WO2022000849A1 - 云台相机及其机壳、可移动平台 - Google Patents

云台相机及其机壳、可移动平台 Download PDF

Info

Publication number
WO2022000849A1
WO2022000849A1 PCT/CN2020/120997 CN2020120997W WO2022000849A1 WO 2022000849 A1 WO2022000849 A1 WO 2022000849A1 CN 2020120997 W CN2020120997 W CN 2020120997W WO 2022000849 A1 WO2022000849 A1 WO 2022000849A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
heat dissipation
high temperature
fan
casing
Prior art date
Application number
PCT/CN2020/120997
Other languages
English (en)
French (fr)
Inventor
徐宗财
张翔
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080022937.2A priority Critical patent/CN113678059B/zh
Publication of WO2022000849A1 publication Critical patent/WO2022000849A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the invention relates to the technical field of pan-tilt cameras, in particular to a pan-tilt camera, its casing and a movable platform.
  • PTZ cameras integrate more and more functions, such as imaging, vision, infrared, etc.
  • the work of each functional module will generate corresponding heat, resulting in a higher temperature of the entire gimbal camera.
  • the camera is in a high working temperature, which will affect the normal operation of the camera chip, making the camera's shooting quality poor, or even unable to shoot. Therefore, the requirements for the heat dissipation performance of the gimbal camera are also getting higher and higher.
  • the invention provides a pan-tilt camera, its casing and a movable platform which can meet the requirements of the heat dissipation performance of the camera.
  • a casing of a pan-tilt camera is provided with a low-temperature-resistant cavity, a high-temperature-resistant cavity and a heat dissipation channel.
  • a temperature-resistant device, the temperature-resistant temperature of the low-temperature-resistant device is lower than the temperature-resistant temperature of the high-temperature-resistant device, the low-temperature-resistant cavity and the high-temperature-resistant cavity are arranged independently of each other, and the heat dissipation channel is close to The low temperature resistant cavity is provided.
  • the heat dissipation channel is formed between the outer surface of the side wall of the low temperature resistant cavity and the outer surface of the side wall of the high temperature resistant cavity.
  • the side wall of the low temperature resistant cavity includes a first side wall exposed to the outside world and a second side wall built in the inside of the casing, and the heat dissipation channel is along the second side wall set up.
  • the total area of the first sidewall is greater than the total area of the second sidewall.
  • a first heat dissipation boss is provided on the inner surface of the second side wall toward the inner side of the low temperature resistant cavity.
  • a plurality of cooling fins are provided on the outer surface of the second side wall toward the outer side of the low temperature resistant cavity.
  • the heat dissipation fin is disposed opposite to the first heat dissipation boss.
  • the high temperature-resistant cavity includes a first high-temperature-resistant cavity and a second high-temperature-resistant cavity, and an outer surface of a side wall of the first high temperature-resistant cavity and a second side wall A first heat dissipation channel is formed therebetween, a second heat dissipation channel is formed between the outer surface of the side wall of the second high temperature resistant cavity and the other second side wall, and the first heat dissipation channel is provided with a first inlet.
  • An air outlet, the second heat dissipation channel is provided with a second air inlet.
  • the extending direction of the first heat dissipation channel is perpendicular to the extending direction of the second heat dissipation channel.
  • a first heat dissipation fin is disposed on the second side wall in the first heat dissipation channel, and a side wall of the first high temperature resistant cavity is disposed in the first heat dissipation channel There is a second heat sink, and both the first heat sink and the second heat sink extend along the first heat dissipation channel.
  • first heat dissipation fin and the second heat dissipation fin are disposed opposite to each other, or/and there is a gap between the first heat dissipation fin and the second heat dissipation fin.
  • the length of the first heat sink is greater than the length of the second heat sink.
  • the first heat sink and the second heat sink are arranged alternately.
  • a heat insulating sheet is provided between the first heat dissipation fin and the second heat dissipation fin.
  • the inner surface of one side wall of the first high temperature resistant cavity is provided with a second heat dissipation boss, and the second heat dissipation boss is used for contacting with the circuit board.
  • the side wall on which the second heat dissipation boss is provided extends obliquely toward the first air inlet.
  • the sidewall on which the second heat dissipation boss is provided is exposed to the outside world.
  • it further includes a fan cavity for accommodating a fan, the third side wall of the fan cavity is adjacent to the first high temperature resistant cavity, and the fourth side wall of the fan cavity is adjacent to the The low temperature resistant chambers are adjacent, and a third heat dissipation channel is formed between the fourth side wall of the fan chamber and the second side wall of the low temperature resistant chamber, the first heat dissipation channel and the second heat dissipation channel They are all communicated with the third heat dissipation channel, the fourth side wall of the fan cavity is provided with a through hole communicating with the first heat dissipation channel and the third heat dissipation channel, and the fan cavity is located in the
  • the casing is provided with an air outlet that communicates with the outside world; wherein, the gas entering from the first air inlet enters the first heat dissipation channel and then enters the fan cavity through the through hole, and enters the fan cavity from the second air inlet. The entering gas enters the second heat dissipation channel and then
  • the flow direction of the gas in the first heat dissipation channel is opposite to the flow direction of the gas in the third heat dissipation channel.
  • a fan cavity for accommodating a fan is further included, a side wall of the fan cavity is provided with a through hole communicating with the heat dissipation channel, and the gas in the heat dissipation channel can pass through the through hole.
  • the fan cavity enters the fan cavity; the fan cavity is provided with an air outlet on the casing that communicates with the outside world; the fan cavity is provided with a fourth heat dissipation channel, and the fourth heat dissipation channel is used to The gas in the fan cavity is directed to the fan air inlet of the fan.
  • the high temperature resistant chamber includes a first high temperature resistant chamber and a second high temperature resistant chamber, and the fan chamber is sandwiched between the first high temperature resistant chamber and the second high temperature resistant chamber between the temperature chambers.
  • the gas enters the fan cavity from the side of the fan cavity close to the first high temperature-resistant cavity, and is guided to the fan air inlet by the fourth heat dissipation channel from the side close to the first heat-resistant cavity.
  • the air outlet of the fan on one side of the second high temperature-resistant cavity leaves the fan, and is guided and turned through the side wall of the fan cavity close to the second high temperature-resistant cavity and then discharged from the air outlet.
  • the fan cavity is further provided with a third air inlet communicating with the outside world on the casing;
  • the fourth heat dissipation channel includes an air guiding channel and an air inlet located beside the air guiding channel
  • the air inlet channel is communicated with the third air inlet, so that the gas can enter the air inlet channel from the third air inlet to enter the fan cavity and the fan;
  • the air guide One end of the channel faces the through hole, and the other end of the air guide channel is opposite to the air inlet of the fan, and the air guide channel is used to introduce the gas entering from the through hole into the fan cavity and the fan Inside, the extension direction of the air inlet channel and the extension direction of the air guide channel are arranged to intersect.
  • the number of the third air inlets is two, and the air inlet channel includes first air inlets corresponding to the two third air inlets respectively and located on both sides of the air guide channel channel and the second air inlet channel.
  • the inner surface of a side wall of the fan cavity is provided with a plurality of first air guide plates arranged in parallel with each other, and the air guide channel is formed between the plurality of first air guide plates .
  • the distance between one end of the plurality of first air guide plates close to the through hole and the side wall where the through hole is located is the same, and the other end of the plurality of first air guide plates is triangular distributed.
  • the air inlet channel extends from a side close to the third air inlet toward the fan air inlet.
  • the inner surface of the side wall of the fan cavity provided with the first air deflector is further provided with a plurality of second air deflectors arranged in parallel with each other, and a plurality of the second air deflectors are provided.
  • the air inlet channel is formed between the air panels.
  • the air inlet channel includes a first air inlet channel and a second air inlet channel whose extending directions are parallel to each other.
  • the casing further includes a wind shield, a circular hole for accommodating a fan is formed in the middle of the wind shield, and a restriction channel is formed between the wind shield and the side wall of the fan cavity , the restricting channel is used to restrict the airflow entering from the third air inlet and the airflow exhausting from the air outlet.
  • the high temperature resistant chamber includes a first high temperature resistant chamber and a second high temperature resistant chamber, and the fan chamber is sandwiched between the first high temperature resistant chamber and the second high temperature resistant chamber Between the temperature chambers, the third air inlet is arranged near the first high temperature resistant chamber, and the air outlet is arranged near the second high temperature resistant chamber.
  • the air outlet is provided with a plurality of heat-dissipating teeth, the plurality of heat-dissipating teeth traverse the air outlet, and a heat-dissipating column is arranged between two adjacent air outlets, and the heat-dissipating column extends from the air outlet.
  • a side wall of the fan cavity extends along an extension direction perpendicular to the heat dissipation teeth, and the heat dissipation column can conduct heat from the side wall to the heat dissipation teeth.
  • a shielding structure is provided on the casing, and the shielding structure is formed at the second air inlet.
  • the second side wall forming the third heat dissipation channel and the cavity wall of the fan cavity are integrally formed.
  • the sum of the height of the first high temperature resistant cavity and the height of the fan cavity is substantially the same as the height of the low temperature resistant cavity.
  • the casing is a metal casing.
  • the high temperature-resistant cavity and the low temperature-resistant cavity are both sealed cavities.
  • both the high temperature resistance cavity and the low temperature resistance cavity are provided with sealing rings for sealing.
  • the high temperature-resistant cavity is formed by the mutual buckling of the first shell and the second shell
  • the low temperature-resistant cavity is formed by the mutual buckling of the third shell and the fourth shell
  • the cavity walls of the high temperature resistance cavity and the low temperature resistance cavity are provided with wire passage holes, and the wire passage holes and the cables are kept sealed.
  • the casing is provided with a socket for electrical connection with an electronic device, and a heat insulating pad is provided on the outer surface of the casing beside the socket.
  • a PTZ camera comprising:
  • a low temperature resistant device housed in the low temperature resistant cavity
  • the high temperature resistant device is accommodated in the high temperature resistant cavity.
  • the low temperature resistant device includes a camera module, the camera module includes a lens and a chip, and the chip is disposed on a side wall of the low temperature resistant cavity close to the heat dissipation channel.
  • the side wall of the low temperature resistant cavity includes a first side wall exposed to the outside world and a second side wall built in the inside of the casing, the inner surface of the second side wall facing upwards
  • the inner side of the low temperature resistant cavity is provided with a first heat dissipation boss, and the first heat dissipation boss is in contact with the chip.
  • the high temperature resistant device includes at least one of a circuit board module and a radar.
  • the high temperature resistance cavity includes a first high temperature resistance cavity and a second high temperature resistance cavity, and the first high temperature resistance cavity and the second high temperature resistance cavity are respectively located in the low temperature resistance cavity.
