WO2022000846A1 - 雷达组件及具有该雷达组件的可移动平台 - Google Patents

雷达组件及具有该雷达组件的可移动平台 Download PDF

Info

Publication number
WO2022000846A1
WO2022000846A1 PCT/CN2020/120910 CN2020120910W WO2022000846A1 WO 2022000846 A1 WO2022000846 A1 WO 2022000846A1 CN 2020120910 W CN2020120910 W CN 2020120910W WO 2022000846 A1 WO2022000846 A1 WO 2022000846A1
Authority
WO
WIPO (PCT)
Prior art keywords
radar
transmission member
circuit board
assembly
motor
Prior art date
Application number
PCT/CN2020/120910
Other languages
English (en)
French (fr)
Inventor
刘勇
杜劼熹
刘煜程
张翔
刘军利
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN202080006177.6A priority Critical patent/CN113167884A/zh
Publication of WO2022000846A1 publication Critical patent/WO2022000846A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present application relates to the technical field of radar, and in particular, to a radar assembly and a movable platform having the radar assembly.
  • the existing radar needs to be additionally attached with a digital camera when in use, and the image color information obtained by the digital camera is used to color the point cloud, but it will increase the overall volume and weight, which is inconvenient;
  • the radar is installed on a movable carrier. If the attitude of the movable carrier changes, such as a sudden change in the direction of movement, it is easy to cause the radar remote sensing system to shake, resulting in inconsistent cloud density at the location, which in turn affects the accuracy of data acquisition. .
  • the radar needs to use the positioning and navigation system for real-time positioning during the moving process. In some complex scenarios, if the positioning and navigation system is interfered, the satellite will be lost instantly, which will have a great impact on the accuracy of data acquisition.
  • Embodiments of the present application provide a radar assembly and a movable platform having the radar assembly.
  • an embodiment of the present application provides a radar assembly, including: a radar integrated device, including a mounting structure and a radar, a camera module, a visual positioning sensor, and an inertial navigation unit connected to the mounting structure, and the radar and camera module
  • the group and the sensing direction of the visual positioning sensor are arranged in the same direction; and the stabilization pan/tilt head includes a plurality of rotating shaft mechanisms, each rotating shaft mechanism includes a rotating bracket and a driving device for driving it to rotate around each rotating shaft, and the radar integrated device is installed On the stabilization pan/tilt, the attitude of the radar integrated device is adjusted by changing the rotation angle of at least one rotating shaft mechanism of the stabilization pan/tilt.
  • an embodiment of the present application provides a movable platform, including a body and the above-mentioned radar assembly, and a stabilization gimbal is installed on the body.
  • Visual positioning sensors can be used to locate the position of radar components and movable platforms.
  • radar components and movable platforms generally use the positioning and navigation system for real-time positioning. If the positioning and navigation system loses a star, it can still be positioned by the visual positioning sensor, thereby ensuring the accuracy of radar data acquisition.
  • the inertial navigation unit can be used to measure the attitude of the radar integrated device in real time, so as to determine the launch direction information of the radar, which is beneficial to improve the data acquisition accuracy of the radar.
  • the sensing directions of the radar, the camera module and the visual positioning sensor are set in the same direction.
  • the visual positioning sensor locates a point in the same sensing direction as the radar and camera modules, and uses this point as a reference point for positioning stabilization.
  • the above radar, camera module, visual positioning sensor and inertial navigation unit are integrated and installed on the installation structure, so that the overall volume and weight of the radar integrated device are smaller.
  • the attitude of the radar integrated device is adjusted, so as to enhance the stability of the radar integrated device. No matter how the movable platform moves, the radar integrated device is always stable, so as to ensure the data Get precision.
  • FIG. 1 is a schematic structural diagram of a radar assembly according to an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a radar integrated device of the radar assembly of FIG. 1;
  • Fig. 3 is the side structure schematic diagram of the radar integrated device of Fig. 2;
  • Fig. 4 is another side structural schematic diagram of the radar integrated device of Fig. 2;
  • Fig. 5 is the bottom surface structure schematic diagram of the radar integrated device of Fig. 2;
  • Fig. 6 is the exploded structure schematic diagram of the radar integrated device of Fig. 2;
  • FIG. 7 is an enlarged schematic view of the radar integrated device of FIG. 6 at position H;
  • FIG. 8 is a schematic structural diagram of a first accommodating cavity, a second accommodating cavity and a partition in the housing of the radar integrated device of FIG. 2;
  • FIG. 9 is a schematic structural diagram of a first accommodating cavity, a second accommodating cavity and a partition in a housing of a radar integrated device of a radar assembly according to another embodiment of the present application;
  • FIG. 10 is a schematic cross-sectional view of the radar integrated device of FIG. 2;
  • FIG. 11 is a schematic diagram of the front structure of the lower structure of the radar integrated device of FIG. 2 (excluding the radar, the front cover and the bottom cover);
  • Fig. 12 is the top surface structure schematic diagram of the lower structure of Fig. 11;
  • Fig. 13 is the bottom surface structure schematic diagram of the lower structure of Fig. 11;
  • Fig. 14 is the side structure schematic diagram of the lower structure of Fig. 11;
  • Fig. 15 is another side structure schematic diagram of the lower structure of Fig. 11;
  • Fig. 16 is the exploded structure schematic diagram of the lower structure of Fig. 11;
  • FIG. 17 is a schematic exploded view of the radar assembly of FIG. 1;
  • FIG. 18 is a schematic structural diagram of a movable platform according to an embodiment of the present application.
  • Radar integrated device 111, housing; 111a, front housing; 111a-1, front housing main body; 111a-2, front cover; 111b, rear housing; 111b-1, rear housing main body; 111b-2, bottom cover 1111, the first accommodating cavity; 1112, the second accommodating cavity; 1113, the air inlet; 1114, the air outlet; 1115, the air baffle; 112, the partition; 112a, the partition plate; 1121, through passage; 113, deflector; 1131, diversion channel; 114, heat insulation handle; 115, first sealing ring; 116, second sealing ring; 117, mounting frame; 1171, installation position; 1181 , SD card slot; 1182, SD card slot cover; 119, SDK interface cover; 12, radar; 121, through hole; 122, auxiliary shaft matching hole; 13, camera module; 14, visual positioning sensor; 15, inertial navigation unit; 16, first circuit board; 161, radar main board; 162, camera module main board; 17, first transmission part; 171, bending part; 18,
  • a and/or B includes scheme A, scheme B, or scheme that A and B satisfy at the same time.
  • spatially relative terms such as “above,” “below,” “top,” “bottom,” etc., may be used herein to describe only one device or feature as shown in the figure versus other devices or features.
  • the spatial relationship of features should be understood to also encompass different orientations in use or operation in addition to the orientation shown in the figures.
  • FIG. 1 shows a schematic structural diagram of a radar assembly according to an embodiment of the present application.
  • FIG. 2 shows a schematic structural diagram of the radar integrated device 10 of the radar assembly of FIG. 1 .
  • FIG. 6 shows a schematic diagram of an exploded structure of the radar integrated device 10 of FIG. 2 .
  • the radar assembly of the present application can be mounted on various movable platforms that can be used for remote sensing mapping, such as unmanned aerial vehicles, vehicles, remote-controlled ground robots, and the like.
  • the radar assembly is mounted on an unmanned aerial vehicle as an example for description.
  • the radar assembly includes a radar integrated device 10 and a stabilization pan/tilt 20 .
  • the radar integrated device 10 includes a mounting structure and a radar 12 , a camera module 13 , a visual positioning sensor 14 and an inertial navigation unit 15 connected to the mounting structure.
  • the sensing directions of the radar 12 , the camera module 13 and the visual positioning sensor 14 are arranged in the same direction.
  • Radar 12 is used to acquire scene space data.
  • the camera module 13 is used to obtain the image required by the scene, and its purpose can be various. For example, the camera module 13 obtains a color image of the scene, and colorizes the point cloud obtained by the radar 12 through the color information of the image; Group 13 can also acquire color or black and white images that can be captured at a location when the radar assembly moves with the UAV to that location.
  • the visual positioning sensor 14 may be used to locate the position of the radar assembly and movable platform.
  • radar components and unmanned aerial vehicles generally use the positioning and navigation system for real-time positioning. If the positioning and navigation system loses a star, it can still be positioned by the visual positioning sensor 14 to ensure the data acquisition accuracy of the radar 12 .
  • the inertial navigation unit 15 can be used to measure the attitude of the radar integrated device 10 in real time, so as to determine the emission direction information of the radar 12 , thereby helping to improve the data acquisition accuracy of the radar 12 .
  • the sensing directions of the radar 12 , the camera module 13 and the visual positioning sensor 14 are arranged in the same direction.
  • the visual positioning sensor 14 locates a certain point in the same sensing direction as the radar 12 and the camera module 13, and uses this point as a reference point for positioning stabilization.
  • the above-mentioned radar 12 , camera module 13 , visual positioning sensor 14 and inertial navigation unit 15 are integrated and installed on the installation structure, so that the overall volume and weight of the integrated radar device 10 is smaller.
  • the stabilization gimbal 20 includes a plurality of rotating shaft mechanisms. Each rotating shaft mechanism includes a rotating bracket and a driving device for driving it to rotate around each rotating shaft.
  • the radar integrated device 10 is installed on the stabilization gimbal 20 .
  • the attitude of the radar integrated device 10 is adjusted by changing the rotation angle of at least one rotating shaft mechanism of the stabilization gimbal 20, so as to enhance the stability of the radar integrated device 10. No matter how the unmanned aerial vehicle moves, the radar integrated device 10 Always stable, thus guaranteeing data acquisition accuracy.
  • FIG. 3 shows a schematic side view of the radar integrated device 10 of FIG. 2 .
  • FIG. 4 shows another side structural schematic diagram of the radar integrated device 10 of FIG. 2 .
  • the extension line of the rotating shaft of at least one rotating shaft mechanism of the stabilization gimbal 20 passes through the middle of the radar integrated device 10 from the side, and the radar integrated device 10 can Pitch or yaw motion along the extension of this axis.
  • the radar 12 is located above the camera module 13 , the visual positioning sensor 14 and the inertial navigation unit 15 .
  • the center of gravity of the radar integrated device 10 as a whole should be located on the extension line of the above-mentioned rotating shaft or above it.
  • the radar 12 Since the weight of the radar 12 is generally greater than the total weight of the camera module 13 , the visual positioning sensor 14 and the inertial navigation unit 15 , the radar 12 is arranged above the camera module 13 , the visual positioning sensor 14 and the inertial navigation unit 15 without any additional Alternatively, it is only necessary to increase the weight of the corresponding parts of the camera module 13 , the visual positioning sensor 14 and the inertial navigation unit 15 , so that the integrated overall center of gravity can meet the above requirements.
  • the radar 12 can also be arranged below the camera module 13, the visual positioning sensor 14 and the inertial navigation unit 15.
  • a camera needs to be added.
  • the weight of the corresponding part of the module 13 , the visual positioning sensor 14 and the inertial navigation unit 15 generally increases the volume of the part, which is not conducive to the overall miniaturization of the radar integrated device 10 .
