WO2022000656A1 - 马达系统失真的测量方法及设备、计算机可读存储介质 - Google Patents
马达系统失真的测量方法及设备、计算机可读存储介质 Download PDFInfo
- Publication number
- WO2022000656A1 WO2022000656A1 PCT/CN2020/104688 CN2020104688W WO2022000656A1 WO 2022000656 A1 WO2022000656 A1 WO 2022000656A1 CN 2020104688 W CN2020104688 W CN 2020104688W WO 2022000656 A1 WO2022000656 A1 WO 2022000656A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- motor system
- logarithmic
- frequency sweep
- sweep signal
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/34—Testing dynamo-electric machines
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/15—Correlation function computation including computation of convolution operations
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/16—Matrix or vector computation, e.g. matrix-matrix or matrix-vector multiplication, matrix factorization
Definitions
- the present invention relates to the technical field of motor drive, and in particular, to a method and device for measuring the distortion of a motor system, and a computer-readable storage medium.
- the motor-based haptic actuator can obtain a customized haptic experience by designing its specific waveform, which greatly enriches the user's perception. In order to obtain a rich and pure experience effect, it is generally hoped that the motor can work in a frequency range with relatively small distortion.
- the distortion test of the motor can provide an objective numerical reference for the designer to carry out the effect design, which is becoming more and more important.
- total harmonic distortion (THD) and m-order harmonic distortion (HDm) are used to describe the distortion of the motor.
- the former represents the ratio of the sum of all (or most) high-order harmonic energy to the total energy, and the latter represents the m-th order.
- the ratio of harmonic energy to total energy expressed as a percentage.
- the traditional motor distortion measurement method is similar to the method of measuring distortion in acoustics, that is, the system is excited with a single frequency signal, and the nonlinearity of the system will generate high-order harmonics (ie, the frequency multiplier component of the frequency signal).
- the energy ratio of the fundamental frequency represents the THD and HDm corresponding to this frequency; then traverse different frequency points until the distortion test of all the frequency points of interest is completed.
- THD and HDm For a single-frequency excitation at frequency f, the formulas for calculating THD and HDm are as follows:
- P(f) represents the frequency spectrum of the output signal.
- the excitation signal is required to remain at each frequency point of interest for a sufficient time, usually in the order of hundreds of milliseconds. If each frequency point lasts for 500ms, it will take about 50s to test 100 frequency points, which is too long for testing a single motor.
- the present invention mainly provides a method and device for measuring the distortion of a motor system, and a computer-readable storage medium, which can solve the problem of too long loss time for measuring the distortion of a single motor in the prior art.
- a technical solution adopted by the present invention is to provide a method for measuring the distortion of a motor system, the measuring method comprising: generating a logarithmic frequency sweep signal and an inverse signal corresponding to the logarithmic frequency sweep signal ; Calculate the acceleration signal of the motor system according to the logarithmic frequency sweep signal; Solve the kernel function of the motor system according to the acceleration signal and the inverse signal of the logarithmic frequency sweep signal; Calculate according to the kernel function Distortion of the motor system.
- the calculating and obtaining the acceleration signal of the motor according to the logarithmic frequency sweep signal includes: feeding back the logarithmic frequency sweeping signal to the motor system; collecting the acceleration signal output by the motor system; wherein, the The formula for the acceleration signal is:
- h1, h2...hp are the kernel functions of the motor system
- Mp are the lengths of the p-th order kernel functions
- N is the total number of sampling points of the logarithmic frequency sweep signal
- f1, f2 are the starting frequency and the ending frequency of the logarithmic frequency sweep signal, respectively.
- the solving of the kernel function of the motor system according to the acceleration signal and the inverse signal of the logarithmic frequency sweep signal includes: performing a convolution operation on the acceleration signal and the inverse signal of the logarithmic frequency sweep signal to obtain Obtain a one-dimensional pulse sequence; use a window function to intercept the impulse response sequence of each part in the one-dimensional pulse sequence; solve the kernel function of the motor system according to the impulse response sequence.
- logarithmic frequency sweep signal is:
- A is the amplitude
- ⁇ 1 is the starting angular frequency of the frequency sweep signal
- ⁇ 2 is the end angular frequency of the frequency sweep signal
- T is the signal duration
- N is the total number of sampling points
- the inverse signal of the frequency sweep signal is:
- A is the amplitude
- ⁇ 1 is the starting angular frequency of the inverse signal of the frequency sweep signal
- ⁇ 2 is the end angular frequency of the inverse signal of the frequency sweep signal
- T is the signal duration
- N is the total number of sampling points.
