WO2022000511A1 - 样本分析仪以及样本分析方法 - Google Patents

样本分析仪以及样本分析方法 Download PDF

Info

Publication number
WO2022000511A1
WO2022000511A1 PCT/CN2020/100272 CN2020100272W WO2022000511A1 WO 2022000511 A1 WO2022000511 A1 WO 2022000511A1 CN 2020100272 W CN2020100272 W CN 2020100272W WO 2022000511 A1 WO2022000511 A1 WO 2022000511A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
container
type
rack
sample container
Prior art date
Application number
PCT/CN2020/100272
Other languages
English (en)
French (fr)
Inventor
胡力坚
李学荣
Original Assignee
深圳迈瑞生物医疗电子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈瑞生物医疗电子股份有限公司 filed Critical 深圳迈瑞生物医疗电子股份有限公司
Priority to PCT/CN2020/100272 priority Critical patent/WO2022000511A1/zh
Priority to CN202080102457.7A priority patent/CN115867810A/zh
Publication of WO2022000511A1 publication Critical patent/WO2022000511A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F19/00Calibrated capacity measures for fluids or fluent solid material, e.g. measuring cups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices

Definitions

  • Embodiments of the present invention relate to the field of sample detection, and in particular, to a sample analyzer and a sample analyzer method.
  • a blood sample (hereinafter referred to as a blood sample) by a blood analyzer
  • a blood sample a blood sample
  • the blood analyzer will pre-specify the required blood volume.
  • venous blood collection a larger blood sample is usually collected, usually not less than 1 mL (milliliter), which is suitable for adult subjects.
  • peripheral blood is often collected, but in this case, the amount of blood that can be collected is less, usually no more than 200 ⁇ L (microliters). ).
  • blood samples are usually loaded with blood collection tubes containing anticoagulants.
  • Blood is composed of blood cells and plasma. Due to the different proportions of blood cells and plasma, the blood in the anticoagulant blood collection tube will be stratified after standing for a period of time. Therefore, the blood sample should be thoroughly mixed before measurement, otherwise the measurement results will be inconsistent. big deviation.
  • the method of reciprocating the inversion of the test tube is mainly used to realize the mixing of blood samples. This mixing method is often only suitable for mixing venous blood samples. This is because the blood volume of the peripheral blood sample is small and the fluidity is poor. If the reciprocating inversion method is used for mixing, the peripheral blood will often adhere to the wall of the blood collection tube, wasting the relatively small blood sample.
  • the distance between the bottom of the lumen of the venous blood sample container and the sample container of peripheral blood is usually different from the bottom of the test tube. Pierce the bottom of the lumen of the peripheral blood sample container or cause the venous blood sample to fail to draw the blood sample. The former will damage the sample aspiration needle to a certain extent or shorten the service life of the sample aspiration needle. Further, the peripheral blood sample container that has been pierced at the bottom of the lumen will leak blood samples, which will cause biological contamination on the one hand, and cause blood samples on the other hand. Loss requires a second blood draw from the subject.
  • embodiments of the present invention provide an improved sample analyzer and an improved sample analyzer method, which can not only realize automatic batch measurement of venous blood samples and peripheral blood samples at the same time, but also can Prevent sample leakage and damage to instrument aspiration needles, improving the operational reliability and safety of sample analyzers.
  • a first aspect of the present invention provides a sample analyzer, comprising: a sample container accommodating device, configured to accommodate a sample container, and the sample container is used to load a sample; a sample amount detection device, configured to detect in a manner that does not contact the sample a sample size or sample position of the sample in the sample container; a sample processing device, configured to process the sample in the sample container; a control device, connected in communication with the sample size detection device and the sample processing device , and is configured to: obtain sample information of the sample container from the sample size detection device, the sample information includes at least one of sample size information and sample position information, and control the sample according to the sample information processing actions of a processing device and/or determining whether the sample processing device performs a processing action.
  • the sample amount detection device is a capacitive sensor.
  • a second aspect of the present invention provides a sample analyzer, comprising: a sample rack configured to load a plurality of sample containers, each of which is used to load a sample; a sample rack transport device configured to transport the samples in the sample analysis area the sample rack; a sample processing device, configured to process samples in a sample container on a sample rack in the sample analysis area; a sample rack identification device, configured to identify the type of the sample rack; sample identification means arranged to identify the type of the sample container or the type of the sample in the sample container; control means configured to: if the type of the sample holder is the same as the type of the sample container or the type of the sample in the sample container If the type of the sample is matched, the sample processing device is controlled to process the sample in the sample container, if the type of the sample holder does not match the type of the sample container or the type of the sample in the sample container , the sample processing device is controlled not to process the sample in the sample container.
  • a third aspect of the present invention provides a sample analyzer, comprising: a sample rack configured to load a plurality of sample containers, each sample container used to load a sample; a sample rack transport device configured to transport the sample in the sample analysis area the sample holder; a sample processing device configured to process samples in a sample container on a sample holder in the sample analysis area; a sample identification device configured to identify the type of the sample container or the sample The type of sample in the container and arranged outside the sample analysis area; a sample container handling device, arranged to lift and move the sample container on the sample rack from the sample rack to the detection of the sample identification device a control device configured to control a processing action of the sample processing device and/or determine whether the sample processing device performs a processing action depending on the type of the sample container or the type of sample in the sample container .
  • a fourth aspect of the present invention provides a sample analysis method, comprising:
  • the control device controls the sample rack transport device to transport the sample rack in the sample analysis area, the sample rack containing the sample container loaded with the sample;
  • the control device acquires sample information of the sample container from the sample size detection device, the sample information includes at least one of sample size information and sample position information;
  • the control device controls the processing action of the sample processing device and/or determines whether the sample processing device performs the processing action according to the sample information.
  • a fifth aspect of the present invention provides a sample analysis method, comprising:
  • the control device controls the sample rack transport device to transport the sample rack in the sample analysis area, the sample rack containing the sample container loaded with the sample;
  • control device controls the sample processing device to process the sample in the sample container;
  • control device controls the sample processing device not to process the sample in the sample container.
  • a sixth aspect of the present invention provides a sample analysis method, comprising:
  • the control device controls the sample rack transport device to transport the sample rack in the sample analysis area, the sample rack containing the sample container loaded with the sample;
  • the control device controls the sample container handling device to lift out the sample containers on the sample rack from the sample rack and move them into the detection range of the sample identification device disposed outside the sample analysis area;
  • the control device controls the processing action of the sample processing device and/or determines whether the sample processing device performs the processing action according to the type of the sample container or the type of the sample in the sample container.
  • the solutions provided by various aspects of the present invention can reliably distinguish between different sample containers or different samples, reduce the possibility of damage to the sample container and the sample analyzer, especially the sample aspiration needle thereof, and improve the safety of sample analysis.
  • FIG. 1 is a schematic structural diagram of a first-type sample container provided by an embodiment of the present invention.
  • FIGS. 2 to 4 are schematic structural diagrams of an embodiment of a second type of sample container provided in an embodiment of the present invention.
  • 5 to 7 are schematic structural diagrams of another embodiment of the second type of sample container provided in the embodiment of the present invention.
  • FIGS. 8 to 10 are schematic structural diagrams of the sample analyzer provided by the first aspect of the present invention.
  • FIG. 11 is a schematic oblique view of a sample aspiration device provided in an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a setting device provided by an embodiment of the present invention.
  • FIG. 13 is a schematic oblique view of a first mixing component provided in an embodiment of the present invention.
  • 16 is a graph of an output signal of a sensor of the second mixing component provided in an embodiment of the present invention.
  • 17 and 18 are cross-sectional views of the second mixing component provided by the embodiment of the present invention.
  • 19 and 20 are schematic structural diagrams of a sample holder provided in an embodiment of the present invention.
  • 21 and 22 are schematic structural diagrams of a sample rack transport device provided by an embodiment of the present invention.
  • 23 and 24 are schematic structural diagrams of a sample container rotating member provided in an embodiment of the present invention.
  • 25 and 26 are schematic diagrams of different arrangements of the sample size detection device provided by the embodiment of the present invention.
  • FIG. 27 is a schematic diagram of the positional relationship between the sample size detection device provided by the embodiment of the present invention and the first type of sample container when the sample size is detected;
  • FIG. 28 is a schematic diagram of the positional relationship between the sample size detection device provided by the embodiment of the present invention and the second type of sample container when the sample size is detected;
  • 29 is a schematic flowchart of a static detection method of a sample size detection device provided by an embodiment of the present invention.
  • FIG. 30 is a schematic diagram of a sample size detection device provided in an embodiment of the present invention when dynamically detecting a sample size or a sample position of a first-type sample container;
  • FIG. 31 is a graph of the output signal of the sample size detection device of FIG. 30;
  • 32 is a schematic diagram of a sample size detection device provided in an embodiment of the present invention when dynamically detecting the sample size or sample position of the second type of sample container;
  • FIG. 33 is a graph of the output signal of the sample amount detection device of FIG. 32;
  • 34 to 36 are schematic flow charts of different dynamic detection methods of the sample size detection device provided by the embodiments of the present invention.
  • FIG. 37 is a schematic diagram of a sample size detection device provided by an embodiment of the present invention.
  • 38 is a schematic diagram of a control apparatus provided by an embodiment of the present invention.
  • 40 is a schematic diagram of the sample identification device of the sample analyzer according to the second aspect of the present invention when the second type of sample container is identified;
  • 41 is a schematic diagram of the sample identification device of the sample analyzer according to the second aspect of the present invention when identifying the first type of sample container;
  • 45 and 46 are schematic flow charts of different embodiments of the sample analysis method provided by the fifth aspect of the present invention.
  • FIG. 47 is a schematic flowchart of the sample analysis method provided by the sixth aspect of the present invention.
  • the terms “comprising”, “comprising” or any other variations thereof are intended to cover non-exclusive inclusion, so that a method or device including a series of elements not only includes the explicitly stated elements, but also other elements not expressly listed or inherent to the implementation of the method or apparatus.
  • an element defined by the phrase “comprising a" does not preclude the presence of additional related elements (eg, steps in a method or elements in an apparatus) in the method or apparatus that includes the element , where a unit may be part of a circuit, part of a processor, part of a program or software, etc.).
  • first ⁇ second ⁇ third involved in the embodiment of the present invention is only to distinguish similar objects, and does not represent a specific order of objects. It is understandable that “first ⁇ second ⁇ third” "The specific order or sequence may be interchanged where permitted. It should be understood that the “first ⁇ second ⁇ third” distinctions may be interchanged under appropriate circumstances to enable the embodiments of the invention described herein to be practiced in sequences other than those illustrated or described herein.
  • FIGS. 1 to 7 Currently, different types of sample containers are commonly used to load venous blood samples and peripheral blood samples, as shown in FIGS. 1 to 7 .
  • FIG. 1 shows a first type of sample container 91 , which includes a tube body 911 and a cap body 912 .
  • the tube body 911 is provided with an inner cavity for receiving the sample, and the distance d1 from the bottom 911 a of the inner cavity of the tube body 911 to the bottom end of the tube body 911 is the thickness of the tube wall of the tube body 911 .
  • At least a central region of the cap body 912 is constructed of a rubber material.
  • the sample aspiration needle needs to pierce the cap body 912 to enter into the inner cavity of the first type sample container 91 to aspirate the sample. Since the bottom of the inner cavity of the first type of sample container 91 is close to the bottom end of the sample container, the first type of sample container can also be referred to as a low-bottom type sample container herein.
  • FIG. 2 shows one embodiment of a second type of sample container.
  • the second type of sample container 92 includes a tubular body 921 .
  • the tube body 921 is provided with an inner cavity for receiving the sample.
  • the distance d2 from the bottom 921a of the inner cavity of the tube body 921 to the bottom end of the tube body 921 is much larger than the thickness of the tube wall, usually d2 is greater than one-fifth of the length of the tube body.
  • a semi-open cavity 921b is formed under the inner cavity of the tube body 921 of the second type sample container 92, also called a recess.
  • the second type of sample container 92 may also include a cap 925 .
  • At least a central region of the cap body 925 is constructed of a rubber material.
  • a central region of the cap body 925 which is made of rubber material is provided with a cross slit 925a through it, as shown in FIG. 4 .
  • the sample aspiration needle can easily enter the inner cavity of the second type sample container 92 through the through cross slit 925a to aspirate the sample without piercing the cap body 925 .
  • FIG. 5 shows another embodiment of a second type of sample container.
  • the second type of sample container 93 includes an outer tubular body 931 and an inner tubular body 932 .
  • the inner tube body 932 is sleeved inside the outer tube body 931 , as shown in FIG. 6 .
  • the inner tube body 932 and the outer tube body 931 can be connected and fixed together by interference fit, screw fit, adhesive or other means.
  • the inner tube body 932 is provided with an inner cavity for receiving the sample.
  • the distance d3 from the bottom 932a of the inner tube body 932 to the bottom end of the outer tube body 931 is much larger than the thickness of the tube wall of the outer tube body 931, and usually d3 is larger than the length of the outer tube body. one-fifth of .
  • the second type of sample container 93 forms a fully enclosed cavity 933 under the inner cavity of the inner tube body 932 .
  • the second type sample container 93 may also include a cap body 935 , and the structure and material of the cap body 935 may be the same as the cap body 925 of the second type sample container 92 , which will not be repeated here.
  • the difference between the second type of sample containers 92 and 93 is that a semi-open cavity 921 b is formed under the inner cavity of the sample container 92 , while a fully enclosed cavity 933 is formed under the inner cavity of the sample container 93 .
  • the first type of sample container 91 has a larger inner cavity volume, and is generally used for accommodating a venous blood sample with a larger sample volume, and may also be referred to as a constant blood sample container.
  • the second type of sample containers 92 and 93 have a smaller inner cavity volume, and are usually used for accommodating peripheral blood samples with a small amount of samples, which can also be referred to as micro blood sample containers.
  • the type of the sample container is determined by identifying whether there is a concave portion at the bottom of the sample container (for example, the concave portion of the second type sample container 92 ), but this method cannot be used to distinguish the second type sample container 93 from the first type.
  • the sample container 91 has a limited scope of application.
  • the first aspect of the present invention first proposes a sample analyzer, which identifies the sample container by detecting the sample amount in the sample container or the sample position of the sample in the sample container. Therefore, it can be applied to various sample containers without special requirements for the structure of the sample container. Even if the exact same sample container is used to load venous blood and peripheral blood, the sample analyzer according to the first aspect of the present invention can reliably distinguish whether the sample container is loaded with venous blood or peripheral blood.