  • the radar 12 and the other three components can also be arranged in other ways, such as horizontal juxtaposition.
  • the center of gravity of the radar integrated device 10 may also be located below the extension line of the rotating shaft, but for relative ease of rotation, the distance between the center of gravity and the extension line of the rotating shaft should not be too large.
  • FIG. 8 shows a schematic structural diagram of the first accommodating cavity 1111 , the second accommodating cavity 1112 and the partition plate 112 a in the housing 111 of the radar integrated device 10 of FIG. 2 .
  • FIG. 9 shows a schematic structural diagram of the first accommodating cavity 1111 , the second accommodating cavity 1112 and the partition plate 112 a in the housing 111 in the radar assembly according to another embodiment of the present application.
  • FIG. 11 shows a schematic front view of the lower structure of the radar integrated device 10 in FIG. 2 , wherein the lower structure refers to the remaining structure of the radar integrated device 10 after removing the radar 12 , the front cover 111 a - 2 and the bottom cover 111 b - 2 .
  • FIG. 16 shows an exploded schematic view of the lower structure of FIG. 11 .
  • the radar integrated device 10 further includes a first circuit board 16 , and a heating element is provided on the first circuit board 16 .
  • the installation structure includes a housing 111, and the housing 111 has a first accommodating cavity 1111 and a second accommodating cavity 1112 which are separated from each other.
  • the camera module 13 , the visual positioning sensor 14 and the inertial navigation unit 15 are arranged in the first accommodating cavity 1111 .
  • the first circuit board 16 is disposed in the second accommodating cavity 1112 . At least one of the radar 12 , the camera module 13 , the visual positioning sensor 14 and the inertial navigation unit 15 is connected to the first circuit board 16 .
  • the above-mentioned heating element on the first circuit board 16 forms a heat source, which increases the ambient temperature during operation. Since the camera module 13 , the visual positioning sensor 14 and the inertial navigation unit 15 are all sensitive to temperature, if the installation environment is overheated, the normal operation of the above components will be affected. Therefore, the housing 111 is divided into a first accommodating cavity 1111 and a second accommodating cavity 1112, and the camera module 13, the visual positioning sensor 14, the inertial navigation unit 15 and the first circuit board 16 are located in two different In the accommodating cavity, heat insulation is realized, and the normal operation of the camera module 13, the visual positioning sensor 14, and the inertial navigation unit 15 is ensured.
  • the arrangement of the camera module 13, the visual positioning sensor 14, the inertial navigation unit 15 and the first circuit board 16 is not limited to this.
  • the above components can also be placed in the same chamber, but need to pass Other ways to reduce the impact of high heat on the camera module 13 and other components, for example, the first circuit board 16 and other components such as the camera module 13 need to be separated by a sufficient distance, or, at the first circuit A heat absorbing structure is arranged between a circuit board 16 and the camera module 13 .
  • the radar integrated device 10 further includes a first transmission member 17 .
  • the casing 111 has a partition 112 for partitioning the first accommodating cavity 1111 and the second accommodating cavity 1112 .
  • the partition portion 112 is provided with a passage 1121 through which the first transmission member 17 passes.
  • At least one of the camera module 13 , the visual positioning sensor 14 and the inertial navigation unit 15 is electrically connected to the first circuit board 16 through the first transmission member 17 .
  • the camera module 13 , the visual positioning sensor 14 and the inertial navigation unit 15 are all connected to the first transmission member 17 .
  • the first transmission member 17 is used to supply power and/or transmit signals and data to the camera module 13 , the visual positioning sensor 14 and the inertial navigation unit 15 .
  • the first transmission member 17 can be selected from various transmission members capable of supplying power and/or transmitting signals and data, such as a flexible circuit board, a coaxial cable, and the like.
  • connection methods of the camera module 13 , the visual positioning sensor 14 and the inertial navigation unit 15 and the first circuit board 16 are not limited to this. In other embodiments of the present application, the camera module 13 , the visual positioning sensor 14 Either one of the inertial navigation unit 15 and the first circuit board 16 can also be wirelessly connected.
  • the partition portion 112 includes at least one partition plate 112a.
  • the number of the partition plates 112a is not limited to one, and in other embodiments, the number of the partition plates 112a may also be plural.
  • the plurality of partition plates 112a are arranged along the connecting line direction of the first accommodating cavity 1111 and the second accommodating cavity 1112, and at least one set of adjacent two partition plates 112a A heat insulating space 112b is formed between them, and the heat insulating space 112b can further enhance the heat insulating effect between the first accommodating cavity 1111 and the second accommodating cavity 1112 .
  • the specific form of the partition 112 is not limited to this.
  • the partition 112 can also be other structures capable of forming two accommodating cavities in the housing 111, for example, It may be a heat insulating film made of heat insulating material.
  • the radar integrated device 10 further includes a second transmission member 18 .
  • One end of the second transmission member 18 is electrically connected to the radar 12 , and the other end of the second transmission member 18 extends into the second accommodating cavity 1112 and is electrically connected to the first circuit board 16 .
  • the second transmission element 18 is used to supply power to the radar 12 and/or transmit signals and data.
  • the second transmission member 18 can be selected from various transmission members capable of supplying power and/or transmitting signals and data, such as a flexible circuit board, a coaxial cable, and the like.
  • the connection manner between the radar 12 and the first circuit board 16 is not limited to this, and in other embodiments of the present application, the radar 12 may also be wirelessly connected with the first circuit board 16 .
  • the first circuit board 16 includes a radar mainboard 161 and a camera module mainboard 162 .
  • the radar main board 161 is provided with at least a radar image processor
  • the camera module main board 162 is provided with at least a camera image processor.
  • the radar main board 161 is located above the camera module main board 162 , and the radar main board 161 is connected to the camera module main board 162 , and the first transmission member 17 and the second transmission member 18 are directly connected to the radar main board 161 . connect.
  • the first circuit board 16 may also include one of the radar mainboard 161 and the camera module mainboard 162, or include other types of circuit boards, such as a power supply board, a general control board, and the like. When the first circuit board 16 includes a plurality of circuit boards, the arrangement relationship between the respective circuit boards can be designed as required.
  • FIG. 5 shows a schematic diagram of the bottom surface structure of the radar integrated device 10 of FIG. 2 .
  • FIG. 7 shows an enlarged schematic diagram at H in FIG. 6 , and the enlarged schematic diagram mainly shows the structures of the guide plate 113 and the guide channel 1131 .
  • FIG. 10 shows a schematic cross-sectional view of the radar integrated device 10 in FIG. 2 , the cut plane of which is perpendicular to the sensing direction of the radar integrated device 10 and passes through the second accommodating cavity 1112 .
  • FIG. 12 shows a schematic view of the top surface structure of the lower structure of FIG. 11 .
  • FIG. 13 shows a schematic view of the bottom surface structure of the lower structure of FIG. 11 .
  • FIG. 14 shows a schematic side view of the lower structure of FIG. 11 .
  • FIG. 15 shows another side structural schematic diagram of the lower structure of FIG. 11 .
  • the radar integrated device 10 further includes a heat dissipation structure 19 , and the heat dissipation structure 19 is used to dissipate heat from the first circuit board 16 , thereby reducing the heat dissipation around the first circuit board 16 .
  • the temperature ensures the reliability of the first circuit board 16 in use.
  • the housing 111 has an air inlet 1113 and an air outlet 1114 that communicate with the second accommodating cavity 1112 .
  • the heat dissipation structure 19 is disposed in the second accommodating cavity 1112 .
  • the heat dissipation structure 19 includes a heat dissipation plate 191 and a heat dissipation fan 192 .
  • the heat dissipation plate 191 has a raised heat dissipation convex portion, and the heat dissipation convex portion is in close contact with the heating element.
  • the heat dissipation convex portion is made of a material with good thermal conductivity such as metal, and the close contact between the heating element and the heat dissipation convex portion can increase the heat dissipation area.
  • the entire heat dissipation plate 191 is made of thermally conductive material, so that the heat dissipation area can be maximized.
  • An airflow is formed between the air inlet 1113 and the air outlet 1114 by the cooling fan 192 , and the cooling fan 192 , the cooling plate 191 and the first circuit board 16 are arranged along the path of the airflow.
  • the cooling fan 192 When the cooling fan 192 is activated, the natural wind from the outside enters the second accommodating cavity 1112 through the air inlet 1113, and is finally discharged from the air outlet 1114 after passing through the cooling fan 192 to form an airflow, which also passes through the cooling plate 191 and the first circuit. plate 16, so as to take away the heat at the heat dissipation plate 191 and the first circuit board 16, thereby enhancing heat dissipation.
  • the cooling fan 192 may be a centrifugal fan, an axial fan, or the like.
  • the specific form of the heat dissipation structure 19 is not limited to this.
  • the heat dissipation structure 19 may also be one of the heat dissipation fan 192 and the heat dissipation plate 191 with heat dissipation protrusions, or the heat dissipation structure 19 may also be It can be a combination of cooling fins and cooling fans 192 .
  • a baffle 113 is provided in the second accommodating cavity 1112 .
  • the guide plate 113 has at least one guide channel 1131 .
  • One end of the guide channel 1131 communicates with the second accommodating cavity 1112 .
  • the other end of the guide channel 1131 communicates with the air inlet 1113 or the air outlet 1114 .
  • the air intake can be introduced to a desired position (such as the air intake side of the cooling fan 192 ) through the above-mentioned guide channel 1131 , or a designated position in the second accommodating cavity 1112 (such as the heat dissipation plate 191 and the first circuit board 16 can be directed away from the air flow)
  • a desired position such as the air intake side of the cooling fan 192
  • a designated position in the second accommodating cavity 1112 such as the heat dissipation plate 191 and the first circuit board 16 can be directed away from the air flow
  • the air inlet 1113 is located at the bottom of the casing 111
  • the air outlet 1114 is located at the rear side of the casing 111
  • the cooling fan 192 the radar mainboard 161.
  • the heat dissipation plate 191 and the camera module main board 162 are arranged in the second accommodating cavity 1112 in order from top to bottom.
  • the heat dissipation convex portion of the heat dissipation plate 191 can be located on the upper side, in contact with the heating element on the radar main board 161, or on the lower side, in contact with the heating element on the camera module main board 162, and of course can also be located on both sides at the same time, in contact with the radar.
  • the heating elements on the main board 161 and the camera module main board 162 are in contact with each other to dissipate heat.
  • an air baffle 1115 is further arranged between the cooling fan 192 and the radar main board 161 .
  • the air baffle 1115 is fixedly installed in the second accommodating cavity 1112 so as to divide the second accommodating cavity 1112 into two upper and lower parts.
  • the air baffle plate 1115 has a positioning plate extending upward, and the positioning plate can be installed and positioned with the inner wall of the second accommodating cavity 1112 , and/or can be positioned in cooperation with the cooling fan 192 .
