WO2021258485A2 - 马达失真测量方法及设备、计算机可读存储介质 - Google Patents

马达失真测量方法及设备、计算机可读存储介质 Download PDF

Info

Publication number
WO2021258485A2
WO2021258485A2 PCT/CN2020/104691 CN2020104691W WO2021258485A2 WO 2021258485 A2 WO2021258485 A2 WO 2021258485A2 CN 2020104691 W CN2020104691 W CN 2020104691W WO 2021258485 A2 WO2021258485 A2 WO 2021258485A2
Authority
WO
WIPO (PCT)
Prior art keywords
acceleration
energy
vibration
motor
distortion
Prior art date
Application number
PCT/CN2020/104691
Other languages
English (en)
French (fr)
Other versions
WO2021258485A3 (zh
Inventor
向征
张玉蕾
桑成艳
王修越
Original Assignee
瑞声声学科技(深圳)有限公司
瑞声科技(新加坡)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 瑞声声学科技(深圳)有限公司, 瑞声科技(新加坡)有限公司 filed Critical 瑞声声学科技(深圳)有限公司
Publication of WO2021258485A2 publication Critical patent/WO2021258485A2/zh
Publication of WO2021258485A3 publication Critical patent/WO2021258485A3/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Definitions

  • the present invention relates to the technical field of motor drive, in particular to a method and equipment for measuring motor distortion, and a computer-readable storage medium.
  • a tactile actuator with a motor as a carrier can obtain a customized tactile experience by designing its specific waveform, which greatly enriches the user's perception.
  • the motor can work in a frequency range where the distortion is relatively small.
  • the distortion test of the motor becomes more and more important, which provides an objective numerical reference for the designer to design the effect.
  • Total Harmonic Distortion TDD is generally used to describe the distortion of the motor, which means that all (or most) higher-order harmonic distortion occupies the percentage of signal energy.
  • the traditional measurement method of motor distortion is similar to the method of measuring distortion in acoustics, that is, the system is excited by a single frequency signal.
  • the energy ratio of the fundamental frequency is used to indicate the THD corresponding to this frequency; and then traverse different frequency points until the distortion test of all the frequency points of interest is completed.
  • the THD calculation formula is as follows:
  • P(f) represents the frequency spectrum of the output signal.
  • a tactile feedback device such as a motor
  • a tactile feedback device unlike traditional acoustics, it transmits displacement information to the skin through vibration.
  • the acceleration in the vibration direction of the motor vibrator is usually selected as the data for THD calculation.
  • the vibration direction of the motor vibrator is usually selected as the data for THD calculation.
  • the main technical problem solved by the present invention is to provide a motor distortion measurement method and device, and a computer-readable storage medium, which can better reflect the magnitude of the motor distortion at the experience level.
  • a technical solution adopted by the present invention is to provide a motor distortion measurement method, the measurement method includes: collecting the acceleration signal of the motor, the acceleration signal includes the first direction in the first direction An acceleration signal and a second acceleration signal in a second direction, where the first direction is the vibration direction of the motor, and the second direction and the first direction are perpendicular to each other; according to the first acceleration signal and the The second acceleration signal is calculated to obtain the first acceleration energy and the second acceleration energy; to obtain the preset equal-vibration acceleration weighting curve; according to the first acceleration energy, the second acceleration energy and the preset equal-vibration acceleration The weighting curve is calculated to obtain the distortion degree of the motor.
  • the step of calculating the distortion degree of the motor according to the first acceleration energy, the second acceleration energy and the preset vibration induction acceleration weighting curve includes: according to the first acceleration energy, the The second acceleration energy and the preset equal-vibration acceleration weighting curve calculate the amount of vibration of the motor; determine whether the amount of vibration is greater than a threshold; if so, according to the first acceleration energy and the second acceleration energy And a preset equal-vibration acceleration weighting curve to calculate the high-order harmonic distortion amount; calculate the distortion degree of the motor according to the vibration amount and the high-order harmonic distortion amount.
  • Px(f) represents the first acceleration energy
  • Py(f) represents the second acceleration energy
  • SL(f) represents the equal-vibration acceleration weighting curve.
  • the method further includes: if the amount of vibration is less than or equal to the threshold value, determining that the degree of distortion of the motor is zero.
  • the step of respectively calculating the first acceleration energy and the second acceleration energy according to the first acceleration signal and the second acceleration signal includes: performing the calculation on the first acceleration signal and the second acceleration signal respectively Fourier transform to obtain the first acceleration frequency domain and the second acceleration frequency domain; calculate the absolute value of the first spectral energy and the second spectral energy according to the first acceleration frequency domain and the second acceleration frequency domain, respectively Absolute value; the first acceleration energy and the second acceleration energy are calculated according to the absolute value of the first spectrum energy and the absolute value of the second spectrum energy.
  • first acceleration energy and the second acceleration energy are respectively:
  • abs(X) represents the spectral energy of the first acceleration signal
  • abs(Y) represents the spectral energy of the second acceleration signal
  • f is the frequency point in the frequency domain of the acceleration signal.
  • the method of obtaining the preset equal vibration induction acceleration weighting curve includes: inverting the human body's minimum perceptual sensitivity curve to obtain an equal vibration induction displacement weighting curve; and obtaining the equal vibration induction displacement weighting curve according to the equal vibration induction displacement weighting curve. Acceleration weighting curve.
  • the acceleration signal further includes a third acceleration signal in a third direction, and the third direction is perpendicular to the first direction and the second direction, respectively; according to the first acceleration signal and the The step of calculating the first acceleration energy and the second acceleration energy separately from the second acceleration signal further includes: calculating third acceleration energy according to the third acceleration signal, and the third acceleration energy is:
  • abs(Z) represents the spectral energy of the third acceleration signal