  • the circuit board module is arranged in the first high-temperature-resistant cavity, and the radar is arranged in the second high-temperature-resistant cavity.
  • the circuit board module includes a first circuit board and a second circuit board
  • the high temperature resistance cavity includes a first high temperature resistance cavity and a second high temperature resistance cavity
  • the first circuit The board is arranged on the inner surface of the fifth side wall of the first high temperature resistance cavity
  • the second circuit board is arranged on the inner surface of the sixth side wall of the first high temperature resistance cavity
  • the fifth side The wall is opposite to the sixth side wall.
  • a second heat dissipation boss is provided on the inner surface of the fifth side wall, and the second heat dissipation boss is in contact with the first circuit board.
  • the casing is further provided with a fan cavity for accommodating a fan, and the fan cavity and the first high temperature-resistant cavity share the sixth side wall.
  • the outer side surface of the fifth side wall is exposed to the outside world.
  • the casing is further provided with a fan cavity for accommodating the fan
  • the high temperature resistance cavity includes a first high temperature resistance cavity and a second high temperature resistance cavity
  • the Both the fan chamber and the first high temperature resistant chamber are located on the same side of the low temperature resistant chamber
  • the fan chamber, the first high temperature resistant chamber and the low temperature resistant chamber are both located on the first The same side of the two high temperature resistant chambers.
  • the fan includes at least one of a centrifugal fan and an axial flow fan.
  • a movable platform includes: a movable platform main body and a pan-tilt camera, wherein the pan-tilt camera is arranged on the movable platform main body.
  • the movable platform includes at least one of an unmanned aerial vehicle, an unmanned vehicle, and an unmanned boat.
  • the above-mentioned gimbal camera divides the inside of its casing into a low temperature resistant cavity, a high temperature resistant cavity and a heat dissipation channel.
  • the low temperature resistant cavity is used to accommodate low temperature resistant devices.
  • the high temperature resistant cavity is used to accommodate high temperature resistant devices.
  • the low temperature resistant cavity and the high temperature resistant cavity are arranged independently of each other, and the heat dissipation channel is arranged close to the low temperature resistant cavity.
  • the heat dissipation channel can dissipate the heat in the low temperature resistant cavity in time to ensure that the temperature of the low temperature resistant cavity is low, thereby ensuring the normal operation of the low temperature resistant device.
  • FIG. 1 is a schematic structural diagram of a movable platform provided by an embodiment of the invention.
  • FIG. 2 is a schematic three-dimensional structure diagram of a pan-tilt camera according to an embodiment of the present invention
  • Fig. 3 is a sectional view according to the casing of the pan-tilt camera shown in Fig. 2;
  • Fig. 4 is a schematic diagram according to the pan-tilt camera shown in Fig. 3;
  • FIG. 5 is a perspective view of a fan cavity of the pan-tilt camera shown in FIG. 2;
  • FIG. 6 is a cross-sectional view of a fan cavity according to the pan-tilt camera shown in FIG. 2;
  • Fig. 7 is a sectional view according to another angle of the casing of the pan-tilt camera shown in Fig. 2;
  • FIG. 8 is a side view from another angle of the casing of the gimbal camera shown in FIG. 7 .
  • movable platform 1 pan-tilt camera 10; movable platform main body 20; pan-tilt main body 22; low temperature resistant device 30; chip 31; high temperature resistant device 40; 110, first side wall 111; second side wall 112; first heat dissipation boss 113; first heat sink 114; gap 115; third shell 117; fourth shell 118; lens hole 119; high temperature resistant cavity 120; first high temperature resistant cavity 121; second high temperature resistant cavity 122; second heat sink 123; second heat dissipation boss 124; fifth side wall 125; sixth side wall 126; first shell 128; two shells 129; heat dissipation channel 130; first heat dissipation channel 131; second heat dissipation channel 132; first air inlet 133; second air inlet 134; third heat dissipation channel 135; shielding structure 14; first circuit board 21; Two circuit boards 22; fan cavity 150; third side wall 151; fourth side wall 152; through
  • a first feature "on” or “under” a second feature may be in direct contact with the first and second features, or the first and second features indirectly through an intermediary get in touch with.
  • the first feature being “above”, “over” and “above” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature being “below”, “below” and “below” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the movable platform may include at least one of a drone, an unmanned vehicle, and an unmanned boat.
  • the movable platform may also be a handheld gimbal, etc., which is not limited here.
  • the present application exemplifies the case where the movable platform is an unmanned aerial vehicle.
  • FIG. 1 is a schematic structural diagram of a movable platform according to an embodiment of the present application.
  • the movable platform 1 includes a pan-tilt camera 10 and a movable platform main body 20 .
  • the pan-tilt camera 10 is mounted on the movable platform main body 20 .
  • the movable platform main body 20 can be the main body part of the movable platform, for example, the movable platform main body can be the center body and the arm of the unmanned aerial vehicle; the movable platform main body can also be the body part of the unmanned vehicle; The main body may also be a hand-held part of a hand-held pan/tilt head or the like.
  • the pan-tilt camera 10 is mounted on the movable platform main body 20 .
  • the pan-tilt camera 10 may be directly installed on the movable platform main body 20 , or the pan-tilt camera 10 may also be installed on the movable platform main body 20 through components such as the pan-tilt main body 22 .
  • the gimbal body 22 is used to maintain the balance of the gimbal camera 10 and reduce or eliminate the jitter of the gimbal camera 10 in a working state, so as to ensure the effect of shooting or mapping.
  • the gimbal camera 10 is installed on the gimbal body 22 , and the gimbal body 22 is connected to the movable platform body 20 , so that the gimbal camera 10 is mounted on the movable platform body 20 .
  • the head body 22 can be detachably connected to the movable platform body 20 .
  • the head body 22 may be a bracket mechanism or the like.
  • the pan-tilt camera 10 can be used to collect images of surrounding objects and the environment, and can be used to measure the distance of the objects and the environment around the pan-tilt camera 10 .
  • the pan-tilt camera 10 can be used to detect the environment around the movable platform, such as detecting the distance of obstacles around the movable platform and the relative speed between the movable platform and the obstacles etc., for path planning, obstacle avoidance, etc. of movable platforms.
  • FIG. 2 is a schematic three-dimensional assembly diagram of the gimbal camera 10 according to the embodiment of the application
  • FIG. 3 is a cross-sectional view of the casing of the gimbal camera 10 according to the embodiment of the application
  • FIG. 4 is the application A schematic diagram of the housing 100 of the pan-tilt camera 10 of the embodiment.
  • the pan-tilt camera 10 includes a casing 100 , a low temperature resistant device 30 , a high temperature resistant device 40 and a fan 50 .
  • the temperature resistance temperature of the low temperature resistance device 30 is lower than the temperature resistance temperature of the high temperature resistance device 40 .
  • the casing 100 of the gimbal camera 10 is provided with a low temperature resistant cavity 110 , a high temperature resistant cavity 120 and a heat dissipation channel 130 inside.
  • the low temperature resistant cavity 110 is used to accommodate the low temperature resistant device 30 .
  • the high temperature resistant cavity 120 is used for accommodating the high temperature resistant device 40 .
  • the low-temperature-resistant cavity 110 and the high-temperature-resistant cavity 120 are disposed independently of each other, and the heat dissipation channel 130 is disposed close to the low-temperature-resistant cavity 110 .
  • the heat dissipation channel 130 can dissipate the heat in the low temperature resistant cavity 110 in time to ensure that the temperature of the low temperature resistant cavity 110 is low, and perform low temperature protection on the low temperature resistant device to ensure the low temperature resistant device to work normally.
  • a heat dissipation channel 130 is formed between the outer surface of the side wall of the low temperature resistant cavity 110 and the outer surface of the side wall of the high temperature resistant cavity 120 .
  • the heat dissipation channel 130 can also be formed in other forms, such as a heat pipe, an air duct, and the like.
  • the form of the heat dissipation channel 130 in this embodiment effectively utilizes the side walls of the low temperature resistant cavity 110 and the high temperature resistant cavity 120 , which can reduce the volume of the casing of the gimbal camera 10 and make the casing simple in structure.
  • each module of the pan-tilt camera 10 is divided into chambers, and the high-temperature-resistant device and the low-temperature-resistant device are designed into separate chambers, and the high-temperature-resistant device and the low-temperature-resistant device are respectively arranged in the high temperature-resistant device inside the cavity 120 and the low temperature resistant cavity 110 .
  • the thermal isolation between different chambers is realized through the heat dissipation channel 130, and the low temperature resistant chamber 110 and the high temperature resistant chamber 120 are set independently of each other, which successfully avoids the thermal influence of the high temperature resistant device in the pan-tilt camera 10 on the low temperature resistant device.
  • the low-temperature-resistant device in the low-temperature-resistant cavity 110 is always in a low-temperature working environment, and the heat dissipation requirements of the low-temperature-resistant device to the pan-tilt camera 10 are met.
  • the low temperature resistant device is accommodated in the low temperature resistant cavity 110 .
  • the low temperature resistant device includes a camera module (not shown).
  • the camera module may include a lens and a chip 31 .
  • the low temperature resistant cavity 110 is provided with a lens mounting structure for fixing the lens.
  • a lens hole 119 is opened on one side of the low temperature resistant cavity 110 , and the lens is arranged opposite to the lens hole 119 .
  • the chip 31 is disposed on the sidewall of the low temperature resistant cavity 110 close to the heat dissipation channel 130 .
  • the temperature resistance value of the chip of the camera is generally low, so the heat dissipation channel 130 can dissipate the heat of the chip 31 to ensure the temperature of the chip 31 is low and the lifespan and function of the chip 31 are guaranteed.
  • the side wall of the low temperature resistant cavity 110 includes a first side wall 111 exposed to the outside and a second side wall 112 built in the casing 100 . That is, if the second side wall 112 of the low temperature resistant cavity 110 faces the high temperature resistant cavity 120 , a heat dissipation channel 130 is formed between the outer surface of the side wall of the high temperature resistant cavity 120 and the second side wall 112 . Therefore, the heat dissipation channel 130 is disposed along the second side wall 112 .
  • the shape of the heat dissipation channel 130 may be straight or bent.
  • the specific shape of the heat dissipation channel 130 is related to the specific shape of the side wall of the high temperature resistant cavity 120 and the specific shape of the second side wall 112 of the low temperature resistant cavity 110 .
  • the total area of the first side wall 111 is larger than the total area of the second side wall 112 .
  • the heat dissipation area of the low temperature resistant cavity 110 exposed to the outside is large, which can help the heat of the low temperature resistant cavity 110 to dissipate in time.
  • the number of the first side walls 111 may be one, multiple or zero. That is, when the number of the first side walls 111 is zero, the low temperature resistant cavity 110 can be completely built in the inside of the casing.
  • a heat dissipation channel 130 may be provided around the low temperature resistant cavity 110 , and the heat dissipation channel 130 can also take away the temperature of the low temperature resistant chamber 110 in time, and the temperature in the low temperature resistant chamber 110 can also be kept low.
  • the inner surface of the second side wall 112 is provided with a first heat dissipation boss 113 toward the inner side of the low temperature resistant cavity 110 .
  • the first heat dissipation boss can be made of a thermally conductive material, which is beneficial to quickly conduct the heat of the low temperature resistant device to the casing 100 and dissipate it into the heat dissipation channel 130 or to the outside.
  • the low temperature resistance devices represented by the chip of the camera generally have a low temperature resistance value under the condition of guaranteeing the life and function.