  • the middle portion of the positioning plate has a vent which is aligned with the middle region of the cooling fan 192 .
  • the cooling fan 192 is an axial flow fan, and the ventilation opening of the positioning plate corresponds to the fan area of the axial flow fan.
  • the deflector 113 is arranged at the air inlet 1113, and the deflector 113 extends upward into the upper area of the air baffle 1115, so as to introduce the air intake from the air inlet 1113 to the upper air inlet side of the cooling fan 192, and dissipate heat through
  • the fan 192 blows downward toward the radar main board 161 , the heat dissipation plate 191 , and the camera module main board 162 , and finally flows out through the air outlet 1114 . It should be noted that, in this case, as shown in FIG.
  • the part of the air outlet 1114 corresponding to the lower area of the air baffle 1115 mainly plays the role of air outlet, and the air outlet 1114 corresponding to the upper area of the air baffle 1115 A small amount of wind flows out of the part, and even when the cooling fan 192 is working, natural wind from the outside may enter through this part.
  • the air inlet 1113, the air outlet 1114, the cooling fan 192, the radar main board 161, the cooling plate 191, the camera module main board 162 and the deflector 113 are not limited to the above arrangement, and the air flow path is not limited to the above. In other embodiments, reasonable arrangements may be made according to specific requirements, as long as heat dissipation can be achieved and air volume loss can be effectively controlled.
  • the air inlet 1113 and the air outlet 1114 are arranged on two opposite sides of the housing 111, and the cooling fan 192, the radar main board 161, the cooling plate 191, and the camera module main board 162 are arranged vertically and distributed at intervals along the horizontal direction. In this case, the path of the airflow is substantially straight, and the deflector 113 may not need to be provided.
  • a portion of the outer wall of the housing 111 corresponding to the second accommodating cavity 1112 is provided with a heat-insulating hand-held portion 114 .
  • the heat-insulating hand-held portion 114 is made of heat-insulating material to prevent the operator from getting hot when he needs to hold the position of the radar integrated device 10 corresponding to the second accommodating cavity 1112 .
  • an SD card slot 1181 is provided at the position of the housing 111 corresponding to the second accommodating cavity 1112 , the SD card slot 1181 is connected to the radar main board 161 or the camera module main board 162 , and an SD card is arranged on the SD card slot 1181 Slot cover 1182.
  • the operator can hold the above-mentioned heat-insulating hand-held portion 114 .
  • a part of the heat-insulating handle 114 is located at the bottom of the outer wall of the housing 111 , and the other part is located at the side of the outer wall, and the SD card slot 1181 is located above the heat-insulating handle 114 , which is more convenient for handheld operation.
  • the specific position of the heat-insulating hand-held portion 114 can be designed according to the position that needs to be operated, for example, according to the position of the SD card slot 1181 or other types of slots that need to be operated.
  • the casing 111 includes a front casing 111 a and a rear casing 111 b that are detachably connected, and at least part of the inner cavity of the front casing 111 a forms a first accommodating cavity 1111 . At least part of the inner cavity of the rear case 111b forms a second accommodating cavity 1112 .
  • the two parts of the front shell 111a and the rear shell 111b are set to be detachable connection, which is more convenient for assembly and maintenance.
  • the partition part 112 may be a structure provided between the front case 111a and the rear case 111b alone, or may be formed by a side wall of the front case 111a or the rear case 111b. Further, a first sealing ring 115 is provided between the front case 111a and the rear case 111b. After the front case 111a and the rear case 111b are assembled, the first sealing ring 115 is sandwiched between the two to act as a seal to prevent dust and rain from entering the first accommodating cavity 1111 or the second accommodating cavity from the joint. into the cavity 1112. Wherein, the first sealing ring 115 may be made of elastic materials such as rubber and silicone.
  • the front case 111a includes a front case main body 111a-1 and a front cover 111a-2.
  • the front case main body 111a-1 is detachably connected to the rear case 111b, at least one of the front case main body 111a-1 and the rear case 111b is detachably connected to the radar 12, and the front cover 111a-2 and the front case main body 111a-1 are away from the rear case
  • One side of 111b is detachably attached, and the front cover 111a-2 is detachably attached to the radar 12.
  • the above structures are all detachable connections, which are convenient for disassembly and maintenance.
  • the front cover 111a-2 is connected to the front case main body 111a-1 and the radar 12 at the same time, and then the radar 12 is connected to at least one of the front case main body 111a-1 and the rear case 111b, so that the radar 12 is connected to the housing 111. form a solidly connected whole.
  • the part of the upper part of the front cover 111a-2 connected to the radar 12 protrudes outward from the part of the lower part connected to the front case main body 111a-1, and the remaining part of the case 111 is connected to the outer surface of the radar 12. are roughly even. That is, the volume of the lower half of the radar integrated device 10 can be reduced as much as possible without affecting the operation of the internal components, which is beneficial to the miniaturization of the radar integrated device 10 .
  • the front cover 111 a - 2 has an avoidance hole for avoiding the radar 12 , the camera module 13 and the visual positioning sensor 14 . Both the front and rear ends of the front case main body 111a-1 are open.
  • a first accommodating cavity 1111 is formed inside the front case main body 111a-1. It is convenient for maintenance and replacement of various components in the first accommodating cavity 1111 .
  • the rear case 111b includes a rear case main body 111b-1 and a bottom cover 111b-2.
  • the rear case main body 111b-1 and the bottom cover 111b-2 are detachably connected, so as to facilitate maintenance and replacement of various components in the second accommodating cavity 1112.
  • the SD card slot 1181 is provided on the side wall of the rear case main body 111b-1
  • the heat-insulating hand-held portion 114 is provided on the bottom cover 111b-2
  • the bottom end of the air guide plate 113 Attached to the bottom cover 111b-2.
  • the side of the partition 112 facing the second accommodating cavity 1112 is provided with a groove-like structure similar to the baffle 113 .
  • the guide plate 113 is butted with the groove-like structure on the partition part 112 to define a guide area communicating with the air inlet 1113 .
  • a second sealing ring 116 is provided between the rear case main body 111b-1 and the bottom cover 111b-2. After the rear case main body 111b-1 and the bottom cover 111b-2 are assembled, the second sealing ring 116 is sandwiched between the two to play a sealing role, preventing dust and rainwater from entering the second housing from the joint. inside cavity 1112.
  • the second sealing ring 116 may be made of elastic materials such as rubber and silicone.
  • the structure of the housing 111 is not limited to the above-mentioned multiple detachable and connected split structures.
  • the housing 111 may be an integral structure, in which an integral structure is formed.
  • the accommodating cavity is divided into a first accommodating cavity 1111 and a second accommodating cavity 1112 .
  • the connection between the housing 111 and the radar 12 is not limited to this.
  • the housing 111 can also be connected with the radar 12 in other ways. For example, the housing 111 is only connected to the bottom of the radar 12 .
  • the housing 111 is provided with a mounting bracket 117 .
  • the camera module 13 , the visual positioning sensor 14 and the inertial navigation unit 15 are connected to the mounting frame 117 and/or the inner wall of the housing 111 , and the radar 12 is connected to the housing 111 .
  • the mounting bracket 117 has a plurality of spaced mounting positions 1171 , and at least two of the camera module 13 , the visual positioning sensor 14 and the inertial navigation unit 15 are respectively mounted at the corresponding mounting positions 1171 .
  • the above-mentioned mounting positions 1171 can make the mounted components spaced apart to prevent mutual influence between the components.
  • the mounting bracket 117 is located in the main body 111a-1 of the front housing, and there are two mounting positions 1171 on the mounting bracket 117, which are respectively used for installing the camera module 13 and the inertial navigation unit 15.
  • the first The transmission member 17 is electrically connected with the camera module 13 and the inertial navigation unit 15 .
  • the end of the first transmission member 17 forms a bent portion 171 , the visual positioning sensor 14 is installed and fixed to the inner side of the front cover 111 a - 2 , and the bent portion 171 is electrically connected to the visual positioning sensor 14 .
  • the above arrangement makes full use of the inner space of the first accommodating cavity 1111, wherein the weight of the visual positioning sensor 14 is relatively small and can be directly fixed on the front cover 111a-2.
  • the side surface of the main body 111a-1 of the front case is provided with an SDK interface for external development, and an SDK interface cover 119 is provided on the SDK interface.
  • the installation structure is not limited to the above-mentioned specific structure.
  • the installation structure may also be other structures that can integrate the installation of the radar 12 , the camera module 13 , the visual positioning sensor 14 and the inertial navigation unit 15 , such as , the installation structure may be an installation frame, and the radar 12 , the camera module 13 , the visual positioning sensor 14 and the inertial navigation unit 15 are respectively fixedly installed in the frame.
  • the radar 12 includes at least one of a laser radar, a microwave radar, and an ultrasonic radar.
  • the camera module 13 is an RGB camera, and the image color information obtained by the RGB camera is used to colorize the three-dimensional image obtained by the radar 12 .
  • the visual positioning sensor 14 is used to obtain depth information of the image.
  • the visual positioning sensor 14 includes at least one of a monocular vision sensor, a binocular vision sensor, and a structured light sensor.
  • the radar 12 comprises a lidar.
  • Lidar has at least the following advantages:
  • Lidar is an active optical sensor, which is not affected by ambient light, texture and complexity of the scene, and can effectively obtain scene information and improve the quality of data collection;
  • Lidar has the characteristics of multiple echoes, which can transmit pulses at one time and collect multiple echoes to obtain richer target information, such as the height of trees, and detect the exterior glass and internal structure of buildings at the same time;
  • the water depth can be measured.
  • the 532nm green band laser can measure the water depth above 15m at most;
  • lidar can include rotary lidar and frame lidar.
  • the rotary lidar is provided with a rotating part outside, and the rotating part can drive the laser and the receiver of the rotary lidar to rotate.
  • the laser and receiver of the frame-type lidar are stationary relative to the housing of the frame-type lidar, and the change of the light path is realized by rotating the internal optical components (such as lenses).
  • frame-width lidar has no external rotating parts and has advantages in size and weight.
  • a frame-type lidar with a larger field of view (for example, a field of view of 70°) is preferably used.
  • the scanning frequency of the frame-type lidar is high, so that high-density point clouds can be obtained.
  • the working area per unit time can be effectively increased, the efficiency of spatial data acquisition can be improved, and the cycle of surveying and mapping operations can be shortened.
  • other types of radars such as rotary lidars may also be used.
  • the plurality of rotating shaft mechanisms include a pitch rotating shaft mechanism for adjusting the pitch angle of the radar integrated device 10 , a roll rotating shaft mechanism for adjusting the roll angle of the radar integrated device 10 , and a roll rotating shaft mechanism for adjusting the radar integrated device 10 .
  • the yaw pivot mechanism of the yaw angle of the device 10 that is to say, the stabilization gimbal 20 can realize three-axis stabilization of pitch, roll and yaw, which is more conducive to the stabilization of the radar integrated device 10 .