  • the calculation formula of the vibration amount is:
  • Pz(f) represents the third acceleration energy.
  • another technical solution adopted by the present invention is to provide a motor distortion measurement device, the measurement includes a processor and a memory, the memory stores computer instructions, and the processor is coupled to the memory, The processor executes the computer instructions when working to implement the measurement method described in any one of the foregoing.
  • another technical solution adopted by the present invention is to provide a computer-readable storage medium on which a computer program is stored, and the computer program is executed by a processor to realize any of the above-mentioned measurements. method.
  • the present invention provides a motor distortion measurement method and device, a computer-readable storage medium, by introducing acceleration signals other than the motor vibration direction as a sample reference and introducing experience weighting The curve makes the distortion result closer to the actual experience, so that it can better reflect the distortion of the motor at the experience level.
  • FIG. 1 is a schematic flowchart of an embodiment of the motor distortion measurement method of the present invention
  • Fig. 2 is a schematic flowchart of an embodiment of step S200 in Fig. 1 of the present invention.
  • FIG. 3 is a schematic flowchart of an embodiment of step S300 in FIG. 1 of the present invention.
  • FIG. 4 is a schematic diagram of an implementation manner of a human body's minimum perceptual sensitivity curve in an embodiment of the present invention
  • Fig. 5 is a schematic diagram of an embodiment of an iso-vibration displacement weighting curve of the present invention.
  • Fig. 6 is a schematic diagram of an embodiment of an iso-vibration acceleration weighting curve of the present invention.
  • FIG. 7 is a schematic flowchart of an embodiment of step S400 in FIG. 1 of the present invention.
  • Fig. 8 is a schematic diagram of a hardware system for measuring motor distortion of the present invention.
  • Fig. 9 is a schematic block diagram of an embodiment of a motor distortion measurement device provided by the present application.
  • Fig. 10 is a schematic block diagram of an embodiment of a computer-readable storage medium provided by the present application.
  • FIG. 1 is a schematic flowchart of an embodiment of a motor distortion measurement method according to the present invention. As shown in FIG. 1, the motor distortion measurement method provided by the present invention includes the following steps:
  • the acceleration signal includes a first acceleration signal in a first direction and a second acceleration signal in a second direction.
  • the first direction is the vibration direction of the motor, and the second direction and the first direction are perpendicular to each other. .
  • the difference between the motor distortion measurement method provided by the present invention and the traditional calculation method is that in addition to the acceleration data in the motor vibration direction, the acceleration signals in other directions are also used as sample references in the selection of the motor acceleration signal of the present invention.
  • the calculation is described as follows:
  • the collected motor acceleration signal includes a first acceleration signal in the first direction and a second acceleration signal in the second direction.
  • the first direction is the vibration direction of the motor, and the second direction and the first direction are perpendicular to each other.
  • the first direction is the X-axis direction
  • the second direction is the Y-axis direction.
  • the collected motor acceleration signals may also include acceleration signals in three orthogonal directions. Since the tactile feedback is contact type, the human hand can perceive vibrations in the three orthogonal directions.
  • the acceleration signals in the three directions of the motor collected by the three-axis acceleration can also be used, which can specifically include the first acceleration signal in the first direction, the second acceleration signal in the second direction, and the acceleration signal in the third direction.
  • the first direction is the vibration direction of the motor
  • the first direction, the second direction, and the third direction are orthogonal and perpendicular.
  • the first direction is the X-axis direction
  • the second direction is the Y-axis direction
  • the third direction is the Z-axis direction.
  • S200 Calculate the first acceleration energy and the second acceleration energy according to the first acceleration signal and the second acceleration signal, respectively.
  • step S200 further includes the following sub-steps:
  • S210 Perform Fourier transform on the first acceleration signal and the second acceleration signal respectively to obtain the first acceleration frequency domain and the second acceleration frequency domain.
  • step S100 for a single-frequency signal with a frequency of f, Fourier transform is performed on the first acceleration signal and the second acceleration signal to obtain and respectively compare with the first acceleration signal
  • the second acceleration frequency domain is:
  • step S100 it is necessary to perform Fourier changes on the acceleration signals in the three directions respectively to obtain the acceleration frequency domains in the three directions, where the acceleration signals in the first direction and the second direction
  • the acceleration frequency is the same as in the first embodiment
  • the third acceleration frequency domain obtained after Fourier transformation of the third acceleration in the third direction is:
  • S220 Calculate the absolute value of the first spectrum energy and the absolute value of the second spectrum energy respectively according to the first acceleration frequency domain and the second acceleration frequency domain.
  • the absolute value of the first spectral energy and the absolute value of the second spectral energy are calculated according to the first acceleration frequency domain X and the second acceleration frequency domain Y.
  • step S100 further includes calculating the third absolute value of the spectral energy according to the third acceleration frequency domain Z.
  • S230 Calculate the first acceleration energy and the second acceleration energy according to the absolute value of the first spectrum energy and the absolute value of the second spectrum energy.
  • the first acceleration energy and the second acceleration energy are calculated according to the absolute value of the first spectrum energy and the absolute value of the second spectrum energy.
  • the spectral energy abs(X) of the first acceleration signal and the energy value of the spectral energy abs(Y) of the second acceleration signal at the frequency point f are respectively taken as the first acceleration energy and the second acceleration energy,
  • the first acceleration energy and the second acceleration energy are respectively:
  • the calculation formula for the third acceleration energy is similar to the calculation of the first acceleration energy and the second acceleration energy, and the energy value of the spectrum energy abs(Z) of the third acceleration signal at the frequency point f is taken as the third acceleration energy, And its expression is:
  • FIG. 3 is a schematic flowchart of an embodiment of step S300 of the present invention. As shown in FIG. 3, step S300 further includes the following sub-steps:
  • FIG. 4 is a schematic diagram of an implementation manner of the human body's minimum perceptual sensitivity curve in an embodiment of the present invention.
  • the frequency is 80 Hz as an example, and the displacement is 1 um.
  • the minimum perceptual sensitivity curve of the human body in FIG. 4 can be processed to obtain an equal-vibration sense displacement weighting curve.
  • Fig. 5 is a schematic diagram of an embodiment of the iso-vibration displacement weighting curve of the present invention.
  • Fig. 6 is a schematic diagram of an embodiment of the iso-vibration acceleration weighting curve of the present invention.
  • S400 Calculate the distortion degree of the motor according to the first acceleration energy, the second acceleration energy, and a preset vibration acceleration weighting curve.
  • FIG. 7 is a schematic flowchart of an embodiment of step S400 of the present invention. As shown in FIG. 7, step S400 further includes the following sub-steps:
  • S410 Calculate the amount of vibration of the motor according to the first acceleration energy, the second acceleration energy, and a preset vibration induction acceleration weighting curve.
  • the calculation formula of the motor vibration amount is:
  • SL(f) represents a preset equal-vibration acceleration weighting curve
  • Px(f) represents the first acceleration energy
  • Py(f) represents the second acceleration energy
  • SL(f) represents a preset equal-vibration acceleration weighting curve
  • Px(f) represents the first acceleration energy
  • Py(f) represents the second acceleration energy
  • Pz(f) represents the third acceleration energy
  • S420 Determine whether the amount of vibration is greater than a threshold.
  • the vibration threshold is introduced in the embodiment of the present invention, that is, the minimum experience threshold, so that the relative distortion THD value can also reflect the distortion above a certain experience threshold. Specifically, if it is judged:
  • step S430 to calculate the amount of high-order harmonic distortion, otherwise go to step S450.
  • TH characterizes the lowest sensitive acceleration value of the human hand, and the selection of the threshold value of the vibration amount can be selected according to the actual situation, and there is no specific limitation here.
  • the present invention in addition to introducing acceleration signals other than the vibration direction of the motor as a sample reference and introducing an experience weighting curve, the present invention also introduces a minimum experience threshold so that the relative THD value can also reflect the distortion above a certain experience threshold. This can better reflect the distortion of the motor at the experience level.
  • S430 Calculate the high-order harmonic distortion according to the first acceleration energy, the second acceleration energy, and a preset vibration induction acceleration weighting curve.
  • the high-order harmonic distortion can be obtained, and the expression is:
  • S440 Calculate the degree of distortion of the motor based on the amount of vibration and the amount of high-order harmonic distortion.
  • the distortion of the motor can be obtained according to the amount of vibration and the amount of high-order harmonic distortion.
  • the distortion of the motor is:
  • the distortion of the motor is:
  • the distortion result is closer to the actual experience, which can better reflect the magnitude of the motor distortion at the experience level.
  • Figure 8 is a schematic diagram of the hardware system of the motor distortion measurement of the present invention. It is a three-axis accelerometer. Among them, the specific implementation principle is:
  • the motor (LRA) and the tooling are adhesively attached, and the tooling is placed on the sponge to avoid the influence of the environment on the measurement results.
  • the three-axis accelerometer ACC measures the acceleration of the tool in the vibration direction of the motor LRA, and can also measure the acceleration in the other two directions.
  • the digital signal generated on the computer PC is sent to the acquisition card for digital-to-analog conversion to analog signal, and amplified by the amplifier AMP2 to excite the motor LRA.
  • the vibration of the motor LRA will drive the tooling to reverse vibration, and is collected by the three-axis accelerometer ACC And amplify, the acquisition card NI-DAQ synchronously collects and measures the acceleration in the vibration direction and the voltage signal that excites the motor for data analysis.
  • FIG. 9 is a schematic block diagram of an embodiment of a motor distortion measurement device provided by the present application.
  • the computer device in this embodiment includes a processor 310 and a memory 320.
  • the processor 310 is coupled with the memory 320, and the memory 320 stores computer instructions.
  • the processor 310 executes computer instructions during work to implement the measurement method in any of the foregoing embodiments.
  • the processor 310 may also be referred to as a CPU (Central Processing Unit, central processing unit).
  • the processor 310 may be an integrated circuit chip with signal processing capabilities.
  • the processor 310 may also be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA) or other programmable logic device, a discrete gate or transistor logic device, a discrete hardware component .
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor, but is not limited to this.
  • FIG. 10 is a schematic block diagram of an embodiment of a computer-readable storage medium provided by the present application.
  • the computer-readable storage medium in this embodiment stores a computer program 410, which can be executed by a processor to realize the foregoing The measurement method in any embodiment.
  • the readable storage medium may be a U disk, a mobile hard disk, a read-only memory (ROM, Read-Only Memory), a random access memory (RAM, Random Access Memory), a magnetic disk or an optical disk, etc., which can store The medium of the program code, or a terminal device such as a computer, server, mobile phone, or tablet.
  • the embodiments of the present invention provide a motor distortion measurement method and device, and a computer-readable storage medium.
  • acceleration signals other than the vibration direction of the motor as a sample reference and introducing an experience weighting curve, the distortion result can be compared with the actual The experience is closer, so that it can better reflect the distortion of the motor at the experience level.