  • the chip is fixedly placed on the first heat dissipation boss 113 through the thermal conductive gel, and the chip is in contact with the first heat dissipation boss 113, which is beneficial for the heat of the chip to be dissipated in time.
  • the chip can also be fixed on the first heat dissipation boss 113 by other means, for example, by means of snaps, threads, press fitting, etc., which is not limited here.
  • the first heat dissipation boss 113 can also be used to install other low temperature resistant devices, and the specific installation purpose of the first heat dissipation boss 113 is not limited here.
  • a plurality of cooling fins are provided on the outer surface of the second side wall 112 toward the outer side of the low temperature resistant cavity 110 .
  • the plurality of heat sinks can increase the heat dissipation area of the second side wall 112, and can dissipate the heat of the second side wall 112 in time.
  • the heat sink can also be arranged on the outer surface of the first side wall 111 , and can also face the outside of the low temperature resistant cavity 110 , thereby increasing the heat dissipation area of the first side wall 111 and dissipating the heat of the first side wall 111 in time. scattered.
  • a first heat dissipation fin 114 may be provided at a position opposite to the first heat dissipation boss 113 . Since the first heat dissipation boss 113 is used to conduct the heat of the chip, the heat at the position where the first heat dissipation boss 113 is provided on the second side wall 112 is easy to concentrate, so the first heat dissipation fin 114 can effectively relieve the heat at the position. temperature is too high.
  • the casing 100 of the gimbal camera 10 is substantially a rectangular parallelepiped.
  • the low temperature resistant cavity 110 is located at a corner of the casing 100 .
  • the number of the first side walls 111 of the low temperature resistant cavity 110 is four, and the number of the second side walls 112 is two.
  • the high temperature resistant device is accommodated in the high temperature resistant cavity 120 .
  • the high temperature resistant device may include at least one of a circuit board module and a radar.
  • High temperature resistance devices generally have higher high temperature resistance, and high temperature resistance devices have higher power and more serious heat generation.
  • the circuit board module may include a power supply, an SOC (System-on-a-Chip) integrated circuit chip, and the like.
  • the radar can be a lidar or a millimeter-wave radar. Usually the high temperature resistance of radar can reach about 85 degrees Celsius.
  • the pan-tilt camera 10 is equipped with a radar, the pan-tilt camera 10 can be used for modeling, surveying and other work.
  • the high temperature resistant device may further include other devices, and the specific type of the high temperature resistant device is not limited here.
  • a plurality of high-temperature-resistant devices can be independently installed in a high-temperature-resistant cavity 120 , or can be combined with each other and installed in the same high-temperature-resistant cavity 120 .
  • a plurality of heat dissipation channels 130 may be formed between the outer surfaces of the side walls of the plurality of high temperature resistance cavities 120 and the outer surfaces of the plurality of side walls of the low temperature resistance cavities 110 . The heat dissipation channels 130 are distributed along the second side wall 112 of the low temperature resistant cavity 110 .
  • the high temperature resistance cavity 120 may include a first high temperature resistance cavity 121 and a second high temperature resistance cavity 122 .
  • the circuit board module is arranged in the first high temperature resistance cavity 121
  • the radar is arranged in the second high temperature resistance cavity 122 .
  • the first high temperature resistant cavity 121 and the second high temperature resistant cavity 122 are respectively located on two sides of the low temperature resistant cavity 110 .
  • the first high temperature resistant cavity 121 and the second high temperature resistant cavity 122 are respectively disposed opposite to the second side wall 112 of the low temperature resistant cavity 110 . Please refer to FIG. 3 for details.
  • the first high-temperature-resistant cavity 121 is disposed on the left side of the low-temperature-resistant cavity 110
  • the second high-temperature-resistant cavity 122 is disposed above the low temperature-resistant cavity 110 .
  • a first heat dissipation channel 131 is formed between the outer surface of the side wall of the first high temperature resistant cavity 121 and a second side wall 112 .
  • a second heat dissipation channel 132 is formed between the outer surface of the side wall of the second high temperature resistant cavity 122 and the other second side wall 112 .
  • the above-mentioned two second side walls 112 are two adjacent side walls of the low temperature resistant cavity, and the above-mentioned two second side walls 112 are perpendicular to each other. That is, the extending direction of the first heat dissipation channel 131 is perpendicular to the extending direction of the second heat dissipation channel 132 .
  • the extending directions of the first heat dissipation channel 131 and the second heat dissipation channel 132 may also be other angles.
  • the extending directions of the first heat dissipation channel 131 and the second heat dissipation channel 132 are not limited.
  • the first heat dissipation channel 131 is provided with a first air inlet 133 .
  • the second heat dissipation channel 132 is provided with a second air inlet 134 . Because both the first air inlet 133 and the second air inlet 134 are exposed to the outside.
  • a shielding structure may be provided on the casing to form shielding protection for the first air inlet 133 and the second air inlet 134 to prevent dust and water droplets from entering the heat dissipation channel 130 .
  • a shielding structure 14 is formed at the second air inlet 134 .
  • the external cold air with a lower temperature can enter the first heat dissipation channel 131 from the first air inlet 133 and enter the second heat dissipation channel 132 from the second air inlet 134 respectively, and the cold air flows along the first heat dissipation channel 131 and the second heat dissipation channel 132
  • the flow can take away the heat of the low temperature resistant cavity 110 and reduce the temperature in the low temperature resistant cavity 110 in time.
  • the heat dissipation channel 130 is formed between the second side wall 112 of the low temperature resistant cavity 110 and the side wall of the high temperature resistant chamber 120 , the flow of cold air along the first heat dissipation channel 131 and the second heat dissipation channel 132 can also be high at the same time.
  • the high temperature resistant device in the temperature resistant cavity 120 dissipates heat to prevent the temperature of the high temperature resistant cavity 120 from being too high.
  • the first heat sink 114 is located on the outer surface of the second side wall 112 of the low temperature resistant cavity 110 in the first heat dissipation channel 131 , that is, the first heat sink 114 is disposed toward the inside of the first heat dissipation channel 131 .
  • the first heat sink 114 is disposed toward the side wall of the first high temperature resistant cavity 121 .
  • a second heat dissipation fin 123 is provided in the first heat dissipation channel 131 on the outer surface of the side wall of the first high temperature resistant cavity 121 .
  • the second heat sink 123 can increase the heat dissipation area of the side wall of the first high temperature resistant cavity 121 .
  • Both the first heat sink 114 and the second heat sink 123 extend along the first heat dissipation channel 131 .
  • the first heat sink 114 and the second heat sink 123 do not affect the air flow in the first heat dissipation channel 131 , so as to ensure the smooth flow of the air flow in the first heat dissipation channel 131 to ensure the heat dissipation effect.
  • the first heat sink 114 is disposed opposite to the second heat sink 123 .
  • the first heat dissipation fin 114 and the second heat dissipation fin 123 divide the first heat dissipation channel 131 into a plurality of small channels to ensure that each small channel can smoothly circulate airflow.
  • a gap 115 exists between the first heat sink 114 and the second heat sink 123 .
  • the gap 115 can block the heat on the second heat sink 123 and prevent the heat from being conducted to the first heat sink 114, thereby preventing the heat generated by the high temperature resistance device in the first high temperature resistance cavity 121 from affecting the low temperature resistance cavity.
  • the first heat sink 114 and the second heat sink 123 are disposed facing each other, which is beneficial to reduce processing difficulty and production cost.
  • the first cooling fins 114 and the second cooling fins 123 with a gap 115 therebetween can be formed by cutting at a suitable position in the middle of a group of cooling fins, and the processing difficulty is low.
  • a heat insulating sheet may also be provided between the first heat sink 114 and the second heat sink 123 .
  • the heat insulating sheet can also block the heat on the second heat sink 123 from being conducted to the first heat sink 114 .
  • the first heat sink 114 and the second heat sink 123 may also be staggered. The staggered arrangement of the first heat sink 114 and the second heat sink 123 can also prevent the heat of the second heat sink 123 from being conducted to the first heat sink 114 .
  • the length of the first heat sink 114 is greater than the length of the second heat sink 123 .
  • the length of the first cooling fins 114 can further guide the airflow, so as to define the flow direction of the airflow.
  • the inner surface of one side wall of the first high temperature resistant cavity 121 is provided with a second heat dissipation boss 124 .
  • the second heat dissipation boss 124 is used for contacting with the circuit board.
  • the setting position of the second heat dissipation boss 124 can be set according to the distribution mode of the circuit board modules in the first high temperature resistant cavity 121 , so as to ensure that the first high temperature resistant cavity 121 has a small volume.
  • the first high temperature resistant cavity 121 includes a fifth side wall 125 and a sixth side wall 126 .
  • the fifth side wall 125 and the sixth side wall 126 are disposed opposite to each other.
  • the fifth side wall 125 is the side wall of the first high temperature resistant cavity 121 exposed to the outside.
  • the inner surface of the fifth side wall 125 is provided with a second heat dissipation boss 124 .
  • the first high temperature resistant cavity 121 is substantially in the shape of a rectangular parallelepiped, and the fifth side wall 125 and the sixth side wall 126 are disposed up and down opposite to each other.
  • the first heat dissipation channel 131 is located on one side of the fifth side wall 125 and the sixth side wall 126 .
  • the side wall between the fifth side wall 125 and the sixth side wall 126 and the second side wall 112 of the low temperature resistant cavity 110 form a first heat dissipation channel 131 .
  • the circuit board module includes a first circuit board 21 and a second circuit board 22 .
  • the first circuit board 21 is disposed on the inner surface of the fifth side wall 125 of the first high temperature resistant cavity 121 .
  • the second circuit board 22 is disposed on the inner surface of the sixth side wall 126 of the first high temperature resistant cavity 121 .
  • the second heat dissipation boss 124 is in contact with the first circuit board 21 .
  • the heat generated by the first circuit board 21 can be conducted to the fifth side wall 125 through the second heat dissipation boss 124 .
  • the fifth side wall 125 extends obliquely toward the first air inlet 133 .
  • the heat at the first air inlet 133 keeps entering cold air, the heat at the first air inlet 133 is relatively low, and the heat on the fifth side wall 125 will flow to the first air inlet 133 with lower heat, and The heat is dissipated through the first heat dissipation channel 131 .
  • the heat of the first circuit board 21 can also be directly dissipated to the outside through the outer surface of the fifth side wall 125 .
  • the first high-temperature-resistant cavity 121 and the low-temperature-resistant cavity 110 are arranged in parallel, and the second high-temperature-resistant cavity 122 is arranged above the first high-temperature-resistant cavity 121 and the low temperature-resistant cavity 110 .
  • a part of one side wall of the second high temperature resistant cavity 122 is opposite to the low temperature resistant cavity 110 to form a second heat dissipation channel 132 .
  • the second high temperature resistant cavity 122 is used for accommodating the radar.
  • the outer side of the side wall of the second high temperature resistant cavity 122 and/or the second side wall 112 of the low temperature resistant cavity 110 may also be provided with a third heat sink (not shown) in the second heat dissipation channel 132 .
  • the third heat sink can increase the heat dissipation area of the second heat dissipation channel 132 , thereby facilitating the heat dissipation of the second high temperature-resistant cavity 122 and the low temperature-resistant cavity 110 .
  • FIG. 5 is a schematic perspective view of the fan cavity 150 of the casing 100 of the gimbal camera according to the embodiment of the present application
  • FIG. 6 is a cross-sectional view of the fan cavity 150 .