  • the sample analyzer distinguishes venous blood samples and peripheral blood samples by detecting the sample amount or sample position in the sample container, rather than by detecting the special structure or special mark of the sample container itself.
  • Sample container type
  • the sample analyzer 1 includes a sample container accommodating device 90 , a sample amount detecting device 7 , a sample processing device 50 , and a control device 30 .
  • the sample container accommodating device 90 is provided for accommodating sample containers 91 , 92 , 93 loaded with samples.
  • the sample volume detection device 7 is provided for detecting the sample volume or the sample position of the sample 100 in the sample container without contacting the sample.
  • the sample processing device 50 is provided for processing the sample in the sample container.
  • the control device 30 is configured to be in communication connection with the sample size detection device 7 and the sample processing device 50 and is configured to obtain sample information of the sample container from the sample size detection device 7, the sample information including the sample size information and the sample position information. At least one of them, and control the processing action of the sample processing apparatus 50 or determine whether the sample processing apparatus 50 performs the processing action according to the sample information.
  • the sample analyzer 1 can be, for example, a blood sample analyzer for blood routine testing or a smear preparation device for preparing blood smears.
  • the blood smear is a glass slide coated with a blood sample.
  • the sample position of the sample 100 can be understood as, when the sample containers 91, 92, 93 are placed in the sample container accommodating device 90, the liquid level of the sample 100 in the sample container is away from the sample container accommodating device The height of the bottom of 90, as shown in Figure 20 s1 and s2.
  • control device 30 can be further configured to When controlling the processing action of the sample processing device 50 according to the sample information, the following steps are performed:
  • sample information indicates that the sample container 91 is loaded with the first type of sample, controlling the sample processing device 50 to process the sample in the sample container 91 with the first processing condition;
  • the sample processing device 50 is controlled to process the samples in the sample containers 92, 93 with a second processing condition different from the first processing condition , wherein the difference between the first type of samples and the second type of samples is at least one of different sample sizes and different sample locations.
  • the samples of the first type and the samples of the second type may be distinguished by different sample sizes, ie the sample container 91 is loaded with a first amount of a first type of sample or the sample containers 92, 93 are loaded with a second amount of A second type of sample, the second amount being different from, eg, smaller than, the first amount.
  • the difference between the samples of the first type and the samples of the second type may also be that the positions of the samples in the sample container are different, that is, the position of the samples of the first type in the sample container 91 is s1, and the samples of the second type are in the sample container 91.
  • the position in 91 is s2, which is different from, eg, greater than, s1.
  • the difference between the first type of samples and the second type of samples may lie in different sample sizes and different sample positions, that is, the first type of samples and the second type of samples have different sample sizes and different sample positions.
  • the first type of sample is a venous blood sample or a macro blood sample
  • the second type of sample is a peripheral blood sample or a micro blood sample.
  • the sample processing device 50 may include a sample aspiration device 6 having a sample aspiration needle 61 .
  • the sample container 91 constant blood sample container
  • the sample containers 92, 93 micro blood sample container
  • the first processing condition includes lowering the sample aspiration needle 61 by a first distance (as shown in FIG.
  • the second processing conditions include lowering the sample aspiration needle 61 by a second distance (as shown in FIG. 20, from A to B) to collect samples in a sample container, such as the micro blood sample container 92, 93, wherein the first distance is greater than the first distance Second distance.
  • the first processing condition includes causing the aspiration needle 61 to aspirate a first amount of sample from the sample container 91
  • the second processing condition includes causing the aspiration needle 61 to aspirate a second sample from the sample containers 92 , 93 .
  • the first sample size is greater than the second sample size.
  • the sample suction device 6 further includes motors 62 and 63 , and the sample suction needle 61 can move along the Y1 and Y2 directions under the drive of the motor 62 and along the Z1 direction under the drive of the motor 63 . , move in the Z2 direction.
  • the sample aspiration needle 61 moves along the Y1 and Y2 directions above the sample container in the sample container accommodating device 90 , and then moves along the Z1 and Z2 directions to be inserted into the inner cavity of the sample container 91 to aspirate the sample.
  • the sample analyzer 1 may further include a storage part (not shown) for storing the downward movement height information in association with the sample type or the sample container type, and the control device 50 detects the sample amount according to the detection result of the sample size detection device 7 and The descending height information stored by the storage part is used to control the sample aspiration needle 61 to descend into the cavity of the sample container.
  • This storage unit is integrated, for example, in the control device 50 .
  • the sample analyzer 1 may further include a setting part (not shown) for setting or changing the descending height information in the storage part, and the control device stores the descending height information changed via the setting part in the storing part.
  • This setting part may be a component of the display screen 2 of the sample analyzer 1 .
  • the display screen 2 may provide a setting interface as shown in FIG. 12 , in which the needle-down height for the first amount of samples and the needle-down height for the second amount of samples may be set respectively.
  • the sample analyzer 1 can also be provided with a receiving part without a set component, and the receiving component can receive the configuration parameters of the needle height of the sample aspiration needle sent by another device other than the sample analyzer 1 .
  • Another device may be, for example, a PC, which sends the configuration parameters of the needle height of the aspirating needle to the sample analyzer 1 through a communication interface.
  • the sample processing device 50 may include a mixing device including a first mixing part 4 and a second mixing part 5 that are independent of each other.
  • the first processing condition includes mixing the sample in the sample container with the first mixing part 4
  • the second processing condition includes mixing the sample in the sample container with the second mixing part 5 .
  • the first mixing part 4 is configured to invert and mix the samples in the sample container by swinging, while the second mixing part 5 rotates and mixes the samples in the sample container by rotating.
  • the control device 30 determines according to the sample information detected by the sample volume detection device 7 that the sample in the sample container (eg, the constant blood sample container 91 ) is the first type of sample, such as venous blood (that is, the blood volume is large)
  • the first mixing part 4 is controlled to invert and mix the venous blood in the sample container by swinging; and when the control device 30 determines the sample container (for example, the trace blood sample container 92 ) according to the sample information detected by the sample volume detection device 7
  • the sample in step 93) is the second type of sample, such as peripheral blood (ie, the blood volume is small)
  • the second mixing part 5 is controlled to rotate and mix the peripheral blood in the sample container by rotating.
  • the first mixing part 4 includes a clamping jaw 41 and three motors 42 , 43 and 44 .
  • the clamping jaw 41 can move in the Z1 or Z2 direction under the driving of the motor 42 , move in the Y1 or Y2 direction under the driving of the motor 43 , and swing around the axis in the R1 or R2 direction under the driving of the motor 44 . Therefore, the gripper jaw 41 is driven by the motors 42, 43 to move in the Y1, Y2 and Z1, Z2 directions to a sample container located in the sample container accommodating device 90, for example, the first type of sample container 91, and remove the sample container from the sample container 91.
  • the container accommodating device 90 is clamped out, and then the samples in the first type sample container 91 are inverted and mixed by swinging in the directions of R1 and R2. After mixing, the gripper 41 returns the mixed sample container to the sample container accommodating device 90 under the driving of the motors 42 and 43 .
  • the second mixing part 5 includes a bracket 51 , a fixing seat 52 and a motor 53 .
  • the bracket 51 is used to fix the motor 53 .
  • a motor 53 such as a stepping motor, is used as a power source, and can drive the fixing base 52 to rotate clockwise or counterclockwise.
  • the fixing base 52 is rotatably connected with the stepping motor 53 , and the fixing base 52 can be directly fixed on the rotating shaft of the motor 53 .
  • an accommodating cavity 521 is provided on the top of the fixing base 52 , and the accommodating cavity 521 can be placed in the second type sample container 92 or 93 containing the sample.
  • the second mixing component 5 further includes a sensor 54 fixed on the bracket 51 , and the sensor 54 is used to detect whether the fixed seat 52 rotates and to detect the rotational speed of the fixed seat 52 .
  • a sensor sensing portion 524 and a notch 525 are disposed below the fixing base 52 . When the fixing base 52 rotates, the sensor sensing part 524 and the notch 525 will alternately enter the sensing area of the sensor 54, the sensing area of the sensor 54 will alternately switch between the blocking state and the non-blocking state, and the output end of the sensor 54 corresponds to the output shown in Figure 15.
  • Whether the fixed seat 52 rotates can be determined by detecting whether the sensor 54 outputs a pulse signal, and whether the number of rotations of the fixed seat 52 can be determined by detecting the number of pulse signals output by the sensor 54 is in line with expectations, that is, by detecting the pulse signal shown in FIG. 15 . period T to determine whether the rotational speed of the fixed seat 52 meets the expectation.
  • the internal structure of the fixed seat 52 is shown in FIG. 17 .
  • the diameter of the inlet of the accommodating cavity 521 is slightly larger than the outer diameter of the second type sample container 92 or 93 .
  • An abutting portion 522 is provided below the accommodating cavity 521 , and a fixing hole 523 is formed at the bottom of the fixing seat 52 .
  • the fixing hole 523 is used for connecting with the rotating shaft of the motor 53 .
  • the axis A1 of the fixing hole 523 is the rotation axis of the fixing seat 52 . As shown in FIG.
  • the axis A1 of the fixing hole 523 and the central axis A2 of the accommodating cavity 521 may not overlap, that is, the accommodating cavity 521 may be eccentrically arranged relative to the rotating shaft of the fixing seat 52, and the eccentricity d4 may be between 0 mm and 5 mm. range, preferably in the range of 1 mm to 2 mm.
  • the function of the abutting portion 522 is to keep the sample container placed in the accommodating cavity 521 , such as the second-type sample container 92 or 93 , inclined, as shown in FIG. 18 .
  • the rotation axis A1 of the fixed seat 52 intersects with the central axis A3 of the second type sample container 92 or 93, the angle between the axis A1 and the axis A3 is ⁇ , and the value range of ⁇ can be 0 ⁇ 45°, and ⁇ is preferably in the range of ⁇ . in the range of 2° to 10°.
  • the intersection Q of the axis A1 and the axis A3 is located above the cavity bottom of the sample container.
  • the blood sample 100 in the sample container is thrown away from the rotation axis A1 of the holder 52 under the action of centrifugal force, and rises along the inner wall of the cavity of the sample container 92 or 93 .
  • the sample container containing the sample 100 is driven to rotate by the fixing base 52, and the mixing power of the sample 100 is generated by the rotation.
  • the fixing base 52 rotates, the sample 100 rotates and climbs along the inner wall of the sample container cavity; when the fixing base 52 stops rotating, the previously climbed sample flows back to the bottom of the sample container.
  • the mixing of the sample 100 is achieved through the rotational movement of the sample 100 in the sample container and the climbing movement and the backflow movement of the sample 100 in the sample container.
  • both It can prevent the sample from being spilled, and can also play a role in reducing the loss of the sample 100 adhering to the inner wall of the container during mixing, which is extremely important for the case where the blood collection volume is small (peripheral blood), because excessive Excessive wall loss will affect the reliability of sample aspiration after sample mixing.
  • the sample analyzer 1 may also be provided with a sample container transport device, which is configured to transport the sample container from the sample container accommodating device 90 when the second mixing part 5 needs to be used to mix the samples in the sample container. , and then transferred to the sample container fixing hole 521 of the fixing base 52 of the second mixing part, and after the mixing is completed, the sample container is transported back to the sample container accommodating device 90 .
  • the first mixing part 4 can be used as a sample container handling device.
  • the mixing device may also include a unique mixing component that uses different mixing conditions to mix different samples.
  • Different mixing conditions may include, for example, different mixing times.
  • the only mixing component mixes the sample container loaded with venous blood for a first time, and the sample container loaded with peripheral blood for a second time, the second time being longer than the first time.
  • the sample processing device 50 also includes a sample preparation component (not shown) for preparing the sample to be tested by mixing the reagent with the sample in the sample container.
  • the first processing condition includes using the sample preparation part to mix the sample and the reagent in a first ratio
  • the second processing condition includes using the sample preparation part to mix the sample and the reagent in a second ratio, and in the second ratio, the proportion of the reagent is greater than that of the second ratio. a proportion.
  • a first processing condition includes diluting the sample to be tested with a sample preparation component at a first fold ratio
  • a second processing condition includes using the sample preparation component at a second fold greater than the first fold ratio Ratio dilution of the test sample.
  • the first processing condition includes using the sample preparation part to make the reagent and the sample react for a first time
  • the second processing condition includes using the sample preparation part to make the reagent and the sample react for a second time longer than the first time, that is, venous blood.
  • the reaction time is short, and the peripheral blood reaction time is long.
  • the sample processing device 50 includes a detection component (not shown) configured to detect particles in the sample to be tested.
  • the first processing condition includes detecting the sample to be tested with the first detection amount by the detection means
  • the second processing condition includes detecting the test sample of the second detection amount greater than the first detection amount with the detection means.
  • the sample processing device 50 includes an analysis component for analyzing detection data measured by the detection component.
  • the first processing condition includes analyzing the detection data by the analyzing unit according to the first analyzing condition
  • the second processing condition includes analyzing the detected data by the analyzing unit under the second analyzing condition different from the first analyzing condition.
  • the analysis component can be integrated into the control device 30 , for example.
  • the sample container accommodating device is configured as a sample rack 90 capable of accommodating a plurality of sample containers.
  • one sample rack 90 may be used to hold only the first type sample container 91 for holding the first type of sample or the second type sample container 92, 93 for holding the second type of sample, or may be used to contain a mixture of the first type of sample container 91
  • a type of sample container 91 and a second type of sample container 92, 93 are shown in FIG. 20 . That is, the sample rack 90 is configured to accommodate at least one of a first type of sample container and a second type of sample container for loading different types of samples or for loading, respectively, a first type of sample container and a second type of sample container different amounts of samples.
  • the sample holder 90 is provided with a plurality of fixing holes 901 , each fixing hole 901 is correspondingly provided with an opening 902 , and the opening 902 is used as a scanning window for scanning the identity information of the sample container.
  • the sample rack 90 is further provided with a label setting area 903 for setting the label of the sample rack, and barcode labels, two-dimensional code labels, RFID labels, etc. can be pasted in the label setting area.
  • the fixing hole 901 can be used to fix the first type sample container 91 or the second type sample container 92, 93, as shown in FIG. 20 . As can be seen from FIG.
  • the sample position (liquid level) s2 in the second type of sample containers 92 and 93 is higher than that of the first type of sample container 91 (ie, the high-bottom type sample container).