Abstract

本发明提供了一种马达失真测量方法及设备、计算机可读存储介质,该测量方法包括:采集马达的加速度信号,加速度信号包括在第一方向上的第一加速度信号及第二方向上的第二加速度信号,第一方向为马达的振动方向,第二方向与第一方向相互垂直;根据第一加速度信号及第二加速度信号分别计算得到第一加速度能量及第二加速度能量;获取预设等振感加速度加权曲线;根据第一加速度能量、第二加速度能量及预设等振感加速度加权曲线计算得到马达的失真度。通过上述方式,本发明能够更好的反映在体验层面马达的失真大小。

Description

马达失真测量方法及设备、计算机可读存储介质 技术领域
本发明涉及电机驱动技术领域,特别是涉及一种马达失真测量方法及设备、计算机可读存储介质。
背景技术
科技日益发展的今天,视听等感官已难以满足人们的需求,触觉反馈作为一种直接感受逐渐进入大众视野。以马达为载体的触觉致动器,通过设计其特定波形,可以获得定制化的触觉体验,极大程度地丰富了用户感知。为了获得丰富且纯净的体验效果,希望马达能够工作在失真相对较小的频率区间。如此,对马达的失真测试变得越来越重要,这为设计师进行效果设计提供了客观的数值参考。通常,一般采用总谐波失真(THD)来描述马达的失真,其表示所有(或者大部分)高阶谐波失真占据信号能量的百分比。
传统的马达失真测量方法与声学里面测量失真的方法类似,即对系统进行单一频率信号的激励,系统的非线性会产生高次谐波(即该频率信号的倍频分量),通过高阶和基频的能量比,来表示这个频率对应的THD;再遍历不同的频率点,直到把所有感兴趣频率点的失真测试完成。对于频率为f的单频激励,THD的计算公式如下:
Figure PCTCN2020104691-appb-000001
其中,P(f)表示输出信号的频谱。
对于马达这种触觉反馈器件,与传统声学不同的是,它是通过振动来向皮肤传递位移信息。对于线性马达(LRA),通常选用的是马达振子振动方向的加速度作为THD计算的数据。需要注意的是,由于受到磁路对称性和结构的影响,振子除了在其振动方向(如X轴)有明显的位移之外,在其他振动方向(如Y轴和Z轴)也可能有对触觉体验有贡献。
发明内容
本发明主要解决的技术问题是提供一种马达失真测量方法及设备、计算机可读存储介质,能够更好的反映在体验层面马达的失真大小。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种马达失真测量方法,所述测量方法包括:采集所述马达的加速度信号,所述加速度信号包括在第一方向上的第一加速度信号及第二方向上的第 二加速度信号,所述第一方向为所述马达的振动方向,所述第二方向与所述第一方向相互垂直;根据所述第一加速度信号及所述第二加速度信号分别计算得到第一加速度能量及第二加速度能量;获取预设等振感加速度加权曲线;根据所述第一加速度能量、所述第二加速度能量及所述预设等振感加速度加权曲线计算得到所述马达的失真度。
其中,所述根据所述第一加速度能量、所述第二加速度能量及所述预设等振感加速度加权曲线计算得到所述马达的失真度的步骤包括:根据所述第一加速度能量、所述第二加速度能量及所述预设等振感加速度加权曲线计算所述马达的振动量;判断所述振动量是否大于阈值;若是,则根据所述第一加速度能量、所述第二加速度能量及预设等振感加速度加权曲线计算高阶谐波失真量;根据所述振动量及所述高阶谐波失真量计算所述马达的失真度。
其中,所述振动量的计算公式为:
Figure PCTCN2020104691-appb-000002
所述高阶谐波失真量的计算公式为:
Figure PCTCN2020104691-appb-000003
所述失真度的计算公式为:
Figure PCTCN2020104691-appb-000004
其中,Px(f)表示第一加速度能量,Py(f)表示第二加速度能量,SL(f)表示等振感加速度加权曲线。
其中,所述判断所述振动量是否大于阈值的步骤之后还包括:若所述振动量小于或等于阈值,则确定所述马达的失真度为零。
其中,所述根据所述第一加速度信号及所述第二加速度信号分别计算得到第一加速度能量及第二加速度能量的步骤包括:分别对所述第一加速度信号及所述第二加速度信号进行傅里叶变换,以得到第一加速度频域及第二加速度频域;分别根据所述第一加速度频域及所述第二加速度频域计算得出第一频谱能量绝对值及第二频谱能量绝对值;根据所述第一频谱能量绝对值及第二频谱能量绝对值计算得出所述第一加速度能量及第二加速度能量。
其中,所述第一加速度能量及第二加速度能量分别为:
P x(f)=abs(X(f))^2;
P y(f)=abs(Y(f))^2;
其中,abs(X)表示第一加速度信号的频谱能量,abs(Y)表示第二加速度信号的频谱能量,f为加速度信号频域中的频率点。
其中,所述获取预设等振感加速度加权曲线的方法包括:将人体最小感知灵敏度曲线进行倒置,以得到等振感位移加权曲线;根据所述等振感位移加权曲线得到所述等振感加速度加权曲线。
其中,所述加速度信号还包括在第三方向上的第三加速度信号,所述第三方向分别与所述第一方向及所述第二方向垂直;所述根据所述第一加速度信号及所述第二加速度信号分别计算得到第一加速度能量及第二加速度能量的步骤还包括:根据所述第三加速度信号计算得到第三加速度能量,所述第三加速度能量为:
P z(f)=abs(Z(f))^2
其中,abs(Z)表示第三加速度信号的频谱能量;所述振动量的计算公式为:
Figure PCTCN2020104691-appb-000005
所述高阶谐波失真量的计算公式为:
Figure PCTCN2020104691-appb-000006
所述失真度的计算公式为:
Figure PCTCN2020104691-appb-000007