  • the casing 100 is further provided with a fan cavity 150 for accommodating the fan 50 .
  • the blower 50 may include at least one of a centrifugal blower and an axial blower.
  • the blower 50 is a centrifugal blower.
  • the wind direction of the fan air inlet 51 and the fan air outlet 52 of the centrifugal fan is 90 degrees, and the airflow passing through the centrifugal fan will be changed by the fan to the air outlet direction of 90 degrees. Structural design.
  • the fan 50 is an axial flow fan, and the fan air inlet 51 and the fan air outlet 52 of the axial flow fan have the same wind direction.
  • the axial flow fan can provide a larger air volume, thereby enhancing the flow rate of the airflow in the heat dissipation channel 130, so as to enhance the heat dissipation effect, and has high reliability and protection performance.
  • the fan 50 is an axial flow fan.
  • the fan chamber 150 is sandwiched between the first high temperature resistant chamber 121 and the second high temperature resistant chamber 122 .
  • the fan cavity 150 and the first high temperature-resistant cavity 121 are both located on the same side of the low-temperature-resistant cavity 110 , and the fan cavity 150 , the first high-temperature-resistant cavity 121 and the low-temperature-resistant cavity 110 are both located in the second high-temperature-resistant cavity 122 on the same side.
  • the sum of the height of the first high temperature resistant cavity 121 and the height of the fan cavity 150 is approximately the same as the height of the low temperature resistant cavity 110 . Therefore, the fan cavity 150 and the first high temperature-resistant cavity 121 are stacked on top of each other.
  • the fan cavity 150, the first high temperature-resistant cavity 121 and the low temperature-resistant cavity 110 are arranged in parallel below the second high temperature-resistant cavity 122, so that the casing 100 is roughly in the shape of a cuboid.
  • the above-mentioned casing 100 arranges the low temperature-resistant cavity 110 , the first high temperature-resistant cavity 121 , the second high temperature-resistant cavity 122 and the fan cavity 150 according to the above description, so that the volume of the casing 100 is relatively compact, and the casing 100 of smaller size.
  • the fan cavity 150 includes a third side wall 151 and a fourth side wall 152 arranged adjacently.
  • the third side wall 151 is parallel to the sixth side wall 126 of the first high temperature resistant cavity 121 .
  • the third side wall 151 of the fan cavity 150 is adjacent to the first high temperature resistant cavity 121 .
  • the fourth side wall 152 of the fan cavity 150 is adjacent to the low temperature resistant cavity 110 .
  • the fan cavity 150 may share the sixth side wall 126 with the first high temperature resistant cavity 121 .
  • the third side wall 151 of the fan cavity 150 can be omitted.
  • the fan cavity 150 and the first high temperature resistant cavity 121 share the third side wall 151, and the sixth side wall 126 may be omitted. In this way, the structure of the above-mentioned casing can be simplified.
  • a third heat dissipation channel 135 is formed between the fourth side wall 152 of the fan cavity 150 and the second side wall 112 of the low temperature resistant cavity 110 .
  • the third heat dissipation channel 135 is used to further guide the air flow in the second heat dissipation channel 132 , so that the air flow in the second heat dissipation channel 132 flows into the fan cavity 150 .
  • the flow of the lower temperature gas in the third heat dissipation channel 135 can further take away the heat on the second side wall 112 .
  • the extending direction of the third heat dissipation channel 135 is the same as the extending direction of the first heat dissipation channel 131 , and the extending direction of the third heat dissipation channel 135 is perpendicular to the extending direction of the second heat dissipation channel 132 . Therefore, the gas flow direction in the first heat dissipation channel 131 is opposite to the gas flow direction in the third heat dissipation channel 135 .
  • This arrangement can effectively guide the airflow in the first heat dissipation channel 131 and the second heat dissipation channel 132 into the fan cavity 150, thereby improving the heat dissipation effect.
  • the third heat dissipation channel 135 can also be omitted.
  • a through hole 153 communicated with the heat dissipation channel 130 is opened on one side wall of the fan cavity 150 .
  • the gas in the heat dissipation channel 130 can enter the fan cavity 150 through the through hole 153 .
  • the fourth side wall 152 of the fan cavity 150 is provided with a through hole 153 that communicates with both the first heat dissipation channel 131 and the third heat dissipation channel 135 .
  • the gas entering from the first air inlet 133 enters the first heat dissipation channel 131 and then enters the fan cavity 150 through the through hole 153
  • the gas entering from the second air inlet 134 enters the second heat dissipation channel 132 and then enters the third heat dissipation channel 135 , through the third heat dissipation channel 135 , and then through the through hole 153 into the fan cavity 150 .
  • the length of the first heat sink 114 is greater than the length of the second heat sink 123 . In this way, the gas flow at the through hole 153 can be made more smooth, thereby improving the heat dissipation effect.
  • the fan cavity 150 is provided with an air outlet 155 on the casing to communicate with the outside.
  • the fan cavity 150 is provided with a fourth heat dissipation channel 154 , and the fourth heat dissipation channel 154 is used to guide the gas entering the fan cavity 150 to the fan air inlet 51 .
  • the gas enters the fan cavity 150 from the side of the fan cavity 150 close to the first high temperature-resistant cavity 121 , is guided to the fan air inlet 51 by the fourth heat dissipation channel 154 , and then flows from the fan exhaust port 52 on the side close to the second high temperature-resistant cavity 122 . It leaves the fan, and is guided and turned by the side wall of the fan cavity 150 close to the second high temperature-resistant cavity 122, and then discharged from the air outlet 155.
  • the fan cavity 150 is also provided with a third air inlet 156 on the casing 100 that communicates with the outside.
  • the fourth heat dissipation channel 154 includes an air guiding channel 1541 and an air inlet channel 1542 located beside the air guiding channel. One end of the air guide channel faces the through hole 153 , and the other end of the air guide channel 1541 is opposite to the fan air inlet 51 .
  • the inner surface of the third side wall 151 of the fan cavity 150 is provided with a plurality of first air guide plates 1543 arranged in parallel with each other.
  • An air guide channel 1541 is formed between the plurality of first air guide plates 1543 .
  • the distance between one end of the plurality of first air guide plates 1543 close to the through hole 153 and the side wall where the through hole 153 is located is the same, and the other ends of the plurality of first air guide plates 1543 are distributed in a triangular shape.
  • the extension direction of the air inlet channel 1542 is arranged to intersect with the extension direction of the air guide channel, which is beneficial for the air to flow to the air inlet 51 of the fan.
  • the air inlet passage 1542 is communicated with the third air inlet 156 so that the gas can enter the air inlet passage 1542 from the third air inlet 156 to enter the fan cavity 150 and the fan.
  • the air inlet passage 1542 extends from the side close to the third air inlet 156 toward the fan air inlet 51.
  • the fan cavity 150 can supply fresh cold air to the fan cavity 150 through the third air inlet 156 , which is beneficial to quickly dissipate the heat in the fan cavity 150 .
  • the inner surface of the side wall of the fan cavity 150 provided with the first air guide plate is also provided with a plurality of second air guide plates 1544 arranged in parallel with each other. That is, an air inlet channel 1542 is formed between the plurality of second air guide plates 1544 on the inner surface of the third side wall 151 of the fan cavity 150 .
  • the air inlet channel 1542 includes a first air inlet channel and a second air inlet channel respectively corresponding to the two third air inlets 156 and located on both sides of the air guide channel 1541 .
  • the air inlet channel 1542 includes a first air inlet channel and a second air inlet channel whose extending directions are parallel to each other.
  • the casing also includes a wind baffle 159 arranged in the fan cavity 150 .
  • a circular hole for accommodating the fan is opened in the middle of the wind deflector 159 .
  • a restriction channel for restricting airflow is formed between the air baffle 159 and the fan cavity 150 , and the restriction channel is used for restricting the airflow entering from the third air inlet 156 and the airflow exhausting from the air outlet 155 . Restricting the channel can prevent the airflow from entering and discharging at will, avoid the fan from forming a self-circulation between the third air inlet 156 and the air outlet 155, ensure that the fan can work effectively, and guide the air entering the first air inlet 133 and the second air inlet 134. After entering the fan cavity 150, it is discharged from the air outlet 155.
  • the multiple side walls of the fan cavity 150 may be provided with air outlets 155 . There may be multiple air outlets 155 to expand the area of the air outlets. Moreover, the air outlet 155 is disposed close to the second high temperature resistant cavity 122 . The third air inlet 156 is disposed close to the first high temperature resistant cavity 121 . Therefore, the third air inlet 156 and the air outlet 155 are staggered in the upper and lower spaces to prevent the third air inlet 156 and the air outlet 155 from directly forming air convection, which affects the cooling effect of the fan.
  • the air outlet 155 is provided with a plurality of heat dissipation teeth 157 , and the plurality of heat dissipation teeth 157 traverse the air outlet 155 , that is, the air in the casing 100 leaves the casing 100 from the plurality of heat dissipation teeth 157 .
  • a cooling column 158 is provided between two adjacent air outlets 155. The cooling column 158 extends from the third side wall 151 of the fan cavity 150 along the extending direction perpendicular to the cooling teeth 157. The cooling column 158 can conduct the heat from the side wall to the heat dissipation tooth.
  • the heat on the third side wall 151 of the fan cavity 150 can be conducted to the plurality of heat-dissipating teeth 157 through the heat-dissipating columns 158 , and the heat is dissipated through the heat-dissipating teeth 157 and the heat-dissipating columns 158 .
  • the low temperature resistant cavity 110 forms the second side wall 112 of the third heat dissipation channel 135 and the cavity wall of the fan cavity 150 is integrally formed.
  • the above casing improves the structural integrity, facilitates assembly, and improves the sealing performance of the casing 100 .
  • the casing 100 is a metal casing.
  • the heat dissipation performance of the metal casing is good, which is convenient for the rapid heat dissipation of the casing.
  • FIG. 7 is a cross-sectional view of the casing of the embodiment
  • FIG. 8 is a cross-sectional view of the casing of the embodiment from another angle.
  • the high temperature-resistant cavity 120 and the low temperature-resistant cavity 110 are both sealed cavities.
  • Both the high temperature resistant chamber 120 and the low temperature resistant chamber 110 are provided with sealing rings 160 for sealing.
  • the sealing ring 160 performs radial sealing and axial sealing on the high temperature resistance cavity 120 and the low temperature resistance cavity 110 .
  • the high temperature resistant cavity 120 is formed by the mutual engagement of the first casing 128 and the second casing 129 .
  • the low temperature resistant cavity 110 is formed by the third shell 117 and the fourth shell 118 being fastened to each other.
  • the sealing ring 160 is respectively disposed at the joint where the first housing 128 and the second housing 129 are snapped together and the joint where the third housing 117 and the fourth housing 118 are snapped together.
  • Both the high temperature resistant cavity 120 and the low temperature resistant cavity 110 are provided with wire passage holes 170 on the cavity walls, and the wire passage holes 170 and the cables are kept sealed.
  • the specific sealing method is not limited here.
  • the cable hole 170 is provided with rubber to achieve dust and water resistance, so that the overall performance of the casing 100 can be improved.
  • the casing 100 is provided with a socket 180 for electrical connection with the electronic device, and a heat insulating pad 181 is provided on the outer surface of the casing 100 beside the socket 180 .
  • the jack 180 may be a data jack 180 or a power jack 180 .
  • the heat insulating pad 181 may be a plastic pad, a ceramic pad, or the like.
  • the thermal insulation pad 181 can prevent the operator from being scalded by the casing when the socket 180 is inserted.
  • the insertion hole 180 is opened on the fifth side wall 125 of the first high temperature resistance cavity 121 , and the opening position of the insertion hole 180 corresponds to the circuit module in the first high temperature resistance cavity 121 .
  • the jack 180 is electrically connected to the circuit module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Thermal Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Studio Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