  • the sample analyzer further includes a sample analysis area P provided with a sample amount detection position (sample detection position) P3, a mixing position P1 and a sample suction position P2, as shown in FIG. 21 .
  • the sample analyzer 1 further includes a sample rack transport device 3 that is communicatively connected to the control device 30, and is configured to transport the sample rack 90 in the sample analysis area P, so that each sample container on the sample rack 90 arrives at the sample amount detection position P3, Mixing position P1 and aspiration position P2.
  • the sample amount detection device 7 is configured to detect the sample information of the sample container located at the sample amount detection position P3 on the sample rack 90 .
  • the mixing devices 4 and 5 are configured to mix the samples in the sample containers at the mixing position P1 on the sample holder 90 .
  • the sample suction device 6 is configured to aspirate the sample in the sample container in the sample suction position P2 on the sample holder 90 .
  • the sample rack conveying device 3 includes a sample rack supporting part 31 , a sample rack sending part 32 , a sample rack bidirectional conveying part 33 , and a sample rack sending part 34 .
  • the sample rack support part 31 includes a pre-analytical sample rack storage area 311 for placing a sample rack 90 holding a sample container containing a pre-analytical sample, and a sample rack 90 for holding a number of sample containers holding a post-analysis sample.
  • the post-analysis sample rack storage area 312 and the sample analysis area 313 (P) located between the pre-analysis sample rack storage area 311 and the post-analysis sample rack storage area 312 .
  • a sample rack delivery diversion area 311 a is provided in the pre-analysis sample rack storage area 311 , and in the post-analysis sample rack storage area 312 , a sample rack delivery diversion area 312 a is provided.
  • the sample rack feeding section 32 can transport the sample racks 90 in the Y2 direction
  • the sample rack bidirectional transport section 33 can transport the sample racks 90 in the sample analysis area 313(P) in both the X1 and X2 directions
  • the sample rack feeding section 34 can transport the sample racks 90 along the The sample rack 90 is transported in the Y1 direction.
  • the sample rack sending part 32 first pushes the sample racks 90 stored in the pre-analysis sample rack storage area 311 to the sample rack sending turning area 311a one by one along the Y2 direction.
  • the sample racks 90 entering the sample rack transfer area 311a are continuously transported along the X1 direction by the sample rack bidirectional transport unit 33, and the sample rack bidirectional transport unit 33 sequentially transports each sample container in the sample rack 90 to the sample analysis area 313 (P)
  • the sample volume detection position P3 is used for sample information detection, and then sent to the mixing position P1 for mixing, and then sent to the sample suction position P2 for sampling.
  • the sample rack delivery unit 34 pushes the sample rack 90 to the post-analysis sample rack storage area 312 .
  • the sample amount detection position P3 may be set upstream of the mixing position P2 along the X1 direction, or may coincide with the mixing position P2.
  • the sample amount detection position P3 preferably coincides with the mixing position P2.
  • the sample amount detection position P3 can also be set downstream of the mixing position P2 along the X1 direction.
  • the sample analyzer 1 may further include a code scanning component 9 , which is configured to obtain the information of the one-dimensional barcode or the two-digit barcode pasted on the sample container.
  • the sample analysis area P may be provided with a code scanning position P4.
  • the code can also be scanned by the code scanning component 9 at the code scanning position P4.
  • the scanning part 9 is set corresponding to the scanning position P4.
  • the sample analyzer 1 may further include a sample container rotating part 8 .
  • the sample container rotating member 8 is also set corresponding to the scanning position P4.
  • the pair of pressing wheels 81 of the sample container rotating part 8 can move in the Y1 and Y2 directions under the driving of the motor 82 , and the rotating wheel 83 can rotate around the axis under the driving of the motor 84 .
  • the motor 82 drives a pair of pressing wheels 81 to move in the Y1 direction to push the sample container to the rotating wheel 83, so that the sample container is in close contact with the outer ring of the rotating wheel 83.
  • the motor 84 drives the rotating wheel 83 to rotate. Under the action of friction, the sample container rotates with the rotating wheel 83.
  • the motor 84 stops rotating, and the motor 82
  • the drive pinch roller 81 is retracted in the Y2 direction.
  • the outer ring of the rotating wheel 83 can be made of rubber material to increase the friction with the sample container.
  • the sample during the detection and analysis process of the sample analyzer 1, the sample generally undergoes operations such as input, code scanning, sample size detection, mixing, sample aspiration, dilution, reaction, detection, and delivery.
  • the sample is determined to be a first volume sample (eg, a venous blood sample) or a second volume sample (eg, a peripheral blood sample) smaller than the first volume.
  • At least one of the following processes is performed on the first amount of the sample: the first mixing part 4 is used to mix the sample; the sample suction device 6 moves down a first height to aspirate the sample and aspirates the first aspirated amount of the sample
  • the sample preparation part dilutes the sample according to the first dilution ratio, and/or mixes the sample and the reagent according to the first ratio, and/or makes the sample and the reagent react for the first time;
  • the detection part detects the first detection amount to be tested
  • the analysis component analyzes the detection data measured by the detection component according to the first analysis condition.
  • the second mixing part 5 is used to mix the sample; the sample suction device 6 is moved down to a second height smaller than the first height to aspirate the sample with less suction
  • the proportion of the reagent in the medium is greater than the first proportion, or/and the second time that the reaction between the sample and the reagent is longer than the first time; the detection component detects the sample to be tested with a second detection amount greater than the first detection amount; the analysis component
  • the detection data measured by the detection unit is analyzed under second analysis conditions different from the first analysis conditions.
  • the sample amount detection device 7 may be a sensor capable of detecting the sample amount or the sample position of the sample in the sample container.
  • the sample amount detection device 7 may be fixed on the sample rack transport device 3 , for example, in the sample analysis area 313 (P) of the sample rack support member 31 .
  • the sample amount detection device 7 may be disposed corresponding to the sample amount detection position P3, so that the sample amount detection device 7 can detect the sample container 91, 92, 93 Perform sample size or sample location detection.
  • the sample amount detection device 7 may be arranged outside the sample analyzer zone P.
  • the sample analyzer 2 is further provided with at least a movable sample container transport device, which is configured to lift the sample container at the sample amount detection position P3 on the sample rack 90 from the sample rack 90 and move it to the sample amount detection device 7, so that the sample amount detection device 7 can detect the sample amount or the sample position of the sample in the sample container.
  • the sample container handling device is also configured to be swingable. The sample container handling device grips the sample container fixed on the sample rack 90 and ascends along the Z1 direction, and then drives the sample container to swing at a specific angle (the specific sample container).
  • the sample container handling device here can be the first mixing part 4, that is, the first mixing part 4 can be used for mixing the samples in the first type of sample container (venous blood samples) or the first type of samples at the same time.
  • the second device in the mixing part 5 can save the space and cost of the sample analyzer 1 .
  • the sample amount detection position P3 coincides with the mixing position P1, so that the sample amount detection process can be combined with the sample mixing process, and the speed of the sample analyzer can be improved. That is, in the case where the sample amount detection position P3 and the mixing position P1 are set at the same position and the first mixing part 4 is used as the sample container conveying device, the control device 30 may be further configured to:
  • the actions of the first mixing part 4 or the second mixing part 5 are controlled according to the sample information.
  • control device 30 may be configured to perform the following steps when controlling the action of the first mixing part 4 or the second mixing part 5 according to the sample information:
  • the first mixing component 4 is controlled to mix the sample in the sample container
  • the first mixing part 4 is controlled to move the sample container into the second mixing part 5, and Then control the second mixing part 5 to mix the sample in the sample container.
  • control device 30 controls the first mixing part 4 to transport the sample container back into the sample rack 90 .
  • sample container handling device independent of the first mixing part 4 can also be provided.
  • the sample amount detection device 7 is a capacitive sensor.
  • the tube bodies of the sample containers 91 to 93 are usually made of glass or plastic. At room temperature, the relative permittivity of glass and plastic is between 1 and 5, while the relative permittivity of water is around 80. Water accounts for about 90% of the blood. The relative dielectric constant of labels and barcode label paper is also between 1 and 5. Therefore, the relative permittivity of the samples in the sample containers 91 to 93 is much larger than that of the sample containers 91 to 93 themselves (the larger the permittivity, the larger the capacitance value).
  • the distance m1 from the central axis of the first type sample container 91 in FIG. 27 to the detection surface 71 of the capacitive sensor 7 is the same as the distance m1 from the central axis of the second type sample container 92 in FIG. 28 to the capacitive sensor
  • the distance m2 of the detection surface 71 of 7 is the same, and the dielectric constant of the tube material of the sample container is much smaller than that of blood, so the change of ⁇ C of the capacitive sensor mainly depends on the first type of sample container 91 or the second type of sample container 91.
  • the amount of the sample in the sample container 92 (or 93 ) can be detected by the change of the capacitance sensor ⁇ C to detect whether the sample amount of the first type sample container 91 or the second type sample container 92 (or 93 ) is large or small.
  • the first type of sample container 91 is a bulk blood sample container, usually containing no less than 1 ml of blood sample
  • the second type of sample container 92 or 93 is a micro blood sample container, usually containing no more than 200 uL of blood sample.
  • the capacitance sensor 7 detects the change capacitance value caused by the first type sample container 91 as ⁇ C1, and detects the change capacitance value caused by the second type sample container 92 or 93 as ⁇ C2, obviously ⁇ C1 is much larger than ⁇ C2.
  • the capacitive sensor 7 is fixedly arranged in the sample analyzer 1 in such a way that the metal parts of the sample analyzer 1 do not interfere with the capacitive sensor 7 . , or make the metal parts of the sample analyzer 1 out of the detection range of the capacitive sensor 7 .
  • the capacitive sensor 7 may be a capacitive sensor with analog output or a capacitive proximity switch with digital output, wherein a capacitive proximity switch with digital output is preferred.
  • the capacitive sensor 7 may be a capacitive sensor with an adjustable threshold, especially a capacitive proximity switch with a digital output with an adjustable threshold.
  • the detection threshold of the capacitive sensor 7 for ⁇ C the detection threshold of the capacitive sensor 7 for the sample amount in the first type of sample container 91 or the second type of sample container 92 or 93 can be indirectly set.
  • the detection threshold of the capacitive sensor 7 can be set as ⁇ Ca, where ⁇ Ca is the capacitance value corresponding to the sample volume V1 contained in the sample container, and the sample volume V1 is located in the sample container 91 of the first type. between the amount of sample that is specified to be contained in the second type of sample container 92 (or 93 ).
  • the sample volume V1 is the median value between the sample volume specified in the first type sample container 91 and the sample volume specified in the second type sample container 92 (or 93 ), for example, V1 is between 0.5mL and 0.7 within the range of mL.
  • the detection threshold can be set as ⁇ Ca through the detection algorithm; for capacitive proximity switches with digital output whose threshold is not adjustable, the detection threshold can be set by adjusting the distance from the capacitive proximity switch to the sample container. is ⁇ Ca; for capacitive proximity switches with digital output with adjustable threshold, the detection threshold can be set to ⁇ Ca by adjusting the knob.
  • the capacitive sensor 7 is fixedly arranged in the sample analysis area P such that the detection surface 71 of the capacitive sensor 7 faces the sample container on the sample rack 90 at the sample amount detection position P3 and can provide sample information for the sample container test.
  • the capacitive sensor 7 in order to arrange the capacitive sensor 7 more flexibly to reduce the interference of metal parts, especially movable metal parts, on its detection, the capacitive sensor 7 is preferably arranged in the sample analysis area P outside. In particular, it is possible to avoid interference of the capacitive sensor 7 by metal parts (eg possible RFIDs) on the sample holder 90 .
  • metal parts eg possible RFIDs
  • the capacitive sensor 7 can be designed to have a detection range of at least 10 mm and be fixedly arranged in the sample analysis region P such that the tube wall of the sample container and the detection surface 71 of the capacitive sensor 7 are in contact with each other during the detection of the capacitive sensor 7 .
  • the minimum distance is in the range of 0.5 mm to 10 mm, preferably in the range of 2 mm to 5 mm. As a result, the sample size in the sample container can be detected reliably.
  • the capacitance sensor 7 is arranged in the sample analysis area P such that the minimum distance between the tube wall of the sample container at the sample container detection position P3 on the sample holder and the detection surface of the capacitance sensor 7 is in the range of 0.5 mm to 10 mm, It is preferably in the range of 2 mm to 5 mm.
  • the capacitive sensor 7 detects the amount of sample in the sample container in a static detection manner, ie during the detection of the amount of sample in the sample container, the capacitive sensor and the sample container do not move relative to each other. For example, when the sample container on the sample rack 90 reaches the sample amount detection position P3, the capacitive sensor 7 can detect the sample amount in the sample container without removing the sample container from the sample rack 90 .
  • the capacitive sensor 7 is arranged in the sample analyzer area P such that when the sample on the sample rack 90 is in the sample container detection position P3
  • the capacitive sensor 7 detects the first value
  • the sample container on the sample rack 90 at the sample container detection position P3 is a second type sample container (loaded with The capacitive sensor 7 detects a second value when there is a prescribed second amount of sample), the first value being significantly different from the second value.
  • the flow of the capacitive sensor 7 to detect the amount of the sample contained in the sample container by static detection is shown in FIG. 29 .
  • step S101 the capacitance sensor 7 detects the capacitance change value ⁇ C caused by the sample in the sample container located at the sample amount detection position P3;
  • step S102 the capacitance change value ⁇ C is compared with the preset threshold value ⁇ Ca, if ⁇ C ⁇ Ca, it means that the amount of sample contained in the sample container is ⁇ V1, then jump to step S103 to determine that the sample container is in the sample container. It contains the first amount of sample (for example, a constant sample or a venous blood sample); if ⁇ C ⁇ Ca, it means that the amount of sample contained in the sample container is less than V1, then jump to step S104 to determine the amount of the sample contained in the sample container. is a second amount of sample (eg, a microsample or a peripheral blood sample) that is smaller than the first amount.
  • a second amount of sample eg, a microsample or a peripheral blood sample
  • the comparison between ⁇ C and ⁇ Ca is realized by the control device 30; for the capacitive proximity switch with digital output, the comparison between ⁇ C and ⁇ Ca is completed inside the sensor, and the control device 30 only needs to obtain the digital output.
  • the output level signal of the capacitive proximity switch of the quantitative output can be converted into the corresponding detection result.