- the impulse response sequence of each part in the one-dimensional impulse sequence is:
- u is the unit step function
- M 1 , M 2 . . . M p is the length of the window function
- ⁇ p0 is the delay offset representing the p-th impulse response
- kernel function formula for solving the motor system according to the impulse response sequence is:
- B is the transition matrix
- the calculating the distortion of the motor system according to the kernel function includes: obtaining an output signal of the motor system when the logarithmic sweep signal is a single-frequency signal; obtaining respectively the output signal of the motor according to the output signal Total Harmonic Distortion and Higher Harmonic Distortion.
- the output signal of the motor system is:
- H k (f) is the Fourier transform of the k-th kernel function h k (t)
- the higher harmonic distortion of the motor is:
- the total harmonic distortion of the motor is:
- ⁇ Tot (X,f) is the sum of the contributions of each harmonic, and the expression is:
- the measuring device includes a processor and a memory, the memory stores computer instructions, and the processor is coupled to the the memory, and the processor executes the computer instructions during operation to implement the above-mentioned measurement method.
- another technical solution adopted by the present invention is to provide a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to implement the above-mentioned measurement method.
- the present invention provides a method and device for measuring the distortion of a motor system, a computer-readable storage medium, and by generating a logarithmic frequency sweep signal and its corresponding inverse signal,
- the acceleration signal of the motor is obtained according to the logarithmic frequency sweep signal, and then the kernel function of the motor system is solved according to the acceleration signal and the inverse signal of the logarithmic frequency sweep signal, and the total harmonic distortion parameters of the motor system are calculated based on the kernel function.
- the existing method is approximately the same, the distortion test time of the motor system is shortened, and the rapid production line test is facilitated.
- FIG. 1 is a schematic flowchart of an embodiment of a method for measuring motor distortion provided by the present invention
- FIG. 2 is a schematic flowchart of an embodiment of step S200 in FIG. 1 of the present invention.
- FIG. 3 is a schematic flowchart of an embodiment of step S300 in FIG. 1 of the present invention.
- FIG. 4 is a schematic diagram of an embodiment of an impulse response sequence obtained by convolution of the present invention.
- FIG. 5 is a schematic flowchart of an embodiment of step S400 in FIG. 1 of the present invention.
- Fig. 6 is the comparison schematic diagram of the total harmonic distortion measured by the distortion measurement method of the motor system of the present invention and the traditional measurement method;
- Fig. 7 is the hardware system schematic diagram of the distortion measurement of the motor system of the present invention.
- FIG. 8 is a schematic block diagram of an embodiment of a measuring device for motor system distortion provided by the present invention.
- FIG. 9 is a schematic block diagram of an embodiment of a computer-readable storage medium provided by the present invention.
- FIG. 1 is a schematic flowchart of an embodiment of a method for measuring motor distortion provided by the present invention. As shown in FIG. 1 , the method for testing motor distortion in the embodiment of the present invention may specifically include:
- A is the amplitude
- ⁇ 1 is the starting angular frequency of the frequency sweep signal
- ⁇ 2 is the end angular frequency of the frequency sweep signal
- T is the signal duration
- N is the total number of sampling points
- FIG. 2 is a schematic flowchart of an embodiment of step S200 of the present invention. As shown in FIG. 2, step S200 further includes the following sub-steps:
- database software (VF) is used for nonlinear description in the embodiment of the present invention.
- the logarithmic frequency sweep signal x(n) is used as input to excite the motor system to output the corresponding vibration acceleration signal.
- an accelerometer is used to collect the vibration acceleration signal y(n) output by the motor system.
- the relationship between the logarithmic frequency sweep signal x(n) and the acceleration signal y(n) satisfies:
- h 0 is the direct current
- hi is the Volterra kernel function
- h1 is a one-dimensional vector
- h2 is a two-dimensional matrix... until the i-dimensional matrix.
- h1, h2...hp are the kernel functions of the motor system
- Mp are the lengths of the p-th order kernel functions
- N is the total number of sampling points of the logarithmic sweep signal
- f1 and f2 are respectively The start and stop frequencies of the logarithmic sweep signal.
- the key of the method for measuring the distortion of the motor system provided by the present invention lies in the solution of the above-mentioned kernel function, and after the kernel function is solved, the total harmonic distortion parameter of the motor system can be calculated based on the kernel function.
- FIG. 3 is a schematic flowchart of an embodiment of step S300 of the present invention. As shown in FIG. 3, step S300 further includes the following sub-steps:
- FIG. 4 is a schematic diagram of an embodiment of an impulse response sequence obtained by convolution of the present invention. Specifically, by combining the acceleration signal y(n) with the inverse signal of the logarithmic sweep signal A convolution operation is performed to obtain a one-dimensional pulse sequence k(n), which consists of a series of delayed impulse response sequences.
- S320 use the window function to intercept the impulse response sequence of each part in the one-dimensional impulse sequence.