  • the plurality of rotating shaft mechanisms may also include two of a pitch rotating shaft mechanism, a roll rotating shaft mechanism, and a yaw rotating shaft mechanism, that is, the stabilization gimbal 20 can realize two-axis stabilization.
  • FIG. 17 shows a schematic diagram of an exploded structure of the radar assembly of FIG. 1 .
  • the stabilization gimbal 20 further includes a connecting device 23 and a third transmission member 24 .
  • the connection device 23 is used to connect external equipment.
  • the external device is a movable platform for carrying the radar assembly, which is an unmanned aerial vehicle in this embodiment.
  • An arrangement space is formed inside at least one of the rotating brackets.
  • the first end of the third transmission member 24 is electrically connected to the connection device 23 , and the second end of the third transmission member 24 passes through the arrangement space and is electrically connected to the first circuit board 16 of the radar integrated device 10 .
  • the third transmission member 24 is arranged in the arrangement space of the rotating bracket to prevent the third transmission member 24 from being exposed to the outside, which has a certain protective effect on the third transmission member 24 and makes the radar assembly more beautiful.
  • the connection device 23 is connected to the third transmission member 24, at least for supplying power to the first circuit board 16 or and/or transmitting signals and data.
  • the third transmission member 24 can be selected from various transmission members capable of supplying power and/or transmitting signals and data, such as a flexible circuit board, a coaxial cable, and the like.
  • the driving device includes a motor, and the motor is provided with a central hole 224 through which the third transmission member 24 passes, and the central hole 224 communicates with the arrangement space.
  • the third transmission member 24 is inserted through the central hole 224, and even if the motor and the rotating support driven by it rotate, the third transmission member 24 at the rotating shaft will not be affected.
  • the motor can be placed in the layout space or outside the layout space. When the motor is located outside the layout space, it is generally an opening corresponding to the layout space, and the opening is where the shaft of the rotating bracket is located.
  • the third transmission member 24 passes through the above-mentioned opening and passes through the central hole 224 of the motor.
  • the arrangement of the third transmission member 24 at the motor is not limited to this.
  • the third transmission member 24 can also be pre-wrapped at the motor for multiple turns, even if the motor and the rotating support driven by the motor rotate, The third transmission member 24 is also not twisted or torn off due to the multi-turn winding in advance.
  • the stabilization pan/tilt 20 further includes a second circuit board 25 and a fourth transmission member 26 .
  • the interior of at least one rotating bracket has an installation cavity, and the installation cavity communicates with the arrangement space.
  • the second circuit board 25 is disposed in the mounting cavity.
  • the third transmission member 24 is electrically connected to the second circuit board 25 .
  • the motor is electrically connected to the first circuit board 16 or the second circuit board 25 through the fourth transmission member 26 .
  • the fourth transmission member 26 is used for supplying power to the motor or and/or transmitting signals and data.
  • the fourth transmission member 26 can be selected from various transmission members capable of supplying power and/or transmitting signals and data, such as a flexible circuit board, a coaxial cable, and the like.
  • the fourth transmission member 26 can also be at least partially penetrated in the arrangement space, so as to protect the fourth transmission member 26 .
  • the second circuit board 25 is a motor driving board, and at least part of the motor is connected to the second circuit board 25 through the fourth transmission member 26 . Since the third transmission member 24 is connected to both the first circuit board 16 and the second circuit board 25 , the remaining part of the motor can also be connected to the first circuit board 16 through the fourth transmission member 26 . At the same time, the function of connecting the third transmission member 24 with the second circuit board 25 is to supply power to the second circuit board 25, and to transmit the attitude signal and other data measured by the inertial navigation system in the unmanned aerial vehicle to the second circuit board. 25, in order to drive the motor to turn to a certain angle or offset the external jitter.
  • each rotating support in the multiple rotating shaft mechanisms is a first support 211 , a second support 212 and a third support (not shown in the drawings), respectively.
  • the respective driving devices are a first motor 221 , a second motor 222 and a third motor 223 .
  • the first motor 221 is mounted on the connecting device 23 and drives the first bracket 211 to rotate relative to the connecting device 23 .
  • the second motor 222 is mounted on the first bracket 211 and drives the second bracket 212 to rotate relative to the first bracket 211 .
  • the third motor 223 is mounted on the second bracket 212 and drives the radar integrated device 10 to rotate relative to the second bracket 212 through the third bracket.
  • a first arrangement space 2111 is formed in the first bracket 211
  • a second arrangement space 2121 is formed in the second bracket 212 .
  • the first arrangement space 2111 and the second arrangement space 2121 communicate with each other and together form the above arrangement space.
  • the first motor 221 is connected to the top of the first bracket 211
  • the second motor 222 is located in the first arrangement space 2111 and at the bottom thereof.
  • the side of the first bracket 211 opposite to the installation position of the second motor 222 forms an installation cavity
  • the second circuit board 25 is disposed in the installation cavity
  • the installation cavity communicates with the first arrangement space 2111 through a through hole.
  • the second bracket 212 is U-shaped. The middle portion of the second bracket 212 is connected to the second motor 222 .
  • the third motor 223 is located in the second arrangement space 2121 at one end. As shown in FIG. 3 and FIG. 4 , the housing of the radar 12 has a through hole 121 and an auxiliary shaft matching hole 122 .
  • the third motor 223 is connected to the through hole 121 of the radar 12 through the third bracket, and the through hole 121 communicates with the second arrangement space 2121 .
  • the other end of the second bracket 212 is connected to the auxiliary shaft matching hole 122 through an auxiliary shaft 281 , a bearing 283 is provided between the auxiliary shaft 281 and the auxiliary shaft matching hole 122 , and a spring 282 is sleeved on the auxiliary shaft 281 .
  • the third bracket is not marked in FIG. 17 .
  • the intermediate connector used to connect the third motor 223 to the radar 12 can be regarded as the third bracket, such as the bottom of the third motor 223 in FIG. 17 . connection disc structure.
  • One end of the third transmission member 24 has a first joint 241 , the other end has a second joint 242 , and the middle has a third joint 243 .
  • the first connector 241 is connected to the interface on the connecting device 23 , and the third transmission member 24 penetrates downward through the central hole 224 of the first motor 221 and penetrates into the first arrangement space 2111 in the first bracket 211 .
  • the third connector 243 penetrates the mounting cavity at the through hole communicating with the mounting cavity and is connected to the second circuit board 25 .
  • the third transmission member 24 passes through the central hole 224 of the second motor 222 , passes through the second arrangement space 2121 in the second bracket 212 to the third motor 223 , and passes through the central hole 224 of the third motor 223 Then, the through hole 121 of the radar 12 penetrates into the radar 12 , and finally enters the second accommodating cavity 1112 , and the second connector 242 is connected to the first circuit board 16 .
  • the first motor 221 is connected with one end of the fourth transmission member 26, and the other end of the fourth transmission member 26 penetrates into the first arrangement space 2111 in the first bracket 211, and penetrates into the installation cavity through the through hole communicating with the installation cavity and communicates with the first arrangement space 2111.
  • the two circuit boards 25 are connected.
  • the second motor 222 is also connected to one end of another fourth transmission member 26 , and the other end of the fourth transmission member 26 penetrates the installation cavity through the through hole and is connected to the second circuit board 25 .
  • the third motor 223 is connected to one end of another fourth transmission member 26 , and the other end of the fourth transmission member 26 penetrates into the interior of the radar 12 through the end opening of the second bracket 212 and the through hole 121 of the radar 12 , and finally enters into the second accommodating cavity 1112 to be connected with the first circuit board 16 .
  • each motor and each circuit board, and the arrangement of each transmission member are only an example, and in other embodiments, they can be designed according to specific conditions.
  • a third sealing ring 30 is provided at the connection between the stabilization gimbal 20 and the radar integrated device 10 .
  • the above-mentioned third sealing ring 30 is provided at the edge of the through hole 121 of the radar 12 .
  • the third sealing ring 30 is sandwiched between the two to play a sealing role to prevent dust and rain from entering the radar 12 from the joint.
  • the third sealing ring 30 may be made of elastic materials such as rubber and silicone.
  • shielding structures are provided on the third transmission member 24 and/or the fourth transmission member 26 to shield electromagnetic interference and facilitate signal transmission.
  • the shielding structure may include at least one of a shielding magnetic ring 27 , a shielding film, and a shielding tube.
  • the fourth transmission member 26 connected to the first motor 221 is provided with a shielding magnetic ring 27
  • the third transmission member 24 is provided with a shielding film.
  • the installation position and manner of the shielding structure are not limited to this, and in other embodiments, they can be designed according to specific conditions. It should be noted that when designing the specific position of the shielding structure, it is necessary to consider whether there is interference with the positioning and navigation signal.
  • the first motor 221 is a yaw motor
  • the second motor 222 is a roll motor
  • the third motor 223 is a pitch motor.
  • the extension line of the rotating shaft of the yaw motor passes through the center of gravity of the radar integrated device 10 .
  • the extension line of the rotation axis of the roll motor passes through the center of gravity of the radar integrated device 10 , or the center of gravity of the radar integration device 10 is located above the extension line of the rotation axis of the roll motor.
  • the extension line of the rotation axis of the pitch motor passes through the center of gravity of the radar integrated device 10 , or the center of gravity of the radar integrated device 10 is located above the extension line of the rotation axis of the pitch motor.
  • the above design is to facilitate the pitch, yaw or roll motion of the radar integrated device 10 .
  • the embodiment of the present application provides a movable platform, and the movable platform may be a vehicle, an unmanned aerial vehicle, or a remote-controlled ground robot, or the like.
  • FIG. 18 shows a schematic structural diagram of a movable platform according to an embodiment of the present application, wherein the movable platform is an unmanned aerial vehicle.
  • the movable platform includes a fuselage 40 , an arm 50 arranged on the fuselage 40 , and a power kit 60 arranged at the end of the arm 50 .
  • the movable platform also includes the above-mentioned radar assembly, and the stabilization gimbal 20 of the radar assembly is installed on the fuselage 40 .
  • the movable platform further includes a positioning and navigation unit, and the positioning and navigation unit is communicatively connected with the radar assembly.
  • the radar component performs real-time positioning with the help of the positioning and navigation unit set on the movable platform.
  • the radar component itself does not need to be equipped with a positioning and navigation unit, which is beneficial to the weight reduction of the radar component, and avoids the problems of complex positioning and navigation system and difficult antenna arrangement.