其中,Pz(f)表示第三加速度能量。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种马达失真测量设备,所述测量包括处理器以及存储器,所述存储器存储有计算机指令,所述处理器耦合所述存储器,所述处理器在工作时执行所述计算机指令以实现如上述任一项所述的测量方法。
为解决上述技术问题,本发明采用的另一个技术方案是:提供一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行以实现上述任一项所述的测量方法。
本发明的有益效果是:区别于现有技术的情况,本发明提供一种马达失真测量方法及设备、计算机可读存储介质,通过引入除马达振动方向外的加速度信号作为样本参考以及引入体验加权曲线,让失真结果和实际体验更加接近,如此能够更好的反映在体验层面马达的失真大小。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1是本发明马达失真测量方法一实施方式的流程示意图;
图2是本发明图1中步骤S200一实施方式的流程示意图‘
图3是本发明图1中步骤S300一实施方式的流程示意图;
图4是本发明实施例中人体最小感知灵敏度曲线一实施方式的示意图;
图5是本发明等振感位移加权曲线一实施方式的示意图;
图6是本发明等振感加速度加权曲线一实施方式的示意图;
图7是本发明图1中步骤S400一实施方式的流程示意图;
图8是本发明马达失真测量的硬件系统示意图;
图9是本申请提供的马达失真测量设备实施例的示意框图;
图10是本申请提供的计算机可读存储介质实施例的示意框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1,图1为本发明马达失真测量方法一实施方式的流程示意图,如图1,本发明提供的马达失真测量方法包括如下步骤:
S100,采集马达的加速度信号,加速度信号包括在第一方向上的第一加速度信号及第二方向上的第二加速度信号,第一方向为马达的振动方向,第二方向与第一方向相互垂直。
可选地,本发明提供的马达失真测量方法和传统的计算方法不同之处在于,本发明马达加速度信号的选择除了马达振动方向上的加速度数据之外,其他方向的加速度信号也作为样本参考参与计算,具体描述如下:
本发明的第一实施方式中,所采集到的马达加速度信号包括第一方向上的第一加速度信号及第二方向上的第二加速度信号。其中,第一方向为所述马达的振动方向,第二方向与第一方向相互垂直。可选地,本实施例中第一方向为X轴方向、第二方向为Y轴方向。
在本发明的第二实施方式中,所采集到的马达加速度信号还可以包括三个正交方向上的加速度信号,由于触觉反馈是接触式的,如此人手能够感知三个正交方向振动。
具体地,本发明中还可以采用三轴加速度采集的马达三个方向上的加速度信号,具体可以包括第一方向上的第一加速度信号、第二方向上的第二加速度信号以及第三方向上的第三加速度信号。其中,第一方向为所述马达的振动方向,所述第一方向、第二方向以及第三方向正交垂直。可选地,第一方向为X轴方向、第二方向为Y轴方向,第三方向为Z轴方向。
S200,根据第一加速度信号及第二加速度信号分别计算得到第一加速度能量及第二加速度能量。
请进一步结合图2,图2为本发明步骤S200一实施方式的流程示意图,如图2步骤S200进一步包括入下子步骤:
S210,分别对第一加速度信号及第二加速度信号进行傅里叶变换,以得到第一加速度频域及第二加速度频域。
可选地,结合步骤S100的第一实施方式,对于频率为f的单频信号来说,分别对第一加速度信号及第二加速度信号进行傅里叶变换得到和分别和所述第一加速度信号及第二加速度信号对应的第一加速度频域及第二加速度频域,其中,第一方向上(X方向)的第一加速度频域为:
X=fft(x)
第二加速度频域为:
Y=fft(y);
可选地,对于步骤S100的第二实施方式来说,需要分别对三个方向的加速度信号进行傅里叶变化,以此得到三个方向的加速度频域,其中第一方向和第二方向的加速度频率和第一实施方式相同,第三方向的第三加速度进行傅里叶变换后得到的第三加速度频域为:
Z=fft(z)。
S220,分别根据第一加速度频域及第二加速度频域计算得出第一频谱能量绝对值及第二频谱能量绝对值。
进一步,根据第一加速度频域X及第二加速度频域Y计算得出第一频谱能量绝对值及第二频谱能量绝对值。
对于步骤S100的第二实施方式来说,还进一步包括根据第三加速度频域Z计算得出第三频谱能量绝对值。
S230,根据第一频谱能量绝对值及第二频谱能量绝对值计算得出第一加速度能量及第二加速度能量。
具体地,第一实施方式中根据第一频谱能量绝对值及第二频谱能量绝对值计算得出第一加速度能量及第二加速度能量。可选地,本发明中分别取第一加速度信号的频谱能量abs(X)及第二加速度信号的频谱能量abs(Y)在频率点f的能量值作为第一加速度能量及第二加速度能量,且第一加速度能量及第二加速度能量分别为:
P x(f)=abs(X(f))^2;
P y(f)=abs(Y(f))^2;
同理,对于第三加速度能量其计算公式和第一加速度能量以及第二加速度能量的计算类似,取第三加速度信号的频谱能量abs(Z)在频率点f的能量值作为第三加速度能量,且其表达式为:
P z(f)=abs(Z(f))^2。
S300,获取预设等振感加速度加权曲线。
请进一步结合图3,图3为本发明步骤S300一实施方式的流程示意图,如图3步骤S300进一步包括如下子步骤:
S310,将人体最小感知灵敏度曲线进行倒置,以得到等振感位移加权曲线。
