步地,如图3所示,进油口151内具有远离电机13的中心轴线所在水平面的顶点,顶点与第一壳体101的内侧壁之间的距离为第二相对距离,第二相对距离大于等于0mm且小于等于3mm。
在该实施例中,如图4和图5所示,进油口151内具有远离电机13的中心轴线所在水平面的顶点,顶点与第一壳体101的内侧壁之间的距离为第二相对距离。当进油口151为闭合开口时,如图6和图7所示,则第二相对距离H2大于0mm且小于等于3mm,即构成进油口151的压缩组件12的内侧壁与压缩组件12的外侧壁相互独立,二者不存在连接关系。当进油口151为非闭合开口时,如图4和图5所示,则第二相对距离H2等于0mm,此时压缩组件12的外侧壁与构成进油口151的压缩组件12的内侧壁相连接。在分隔线与第一壳体101的内侧壁满足0mm<H1≤10mm、进油口151上顶点与第一壳体101的内侧壁之间的距离满足0mm≤H2≤3mm的基础上,对进油口151上的分隔线、进油口151上的顶点(重力方向上的最低点)进行限制,从而在确保润滑油的通流效果的前提下,使回油通道15的进油口151难以暴露在冷媒中可以有效改善油池14通气的情况,进而降低吐油量。
进一步地,部分压缩组件12朝靠近电机13的中心轴线的方向凹陷以形成回油通道15。
在该实施例中,部分压缩组件12朝靠近电机13的中心轴线的方向凹陷,从而形成回油通道15,即回油通道15则具有沿电机13轴线的进油口151和出油口,同时,回油通道15还具有朝向壳体10的开口。此时,由于设有回油通道15的这部分压缩组件12固定连接在壳体10上,此时进油口151上的顶点与第一壳体101的内侧壁之间的第二相对距离H2为0mm。进一步地,回油通道15在电机13的曲轴131的横截面上的投影呈圆形、三角形、多边形。
实施例二
与前述实施例一不同的是,本实施例中对电机13的结构进行具体说明,电机13包括曲轴131、转子132和定子133,其中,曲轴131的第一 端位于第一腔体111内,曲轴131的第二端与压缩组件12相连接;转子132套设在曲轴131的第一端;定子133套设在转子132的外壁上,至少部分定子133的外侧壁与壳体10的内侧壁之间具有间隔134;其中,间隔134在曲轴131的横截面上的截面积为第一截面积,回油通道15在曲轴131的横截面上的截面积为第二截面积,第二截面积小于等于第一截面积的30%。
在该实施例中,如图8所示,曲轴131的第一端位于第一腔体111内,并与电机13的转子132和定子133配合连接,曲轴131的第二端与压缩组件12相连接,转子132套设在曲轴131的第一端上,转子132转动以带动曲轴131运动,进而实现压缩组件12的运动。定子133套设在转子132的外壁上,且至少部分定子133的外侧壁与壳体10的内侧壁之间具有间隔134,其中,间隔134的数量为至少一个。曲轴131的横截面为垂直于曲轴131的轴向的截面。间隔134在曲轴131横截面上的截面积为第一截面积,而回油通道15在曲轴131的横截面上的截面积为第二截面积,第二截面积小于等于第一截面积的30%,当回油通道15和间隔134在曲轴131的横截面上的截面积满足上述关系,则第一腔体111内的润滑油可以经过间隔134流向回油通道15,从而能够确保润滑油在第一腔体111、回油通道15和第二腔体112内顺利地循环流通,也能够使回油通道15的进油口151难以暴露在冷媒中可以有效改善油池14通气的情况,进而降低吐油量。
进一步地,间隔134的数量为至少两个,第一截面积为至少两个间隔134的截面积之和;回油通道15的数量为至少两个,第二截面积为至少两个回油通道15的截面积之和。