- u is the unit step function
- M 1 , M 2 . . . M p is the length of the window function
- ⁇ p0 is the delay offset representing the p-th impulse response
- the formula for solving the kernel function h 1 ⁇ h p of the motor system is:
- B is the transition matrix
- the transition matrix B is:
- step S400 further includes the following sub-steps:
- H k (f) is the Fourier transform of the k-th kernel function h k (t)
- ⁇ m (X, mf ) is the contribution of the mth harmonic
- C B -1 .
- the higher harmonic distortion of the motor can be obtained as:
- the total harmonic distortion of the motor is:
- ⁇ Tot (X,f) is the sum of the contributions of each harmonic, and the expression is:
- Fig. 6 is the comparison schematic diagram of the total harmonic distortion measured by the distortion measurement method of the motor system of the present invention and the traditional measurement method
- Fig. 6 the circle is the traditional step (step) calculation result
- the solid line is The calculation results of the measurement method (chirp, chirp) of the present invention can be seen from the comparison diagram of the two, and the results of the two are relatively close.
- the duration of the chirp signal is about 10s, which saves about 5/6 compared to the usual step signal test time of about one minute, that is, the distortion measurement of the motor system provided by this application.
- the method is suitable for rapid testing and screening on the production line.
- FIG. 7 is a schematic diagram of the hardware system of the distortion measurement of the motor system of the present invention.
- the hardware system of the measurement includes a motor, a tool, a sponge, a computer, a capture card, an amplifier and an accelerometer.
- the specific implementation principle is:
- the motor (LRA) and the tool are adhesively attached, and the tool is placed on the sponge to avoid environmental influences on the measurement results.
- the accelerometer is used by the ACC to measure the acceleration of the tooling in the vibration direction of the motor LRA.
- the digital signal generated on the computer PC is sent to the acquisition card for digital-to-analog conversion into an analog signal, and is amplified by the amplifier AMP2 to excite the motor LRA.
- the vibration of the motor LRA will drive the tool to vibrate in the opposite direction, which is collected and amplified by the accelerometer ACC.
- the acquisition card NI-DAQ synchronously acquires and measures the acceleration y(n) in the vibration direction and the voltage signal x(n) of the excitation motor.
- the acceleration signal of the motor is obtained according to the logarithmic frequency sweep signal, and then the kernel of the motor system is solved according to the acceleration signal and the inverse signal of the logarithmic frequency sweep signal.
- the total harmonic distortion parameter of the motor system is calculated based on the kernel function, so that the distortion test time of the motor system can be shortened under the premise that the test accuracy is approximately the same as that of the existing method, which is convenient for fast production line test.
- FIG. 8 is a schematic block diagram of an embodiment of a measuring device for motor system distortion provided by the present invention.
- the measuring device in this embodiment includes a processor 310 and a memory 320.
- the processor 310 is coupled to the memory 320, and the memory 320 stores There are computer instructions, and the processor 310 executes the computer instructions when in operation to implement the measurement method in any of the above embodiments.
- the processor 310 may also be referred to as a CPU (Central Processing Unit, central processing unit).
- the processor 310 may be an integrated circuit chip with signal processing capability.
- Processor 310 may also be a general purpose processor, digital signal processor (DSP), application specific integrated circuit (ASIC), off-the-shelf programmable gate array (FPGA) or other programmable logic device, discrete gate or transistor logic, discrete hardware components .
- DSP digital signal processor
- ASIC application specific integrated circuit
- FPGA off-the-shelf programmable gate array
- a general purpose processor may be a microprocessor or the processor may be any conventional processor without limitation.
- FIG. 9 is a schematic block diagram of an embodiment of a computer-readable storage medium provided by the present invention.
- the computer-readable storage medium in this embodiment stores a computer program 410, and the computer program 410 can be executed by a processor to realize the above-mentioned The measurement method in any of the embodiments.
- the readable storage medium may be a USB flash drive, a removable hard disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk or an optical disk, etc.
- the medium of program code, or terminal equipment such as computers, servers, mobile phones, and tablets.
- the embodiment of the present invention provides a method and device for measuring the distortion of a motor system, and a computer-readable storage medium.