Abstract

一种雷达组件及具有该雷达组件的可移动平台,其中雷达组件包括:雷达集成装置(10),包括安装结构以及连接在安装结构上的雷达(12)、相机模组(13)、视觉定位传感器(14)和惯性导航单元(15),雷达(12)、相机模组(13)以及视觉定位传感器(14)的感测方向朝向同一方向设置;增稳云台(20),包括多个转轴机构,每个转轴机构包括转动支架和用于驱动转动的驱动装置,雷达集成装置(10)安装在增稳云台(20)上,其中,通过改变增稳云台(20)的至少一个转轴机构的转动角度,调节雷达集成装置(10)的姿态。上述雷达、相机模组、视觉定位传感器和惯性导航单元集成为一个整体,体积更小、重量更轻,增稳云台和视觉定位传感器能够保证数据获取精度。

Description

雷达组件及具有该雷达组件的可移动平台 技术领域
本申请涉及雷达技术领域,具体涉及一种雷达组件及具有该雷达组件的可移动平台。
背景技术
目前,在测绘/泛测绘、环境检测、三维城市建模、地球科学等诸多领域中,对于空间数据的准确性、获取效率等方面的要求越来越高。在众多遥感技术中,雷达遥感系统由于其自动化程度高、受天气影响小、空间数据获取效率和精度较高等特点被广泛地应用。
在对相关技术的研究过程中,发明人发现至少存在如下问题:
(1)、现有的雷达在使用时需要额外附带数码相机,通过该数码相机获得的图像色彩信息对点云进行着色,但是会增大整体的体积和重量,较为不便;
(2)、雷达安装在可移动载体上,若可移动载体的姿态发生变化,例如突然变换运动方向,这样容易引起雷达遥感系统随之抖动,从而导致对地点云密度不一致,进而影响数据获取精度。
(3)、雷达在移动过程中需要通过定位导航系统进行实时定位,在一些复杂场景下,如果定位导航系统受到干扰,瞬间丢星,这样会对数据获取精度产生较大影响。
发明内容
本申请实施例提出一种雷达组件及具有该雷达组件的可移动平台。
第一个方面,本申请实施例提供了一种雷达组件,包括:雷达集成装置,包括安装结构以及连接在安装结构上的雷达、相机模组、视觉定位传感器和惯性导航单元,雷达、相机模组以及视觉定位传感器 的感测方向朝向同一方向设置;以及增稳云台,包括多个转轴机构,每个转轴机构包括转动支架和用于驱动其绕各转轴转动的驱动装置,雷达集成装置安装在增稳云台上,其中,通过改变增稳云台的至少一个转轴机构的转动角度,调节雷达集成装置的姿态。
第二个方面,本申请实施例提供了一种可移动平台,包括机身和上述的雷达组件,增稳云台安装于机身。
视觉定位传感器可用于对雷达组件及可移动平台的位置进行定位。特别地,雷达组件及可移动平台一般利用定位导航系统进行实时定位,如果定位导航系统发生丢星的情况,仍然可以通过视觉定位传感器进行定位,从而保证雷达的数据获取精度。惯性导航单元可用于实时测量雷达集成装置的姿态,从而确定雷达的发射方向信息,进而有利于提高雷达的数据获取精度。
雷达、相机模组以及视觉定位传感器的感测方向朝向同一方向设置。当定位导航系统丢星时,视觉定位传感器在与雷达、相机模组相同的感测方向上定位某一点,以此点作为参考点进行定位增稳。
上述雷达、相机模组、视觉定位传感器和惯性导航单元被集成安装在安装结构上,从而使雷达集成装置整体的体积更小、重量更轻。
通过改变增稳云台的至少一个转轴机构的转动角度,调节雷达集成装置的姿态,从而对雷达集成装置起到增稳的作用,无论可移动平台如何运动,雷达集成装置始终稳定,从而保证数据获取精度。
附图说明
图1是根据本申请一个实施例的雷达组件的结构示意图;
图2是图1的雷达组件的雷达集成装置的结构示意图;
图3是图2的雷达集成装置的侧面结构示意图;
图4是图2的雷达集成装置的另一侧面结构示意图;
图5是图2的雷达集成装置的底面结构示意图;
图6是图2的雷达集成装置的分解结构示意图;
图7是图6的雷达集成装置的H处放大示意图;
图8是图2的雷达集成装置的壳体内的第一容置腔、第二容置腔以及分隔部的结构示意图;
图9是根据本申请另一个实施例的雷达组件的雷达集成装置中壳体内的第一容置腔、第二容置腔以及分隔部的结构示意图;
图10是图2的雷达集成装置的剖视示意图;
图11是图2的雷达集成装置的下部结构(除去雷达、前盖和底盖)的正面结构示意图;
图12是图11的下部结构的顶面结构示意图;
图13是图11的下部结构的底面结构示意图;
图14是图11的下部结构的侧面结构示意图;
图15是图11的下部结构的另一侧面结构示意图;
图16是图11的下部结构的分解结构示意图;
图17是图1的雷达组件的分解结构示意图;以及
图18是根据本申请一个实施例的可移动平台的结构示意图。
附图标记说明:
10、雷达集成装置;111、壳体;111a、前壳;111a-1、前壳主体;111a-2、前盖;111b、后壳;111b-1、后壳主体;111b-2、底盖;1111、第一容置腔;1112、第二容置腔;1113、进风口;1114、出风口;1115、隔风板;112、分隔部;112a、分隔板;112b、隔热空间;1121、穿设通道;113、导流板;1131、导流通道;114、隔热手持部;115、第一密封圈;116、第二密封圈;117、安装架;1171、安装位;1181、SD卡插槽;1182、SD卡插槽盖板;119、SDK接口盖板;12、雷达;121、穿设通孔;122、辅助轴配合孔;13、相机模组;14、视觉定位传感器;15、惯性导航单元;16、第一电路板;161、雷达主板;162、相机模组主板;17、第一传输件;171、弯折部;18、第二传输件;19、散热结构;191、散热板;192、散热风扇;20、增稳云台;211、第一支架;2111、第一布置空间;212、第二支架;2121、第二布置空间;221、第一电机;222、第二电机;223、第三电机;224、中心孔;23、连接装置;24、第三传输件;241、第一接头;242、 第二接头;243、第三接头;25、第二电路板;26、第四传输件;27、屏蔽磁环;281、辅助轴;282、弹簧;283、轴承;30、第三密封圈;40、机身;50、机臂;60、动力套件。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请实施例的附图,对本申请的技术方案进行清楚、完整地描述。显然,所描述的实施例是本申请的一个实施例,而不是全部的实施例。基于所描述的本申请的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,除非另外定义,本申请使用的技术术语或者科学术语应当为本申请所属领域内具有一般技能的人士所理解的通常意义。若全文中涉及“第一”、“第二”等描述,则该“第一”、“第二”等描述仅用于区别类似的对象,而不能理解为指示或暗示其相对重要性、先后次序或者隐含指明所指示的技术特征的数量,应该理解为“第一”、“第二”等描述的数据在适当情况下可以互换。若全文中出现“和/或”,其含义为包括三个并列方案,以“A和/或B”为例,包括A方案,或B方案,或A和B同时满足的方案。此外,为了便于描述,在这里可以使用空间相对术语,如“上方”、“下方”、“顶部”、“底部”等,仅用来描述如图中所示的一个器件或特征与其他器件或特征的空间位置关系,应当理解为也包含除了图中所示的方位之外的在使用或操作中的不同方位。
本申请实施例提供了一种雷达组件。图1示出了本申请一个实施例的雷达组件的结构示意图。图2示出了图1的雷达组件的雷达集成装置10的结构示意图。图6示出了图2的雷达集成装置10的分解结构示意图。
本申请的雷达组件可以搭载于各种可用于遥感测绘的可移动平台上,例如无人飞行器、车辆、遥控地面机器人等。在本实施例中,以雷达组件搭载于无人飞行器为例进行说明。
如图1、图2以及图6所示,雷达组件包括雷达集成装置10和 增稳云台20。雷达集成装置10包括安装结构以及连接在安装结构上的雷达12、相机模组13、视觉定位传感器14和惯性导航单元15。雷达12、相机模组13以及视觉定位传感器14的感测方向朝向同一方向设置。
雷达12用于获取场景空间数据。相机模组13用于获取场景所需图像,其目的可以为多种,例如,相机模组13获取场景彩色图像,通过该图像的色彩信息为雷达12获取的点云进行着色;或者,相机模组13也可在雷达组件随无人飞行器移动至某一位置时,获取该位置所能采集到的彩色或黑白图像。
视觉定位传感器14可用于对雷达组件及可移动平台的位置进行定位。特别地,雷达组件及无人飞行器一般利用定位导航系统进行实时定位,如果定位导航系统发生丢星的情况,仍然可以通过视觉定位传感器14进行定位,从而保证雷达12的数据获取精度。惯性导航单元15可用于实时测量雷达集成装置10的姿态,从而确定雷达12的发射方向信息,进而有利于提高雷达12的数据获取精度。
其中,雷达12、相机模组13以及视觉定位传感器14的感测方向朝向同一方向设置。当定位导航系统丢星时,视觉定位传感器14在与雷达12、相机模组13相同的感测方向上定位某一点,以此点作为参考点进行定位增稳。上述雷达12、相机模组13、视觉定位传感器14和惯性导航单元15被集成安装在安装结构上,从而使雷达集成装置10整体的体积更小、重量更轻。
增稳云台20包括多个转轴机构。每个转轴机构包括转动支架和用于驱动其绕各转轴转动的驱动装置。雷达集成装置10安装在增稳云台20上。其中,通过改变增稳云台20的至少一个转轴机构的转动角度,调节雷达集成装置10的姿态,从而对雷达集成装置10起到增稳的作用,无论无人飞行器如何运动,雷达集成装置10始终稳定,从而保证数据获取精度。
图3示出了图2的雷达集成装置10的侧面结构示意图。图4示出了图2的雷达集成装置10的另一侧面结构示意图。
如图1至图4所示,在本申请一些实施例中,增稳云台20的至 少一个转轴机构的转轴的延长线由雷达集成装置10的侧方穿过其中部,雷达集成装置10可沿该转轴的延长线做俯仰或偏航运动。雷达12位于相机模组13、视觉定位传感器14以及惯性导航单元15的上方。为了便于雷达集成装置10做俯仰或偏航运动,雷达集成装置10整体的重心应位于上述转轴的延长线上或位于其上方。由于雷达12的重量一般大于相机模组13、视觉定位传感器14和惯性导航单元15的总重,将雷达12设置于相机模组13、视觉定位传感器14和惯性导航单元15的上方,无需额外增加或者只需增加较少的相机模组13、视觉定位传感器14和惯性导航单元15对应部分的重量,就能够实现集成后的整体重心符合上述要求。
需要说明的是,在本申请另一些实施方式中,也可以将雷达12设置于相机模组13、视觉定位传感器14和惯性导航单元15的下方,此时为了使整体重心符合要求,需要增加相机模组13、视觉定位传感器14和惯性导航单元15对应部分的重量,此时一般也会使该部分的体积增大,这样不利于雷达集成装置10整体的小型化。此外,也可以将雷达12与其他三个部件以例如横向并列等其他方式进行排布,各个部件的位置能够满足雷达集成装置10正常工作要求即可。当然,本领域技术人员可以理解地,雷达集成装置10整体的重心也可以位于转轴延长线的下方,不过为了相对便于转动,该重心与转轴延长线之间的距离不应过大。
图8示出了图2的雷达集成装置10的壳体111内的第一容置腔1111、第二容置腔1112以及分隔板112a的结构示意图。图9示出了本申请另一个实施例的雷达组件中,壳体111内的第一容置腔1111、第二容置腔1112以及分隔板112a的结构示意图。图11示出了图2的雷达集成装置10的下部结构的正面结构示意图,其中,下部结构指的是雷达集成装置10除去雷达12、前盖111a-2和底盖111b-2后剩余的结构。图16示出了图11的下部结构的分解结构示意图。
如图1、图2、图6、图8以及图16所示,在本申请一些实施例中,雷达集成装置10还包括第一电路板16,第一电路板16上设有发热元件。安装结构包括壳体111,壳体111内具有相分隔的第一容 置腔1111和第二容置腔1112。相机模组13、视觉定位传感器14以及惯性导航单元15设置在第一容置腔1111内。第一电路板16设置在第二容置腔1112内。雷达12、相机模组13、视觉定位传感器14以及惯性导航单元15中的至少一个与第一电路板16连接。第一电路板16上的上述发热元件形成热源,在工作过程中会使周围温度升高。由于相机模组13、视觉定位传感器14和惯性导航单元15均对温度较为敏感,如果安装环境温度过热会影响上述部件的正常工作。因此,将壳体111内分隔为第一容置腔1111和第二容置腔1112,上述相机模组13、视觉定位传感器14、惯性导航单元15与第一电路板16分别位于不同的两个容置腔内,从而实现隔热,保证相机模组13、视觉定位传感器14、惯性导航单元15的正常工作。
