WO2022000988A1 - 电梯制动控制系统 - Google Patents

电梯制动控制系统 Download PDF

Info

Publication number
WO2022000988A1
WO2022000988A1 PCT/CN2020/133310 CN2020133310W WO2022000988A1 WO 2022000988 A1 WO2022000988 A1 WO 2022000988A1 CN 2020133310 W CN2020133310 W CN 2020133310W WO 2022000988 A1 WO2022000988 A1 WO 2022000988A1
Authority
WO
WIPO (PCT)
Prior art keywords
contactor
power supply
elevator
brakes
phase
Prior art date
Application number
PCT/CN2020/133310
Other languages
English (en)
French (fr)
Inventor
王力虎
石岩峰
周双林
于杰
贾自飞
黄杰
Original Assignee
迅达(中国)电梯有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 迅达(中国)电梯有限公司 filed Critical 迅达(中国)电梯有限公司
Publication of WO2022000988A1 publication Critical patent/WO2022000988A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66BELEVATORS; ESCALATORS OR MOVING WALKWAYS
    • B66B5/00Applications of checking, fault-correcting, or safety devices in elevators
    • B66B5/02Applications of checking, fault-correcting, or safety devices in elevators responsive to abnormal operating conditions
    • B66B5/16Braking or catch devices operating between cars, cages, or skips and fixed guide elements or surfaces in hoistway or well
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D5/00Braking or detent devices characterised by application to lifting or hoisting gear, e.g. for controlling the lowering of loads
    • B66D5/02Crane, lift hoist, or winch brakes operating on drums, barrels, or ropes
    • B66D5/24Operating devices
    • B66D5/30Operating devices electrical