一种云台相机及其机壳、可移动平台。该云台相机的机壳内部设有低耐温腔、高耐温腔及散热通道。低耐温腔用于收容低耐温器件,高耐温腔用于收容高耐温器件,低耐温器件的耐温温度低于高耐温器件的耐温温度,低耐温腔与高耐温腔相互独立设置,且散热通道靠近低耐温腔设置。上述云台相机的机壳能够满足云台相机的散热性能要求。

Description

云台相机及其机壳、可移动平台 技术领域
本发明涉及云台相机技术领域,特别涉及一种云台相机及其机壳、可移动平台。
背景技术
随着技术进步,云台相机集成了越来越多的功能,比如成像、视觉、红外等。其中,每个功能模块工作均会产生相应的热量,导致整个云台相机的温度较高。相机处于较高的工作温度中,会影响摄像头芯片的正常工作,使相机的拍摄质量较差,甚至无法进行拍摄。因此,云台相机对散热性能的要求也越来越高。
发明内容
本发明提供一种能够满足相机的散热性能要求的云台相机及其机壳、可移动平台。
一种云台相机的机壳,其内部设有低耐温腔、高耐温腔及散热通道,所述低耐温腔用于收容低耐温器件,所述高耐温腔用于收容高耐温器件,所述低耐温器件的耐温温度低于所述高耐温器件的耐温温度,所述低耐温腔与所述高耐温腔相互独立设置,且所述散热通道靠近所述低耐温腔设置。
在其中一实施方式中,所述低耐温腔的侧壁的外表面与所述高耐温腔的侧壁的外表面之间形成所述散热通道。
在其中一实施方式中,所述高耐温腔为多个,多个所述高耐温腔与所述低耐温腔的多个侧壁的外表面之间形成多个所述散热通道。
在其中一实施方式中,所述低耐温腔的侧壁包括外露于外界的第一侧壁及内置于所述机壳内部的第二侧壁,所述散热通道沿所述第二侧壁设置。
在其中一实施方式中,所述第一侧壁的总面积大于所述第二侧壁的总面积。
在其中一实施方式中,所述第二侧壁的内表面上朝向所述低耐温腔的内侧设有第一散热凸台。
在其中一实施方式中,所述第二侧壁的外表面上朝向所述低耐温腔的外侧设有多个散热片。
在其中一实施方式中,所述散热片与所述第一散热凸台相对设置。
在其中一实施方式中,所述高耐温腔包括第一高耐温腔及第二高耐温腔,所述第一高耐温腔的侧壁的外表面与一所述第二侧壁之间形成第一散热通道,所述第二高耐温腔的侧 壁的外表面与另一所述第二侧壁之间形成第二散热通道,所述第一散热通道设有第一进风口,所述第二散热通道设有第二进风口。
在其中一实施方式中,所述第一散热通道的延伸方向与所述第二散热通道的延伸方向垂直。
在其中一实施方式中,所述第二侧壁上于所述第一散热通道内设有第一散热片,所述第一高耐温腔的侧壁上于所述第一散热通道内设有第二散热片,所述第一散热片及所述第二散热片均沿所述第一散热通道延伸。
在其中一实施方式中,所述第一散热片与所述第二散热片正对设置,或/及,所述第一散热片与所述第二散热片之间存在间隙。
在其中一实施方式中,在所述第一散热片及所述第二散热片的延伸方向上,所述第一散热片的长度大于所述第二散热片的长度。
在其中一实施方式中,所述第一散热片与所述第二散热片交错设置。
在其中一实施方式中,所述第一散热片与所述第二散热片之间设有隔热片。
在其中一实施方式中,所述第一高耐温腔的一侧壁的内表面设有第二散热凸台,所述第二散热凸台用于与电路板接触。
在其中一实施方式中,设有所述第二散热凸台的侧壁朝向所述第一进风口倾斜延伸。
在其中一实施方式中,设有所述第二散热凸台的侧壁外露于外界。
在其中一实施方式中,还包括用于容纳风机的风机腔,所述风机腔的第三侧壁与所述第一高耐温腔相邻,所述风机腔的第四侧壁与所述低耐温腔相邻,并且所述风机腔的第四侧壁与所述低耐温腔的第二侧壁之间形成第三散热通道,所述第一散热通道及所述第二散热通道均与所述第三散热通道相连通,所述风机腔的第四侧壁上开设有与所述第一散热通道和所述第三散热通道均连通的通孔,所述风机腔于所述机壳上开设有与外界连通的出风口;其中,从所述第一进风口进入的气体进入所述第一散热通道后从所述通孔进入所述风机腔,从所述第二进风口进入的气体进入所述第二散热通道后进入所述第三散热通道内,然后从所述通孔进入所述风机腔,进入到所述风机腔的气体从所述出风口排出。
在其中一实施方式中,所述第一散热通道中的气体流向与所述第三散热通道中的气体流向相反。
在其中一实施方式中,还包括用于容纳风机的风机腔,所述风机腔的一侧壁上开设有与所述散热通道连通的通孔,所述散热通道内的气体能够通过所述通孔进入所述风机腔;所述风机腔于所述机壳上开设有与外界连通的出风口;所述风机腔内设有第四散热通道, 所述第四散热通道用于将进入所述风机腔内的气体导向所述风机的风机进风口。
在其中一实施方式中,所述高耐温腔包括第一高耐温腔和第二高耐温腔,所述风机腔夹设于所述第一高耐温腔与所述第二高耐温腔之间。
在其中一实施方式中,气体从所述风机腔靠近所述第一高耐温腔的一侧进入所述风机腔,由所述第四散热通道导向所述风机进风口后从靠近所述第二高耐温腔一侧的风机排风口离开所述风机,并经所述风机腔靠近所述第二高耐温腔的侧壁引导转向后从所述出风口排出。
在其中一实施方式中,所述风机腔于所述机壳上还开设有与外界连通的第三进风口;所述第四散热通道包括导风通道及位于所述导风通道旁的进风通道,所述进风通道与所述第三进风口相连通,以使气体能够从所述第三进风口进入所述进风通道从而进入所述风机腔及所述风机内;所述导风通道的一端朝向所述通孔,所述导风通道的另一端与所述风机进风口相对,所述导风通道用于将从所述通孔进入的气体导入所述风机腔及所述风机内,所述进风通道的延伸方向与所述导风通道的延伸方向相交设置。
在其中一实施方式中,所述第三进风口的数量为两个,所述进风通道包括分别对应于两个所述第三进风口且位于所述导风通道两侧的第一进风通道及第二进风通道。
在其中一实施方式中,所述风机腔的一侧壁的内表面上设有多个相互平行设置的第一导风板,多个所述第一导风板之间形成所述导风通道。
在其中一实施方式中,多个所述第一导风板靠近所述通孔的一端与所述通孔所在的侧壁的距离相同,所述多个第一导风板的另一端呈三角形分布。
在其中一实施方式中,所述进风通道从靠近所述第三进风口的一侧朝向所述风机进风口延伸。
在其中一实施方式中,设有所述第一导风板的所述风机腔的侧壁的内表面上还设有多个相互平行设置的第二导风板,多个所述第二导风板之间形成所述进风通道。
在其中一实施方式中,所述进风通道包括延伸方向相互平行的第一进风通道及第二进风通道。
在其中一实施方式中,所述机壳还包括挡风板,所述挡风板中部开设有用于容纳风机的圆孔,所述挡风板与所述风机腔的侧壁之间形成限制通道,该限制通道用于对从第三进风口进入的气流及从出风口排出的气流进行限制。
在其中一实施方式中,所述高耐温腔包括第一高耐温腔和第二高耐温腔,所述风机腔夹设于所述第一高耐温腔与所述第二高耐温腔之间,所述第三进风口靠近所述第一高耐温 腔设置,所述出风口靠近所述第二高耐温腔设置。
在其中一实施方式中,所述出风口为多个,多个所述出风口分别设于所述风机腔的多个侧壁上。
在其中一实施方式中,所述出风口处设有多个散热齿,多个所述散热齿横贯所述出风口,相邻两所述出风口之间设有散热柱,所述散热柱从所述风机腔的一侧壁沿垂直于所述散热齿的延伸方向延伸,所述散热柱能够将所述侧壁的热量传导至所述散热齿。
在其中一实施方式中,所述机壳上设有遮挡结构,所述第二进风口处形成有所述遮挡结构。
在其中一实施方式中,形成所述第三散热通道的所述第二侧壁和所述风机腔的腔壁一体成型。
在其中一实施方式中,所述第一高耐温腔的高度与所述风机腔的高度之和与所述低耐温腔的高度大致相同。
在其中一实施方式中,所述机壳为金属壳体。
在其中一实施方式中,所述高耐温腔及所述低耐温腔均为密封腔。
在其中一实施方式中,所述高耐温腔及所述低耐温腔均设有用于密封的密封圈。
在其中一实施方式中,所述高耐温腔由第一壳体和第二壳体相互扣合形成,所述低耐温腔由第三壳体和第四壳体相互扣合形成,所述密封圈分别设于所述第一壳体和所述第二壳体扣合的连接处以及所述第三壳体和所述第四壳体扣合的连接处。
在其中一实施方式中,所述高耐温腔及所述低耐温腔的腔壁上均开设有过线孔,所述过线孔与线缆之间保持密封。
在其中一实施方式中,所述机壳设有用于与电子设备电连接的插孔,所述机壳的外表面上于所述插孔旁设有隔热垫。
一种云台相机,包括:
机壳;
低耐温器件,收容于所述低耐温腔内;及
高耐温器件,收容于所述高耐温腔内。
在其中一实施方式中,所述低耐温器件包括相机模组,所述相机模组包括镜头及芯片,所述芯片设置于所述低耐温腔靠近所述散热通道的侧壁。
在其中一实施方式中,所述低耐温腔的侧壁包括外露于外界的第一侧壁及内置于所述机壳内部的第二侧壁,所述第二侧壁的内表面上朝向所述低耐温腔的内侧设有第一散热凸 台,所述第一散热凸台接触于所述芯片。
在其中一实施方式中,所述高耐温器件包括电路板模组和雷达中的至少一者。
在其中一实施方式中,所述高耐温腔包括第一高耐温腔及第二高耐温腔,所述第一高耐温腔及所述第二高耐温腔分别位于所述低耐温腔的两侧,所述电路板模组设置于所述第一高耐温腔内,所述雷达设置于所述第二高耐温腔内。
在其中一实施方式中,所述电路板模组包括第一电路板及第二电路板,所述高耐温腔包括第一高耐温腔及第二高耐温腔,所述第一电路板设置于所述第一高耐温腔的第五侧壁的内表面,所述第二电路板设置于所述第一高耐温腔的第六侧壁的内表面,所述第五侧壁和所述第六侧壁相对设置。
在其中一实施方式中,所述第五侧壁的内表面上设有第二散热凸台,所述第二散热凸台与所述第一电路板接触。
在其中一实施方式中,所述机壳还设有用于收容风机的风机腔,所述风机腔与所述第一高耐温腔共用所述第六侧壁。
在其中一实施方式中,所述第五侧壁的外侧面外露于外界。
在其中一实施方式中,还包括风机,所述机壳还设有用于收容所述风机的风机腔,所述高耐温腔包括第一高耐温腔及第二高耐温腔,所述风机腔及所述第一高耐温腔均设于所述低耐温腔的同侧,且所述风机腔与所述第一高耐温腔及所述低耐温腔均位于所述第二高耐温腔的同侧。
在其中一实施方式中,所述风机包括离心风机和轴流风机中的至少一者。
一种可移动平台,包括:可移动平台主体及云台相机,所述云台相机设置于所述可移动平台主体上。
在其中一实施方式中,所述可移动平台包括无人机、无人车、无人船中的至少一者。
上述云台相机将其机壳的内部分为低耐温腔、高耐温腔及散热通道。低耐温腔用于收容低耐温器件。高耐温腔用于收容高耐温器件。低耐温腔与高耐温腔相互独立设置,且散热通道靠近低耐温腔设置。散热通道可以及时将低耐温腔内的热量散掉,保证低耐温腔的温度较低,从而保证低耐温器件的正常工作。
附图说明
图1为发明一实施方式提供的可移动平台的结构示意图;
图2为本发明一实施方式提供的云台相机的立体结构示意图;
图3为根据图2所示的云台相机的机壳的剖面图;
图4为根据图3所示的云台相机的简示图;
图5为根据图2所示的云台相机的风机腔的立体图;
图6为根据图2所示的云台相机的风机腔的剖面图;
图7为根据图2所示的云台相机的机壳另一角度的剖面图;
图8为根据图7所示的云台相机的机壳另一角度的侧视图。
附图标记说明如下:可移动平台1;云台相机10;可移动平台主体20;云台主体22;低耐温器件30;芯片31;高耐温器件40;机壳100;低耐温腔110、第一侧壁111;第二侧壁112;第一散热凸台113;第一散热片114;间隙115;第三壳体117;第四壳体118;镜头孔119;高耐温腔120;第一高耐温腔121;第二高耐温腔122;第二散热片123;第二散热凸台124;第五侧壁125;第六侧壁126;第一壳体128;第二壳体129;散热通道130;第一散热通道131;第二散热通道132;第一进风口133;第二进风口134;第三散热通道135;遮挡结构14;第一电路板21;第二电路板22;风机腔150;第三侧壁151;第四侧壁152;通孔153;第四散热通道154;导风通道1541;进风通道1542;第一导风板1543;第二导风板1544;出风口155;第三进风口156;散热齿157;散热柱158;挡风板159;密封圈160;过线孔170;插孔180;隔热垫181;风机50;风机进风口51;风机排风口52。