请进一步结合图4,图4为本发明实施例中人体最小感知灵敏度曲线一实施方式的示意图,如图4以频率为80Hz为例,其位移为1um。对于频率在80Hz以下的频率点,则需要更大的位移才能够得到相同的手感,对于频率在80Hz以上的频率点,则需要更小的位移才能够得到相同的手感。如此,可以将图4中的人体最小感知灵敏度曲线进行导致得到等振感位移加权曲线。如图5,图5为本发明等振感位移加权曲线一实施方式的示意图。
S320,根据等振感位移加权曲线得到等振感加速度加权曲线。
可以理解的是,对于单频信号来说其加速度和位移满足:
Figure PCTCN2020104691-appb-000008
其中,x表示位移,acc为加速度,w表示单频频率。如此,通过单频信号的加速度和位移的关系可以得到等振感加速度加权曲线。如图6,图6为本发明等振感加速度加权曲线一实施方式的示意图。
S400,根据第一加速度能量、第二加速度能量及预设等振感加速度加权曲线计算得到所述马达的失真度。
请进一步结合图7,图7为本发明步骤S400一实施方式的流程示意图,如图7步骤S400进一步包括如下子步骤:
S410,根据第一加速度能量、第二加速度能量及预设等振感加速度加权曲线计算马达的振动量。
可选地,对于采集到马达加速度信号仅为第一方向和第二方向时,所述马达振动量的计算公式为:
Figure PCTCN2020104691-appb-000009
其中,SL(f)表示预设等振感加速度加权曲线,Px(f)表示第一加速度能量,Py(f)表示第二加速度能量。
对于采集到马达加速度信号仅为第一方向、第二方向以及第三方向时,所述马达振动量的计算公式为:
Figure PCTCN2020104691-appb-000010
SL(f)表示预设等振感加速度加权曲线,Px(f)表示第一加速度能量,Py(f)表示第二加速度能量,Pz(f)表示第三加速度能量。
S420,判断振动量是否大于阈值。
可选地,本发明实施例中引入振动量阈值,即最低体验门限,如此可以让相对的失真THD数值也能够反映一定体验门限之上的失真,具体有,若判断:
Figure PCTCN2020104691-appb-000011
或者:
Figure PCTCN2020104691-appb-000012
则进入步骤S430,计算计算高阶谐波失真量,反之则进入步骤S450。其中,TH表征的是人手的最低敏感加速度值,且振动量的阈值选取可 以根据实际情况进行选择,此处不做具体限定。
可以理解的是,本发明中除了引入除马达振动方向外的加速度信号作为样本参考以及引入体验加权曲线外,还引入最低体验门限,让相对的THD数值也能够反映一定体验门限之上的失真,如此能够更好的反映在体验层面马达的失真大小。
S430,根据第一加速度能量、第二加速度能量及预设等振感加速度加权曲线计算高阶谐波失真量。
进一步,根据预设等振感加速度加权曲线SL(f)、第一加速度能量Px(f)以及第二加速度能量Py(f),可以得到高阶谐波失真量,其表达式为:
Figure PCTCN2020104691-appb-000013
可选地,根据预设等振感加速度加权曲线SL(f)、第一加速度能量Px(f)、第二加速度能量Py(f)以及第三加速度能量Pz(f),可以得到高阶谐波失真量,其表达式为:
Figure PCTCN2020104691-appb-000014
S440,根据振动量及高阶谐波失真量计算马达的失真度。
可选地,根据振动量及高阶谐波失真量可以得到马达的失真度,对于采集马达两个方向的加速度信号的情况来说,马达的失真度为:
Figure PCTCN2020104691-appb-000015
同理,对于采集到马达加速度信号仅为第一方向、第二方向以及第三方向的情况来说,马达的失真度为:
Figure PCTCN2020104691-appb-000016
S450,确定马达的失真度为零。
反之,若判断:
Figure PCTCN2020104691-appb-000017
或者:
Figure PCTCN2020104691-appb-000018
则确定马达的失真度为0。
上述实施方式中,通过引入除马达振动方向外的加速度信号作为样本参考以及引入体验加权曲线,让失真结果和实际体验更加接近,如此能够更好的反映在体验层面马达的失真大小。
进一步结合图8,图8为本发明马达失真测量的硬件系统示意图,如图8,该测量的硬件系统包括马达、工装、海绵体、电脑、采集卡、放大器以及加速度计,其中,加速度计可以为三轴加速度计。其中,具体实现原理为:
马达(LRA)和工装粘性贴合,且工装放置在海绵体上以避免环境 对测量结果的影响。三轴加速度计ACC测量工装在马达LRA振动方向上的加速度,也可以测量到另外两个方向的加速度。
电脑PC上生成的数字信号送入到采集卡进行数模转换成模拟信号,并通过放大器AMP2进行放大以激励马达LRA,马达LRA的振动会带动工装反向振动,并通过三轴加速度计ACC采集并放大,采集卡NI-DAQ同步采集测量振动方向上的加速度和激励马达的电压信号用于数据分析。
参阅图9,图9是本申请提供的马达失真测量设备实施例的示意框图,本实施例中的计算机设备包括处理器310及存储器320,处理器310与存储器320耦合,存储器320存储有计算机指令,处理器310在工作时执行计算机指令以实现上述任一实施例中的测量方法。
其中,处理器310还可以称为CPU(Central Processing Unit,中央处理单元)。处理器310可能是一种集成电路芯片,具有信号的处理能力。处理器310还可以是通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC)、现成可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器,但不仅限于此。
参阅图10,图10是本申请提供的计算机可读存储介质实施例的示意框图,本实施例中的计算机可读存储介质存储有计算机程序410,该计算机程序410能够被处理器执行以实现上述任一实施例中的测量方法。