Definitions

  • the invention relates to an elevator braking control system.
  • elevators As a vertical means of transportation, elevators have always attracted public attention for their safety and comfort.
  • the elevator drive host will lose power due to a sudden loss of power, the brake will also lose power and release instantaneously, elevator traction media (such as wire rope, steel belt) , plastic-coated steel wire rope, etc.), especially the large frictional force between the steel belt and the traction shaft of the driving main engine, the car will stop immediately, and the deceleration of the elevator car will be large, which will cause the passengers in the car to feel very uncomfortable. Discomfort and, in severe cases, injury.
  • elevator traction media such as wire rope, steel belt
  • plastic-coated steel wire rope etc.
  • the purpose of the present invention is to solve at least one aspect of the above-mentioned problems and deficiencies in the prior art.
  • an elevator braking control system comprising: two sets of brakes, wherein one set of brakes is powered by an elevator three-phase AC power supply; a power supply device, the other set of brakes of the two sets of brakes is powered by The power supply device supplies power; a detection unit, connected to the elevator three-phase AC power supply, is used to detect whether the elevator three-phase AC power supply is powered off or has a phase loss; and a control unit is used to control the other group of brakes and all The electrical connection between the power supply devices, when the detection unit detects that the three-phase AC power supply of the elevator is powered off or is out of phase, the control unit does not immediately cut off the connection between the other group of brakes and the power supply device. the electrical connection between the other set of brakes and the power supply device is cut off after a predetermined time delay.
  • the detection unit includes a phase sequence relay, the phase sequence relay has three input terminals and a normally closed contact; the three input terminals of the phase sequence relay are respectively electrically Connect to the three live wires of the three-phase AC power supply of the elevator; when the three-phase AC power supply of the elevator is powered off or has a phase loss, the phase sequence relay acts, so that the normally closed contact of the phase sequence relay is closed from The state switches to the disconnected state.
  • the control unit includes: a first contactor including a coil and two normally closed contacts; a power-on delay relay including a coil and a normally open contact contact; and a second contactor, comprising a coil and at least one normally closed contact, the normally closed contact of the phase sequence relay is electrically connected to the power supply after being connected in series with the coil of the first contactor device, the coil of the power-on delay relay is connected in series with one normally closed contact of the first contactor and then electrically connected to the power supply device, and the other normally closed contact of the first contactor, all
  • the normally open contact of the power-on delay relay and the coil of the second contactor are connected in series to the power supply device, and the normally closed contact of the second contactor is connected in series to the other group of brakes on the electrical connection line with the power supply device.
  • control unit further comprises a diode bridge rectifier, the diode bridge rectifier is connected in series between the power supply device and the other group of brakes, for connecting all The AC power output by the power supply device is converted into the DC power required by the other group of brakes.
  • two input terminals of the diode bridge rectifier are respectively connected to two output terminals of the power supply device, and two terminals of the other group of brakes are respectively connected to the two output terminals of the diode bridge rectifier.
  • the second contactor includes two normally closed contacts, and one of the two normally closed contacts of the second contactor is connected in series with the other between one terminal of the group brake and one output terminal of the diode bridge rectifier; the other of the two normally closed contacts of the second contactor is connected in series with the other connection of the other group of brakes terminal and the other output terminal of the diode bridge rectifier.
  • control unit further includes a third contactor, the third contactor includes a coil and at least one normally closed contact; the coil of the second contactor After being connected in parallel with the coil of the third contactor, it is connected in series with the normally open contact of the power-on delay relay and another normally closed contact of the first contactor; the normally closed contact of the third contactor A contact is connected in series between the other set of brakes and the diode bridge rectifier.
  • the third contactor includes a coil and at least one normally closed contact; the coil of the second contactor After being connected in parallel with the coil of the third contactor, it is connected in series with the normally open contact of the power-on delay relay and another normally closed contact of the first contactor; the normally closed contact of the third contactor A contact is connected in series between the other set of brakes and the diode bridge rectifier.
  • the third contactor includes two normally closed contacts, and one of the two normally closed contacts of the third contactor is connected in series with the other between one terminal of the group brake and one output terminal of the diode bridge rectifier; the other of the two normally closed contacts of the third contactor is connected in series with the other connection of the other group of brakes terminal and the other output terminal of the diode bridge rectifier.
  • the normally closed contacts of the second contactor and the third contactor are in a closed state, and the other group of brakes The coil is charged, so that the other set of brakes are in a released non-braking state.
  • the coil of the first contactor is electrified, and the two normally closed contacts of the first contactor are charged.
  • the contact of the power-on delay relay is in the disconnected state, the power-on delay relay does not count when the power is lost, the normally-open contact of the power-on delay relay is in the disconnected state, and the coils of the second contactor and the third contactor are disconnected. Electrically, the normally closed contacts of the second contactor and the third contactor are in a closed state.
  • the second contactor and The normally closed contacts of the third contactor are still in a closed state, and the coils of the other group of brakes are still electrified, so that the other group of brakes are still in a released non-braking state.
  • the coil of the first contactor is de-energized, and the first contact
  • the power-on delay relay is electrified and starts timing
  • the normally-open contacts of the power-on delay relay are still in an open state
  • the second contactor and the first contactor are in the open state.
  • the coils of the three contactors are de-energized, and the normally closed contacts of the second contactor and the third contactor are still in a closed state.
  • the second contactor and the third contactor when the three-phase AC power supply of the elevator is powered off or has a phase loss and the duration of the power failure or phase loss reaches the predetermined time, the second contactor and the third contactor The normally closed contacts of the contactor are switched to an open state, and the coils of the other set of brakes are de-energized, so that the other set of brakes are in a released braking state.
  • the coil of the first contactor is de-energized, and the The two normally closed contacts of the first contactor are in a closed state, the normally open contacts of the power-on delay relay are switched to a closed state, and the coils of the second contactor and the third contactor are charged, so The normally closed contacts of the second contactor and the third contactor are switched to an open state.
  • the power supply device includes an energy storage device capable of storing electrical energy, so that power can still be supplied to the other group of brakes when the three-phase AC power supply of the elevator is cut off or out of phase .
  • the power supply device includes at least one of an uninterruptible power supply, a battery, an electrolytic capacitor, and a super capacitor.
  • the power supply device is powered by the elevator three-phase AC power supply, and two input ends of the power supply device are respectively connected to a live wire and a live wire of the elevator three-phase AC power supply. a zero line.
  • the elevator braking control system further includes a circuit breaker, the circuit breaker is directly connected to the two output ends of the power supply device and connected in series with the other group of brakes between the power supply device and the power supply device; when the output current or voltage of the power supply device is abnormal, the circuit breaker cuts off the electrical connection between the other group of brakes and the power supply device.
  • Fig. 1 shows a schematic diagram of an elevator braking control system according to an exemplary embodiment of the present invention, which shows the situation when the three-phase AC power supply of the elevator is normal;
  • Fig. 2 shows a schematic diagram of an elevator braking control system according to an exemplary embodiment of the present invention, which shows that the three-phase AC power supply of the elevator has a power failure or phase loss, but the duration of the power failure or phase failure has not reached the situation at the time of booking;
  • Fig. 3 shows a schematic diagram of an elevator braking control system according to an exemplary embodiment of the present invention, wherein it shows that the three-phase AC power supply of the elevator has a power failure or phase loss, and the duration of the power failure or phase failure reaches a predetermined time situation at the time.