当然,相机模组13、视觉定位传感器14、惯性导航单元15与第一电路板16的布置方式不限于此,在其他实施方式中,也可以将上述部件放置于同一个腔室内,不过需要通过其他方式减小高热对相机模组13等部件的影响,例如,第一电路板16与相机模组13等其他部件之间需要间隔足够大的距离,或者,在第一电路板16处或第一电路板16与相机模组13之间设置吸热结构。
如图6、图8、图9和图16所示,在本申请一些实施例中,雷达集成装置10还包括第一传输件17。壳体111内具有用于分隔第一容置腔1111和第二容置腔1112的分隔部112。分隔部112设有供第一传输件17穿过的穿设通道1121。相机模组13、视觉定位传感器14以及惯性导航单元15中的至少一个通过第一传输件17与第一电路板16电连接。在图6和图16示出的具体实施例中,相机模组13、视觉定位传感器14以及惯性导航单元15均与第一传输件17连接。当然,在其他实施方式中,也可以是相机模组13、视觉定位传感器14和惯性导航单元15中的一个或两个与第一传输件17连接。在上述实施例中,第一传输件17用于向相机模组13、视觉定位传感器14和惯性导航单元15供电和/或传输信号、数据。第一传输件17可以选用多种能够供电和/或传输信号、数据的传输件,例如柔性线路板、同轴线等。
需要说明的是,相机模组13、视觉定位传感器14和惯性导航单元15与第一电路板16的连接方式不限于此,在本申请另一些实施方式中,相机模组13、视觉定位传感器14和惯性导航单元15中的任一个也可以与第一电路板16进行无线连接。
如图8和图9所示,在本申请一些实施例中,分隔部112包括至少一个分隔板112a。在图8所示的具体实施例中,分隔板112a为一个,通过一个分隔板112a在壳体111内形成第一容置腔1111和第二容置腔1112,结构简单,便于加工和安装。当然,分隔板112a的数量不限于一个,在其他实施方式中,分隔板112a也可以为多个。
具体地,分隔板112a为多个,多个分隔板112a沿第一容置腔1111和第二容置腔1112的连线方向布置,至少一组相邻的两个分隔板112a之间形成隔热空间112b,隔热空间112b能够进一步增强第一容置腔1111和第二容置腔1112之间的隔热效果。在图9所示的具体实施例中,分隔板112a为两个,两个分隔板112a之间形成隔热空间112b。
可以理解地,分隔部112的具体形式不限于此,在图中未示出的其他实施方式中,分隔部112也可以为其他能够将壳体111内形成两个容置腔的结构,例如,可以为由隔热材料制成的隔热膜。
如图6所示,在本申请一些实施例中,雷达集成装置10还包括第二传输件18。第二传输件18的一端与雷达12电连接,第二传输件18的另一端伸入至第二容置腔1112内并与第一电路板16电连接。第二传输件18用于向雷达12供电和/或传输信号、数据。第二传输件18可以选用多种能够供电和/或传输信号、数据的传输件,例如柔性线路板、同轴线等。当然,雷达12与第一电路板16的连接方式不限于此,在本申请另一些实施方式中,雷达12也可以与第一电路板16进行无线连接。
优选地,第一电路板16包括雷达主板161和相机模组主板162。雷达主板161上至少设有雷达图像处理器,相机模组主板162上至少设有相机图像处理器。在图6示出的实施例中,雷达主板161位于相机模组主板162的上方,并且雷达主板161和相机模组主板162连接, 第一传输件17和第二传输件18直接与雷达主板161连接。当然,第一电路板16也可以包括雷达主板161和相机模组主板162中的一个,或者包括其他类型的电路板,例如电源板、总控制板等。当第一电路板16包括多个电路板时,各个电路板之间的布置关系可以根据需要进行设计。
图5示出了图2的雷达集成装置10的底面结构示意图。图7示出了图6的H处放大示意图,该放大示意图主要示出导流板113和导流通道1131的结构。图10示出了图2的雷达集成装置10的剖视示意图,其剖切面垂直于雷达集成装置10的感测方向且穿过第二容置腔1112。图12示出了图11的下部结构的顶面结构示意图。图13示出了图11的下部结构的底面结构示意图。图14示出了图11的下部结构的侧面结构示意图。图15示出了图11的下部结构的另一侧面结构示意图。
如图6和图16所示,在本申请一些实施例中,雷达集成装置10还包括散热结构19,散热结构19用于对第一电路板16进行散热,从而降低第一电路板16周围的温度,保证第一电路板16的使用可靠性。
具体地,如图1至图6、图10以及图14至图16所示,壳体111具有与第二容置腔1112连通的进风口1113和出风口1114。散热结构19设置在第二容置腔1112内。散热结构19包括散热板191和散热风扇192。
散热板191具有凸起的散热凸部,散热凸部紧贴发热元件。散热凸部由金属等导热性能好的材料制成,发热元件与散热凸部紧贴可以增大散热面积。优选地,散热板191整体均由导热材料制成,这样可以最大程度地增大散热面积。
通过散热风扇192在进风口1113和出风口1114之间形成气流,散热风扇192、散热板191以及第一电路板16沿气流的路径布置。当散热风扇192启动后,外界的自然风由进风口1113进入至第二容置腔1112内,经过散热风扇192后最终由出风口1114排出形成气流,该气流同样经过散热板191和第一电路板16,从而将散热板191和 第一电路板16处的热量带走,进而起到增强散热的作用。散热风扇192可以为离心风扇、轴流风扇等。
需要说明的是,散热结构19的具体形式不限于此,在其他实施方式中,散热结构19也可以为散热风扇192、带有散热凸部的散热板191中的一个,或者,散热结构19也可以为散热鳍片和散热风扇192的组合形式。
进一步地,如图5至图7所示,第二容置腔1112内设有导流板113。导流板113具有至少一个导流通道1131。导流通道1131的一端与第二容置腔1112连通。导流通道1131的另一端与进风口1113或出风口1114连通。通过上述导流通道1131能够将进风引入至所需位置(如散热风扇192的进风侧),或者将第二容置腔1112内指定位置(如散热板191、第一电路板16背离气流流动方向的一侧)的气流引至出风口1114流出,从而减少风量损失,提高散热效果。
在图5至图7、图10以及图12至图16示出的具体实施例中,进风口1113位于壳体111的底部,出风口1114位于壳体111的后侧,散热风扇192、雷达主板161、散热板191、相机模组主板162在第二容置腔1112内由上至下依次设置。散热板191的散热凸部可以位于上侧,与雷达主板161上的发热元件接触,也可以位于下侧,与相机模组主板162上的发热元件接触,当然也可以同时位于两侧,与雷达主板161和相机模组主板162上的发热元件均接触散热。
如图6、图10以及图16所示,散热风扇192与雷达主板161之间还设置有隔风板1115。隔风板1115固定安装在第二容置腔1112内,以将第二容置腔1112分隔为上下两部分。隔风板1115上具有朝上延伸的定位板,该定位板能够与第二容置腔1112的内壁实现安装定位,和/或,与散热风扇192配合定位。定位板的中部具有通风口,该通风口与散热风扇192的中部区域对齐。在本实施例中,散热风扇192为轴流风扇,定位板的通风口与轴流风扇的风扇区域相对应。导流板113设于进风口1113处,并且导流板113向上伸入到隔风板1115的上部区域,从而将进风口1113的进风引入到散热风扇192的上部进风侧,并通过散热风扇192向下朝向雷达主板161、散热板191、 相机模组主板162吹出,最终由出风口1114流出。需要注意的是,在此情况下,如图10所示,出风口1114对应隔风板1115的下部区域的部分主要起到出风的作用,而出风口1114对应隔风板1115的上部区域的部分有少量风流出,甚至在散热风扇192工作时也可能会有外界的自然风由该部分进入。
可以理解地,进风口1113、出风口1114、散热风扇192、雷达主板161、散热板191、相机模组主板162以及导流板113不限于上述布置方式,气流的路径也不限于上述情况。在其他实施方式中,可以根据具体需求进行合理布置,只要能够实现散热且有效控制风量损失即可。例如,将进风口1113和出风口1114设置在壳体111相对的两个侧面上,散热风扇192、雷达主板161、散热板191、相机模组主板162均竖向布置且沿横向间隔分布,此时气流的路径大致呈直线,可不需要设置导流板113。
如图1至图3、图5、图6以及图10所示,在本申请一些实施例中,壳体111的外壁对应第二容置腔1112的部分上设有隔热手持部114。隔热手持部114由隔热材料制成,防止操作者需要握持雷达集成装置10对应第二容置腔1112的位置时烫手。
例如,壳体111对应第二容置腔1112的位置设有SD卡插槽1181,该SD卡插槽1181与雷达主板161或相机模组主板162连接,SD卡插槽1181上设有SD卡插槽盖板1182。在插拔SD卡时,操作者可握持上述隔热手持部114。在本实施例中,隔热手持部114的一部分位于壳体111的外壁底部,另一部分位于外壁侧面,并且SD卡插槽1181位于隔热手持部114上方,这样更加便于手持操作。当然,隔热手持部114的具体位置可以根据具体需要操作的位置进行设计,例如根据需要操作的SD卡插槽1181或者其他类型的插槽的位置进行设计。
如图1至图6、图11至图16所示,在本申请一些实施例中,壳体111包括可拆卸连接的前壳111a和后壳111b,前壳111a的至少部分内腔形成第一容置腔1111。后壳111b的至少部分内腔形成第二容置腔1112。将前壳111a和后壳111b两部分之间设置为可拆卸连接,更加便于装配和维修。分隔部112可以为单独设置在前壳111a 和后壳111b之间的结构,也可以由前壳111a或后壳111b的侧壁形成。进一步地,前壳111a与后壳111b之间设有第一密封圈115。当前壳111a与后壳111b装配后,第一密封圈115被夹设在两者之间,起到密封的作用,防止灰尘、雨水从接缝处进入到第一容置腔1111或第二容置腔1112内。其中,第一密封圈115可以由橡胶、硅胶等弹性材料制成。
如图1至图6所示,前壳111a包括前壳主体111a-1和前盖111a-2。前壳主体111a-1与后壳111b可拆卸连接,前壳主体111a-1和后壳111b中的至少一个与雷达12可拆卸连接,前盖111a-2与前壳主体111a-1背离后壳111b的一侧可拆卸连接,并且前盖111a-2与雷达12可拆卸连接。上述各个结构之间均为可拆卸连接,便于拆装维护。此外,前盖111a-2同时与前壳主体111a-1和雷达12连接,再配合雷达12与前壳主体111a-1和后壳111b中的至少一个的连接,从而使雷达12与壳体111形成一个连接牢固的整体。
在图中所示的具体实施例中,前盖111a-2上部与雷达12连接的部分外凸于下部与前壳主体111a-1连接的部分,壳体111其余部分与雷达12的外表面之间大致平齐。也就是说,雷达集成装置10的下半部分在不影响内部各部件工作的前提下,可尽量缩小体积,从而有利于雷达集成装置10的小型化。前盖111a-2上具有用于避让雷达12、、相机模组13和视觉定位传感器14的避让孔。前壳主体111a-1的前后两端均敞开,前壳主体111a-1与后壳111b和前盖111a-2连接后,在前壳主体111a-1内部形成第一容置腔1111,这样更加便于第一容置腔1111内的各部件的维修和更换。
如图1至图6所示,后壳111b包括后壳主体111b-1和底盖111b-2。后壳主体111b-1与底盖111b-2可拆卸连接,从而便于第二容置腔1112内的各部件的维修和更换。在图中所示的具体实施例中,SD卡插槽1181设置在后壳主体111b-1的侧壁上,隔热手持部114设置在底盖111b-2上,导流板113的底端连接在底盖111b-2上。如图5和图12所示,分隔部112朝向第二容置腔1112的一侧设有与导流板113类似的槽状结构,当底盖111b-2与后壳主体111b-1装配后,导 流板113与分隔部112上的槽状结构对接,以限定出与进风口1113连通的导流区域。进一步地,后壳主体111b-1与底盖111b-2之间设有第二密封圈116。当后壳主体111b-1与底盖111b-2装配后,第二密封圈116被夹设在两者之间,起到密封的作用,防止灰尘、雨水从接缝处进入到第二容置腔1112内。其中,第二密封圈116可以由橡胶、硅胶等弹性材料制成。