  • the flow shown in FIG. 29 can be applied to the case where the sample amount detection position P3 and the mixing position P1 overlap or do not overlap.
  • the capacitive sensor 7 may also detect the sample volume or sample position of the sample in the sample container in a dynamic detection manner, ie, during the detection of the sample volume or sample position, the capacitive sensor 7 is stationary while the sample container is not A relative movement occurs with respect to the capacitive sensor 7 , and the sample volume or the sample position is detected by the dynamic change of the signal of the capacitive sensor 7 .
  • the capacitive sensor 7 is fixedly arranged in the sample analysis area P, that is, it is arranged corresponding to the sample amount detection position P3.
  • the sample analyzer 1 includes the above-described sample container transport device 4 connected to the control device 30 in communication.
  • the capacitance sensor 7 has a first detection state and a second detection state. In the first detection state, the capacitance change value detected by the capacitance sensor 7 is greater than or equal to a preset capacitance change threshold. In the second detection state, the capacitance detected by the capacitance sensor 7 The change value is smaller than the preset capacitance change threshold.
  • the capacitive sensor 7 is fixedly arranged in the sample analysis area P such that the capacitive sensor 7 changes at least from the first detection state to the first detection state during the process of lifting the sample container at the sample amount detection position P3 on the sample rack 90 by the sample container handling device 4 .
  • the second detection state At this time, the sample information includes the duration of the first detection state and/or the change time from the first detection state to the second detection state.
  • the dynamic detection method is especially suitable for the case where the sample amount detection position P3 coincides with the mixing position P1 and the first mixing part 4 is used as a sample container conveying device. Therefore, the detection process of the capacitive sensor 7 can be combined with the mixing process of the mixing device, so as to speed up the sample analysis, detection and analysis speed.
  • the capacitive sensor 7 is a capacitive proximity switch with digital output with adjustable detection threshold.
  • the sample size, such as V2 takes 40uL. Then, when the sample volume V in the sample container is greater than or equal to V2, the capacitive proximity switch outputs the first level L1, and when the sample volume in the sample container V ⁇ V2, the capacitive proximity switch output is different from the first level L1.
  • the capacitive sensor 7 detects the sample amount or the sample position in the sample container.
  • the capacitive sensor 7 will generate a signal as shown in FIG. 31( a ) or ( b ).
  • FIG. 32 when the clamping jaw 41 grips the second type sample container 92 (or 93 ) and rises along the Z1 direction, the capacitive sensor 7 will generate a signal as shown in FIG. 33( a ) or ( b ).
  • t0 is the start time when the gripper 41 grips the first type sample container 91 or the second type sample container 92 (or 93 ) rising along the Z1 direction
  • t2 is the gripper 41 gripping the first type sample container 91 or the second type sample container 91 or the first time.
  • t1 is the effective volume of the sample in the first-type sample container 91 or the second-type sample container 92 (or 93 ) in the detection area of the capacitive sensor 7 The moment when the start is less than V2.
  • FIG. 31( a ) shows that, at the initial moment when the gripper 41 grips the first-type sample container 91 and rises in the Z1 direction, the sample in the first-type sample container 91 is not within the detection range of the capacitive sensor 7 ;
  • FIG. 31 (b) shows that when the gripper 41 grips the first type of sample container 91 and rises in the Z1 direction, some samples in the first type of sample container 91 are already within the detection range of the capacitive sensor 7 .
  • FIG. 31 (b) shows that when the gripper 41 grips the first type of sample container 91 and rises in the Z1 direction, some samples in the first type of sample container 91 are already within the detection range of the capacitive sensor 7 .
  • 33( a ) shows that when the gripper 41 grips the second-type sample container 92 (or 93 ) and starts to rise in the Z1 direction, the sample in the second-type sample container 92 (or 93 ) is not in the capacitive sensor 7 33 (b) shows, the gripper 41 grips the second type of sample container 92 (or 93) at the starting moment of rising along the Z1 direction, part of the second type of sample container 92 (or 93) The sample is already within the detection range of the capacitive sensor 7 .
  • the first type of sample container 91 is a constant blood sample container, usually containing no less than 1 ml of blood samples, and the blood samples in the first type of sample container 91 along the Z1 and Z2 directions have a larger distribution height; while the second type of sample container 92 ( or 93) is a micro blood sample container, usually containing no more than 200uL blood samples, and the blood samples in the second type of sample container 92 (or 93) have a smaller distribution height along the Z1 and Z2 directions.
  • the duration ⁇ t1 during which the capacitive sensor 7 outputs the L1 level during the rising process of the first type of sample container 91 being grasped by the clamping jaw 41 in the Z1 direction is longer than that of the second type of sample container 92 (or 93 ) being clamped by the clamping jaw 41 along the Z1 direction.
  • the duration ⁇ t2 of the capacitive sensor 7 outputting the L1 level is longer, that is, ⁇ t1> ⁇ t2.
  • the threshold value can be selected according to the above-mentioned t0, t1, t2, ⁇ t1, ⁇ t2, and the amount of the sample contained in the sample container can be detected according to the flow shown in FIG. 34 , FIG. 35 or FIG. 36 .
  • step S201 the gripper 41 of the first mixing device part 4 grips the sample container and rises in the Z1 direction.
  • the control device 30 obtains the L1 voltage output by the capacitance sensor 7 Flat duration ⁇ t.
  • the output of the L1 level from the capacitance sensor 7 indicates that the capacitance sensor detects that there is a sample in the sample container.
  • step S202 the control device 30 determines whether the gripper 42 has risen along Z1 to the top.
  • step S203 the control device 30 determines whether ⁇ t is greater than or equal to the threshold value Ta (Ta is, for example, the average value of ⁇ t1 and ⁇ t2). If the sample container is large, then jump to step S204 to determine that the sample container contains the first amount of sample (constant sample or venous blood); if the judgment result is no, it means that the sample in the sample container has a small distribution height along the Z1 and Z2 directions. , then jump to step S205 to determine that the sample container contains a second amount of sample (micro sample or peripheral blood) smaller than the first amount.
  • Ta is, for example, the average value of ⁇ t1 and ⁇ t2
  • step S301 the gripper 41 of the first mixing device part 4 grips the sample container and rises in the Z1 direction, and the control device 30 records the start time t0 of the gripper 41 moving in the Z1 direction, where t0 can be zero.
  • step S302 the control device 30 monitors the time t2 when the output level of the capacitive proximity switch changes from L1 to L2, and the output level of the capacitive proximity switch changes from L1 to L2, which represents the sample volume V in the detection area of the capacitive proximity switch From ⁇ V2 to ⁇ V2, that is, the sample in the detection area of the capacitive proximity switch is about to leave the detection area.
  • step S304 the control device 30 determines whether ⁇ t is greater than or equal to the threshold value Tb, if the determination result is yes, indicating that the sample is close to the bottom of the sample container, then jumps to step S305 to determine that the sample container contains the first type of sample; If the result is no, it means that the sample is far from the bottom of the sample container, then jump to step S306 to determine the second type of sample contained in the sample container, wherein the first type of sample is a constant sample or venous blood, and the second type of sample is a trace sample or peripheral Blood.
  • step S401 the gripper 41 of the first mixing device component 4 grips the sample container and rises in the Z1 direction, and the control device 30 records the gripper initial position s0 of the gripper 41 moving in the Z1 direction.
  • step S402 the control device 30 monitors the position s1 of the gripper when the output level of the capacitive proximity switch changes from L1 to L2, and the output level of the capacitive proximity switch changes from L1 to L2, which represents the detection area of the capacitive proximity switch.
  • the sample volume V changes from ⁇ V2 to ⁇ V2, that is, the sample in the detection area of the capacitive proximity switch is about to leave the detection area.
  • step S404 the control device 30 determines whether ⁇ s is greater than or equal to the threshold value Sb. If the determination result is yes, indicating that the sample is close to the bottom of the sample container, it jumps to step S405 to determine that the sample container contains the first type of sample; If the result is no, it means that the sample is far from the bottom of the sample container, then jump to step S406 to determine the second type of sample contained in the sample container, wherein the first type of sample is a constant sample or venous blood, and the second type of sample is a trace sample or peripheral Blood.
  • the sample amount detection device 7 may be a pair of through-beam photoelectric sensors 7a and 7b, as shown in FIG. 37 . Since the first type sample container 91 and the second type sample container 92 (or 93 ) are made of transparent glass or plastic, the light emitted by the light-emitting tube of the through-beam photoelectric sensor can pass through in the area without blood sample in the sample container. The sample container is received by the receiving tube of the through-beam photoelectric sensor, and in the area where the blood sample is located in the sample container, the light emitted by the light-emitting tube is blocked by the blood sample and cannot be received by the receiving tube. During the rising process of the gripper 41 gripping the sample container along the Z1, the signals shown in FIG.
  • the sample size detection device 7 may be an image sensor, such as a grayscale image sensor or a color image sensor, preferably a color image sensor. Taking a photo of the sample container with an image sensor and performing algorithm identification on the photo, the amount of the sample in the sample container can be obtained. By setting a reasonable threshold, the samples contained in the sample container are divided into the first volume of samples and the second volume of samples. However, similarly, the use of an image sensor will be affected by the barcode label attached to the surface of the sample container. When the barcode label is attached to the surface of the sample container, the image sensor will not be able to photograph the sample in the container.
  • an image sensor such as a grayscale image sensor or a color image sensor, preferably a color image sensor.
  • the sample rack 90 may be configured to accommodate only sample containers for holding a first type of sample (eg, first type sample container 91 ) or sample containers for a second type of sample (eg, second type of sample) sample container 92 or 93). Therefore, venous blood samples and peripheral blood samples can be distinguished by different sample racks, so as to determine the subsequent processing method.
  • a first type of sample eg, first type sample container 91
  • sample containers for a second type of sample eg, second type of sample
  • the type of the sample in each sample container on the sample rack 90 is detected by the sample amount detection device 7, so as to confirm that the sample container on the sample rack 90 is not misplaced and improve the safety of the sample analyzer.
  • the sample analyzer 1 further includes a sample rack identification device 9 for identifying the type of the sample rack, and the sample rack identification device is communicatively connected with the control device 30 .
  • the control device 30 is further configured to obtain the sample rack identification information from the sample rack identification device 9, and control the action of the sample processing device 50 according to the sample information and the sample rack identification information measured by the sample amount detection device 7, for example, control the mixing device Actions 4 and 5.
  • control device 30 may be configured to perform the following steps when controlling the processing action of the sample processing device 50 and/or determining whether the sample processing device 50 performs the processing action according to the sample information measured by the sample volume detection device 7:
  • the sample processing device 50 is controlled to process with the first processing condition the sample in the sample container;
  • the sample processing device 50 is controlled to use a different type of sample than the first type. a second processing condition of processing conditions to process the sample in the sample container;
  • the sample processing device 50 is controlled not to process the sample in the sample container.
  • the sample information matches the sample rack identification information means that, according to the sample information, it can be known that the current sample container is loaded with the first type of sample (or the second type of sample), and according to the sample rack identification information, it can be known that the current sample container is located.
  • the sample rack is a sample rack for holding sample containers for loading a first type of sample (or a second type of sample).
  • control device 30 may be further configured to perform the following steps when controlling the actions of the mixing devices 4, 5 according to the sample information measured by the sample amount detection device 7:
  • the first mixing unit 4 is controlled to mix the samples in the sample container;
  • the first mixing part 4 is controlled to move the sample container into the second mixing part 5, and then the second mixing part 5 is controlled The mixing part 5 mixes the samples in the sample container;
  • the first mixing unit 4 is controlled to directly transport the sample container back to the sample rack 90 without mixing the samples in the sample container.
  • the sample rack containing the first-type sample container 91 or the first-type sample is referred to as the first-type sample rack, and the second-type sample container 92 (or 93 ) or the second-type sample ( The sample holder for peripheral blood samples) is called the second type sample holder.
  • the sample holder of the first type and the sample holder of the second type can be distinguished in appearance, for example, in shape, color, label, and the like.
  • the sample holder of the first type and the sample holder of the second type are different in color, for example, the sample holder of the first type is off-white and the sample holder of the second type is pink.
  • the color difference may be the difference in the overall color of the sample holder, or the difference in the partial color of the sample holder (for example, the color of the top surface or the side surface of the sample holder).
  • the color of the sample holder can be realized by adjusting the color of the injection molding material, or it can be a color label pasted on the sample holder.
  • the sample holder of the first type and the sample holder of the second type can also be distinguished by being transparent and colored, for example, the sample holder of the first type is off-white, and the sample holder of the second type is transparent.
  • first-type sample rack and the second-type sample rack can also be distinguished by their shapes, for example, the first-type sample rack and the second-type sample rack are designed to have different heights.
  • the sample holder identification device may be a color or color mark sensor, or a visual sensor, or a photoelectric sensor.
  • the sensor detects the color, shape and other information of the sample holder to distinguish whether the current sample holder is the first type sample holder or the second type sample holder.
  • control device 30 may be further configured to, if the sample information does not match the sample rack identification information, output an alarm prompt, such as a sound alarm or a vibration alarm or on the display screen 2 of the sample analyzer 1. Display an alarm prompt.
  • an alarm prompt such as a sound alarm or a vibration alarm or on the display screen 2 of the sample analyzer 1. Display an alarm prompt.
  • control device 30 may be configured to, after controlling the first mixing part 4 to transport the sample container back to the sample rack 90 , control the sample rack transport device 3 to directly transport the sample rack 90 from the sample rack 90 . It is shipped out from the analysis area P. That is to say, when the sample rack type does not match the sample type, in addition to not processing the current sample, the entire row of sample racks can be pushed out, but the measurement of subsequent sample racks can be continued; or the entire row of sample racks can be pushed out. Do not do it, and end the automatic injection, that is, the subsequent sample racks will not be processed.
  • the first aspect of the present invention is not only applicable to the detection process of automatic injection, but also applicable to the detection process of closed injection (also referred to as manual injection).
  • the sample container holding device of the embodiment of the present invention can have only one sample
  • the container receiving hole is used to receive the manually placed sample container.
  • the sample container accommodating device and the capacitive sensor are arranged in the sample analyzer 1 such that the detection surface of the capacitive sensor faces the sample container accommodated in the sample container accommodating device and can detect the sample information of the sample container.
  • the control device 30 includes at least a processing component 31 , RAM32 , ROM33 , a communication interface 34 , a memory 36 and an I/O interface 35 , wherein the processing component 31 , RAM32 , ROM33 , and communication interface 34 , memory 36 and I/O interface 35 communicate via bus 17 .