  • an elevator braking control system comprising: two sets of brakes, wherein one set of brakes is powered by a three-phase AC power supply of the elevator; a power supply device, the other set of brakes in the two sets of brakes powered by the power supply device; a detection unit, connected to the elevator three-phase AC power supply, for detecting whether the elevator three-phase AC power supply is powered off or phase-lost; and a control unit for controlling the other group of brakes electrical connection with the power supply.
  • the control unit When the detection unit detects that the three-phase AC power supply of the elevator is powered off or is out of phase, the control unit does not immediately cut off the electrical connection between the other group of brakes and the power supply device, but delays a predetermined time The electrical connection between the other set of brakes and the power supply is only cut off after a period of time.
  • Fig. 1 shows a schematic diagram of an elevator braking control system according to an exemplary embodiment of the present invention, which shows the situation when the three-phase AC power supply of the elevator is normal;
  • Fig. 2 shows an elevator according to an exemplary embodiment of the present invention The schematic diagram of the braking control system, which shows the situation when the three-phase AC power supply of the elevator has a power failure or phase loss, but the duration of the power failure or phase failure has not reached a predetermined time;
  • Fig. 3 shows an example according to the present invention The schematic diagram of the elevator braking control system of the exemplary embodiment, which shows the situation when the three-phase AC power supply of the elevator has a power failure or phase loss, and the duration of the power failure or phase failure reaches a predetermined time.
  • the elevator braking control system mainly includes two sets of brakes B1, B2, a power supply device 10, a detection unit (will be described in detail later) and a control unit (slightly described in detail). will be described in detail later).
  • one set of brakes B1 in the two sets of brakes B1, B2 is powered by the elevator three-phase AC power supply.
  • the other set of brakes B2 of the two sets of brakes B1 , B2 is powered by the power supply device 10 .
  • the three-phase AC power supply for the elevator includes three live wires L1 , L2 , L3 and one neutral wire N.
  • the three inputs of the traction machine M of the elevator are respectively connected to the three live wires L1, L2 and L3 of the three-phase AC power supply of the elevator, and are powered by the three-phase AC power supply of the elevator.
  • the two input ends of a group of brakes B1 are respectively connected to the two output ends of a first diode bridge rectifier UR1, and the two input ends of the first diode bridge rectifier UR1 are respectively connected to the elevator three-phase AC power supply One of the live wire L1 and the neutral wire N.
  • the first diode bridge rectifier UR1 is used to convert the alternating current into direct current suitable for the brake.
  • the detection unit is connected to the three-phase AC power supply of the elevator for detecting whether the three-phase AC power supply of the elevator is powered off or lacks phase.
  • the control unit is used to control the electrical connection between the other set of brakes B2 and the power supply device 10 .
  • the control unit when the detection unit detects that the three-phase AC power supply of the elevator is powered off or is out of phase, the control unit does not immediately cut off the connection between the other group of brakes B2 and the power supply device 10 The electrical connection between the other group of brakes B2 and the power supply device 10 is cut off after a predetermined time delay. In this way, within a period of time when the three-phase AC power supply of the elevator is just cut off or is out of phase, only one set of brakes B1 brakes the car, which can greatly reduce the deceleration of the car during braking, so that the elevator car can be braked. The smooth braking of the car improves the safety and comfort of the elevator.
  • the detection unit includes a phase sequence relay KPH, which has three input terminals P1, P2, P3 and a normally closed contact KPH+.
  • the three input terminals P1, P2 and P3 of the phase sequence relay KPH are respectively electrically connected to the three live wires L1, L2 and L3 of the three-phase AC power supply of the elevator.
  • the phase sequence relay KPH acts, so that the normally closed contact KPH+ of the phase sequence relay KPH switches from the closed state to the open state.
  • the control unit includes: a first contactor K1, including a coil and two normally closed contacts K1+; a power-on delay relay KT, including a coil and a normally open contact KT-; and a second contactor K2, including a coil and at least one normally closed contact K2+.
  • the normally closed contact KPH+ of the phase sequence relay KPH is connected in series with the coil of the first contactor K1 and is electrically connected to the power supply device 10 .
  • the coil of the power-on delay relay KT is connected to the power supply device 10 in series with a normally closed contact K1+ of the first contactor K1.
  • the other normally closed contact K1+ of the first contactor K1, the normally open contact KT- of the power-on delay relay KT and the coil of the second contactor K2 are connected in series to the power supply device 10 .
  • the normally closed contacts K2+ of the second contactor K2 are connected in series on the electrical connection lines between the other group of brakes B2 and the power supply device 10 .
  • control unit further includes a diode bridge rectifier UR2, which is connected in series between the power supply device 10 and another set of brakes B2 for connecting the The AC power output by the power supply device 10 is converted into DC power required by the other group of brakes B2.
  • a diode bridge rectifier UR2 which is connected in series between the power supply device 10 and another set of brakes B2 for connecting the The AC power output by the power supply device 10 is converted into DC power required by the other group of brakes B2.
  • the two input terminals of the diode bridge rectifier UR2 are respectively connected to the two output terminals of the power supply device 10 , and the two terminals D1 of the other group of brakes B2 are connected respectively. , D2 are respectively connected to the two output terminals of the diode bridge rectifier UR2.
  • the second contactor K2 includes two normally closed contacts K2+, and one of the two normally closed contacts K2+ of the second contactor K2 is connected in series Between a terminal D1 of the other set of brakes B2 and an output of the diode bridge rectifier UR2.
  • the other of the two normally closed contacts K2+ of the second contactor K2 is connected in series between the other terminal D2 of the other group of brakes B2 and the other output terminal of the diode bridge rectifier UR2.
  • the control unit further includes a third contactor K3, and the third contactor K3 includes a coil and at least one normally closed contact K3+.
  • the coil of the second contactor K2 and the coil of the third contactor K3 are connected in parallel with the normally open contact KT- of the power-on delay relay KT and the other normally closed contact K+ of the first contactor K2 in series.
  • the normally closed contact K3+ of the third contactor K3 is connected in series between another group of brakes B2 and the diode bridge rectifier UR2.
  • the third contactor K3 includes two normally closed contacts K3+, and one of the two normally closed contacts K3+ of the third contactor K3 is connected in series Between a terminal D1 of the other set of brakes B2 and an output of the diode bridge rectifier UR2.
  • the other of the two normally closed contacts K3+ of the third contactor K3 is connected in series between the other terminal D2 of the other group of brakes B2 and the other output terminal of the diode bridge rectifier UR2.
  • the second contactor K2 and the third contactor are still in a closed state, and the coil of the other group of brakes B2 is still charged, so that the other group of brakes B2 is still in a released non-braking state.
  • the second contactor K2 and the third contactor K3 are switched to the off state, and the coil of the other group of brakes B2 is de-energized, so that the other group of brakes B2 is in the released braking state.
  • the coil of the first contactor K1 is de-energized, and the first contact The two normally closed contacts K1+ of the contactor K1 are in the closed state, the normally open contact KT- of the power-on delay relay KT is switched to the closed state, the coils of the second contactor K2 and the third contactor K3 are charged, the first The normally closed contacts K2+ and K3+ of the second contactor K2 and the third contactor K3 are switched to the off state.
  • the power supply device 10 includes an energy storage device capable of storing electrical energy, so that when the three-phase AC power supply of the elevator is cut off or out of phase, it can still supply the brakes B2 to another group of brakes. powered by.
  • the power supply device 10 includes at least one of an uninterruptible power supply, a battery, an electrolytic capacitor, and a super capacitor.
  • the power supply device 10 is powered by the elevator three-phase AC power supply, and the two input ends of the power supply device 10 are respectively connected to a live wire L1 and a live wire L1 and a three-phase AC power supply of the elevator.
  • a neutral line N is shown in Figures 1 to 3, in the illustrated embodiment, the power supply device 10 is powered by the elevator three-phase AC power supply, and the two input ends of the power supply device 10 are respectively connected to a live wire L1 and a live wire L1 and a three-phase AC power supply of the elevator.
  • a neutral line N is shown in Figures 1 to 3.
  • the elevator braking control system further includes a circuit breaker S, which is directly connected to the two output ends of the power supply device 10 and connected in series to another group of brakes Between B2 and the power supply device 10 ; when the output current or voltage of the power supply device 10 is abnormal, the circuit breaker S cuts off the electrical connection between the other group of brakes B2 and the power supply device 10 .