具体实施方式
体现本发明特征与优点的典型实施方式将在以下的说明中详细叙述。应理解的是本发明能够在不同的实施方式上具有各种的变化,其皆不脱离本发明的范围,且其中的说明及图示在本质上是当作说明之用,而非用以限制本发明。
另外,下面结合附图描述的本申请的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的限制。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
本实施方式提供一种可移动平台。可移动平台可以包括无人机、无人车、无人船中的至少一者。可移动平台还可以是手持云台等,在此不作限制。如图1所示,本申请以可移 动平台是无人飞行器为例进行示例性说明。
请参阅图1,图1为本申请实施方式的可移动平台的结构示意图,可移动平台1包括云台相机10及可移动平台主体20。其中,云台相机10设置搭载于可移动平台主体20上。
可移动平台主体20可以是可移动平台的主体部分,例如,可移动平台主体可以是无人飞行器的中心体及机臂;可移动平台主体也可以是无人车的车体部分;可移动平台主体也可以是手持云台的手持部等。
云台相机10搭载在可移动平台主体20上。具体地,云台相机10可以直接安装在可移动平台主体20上,或者,云台相机10也可以通过云台主体22等部件安装在可移动平台主体20上。云台主体22用于保持云台相机10的平衡,减小或消除工作状态下云台相机10的抖动,以保证其拍摄或测绘的效果。
请参阅图1,云台相机10安装在云台主体22上,云台主体22连接在可移动平台主体20上,以使云台相机10搭载在可移动平台主体20上。云台主体22可以可拆卸连接于可移动平台主体20上。该云台主体22可以为支架机构等。
云台相机10可以用于采集周围的物体及环境的图像,并且可以用于测量云台相机10周围的物体及环境的距离。当云台相机10搭载在可移动平台主体上时,云台相机10可以用于探测可移动平台周围的环境,例如探测可移动平台周围的障碍物的距离、可移动平台与障碍物的相对速度等,以用于可移动平台的路径规划、避障等。
请参阅图2至图4,其中,图2为本申请实施方式的云台相机10的立体装配示意图、图3为本申请实施方式的云台相机10的机壳的剖视图、图4为本申请实施方式的云台相机10的机壳100的简示图。云台相机10包括机壳100、低耐温器件30、高耐温器件40及风机50。低耐温器件30的耐温温度低于高耐温器件40的耐温温度。
云台相机10的机壳100其内部设有低耐温腔110、高耐温腔120及散热通道130。低耐温腔110用于收容低耐温器件30。高耐温腔120用于收容高耐温器件40。低耐温腔110与高耐温腔120相互独立设置,且散热通道130靠近低耐温腔110设置。散热通道130可以及时将低耐温腔110内的热量散掉,保证低耐温腔110的温度较低,对低耐温器件进行低温保护,以保证低耐温器件正常工作。
具体在本实施方式中,低耐温腔110的侧壁的外表面与高耐温腔120的侧壁的外表面之间形成散热通道130。该散热通道130还可以为其他形式形成,例如导热管、风道等。本实施方式的散热通道130的形成形式,有效利用了低耐温腔110及高耐温腔120的侧壁,可以减小云台相机10的机壳的体积,使机壳的结构简单。
因此,上述云台相机10将云台相机10的各模块进行腔室划分,将高耐温器件与低耐温器件进行分腔设计,高耐温器件与低耐温器件分别设于高耐温腔120与低耐温腔110内。然后通过散热通道130实现不同腔室间的热隔离,将低耐温腔110与高耐温腔120相互独立设置,成功避免了云台相机10中高耐温器件对低耐温器件的热影响,保证低耐温腔110内的低耐温器件始终处于温度较低的工作环境中,满足低耐温器件对云台相机10的散热要求。
低耐温器件收容于低耐温腔110内。低耐温器件包括相机模组(图未示)。相机模组可以包括镜头及芯片31。低耐温腔110设有用于固定镜头的镜头安装结构。低耐温腔110的一侧开设有镜头孔119,镜头与镜头孔119相对设置。芯片31设置于低耐温腔110靠近散热通道130的侧壁。相机的芯片的耐温值普遍较低,则散热通道130可以对芯片31进行散热,以保证芯片31的温度较低,保证芯片31的寿命及功能。
低耐温腔110的侧壁包括外露于外界的第一侧壁111及内置于机壳100内部的第二侧壁112。即,低耐温腔110的第二侧壁112朝向高耐温腔120,则高耐温腔120的侧壁的外表面与第二侧壁112之间形成散热通道130。因此,散热通道130沿第二侧壁112设置。散热通道130的形状可以为直线型,也可以为弯折形。散热通道130的具体形状与高耐温腔120的侧壁与低耐温腔110的第二侧壁112的具体形状有关。
并且,第一侧壁111的总面积大于第二侧壁112的总面积。低耐温腔110外露于外界的散热面积较大,可以有利于低耐温腔110的热量及时散掉。
第一侧壁111的个数可以为一个、多个也可以为零个。即当第一侧壁111的数量为零个时,低耐温腔110可以完全内置于机壳的内部。低耐温腔110的四周均可以设有散热通道130,散热通道130也可以及时带走低耐温腔110的温度,低耐温腔110内的温度也可以保持较低。
具体在本实施方式中,第二侧壁112的内表面上朝向低耐温腔110的内侧设有第一散热凸台113。第一散热凸台可以为热传导材料制作而成,有利于将低耐温器件的热量快速传导至机壳100上并散发至散热通道130内或散发至外界。以相机的芯片为代表的低耐温器件,在保证寿命和功能的条件下其耐温值普遍较低。因此,将芯片通过导热凝胶固定放置于第一散热凸台113上,芯片与第一散热凸台113接触,有利于芯片的热量及时散发。可以理解,芯片也可以通过其他方式固定在第一散热凸台113上,例如通过卡扣、螺纹、压装等方式固定,在此不做限定。并且,第一散热凸台113还可以用于安装其他低耐温器件,此处对第一散热凸台113的具体安装用途并不限定。
并且,第二侧壁112的外表面上朝向低耐温腔110的外侧设有多个散热片。多个散热片可以增大第二侧壁112的散热面积,可以将第二侧壁112的热量及时散发掉。当然,散热片也可以设于第一侧壁111的外表面上,也可以朝向低耐温腔110的外侧,从而加大第一侧壁111的散热面积,及时将第一侧壁111的热量散掉。
具体在本实施方式中,与第一散热凸台113相对位置处可以设置第一散热片114。由于第一散热凸台113用于对芯片的热量进行传导,则第二侧壁112设有第一散热凸台113的位置处的热量容易集中,因此通过第一散热片114可以有效缓解该处的温度过高。
具体在本实施方式中,云台相机10的机壳100大致呈一长方体。低耐温腔110位于机壳100的一角。低耐温腔110的第一侧壁111的个数为四个,第二侧壁112的个数为两个。
高耐温器件收容于高耐温腔120内。高耐温器件可以包括电路板模组和雷达中的至少一者。高耐温器件的耐高温能力普遍较高,并且,高耐温器件的功率较大、发热较严重。电路板模组可以包括电源、SOC(System-on-a-Chip)集成电路芯片等。并且,雷达可以为激光雷达,也可以为毫米波雷达。通常雷达的耐高温能力能达到85摄氏度左右。当云台相机10搭载有雷达时,该云台相机10可以用于建模、测绘等工作。在其他实施方式中,该高耐温器件还可以包括其他器件,此处对高耐温器件的具体类型不做限定。
高耐温器件可以为多个。高耐温腔120也可以为多个。根据空间布局的设计要求,多个高耐温器件可以分别独立设于一高耐温腔120内,也可以相互组合后设于同一高耐温腔120内。多个高耐温腔120的侧壁的外表面可以与低耐温腔110的多个侧壁的外表面之间形成多个散热通道130。散热通道130沿低耐温腔110的第二侧壁112分布。
具体在本实施方式中,高耐温腔120可以包括第一高耐温腔121及第二高耐温腔122。电路板模组设置于第一高耐温腔121内,雷达设置于第二高耐温腔122内。第一高耐温腔121及第二高耐温腔122分别位于低耐温腔110的两侧。第一高耐温腔121与第二高耐温腔122分别与低耐温腔110的第二侧壁112相对设置。具体请参阅图3,第一高耐温腔121设于所述低耐温腔110的左侧,第二高耐温腔122设于低耐温腔110的上方。
第一高耐温腔121的侧壁的外表面与一第二侧壁112之间形成第一散热通道131。第二高耐温腔122的侧壁的外表面与另一第二侧壁112之间形成第二散热通道132。上述两个第二侧壁112为耐低温腔的两相邻侧壁,则上述两第二侧壁112相互垂直。即,第一散热通道131的延伸方向与第二散热通道132的延伸方向垂直。这样的设置方式有利于在保证散热效果的同时使得结构更加紧凑。在其他实施方式中,根据低耐温腔110的形状,第 二侧壁112的分布位置,则第一散热通道131与第二散热通道132的延伸方向还可以为其他夹角度数,此处对第一散热通道131与第二散热通道132的延伸方向不做限定。第一散热通道131设有第一进风口133。第二散热通道132设有第二进风口134。由于第一进风口133及第二进风口134均外露于外界。因此,机壳上可以设有遮挡结构,用于对第一进风口133及第二进风口134形成遮挡保护,以避免灰尘、水滴等进入散热通道130内。具体地,如图2所示,第二进风口134处形成有遮挡结构14。
温度较低的外界冷气体可以分别从第一进风口133进入第一散热通道131,及从第二进风口134进入第二散热通道132,则冷气沿第一散热通道131及第二散热通道132流动可以带走低耐温腔110的热量,及时降低低耐温腔110内的温度。并且,由于散热通道130形成于低耐温腔110的第二侧壁112与高耐温腔120的侧壁之间,冷气沿第一散热通道131及第二散热通道132流动也能够同时为高耐温腔120中的高耐温器件进行散热,避免高耐温腔120的温度过高。
具体在本实施方式中,第一散热片114位于第一散热通道131内的低耐温腔110的第二侧壁112的外表面上,即第一散热片114朝向第一散热通道131内设置。第一散热片114朝向第一高耐温腔121的侧壁设置。并且,第一高耐温腔121的侧壁的外表面上于第一散热通道131内设有第二散热片123。第二散热片123可以增大第一高耐温腔121的侧壁的散热面积。第一散热片114及第二散热片123均沿第一散热通道131延伸。第一散热片114及第二散热片123不影响第一散热通道131内的气流流动,保证第一散热通道131内的气流顺畅流通,以保证散热效果。
第一散热片114与第二散热片123正对设置。第一散热片114与第二散热片123将第一散热通道131分成多个小通道,保证每个小通道都能够顺利流通气流。
第一散热片114与第二散热片123之间存在间隙115。该间隙115可以阻断第二散热片123上的热量,避免该热量传导至第一散热片114上,从而避免第一高耐温腔121中的高耐温器件产生的热量影响低耐温腔110中的低耐温器件的正常工作。在使第一散热片114与第二散热片123之间存在间隙115的同时,将第一散热片114与第二散热片123正对设置,有利于降低加工难度,降低生产成本。在加工时,可以通过在一组散热片的中部的合适位置处进行切割来形成彼此间具有间隙115的第一散热片114与第二散热片123,加工难度低。