需要说明的是,壳体111的结构不限于上述多个可拆卸连接的分体结构,在图中未示出的其他实施方式中,壳体111可以为一个整体结构,该整体结构中形成一个容置腔,容置腔被分隔成第一容置腔1111和第二容置腔1112。此外,壳体111与雷达12的连接方式不限于此,在其他实施方式中,壳体111也可以与雷达12采用其他连接方式,例如,壳体111只与雷达12的底部连接。
如图6和图16所示,在本申请一些实施例中,壳体111内设有安装架117。相机模组13、视觉定位传感器14以及惯性导航单元15连接在安装架117上和/或壳体111的内壁上,雷达12与壳体111连接。安装架117具有多个相间隔的安装位1171,相机模组13、视觉定位传感器14以及惯性导航单元15中的至少两个分别安装在相应的安装位1171处。上述安装位1171能够使安装的部件之间相间隔,防止各部件之间相互影响。
在图中所示的具体实施例中,安装架117位于前壳主体111a-1内,安装架117上具有两个安装位1171,分别用于安装相机模组13和惯性导航单元15,第一传输件17与相机模组13和惯性导航单元15电连接。第一传输件17的端部形成弯折部171,视觉定位传感器14安装固定到前盖111a-2的内侧,弯折部171与视觉定位传感器14电连接。上述布置方式充分利用了第一容置腔1111的内部空间,其中视觉定位传感器14的重量较小,可直接固定在前盖111a-2上。如图2和图15所示,前壳主体111a-1的侧面具有外部开发用SDK接口,该SDK接口上设有SDK接口盖板119。
需要说明的是,安装结构并不限于上述具体结构,在其他实施方式中,安装结构也可以为其他能够集成安装雷达12、相机模组13、 视觉定位传感器14和惯性导航单元15的结构,例如,安装结构可以为一安装框架,雷达12、相机模组13、视觉定位传感器14和惯性导航单元15分别固定安装在该框架中。
在本申请一些实施例中,雷达12包括激光雷达、微波雷达以及超声波雷达中的至少一种。相机模组13为RGB相机,RGB相机获取的图像色彩信息用于为雷达12获取的三维图像进行着色。视觉定位传感器14用于获取图像的深度信息。视觉定位传感器14包括单目视觉传感器、双目视觉传感器以及结构光传感器中的至少一种。
优选地,雷达12包括激光雷达。激光雷达至少具有以下优点:
(1)、激光雷达为主动式光学传感器,不受环境光线、纹理以及场景复杂程度的影响,能够有效地获取场景信息,提高数据采集的质量;
(2)、激光雷达拥有多回波的特性,可以一次发射脉冲,收取多个回波,来获取更丰富的目标信息,例如树木高度,同时检测建筑的外墙玻璃和内部结构等;
(3)、通过修改激光雷达的特征波长,可以测量水深,例如532nm的绿色波段激光最大可以测量15m以上的水深;
(4)、激光雷达的连续采样对路径要求不严格,数据精度不受航高限制。
其中,激光雷达可以包括回转式激光雷达和框幅式激光雷达。回转式激光雷达外部设有转动部件,转动部件可带动回转式激光雷达的激光器和接收器转动。框幅式激光雷达的激光器和接收器相对于框幅式激光雷达的外壳静止,通过转动内部的光学部件(如透镜),来实现光线路径的变化。相比于回转式激光雷达,框幅式激光雷达无外部转动部件,在体积和重量上存在优势。
在本实施例中,优选采用视场角较大(例如视场角为70°)的框幅式激光雷达。框幅式激光雷达的扫描频率较高,从而可获得高密度点云,配合较大视场角可有效提高单位时间作业面积,提高空间数据的获取效率,缩短测绘作业周期。当然,在其他实施方式中,也可以采用回转式激光雷达等其他类型的雷达。
在本申请一些实施例中,多个转轴机构包括用于调节雷达集成装置10的俯仰角的俯仰转轴机构、用于调节雷达集成装置10的横滚角的横滚转轴机构和用于调节雷达集成装置10的偏航角的偏航转轴机构。也就是说,增稳云台20可以实现俯仰、横滚和偏航的三轴增稳,更加有利于雷达集成装置10的稳定。当然,在其他实施方式中,多个转轴机构也可以包括俯仰转轴机构、横滚转轴机构和偏航转轴机构中的两个,也就是增稳云台20可以实现两轴增稳。
图17示出了图1的雷达组件的分解结构示意图。
如图6和图17所示,在本申请一些实施例中,增稳云台20还包括连接装置23和第三传输件24。连接装置23用于连接外部设备。外部设备即为用于搭载雷达组件的可移动平台,在本实施例中为无人飞行器。至少一个转动支架的内部形成有布置空间。第三传输件24的第一端与连接装置23电连接,第三传输件24的第二端穿过布置空间并与雷达集成装置10的第一电路板16电连接。将第三传输件24设置于转动支架的布置空间中,避免第三传输件24暴露在外部,对第三传输件24起到一定的保护作用,并且使雷达组件更加美观。连接装置23和第三传输件24连接,至少用于向第一电路板16供电或和/或传输信号、数据。第三传输件24可以选用多种能够供电和/或传输信号、数据的传输件,例如柔性线路板、同轴线等。
进一步地,如图17所示,驱动装置包括电机,电机设有供第三传输件24穿过的中心孔224,中心孔224与布置空间连通。第三传输件24穿设在中心孔224中,即使电机及其驱动的转动支架发生转动,转轴处的第三传输件24也不会受到影响。需要说明的是,电机可以置于布置空间中,也可以位于布置空间的外部,当电机位于布置空间的外部时,一般也是对应布置空间的开口且此开口处即为转动支架的转轴所在位置,第三传输件24由上述开口穿出并穿过电机的中心孔224。当然,第三传输件24在电机处的设置方式不限于此,在其他实施方式中,第三传输件24也可以在电机处进行预先多圈缠绕,即使电机及其驱动的转动支架发生转动,由于预先进行了多圈缠绕,第三传输件24也不会被拧断或扯断。
此外,增稳云台20还包括第二电路板25和第四传输件26。至少一个转动支架的内部具有安装腔,安装腔与布置空间连通。第二电路板25设置在安装腔内。第三传输件24与第二电路板25电连接。电机通过第四传输件26与第一电路板16或第二电路板25电连接。第四传输件26用于向电机供电或和/或传输信号、数据。第四传输件26可以选用多种能够供电和/或传输信号、数据的传输件,例如柔性线路板、同轴线等。第四传输件26也可至少部分穿设在布置空间内,从而对第四传输件26起到保护作用。
在图17所示的实施例中,第二电路板25为电机驱动板,至少部分电机通过第四传输件26与第二电路板25连接。由于第三传输件24与第一电路板16和第二电路板25均连接,剩余部分的电机也可以通过第四传输件26与第一电路板16连接。同时,第三传输件24与第二电路板25连接的作用,一是向第二电路板25供电,二是将无人飞行器中惯性导航系统测得的姿态信号等数据传输给第二电路板25,以此来驱动电机转到某个特定的角度或者抵消外界的抖动。
如图1和图17所示,具体地,多个转轴机构中的各转动支架分别为第一支架211、第二支架212以及第三支架(图中未示出),多个转轴机构中的各驱动装置分别为第一电机221、第二电机222以及第三电机223。第一电机221安装在连接装置23上并驱动第一支架211相对于连接装置23转动。第二电机222安装在第一支架211上并驱动第二支架212相对于第一支架211转动。第三电机223安装在第二支架212上并通过第三支架驱动雷达集成装置10相对于第二支架212转动。
第一支架211内形成有第一布置空间2111,第二支架212内形成有第二布置空间2121,第一布置空间2111和第二布置空间2121连通且共同形成上述布置空间。第一电机221连接于第一支架211的顶端,第二电机222位于第一布置空间2111内且位于其底部。第一支架211与第二电机222的安装位置相对的一侧形成安装腔,第二电路板25设置在安装腔内,安装腔通过一通孔与第一布置空间2111连通。
第二支架212呈U型。第二支架212的中部与第二电机222连接。第三电机223位于第二布置空间2121内且位于一个端部。如图3和图4所示,雷达12的外壳上具有穿设通孔121和辅助轴配合孔122。第三电机223通过第三支架与雷达12的穿设通孔121处连接,穿设通孔121与第二布置空间2121连通。第二支架212的另一个端部通过辅助轴281与辅助轴配合孔122连接,辅助轴281与辅助轴配合孔122之间设有轴承283,辅助轴281上套设有弹簧282。需要说明的是,第三支架并未在图17中标出,实际上,第三电机223与雷达12连接所采用的中间连接件均可认为是第三支架,例如图17中第三电机223底部的连接圆盘结构。
第三传输件24的一端具有第一接头241,另一端具有第二接头242,其中部具有第三接头243。第一接头241与连接装置23上的接口连接,第三传输件24由第一电机221的中心孔224向下穿出,并穿进第一支架211内的第一布置空间2111。第三接头243在与安装腔连通的通孔处穿入安装腔并与第二电路板25连接。第三传输件24由第二电机222的中心孔224穿出,并沿着第二支架212内的第二布置空间2121穿至第三电机223处,由第三电机223的中心孔224穿出,此后由雷达12的穿设通孔121穿进雷达12内部,并最终进入到第二容置腔1112中,第二接头242与第一电路板16连接。
第一电机221与第四传输件26一端连接,第四传输件26另一端穿进第一支架211内的第一布置空间2111,并通过与安装腔连通的通孔穿入安装腔并与第二电路板25连接。第二电机222同样与另一第四传输件26一端连接,该第四传输件26另一端通过通孔穿入安装腔并与第二电路板25连接。第三电机223与另一第四传输件26一端连接,该第四传输件26另一端通过第二支架212的端部开口和雷达12的穿设通孔121穿进雷达12内部,并最终进入到第二容置腔1112中与第一电路板16连接。
当然,上述各个电机与各个电路板的连接关系、各个传输件的布置方式仅为一种示例,在其他实施方式中,可以根据具体情况进行设计。
如图6和图17所示,在本申请的一些实施例中,增稳云台20与雷达集成装置10的连接处设有第三密封圈30。具体地,雷达12的穿设通孔121的边沿处设有上述第三密封圈30。当第三电机223通过第三支架与雷达12装配后,第三密封圈30被夹设在两者之间,起到密封的作用,防止灰尘、雨水从接缝处进入到雷达12内部。其中,第三密封圈30可以由橡胶、硅胶等弹性材料制成。结合前述第一密封圈115和第二密封圈116的设置,可以使雷达组件具备IP54防护等级,可支持全天候作业,有效延长作业时间。
如图17所示,在本申请的一些实施例中,第三传输件24和/或第四传输件26上设有屏蔽结构,从而屏蔽电磁干扰,有利于信号传输。屏蔽结构可以包括屏蔽磁环27、屏蔽膜、屏蔽管中的至少一种。在图17示出的具体实施例中,与第一电机221连接的第四传输件26上设有屏蔽磁环27,第三传输件24上设有屏蔽膜。屏蔽结构的设置位置及方式不限于此,在其他实施方式中,可以根据具体情况进行设计。需要注意的是,在设计屏蔽结构的具体位置时,需要考虑对定位导航信号是否有干扰。
如图1和图17所示,在本申请的一些实施例中,第一电机221为偏航电机,第二电机222为横滚电机,第三电机223为俯仰电机。其中,偏航电机的转轴延长线经过雷达集成装置10的重心。横滚电机的转轴延长线经过雷达集成装置10的重心,或者雷达集成装置10的重心位于横滚电机的转轴延长线的上方。俯仰电机的转轴延长线经过雷达集成装置10的重心,或者雷达集成装置10的重心位于俯仰电机的转轴延长线的上方。上述设计为了便于雷达集成装置10做俯仰、偏航或横滚运动。
本申请实施例提供了一种可移动平台,该可移动平台可以为车辆、无人飞行器或者遥控地面机器人等。图18示出了本申请一个实施例的可移动平台的结构示意图,其中,可移动平台为无人飞行器。
具体地,如图18所示,可移动平台包括机身40、设置在机身40上的机臂50以及设置在机臂50端部的动力套件60。可移动平台还包括上述雷达组件,雷达组件的增稳云台20安装于机身40。
在本申请的一些实施例中,可移动平台还包括定位导航单元,定位导航单元与雷达组件通信连接。雷达组件借助于可移动平台设置的定位导航单元进行实时定位,雷达组件本身无需设置定位导航单元,从而有利于雷达组件的减重,并且避免了定位导航系统复杂、天线难布置等问题。
对于本申请的实施例,还需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,本申请的保护范围应以权利要求的保护范围为准。