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Elevator Control (AREA)

Abstract

一种电梯制动控制系统,包括:两组制动器(B1、B2),其中一组制动器(B1)由电梯三相交流电源供电;供电装置(10),两组制动器中的另一组制动器(B2)由供电装置(10)供电;检测单元,连接至电梯三相交流电源,用于检测电梯三相交流电源是否断电或缺相;和控制单元,用于控制另一组制动器(B2)与供电装置(10)之间的电连接。当检测单元检测到电梯三相交流电源断电或缺相时,控制单元不立刻切断另一组制动器(B2)与供电装置(10)之间的电连接,而在延迟预定时间之后才切断另一组制动器(B2)与供电装置(10)之间的电连接。电梯制动控制系统有效降低轿厢制动时的减速度,实现电梯轿厢的平稳制动,提高电梯的安全性和舒适性。

Description

电梯制动控制系统 技术领域
本发明涉及一种电梯制动控制系统。
背景技术
电梯作为一种垂直的交通工具,其安全性和舒适性一直备受公众的关注。在人口密集的发展中国家,由于建筑物电源频繁出现不可预知的断电,电梯驱动主机会因为突然失去电源而失去动力,制动器也会失电瞬时释放,电梯曳引媒介(如钢丝绳,钢带,裹塑钢丝绳等),特别是钢带与驱动主机曳引轴之间产生很大的摩檫力,轿厢会立刻停止,电梯轿厢减速度较大,从而导致轿厢中的乘客感受非常不适,严重时会导致受伤。目前市场上的电梯在断电或缺相时,制动器失电而立即释放,而且对于制动器的控制技术都是基于电梯电源存在的情况。这就迫切需要电梯在断电或缺相时采取智能控制,既要保证轿厢里乘客的安全,又要使电梯制动器相对缓慢地制动轿厢。
发明内容
本发明的目的旨在解决现有技术中存在的上述问题和缺陷的至少一个方面。
根据本发明的一个方面,提供一种电梯制动控制系统,包括:两组制动器,其中一组制动器由电梯三相交流电源供电;供电装置,所述两组制动器中的另一组制动器由所述供电装置供电;检测单元,连接至所述电梯三相交流电源,用于检测所述电梯三相交流电源是否断电或缺相;和控制单元,用于控制所述另一组制动器与所述供电装置之间的电连接,当所述检测单元检测到所述电梯三相交流电源断电或缺相时,所述控制单元不立 刻切断所述另一组制动器与所述供电装置之间的电连接,而是在延迟预定时间之后才切断所述另一组制动器与所述供电装置之间的电连接。
根据本发明的一个实例性的实施例,所述检测单元包括相序继电器,所述相序继电器具有三个输入端和一个常闭式触点;所述相序继电器的三个输入端分别电连接至所述电梯三相交流电源的三个火线;当所述电梯三相交流电源断电或缺相时,所述相序继电器动作,使得所述相序继电器的常闭式触点从闭合状态切换到断开状态。
根据本发明的另一个实例性的实施例,所述控制单元包括:一个第一接触器,包括一个线圈和两个常闭式触点;一个通电延时继电器,包括一个线圈和一个常开式触点;和一个第二接触器,包括一个线圈和至少一个常闭式触点,所述相序继电器的常闭式触点与所述第一接触器的线圈串联后电连接至所述供电装置,所述通电延时继电器的线圈与所述第一接触器的一个常闭式触点串联后电连接至所述供电装置,所述第一接触器的另一个常闭式触点、所述通电延时继电器的常开式触点和所述第二接触器的线圈串联后电连接至所述供电装置,所述第二接触器的常闭式触点串联在所述另一组制动器与所述供电装置之间的电连接线路上。
根据本发明的另一个实例性的实施例,所述控制单元还包括一个二极管桥式整流器,所述二极管桥式整流器串联在所述供电装置和所述另一组制动器之间,用于将所述供电装置输出的交流电转换成所述另一组制动器所需的直流电。
根据本发明的另一个实例性的实施例,所述二极管桥式整流器的两个输入端分别连接至所述供电装置的两个输出端,所述另一组制动器的两个接线端分别连接至所述二极管桥式整流器的两个输出端。
根据本发明的另一个实例性的实施例,所述第二接触器包括两个常闭式触点,所述第二接触器的两个常闭式触点中的一个串联在所述另一组制动器的一个接线端和所述二极管桥式整流器的一个输出端之间;所述第二接触器的两个常闭式触点中的另一个串联在所述另一组制动器的另一个接线端和所述二极管桥式整流器的另一个输出端之间。
根据本发明的另一个实例性的实施例,所述控制单元还包括一个第三 接触器,所述第三接触器包括一个线圈和至少一个常闭式触点;所述第二接触器的线圈和所述第三接触器的线圈并联之后与所述通电延时继电器的常开式触点和所述第一接触器的另一个常闭式触点串联;所述第三接触器的常闭式触点串联在所述另一组制动器与所述二极管桥式整流器之间。
根据本发明的另一个实例性的实施例,所述第三接触器包括两个常闭式触点,所述第三接触器的两个常闭式触点中的一个串联在所述另一组制动器的一个接线端和所述二极管桥式整流器的一个输出端之间;所述第三接触器的两个常闭式触点中的另一个串联在所述另一组制动器的另一个接线端和所述二极管桥式整流器的另一个输出端之间。
根据本发明的另一个实例性的实施例,当所述电梯三相交流电源正常时,所述第二接触器和第三接触器的常闭式触点处于闭合状态,所述另一组制动器的线圈带电,使得所述另一组制动器处于松开的非制动状态。
根据本发明的另一个实例性的实施例,当所述相序继电器的常闭式触点处于闭合状态时,所述第一接触器的线圈带电,所述第一接触器的两个常闭式触点处于断开状态,所述通电延时继电器失电不计时,所述通电延时继电器的常开式触点处于断开状态,所述第二接触器和第三接触器的线圈失电,所述第二接触器和第三接触器的常闭式触点处于闭合状态。
根据本发明的另一个实例性的实施例,当所述电梯三相交流电源断电或缺相并且断电或缺相的持续时间还没有达到所述预定时间时,所述第二接触器和第三接触器的常闭式触点依然处于闭合状态,所述另一组制动器的线圈依然带电,使得所述另一组制动器依然处于松开的非制动状态。
根据本发明的另一个实例性的实施例,当所述相序继电器的常闭式触点从闭合状态切换到断开状态时,所述第一接触器的线圈失电,所述第一接触器的两个常闭式触点处于闭合状态,所述通电延时继电器带电并开始计时,所述通电延时继电器的常开式触点依然处于断开状态,所述第二接触器和第三接触器的线圈失电,所述第二接触器和第三接触器的常闭式触点依然处于闭合状态。