可选的,该可读存储介质可以是U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质,或者是计算机、服务器、手机、平板等终端设备。
区别于现有技术,本发明实施例提供一种马达失真测量方法及设备、计算机可读存储介质,通过引入除马达振动方向外的加速度信号作为样本参考以及引入体验加权曲线,让失真结果和实际体验更加接近,如此能够更好的反映在体验层面马达的失真大小。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种马达失真测量方法,其特征在于,所述测量方法包括:
    采集所述马达的加速度信号,所述加速度信号包括在第一方向上的第一加速度信号及第二方向上的第二加速度信号,所述第一方向为所述马达的振动方向,所述第二方向与所述第一方向相互垂直;
    根据所述第一加速度信号及所述第二加速度信号分别计算得到第一加速度能量及第二加速度能量;
    获取预设等振感加速度加权曲线;
    根据所述第一加速度能量、所述第二加速度能量及所述预设等振感加速度加权曲线计算得到所述马达的失真度。
  2. 根据权利要求1所述的测量方法,其特征在于,所述根据所述第一加速度能量、所述第二加速度能量及所述预设等振感加速度加权曲线计算得到所述马达的失真度的步骤包括:
    根据所述第一加速度能量、所述第二加速度能量及所述预设等振感加速度加权曲线计算所述马达的振动量;
    判断所述振动量是否大于阈值;
    若是,则根据所述第一加速度能量、所述第二加速度能量及预设等振感加速度加权曲线计算高阶谐波失真量;
    根据所述振动量及所述高阶谐波失真量计算所述马达的失真度。
  3. 根据权利要求2所述的测量方法,其特征在于,
    所述振动量的计算公式为:
    Figure PCTCN2020104691-appb-100001
    所述高阶谐波失真量的计算公式为:
    Figure PCTCN2020104691-appb-100002
    所述失真度的计算公式为:
    Figure PCTCN2020104691-appb-100003
    其中,Px(f)表示第一加速度能量,Py(f)表示第二加速度能量,SL(f)表示等振感加速度加权曲线。
  4. 根据权利要求2所述的测量方法,其特征在于,所述判断所述振动量是否大于阈值的步骤之后还包括:
    若所述振动量小于或等于阈值,则确定所述马达的失真度为零。
  5. 根据权利要求1所述的测量方法,其特征在于,所述根据所述第一加速度信号及所述第二加速度信号分别计算得到第一加速度能量及第二加速度能量的步骤包括:
    分别对所述第一加速度信号及所述第二加速度信号进行傅里叶变换,以得到第一加速度频域及第二加速度频域;
    分别根据所述第一加速度频域及所述第二加速度频域计算得出第一频谱能量绝对值及第二频谱能量绝对值;
    根据所述第一频谱能量绝对值及所述第二频谱能量绝对值计算得出所述第一加速度能量及所述第二加速度能量。
  6. 根据权利要求5所述的测量方法,其特征在于,所述第一加速度能量及第二加速度能量分别为:
    P x(f)=abs(X(f))^2;
    P y(f)=abs(Y(f))^2;
    其中,abs(X)表示第一加速度信号的频谱能量,abs(Y)表示第二加速度信号的频谱能量,f为加速度信号频域中的频率点。
  7. 根据权利要求1所述的测量方法,其特征在于,所述获取预设等振感加速度加权曲线的方法包括:
    将人体最小感知灵敏度曲线进行倒置,以得到等振感位移加权曲线;
    根据所述等振感位移加权曲线得到所述等振感加速度加权曲线。
  8. 根据权利要求3所述的测量方法,其特征在于,所述加速度信号还包括在第三方向上的第三加速度信号,所述第三方向分别与所述第一方向及所述第二方向垂直;
    所述根据所述第一加速度信号及所述第二加速度信号分别计算得到第一加速度能量及第二加速度能量的步骤还包括:
    根据所述第三加速度信号计算得到第三加速度能量,所述第三加速度能量为:
    P z(f)=abs(Z(f))^2
    其中,abs(Z)表示第三加速度信号的频谱能量;
    所述振动量的计算公式为:
    Figure PCTCN2020104691-appb-100004
    所述高阶谐波失真量的计算公式为:
    Figure PCTCN2020104691-appb-100005
    所述失真度的计算公式为:
    Figure PCTCN2020104691-appb-100006
    其中,Pz(f)表示第三加速度能量。
  9. 一种马达失真测量设备,其特征在于,所述测量包括处理器以及存储器,所述存储器存储有计算机指令,所述处理器耦合所述存储器,所述处理器在工作时执行所述计算机指令以实现如权利要求1~8任一项所述的测量方法。
  10. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行以实现如权利要求1~8任一项所述的测量方法。
PCT/CN2020/104691 2020-06-24 2020-07-25 马达失真测量方法及设备、计算机可读存储介质 WO2021258485A2 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010585377.3A CN111722108B (zh) 2020-06-24 2020-06-24 马达失真测量方法及设备、计算机可读存储介质
CN202010585377.3 2020-06-24