Claims (40)

  1. 一种雷达组件,其特征在于,包括:
    雷达集成装置(10),包括安装结构以及连接在所述安装结构上的雷达(12)、相机模组(13)、视觉定位传感器(14)和惯性导航单元(15),所述雷达(12)、所述相机模组(13)以及所述视觉定位传感器(14)的感测方向朝向同一方向设置;以及
    增稳云台(20),包括多个转轴机构,每个所述转轴机构包括转动支架和用于驱动其绕各转轴转动的驱动装置,所述雷达集成装置(10)安装在所述增稳云台(20)上,
    其中,通过改变所述增稳云台(20)的至少一个所述转轴机构的转动角度,调节所述雷达集成装置(10)的姿态。
  2. 根据权利要求1所述的雷达组件,其特征在于,
    所述增稳云台(20)的至少一个所述转轴机构的转轴的延长线由所述雷达集成装置(10)的侧方穿过其中部,所述雷达(12)位于所述相机模组(13)、所述视觉定位传感器(14)以及所述惯性导航单元(15)的上方。
  3. 根据权利要求1所述的雷达组件,其特征在于,
    所述雷达集成装置(10)还包括第一电路板(16),所述第一电路板(16)上设有发热元件,所述安装结构包括壳体(111),所述壳体(111)内具有相分隔的第一容置腔(1111)和第二容置腔(1112),所述相机模组(13)、所述视觉定位传感器(14)以及所述惯性导航单元(15)设置在所述第一容置腔(1111)内,所述第一电路板(16)设置在所述第二容置腔(1112)内,所述雷达(12)、所述相机模组(13)、所述视觉定位传感器(14)以及所述惯性导航单元(15)中的至少一个与所述第一电路板(16)连接。
  4. 根据权利要求3所述的雷达组件,其特征在于,
    所述雷达集成装置(10)还包括第一传输件(17),所述壳体(111)内具有用于分隔所述第一容置腔(1111)和所述第二容置腔(1112)的分隔部(112),所述分隔部(112)设有供所述第一传输件(17)穿过的穿设通道(1121),所述相机模组(13)、所述视觉定位传感器(14)以及所述惯性导航单元(15)中的至少一个通过所述第一传输件(17)与所述第一电路板(16)电连接。
  5. 根据权利要求4所述的雷达组件,其特征在于,
    所述第一传输件(17)为柔性线路板或同轴线。
  6. 根据权利要求4所述的雷达组件,其特征在于,
    所述分隔部(112)包括至少一个分隔板(112a)。
  7. 根据权利要求6所述的雷达组件,其特征在于,
    所述分隔板(112a)为多个,多个所述分隔板(112a)沿所述第一容置腔(1111)和所述第二容置腔(1112)的连线方向布置,至少一组相邻的两个所述分隔板(112a)之间形成隔热空间(112b)。
  8. 根据权利要求3所述的雷达组件,其特征在于,
    所述雷达集成装置(10)还包括第二传输件(18),所述第二传输件(18)的一端与所述雷达(12)电连接,所述第二传输件(18)的另一端伸入至所述第二容置腔(1112)内并与所述第一电路板(16)电连接。
  9. 根据权利要求8所述的雷达组件,其特征在于,
    所述第二传输件(18)为柔性线路板或同轴线。
  10. 根据权利要求3所述的雷达组件,其特征在于,
    所述第一电路板(16)包括雷达主板(161)和/或相机模组主板(162)。
  11. 根据权利要求3所述的雷达组件,其特征在于,
    所述雷达集成装置(10)还包括散热结构(19),所述散热结构(19)用于对所述第一电路板(16)进行散热。
  12. 根据权利要求11所述的雷达组件,其特征在于,
    所述壳体(111)具有与所述第二容置腔(1112)连通的进风口(1113)和出风口(1114),所述散热结构(19)设置在所述第二容置腔(1112)内,所述散热结构(19)包括:
    散热板(191),具有凸起的散热凸部,所述散热凸部紧贴所述发热元件;
    散热风扇(192),通过所述散热风扇(192)在所述进风口(1113)和所述出风口(1114)之间形成气流,所述散热风扇(192)、所述散热板(191)以及所述第一电路板(16)沿所述气流的路径布置。
  13. 根据权利要求12所述的雷达组件,其特征在于,
    所述第二容置腔(1112)内设有导流板(113),所述导流板(113)具有至少一个导流通道(1131),所述导流通道(1131)的一端与所述第二容置腔(1112)连通,所述导流通道(1131)的另一端与所述进风口(1113)或所述出风口(1114)连通。
  14. 根据权利要求3所述的雷达组件,其特征在于,
    所述壳体(111)的外壁对应所述第二容置腔(1112)的部分上设有隔热手持部(114)。
  15. 根据权利要求3所述的雷达组件,其特征在于,
    所述壳体(111)包括可拆卸连接的前壳(111a)和后壳(111b),所述前壳(111a)的至少部分内腔形成所述第一容置腔(1111),所述后壳(111b)的至少部分内腔形成所述第二容置腔(1112)。
  16. 根据权利要求15所述的雷达组件,其特征在于,
    所述前壳(111a)与所述后壳(111b)之间设有第一密封圈(115)。
  17. 根据权利要求15所述的雷达组件,其特征在于,
    所述前壳(111a)包括前壳主体(111a-1)和前盖(111a-2),所述前壳主体(111a-1)与所述后壳(111b)可拆卸连接,所述前壳主体(111a-1)和所述后壳(111b)中的至少一个与所述雷达(12)可拆卸连接,所述前盖(111a-2)与所述前壳主体(111a-1)背离所述后壳(111b)的一侧可拆卸连接,并且所述前盖(111a-2)与所述雷达(12)可拆卸连接。
  18. 根据权利要求15所述的雷达组件,其特征在于,
    所述后壳(111b)包括后壳主体(111b-1)和底盖(111b-2),所述后壳主体(111b-1)与所述底盖(111b-2)可拆卸连接。
  19. 根据权利要求18所述的雷达组件,其特征在于,
    所述后壳主体(111b-1)与所述底盖(111b-2)之间设有第二密封圈(116)。
  20. 根据权利要求1所述的雷达组件,其特征在于,
    所述安装结构包括壳体(111),所述壳体(111)内设有安装架(117),所述相机模组(13)、所述视觉定位传感器(14)以及所述惯性导航单元(15)连接在所述安装架(117)上和/或所述壳体(111)的内壁上,所述雷达(12)与所述壳体(111)连接。
  21. 根据权利要求20所述的雷达组件,其特征在于,
    所述安装架(117)具有多个相间隔的安装位(1171),所述相机模组(13)、所述视觉定位传感器(14)以及所述惯性导航单元(15)中的至少两个分别安装在相应的所述安装位(1171)处。
  22. 根据权利要求1所述的雷达组件,其特征在于,
    所述雷达(12)包括激光雷达、微波雷达以及超声波雷达中的至少一种;
    或/及,多个所述转轴机构包括用于调节所述雷达集成装置(10)的俯仰角的俯仰转轴机构、用于调节所述雷达集成装置(10)的横滚角的横滚转轴机构和用于调节所述雷达集成装置(10)的偏航角的偏航转轴机构;
    或/及,所述相机模组(13)为RGB相机,所述RGB相机获取的图像色彩信息用于为所述雷达(12)获取的三维图像进行着色;
    或/及,所述视觉定位传感器(14)用于获取图像的深度信息。
  23. 根据权利要求1所述的雷达组件,其特征在于,
    所述视觉定位传感器(14)包括单目视觉传感器、双目视觉传感器以及结构光传感器中的至少一种。
  24. 根据权利要求1所述的雷达组件,其特征在于,
    所述雷达集成装置(10)还包括第一电路板(16),所述增稳云台(20)还包括连接装置(23)和第三传输件(24),所述连接装置(23)用于连接外部设备,至少一个所述转动支架的内部形成有布置空间,所述第三传输件(24)的第一端与所述连接装置(23)电连接,所述第三传输件(24)的第二端穿过所述布置空间并与所述雷达集成装置(10)的所述第一电路板(16)电连接。
  25. 根据权利要求24所述的雷达组件,其特征在于,
    所述驱动装置包括电机,所述电机设有供所述第三传输件(24)穿过的中心孔(224),所述中心孔(224)与所述布置空间连通。
  26. 根据权利要求24所述的雷达组件,其特征在于,
    所述第三传输件(24)为柔性线路板或同轴线。
  27. 根据权利要求24所述的雷达组件,其特征在于,
    所述驱动装置包括电机,所述增稳云台(20)还包括第二电路板(25)和第四传输件(26),至少一个所述转动支架的内部具有安装腔,所述安装腔与所述布置空间连通,所述第二电路板(25)设置在所述安装腔内,所述第三传输件(24)与所述第二电路板(25)电连接,所述电机通过所述第四传输件(26)与所述第一电路板(16)或所述第二电路板(25)电连接。
  28. 根据权利要求27所述的雷达组件,其特征在于,
    所述第四传输件(26)至少部分穿设在所述布置空间内。
  29. 根据权利要求27所述的雷达组件,其特征在于,
    所述第三传输件(24)和/或所述第四传输件(26)上设有屏蔽结构。
  30. 根据权利要求29所述的雷达组件,其特征在于,
    所述屏蔽结构包括屏蔽磁环(27)、屏蔽膜、屏蔽管中的至少一种。
  31. 根据权利要求27所述的雷达组件,其特征在于,
    所述第四传输件(26)为柔性线路板或同轴线。
  32. 根据权利要求1所述的雷达组件,其特征在于,
    所述增稳云台(20)与所述雷达集成装置(10)的连接处设有第三密封圈(30)。
  33. 根据权利要求1所述的雷达组件,其特征在于,
    所述增稳云台(20)还包括连接装置(23),多个所述转轴机构中的各所述转动支架分别为第一支架(211)、第二支架(212)以及第三支架,多个所述转轴机构中的各所述驱动装置分别为第一电机 (221)、第二电机(222)以及第三电机(223),所述第一电机(221)安装在所述连接装置(23)上并驱动所述第一支架(211)相对于所述连接装置(23)转动,所述第二电机(222)安装在所述第一支架(211)上并驱动所述第二支架(212)相对于所述第一支架(211)转动,所述第三电机(223)安装在所述第二支架(212)上并通过所述第三支架驱动所述雷达集成装置(10)相对于所述第二支架(212)转动。
  34. 根据权利要求33所述的雷达组件,其特征在于,
    所述第一电机(221)为偏航电机,所述第二电机(222)为横滚电机,所述第三电机(223)为俯仰电机。
  35. 根据权利要求34所述的雷达组件,其特征在于,
    所述偏航电机的转轴延长线经过所述雷达集成装置(10)的重心。
  36. 根据权利要求34所述的雷达组件,其特征在于,
    所述横滚电机的转轴延长线经过所述雷达集成装置(10)的重心,或者,所述雷达集成装置(10)的重心位于所述横滚电机的转轴延长线的上方。
  37. 根据权利要求34所述的雷达组件,其特征在于,
    所述俯仰电机的转轴延长线经过所述雷达集成装置(10)的重心,或者,所述雷达集成装置(10)的重心位于所述俯仰电机的转轴延长线的上方。
  38. 一种可移动平台,其特征在于,包括机身(40)和权利要求1至37中任一项所述的雷达组件,所述增稳云台(20)安装于所述机身(40)。
  39. 根据权利要求38所述的可移动平台,其特征在于,还包括:
    定位导航单元,所述定位导航单元与所述雷达组件通信连接。
  40. 根据权利要求38所述的可移动平台,其特征在于,所述可移动平台为车辆、无人飞行器或者遥控地面机器人。
PCT/CN2020/120910 2020-06-30 2020-10-14 雷达组件及具有该雷达组件的可移动平台 WO2022000846A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202080006177.6A CN113167884A (zh) 2020-06-30 2020-10-14 雷达组件及具有该雷达组件的可移动平台

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202021264578.5U CN212259668U (zh) 2020-06-30 2020-06-30 散热组件、测距装置及移动平台
CN202021264578.5 2020-06-30

Publications (1)

Publication Number Publication Date
WO2022000846A1 true WO2022000846A1 (zh) 2022-01-06

Family

ID=73980293

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2020/120910 WO2022000846A1 (zh) 2020-06-30 2020-10-14 雷达组件及具有该雷达组件的可移动平台
PCT/CN2020/120997 WO2022000849A1 (zh) 2020-06-30 2020-10-14 云台相机及其机壳、可移动平台

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/120997 WO2022000849A1 (zh) 2020-06-30 2020-10-14 云台相机及其机壳、可移动平台

Country Status (2)

Country Link
CN (1) CN212259668U (zh)
WO (2) WO2022000846A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115988857B (zh) * 2023-03-22 2023-06-20 中兴通讯股份有限公司 雷达组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106802658A (zh) * 2017-03-21 2017-06-06 厦门大学 一种全自动高精度室内快速定位方法
CN106931963A (zh) * 2017-04-13 2017-07-07 高域(北京)智能科技研究院有限公司 环境数据共享平台、无人飞行器、定位方法和定位系统
CN207991560U (zh) * 2018-04-13 2018-10-19 杭州云江科技有限公司 一种一体化模块
US20190215457A1 (en) * 2018-01-05 2019-07-11 Gopro, Inc. Modular Image Capture Systems
CN209623718U (zh) * 2019-01-25 2019-11-12 湖南超能机器人技术有限公司 巡逻机器人定位系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102402261B (zh) * 2010-09-08 2014-11-12 神讯电脑(昆山)有限公司 具有防水功能的主机装置与其散热模块
WO2019061096A1 (zh) * 2017-09-27 2019-04-04 深圳市大疆灵眸科技有限公司 机壳组件及具有其的拍摄设备
CN207321743U (zh) * 2017-07-07 2018-05-04 昊翔电能运动科技(昆山)有限公司 散热结构及其电子模组
CN111213439B (zh) * 2018-12-13 2022-04-01 深圳市大疆创新科技有限公司 电子设备
CN210327748U (zh) * 2019-09-29 2020-04-14 深圳景行机器人科技有限公司 云台摄像头及其云台相机
CN111031223B (zh) * 2019-12-30 2021-09-21 深圳市道通智能航空技术股份有限公司 图像获取装置、云台组件及无人机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106802658A (zh) * 2017-03-21 2017-06-06 厦门大学 一种全自动高精度室内快速定位方法
CN106931963A (zh) * 2017-04-13 2017-07-07 高域(北京)智能科技研究院有限公司 环境数据共享平台、无人飞行器、定位方法和定位系统
US20190215457A1 (en) * 2018-01-05 2019-07-11 Gopro, Inc. Modular Image Capture Systems
CN207991560U (zh) * 2018-04-13 2018-10-19 杭州云江科技有限公司 一种一体化模块
CN209623718U (zh) * 2019-01-25 2019-11-12 湖南超能机器人技术有限公司 巡逻机器人定位系统

Also Published As

Publication number Publication date
WO2022000849A1 (zh) 2022-01-06
CN212259668U (zh) 2020-12-29

Similar Documents

Publication Publication Date Title
US10681285B2 (en) Unmanned aerial vehicle and multi-ocular imaging system
JP6637068B2 (ja) モジュール式lidarシステム
US10671096B2 (en) Autonomous tracking based on radius
US20200339251A1 (en) Systems and methods for uav sensor placement
CN205554624U (zh) 拍摄设备及无人机
US11343924B2 (en) Unmanned aerial vehicle and avionics system thereof
CN113167884A (zh) 雷达组件及具有该雷达组件的可移动平台
CN108438244A (zh) 一种机载航拍装置及含其的无人机
WO2022000846A1 (zh) 雷达组件及具有该雷达组件的可移动平台
WO2019100821A1 (zh) 无人飞行器
WO2020210953A1 (zh) 一种激光雷达及智能感应设备
US11254444B2 (en) Gimbal, photographing apparatus having same, and unmanned aerial vehicle
CN213302506U (zh) 雷达组件及具有该雷达组件的可移动平台
CN208198848U (zh) 一种机载航拍装置及含其的无人机
WO2019100825A1 (zh) 无人飞行器
KR20190080366A (ko) 해상 유해물 감시용 무인 수상정
US20220411075A1 (en) Propeller deicing systems and methods
WO2019140649A1 (zh) 视觉模组集成模块与无人机
CN216848136U (zh) 手持雷达设备
CN213008799U (zh) 一种航摄仪及航摄装置
KR102401510B1 (ko) 확보된 데이터를 기반으로 하는 수치지도 오차 확인시스템
CN109050953B (zh) 具有多摄像头的轻量化无人机云台及无人机系统
KR101715637B1 (ko) 드론에 탑재된 전파 수집 유닛의 모션 제어 기구
CN211979513U (zh) 一种内置机载计算机的无人机飞控模块
CN109983857B (zh) 散热结构、相机及移动平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20942693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20942693

Country of ref document: EP

Kind code of ref document: A1