- the acceleration signal of the motor, and then the kernel function of the motor system is solved according to the inverse signal of the acceleration signal and the logarithmic sweep signal, and the total harmonic distortion parameter of the motor system is calculated based on the kernel function, so that the test accuracy can be approximately the same as the existing method. It can shorten the distortion test time of the motor system and facilitate the rapid production line test.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Computational Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Analysis (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Algebra (AREA)
- Databases & Information Systems (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
一种马达系统失真的测量方法及设备、计算机可读存储介质,该测量方法包括:生成对数扫频信号及和对数扫频信号对应的逆信号(S100);根据对数扫频信号计算得到马达的加速度信号(S200);根据加速度信号及对数扫频信号的逆信号求解马达系统的核函数(S300);根据核函数计算马达系统的失真(S400)。通过上述实施方式,能够在测试精度和现有方法近似相同的前提下,缩短马达系统的失真测试时间,便于进行快速产线测试。
Description
本发明涉及电机驱动技术领域,特别是涉及一种马达系统失真的测量方法及设备、计算机可读存储介质。
科技日益发展的今天,仅视听觉信息已无法满足人们的需求,触觉反馈作为一种新的感受信息逐渐进入大众视野。以马达为载体的触觉致动器,通过设计其特定波形,可以获得定制化的触觉体验,极大程度地丰富了用户感知。为了获得丰富且纯净的体验效果,一般希望马达能够工作在失真相对较小的频率区间。马达的失真测试可为设计师进行效果设计提供客观数值参考,变得越来越重要。通常采用总谐波失真(THD)和m阶谐波失真(HDm)来描述马达的失真,前者表示所有(或者大部分)高阶谐波能量总和占总能量的比值,后者表示第m阶谐波能量占总能量的比值,采用百分比进行描述。
传统的马达失真测量方法与声学中测量失真的方法类似,即对系统进行单一频率信号的激励,系统的非线性会产生高次谐波(即该频率信号的倍频分量),通过高阶和基频的能量比,来表示这个频率对应的THD和HDm;再遍历不同频点,直到把所有感兴趣频率点的失真测试完成。对于频率为f的单频激励,THD和HDm的计算公式如下:
其中,P(f)表示输出信号的频谱。
为了使单频信号输出在频域产生足够积累,要求激励信号在每个感兴趣的频点保持足够的时长,通常在百毫秒数量级。若每个频点持续500ms,测试100个频点需要50s左右,如此对于测试一颗马达单体而言耗费时间过长。
发明内容
本发明主要是提供一种马达系统失真的测量方法及设备、计算机可读存储介质,能够解决现有技术中对于单个马达失真测量其损耗时间过长的问题。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种马达系统失真的测量方法,所述测量方法包括:生成对数扫频信号及和所述对数扫频信号对应的逆信号;根据所述对数扫频信号计算得到所述马 达系统的加速度信号;根据所述加速度信号及所述对数扫频信号的逆信号求解所述马达系统的核函数;根据所述核函数计算所述马达系统的失真。
其中,所述根据所述对数扫频信号计算得到所述马达的加速度信号包括:将所述对数扫频信号反馈给马达系统;采集所述马达系统输出的所述加速度信号;其中,所述加速度信号的公式为:
其中,h1、h2…hp为所述马达系统的核函数,M1,M2...,Mp为第p阶核函数的长度,N为所述对数扫频信号的总采样点数,f1、f2分别为所述对数扫频信号的起始频率和终止频率。
其中,所述根据所述加速度信号及所述对数扫频信号的逆信号求解马达系统的核函数包括:将所述加速度信号和所述对数扫频信号的逆信号进行卷积运算,以得到一维脉冲序列;使用窗函数截取所述一维脉冲序列中各部分的脉冲响应序列;根据所述脉冲响应序列求解所述马达系统的核函数。
其中,所述对数扫频信号为:
其中,A为幅度,ω
1为所述扫频信号的起始角频率,ω
2为所述扫频信号的终止角频率,T为信号时长,N为总采样点数;
所述扫频信号的逆信号为:
其中,A为幅度,ω
1为所述扫频信号逆信号的起始角频率,ω
2为所述扫频信号逆信号的终止角频率,T为信号时长,N为总采样点数。
其中,所述一维脉冲序列中各部分的脉冲响应序列为:
其中,u为单位阶跃函数,M
1、M
2……M
p为所述窗函数的长度,γ
p0为表示第p个脉冲响应的延时偏移量,其表达式为:
其中,所述根据所述脉冲响应序列求解所述马达系统的核函数公式为:
其中,B为转移矩阵。
其中,所述根据所述核函数计算所述马达系统的失真包括:获取所述对数扫频信号为单频信号时所述马达系统的输出信号;根据所述输出信号分别得到所述马达的总谐波失真以及高次谐波失真。
其中,所述对数扫频信号为单频信号时所述马达系统的输出信号为:
其中,p为所述马达系统核函数最高阶数及高次谐波的最高次数,H
k(f)为第k阶核函数h
k(t)的傅里叶变换,Γ
m(X,mf)为第m次谐波的贡献,C=B
-1;所述马达的高次谐波失真为:
所述马达的总谐波失真为:
其中,Γ