Publications (2)

Publication Number Publication Date
WO2021258485A2 true WO2021258485A2 (zh) 2021-12-30
WO2021258485A3 WO2021258485A3 (zh) 2022-02-10

Family

ID=72568684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/104691 WO2021258485A2 (zh) 2020-06-24 2020-07-25 马达失真测量方法及设备、计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN111722108B (zh)
WO (1) WO2021258485A2 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112667077A (zh) * 2020-12-24 2021-04-16 瑞声新能源发展(常州)有限公司科教城分公司 一种马达模型参数检测方法、装置、电子设备和介质

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5742918A (en) * 1996-04-26 1998-04-21 Ford Global Technologies, Inc. Method and apparatus for dynamically compensating a lateral acceleration of a motor vehicle
FR2988868B1 (fr) * 2012-03-30 2015-04-24 Parrot Procede de pilotage d'un drone a voilure tournante a rotors multiples avec estimation et compensation du vent lateral
CN103196681B (zh) * 2013-03-13 2015-11-11 北京交通大学 基于转向架加速度的列车运行舒适度预测方法
DE102014001515A1 (de) * 2014-02-07 2015-08-13 Schenck Process Gmbh Schwingmaschine
CN104483011B (zh) * 2014-11-07 2017-06-27 南京理工大学紫金学院 一种旋转机械多通道振动信号的在线检测与分析系统及方法
CN105675111A (zh) * 2014-11-19 2016-06-15 索尼公司 噪声检测方法、噪声检测装置以及电子设备
CN105866473B (zh) * 2016-02-24 2019-06-04 安徽华米信息科技有限公司 马达振动加速度的测量方法及装置
CN105891332B (zh) * 2016-05-31 2019-08-09 广东交通职业技术学院 一种多传感器的车载压实度检测装置及其方法
US11355033B2 (en) * 2017-04-17 2022-06-07 Meta Platforms, Inc. Neural network model for generation of compressed haptic actuator signal from audio input
CN109145514A (zh) * 2018-09-30 2019-01-04 浙江中科电声研发中心 一种扬声器失真的数值仿真分析方法
CN109406258B (zh) * 2018-10-26 2021-03-23 杭州亿恒科技有限公司 基于多传感器的振动幅度加权控制方法
CN109901066A (zh) * 2018-12-31 2019-06-18 瑞声科技(新加坡)有限公司 马达系统辨识方法
CN110247631B (zh) * 2019-04-12 2023-05-09 瑞声科技(新加坡)有限公司 一种马达非线性失真补偿方法及装置
CN110502111B (zh) * 2019-08-09 2021-02-26 瑞声科技(新加坡)有限公司 马达信号补偿方法、电子设备及存储介质
CN110541795B (zh) * 2019-08-26 2020-07-28 重庆科凯前卫风电设备有限责任公司 一种海上风电机组机舱振动加速度数据有效性的判定方法
CN110641502B (zh) * 2019-11-06 2020-12-11 中车株洲电力机车有限公司 列车转向架悬挂系统动态调节方法
CN110907827B (zh) * 2019-11-22 2022-04-01 瑞声科技(新加坡)有限公司 一种马达瞬态失真测量方法及系统

Also Published As

Publication number Publication date
WO2021258485A3 (zh) 2022-02-10
CN111722108A (zh) 2020-09-29
CN111722108B (zh) 2023-03-24

Similar Documents

Publication Publication Date Title
Wahab et al. A generic approach to measuring the machine flexibility of manufacturing systems
Guruswamy et al. IIR filter models of haptic vibration textures
WO2022110413A1 (zh) 确定马达非线性参数的方法、装置、设备和存储介质
WO2021258485A2 (zh) 马达失真测量方法及设备、计算机可读存储介质
Wang et al. Achieving energy conservation in Poisson–Boltzmann molecular dynamics: Accuracy and precision with finite-difference algorithms
CN112651354B (zh) 噪声源的确定方法和装置
CN110907827A (zh) 一种马达瞬态失真测量方法及系统
Hernandez Improving the response of an accelerometer by using optimal filtering
JP2007506497A (ja) ソースモデリングにおけるマルチチャンネル測定信号を用いた方法およびデバイス
JP3626460B2 (ja) 二次元応力場計測システム及び二次元応力場計測プログラム
JPH05281321A (ja) 磁歪測定装置及び磁歪測定方法
US20210042519A1 (en) Method for evaluating vibrating sensation similarity, apparatus and storage medium
JP2006185193A (ja) 評価点寄与度演算方法及び装置
WO2022000656A1 (zh) 马达系统失真的测量方法及设备、计算机可读存储介质
JP3279756B2 (ja) 定量計算装置
CN117433891A (zh) 弹性模量测试方法和弹性模量测试装置
CN111783030A (zh) 触觉体验的评估方法、装置和存储介质
Liu et al. Closed-form dynamic stiffness formulations for exact modal analysis of membranes in polar coordinates
Tageldeen et al. Analogue circuit realisation of surface-confined redox reaction kinetics
Handler et al. Modelling Periodic Measurement Data Having a Piecewise Polynomial Trend Using the Method of Variable Projection
Yuliantini et al. The Citizens' Satisfaction on Service Quality of Mobile Government (Case Study: Wargaku Surabaya Application)
Kang Free Vibration Analysis of Clamped Plates with Arbitrary Shapes Using Series Functions
CN111880092A (zh) Chirp信号Hammerstein模型系统辨识方法
CN117458938A (zh) 马达振动增益的调节方法、装置、电子设备及存储介质
CN117828957A (zh) 一种超声弹性仿真方法、装置、存储介质及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941744

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941744

Country of ref document: EP

Kind code of ref document: A2