根据本发明的另一个实例性的实施例,当所述电梯三相交流电源断电或缺相并且断电或缺相的持续时间达到所述预定时间时,所述第二接触器 和第三接触器的常闭式触点被切换到断开状态,所述另一组制动器的线圈失电,使得所述另一组制动器处于释放的制动状态。
根据本发明的另一个实例性的实施例,当所述相序继电器的常闭式触点处于断开状态的时间达到所述预定时间时,所述第一接触器的线圈失电,所述第一接触器的两个常闭式触点处于闭合状态,所述通电延时继电器的常开式触点被切换到闭合状态,所述第二接触器和第三接触器的线圈带电,所述第二接触器和第三接触器的常闭式触点被切换到断开状态。
根据本发明的另一个实例性的实施例,所述供电装置包括能够储存电能的储能装置,以便在所述电梯三相交流电源断电或缺相时依然能够向所述另一组制动器供电。
根据本发明的另一个实例性的实施例,所述供电装置包括不间断电源、电池、电解电容、超级电容中的至少一个。
根据本发明的另一个实例性的实施例,所述供电装置由所述电梯三相交流电源供电,并且所述供电装置的两个输入端分别连接至所述电梯三相交流电源的一个火线和一个零线。
根据本发明的另一个实例性的实施例,所述电梯制动控制系统还包括一个断路器,所述断路器与所述供电装置的两个输出端直接连接并串联在所述另一组制动器与所述供电装置之间;当所述供电装置的输出电流或电压出现异常时,所述断路器切断所述另一组制动器与所述供电装置之间的电连接。
在根据本发明的前述各个实例性的实施例中,当电梯三相交流电源断电或缺相时,两组制动器中的一组先失电并被释放到制动状态,另一组仍然带电并被保持在非制动状态。因此,在电梯三相交流电源刚断电的一段时间内,仅由一组制动器对轿厢进行制动,这样可大幅降低轿厢制动时的减速度,从而能够实现电梯轿厢的平稳制动,提高了电梯的安全性和舒适性。
通过下文中参照附图对本发明所作的描述,本发明的其它目的和优点将显而易见,并可帮助对本发明有全面的理解。
附图说明
图1显示根据本发明的一个实例性的实施例的电梯制动控制系统的示意图,其中显示了电梯三相交流电源正常时的情况;
图2显示根据本发明的一个实例性的实施例的电梯制动控制系统的示意图,其中显示了电梯三相交流电源出现断电或缺相、但出现断电或缺相的持续时间还没有达到预定时间时的情况;
图3显示根据本发明的一个实例性的实施例的电梯制动控制系统的示意图,其中显示了电梯三相交流电源出现断电或缺相、并且出现断电或缺相的持续时间达到预定时间时的情况。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。
另外,在下面的详细描述中,为便于解释,阐述了许多具体的细节以提供对本披露实施例的全面理解。然而明显地,一个或多个实施例在没有这些具体细节的情况下也可以被实施。在其他情况下,公知的结构和装置以图示的方式体现以简化附图。
根据本发明的一个总体技术构思,提供一种电梯制动控制系统,包括:两组制动器,其中一组制动器由电梯三相交流电源供电;供电装置,所述两组制动器中的另一组制动器由所述供电装置供电;检测单元,连接至所述电梯三相交流电源,用于检测所述电梯三相交流电源是否断电或缺相;和控制单元,用于控制所述另一组制动器与所述供电装置之间的电连接。当所述检测单元检测到所述电梯三相交流电源断电或缺相时,所述控制单元不立刻切断所述另一组制动器与所述供电装置之间的电连接,而是在延迟预定时间之后才切断所述另一组制动器与所述供电装置之间的电连接。
图1显示根据本发明的一个实例性的实施例的电梯制动控制系统的示意图,其中显示了电梯三相交流电源正常时的情况;图2显示根据本发 明的一个实例性的实施例的电梯制动控制系统的示意图,其中显示了电梯三相交流电源出现断电或缺相、但出现断电或缺相的持续时间还没有达到预定时间时的情况;图3显示根据本发明的一个实例性的实施例的电梯制动控制系统的示意图,其中显示了电梯三相交流电源出现断电或缺相、并且出现断电或缺相的持续时间达到预定时间时的情况。
如图1至图3所示,在图示的实施例中,该电梯制动控制系统主要包括两组制动器B1、B2,供电装置10,检测单元(稍后将详细说明)和控制单元(稍后将详细说明)。
如图1至图3所示,在图示的实施例中,两组制动器B1、B2中的一组制动器B1由电梯三相交流电源供电。两组制动器B1、B2中的另一组制动器B2由供电装置10供电。
如图1至图3所示,在图示的实施例中,电梯三相交流电源包括三个火线L1、L2、L3和一个零线N。电梯的曳引机M的三个输入分别连接至电梯三相交流电源的三个火线L1、L2、L3,并由电梯三相交流电源供电。一组制动器B1的两个输入端分别连接至一个第一二极管桥式整流器UR1的两个输出端,第一二极管桥式整流器UR1的两个输入端分别连接至电梯三相交流电源的的一个火线L1和零线N。第一二极管桥式整流器UR1用于将交流电转换成适用于制动器的直流电。
如图1至图3所示,在图示的实施例中,检测单元连接至电梯三相交流电源,用于检测电梯三相交流电源是否断电或缺相。控制单元用于控制另一组制动器B2与供电装置10之间的电连接。
如图1至图3所示,在图示的实施例中,当检测单元检测到电梯三相交流电源断电或缺相时,控制单元不立刻切断另一组制动器B2与供电装置10之间的电连接,而是在延迟预定时间之后才切断另一组制动器B2与供电装置10之间的电连接。这样,在电梯三相交流电源刚断电或缺相的一段时间内,仅由一组制动器B1对轿厢进行制动,这样可大幅降低轿厢制动时的减速度,从而能够实现电梯轿厢的平稳制动,提高了电梯的安全性和舒适性。
如图1至图3所示,在图示的实施例中,检测单元包括相序继电器 KPH,相序继电器KPH具有三个输入端P1、P2、P3和一个常闭式触点KPH+。相序继电器KPH的三个输入端P1、P2、P3分别电连接至电梯三相交流电源的三个火线L1、L2、L3。当电梯三相交流电源断电或缺相时,相序继电器KPH动作,使得相序继电器KPH的常闭式触点KPH+从闭合状态切换到断开状态。