Tot(X,f)为各次谐波贡献之和,且表达式为:
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种马达系统失真的测量设备,所述测量设备包括处理器以及存储器,所述存储器存储有计算机指令,所述处理器耦合所述存储器,所述处理器在工作时执行所述计算机指令以实现上述的测量方法。
为解决上述技术问题,本发明采用的又一个技术方案是:提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行以实现如上述的测量方法。
本发明的有益效果是:区别于现有技术的情况,本发明提供一种马达系统失真的测量方法及设备、计算机可读存储介质,通过生成对数扫频信号及和其对应的逆信号,根据对数扫频信号得到马达的加速度信号,再根据加速度信号及对数扫频信号的逆信号求解马达系统的核函数,基 于核函数计算马达系统总谐波失真参数,如此能够在测试精度和现有方法近似相同的前提下,缩短马达系统的失真测试时间,便于进行快速产线测试。
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1是本发明提供的马达应失真的测量方法一实施方式的流程示意图;
图2是本发明图1中步骤S200一实施方式的流程示意图;
图3是本发明图1中步骤S300一实施方式的流程示意图;
图4是本发明卷积所得的脉冲响应序列一实施方式的示意图;
图5是本发明图1中步骤S400一实施方式的流程示意图;
图6是本发明马达系统的失真测量方法和传统测量方法测量的总谐波失真的对比示意图;
图7是本发明马达系统的失真测量的硬件系统示意图;
图8是本发明提供的马达系统失真的测量设备实施例的示意框图;
图9是本发明提供的计算机可读存储介质实施例的示意框图。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请一并参阅图1,图1是本发明提供的马达应失真的测量方法一实施方式的流程示意图,如图1本发明实施例中的马达失真的测试方法可具体包括:
S100,生成对数扫频信号及和对数扫频信号对应的逆信号。
首先生成对数扫频信号,且该对数扫频信号的表达式入下:
其中,A为幅度,ω
1为所述扫频信号的起始角频率,ω
2为所述扫频信号的终止角频率,T为信号时长,N为总采样点数,且参数满足:
S200,根据对数扫频信号计算得到马达的加速度信号。
请进一步结合图2,图2为本发明步骤S200一实施方式的流程示意图,如图2,步骤S200进一步包括如下子步骤:
S210,将对数扫频信号反馈给马达系统。
可选地,本发明实施例中采用数据库软件(VF)进行非线性描述,在实际应用场景中以对数扫频信号x(n)为输入,激励马达系统输出对应的振动加速度信号。
S220,采集马达系统输出的加速度信号。
可选地,采用加速度计采集马达系统输出的振动加速度信号y(n)。其中,对数扫频信号x(n)和加速度信号y(n)之间的关系满足:
其中,h
0为直流,hi为Volterra核函数,h1为一维向量,h2为二维矩阵……直至i维矩阵。可选地,忽略VF中直流、2阶及以上系数矩阵上非对角元素,只保留对角(ODVF),上述对数扫频信号x(n)和加速度信号y(n)之间的关系满足:
其中,h1、h2…hp为所述马达系统的核函数,M1,M2...,Mp为第p阶核函数的长度,N为对数扫频信号的总采样点数,f1、f2分别为对数扫频信号的起始频率和终止频率。
可以理解的是,本发明提供的马达系统失真的测量方法其关键在于上述核函数的求解,且在求解核函数后,能够基于该核函数计算马达系统总谐波失真参数。
S300,根据加速度信号及所述对数扫频信号的逆信号求解马达系统的核函数。
请进一步结合图3,图3为本发明步骤S300一实施方式的流程示意图,如图3,步骤S300进一步包括如下子步骤:
S310,将加速度信号和对数扫频信号的逆信号进行卷积运算,以得 到一维脉冲序列。
请结合图4,图4为本发明卷积所得的脉冲响应序列一实施方式的示意图。具体地,通过将加速度信号y(n)和对数扫频信号的逆信号
进行卷积运算,以得到一维脉冲序列k(n),k(n)由一系列延时的脉冲响应序列组成。
S320,使用窗函数截取一维脉冲序列中各部分的脉冲响应序列。
使用窗函数截取一维脉冲序列k(n)中各部分的脉冲响应序列k
1(n)~k
p(n),且各部分的脉冲响应序列k
1(n)~k
p(n)表达式为:
其中,u为单位阶跃函数,M
1、M
2……M
p为所述窗函数的长度,γ
p0为表示第p个脉冲响应的延时偏移量,其表达式为:
S330,根据脉冲响应序列求解马达系统的核函数。
可选地,根据脉冲响应序列k
1(n)~k
p(n)求解马达系统的核函数h
1~h
p公式为:
其中,B为转移矩阵。
在本发明具体实施方式中,若马达系统的核函数最高阶数为5时(P=5),此时转移矩阵B为:
S400,根据核函数计算马达系统的失真。
请进一步结合图5,图5为本发明步骤S400一实施方式的流程示意图。如图5,步骤S400进一步包括如下子步骤:
S410,获取对数扫频信号为单频信号时马达系统的输出信号。
当对数扫频信号x(t)为单频信号时,即x(t)=Xcos(2πft),其中,X为信号幅度,如此便可得到马达系统的输出信号z(t)为:
其中,p为所述马达系统核函数最高阶数及高次谐波的最高次数,H
k(f)为第k阶核函数h
k(t)的傅里叶变换,Γ
m(X,mf)为第m次谐波的贡献,C=B
-1。
S420,根据输出信号分别得到马达的总谐波失真以及高次谐波失真。
可选地,根据马达系统的输出信号z(t)可以得到马达的高次谐波失真为:
所述马达的总谐波失真为:
其中,Γ
Tot(X,f)为各次谐波贡献之和,且表达式为:
请进一步结合图6,图6为本发明马达系统的失真测量方法和传统测量方法测量的总谐波失真的对比示意图,如图6,圆圈为传统的step(阶跃)计算结果,实线为本发明测量方法(chirp,啁啾)计算结果,从二者的对比图中可以看出,两者的结果是比较接近的。值得注意的是,采用本发明的测量方法,chirp信号的时长为10s左右,比通常一分钟左右的step信号测试时间节省了约5/6,也即是说本申请提供的马达系统的失真测量方法适合在产线进行快速测试和筛选。