在其他实施方式中,第一散热片114与第二散热片123之间也可以设有隔热片(图未示)。隔热片也可以阻隔第二散热片123上的热量传导至第一散热片114。在其他实施方 式中,第一散热片114与第二散热片123也可以交错设置。交错设置的第一散热片114及第二散热片123也可以避免第二散热片123的热量传导至第一散热片114上。
在第一散热片114及第二散热片123的延伸方向上,第一散热片114的长度大于第二散热片123的长度。第一散热片114的长度可以对气流进行进一步引导,以便于限定气流的流向。
第一高耐温腔121的一侧壁的内表面设有第二散热凸台124。第二散热凸台124用于与电路板接触。第二散热凸台124的设置位置,可以根据第一高耐温腔121内电路板模块的分布方式进行设置,以保证第一高耐温腔121的体积较小。
具体在本实施方式中,第一高耐温腔121包括第五侧壁125及第六侧壁126。第五侧壁125和第六侧壁126相对设置。第五侧壁125为第一高耐温腔121外露于外界的侧壁。第五侧壁125的内表面上设有第二散热凸台124。具体地,第一高耐温腔121大致为长方体形状,第五侧壁125与第六侧壁126上下相对设置。第一散热通道131位于第五侧壁125与第六侧壁126的一侧。第五侧壁125与第六侧壁126之间的侧壁与低耐温腔110的第二侧壁112形成第一散热通道131。
电路板模组包括第一电路板21及第二电路板22。第一电路板21设置于第一高耐温腔121的第五侧壁125的内表面。第二电路板22设置于第一高耐温腔121的第六侧壁126的内表面。第二散热凸台124与第一电路板21接触。第一电路板21产生的热量可以通过第二散热凸台124传导到第五侧壁125上。并且,第五侧壁125朝向第一进风口133倾斜延伸。由于第一进风口133处不停的进入冷空气,则该第一进风口133处的热量较低,则第五侧壁125上的热量会流向热量较低的第一进风口133处,并通过第一散热通道131将该热量散掉。并且,由于第五侧壁125外露于外界,第一电路板21的热量也可以通过第五侧壁125的外表面直接散发至外界。
第一高耐温腔121与低耐温腔110并列设置,第二高耐温腔122设于第一高耐温腔121及低耐温腔110的上方。第二高耐温腔122的一侧壁的局部与低耐温腔110相对,形成第二散热通道132。第二高耐温腔122用于收容雷达。第二高耐温腔122的侧壁的外侧面及/或低耐温腔110的第二侧壁112位于第二散热通道132内也可以设有第三散热片(图未示)。该第三散热片可以增大第二散热通道132的散热面积,从而有利于第二高耐温腔122及低耐温腔110的散热。
请同时参阅图4至图6,图5为本申请实施方式的云台相机的机壳100的风机腔150 的立体示意图,图6为风机腔150的剖视图。机壳100还设有用于收容风机50的风机腔150。风机50可以包括离心风机和轴流风机中的至少一者。在一些实施方式中,风机50为离心风机。离心风机的风机进风口51与风机排风口52的风向呈90度,经过离心风机的气流会被风机改变90度的出风方向,配合相应的散热器和导风配件设计可以实现更紧凑的结构设计。在其他一些实施例中,风机50为轴流风机,轴流风机的风机进风口51与风机排风口52的风向相同。轴流风机可以提供更大的风量,从而增强散热通道130内气流的流量,以增强散热效果,并且可靠性和防护性能高。示例性地,具体在本实施方式中,风机50为轴流风机。
请同时参阅图3及图4,风机腔150夹设于第一高耐温腔121与第二高耐温腔122之间。风机腔150及第一高耐温腔121均设于低耐温腔110的同侧,且风机腔150与第一高耐温腔121及低耐温腔110均位于第二高耐温腔122的同侧。第一高耐温腔121的高度与风机腔150的高度之和与所述低耐温腔110的高度大致相同。因此,风机腔150与第一高耐温腔121上下层叠设置。并且风机腔150与第一高耐温腔121、低耐温腔110并列排布于第二高耐温腔122的下方,则最终使机壳100大致呈长方体形状。上述机壳100将低耐温腔110、第一高耐温腔121、第二高耐温腔122及风机腔150按照上述描述进行排布,可以使机壳100的体积较为紧凑,机壳100的体积较小。
风机腔150包括相邻设置的第三侧壁151及第四侧壁152。其中第三侧壁151与第一高耐温腔121的第六侧壁126相平行。风机腔150的第三侧壁151与第一高耐温腔121相邻。风机腔150的第四侧壁152与低耐温腔110相邻。在一些实施方式中,风机腔150可以与第一高耐温腔121共用第六侧壁126。则风机腔150的第三侧壁151可以省略。或者,风机腔150与第一高耐温腔121共用第三侧壁151,则第六侧壁126可以省略。如此,可以简化上述机壳的结构。
并且风机腔150的第四侧壁152与低耐温腔110的第二侧壁112之间形成第三散热通道135。第一散热通道131及第二散热通道132均与第三散热通道135相连通。第三散热通道135用于对第二散热通道132内的气流进一步引导,以使第二散热通道132内的气流流入风机腔150内。并且,温度较低的气体在第三散热通道135内的流动也可以进一步带走第第二侧壁112上的热量。第三散热通道135的延伸方向与第一散热通道131的延伸方向相同,并且,第三散热通道135的延伸方向与第二散热通道132的延伸方向垂直。因此,第一散热通道131中的气体流向与第三散热通道135中的气体流向相反。如此设置,可以有效地将第一散热通道131及第二散热通道132内的气流引导至风机腔150内,提升散热 效果。
可以理解,当第二散热通道132可以直接连通到风机腔150内,则第三散热通道135也可以省略。
风机腔150的一侧壁上开设有与散热通道130连通的通孔153。散热通道130内的气体能够通过通孔153进入风机腔150。具体地,风机腔150的第四侧壁152上开设有与第一散热通道131和第三散热通道135均连通的通孔153。其中,从第一进风口133进入的气体进入第一散热通道131后从通孔153进入风机腔150,从第二进风口134进入的气体进入第二散热通道132后进入第三散热通道135内,经第三散热通道135,然后经过从通孔153进入风机腔150。
如前所述,在第一散热片114及第二散热片123的延伸方向上,第一散热片114的长度大于第二散热片123的长度。如此可以使通孔153处的气体流动更加畅通,从而提升散热效果。
风机腔150于机壳上开设有与外界连通的出风口155。风机腔150内设有第四散热通道154,第四散热通道154用于将进入风机腔150内的气体导向风机进风口51。气体从风机腔150靠近第一高耐温腔121的一侧进入风机腔150,由第四散热通道154导向风机进风口51后从靠近第二高耐温腔122一侧的风机排风口52离开风机,并经风机腔150靠近第二高耐温腔122的侧壁引导转向后从出风口155排出。
风机腔150于机壳100上还开设有与外界连通的第三进风口156。第四散热通道154包括导风通道1541及位于导风通道旁的进风通道1542。导风通道的一端朝向通孔153,导风通道1541的另一端与风机进风口51相对,导风通道用于将从通孔153进入的气体导入风机腔150及风机内。
风机腔150的第三侧壁151的内表面上设有多个相互平行设置的第一导风板1543。多个第一导风板1543之间形成导风通道1541。多个第一导风板1543靠近通孔153的一端与通孔153所在的侧壁的距离相同,多个第一导风板1543的另一端呈三角形分布。
进风通道1542的延伸方向与导风通道的延伸方向相交设置,如此有利于气体流向风机进风口51。
进风通道1542与第三进风口156相连通,以使气体能够从第三进风口156进入进风通道1542从而进入风机腔150及风机内。进风通道1542从靠近第三进风口156的一侧朝 向风机进风口51延伸。风机腔150通过第三进风口156可以对风机腔150内补充新鲜的冷空气,有利于快速地将风机腔150内的热量散出。
设有第一导风板的风机腔150的侧壁的内表面上还设有多个相互平行设置的第二导风板1544。即,风机腔150的第三侧壁151的内表面上多个第二导风板1544之间形成进风通道1542。
具体在本实施方式中,第三进风口156的数量为两个。进风通道1542包括分别对应于两个第三进风口156且位于导风通道1541两侧的第一进风通道及第二进风通道。进风通道1542包括延伸方向相互平行的第一进风通道及第二进风通道。
机壳还包括设于风机腔150内的挡风板159。挡风板159中部开设有用于容纳风机的圆孔。挡风板159与风机腔150之间形成用于限制气流流通的限制通道,该限制通道用于对从第三进风口156进入的气流及从出风口155排出的气流进行限制。限制通道可以避免气流随意进入和排出,避免风机在第三进风口156与出风口155之间形成自循环,保证风机能够有效工作,将第一进风口133与第二进风口134进入的气体引导进入风机腔150后从出风口155排出。
风机腔150的多个侧壁上可以均开设有出风口155。出风口155可以为多个,以扩大出风口的面积。并且,出风口155靠近第二高耐温腔122设置。第三进风口156靠近第一高耐温腔121设置。因此,第三进风口156与出风口155与在上下空间上交错设置,避免第三进风口156与出风口155直接形成空气对流,影响风机的散热效果。
出风口155处设有多个散热齿157,多个散热齿157横贯出风口155,即机壳100内的空气从多个散热齿157处离开机壳100。相邻两出风口155之间设有散热柱158,散热柱158从风机腔150的第三侧壁151沿垂直于散热齿157的延伸方向延伸,散热柱158能够将侧壁的热量传导至散热齿。通过散热柱158,可以将风机腔150的第三侧壁151上的热量传导至多个散热齿157上,热量通过散热齿157以及散热柱158散掉。
低耐温腔110形成第三散热通道135的第二侧壁112和风机腔150的腔壁一体成型。上述机壳提高了结构的整体性,便于组装,并且提高了机壳100的密封性。
机壳100为金属壳体。金属壳体的散热性能较好,便于机壳快速散热。
请参阅图7及图8,图7为本实施方式的机壳的剖面图,图8为本实施方式的机壳的另一角度的剖视图。具体在本实施方式中,高耐温腔120及低耐温腔110均为密封腔。高 耐温腔120及低耐温腔110均设有用于密封的密封圈160。密封圈160对高耐温腔120及低耐温腔110进行径向密封和轴向密封。
具体地,高耐温腔120由第一壳体128和第二壳体129相互扣合形成。低耐温腔110由第三壳体117和第四壳体118相互扣合形成。密封圈160分别设于第一壳体128和第二壳体129扣合的连接处以及第三壳体117和第四壳体118扣合的连接处。
高耐温腔120及低耐温腔110的腔壁上均开设有过线孔170,过线孔170与线缆之间保持密封。对于具体的密封方式,此处不做限定。示例性地,过线孔170处设有橡胶来实现防尘防水,如此可以提高机壳100的整体性能。
请再次参阅图2,机壳100设有用于与电子设备电连接的插孔180,机壳100的外表面上于插孔180旁设有隔热垫181。插孔180可以为数据插孔180也可以为通电插孔180。隔热垫181可以为塑胶垫、陶瓷垫片等。隔热垫181可以避免在插接插孔180的时候,操作人员被机壳烫伤。具体的,插孔180开设于第一高耐温腔121的第五侧壁125上,插孔180的开设位置对应第一高耐温腔121内的电路模块。该插孔180与电路模块电信号连接。
虽然已参照几个典型实施方式描述了本发明,但应当理解,所用的术语是说明和示例性、而非限制性的术语。由于本发明能够以多种形式具体实施而不脱离发明的精神或实质,所以应当理解,上述实施方式不限于任何前述的细节,而应在随附权利要求所限定的精神和范围内广泛地解释,因此落入权利要求或其等效范围内的全部变化和改型都应为随附权利要求所涵盖。