  • the processing component 31 may be a CPU, a GPU or other chips with computing capabilities.
  • the memory 36 contains various computer programs, such as an operating system and an application program, which are executed by the processor unit 31, and data necessary for the execution of the computer programs.
  • various computer programs such as an operating system and an application program, which are executed by the processor unit 31, and data necessary for the execution of the computer programs.
  • the data needs to be stored locally, it can be stored in the memory 36 .
  • the I/O interface 35 is composed of a serial interface such as USB, IEEE1394, or RS-232C, a parallel interface such as SCSI, IDE, or IEEE1284, and an analog signal interface composed of a D/A converter, an A/D converter, and the like.
  • An input device composed of a keyboard, a mouse, a touch screen or other control buttons is connected to the I/O interface 35 , and the user can directly input data to the control device 30 by using the input device.
  • the I/O interface 35 can also be connected to a display with a display function, such as a liquid crystal screen, a touch screen, an LED display screen, etc., and the control device 30 can output the processed data as image display data to the display for display.
  • the communication interface 34 is an interface that may be any communication protocol currently known.
  • the communication interface 34 communicates with the outside world through a network.
  • the control device 30 can transmit data with any device connected through the network by a certain communication protocol through the communication interface 34 .
  • the second aspect of the present invention further provides another sample analyzer 1', including a sample rack, a sample rack transport device 3', a sample processing device, a sample rack identification device 9', and a sample identification device 7' and the control device 30'.
  • the sample rack is configured for loading a plurality of sample containers, each sample container for loading a sample.
  • the sample rack transport device 3' is provided for transporting the sample racks in the sample analysis zone P'.
  • the sample processing device is arranged to process the samples in the sample containers on the sample racks in the sample analysis zone P'.
  • a sample holder identification device 9' is provided for identifying the type of the sample holder.
  • the sample identification device 7' is arranged to identify the type of the sample container or the type of the sample loaded in the sample container.
  • control device 30' is configured to:
  • the sample processing device is controlled not to process the sample in the sample container.
  • venous blood samples and peripheral blood samples are distinguished by different sample holders, but there may be a risk that the user places the sample in the wrong sample holder, so by increasing the type of sample container or The detection of the sample type is used to confirm whether the sample container placed on the sample rack is correct. By judging whether the sample rack type matches the sample container type or the sample type, it is determined whether to continue the subsequent operation process. When the sample rack type matches the sample container type or the sample type If it does not match, it means that the user has placed the sample rack in the wrong place. At this time, the instrument will not process the current sample, and optionally give an alarm prompt. This eliminates the risk of the user placing the sample in the wrong rack.
  • the type of the sample rack matches the type of the sample container or the sample type
  • the current sample rack is a sample rack for accommodating the first type of sample container (or the second type of sample container), and the current sample container is the first type.
  • the sample container (or the second type of sample container); or the current sample rack is a sample rack for accommodating the sample container for loading the first type of sample (or the second type of sample), and the sample loaded in the current sample container is the first type class samples (or second class samples).
  • the sample rack type does not match the sample container type or sample type
  • the current sample rack is a sample rack used to accommodate the first type of sample container (or the second type of sample container), and the current sample container is the second type of sample container ( or the first type of sample container); or the current sample rack is a sample rack for accommodating the sample container for loading the first type of sample (or the second type of sample), and the sample loaded in the current sample container is the second type of sample ( or first-class samples).
  • control device 30' may be configured to:
  • the sample rack transporting device 3' controls the sample rack transporting device 3' to directly transport the sample racks out of the sample analysis area P'.
  • the sample identification device 7' is arranged outside the sample analysis zone P'.
  • the sample analyzer also comprises a sample container handling device 4', which is arranged to lift and move the sample containers on the sample rack from the sample rack into the detection range of the sample identification device 7', so that the sample identification device 7' 7' can identify the type of the sample container or the type of sample that the sample container holds.
  • the sample identification device 7 ′ is a capacitive sensor or a through-beam photoelectric sensor or an image sensor, as described above, and details are not repeated here.
  • the sample identification device is a reflective photosensor and is arranged outside the sample analysis zone P'.
  • the sample identification device may be a laser reflection sensor with a small spot with adjustable detection distance.
  • the gripper 41' of the first mixing part 4' grips the first type sample container 91 or the second type sample container 92 fixed on the sample rack and ascends in the Z1 direction, and then the first mixing part 4'
  • the clamping jaw 41 ′ grips the first type sample container 91 or the second type sample container 92 and swings a certain angle along the R1 direction, so that the bottom of the first type sample container 91 or the second type sample container 92 faces the reflective photoelectric sensor 7 ′.
  • the laser beam emitted by the reflective photoelectric sensor 7 ′ can enter a semi-open cavity 921b in the lower part of the second-type sample container 92 due to its small spot, irradiate on the top of the cavity 921c and reflect the beam , the distance from the detection surface of the reflective photoelectric sensor 7 ′ to the reflective surface of the second-type sample container 92 is h2 .
  • the laser beam emitted by the reflective photoelectric sensor 7 ′ is irradiated on the container bottom 911 c and reflected, and the distance from the detection surface of the reflective photoelectric sensor 7 ′ to the reflective surface of the first-type sample container 91 is h1 . Obviously h1 ⁇ h2.
  • the reflective photoelectric sensor 7 ′ can detect the first type sample container 91 but cannot detect the second type sample container 92 . In this way, the reflective photoelectric sensor can distinguish whether the sample container is the first type sample container 91 or the second type sample container 92, and then distinguish whether the sample in the sample container is the first type sample or the second type sample.
  • the limitation of this solution is that the first type of sample container 91 and the second type of sample container 93 cannot be distinguished.
  • the sample analyzer 1 provided in the first aspect of the present invention, which will not be repeated here.
  • a third aspect of the present invention further provides another sample analyzer, including a sample rack, a sample rack transport device, a sample processing device, a sample identification device, a sample container transport device, and a control device.
  • a sample rack configured for loading a plurality of sample containers, each sample container for loading a sample.
  • a sample rack transport device is provided for transporting the sample racks in the sample analysis area.
  • the sample processing device is arranged to process samples in sample containers on sample racks in the sample analysis zone.
  • a sample identification device is provided for identifying the type of the sample container or the type of the sample loaded in the sample container and is arranged outside the sample analysis area.
  • the sample container handling device is configured to lift the sample container on the sample rack out of the sample rack and move it into the detection range of the sample identification device.
  • a control device configured to control the processing action of the sample processing device on the sample in the sample container according to the type of the sample container or the type of the sample loaded in the sample container, and/or determine the sample processing Whether the device executes
  • the sample identification device can be arranged more flexibly outside the sample analysis area, so that other parts of the sample analyzer do not interfere with the detection of the sample identification device.
  • the sample identification device may be a capacitive sensor or a through-beam photosensor or a reflective photosensor or an image sensor.
  • the sample identification device is a capacitive sensor, as described above for the first aspect of the invention.
  • a fourth aspect of the present invention provides a sample analysis method, which can be applied to the sample analyzer 1 provided in the first aspect of the present invention.
  • the sample analysis method 500 includes:
  • Step S510 the control device 30 controls the sample rack transport device 3 to transport the sample rack 90 in the sample analysis area P, where the sample rack 90 accommodates the sample container loaded with the sample;
  • Step S520 using the sample amount detection device 7 to detect the sample amount or the sample position of the sample in the sample container without contacting the sample;
  • Step S530 the control device 30 obtains the sample information of the sample container from the sample size detection device 7, the sample information includes at least one of the sample size information and the sample position information;
  • step S540 the control device 30 controls the processing action of the sample processing device 50 according to the sample information or determines whether the sample processing device 50 performs the processing action.
  • the sample container type or the sample type can be reliably identified by detecting the sample amount or the sample position of the sample in the sample container, without designing a special structure for the sample container, and can adapt to various different sample containers.
  • the sample amount detection device 7 is configured as a capacitive sensor 7, eg with reference to the above description of the sample analyzer 1 of the first aspect of the invention. Further, the capacitive sensor is fixedly arranged in the sample analyzer, so that the metal parts of the sample analyzer do not interfere with the detection of the capacitive sensor, or the metal parts of the sample analyzer are not within the detection range of the capacitive sensor .
  • step S540 includes:
  • Step S541a if the sample information indicates that the sample container is loaded with a first type of sample, control the sample processing device to process the sample in the sample container with a first processing condition;
  • Step S542a if the sample information indicates that the sample container is loaded with a second type of sample, control the sample processing device to process the sample in the sample container with a second processing condition different from the first processing condition, wherein , the difference between the first type of samples and the second type of samples lies in at least one of different sample sizes and different sample locations.
  • the method further includes:
  • step S550 the sample rack identification device is used to identify the type of the sample rack to obtain sample rack identification information.
  • step S540 includes:
  • Step S541b if the sample information matches the sample rack identification information and both indicate that the sample container is loaded with the first type of sample, the control device controls the sample processing device to use the first processing condition to process the samples in the sample container.
  • Step S542b if the sample information matches the sample rack identification information and both indicate that the sample container is loaded with a second type of sample, the control device controls the sample processing device to use a second processing condition that is different from the first processing condition. processing the samples in the sample container, wherein the first type of samples and the second type of samples are different in at least one of a difference in sample size and a difference in sample location;
  • Step S543b if the sample information does not match the sample rack identification information, the control device controls the sample processing device not to process the samples in the sample container, and optionally outputs an alarm prompt.
  • the sample processing device includes a first mixing part and a second mixing part that are independent of each other, and the first processing condition includes using the first mixing part to treat the sample in the sample container Mixing is performed, and the second processing condition includes mixing the sample in the sample container with the second mixing component.
  • the amount of the first type of sample is greater than the amount of the second type of sample
  • the first processing condition includes inverting and mixing the samples in the sample container with the first mixing component, so that the The second processing condition includes rotating and mixing the sample in the sample container with the second mixing member.
  • the sample processing device includes a sample aspiration device having a sample aspiration needle
  • the first processing condition includes lowering the sample aspiration needle a first distance to collect the sample in the sample container
  • the second processing condition includes lowering the aspiration needle a second distance to collect the sample in the sample container, wherein when the amount of the first type of sample is greater than the amount of the second type of sample, the The first distance is greater than the second distance.
  • the first processing conditions include causing the aspiration needle to aspirate a first amount of sample from the sample container
  • the second processing conditions include causing the aspiration needle to withdraw from the sample container.
  • a second sample size is drawn into the sample container, and when the amount of the first type of sample is greater than the amount of the second type of sample, the first sample size is greater than the second sample size.
  • step S520 includes: the control device controls the sample container handling device to lift and move the sample containers on the sample rack from the sample rack to the detection range of the sample amount detection device 7, especially the capacitance sensor 7, so that the capacitance sensor The sample volume or sample location of the sample in the sample container is detected.
  • the sample processing device includes a first mixing component and a second mixing component that are independent of each other.
  • step S520 includes: the control device controls the first mixing component as a sample container handling device to lift out the sample containers on the sample rack from the sample rack and move them to the detection range of the sample amount detection device 7 , especially the capacitance sensor 7 .
  • step S540 includes: the control device controls the action of the first mixing part or the second mixing part according to the sample information.
  • control device controls the action of the first mixing component or the second mixing component according to the sample information, including:
  • Step S541c if the sample information indicates that the sample container is loaded with the first type of sample, the control device controls the first mixing component to mix the samples in the sample container;
  • Step S542c if the sample information indicates that the sample container is loaded with a second type of sample, the control device controls the first mixing part to move the sample container into the second mixing part, and then controls the second mixing part The component mixes the samples in the sample containers, wherein the first type of sample containers and the second type of sample containers are respectively used for loading different types of samples or for loading different amounts of samples.
  • the method before step S540, the method further includes: S550, identifying the type of the sample rack by using a sample rack identification device to obtain sample rack identification information.
  • step S540 includes:
  • Step S541d if the sample information matches the sample rack identification information and both indicate that the sample container is loaded with the first type of sample, the control device controls the first mixing component to mix the samples in the sample container. ;
  • Step S542d if the sample information matches the sample rack identification information and both indicate that the sample container is loaded with a second type of sample container, the control device controls the first mixing part to move the sample container to the second mixing part. in the homogenizing part, and then controlling the second mixing part to mix the samples in the sample containers, wherein the first type of sample containers and the second type of sample containers are respectively used for loading different types of samples or For loading different amounts of samples;
  • Step S543d if the sample information does not match the identification information of the sample rack, the control device controls the first mixing component to directly transport the sample container back to the sample rack instead of placing the sample container in the sample container. samples were mixed.
  • a fifth aspect of the present invention provides another sample analysis method, which can be applied to the sample analyzer provided in the second aspect of the present invention.
  • the sample analysis method 600 includes:
  • Step S610 the control device controls the sample rack transporting device to transport the sample rack in the sample analysis area, the sample rack accommodating the sample container for loading the sample;
  • Step S620 identifying the type of the sample rack by using the sample rack identification device
  • Step S630 using a sample identification device to identify the type of the sample container or the type of the sample loaded in the sample container;
  • Step S640 if the type of the sample rack matches the type of the sample container or the type of the sample loaded in the sample container, the control device controls the sample processing device to process the sample in the sample container;
  • Step S650 if the type of the sample rack does not match the type of the sample container or the type of the sample loaded in the sample container, the control device controls the sample processing device not to process the sample in the sample container.
  • sample analysis method 600 it is possible to prevent the instrument from malfunctioning or outputting erroneous results due to the user placing the sample container on the wrong type of sample rack.
  • step S620 and step S630 is not limited.
  • the sample rack type is obtained by using the code scanning component 8 as the sample rack identification device, the code scanning component 8 is set corresponding to the scanning position P4, and the sample identification device 7 is set corresponding to the sample amount detection position P3.
  • the sample amount detection position P3 may be located after, before or coincident with the scanning position P4.
  • the control device determines whether the sample rack type matches the sample container type or the sample type on the sample rack.
  • the so-called matching means that the first type sample container 91 or the first type sample is placed on the first type sample rack 100 , and the second type sample container 92 ( 93 ) or the second type sample container 92 ( 93 ) or the second type is placed on the second type sample rack 101 . sample.
  • step S650 is implemented, and the sample analyzer 1 reports an error and does not process the sample (for example, skip the sample and do not process it, but continue to process the following samples ); when the sample rack type matches the sample container type or the sample type on the sample rack, step S640 is performed.