进一步结合图7,图7为本发明马达系统的失真测量的硬件系统示意图,如图7,该测量的硬件系统包括马达、工装、海绵体、电脑、采集卡、放大器以及加速度计。其中,具体实现原理为:
马达(LRA)和工装粘性贴合,且工装放置在海绵体上以避免环境对测量结果的影响。加速度计用于ACC测量工装在马达LRA振动方向上的加速度。电脑PC上生成的数字信号送入到采集卡进行数模转换成模拟信号,并通过放大器AMP2进行放大以激励马达LRA,马达LRA的振动会带动工装反向振动,并通过加速度计ACC采集并放大,采集卡NI-DAQ同步采集测量振动方向上的加速度y(n)和激励马达的电压信号x(n)。
上述实施方式中,通过生成对数扫频信号及和其对应的逆信号,根据对数扫频信号得到马达的加速度信号,再根据加速度信号及对数扫频信号的逆信号求解马达系统的核函数,基于核函数计算马达系统总谐波失真参数,如此能够在测试精度和现有方法近似相同的前提下,缩短马达系统的失真测试时间,便于进行快速产线测试。
参阅图8,图8是本发明提供的马达系统失真的测量设备一实施例的示意框图,本实施例中的测量设备包括处理器310及存储器320,处理器310与存储器320耦合,存储器320存储有计算机指令,处理器310在工作时执行计算机指令以实现上述任一实施例中的测量方法。
其中,处理器310还可以称为CPU(Central Processing Unit,中央处理单元)。处理器310可能是一种集成电路芯片,具有信号的处理能力。处理器310还可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器,但不仅限于此。
参阅图9,图9是本发明提供的计算机可读存储介质实施例的示意框图,本实施例中的计算机可读存储介质存储有计算机程序410,该计算机程序410能够被处理器执行以实现上述任一实施例中的测量方法。
可选的,该可读存储介质可以是U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质,或者是计算机、服务器、手机、平板等终端设备。
区别于现有技术,本发明实施例提供一种马达系统失真的测量方法及设备、计算机可读存储介质,通过生成对数扫频信号及和其对应的逆信号,根据对数扫频信号得到马达的加速度信号,再根据加速度信号及对数扫频信号的逆信号求解马达系统的核函数,基于核函数计算马达系统总谐波失真参数,如此能够在测试精度和现有方法近似相同的前提下,缩短马达系统的失真测试时间,便于进行快速产线测试。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
Claims (10)
- 一种马达系统失真的测量方法,其特征在于,所述测量方法包括:生成对数扫频信号及和所述对数扫频信号对应的逆信号;根据所述对数扫频信号计算得到所述马达系统的加速度信号;根据所述加速度信号及所述对数扫频信号的逆信号求解所述马达系统的核函数;根据所述核函数计算所述马达系统的失真。
- 根据权利要求2所述的测量方法,其特征在于,所述根据所述加速度信号及所述对数扫频信号的逆信号求解马达系统的核函数包括:将所述加速度信号和所述对数扫频信号的逆信号进行卷积运算,以得到一维脉冲序列;使用窗函数截取所述一维脉冲序列中各部分的脉冲响应序列;根据所述脉冲响应序列求解所述马达系统的核函数。
- 根据权利要求6所述的测量方法,其特征在于,所述根据所述核函数计算所述马达系统的失真包括:获取所述对数扫频信号为单频信号时所述马达系统的输出信号;根据所述输出信号分别得到所述马达的总谐波失真以及高次谐波失真。
- 一种马达系统失真的测量设备,其特征在于,所述测量设备包括处理器以及存储器,所述存储器存储有计算机指令,所述处理器耦合所述存储器,所述处理器在工作时执行所述计算机指令以实现如权利要求1~8任一项所述的测量方法。
- 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行以实现如权利要求1~8任一项所述的测量方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010597832.1 | 2020-06-28 | ||
CN202010597832.1A CN111722109B (zh) | 2020-06-28 | 2020-06-28 | 马达系统失真的测量方法及设备、计算机可读存储介质 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022000656A1 true WO2022000656A1 (zh) | 2022-01-06 |
Family
ID=72569409
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2020/104688 WO2022000656A1 (zh) | 2020-06-28 | 2020-07-25 | 马达系统失真的测量方法及设备、计算机可读存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN111722109B (zh) |
WO (1) | WO2022000656A1 (zh) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101426169A (zh) * | 2008-11-27 | 2009-05-06 | 嘉兴中科声学科技有限公司 | 一种快速检测发声体声响应参数的时域跟踪滤波器及系统 |
CN101600144A (zh) * | 2008-11-27 | 2009-12-09 | 嘉兴中科声学科技有限公司 | 采用连续对数扫频信号获得电声产品多个参数的方法及系统 |
US20160035337A1 (en) * | 2013-08-01 | 2016-02-04 | Snap Networks Pvt Ltd | Enhancing audio using a mobile device |
CN106199185A (zh) * | 2016-08-18 | 2016-12-07 | 苏州上声电子有限公司 | 一种基于连续对数扫频的线性脉冲响应测量方法及系统 |