在该实施例中,间隔134的数量为多个,第一截面积为多个间隔134的截面积之和,回油通道15的数量为多个,第二截面积为多个回油通道15的截面积之和,令多个间隔134的截面积之和与多个回油通道15的截面积之和满足上述关系,从而能够确保润滑油在第一腔体111、回油通道15和第二腔体112内顺利地循环流通。
实施例三
与前述实施例不同的是,本实施例中对压缩组件12的具体结构进行说 明,进一步地,压缩组件12包括气缸121和主轴承122,主轴承122设置在气缸121上朝向电机13的一侧,部分电机13穿过主轴承122与气缸121相连接;其中,主轴承122和气缸121中与壳体10固定连接的一个为固定件,回油通道15设置在固定件上。
在该实施例中,压缩组件12包括气缸121和主轴承122,主轴承122设置在气缸121上朝向电机13的一侧,曲轴131的第二端穿过主轴承122与气缸121相连接。其中,主轴承122可以通过焊接连接的方式固定连接在壳体10的内周壁上,气缸121也可以通过焊接连接的方式固定连接在壳体10的内周壁上,可以根据实际的装配需求来选择主轴承122或气缸121与壳体10固定连接。若主轴承122与壳体10焊接连接时,则气缸121并未于壳体10固定连接,此时回油通道15设置在主轴承122上,润滑油会从第一腔体111经进油口151进入回油通道15,并经气缸121与壳体10之间的间隙流入油池14中。相反,若气缸121与壳体10固定连接,则润滑油会从第一腔体111经主轴承122与壳体10之间的间隙,进入回油通道15中,最后流入油池14内。
进一步地,压缩机1还包括排气管16和气流通道17,其中,排气管16对应于压缩组件12设置在壳体10上;气流通道17设置在压缩组件12上,气流通道17、第一腔体111和排气管16相连通。
在该实施例中,当压缩机1工作时,压缩组件12可以对冷媒进行压缩,压缩完成的一部分冷媒气体可以直接通过排气管16排出,压缩完成的另一部分冷媒气体可以通过气流通道17进入到第一腔体111内以对电机13进行冷却,然后冷媒可以进到第二腔体112内并通过排气管16排出。
进一步地,压缩机1还包括基座和安装架19,安装架19连接在机座18上朝向壳体10的一侧,安装架19与壳体10适配连接。
在该实施例中,基座可以与曲轴131相平行,即壳体10水平设置在基座上。基座也可以与曲轴131呈一定角度设置,即壳体10倾斜设置在基座上。当壳体10设置在基座上时,此时,电机13的中心轴线具有其所在的水平面。而当壳体10倾斜设置在基座上时,此时中心轴线与水平面呈一定夹角,此时可将基座倾斜固定在水平底面上,从而令电机13的中心轴线(曲 轴131)与水平面相平行,则此时压缩机1内压缩组件12上的进油口151、第一壳体101之间的位置关系也应当满足前述关系。
实施例四
根据本申请的第二个方面,提供了一种制冷装置,包括上述任一设计中所提供的压缩机1。
本申请提供的制冷装置,包括上述任一设计中所提供的压缩机1,因而具有该压缩机的全部有益效果,在此不再赘述。
进一步地,制冷装置还包括机壳,机壳内形成安装腔,压缩机1连接在机壳上并位于安装腔内,通过机壳对压缩机1进行保护,避免外界环境对压缩机1造成影响,确保压缩机1的精准运行。
进一步地,制冷装置可以为冰箱、空调等家电装置。
在本申请中,术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (12)