如图1至图3所示,在图示的实施例中,控制单元包括:一个第一接触器K1,包括一个线圈和两个常闭式触点K1+;一个通电延时继电器KT,包括一个线圈和一个常开式触点KT-;和一个第二接触器K2,包括一个线圈和至少一个常闭式触点K2+。相序继电器KPH的常闭式触点KPH+与第一接触器K1的线圈串联后电连接至供电装置10。通电延时继电器KT的线圈与第一接触器K1的一个常闭式触点K1+串联后电连接至供电装置10。第一接触器K1的另一个常闭式触点K1+、通电延时继电器KT的常开式触点KT-和第二接触器K2的线圈串联后电连接至供电装置10。第二接触器K2的常闭式触点K2+串联在另一组制动器B2与供电装置10之间的电连接线路上。
如图1至图3所示,在图示的实施例中,控制单元还包括一个二极管桥式整流器UR2,二极管桥式整流器UR2串联在供电装置10和另一组制动器B2之间,用于将供电装置10输出的交流电转换成另一组制动器B2所需的直流电。
如图1至图3所示,在图示的实施例中,二极管桥式整流器UR2的两个输入端分别连接至供电装置10的两个输出端,另一组制动器B2的两个接线端D1、D2分别连接至二极管桥式整流器UR2的两个输出端。
如图1至图3所示,在图示的实施例中,第二接触器K2包括两个常闭式触点K2+,第二接触器K2的两个常闭式触点K2+中的一个串联在另一组制动器B2的一个接线端D1和二极管桥式整流器UR2的一个输出端之间。第二接触器K2的两个常闭式触点K2+中的另一个串联在另一组制动器B2的另一个接线端D2和二极管桥式整流器UR2的另一个输出端之间。
如图1至图3所示,在图示的实施例中,控制单元还包括一个第三接触器K3,第三接触器K3包括一个线圈和至少一个常闭式触点K3+。第二 接触器K2的线圈和第三接触器K3的线圈并联之后与通电延时继电器KT的常开式触点KT-和第一接触器K2的另一个常闭式触点K+串联。第三接触器K3的常闭式触点K3+串联在另一组制动器B2与二极管桥式整流器UR2之间。
如图1至图3所示,在图示的实施例中,第三接触器K3包括两个常闭式触点K3+,第三接触器K3的两个常闭式触点K3+中的一个串联在另一组制动器B2的一个接线端D1和二极管桥式整流器UR2的一个输出端之间。第三接触器K3的两个常闭式触点K3+中的另一个串联在另一组制动器B2的另一个接线端D2和二极管桥式整流器UR2的另一个输出端之间。
如图1所示,在图示的实施例中,当电梯三相交流电源正常时,第二接触器K2和第三接触器K3的常闭式触点K2+、K3+处于闭合状态,另一组制动器B2的线圈带电,使得另一组制动器B2处于松开的非制动状态。
如图1所示,在图示的实施例中,当相序继电器KPH的常闭式触点KPH+处于闭合状态时,第一接触器K1的线圈带电,第一接触器K1的两个常闭式触点K1+处于断开状态,通电延时继电器KT失电不计时,通电延时继电器KT的常开式触点KT-处于断开状态,第二接触器K2和第三接触器K3的线圈失电,第二接触器K2和第三接触器K3的常闭式触点K2+、K3+处于闭合状态。
如图2所示,在图示的实施例中,当电梯三相交流电源断电或缺相并且断电或缺相的持续时间还没有达到预定时间时,第二接触器K2和第三接触器K3的常闭式触点K2+、K3+依然处于闭合状态,另一组制动器B2的线圈依然带电,使得另一组制动器B2依然处于松开的非制动状态。
如图2所示,在图示的实施例中,当相序继电器KPH的常闭式触点KPH+从闭合状态切换到断开状态时,第一接触器K1的线圈失电,第一接触器K1的两个常闭式触点K1+处于闭合状态,通电延时继电器KT带电并开始计时,通电延时继电器KT的常开式触点KT-依然处于断开状态,第二接触器K2和第三接触器K3的线圈失电,第二接触器K2和第三接触器K3的常闭式触点K2+、K3+依然处于闭合状态。
如图3所示,在图示的实施例中,当电梯三相交流电源断电或缺相并 且断电或缺相的持续时间达到预定时间时,第二接触器K2和第三接触器K3的常闭式触点K2+、K3+被切换到断开状态,另一组制动器B2的线圈失电,使得另一组制动器B2处于释放的制动状态。
如图3所示,在图示的实施例中,当相序继电器KPH的常闭式触点KPH+处于断开状态的时间达到预定时间时,第一接触器K1的线圈失电,第一接触器K1的两个常闭式触点K1+处于闭合状态,通电延时继电器KT的常开式触点KT-被切换到闭合状态,第二接触器K2和第三接触器K3的线圈带电,第二接触器K2和第三接触器K3的常闭式触点K2+、K3+被切换到断开状态。
如图1至图3所示,在图示的实施例中,供电装置10包括能够储存电能的储能装置,以便在电梯三相交流电源断电或缺相时依然能够向另一组制动器B2供电。
如图1至图3所示,在图示的实施例中,供电装置10包括不间断电源、电池、电解电容、超级电容中的至少一个。
如图1至图3所示,在图示的实施例中,供电装置10由电梯三相交流电源供电,并且供电装置10的两个输入端分别连接至电梯三相交流电源的一个火线L1和一个零线N。
如图1至图3所示,在图示的实施例中,电梯制动控制系统还包括一个断路器S,断路器S与供电装置10的两个输出端直接连接并串联在另一组制动器B2与供电装置10之间;当供电装置10的输出电流或电压出现异常时,断路器S切断另一组制动器B2与供电装置10之间的电连接。
本领域的技术人员可以理解,上面所描述的实施例都是示例性的,并且本领域的技术人员可以对其进行改进,各种实施例中所描述的结构在不发生结构或者原理方面的冲突的情况下可以进行自由组合。
虽然结合附图对本发明进行了说明,但是附图中公开的实施例旨在对本发明优选实施方式进行示例性说明,而不能理解为对本发明的一种限制。
虽然本总体发明构思的一些实施例已被显示和说明,本领域普通技术人员将理解,在不背离本总体发明构思的原则和精神的情况下,可对这些实施例做出改变,本发明的范围以权利要求和它们的等同物限定。
应注意,措词“包括”不排除其它元件或步骤,措词“一”或“一个”不排除多个。另外,权利要求的任何元件标号不应理解为限制本发明的范围。