CN106255027A (zh) * | 2016-08-18 | 2016-12-21 | 苏州上声电子有限公司 | 一种非线性音频系统的音质可听化评估方法及系统 |
CN106331951A (zh) * | 2016-08-18 | 2017-01-11 | 苏州上声电子有限公司 | 一种基于连续对数扫频的谐波失真测量方法及系统 |
CN206313975U (zh) * | 2016-08-29 | 2017-07-07 | 苏州上声电子有限公司 | 一种用于音频系统的谐波失真测量装置 |
CN109901066A (zh) * | 2018-12-31 | 2019-06-18 | 瑞声科技(新加坡)有限公司 | 马达系统辨识方法 |
CN110086403A (zh) * | 2019-04-18 | 2019-08-02 | 瑞声科技(新加坡)有限公司 | 一种马达驱动信号设置方法、电子设备及存储介质 |
CN110247631A (zh) * | 2019-04-12 | 2019-09-17 | 瑞声科技(新加坡)有限公司 | 一种马达非线性失真补偿方法及装置 |
CN110493691A (zh) * | 2019-08-23 | 2019-11-22 | Oppo广东移动通信有限公司 | 异音检测方法、装置和电子设备 |
CN110650426A (zh) * | 2019-10-10 | 2020-01-03 | 南京创维信息技术研究院有限公司 | 麦克风阵列的非线性谐波失真检测方法、装置和存储介质 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3265149B2 (ja) * | 1995-04-04 | 2002-03-11 | シャープ株式会社 | 情報記録再生装置のモータ制御装置 |
DE10214407C1 (de) * | 2002-03-30 | 2003-06-18 | Klippel Gmbh | Anordnung und Verfahren zur Messung, Bewertung und Störungserkennung von Systemen |
CN104063554B (zh) * | 2014-07-07 | 2017-03-29 | 北京理工大学 | 一种通用的无网格数值结果后处理方法 |
CN107290589B (zh) * | 2017-07-25 | 2019-12-06 | 中北大学 | 基于短时分数阶傅里叶变换的非线性信号时频分析方法 |
CN107490722A (zh) * | 2017-08-18 | 2017-12-19 | 南开大学 | 一种低信噪比实信号的频率估计方法 |
US10671794B1 (en) * | 2017-11-03 | 2020-06-02 | Intel Corporation | Method for measuring the density of a semiconductor device layout |
US10644657B1 (en) * | 2018-05-11 | 2020-05-05 | Nanosemi, Inc. | Multi-band digital compensator for a non-linear system |
WO2020081887A1 (en) * | 2018-10-19 | 2020-04-23 | Nanosemi, Inc. | Multi-band digital compensator for a non-linear system |
CN110031083A (zh) * | 2018-12-31 | 2019-07-19 | 瑞声科技(新加坡)有限公司 | 一种噪音总声压级测量方法、系统及计算机可读存储介质 |
CN110907827B (zh) * | 2019-11-22 | 2022-04-01 | 瑞声科技(新加坡)有限公司 | 一种马达瞬态失真测量方法及系统 |
-
2020
- 2020-06-28 CN CN202010597832.1A patent/CN111722109B/zh active Active
- 2020-07-25 WO PCT/CN2020/104688 patent/WO2022000656A1/zh active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101426169A (zh) * | 2008-11-27 | 2009-05-06 | 嘉兴中科声学科技有限公司 | 一种快速检测发声体声响应参数的时域跟踪滤波器及系统 |
CN101600144A (zh) * | 2008-11-27 | 2009-12-09 | 嘉兴中科声学科技有限公司 | 采用连续对数扫频信号获得电声产品多个参数的方法及系统 |
US20160035337A1 (en) * | 2013-08-01 | 2016-02-04 | Snap Networks Pvt Ltd | Enhancing audio using a mobile device |
CN106199185A (zh) * | 2016-08-18 | 2016-12-07 | 苏州上声电子有限公司 | 一种基于连续对数扫频的线性脉冲响应测量方法及系统 |
CN106255027A (zh) * | 2016-08-18 | 2016-12-21 | 苏州上声电子有限公司 | 一种非线性音频系统的音质可听化评估方法及系统 |
CN106331951A (zh) * | 2016-08-18 | 2017-01-11 | 苏州上声电子有限公司 | 一种基于连续对数扫频的谐波失真测量方法及系统 |
CN206313975U (zh) * | 2016-08-29 | 2017-07-07 | 苏州上声电子有限公司 | 一种用于音频系统的谐波失真测量装置 |
CN109901066A (zh) * | 2018-12-31 | 2019-06-18 | 瑞声科技(新加坡)有限公司 | 马达系统辨识方法 |