  1. 一种压缩机,其中,包括:
    壳体,所述壳体构造出腔体;
    压缩组件,所述压缩组件的一部分与所述壳体固定连接并位于所述腔体内,所述压缩组件将所述腔体分隔为第一腔体和第二腔体;
    电机,所述电机的一部分设置在所述第一腔体内,位于所述电机的中心轴线下方的部分壳体为第一壳体;
    油池,设置在所述第二腔体内;
    回油通道,设置在所述压缩组件上,用于连通所述第一腔体和所述第二腔体;
    所述回油通道具有朝向所述第一腔体的进油口,所述进油口内具有平行所述电机的中心轴线所在水平面的分隔线;
    其中,所述分隔线与所述第一壳体的内侧壁之间的距离为第一相对距离;
    所述第一相对距离大于0mm并小于等于所述壳体的内径的12%。
  2. 根据权利要求1所述的压缩机,其中,
    所述进油口包括位于所述分隔线背离所述电机的中心轴线一侧的通油区,所述通油区的面积大于等于所述进油口面积的90%并小于等于所述进油口的面积。
  3. 根据权利要求2所述的压缩机,其中,
    所述第一相对距离大于0mm并小于等于10mm。
  4. 根据权利要求1所述的压缩机,其中,
    所述第一相对距离大于0mm并小于等于7mm。
  5. 根据权利要求1所述的压缩机,其中,
    所述进油口内具有远离所述电机的中心轴线所在水平面的顶点,所述顶点与所述第一壳体的内侧壁之间的距离为第二相对距离,所述第二相对距离大于等于0mm且小于等于3mm。
  6. 根据权利要求5所述的压缩机,其中,
    部分所述压缩组件朝靠近所述电机的中心轴线的方向凹陷以形成所述回 油通道。
  7. 根据权利要求1至6中任一项所述的压缩机,其中,所述电机包括:
    曲轴,所述曲轴的第一端位于所述第一腔体内,所述曲轴的第二端与所述压缩组件相连接;
    转子,套设在所述曲轴的第一端;
    定子,套设在所述转子的外壁上,至少部分所述定子的外侧壁与所述壳体的内侧壁之间具有间隔;
    其中,所述间隔在所述曲轴的横截面上的截面积为第一截面积,所述回油通道在所述曲轴的横截面上的截面积为第二截面积,所述第二截面积小于等于所述第一截面积的30%。
  8. 根据权利要求7所述的压缩机,其中,
    所述间隔的数量为至少两个,所述第一截面积为至少两个所述间隔的截面积之和;
    所述回油通道的数量为至少两个,所述第二截面积为至少两个所述回油通道的截面积之和。
  9. 根据权利要求1至6中任一项所述的压缩机,其中,所述压缩组件包括:
    气缸;
    主轴承,设置在所述气缸上朝向所述电机的一侧,部分所述电机穿过所述主轴承与所述气缸相连接;
    其中,所述主轴承和所述气缸中与所述壳体固定连接的一个为固定件,所述回油通道设置在所述固定件上。
  10. 根据权利要求1至6中任一项所述的压缩机,其中,所述压缩机还包括:
    排气管,对应于所述压缩组件设置在所述壳体上;
    气流通道,设置在所述压缩组件上,所述气流通道、所述第一腔体和所述排气管相连通。
  11. 根据权利要求1至6中任一项所述的压缩机,其中,所述压缩机还包括:
    机座;
    安装架,连接在所述机座上朝向所述壳体的一侧,所述安装架与所述壳体适配连接。
  12. 一种制冷装置,其中,包括:
    机壳,所述机壳具有安装腔;以及
    如权利要求1至11中任一项所述的压缩机,所述压缩机与所述机壳相连并位于所述安装腔内。
PCT/CN2020/136363 2020-06-30 2020-12-15 压缩机和制冷装置 WO2022001019A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20937175.6A EP3964712A4 (en) 2020-06-30 2020-12-15 COMPRESSOR AND REFRIGERATION DEVICE
US17/561,149 US11971036B2 (en) 2020-06-30 2021-12-23 Compressor and refrigeration device with an oil return channel having a first relative distance to an inner-side wall