  • step S640 the control device controls the mixing device, the sample suction device, the sample preparation part, the detection part, and the analysis part to process the sample on the sample rack according to the type defined by the sample rack.
  • step S710 it is determined whether the current sample rack is the first type of sample rack or the second type of sample rack, if it is the first type of sample rack, skip to step S720; if it is the second type of sample rack, skip to step S730.
  • step S720 the samples on the sample rack are processed according to the first processing conditions.
  • the first processing condition may include one of the following:
  • the motor 63 of the sample suction device 6 drives the sample suction needle 61 to move downward and is inserted into the sample container according to the first current, wherein the first current is relatively large, which can provide a large driving force for the motor 63, so that the sample suction needle 61 is pierced.
  • the cap of the sample container enters the inner cavity of the sample container;
  • the sample preparation part dilutes the sample according to the first dilution ratio, and/or mixes the sample and the reagent according to the first ratio, and/or makes the sample and the reagent react for the first time to prepare the sample to be tested;
  • the detection component detects the sample to be tested of the first detection amount
  • the analysis unit analyzes the detection data measured by the detection unit according to the first analysis condition.
  • step S730 the samples on the sample rack are processed according to second processing conditions different from the first processing conditions.
  • the second processing condition can accordingly include one of the following:
  • the motor 63 of the sample aspiration device 6 drives the sample aspiration needle 61 to move downward and insert it into the sample container according to a second current smaller than the first current, wherein the second current is smaller and can only provide a smaller driving force for the motor 63, because
  • the second-type sample container 92 or 93 is a container without a cap or a cross-slot with a cap but the cap is open through.
  • the motor 63 can make the sample needle 61 enter the second-type sample container 92 without much driving force.
  • the sample preparation component dilutes the sample at a second dilution ratio greater than the first dilution ratio, and/or mixes the sample and reagents at a second ratio in which the reagents account for a greater proportion than the first ratio, and/or makes the sample Reacting with the reagent for a second time longer than the first time;
  • the detection component detects the sample to be tested with a second detection amount greater than the first detection amount
  • the analysis unit analyzes the detection data measured by the detection unit according to a second analysis condition different from the first analysis condition.
  • step S630 includes:
  • the control device controls the sample container handling device to lift the sample containers on the sample rack from the sample rack and move them into the detection range of the sample identification device, so that the sample identification device identifies the type of the sample container.
  • the sixth aspect of the present invention provides another sample analysis method, which can be applied to the sample analyzer provided by the third aspect of the present invention.
  • the sample analysis method 800 includes:
  • Step S810 the control device controls the sample rack transporting device to transport the sample rack in the sample analysis area, where the sample rack accommodates the sample container loaded with the sample;
  • Step S820 the control device controls the sample container handling device to lift and move the sample container on the sample rack from the sample rack to the detection range of the sample identification device disposed outside the sample analysis area;
  • Step S830 using the sample identification device to identify the type of the sample container or the type of the sample in the sample container;
  • Step S840 the control device controls the processing action of the sample processing device or determines whether the sample processing device performs the processing action according to the type of the sample container or the type of the sample in the sample container.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Fluid Mechanics (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

一种样本分析仪(1)以及一种样本分析仪方法,该样本分析仪(1)包括:样本容器容纳装置(90),设置用于容纳装载样本(100)的样本容器(91、92、93);电容传感器(7),设置用于以不接触样本(100)的方式检测样本容器(91、92、93)中的样本(100)的样本量或样本位置;样本处理装置(50),设置用于对样本容器(91、92、93)中的样本(100)进行处理;控制装置(30),与电容传感器(7)和样本处理装置(50)通信连接并且配置用于:从电容传感器(7)获取样本容器(91、92、93)的样本信息,该样本信息包括样本量信息和样本位置信息中的至少一种,以及根据样本信息控制样本处理装置(50)的处理动作或确定样本处理装置(50)是否实施处理动作。由此能够根据电容传感器(7)可靠地识别样本容器类型或样本类型,进而确定后续对样本容器(91、92、93)内的样本(100)的处理动作,提高了样本分析的安全性。

Description

样本分析仪以及样本分析方法 技术领域
本发明实施例涉及样本检测领域,尤其是涉及一种样本分析仪以及一种样本分析仪方法。
背景技术
在血液分析仪对血液样本(以下简称血样)的检测中,需要从受试者采集一定量的血样。通常血液分析仪都会事先规定所需的采血量。目前有两种采血方式,即采集静脉血和采集末梢血。对于静脉血采集而言,通常采集较多的血样,通常不少于1mL(毫升),适合于成年受试者。而对于婴幼儿、儿童或重症患者而言,有时难以采集到静脉血,这种情况下往往采集末梢血,但在该情况是能采集到的血量较少,通常不多于200μL(微升)。
为了防止血液凝固,通常会采用含有抗凝剂的采血管来装载血样。血液由血细胞和血浆构成,由于血细胞和血浆的比重不同,抗凝采血管中的血液静置一段时间后会产生分层,因此在测量前需先将血样充分混匀,否则测量结果会产生较大偏差。目前主要采用将试管往复颠倒的方法实现血样的混匀,这种混匀方式往往仅适用于静脉血样本混匀。这是因为末梢血样本的血量少,流动性差,如果采用往复颠倒的方法进行混匀,末梢血往往会黏附在采血管的管壁,浪费原本就比较少的血样。
除此以外,静脉血样本容器和末梢血样本容器的内腔底部与试管底部的距离通常不同,吸样针在插入样本容器吸样时,需要配合样本容器内腔底部高度,否则吸样针会刺穿末梢血样本容器的内腔底部或导致静脉血样本吸不到血样。前者会在一定程度上损坏吸样针或缩短吸样针的使用寿命,更进一步的,被刺穿内腔底部的末梢血样本容器会发生血样泄露,一方面造成生物污染,另一方面由于血样损失而需要对受试者二次采血。
发明内容
为了至少部分地解决上述技术问题,本发明实施例提供了一种改进的样本分析仪以及一种改进的样本分析仪方法,其不仅能够同时实现静脉血样本和末梢血样本自动批量测量,还能够防止样本泄露以及仪器吸样针受损,提高样本分析仪的运行可靠性和安全性。
本发明第一方面提供一种样本分析仪,包括:样本容器容纳装置,设置用于容纳样本容器,所述样本容器用于装载样本;样本量检测装置,设置用于以不接触样本的方式检测所述样本容器中的样本的样本量或样本位置;样本处理装置,设置用于对所述样本容器中的样本进行处理;控制装置,与所述样本量检测装置和所述样本处理装置通信连接,并且配置用于:从所述样本量检测装置获取所述样本容器的样本信息,所述样本信息包括样本量信息和样本位置信息中的至少一种,以及根据所述样本信息控制所述样本处理装置的处理动作和/或确定所述样本处理装置是否实施处理动作。
在本发明第一方面的样本分析仪的一种实施方式中,样本量检测装置为电容传感器。
本发明第二方面提供一种样本分析仪,包括:样本架,设置用于装载多个样本容器,每个样本容器用于装载样本;样本架运送装置,设置用于在样本分析区中运送所述样本架;样本处理装置,设置用于对在所述样本分析区中的样本架上的样本容器中的样本进行处理;样本架识别装置,设置用于识别所述样本架的类型;样本识别装置,设置用于识别所述样本容器的类型或所述样本容器中的样本的类型;控制装置,配置用于:如果所述样本架的类型与所述样本容器的类型或所述样本容器中的样本的类型 匹配,则控制所述样本处理装置对所述样本容器中的样本进行处理,如果所述样本架的类型与所述样本容器的类型或所述样本容器中的样本的类型不匹配,则控制所述样本处理装置不对所述样本容器中的样本进行处理。
本发明第三方面提供一种样本分析仪,包括:样本架,设置用于装载多个样本容器,每个样本容器用于装载样本;样本架运送装置,设置用于在样本分析区中运送所述样本架;样本处理装置,设置用于对在所述样本分析区中的样本架上的样本容器中的样本进行处理;样本识别装置,设置用于识别所述样本容器的类型或所述样本容器中的样本的类型并且设置在所述样本分析区之外;样本容器搬运装置,设置用于将所述样本架上的样本容器从该样本架中提出并移动到所述样本识别装置的检测范围内;控制装置,配置用于,根据所述样本容器的类型或所述样本容器中的样本的类型控制所述样本处理装置的处理动作,和/或确定所述样本处理装置是否实施处理动作。
本发明第四方面提供一种样本分析方法,包括:
控制装置控制样本架运送装置在样本分析区中运送样本架,所述样本架上容纳有装载样本的样本容器;
利用样本量检测装置以不接触样本的方式检测所述样本容器中的样本的样本量或样本位置;
所述控制装置从所述样本量检测装置中获取所述样本容器的样本信息,所述样本信息包括样本量信息和样本位置信息中的至少一种;
所述控制装置根据所述样本信息控制样本处理装置的处理动作和/或确定所述样本处理装置是否实施处理动作。
本发明第五方面提供一种样本分析方法,包括:
控制装置控制样本架运送装置在样本分析区中运送样本架,所述样本架上容纳有装载样本的样本容器;