CN110247631A (zh) * | 2019-04-12 | 2019-09-17 | 瑞声科技(新加坡)有限公司 | 一种马达非线性失真补偿方法及装置 |
CN110086403A (zh) * | 2019-04-18 | 2019-08-02 | 瑞声科技(新加坡)有限公司 | 一种马达驱动信号设置方法、电子设备及存储介质 |
CN110493691A (zh) * | 2019-08-23 | 2019-11-22 | Oppo广东移动通信有限公司 | 异音检测方法、装置和电子设备 |
CN110650426A (zh) * | 2019-10-10 | 2020-01-03 | 南京创维信息技术研究院有限公司 | 麦克风阵列的非线性谐波失真检测方法、装置和存储介质 |
Non-Patent Citations (1)
Title |
---|
MU YONGSHENG; JI PEIFENG; JI WEI; WU MING; YANG JUN: "Modeling and Compensation for the Distortion of Parametric Loudspeakers Using a One-Dimension Volterra Filter", IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, IEEE, USA, vol. 22, no. 12, 1 December 2014 (2014-12-01), USA, pages 2169 - 2181, XP011562725, ISSN: 2329-9290, DOI: 10.1109/TASLP.2014.2363414 * |
Also Published As
Publication number | Publication date |
---|---|
CN111722109B (zh) | 2023-05-02 |
CN111722109A (zh) | 2020-09-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110346720B (zh) | 一种马达非线性参数的测试方法及装置 | |
Renson et al. | Application of control-based continuation to a nonlinear structure with harmonically coupled modes | |
Chugani et al. | LabVIEW signal processing | |
WO2020140551A1 (zh) | 马达系统辨识方法 | |
CN110210180B (zh) | 马达信息展示方法、装置和计算机设备 | |
CN110907827B (zh) | 一种马达瞬态失真测量方法及系统 | |
CN102118678A (zh) | 一种使用电流传感器测量扬声器参数的方法及系统 | |
CN111551848A (zh) | 马达体验失真指标的测试方法、电子设备及存储介质 | |
WO2022110413A1 (zh) | 确定马达非线性参数的方法、装置、设备和存储介质 | |
JPWO2009038056A1 (ja) | 信号解析方法、信号解析装置、及び信号解析プログラム | |
Cortez et al. | A new microcontrolled structural health monitoring system based on the electromechanical impedance principle | |
JP3253910B2 (ja) | 回路解析方法 | |
Onchis et al. | Generalized Goertzel algorithm for computing the natural frequencies of cantilever beams | |
WO2022000656A1 (zh) | 马达系统失真的测量方法及设备、计算机可读存储介质 | |
CN103140767B (zh) | 高产率半导体器件测试 | |
WO2021258485A2 (zh) | 马达失真测量方法及设备、计算机可读存储介质 | |
Groff | Estimating RC time constants using sound | |
JP2009211021A (ja) | 残響時間推定装置及び残響時間推定方法 | |
WO2022006788A1 (zh) | 马达振动位移估测方法、装置及介质 | |
CN114236383A (zh) | 扫频特性曲线的生成方法、设备及存储介质 | |
CN113112163A (zh) | 触觉效果评价方法、装置、设备和介质 | |
CN111601224B (zh) | 麦克风性能的测试方法、装置及电子设备 | |
Möller et al. | A measurement technique for highly nonlinear transfer functions | |
WO2022006980A1 (zh) | Chirp信号Hammerstein模型系统辨识方法 | |
Najnudel et al. | Simulation of the Ondes Martenot ribbon-controlled oscillator using energy-balanced modeling of nonlinear time-varying electronic components |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20943656 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20943656 Country of ref document: EP Kind code of ref document: A1 |