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010613519.2 2020-06-30
CN202010613519.2A CN111828326B (zh) 2020-06-30 2020-06-30 压缩机和制冷装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/561,149 Continuation US11971036B2 (en) 2020-06-30 2021-12-23 Compressor and refrigeration device with an oil return channel having a first relative distance to an inner-side wall

Publications (1)

Publication Number Publication Date
WO2022001019A1 true WO2022001019A1 (zh) 2022-01-06

Family

ID=72900722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/136363 WO2022001019A1 (zh) 2020-06-30 2020-12-15 压缩机和制冷装置

Country Status (4)

Country Link
US (1) US11971036B2 (zh)
EP (1) EP3964712A4 (zh)
CN (1) CN111828326B (zh)
WO (1) WO2022001019A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246195A1 (zh) * 2022-06-22 2023-12-28 安徽威灵汽车部件有限公司 电动压缩机、空调系统和车辆

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111828326B (zh) 2020-06-30 2022-03-01 广东美芝精密制造有限公司 压缩机和制冷装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5222885A (en) * 1992-05-12 1993-06-29 Tecumseh Products Company Horizontal rotary compressor oiling system
CN1445460A (zh) * 2002-03-18 2003-10-01 三洋电机株式会社 卧式旋转压缩机
CN1626819A (zh) * 2003-12-12 2005-06-15 乐金电子(天津)电器有限公司 卧式旋转型压缩机的供油装置
CN201202646Y (zh) * 2008-05-22 2009-03-04 浙江博阳压缩机有限公司 卧式旋转式压缩机
CN204003456U (zh) * 2014-04-16 2014-12-10 广东美芝制冷设备有限公司 卧式压缩机
CN106894999A (zh) * 2015-12-21 2017-06-27 珠海凌达压缩机有限公司 卧式压缩机和制冷装置
CN209523874U (zh) * 2019-02-28 2019-10-22 广东美芝制冷设备有限公司 低压壳体双缸卧式旋转压缩机及具有其的制冷循环装置
CN111828326A (zh) * 2020-06-30 2020-10-27 广东美芝精密制造有限公司 压缩机和制冷装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8900780A (pt) * 1989-02-17 1990-10-02 Brasil Compressores Sa Sistema de lubrificacao para compressor hermetico rotativo de eixo horizontal
JP5150564B2 (ja) * 2009-06-22 2013-02-20 日立アプライアンス株式会社 横置型密閉式圧縮機
CN201982306U (zh) * 2010-12-31 2011-09-21 珠海格力电器股份有限公司 一种卧式旋转压缩机
CN102953999A (zh) * 2011-08-26 2013-03-06 乐金电子(天津)电器有限公司 一种旋转式压缩机
CN209654233U (zh) * 2019-02-21 2019-11-19 浙江博阳压缩机有限公司 一种卧式旋转式压缩机
CN110513293A (zh) * 2019-09-05 2019-11-29 珠海凌达压缩机有限公司 一种泄油泄压结构、涡旋压缩机及空调器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5222885A (en) * 1992-05-12 1993-06-29 Tecumseh Products Company Horizontal rotary compressor oiling system
CN1445460A (zh) * 2002-03-18 2003-10-01 三洋电机株式会社 卧式旋转压缩机
CN1626819A (zh) * 2003-12-12 2005-06-15 乐金电子(天津)电器有限公司 卧式旋转型压缩机的供油装置
CN201202646Y (zh) * 2008-05-22 2009-03-04 浙江博阳压缩机有限公司 卧式旋转式压缩机
CN204003456U (zh) * 2014-04-16 2014-12-10 广东美芝制冷设备有限公司 卧式压缩机
CN106894999A (zh) * 2015-12-21 2017-06-27 珠海凌达压缩机有限公司 卧式压缩机和制冷装置
CN209523874U (zh) * 2019-02-28 2019-10-22 广东美芝制冷设备有限公司 低压壳体双缸卧式旋转压缩机及具有其的制冷循环装置
CN111828326A (zh) * 2020-06-30 2020-10-27 广东美芝精密制造有限公司 压缩机和制冷装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3964712A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246195A1 (zh) * 2022-06-22 2023-12-28 安徽威灵汽车部件有限公司 电动压缩机、空调系统和车辆

Also Published As

Publication number Publication date
CN111828326B (zh) 2022-03-01
EP3964712A1 (en) 2022-03-09
US20220112897A1 (en) 2022-04-14
US11971036B2 (en) 2024-04-30
EP3964712A4 (en) 2022-08-10
CN111828326A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
WO2022001019A1 (zh) 压缩机和制冷装置
JP2005214617A (ja) 横流ファンを有する冷蔵庫
WO2019076080A1 (zh) 一种带润滑结构的涡旋压缩机
EP2940300B1 (en) Hermetic compressor and refrigeration device with same
WO2023060816A1 (zh) 一种低压腔旋转式压缩机及空调器
JP2008101532A (ja) 圧縮機
WO2012090345A1 (ja) 冷媒圧縮機
KR101297743B1 (ko) 드라이 펌프
WO2023035382A1 (zh) 转子组件及压缩机
CN103807144B (zh) 压缩机
JP2017053280A (ja) スクリュー圧縮機
CN105114341A (zh) 离心压缩机及具有其的房间空调器
CN212838343U (zh) 压缩组件和压缩机
JP5184402B2 (ja) 液体潤滑式圧縮機
JP2020159214A (ja) 圧縮機及びシェルアンドチューブ型熱交換器
WO2023173638A1 (zh) 气缸、压缩机及制冷/制热系统
CN110848135B (zh) 卧式压缩机及热交换工作设备
CN114542472B (zh) 旋转式压缩机及制冷设备
CN218581813U (zh) 压缩机
CN108443151B (zh) 双级压差供油卧式旋转压缩机
CN220791495U (zh) 一种水冷却及隔热保护的无油涡旋空压机
CN216666029U (zh) 一种高速离心式压缩机用叶顶间隙优化结构
CN218816998U (zh) 一种压缩机泵体及压缩机
CN201590695U (zh) 一种涡旋压缩机及其电机转子
JP3572959B2 (ja) 横置形回転式圧縮機

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020937175

Country of ref document: EP

Effective date: 20211201

NENP Non-entry into the national phase

Ref country code: DE