利用样本架识别装置识别所述样本架的类型;
利用样本识别装置识别所述样本容器的类型或所述样本容器中的样本的类型;
如果所述样本架的类型与所述样本容器的类型或所述样本容器中的样本的类型匹配,则所述控制装置控制样本处理装置对所述样本容器中的样本进行处理;
如果所述样本架的类型与所述样本容器的类型或所述样本容器中的样本的类型不匹配,则所述控制装置控制所述样本处理装置不对所述样本容器中的样本进行处理。
本发明第六方面提供一种样本分析方法,包括:
控制装置控制样本架运送装置在样本分析区中运送样本架,所述样本架上容纳有装载样本的样本容器;
所述控制装置控制样本容器搬运装置将所述样本架上的样本容器从该样本架中提出并移动到设置于所述样本分析区之外的样本识别装置的检测范围内;
利用所述样本识别装置识别所述样本容器的类型或所述样本容器中的样本的类型;
所述控制装置根据所述样本容器的类型或所述样本容器中的样本的类型控制样本处理装置的处理动作和/或确定所述样本处理装置是否实施处理动作。
通过本发明各方面提供的方案,能够可靠地实现区分不同的样本容器或者不同的样本,降低损坏样本容器和样本分析仪、尤其是其吸样针的可能性,提高样本分析的安全性。
附图说明
图1为本发明实施例提供的第一类样本容器的结构示意图;
图2至4为本发明实施例提供的第二类样本容器的一种实施方式的结构示意图;
图5至7为本发明实施例提供的第二类样本容器的另一种实施方式的结构示意 图;
图8至10为本发明第一方面提供的样本分析仪的结构示意图;
图11为本发明实施例提供的吸样装置的示意斜视图;
图12为本发明实施例提供的设置装置的示意图;
图13为本发明实施例提供的第一混匀部件的示意斜视图;
图14和15为本发明实施例提供的第二混匀部件的示意斜视图;
图16为本发明实施例提供的第二混匀部件的传感器的输出信号的曲线图;
图17和18本发明实施例提供的第二混匀部件的剖视图;
图19和20为本发明实施例提供的样本架的结构示意图;
图21和22为本发明实施例提供的样本架运送装置的结构示意图;
图23和24为本发明实施例提供的样本容器旋转部件的结构示意图;
图25和26为本发明实施例提供的样本量检测装置的不同布置方式的示意图;
图27为本发明实施例提供的样本量检测装置在检测样本量时与第一类样本容器的位置关系示意图;
图28为本发明实施例提供的样本量检测装置在检测样本量时与第二类样本容器的位置关系示意图;
图29为本发明实施例提供的样本量检测装置的静态检测方式的示意流程图;
图30为本发明实施例提供的样本量检测装置在动态检测第一类样本容器的样本量或样本位置时的示意图;
图31为图30的样本量检测装置的输出信号的曲线图;
图32为本发明实施例提供的样本量检测装置在动态检测第二类样本容器的样本量或样本位置时的示意图;
图33为图32的样本量检测装置的输出信号的曲线图;
图34至36为本发明实施例提供的样本量检测装置的动态检测方式的不同示意流程图;
图37为本发明实施例提供的一种样本量检测装置的示意图;
图38为本发明实施例提供的控制装置的示意图;
图39为本发明第二方面提供的样本分析仪的结构示意图;
图40为本发明第二方面提供的样本分析仪的样本识别装置在识别第二类样本容器时的示意图;
图41为本发明第二方面提供的样本分析仪的样本识别装置在识别第一类样本容器时的示意图;
图42至44为本发明第四方面提供的样本分析方法的不同实施方式的示意流程图;
图45和46为本发明第五方面提供的样本分析方法的不同实施方式的示意流程图;
图47为本发明第六方面提供的样本分析方法的示意流程图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在整个说明书中,除非另有特别说明,本文使用的术语应理解为如本领域中通常所使用的含义。因此,除非另有定义,本文使用的所有技术和科学术语具有与本发明所属领域技术人员的一般理解相同的含义。若存在矛盾,本说明书优先。
需要说明的是,在本发明实施例中,术语“包括”、“包含”或者其任何其他变 体意在涵盖非排他性的包含,从而使得包括一系列要素的方法或者装置不仅包括所明确记载的要素,而且还包括没有明确列出的其他要素,或者是还包括为实施方法或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的方法或者装置中还存在另外的相关要素(例如方法中的步骤或者装置中的单元,这里的单元可以是部分电路、部分处理器、部分程序或软件等等)。
需要说明的是,本发明实施例所涉及的术语“第一\第二\第三”仅仅是区别类似的对象,不代表对象的特定排序,可以理解地,“第一\第二\第三”在允许的情况下可以互换特定的顺序或先后次序。应该理解“第一\第二\第三”区分的对象在适当情况下可以互换,以使这里描述的本发明实施例能够以除了在这里图示或描述的那些以外的顺序实施。
目前通常采用不同类型的样本容器来装载静脉血样本和末梢血样本,如图1至图7所示。
图1示出第一类样本容器91,其包括管体911和帽体912。管体911中设有用于收纳样本的内腔,管体911的内腔底部911a到管体911底端的距离d1为管体911的管壁厚度。帽体912的至少中部区域由橡胶材料构成。吸样针需要刺破帽体912才能进入第一类样本容器91内腔中吸移样本。由于第一类样本容器91的内腔底部紧靠样本容器底端,在此也可以将第一类样本容器称为低底型样本容器。
图2示出第二类样本容器的一种实施方式。第二类样本容器92包括管体921。管体921中设有用于收纳样本的内腔,管体921的内腔底部921a到管体921底端的距离d2远大于管壁厚度,通常d2大于管体长度的五分之一。在第二类样本容器92的管体921的内腔下方形成一个半开放式的空腔921b,也称为凹部。
如图3所示,第二类样本容器92还可以包括帽体925。帽体925的至少中部区域由橡胶材料构成。更进一步的,帽体925的由橡胶材料构成的中部区域中设有贯通的十字切缝925a,如图4所示。吸样针在不需要刺破帽体925情况下可通过贯通的十字切缝925a轻易进入第二类样本容器92内腔吸移样本。
图5示出第二类样本容器的另一种实施方式。第二类样本容器93包括外管体931和内管体932。内管体932套设在外管体931之内,如图6所示。内管体932和外管体931可以通过过盈配合、螺纹配合、粘接或其他方式连接并固定在一起。内管体932中设有用于收纳样本的内腔,内管体932的内腔底部932a到外管体931底端的距离d3远大于外管体931的管壁厚度,通常d3大于外管体长度的五分之一。第二类样本容器93在内管体932的内腔下形成一个全封闭式的空腔933。
如图7所示,第二类样本容器93也可以包含帽体935,帽体935的结构和材料可以与第二类样本容器92的帽体925相同,在此不再复述。
第二类样本容器92、93的区别是:样本容器92的内腔下形成一个半开放式的空腔921b,而样本容器93的内腔下形成一个全封闭式的空腔933。
由于所述第二类样本容器92、93的内腔底部远离样本容器底端,所以可以称其为高底型样本容器。
第一类样本容器91的内腔容积较大,通常用于容纳样本量较大的静脉血样本,也可以称为常量血样本容器。而第二类样本容器92、93的内腔容积较小,通常用于容纳样本量较少的末梢血样本,也可以称为微量血样本容器。
如开头所提及的,由于常量血样本容器和微量血样本容器的内腔底部与容器底端的距离不同以及静脉血样本与末梢血样本的特性不同,往往需要采用不同的方式进行吸样和混匀,以免导致吸样针和样本容器损坏、无法吸样、检测结果出现偏差等。为了在处理样本容器中的样本之前先识别样本容器的类型,目前通过使用不同的样本架放置不同类型的样本容器,这要求用户在检测之前确保将样本容器放在正确的样本架上,对用户要求高且容易出错。另外,现有技术中通过识别样本容器的底部是否存在 凹部(例如第二类样本容器92的凹部)来判断样本容器的类型,然而该方法不能用于区分第二类样本容器93与第一类样本容器91,适用范围有限。
因此,为了区分装载不同样本或不同样本量的样本容器,本发明第一方面首先提出一种样本分析仪,其通过检测样本容器中的样本量或样本在样本容器中的样本位置来识别样本容器中所装载的样本的类型,由此能够适用于各种不同的样本容器,无需对样本容器的结构提出特殊的要求。即使采用完全相同的样本容器来装载静脉血和末梢血,按照本发明第一方面提出的样本分析仪也能够可靠地区分出样本容器中装载的是静脉血还是末梢血。换言之,按照本发明第一方面提出的样本分析仪是通过检测样本容器中的样本量或样本位置来区分静脉血样本和末梢血样本,而不是通过检测样本容器本身的特殊结构或特殊标记来区分样本容器类型。
如图8至10所示,按照本发明第一方面的样本分析仪1包括样本容器容纳装置90、样本量检测装置7、样本处理装置50以及控制装置30。样本容器容纳装置90设置用于容纳装载样本的样本容器91、92、93。样本量检测装置7设置用于以不接触样本的方式检测样本容器中的样本100的样本量或样本位置。样本处理装置50设置用于对样本容器中的样本进行处理。控制装置30设置用于与样本量检测装置7和样本处理装置50通信连接并且配置用于:从样本量检测装置7获取样本容器的样本信息,所述样本信息包括样本量信息和样本位置信息中的至少一种,以及根据所述样本信息控制样本处理装置50的处理动作或确定样本处理装置50是否实施处理动作。
按照本发明的样本分析仪1例如可以是用于血常规检测的血液样本分析仪或用于制备血涂片的涂片制备装置。在此,血涂片为涂覆有血液样本的玻片。
在本发明实施例中,“样本100的样本位置”可理解为,当样本容器91、92、93放置在样本容器容纳装置90中时,样本100在样本容器中的液面离样本容器容纳装置90的底部的高度,如图20所示s1和s2。
在一些实施例中,为了防止样本分析仪和样本容器被损坏以及提高检测结果的准确性,处理不同样本或不同量的样本需要采用不同的处理方式,因此,控制装置30可以进一步配置用于在根据样本信息控制样本处理装置50的处理动作时执行下列步骤:
如果所述样本信息表明所述样本容器91装载有第一类样本,则控制样本处理装置50用第一处理条件来处理所述样本容器91中的样本;
如果所述样本信息表明所述样本容器92、93装载有第二类样本,则控制样本处理装置50用不同于第一处理条件的第二处理条件来处理所述样本容器92、93中的样本,其中,所述第一类样本和所述第二类样本的区别在于样本量不同和样本位置不同中的至少一种。
在本发明的意义中,第一类样本和第二类样本的区别可以在于样本量不同,即,样本容器91装载有第一量的第一类样本或样本容器92、93装载第二量的第二类样本,第二量不同于、例如小于第一量。备选地,第一类样本和第二类样本的区别也可以在于样本在样本容器中的位置不同,即,第一类样本在样本容器91中的位置为s1,第二类样本在样本容器91中的位置为s2,s2不同于、例如大于s1。当然,第一类样本和第二类样本的区别可以在于样本量不同和样本位置不同,即第一类样本和第二类样本的样本量和样本位置均不同。
在一些实施例中,第一类样本为静脉血样本或常量血样本,第二类样本为末梢血样本或微量血样本。
在一些实施例中,样本处理装置50可以包括具有吸样针61的吸样装置6。相应地,当第一类样本的量大于第二类样本的量时,例如样本容器91(常量血样本容器)装载有第一量样本,而样本容器92、93(微量血样本容器)装载有第二量样本为时,第一处理条件包括使吸样针61下降第一距离(如图20所示,从A下降到C)以采集 样本容器、例如常量血样本容器91中的样本,第二处理条件包括使吸样针61下降第二距离(如图20所示,从A下降到B)以采集样本容器、例如微量血样本容器92、93中的样本,其中,第一距离大于第二距离。
备选的或附加的,第一处理条件包括使吸样针61从样本容器91中吸取第一样本量,第二处理条件包括使吸样针61从样本容器92、93中吸取第二样本量,所述第一样本量大于所述第二样本量。
吸样装置6的一个实施例如图11所示,吸样装置6还包括电机62和63,吸样针61可以在电机62的驱动下沿Y1、Y2方向移动以及在电机63的驱动下沿Z1、Z2方向移动。吸样针61沿Y1、Y2移动至位于样本容器容纳装置90中的样本容器上方,然后沿Z1、Z2方向移动以插入样本容器91的内腔中吸移样本。
进一步地,样本分析仪1还可以包括用于与样本类型或样本容器类型相关联地存储有下移高度信息的存储部件(未示出),控制装置50根据样本量检测装置7的检测结果和存储部件存储的下移高度信息来控制吸样针61下降到样本容器的容腔中。该存储部件例如集成在控制装置50中。此外,样本分析仪1还可以包括对存储部件中的下移高度信息进行设置或更改的设置部件(未示出),控制装置将经由设置部件更改的下移高度信息存储到存储部件中。该设置部件可以是样本分析仪1的显示屏2的组件。例如,显示屏2可以提供如图12所示的设置界面,其中可以分别设置针对第一量样本的下针高度和针对第二量样本的下针高度。
当然,样本分析仪1也可以没有设置部件,而提供一个接受部件,通过接受部件接受样本分析仪1之外的另一装置发送的吸样针下针高度的配置参数。另一装置例如可以是PC机,通过通信接口向样本分析仪1发送吸样针下针高度的配置参数。
在一些实施例中,样本处理装置50可以包括混匀装置,该混匀装置包括彼此独立的第一混匀部件4和第二混匀部件5。相应地,第一处理条件包括用第一混匀部件4对样本容器中的样本进行混匀,第二处理条件包括用第二混匀部件5对样本容器中的样本进行混匀。例如,第一混匀部件4构造为通过摆动的方式对样本容器中的样本进行颠倒混匀,而第二混匀部件5通过旋转的方式对样本容器中的样本进行旋转混匀。换言之,当控制装置30根据样本量检测装置7检测到的样本信息判断出样本容器(例如常量血样本容器91)中的样本为第一类样本、例如静脉血(即血量较大)时,控制第一混匀部件4通过摆动的方式对样本容器中的静脉血进行颠倒混匀;而当控制装置30根据样本量检测装置7检测到的样本信息判断出样本容器(例如微量血样本容器92、93)中的样本为第二类样本、例如末梢血(即血量较小)时,控制第二混匀部件5通过旋转的方式对样本容器中的末梢血进行旋转混匀。
第一混匀部件4的一个实施例如图13所示,第一混匀部件4包括夹爪41和三个电机42、43、44。夹爪41可以在电机42的驱动下沿Z1或Z2方向移动、在电机43的驱动下沿Y1或Y2方向移动以及在电机44的驱动下绕轴沿R1或R2方向摆动。因此,夹爪41在电机42、43的驱动下沿Y1、Y2和Z1、Z2方向移动至位于样本容器容纳装置90中的样本容器、例如第一类样本容器91处并将该样本容器从样本容器容纳装置90夹出,然后通过沿R1、R2方向的摆动对第一类样本容器91中的样本实施颠倒混匀。混匀后,夹爪41在电机42、43的驱动下将已经混匀的样本容器送回至样本容器容纳装置90中。
第二混匀部件5的一个实施例如图14至18所示,第二混匀部件5包括支架51、固定座52以及电机53。支架51用于固定电机53。电机53、例如步进电机作为动力源,可以驱动固定座52顺时针或逆时针转动。固定座52与步进电机53转动连接,固定座52可直接固定在电机53转轴上。
如图15所示,固定座52顶部设置有容置腔521,容置腔521可以放入装有样本的第二类样本容器92或93。
进一步地,第二混匀部件5还包括固定在支架51上的传感器54,传感器54用于检测固定座52是否转动,以及检测固定座52的转速。固定座52下方设置有传感器感应部524以及缺口525。固定座52转动时,传感器感应部524和缺口525会循环交替进入传感器54的感应区,传感器54的感应区会在遮挡态和非遮挡态交替切换,传感器54的输出端对应输出如图15的(a)或(b)所示脉冲。通过检测传感器54是否输出脉冲信号可以判断固定座52是否转动,通过检测传感器54输出的脉冲信号个数可以判断固定座52的转动圈数是否符合预期,即可以通过检测图15所示的脉冲信号的周期T来判断固定座52的转速是否符合预期。
固定座52的内部结构如图17所示。容置腔521入口处直径略大于第二类样本容器92或93的外径。在容置腔521的下方设置有抵接部522,固定座52的底部开设有固定孔523。固定孔523用于与电机53的转轴连接。固定孔523的轴心A1即固定座52的转动轴心。如图17所示,固定孔523的轴心A1与容置腔521的中轴线A2可以不重合,即容置腔521可以相对固定座52的转轴偏心设置,偏心量d4可以处于0mm~5mm的范围内,优选处于1mm~2mm的范围内。