Claims (56)

  1. 一种云台相机的机壳,其特征在于,其内部设有低耐温腔、高耐温腔及散热通道,所述低耐温腔用于收容低耐温器件,所述高耐温腔用于收容高耐温器件,所述低耐温器件的耐温温度低于所述高耐温器件的耐温温度,所述低耐温腔与所述高耐温腔相互独立设置,且所述散热通道靠近所述低耐温腔设置。
  2. 根据权利要求1所述的云台相机的机壳,其特征在于,所述低耐温腔的侧壁的外表面与所述高耐温腔的侧壁的外表面之间形成所述散热通道。
  3. 根据权利要求1所述的云台相机的机壳,其特征在于,所述高耐温腔为多个,多个所述高耐温腔与所述低耐温腔的多个侧壁的外表面之间形成多个所述散热通道。
  4. 根据权利要求1所述的云台相机的机壳,其特征在于,所述低耐温腔的侧壁包括外露于外界的第一侧壁及内置于所述机壳内部的第二侧壁,所述散热通道沿所述第二侧壁设置。
  5. 根据权利要求4所述的云台相机的机壳,其特征在于,所述第一侧壁的总面积大于所述第二侧壁的总面积。
  6. 根据权利要求4所述的云台相机的机壳,其特征在于,所述第二侧壁的内表面上朝向所述低耐温腔的内侧设有第一散热凸台。
  7. 根据权利要求6所述的云台相机的机壳,其特征在于,所述第二侧壁的外表面上朝向所述低耐温腔的外侧设有多个散热片。
  8. 根据权利要求7所述的云台相机的机壳,其特征在于,所述散热片与所述第一散热凸台相对设置。
  9. 根据权利要求4所述的云台相机的机壳,其特征在于,所述高耐温腔包括第一高耐温腔及第二高耐温腔,所述第一高耐温腔的侧壁的外表面与一所述第二侧壁之间形成第一散热通道,所述第二高耐温腔的侧壁的外表面与另一所述第二侧壁之间形成第二散热通道,所述第一散热通道设有第一进风口,所述第二散热通道设有第二进风口。
  10. 根据权利要求9所述的云台相机的机壳,其特征在于,所述第一散热通道的延伸方向与所述第二散热通道的延伸方向垂直。
  11. 根据权利要求9所述的云台相机的机壳,其特征在于,所述第二侧壁上于所述第一散热通道内设有第一散热片,所述第一高耐温腔的侧壁上于所述第一散热通道内设有第 二散热片,所述第一散热片及所述第二散热片均沿所述第一散热通道延伸。
  12. 根据权利要求11所述的云台相机的机壳,其特征在于,所述第一散热片与所述第二散热片正对设置,或/及,所述第一散热片与所述第二散热片之间存在间隙。
  13. 根据权利要求11所述的云台相机的机壳,其特征在于,在所述第一散热片及所述第二散热片的延伸方向上,所述第一散热片的长度大于所述第二散热片的长度。
  14. 根据权利要求11所述的云台相机的机壳,其特征在于,所述第一散热片与所述第二散热片交错设置。
  15. 根据权利要求11所述的云台相机的机壳,其特征在于,所述第一散热片与所述第二散热片之间设有隔热片。
  16. 根据权利要求9所述的云台相机的机壳,其特征在于,所述第一高耐温腔的一侧壁的内表面设有第二散热凸台,所述第二散热凸台用于与电路板接触。
  17. 根据权利要求16所述的云台相机的机壳,其特征在于,设有所述第二散热凸台的侧壁朝向所述第一进风口倾斜延伸。
  18. 根据权利要求16所述的云台相机的机壳,其特征在于,设有所述第二散热凸台的侧壁外露于外界。
  19. 根据权利要求9所述的云台相机的机壳,其特征在于,还包括用于容纳风机的风机腔,所述风机腔的第三侧壁与所述第一高耐温腔相邻,所述风机腔的第四侧壁与所述低耐温腔相邻,并且所述风机腔的第四侧壁与所述低耐温腔的第二侧壁之间形成第三散热通道,所述第一散热通道及所述第二散热通道均与所述第三散热通道相连通,所述风机腔的第四侧壁上开设有与所述第一散热通道和所述第三散热通道均连通的通孔,所述风机腔于所述机壳上开设有与外界连通的出风口;其中,从所述第一进风口进入的气体进入所述第一散热通道后从所述通孔进入所述风机腔,从所述第二进风口进入的气体进入所述第二散热通道后进入所述第三散热通道内,然后从所述通孔进入所述风机腔,进入到所述风机腔的气体从所述出风口排出。
  20. 根据权利要求19所述的云台相机的机壳,其特征在于,所述第一散热通道中的气体流向与所述第三散热通道中的气体流向相反。
  21. 根据权利要求1所述的云台相机的机壳,其特征在于,还包括用于容纳风机的风机腔,所述风机腔的一侧壁上开设有与所述散热通道连通的通孔,所述散热通道内的气体 能够通过所述通孔进入所述风机腔;所述风机腔于所述机壳上开设有与外界连通的出风口;所述风机腔内设有第四散热通道,所述第四散热通道用于将进入所述风机腔内的气体导向所述风机的风机进风口。
  22. 根据权利要求21所述的云台相机的机壳,其特征在于,所述高耐温腔包括第一高耐温腔和第二高耐温腔,所述风机腔夹设于所述第一高耐温腔与所述第二高耐温腔之间。
  23. 根据权利要求22所述的云台相机的机壳,其特征在于,气体从所述风机腔靠近所述第一高耐温腔的一侧进入所述风机腔,由所述第四散热通道导向所述风机进风口后从靠近所述第二高耐温腔一侧的风机排风口离开所述风机,并经所述风机腔靠近所述第二高耐温腔的侧壁引导转向后从所述出风口排出。
  24. 根据权利要求21所述的云台相机的机壳,其特征在于,所述风机腔于所述机壳上还开设有与外界连通的第三进风口;所述第四散热通道包括导风通道及位于所述导风通道旁的进风通道,所述进风通道与所述第三进风口相连通,以使气体能够从所述第三进风口进入所述进风通道从而进入所述风机腔及所述风机内;所述导风通道的一端朝向所述通孔,所述导风通道的另一端与所述风机进风口相对,所述导风通道用于将从所述通孔进入的气体导入所述风机腔及所述风机内,所述进风通道的延伸方向与所述导风通道的延伸方向相交设置。
  25. 根据权利要求24所述的云台相机的机壳,其特征在于,所述第三进风口的数量为两个,所述进风通道包括分别对应于两个所述第三进风口且位于所述导风通道两侧的第一进风通道及第二进风通道。
  26. 根据权利要求24所述的云台相机的机壳,其特征在于,所述风机腔的一侧壁的内表面上设有多个相互平行设置的第一导风板,多个所述第一导风板之间形成所述导风通道。
  27. 根据权利要求26所述的云台相机的机壳,其特征在于,多个所述第一导风板靠近所述通孔的一端与所述通孔所在的侧壁的距离相同,所述多个第一导风板的另一端呈三角形分布。
  28. 根据权利要求24所述的云台相机的机壳,其特征在于,所述进风通道从靠近所述第三进风口的一侧朝向所述风机进风口延伸。
  29. 根据权利要求28所述的云台相机的机壳,其特征在于,设有所述第一导风板的所述风机腔的侧壁的内表面上还设有多个相互平行设置的第二导风板,多个所述第二导风板 之间形成所述进风通道。
  30. 根据权利要求29所述的云台相机的机壳,其特征在于,所述进风通道包括延伸方向相互平行的第一进风通道及第二进风通道。
  31. 根据权利要求24所述的云台相机的机壳,其特征在于,所述机壳还包括挡风板,所述挡风板中部开设有用于容纳风机的圆孔,所述挡风板与所述风机腔的侧壁之间形成限制通道,该限制通道用于对从第三进风口进入的气流及从出风口排出的气流进行限制。
  32. 根据权利要求31所述的云台相机的机壳,其特征在于,所述高耐温腔包括第一高耐温腔和第二高耐温腔,所述风机腔夹设于所述第一高耐温腔与所述第二高耐温腔之间,所述第三进风口靠近所述第一高耐温腔设置,所述出风口靠近所述第二高耐温腔设置。
  33. 根据权利要求21所述的云台相机的机壳,其特征在于,所述出风口为多个,多个所述出风口分别设于所述风机腔的多个侧壁上。
  34. 根据权利要求21所述的云台相机的机壳,其特征在于,所述出风口处设有多个散热齿,多个所述散热齿横贯所述出风口,相邻两所述出风口之间设有散热柱,所述散热柱从所述风机腔的一侧壁沿垂直于所述散热齿的延伸方向延伸,所述散热柱能够将所述侧壁的热量传导至所述散热齿。
  35. 根据权利要求9所述的云台相机的机壳,其特征在于,所述机壳上设有遮挡结构,所述第二进风口处形成有所述遮挡结构。
  36. 根据权利要求19所述的云台相机的机壳,其特征在于,形成所述第三散热通道的所述第二侧壁和所述风机腔的腔壁一体成型。
  37. 根据权利要求19所述的云台相机的机壳,其特征在于,所述第一高耐温腔的高度与所述风机腔的高度之和与所述低耐温腔的高度大致相同。
  38. 根据权利要求1所述的云台相机的机壳,其特征在于,所述机壳为金属壳体。
  39. 根据权利要求1所述的云台相机的机壳,其特征在于,所述高耐温腔及所述低耐温腔均为密封腔。
  40. 根据权利要求39所述的云台相机的机壳,其特征在于,所述高耐温腔及所述低耐温腔均设有用于密封的密封圈。
  41. 根据权利要求40所述的云台相机的机壳,其特征在于,所述高耐温腔由第一壳体 和第二壳体相互扣合形成,所述低耐温腔由第三壳体和第四壳体相互扣合形成,所述密封圈分别设于所述第一壳体和所述第二壳体扣合的连接处以及所述第三壳体和所述第四壳体扣合的连接处。
  42. 根据权利要求1所述的云台相机的机壳,其特征在于,所述高耐温腔及所述低耐温腔的腔壁上均开设有过线孔,所述过线孔与线缆之间保持密封。
  43. 根据权利要求1所述的云台相机的机壳,其特征在于,所述机壳设有用于与电子设备电连接的插孔,所述机壳的外表面上于所述插孔旁设有隔热垫。
  44. 一种云台相机,其特征在于,包括:
    权利要求1-43任一所述的机壳;
    低耐温器件,收容于所述低耐温腔内;及
    高耐温器件,收容于所述高耐温腔内。
  45. 根据权利要求44所述的云台相机,其特征在于,所述低耐温器件包括相机模组,所述相机模组包括镜头及芯片,所述芯片设置于所述低耐温腔靠近所述散热通道的侧壁。
  46. 根据权利要求45所述的云台相机,其特征在于,所述低耐温腔的侧壁包括外露于外界的第一侧壁及内置于所述机壳内部的第二侧壁,所述第二侧壁的内表面上朝向所述低耐温腔的内侧设有第一散热凸台,所述第一散热凸台接触于所述芯片。
  47. 根据权利要求44所述的云台相机,其特征在于,所述高耐温器件包括电路板模组和雷达中的至少一者。
  48. 根据权利要求47所述的云台相机,其特征在于,所述高耐温腔包括第一高耐温腔及第二高耐温腔,所述第一高耐温腔及所述第二高耐温腔分别位于所述低耐温腔的两侧,所述电路板模组设置于所述第一高耐温腔内,所述雷达设置于所述第二高耐温腔内。
  49. 根据权利要求47所述的云台相机,其特征在于,所述电路板模组包括第一电路板及第二电路板,所述高耐温腔包括第一高耐温腔及第二高耐温腔,所述第一电路板设置于所述第一高耐温腔的第五侧壁的内表面,所述第二电路板设置于所述第一高耐温腔的第六侧壁的内表面,所述第五侧壁和所述第六侧壁相对设置。
  50. 根据权利要求49所述的云台相机,其特征在于,所述第五侧壁的内表面上设有第二散热凸台,所述第二散热凸台与所述第一电路板接触。
  51. 根据权利要求49所述的云台相机,其特征在于,所述机壳还设有用于收容风机的风机腔,所述风机腔与所述第一高耐温腔共用所述第六侧壁。
  52. 根据权利要求49所述的云台相机,其特征在于,所述第五侧壁的外侧面外露于外界。
  53. 根据权利要求47所述的云台相机,其特征在于,还包括风机,所述机壳还设有用于收容所述风机的风机腔,所述高耐温腔包括第一高耐温腔及第二高耐温腔,所述风机腔及所述第一高耐温腔均设于所述低耐温腔的同侧,且所述风机腔与所述第一高耐温腔及所述低耐温腔均位于所述第二高耐温腔的同侧。
  54. 根据权利要求53所述的云台相机,其特征在于,所述风机包括离心风机和轴流风机中的至少一者。
  55. 一种可移动平台,其特征在于,包括:可移动平台主体及权利要求49-54任一所述的云台相机,所述云台相机设置于所述可移动平台主体上。
  56. 根据权利要求55所述的可移动平台,其特征在于,所述可移动平台包括无人机、无人车、无人船中的至少一者。
PCT/CN2020/120997 2020-06-30 2020-10-14 云台相机及其机壳、可移动平台 WO2022000849A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080022937.2A CN113678059B (zh) 2020-06-30 2020-10-14 云台相机及其机壳、可移动平台

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021264578.5 2020-06-30
CN202021264578.5U CN212259668U (zh) 2020-06-30 2020-06-30 散热组件、测距装置及移动平台

Publications (1)

Publication Number Publication Date
WO2022000849A1 true WO2022000849A1 (zh) 2022-01-06

Family

ID=73980293

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/120997 WO2022000849A1 (zh) 2020-06-30 2020-10-14 云台相机及其机壳、可移动平台
PCT/CN2020/120910 WO2022000846A1 (zh) 2020-06-30 2020-10-14 雷达组件及具有该雷达组件的可移动平台

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120910 WO2022000846A1 (zh) 2020-06-30 2020-10-14 雷达组件及具有该雷达组件的可移动平台

Country Status (2)

Country Link
CN (1) CN212259668U (zh)
WO (2) WO2022000849A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114389184A (zh) * 2022-01-19 2022-04-22 陆宏涛 用于环网柜的进风装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115988857B (zh) * 2023-03-22 2023-06-20 中兴通讯股份有限公司 雷达组件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120057296A1 (en) * 2010-09-08 2012-03-08 Getac Technology Corporation Host apparatus with waterproof function and heat dissipation module thereof
CN207321743U (zh) * 2017-07-07 2018-05-04 昊翔电能运动科技(昆山)有限公司 散热结构及其电子模组
WO2019061096A1 (zh) * 2017-09-27 2019-04-04 深圳市大疆灵眸科技有限公司 机壳组件及具有其的拍摄设备
CN210327748U (zh) * 2019-09-29 2020-04-14 深圳景行机器人科技有限公司 云台摄像头及其云台相机
CN111031223A (zh) * 2019-12-30 2020-04-17 深圳市道通智能航空技术有限公司 图像获取装置、云台组件及无人机
CN111213439A (zh) * 2018-12-13 2020-05-29 深圳市大疆创新科技有限公司 电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106802658B (zh) * 2017-03-21 2019-09-20 厦门大学 一种全自动高精度室内快速定位方法
CN106931963A (zh) * 2017-04-13 2017-07-07 高域(北京)智能科技研究院有限公司 环境数据共享平台、无人飞行器、定位方法和定位系统
US10827123B1 (en) * 2018-01-05 2020-11-03 Gopro, Inc. Modular image capture systems
CN207991560U (zh) * 2018-04-13 2018-10-19 杭州云江科技有限公司 一种一体化模块
CN209623718U (zh) * 2019-01-25 2019-11-12 湖南超能机器人技术有限公司 巡逻机器人定位系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120057296A1 (en) * 2010-09-08 2012-03-08 Getac Technology Corporation Host apparatus with waterproof function and heat dissipation module thereof
CN207321743U (zh) * 2017-07-07 2018-05-04 昊翔电能运动科技(昆山)有限公司 散热结构及其电子模组
WO2019061096A1 (zh) * 2017-09-27 2019-04-04 深圳市大疆灵眸科技有限公司 机壳组件及具有其的拍摄设备
CN111213439A (zh) * 2018-12-13 2020-05-29 深圳市大疆创新科技有限公司 电子设备
CN210327748U (zh) * 2019-09-29 2020-04-14 深圳景行机器人科技有限公司 云台摄像头及其云台相机
CN111031223A (zh) * 2019-12-30 2020-04-17 深圳市道通智能航空技术有限公司 图像获取装置、云台组件及无人机

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114389184A (zh) * 2022-01-19 2022-04-22 陆宏涛 用于环网柜的进风装置

Also Published As

Publication number Publication date
CN212259668U (zh) 2020-12-29
WO2022000846A1 (zh) 2022-01-06

Similar Documents

Publication Publication Date Title
WO2022000849A1 (zh) 云台相机及其机壳、可移动平台
TWI437951B (zh) 散熱裝置
EP3893483B1 (en) Ducted cooling system of a camera
CN213042101U (zh) 云台相机及可移动平台
CN113678059B (zh) 云台相机及其机壳、可移动平台
WO2021256021A1 (ja) 電子制御装置
CN104619151A (zh) 电子组件冷却系统和方法
WO2024017042A1 (zh) 一种冷却装置、中央控制器和汽车
JP5117287B2 (ja) 電子機器の冷却装置
CN213152665U (zh) 一种散热装置及电子设备
US20230262896A1 (en) Electronic device assembly and expansion component thereof
JP2001015969A (ja) 冷却装置
JP6941005B2 (ja) 電気機器
JP6156913B2 (ja) 電子装置
TWI414225B (zh) 電子裝置
CN212812416U (zh) 一种电子产品内部电路板可调散热结构
TWI564699B (zh) 散熱組件及顯示卡模組
JP2003218569A (ja) 電子機器の冷却装置
JP7454048B2 (ja) 電子制御装置
JP4985390B2 (ja) 電子機器の放熱装置
JP2005251916A (ja) 電子機器筐体の冷却構造
JP6942258B2 (ja) 室外機及び空気調和機
CN220399789U (zh) 一种投影仪内部风路系统及投影仪
CN220156920U (zh) 一种数字处理模块的散热结构、超声主板及医疗设备
CN213635382U (zh) 存储装置及数据处理设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942945

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942945

Country of ref document: EP

Kind code of ref document: A1