Claims (18)

  1. 一种电梯制动控制系统,其特征在于,包括:
    两组制动器(B1、B2),其中一组制动器(B1)由电梯三相交流电源供电;
    供电装置(10),所述两组制动器(B1、B2)中的另一组制动器(B2)由所述供电装置(10)供电;
    检测单元,连接至所述电梯三相交流电源,用于检测所述电梯三相交流电源是否断电或缺相;和
    控制单元,用于控制所述另一组制动器(B2)与所述供电装置(10)之间的电连接,
    当所述检测单元检测到所述电梯三相交流电源断电或缺相时,所述控制单元不立刻切断所述另一组制动器(B2)与所述供电装置(10)之间的电连接,而是在延迟预定时间之后才切断所述另一组制动器(B2)与所述供电装置(10)之间的电连接。
  2. 根据权利要求1所述的电梯制动控制系统,其特征在于:
    所述检测单元包括相序继电器(KPH),所述相序继电器(KPH)具有三个输入端(P1、P2、P3)和一个常闭式触点(KPH+);
    所述相序继电器(KPH)的三个输入端(P1、P2、P3)分别电连接至所述电梯三相交流电源的三个火线(L1、L2、L3);
    当所述电梯三相交流电源断电或缺相时,所述相序继电器(KPH)动作,使得所述相序继电器(KPH)的常闭式触点(KPH+)从闭合状态切换到断开状态。
  3. 根据权利要求2所述的电梯制动控制系统,其特征在于:
    所述控制单元包括:
    一个第一接触器(K1),包括一个线圈和两个常闭式触点(K1+);
    一个通电延时继电器(KT),包括一个线圈和一个常开式触点(KT-);和
    一个第二接触器(K2),包括一个线圈和至少一个常闭式触点(K2+),
    所述相序继电器(KPH)的常闭式触点(KPH+)与所述第一接触器(K1)的线圈串联后电连接至所述供电装置(10),
    所述通电延时继电器(KT)的线圈与所述第一接触器(K1)的一个常闭式触点(K1+)串联后电连接至所述供电装置(10),
    所述第一接触器(K1)的另一个常闭式触点(K1+)、所述通电延时继电器(KT)的常开式触点(KT-)和所述第二接触器(K2)的线圈串联后电连接至所述供电装置(10),
    所述第二接触器(K2)的常闭式触点(K2+)串联在所述另一组制动器(B2)与所述供电装置(10)之间的电连接线路上。
  4. 根据权利要求3所述的电梯制动控制系统,其特征在于:
    所述控制单元还包括一个二极管桥式整流器(UR2),所述二极管桥式整流器(UR2)串联在所述供电装置(10)和所述另一组制动器(B2)之间,用于将所述供电装置(10)输出的交流电转换成所述另一组制动器(B2)所需的直流电。
  5. 根据权利要求4所述的电梯制动控制系统,其特征在于:
    所述二极管桥式整流器(UR2)的两个输入端分别连接至所述供电装置(10)的两个输出端,所述另一组制动器(B2)的两个接线端(D1、D2)分别连接至所述二极管桥式整流器(UR2)的两个输出端。
  6. 根据权利要求5所述的电梯制动控制系统,其特征在于:
    所述第二接触器(K2)包括两个常闭式触点(K2+),所述第二接触器(K2)的两个常闭式触点(K2+)中的一个串联在所述另一组制动器(B2)的一个接线端(D1)和所述二极管桥式整流器(UR2)的一个输出端之间;
    所述第二接触器(K2)的两个常闭式触点(K2+)中的另一个串联在所述另一组制动器(B2)的另一个接线端(D2)和所述二极管桥式整流器(UR2)的另一个输出端之间。
  7. 根据权利要求6所述的电梯制动控制系统,其特征在于:
    所述控制单元还包括一个第三接触器(K3),所述第三接触器(K3)包括一个线圈和至少一个常闭式触点(K3+);
    所述第二接触器(K2)的线圈和所述第三接触器(K3)的线圈并联之后与所述通电延时继电器(KT)的常开式触点(KT-)和所述第一接触器(K2)的另一个常闭式触点(K+)串联;
    所述第三接触器(K3)的常闭式触点(K3+)串联在所述另一组制动器(B2)与所述二极管桥式整流器(UR2)之间。
  8. 根据权利要求7所述的电梯制动控制系统,其特征在于:
    所述第三接触器(K3)包括两个常闭式触点(K3+),所述第三接触器(K3)的两个常闭式触点(K3+)中的一个串联在所述另一组制动器(B2)的一个接线端(D1)和所述二极管桥式整流器(UR2)的一个输出端之间;
    所述第三接触器(K3)的两个常闭式触点(K3+)中的另一个串联在所述另一组制动器(B2)的另一个接线端(D2)和所述二极管桥式整流器(UR2)的另一个输出端之间。
  9. 根据权利要求8所述的电梯制动控制系统,其特征在于:
    当所述电梯三相交流电源正常时,所述第二接触器(K2)和第三接触器(K3)的常闭式触点(K2+、K3+)处于闭合状态,所述另一组制动器(B2)的线圈带电,使得所述另一组制动器(B2)处于松开的非制动状态。
  10. 根据权利要求9所述的电梯制动控制系统,其特征在于:
    当所述相序继电器(KPH)的常闭式触点(KPH+)处于闭合状态时,所述第一接触器(K1)的线圈带电,所述第一接触器(K1)的两个常闭式 触点(K1+)处于断开状态,所述通电延时继电器(KT)失电不计时,所述通电延时继电器(KT)的常开式触点(KT-)处于断开状态,所述第二接触器(K2)和第三接触器(K3)的线圈失电,所述第二接触器(K2)和第三接触器(K3)的常闭式触点(K2+、K3+)处于闭合状态。
  11. 根据权利要求8所述的电梯制动控制系统,其特征在于:
    当所述电梯三相交流电源断电或缺相并且断电或缺相的持续时间还没有达到所述预定时间时,所述第二接触器(K2)和第三接触器(K3)的常闭式触点(K2+、K3+)依然处于闭合状态,所述另一组制动器(B2)的线圈依然带电,使得所述另一组制动器(B2)依然处于松开的非制动状态。
  12. 根据权利要求11所述的电梯制动控制系统,其特征在于:
    当所述相序继电器(KPH)的常闭式触点(KPH+)从闭合状态切换到断开状态时,所述第一接触器(K1)的线圈失电,所述第一接触器(K1)的两个常闭式触点(K1+)处于闭合状态,所述通电延时继电器(KT)带电并开始计时,所述通电延时继电器(KT)的常开式触点(KT-)依然处于断开状态,所述第二接触器(K2)和第三接触器(K3)的线圈失电,所述第二接触器(K2)和第三接触器(K3)的常闭式触点(K2+、K3+)依然处于闭合状态。
  13. 根据权利要求12所述的电梯制动控制系统,其特征在于:
    当所述电梯三相交流电源断电或缺相并且断电或缺相的持续时间达到所述预定时间时,所述第二接触器(K2)和第三接触器(K3)的常闭式触点(K2+、K3+)被切换到断开状态,所述另一组制动器(B2)的线圈失电,使得所述另一组制动器(B2)处于释放的制动状态。
  14. 根据权利要求13所述的电梯制动控制系统,其特征在于:
    当所述相序继电器(KPH)的常闭式触点(KPH+)处于断开状态的时间达到所述预定时间时,所述第一接触器(K1)的线圈失电,所述第一接 触器(K1)的两个常闭式触点(K1+)处于闭合状态,所述通电延时继电器(KT)的常开式触点(KT-)被切换到闭合状态,所述第二接触器(K2)和第三接触器(K3)的线圈带电,所述第二接触器(K2)和第三接触器(K3)的常闭式触点(K2+、K3+)被切换到断开状态。
  15. 根据权利要求1所述的电梯制动控制系统,其特征在于:
    所述供电装置(10)包括能够储存电能的储能装置,以便在所述电梯三相交流电源断电或缺相时依然能够向所述另一组制动器(B2)供电。
  16. 根据权利要求15所述的电梯制动控制系统,其特征在于:
    所述供电装置(10)包括不间断电源、电池、电解电容、超级电容中的至少一个。
  17. 根据权利要求15所述的电梯制动控制系统,其特征在于:
    所述供电装置(10)由所述电梯三相交流电源供电,并且所述供电装置(10)的两个输入端分别连接至所述电梯三相交流电源的一个火线(L1)和一个零线(N)。
  18. 根据权利要求1所述的电梯制动控制系统,其特征在于:
    所述电梯制动控制系统还包括一个断路器(S),所述断路器(S)与所述供电装置(10)的两个输出端直接连接并串联在所述另一组制动器(B2)与所述供电装置(10)之间;
    当所述供电装置(10)的输出电流或电压出现异常时,所述断路器(S)切断所述另一组制动器(B2)与所述供电装置(10)之间的电连接。
PCT/CN2020/133310 2020-06-30 2020-12-02 电梯制动控制系统 WO2022000988A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010607571.7 2020-06-30
CN202010607571.7A CN111606166A (zh) 2020-06-30 2020-06-30 电梯制动控制系统

Publications (1)

Publication Number Publication Date
WO2022000988A1 true WO2022000988A1 (zh) 2022-01-06

Family

ID=72205021

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/133310 WO2022000988A1 (zh) 2020-06-30 2020-12-02 电梯制动控制系统

Country Status (2)

Country Link
CN (1) CN111606166A (zh)
WO (1) WO2022000988A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111606166A (zh) * 2020-06-30 2020-09-01 迅达(中国)电梯有限公司 电梯制动控制系统
CN114735612B (zh) * 2022-03-25 2024-02-27 上海新时达电气股份有限公司 制动器供电电路及其控制方法、电梯

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033874A (ja) * 1989-05-29 1991-01-09 Mitsubishi Electric Corp エレベータのブレーキ装置
JPH03205279A (ja) * 1990-01-08 1991-09-06 Hitachi Ltd エレベータの制御装置
JP2001146366A (ja) * 1999-11-19 2001-05-29 Mitsubishi Electric Corp エレベータの制動装置
CN101100263A (zh) * 2006-07-07 2008-01-09 东芝电梯株式会社 乘客输送机的辅助制动器控制装置和辅助制动器控制方法
CN103253588A (zh) * 2013-05-10 2013-08-21 康力电梯股份有限公司 一种附加制动器停电延时动作装置
CN203451025U (zh) * 2013-07-16 2014-02-26 杭州优迈科技有限公司 一种用于自动扶梯附加制动器的断电延时控制电路
CN111606166A (zh) * 2020-06-30 2020-09-01 迅达(中国)电梯有限公司 电梯制动控制系统
CN212531885U (zh) * 2020-06-30 2021-02-12 迅达(中国)电梯有限公司 电梯制动控制系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033874A (ja) * 1989-05-29 1991-01-09 Mitsubishi Electric Corp エレベータのブレーキ装置
JPH03205279A (ja) * 1990-01-08 1991-09-06 Hitachi Ltd エレベータの制御装置
JP2001146366A (ja) * 1999-11-19 2001-05-29 Mitsubishi Electric Corp エレベータの制動装置
CN101100263A (zh) * 2006-07-07 2008-01-09 东芝电梯株式会社 乘客输送机的辅助制动器控制装置和辅助制动器控制方法
CN103253588A (zh) * 2013-05-10 2013-08-21 康力电梯股份有限公司 一种附加制动器停电延时动作装置
CN203451025U (zh) * 2013-07-16 2014-02-26 杭州优迈科技有限公司 一种用于自动扶梯附加制动器的断电延时控制电路
CN111606166A (zh) * 2020-06-30 2020-09-01 迅达(中国)电梯有限公司 电梯制动控制系统
CN212531885U (zh) * 2020-06-30 2021-02-12 迅达(中国)电梯有限公司 电梯制动控制系统

Also Published As

Publication number Publication date
CN111606166A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
WO2022000988A1 (zh) 电梯制动控制系统
AU2013269518B2 (en) Drive device of an elevator
CN106515459B (zh) 一种纯电动汽车双电机控制器的主动放电方法
JP5578972B2 (ja) 交流電車のコンバータ制御装置
CN104285355A (zh) 电梯备份电源
CZ2021237A3 (cs) Systém ochrany napájecího zdroje pro garáž
CN101522552A (zh) 电梯装置
CN108483149A (zh) 电梯曳引机封星控制方法
CN212531885U (zh) 电梯制动控制系统
CN108773786B (zh) 电梯制动器电源断路装置
CN201234136Y (zh) 双电源供电系统
CN106712644B (zh) 一种永磁同步电机封星回路及其保护方法和变频器
CN103889768A (zh) 切断电动电机的电源的安全方法及相应的设备
CN111038260A (zh) 双回路供电系统、电动汽车的供电控制方法及装置
CN211338392U (zh) 一种智能制动电梯以及一种电梯智能制动单元
JPS6013950B2 (ja) エレベ−タの非常停止装置
CN106494418B (zh) 一种列车辅助系统的低压控制电路及列车
CN113525269B (zh) 涡流制动供电系统
CN202542616U (zh) 电梯停电应急平层电路
CN108683250A (zh) 一种升降横移停车设备的蓄电池切换驱动装置
CN105257515B (zh) 一种ss9机车保障空气压缩机供电的装置及方法
CN104882878B (zh) 直流驱动的电源系统及直流驱动的安全相关的断开的方法
JPS59172902A (ja) 電気車制御装置
CN201797302U (zh) 重型天车起升保护装置
CN110752587B (zh) 电梯变频器igbt模块短路保护装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943268

Country of ref document: EP

Kind code of ref document: A1