抵接部522的作用在于使得放入容置腔521的样本容器、例如第二类样本容器92或93保持倾斜,如图18所示。此时固定座52的转轴A1与第二类样本容器92或93的中轴线A3相交,轴A1与轴A3的夹角为α,α取值范围可以是0<α≤45°,α优选处于2°至10°的范围内。轴A1与轴A3的交点Q位于样本容器的容腔底部的上方。当固定座52绕轴A1转动时,样本容器中的血样100在离心力作用下被甩离固定座52转轴A1,并沿样本容器92或93的容腔内壁上升。
通过固定座52带动装有样本100的样本容器旋转,通过旋转产生样本100混匀动力。当固定座52旋转时,样本100沿样本容器容腔内壁旋转和爬升;当固定座52停止旋转时,之前爬升的样本回流至样本容器的底部。通过样本100在样本容器中的旋转运动以及样本100在样本容器中的爬升运动和回流运动,实现样本100的混匀。特别是,通过设置抵接部522使得样本容器放入固定座52时保持倾斜,并且使固定座52的转轴A1与样本容器的轴线A3的交点Q位于样本容器的容腔底部的上方,既可以起到防止样本泼洒的作用,又可以起到降低样本100在混匀时粘附在容器内壁上的损耗的作用,这对于采血量少(末梢血)的情况来说是极为重要的,因为过多的挂壁损耗会影响样本混匀后吸样的可靠性。
此外,样本分析仪1还可以设有样本容器搬运装置,设置用于在需要采用第二混匀部件5对样本容器中的样本进行混匀时,将样本容器从样本容器容纳装置90中搬运出来,然后移送到第二混匀部件的固定座52的样本容器固定孔521中,在混匀结束之后再将样本容器搬运回到样本容器容纳装置90中。优选地,第一混匀部件4可以用作样本容器搬运装置。
在一些备选的实施例中,混匀装置也可以包括唯一的混匀部件,该唯一的混匀部件采用不同的混匀条件对不同的样本进行混匀。不同的混匀条件例如可以包括不同的混匀时间。例如,该唯一的混匀部件对装载有静脉血的样本容器进行第一时间的混匀,而对装载有末梢血的样本容器进行第二时间的混匀,第二时间长于第一时间。
在一些实施例中,样本处理装置50还包括样本制备部件(未示出),该样本制备部件用于通过将试剂与样本容器中的样本混合来制备待测试样。相应地,第一处理条件包括用样本制备部件按第一比例混合样本和试剂,第二处理条件包括用样本制备部件按第二比例混合样本和试剂,在第二比例中,试剂占比大于第一比例。
附加的或备选的,第一处理条件包括用样本制备部件按第一倍比率稀释所述待测试样,第二处理条件包括用样本制备部件按大于所述第一倍比率的第二倍比率稀释所述待测试样。
进一步可选的,第一处理条件包括用样本制备部件使试剂和样本反应第一时间, 第二处理条件包括用样本制备部件使试剂和样本反应比第一时间长的第二时间,即静脉血反应时间短,末梢血反应时间长。
在一些实施例中,样本处理装置50包括检测部件(未示出),该检测部件设置用于检测待测试样中的粒子。相应地,第一处理条件包括用检测部件检测第一检测量的待测试样,第二处理条件包括用检测部件检测多于第一检测量的第二检测量的待测试样。这是因为,静脉血试样稀释比小,试样中血细胞占比多,测量统计时间短,故试样的用量小;而末梢血试样稀释比大,试样中血细胞占比小,测量统计时间长,故试样的用量大。
在一些实施例中,样本处理装置50包括用于分析检测部件测得的检测数据的分析部件。第一处理条件包括通过分析部件按照第一分析条件分析检测数据,第二处理条件包括通过分析部件按照不同于第一分析条件的第二分析条件分析检测数据。分析部件例如可以集成到控制装置30中。
在本发明实施例中,样本容器容纳装置构造为能容纳多个样本容器的样本架90。例如,一个样本架90可以用于仅容纳用于装载第一类样本的第一类样本容器91或用于装载第二类样本的第二类样本容器92、93,或者可以用于混合容纳第一类样本容器91和第二类样本容器92、93,如图20所示。即,样本架90构造用于能容纳第一类样本容器和第二类样本容器中的至少一种,第一类样本容器和第二类样本容器分别用于装载不同类型的样本或用于装载不同量的样本。
如图19所示,样本架90上设置有多个固定孔901,每个固定孔901对应设有开口902,开口902用作对样本容器的身份信息进行扫描的扫码窗口。样本架90还设有用于设置样本架标签的标签设置区903,在标签设置区中可粘贴条形码标签、二维码标签、RFID标签等。固定孔901可用于固定第一类样本容器91或第二类样本容器92、93,如图20所示。从图20可以看出,在样本架90中,第二类样本容器92、93(即高底型样本容器)中的样本位置(液面高度)s2要高于第一类样本容器91(即低底型样本容器)中的样本位置(液面高度)s1。
此外,所述样本分析仪还包括设有样本量检测位置(检样位置)P3、混匀位置P1和吸样位置P2的样本分析区P,如图21所示。样本分析仪1还包括与控制装置30通信连接的样本架运送装置3,设置用于在样本分析区P中运送样本架90,使得样本架90上的各个样本容器依次到达样本量检测位置P3、混匀位置P1和吸样位置P2。其中,样本量检测装置7设置用于检测样本架90上处于样本量检测位置P3的样本容器的样本信息。混匀装置4、5设置用于对样本架90上处于混匀位置P1的样本容器中的样本进行混匀。吸样装置6设置用于对样本架90上处于吸样位置P2的样本容器中的样本进行吸样。
如图21和22所示,样本架运送装置3包括样本架支撑部件31、样本架送入部件32、样本架双向运送部件33以及样本架送出部件34。
样本架支撑部件31包括用于放置固定有盛放分析前样本的样本容器的样本架90的分析前样本架存放区311、用于放置若干固定有盛放分析后样本的样本容器的样本架90的分析后样本架存放区312以及位于分析前样本架存放区311和分析后样本架存放区312之间的样本分析区313(P)。在分析前样本架存放区311中设有样本架送入转向区311a,在分析后样本架存放区312中设有样本架送出转向区312a。
样本架送入部件32可以沿Y2方向运送样本架90,样本架双向运送部件33可以沿X1和X2两个方向在样本分析区313(P)中运送样本架90,样本架送出部件34可以沿Y1方向运送样本架90。
当启动样本分析仪1的自动进样测量时,样本架送入部件32首先将存放在分析前样本架存放区311的样本架90沿Y2方向逐个推到样本架送入转向区311a。进入样本架送入转向区311a的样本架90由样本架双向运送部件33继续沿X1方向运送,样 本架双向运送部件33将样本架90中的各个样本容器依次运送至样本分析区313(P)的样本量检测位置P3进行样本信息检测,然后送至混匀位置P1进行混匀,然后送至吸样位置P2进行取样。当样本架90被样本架双向运送部件33运送至样本架送出转向区312a后,样本架送出部件34将样本架90推移到分析后样本架存放区312。
在一些实施例中,样本量检测位置P3可以沿X1方向设置在混匀位置P2上游,也可以与混匀位置P2重合。样本量检测位置P3优选与混匀位置P2重合。当然,样本量检测位置P3也可以沿X1方向设置在混匀位置P2下游。
进一步的,如图9所示,样本分析仪1还可以包括扫码部件9,设置用于获取粘贴在样本容器上的一维条码或二位条码信息。相应地,样本分析区P可以设有扫码位置P4。在样本容器在被运送至样本量检测位置P3或混匀位置P2之前,还可以先在扫码位置P4被扫码部件9扫码。扫码部件9对应扫码位置P4设置。
此外,如图9所示,样本分析仪1还可以包括样本容器旋转部件8。样本容器旋转部件8同样对应扫码位置P4设置。如图23和24所示,样本容器旋转部件8的一对压紧轮81可以在电机82驱动下沿Y1、Y2方向移动,旋转轮83可以在电机84驱动下绕轴转动。当有样本容器位于扫码位置P4时,电机82驱动一对压紧轮81沿Y1方向运动将样本容器推向旋转轮83,使样本容器紧贴旋转轮83外圈。然后,电机84驱动旋转轮83转动,在摩擦力作用下,样本容器跟随旋转轮83转动,当样本容器表面粘贴的条码标签信息101转到朝向扫码部件9时,电机84停止转动,电机82驱动压紧轮81沿Y2方向缩回。旋转轮83外圈可以为橡胶材料,以增大与样本容器间的摩擦。
由以上描述可知,在样本分析仪1的检测分析过程中,样本一般会经历送入、扫码、样本量检测、混匀、吸样、稀释、反应、检测、送出等操作。在样本量检测的操作后,样本被判定为第一量的样本(例如静脉血样本)或小于第一量的第二量的样本(例如末梢血样本)。针对第一量的样本实施下列处理中的至少之一:采用第一混匀部件4混匀该样本;吸样装置6下移第一高度吸移该样本并且吸移第一吸移量的样本;样本制备部件按照第一稀释比稀释该样本,和/或按照第一比例混合该样本和试剂,和/或使该样本和试剂反应第一时间;检测部件检测第一检测量的待测试样;分析部件按照第一分析条件分析检测部件测得的检测数据。而针对第二量的样本实施下列处理中的至少之一:采用第二混匀部件5混匀该样本;吸样装置6下移小于第一高度的第二高度吸移该样本并且吸移少于第一吸样量的第二吸移量的样本;样本制备部件按照大于第一稀释比的第二稀释比稀释该样本,和/或按照第二比例混合该样本和试剂,在第二比例中试剂占比大于第一比例,或/和使该样本和试剂反应比第一时间长的第二时间;检测部件检测多于第一检测量的第二检测量的待测试样;分析部件按照不同于第一分析条件的第二分析条件分析检测部件测得的检测数据。
在本发明实施例中,样本量检测装置7可以是一种能探测样本容器中的样本的样本量或样本位置的传感器。
如图10所示,在一些实施例中,样本量检测装置7可以固定在样本架运送装置3上,例如固定在样本架支撑部件31的样本分析区313(P)中。例如,样本量检测装置7可以对应于样本量检测位置P3设置,使得样本量检测装置7能够对固定于样本架90上的被样本架运送装置3运输至样本量检测位置P3的样本容器91、92、93进行样本量或样本位置检测。
在一些备选的实施例中,如图25所示,样本量检测装置7可以设置在样本分析仪区P之外。此时,样本分析仪2还设有至少能移动的样本容器搬运装置,设置用于将样本架90上处于样本量检测位置P3的样本容器从该样本架90中提出并移动到样本量检测装置7的检测范围内,以便样本量检测装置7能检测所述样本容器中的样本的样本量或样本位置。进一步地,如图26所示,样本容器搬运装置还构造为可摆动 的,样本容器搬运装置夹取样本架90上固定的样本容器沿Z1方向上升,然后带动该样本容器摆动特定角度(该特定角度≤75°),使该样本容器进入样本量检测装置7的检测范围,从而通过样本量检测装置7检测样本容器中的样本量或样本位置。这里的样本容器搬运装置可以是第一混匀部件4,也就是说,第一混匀部件4可以同时用作对第一类样本容器中的样本(静脉血样本)或者第一类样本进行混匀的装置以及将样本架上处于样本量检测位置P3的样本容器搬运至样本量检测装置7的检测范围的装置,以及还可以用作将样本架上的第二类样本容器92或93搬运到第二混匀部件5中的装置,由此能够节省样本分析仪1的空间以及成本。
此时优选的,样本量检测位置P3与混匀位置P1重合,由此能够将样本量检测的流程与样本混匀的流程结合,提高样本分析仪的速度。即,对于样本量检测位置P3与混匀位置P1设置在同一位置且第一混匀部件4用作样本容器搬运装置的情况,控制装置30可以进一步配置用于:
控制样本架运送装置3运送样本架90,使得样本架90上的各个样本容器依次到达混匀位置P1(或者说样本量检测位置P3);
控制第一混匀部件4将样本架90上处于混匀位置P1的样本容器从该样本架90中提出并移动到样本量检测装置7的检测范围内;
从样本量检测装置7中获取样本容器的样本信息;
根据该样本信息控制第一混匀部件4或第二混匀部件5的动作。
进一步地,控制装置30可以配置用于在根据样本信息控制第一混匀部件4或第二混匀部件5的动作时执行下列步骤:
如果所述样本信息表明样本架90上处于混匀位置P1的样本容器中装载有第一类样本,则控制第一混匀部件4对所述样本容器中的样本进行混匀;
如果所述样本信息表明样本架90上处于混匀位置P1的样本容器中装载有第二类样本,则控制第一混匀部件4将所述样本容器移动到第二混匀部件5中,并且然后控制第二混匀部件5对所述样本容器中的样本进行混匀。
在混匀结束后,控制装置30然后控制第一混匀部件4将样本容器搬运回到样本架90中。
可以理解的,也可以设置独立于第一混匀部件4的样本容器搬运装置。
在一种优选的实施例中,样本量检测装置7为电容传感器。
电容传感器的检测原理是:当目标物体靠近电容传感器时,会产生一个变化的电容值△C,电容传感器的有效电容C=C0+△C,其中C0为电容传感器的初始电容值,△C取决于目标物体与电容传感器电极间的距离、目标物体材料介电常数、目标物体的体积等。当目标物体与电容传感器电极间的距离和目标物体材料介电常数相对确定时,△C仅受目标物体的体积影响。通过检测电容传感器△C的大小可以检测检测目标物体的体积。
样本容器91~93的管体通常由玻璃或塑料制成。常温下,玻璃、塑料的相对介电常数在1~5之间,而水的相对介电常数在80左右,血液中水占比约90%,即使样本容器91~93管体表面贴有条码标签,条码标签纸的相对介电常数同样在1~5之间。因此,样本容器91~93中样本的相对介电常数远大于样本容器91~93自身(介电常数越大,电容值越大)。
如图27和图28所示,图27中的第一类样本容器91的中轴线到电容传感器7的检测面71的距离m1与图28中的第二类样本容器92的中轴线到电容传感器7的检测面71的距离m2相当,而样本容器的管体材质的介电常数远小于血液的介电常数,因此电容传感器的△C变化的主要取决于第一类样本容器91或第二类样本容器92(或93)中样本量的多少,故可以通过电容传感器△C的变化量来检测出第一类样本容器91或第二类样本容器92(或93)样本量的多与少。例如,第一类样本容器91是常量 血样本容器,通常装有不少于1ml的血样,而第二类样本容器92或93是微量血样本容器,通常装有不大于200uL的血样。假如电容传感器7探测到第一类样本容器91引起的变化电容值为△C1,探测到第二类样本容器92或93引起的变化电容值为△C2,显然△C1远大于△C2。
为了尽可能避免样本分析仪1中可能存在的金属部件、尤其是可动金属部件的影响,电容传感器7这样固定设置在样本分析仪1中,使得样本分析仪1的金属部件不干扰电容传感器7的检测,或者使得样本分析仪1的金属部件不在电容传感器7的检测范围内。
在一些实施例中,电容传感器7可以是模拟量输出的电容传感器,也可以是数字量输出的电容式接近开关,其中数字量输出的电容式接近开关是优选的。
在一些实施例中,电容传感器7可以为阈值可调的电容传感器,尤其是阈值可调的数字量输出的电容式接近开关。通过设定电容传感器7对于△C的检测阈值,可以间接设置电容传感器7对于第一类样本容器91或第二类样本容器92或93中样本量的检测阈值。例如,可以将电容传感器7的检测阈值设为△Ca,其中△Ca为样本容器中容纳的样本量为V1时所对应的电容值,样本量V1位于第一类样本容器91中规定容纳的样本量和第二类样本容器92(或93)中规定容纳的样本量之间。例如,样本量V1取值为第一类样本容器91中规定容纳的样本量和第二类样本容器92(或93)中规定容纳的样本量之间的中值,比如V1处于0.5mL~0.7mL的范围内。
对于模拟量输出的电容传感器,可以通过检测算法将检测阈值设为△Ca;对于阈值不可调的数字量输出的电容式接近开关,可以通过调整电容式接近开关到样本容器的距离将检测阈值设为△Ca;对于阈值可调的数字量输出的电容式接近开关,可以通过调节旋钮将将检测阈值设为△Ca。
在一些实施例中,电容传感器7这样固定设置在样本分析区P中,使得电容传感器7的检测面71面向样本架90上处于样本量检测位置P3的样本容器并能对该样本容器的样本信息进行检测。
在一些备选的实施例中,如以上描述的,为了更灵活地设置电容传感器7,以减少金属部件、尤其是可动金属部件对其检测的干扰,电容传感器7优选设置在样本分析区P之外。这尤其是能够避免样本架90上的金属部件(例如可能的RFID)对电容传感器7的干扰。
进一步地,电容传感器7可以被设计为具有至少10毫米的检测范围并且这样固定设置在样本分析区P中,使得在电容传感器7的检测期间样本容器的管壁与电容传感器7的检测面71的最小距离处于0.5毫米至10毫米的范围内,优选处于2毫米至5毫米的范围内。由此能够可靠地检测样本容器中的样本量大小。例如,电容传感器7这样设置在样本分析区P中,使得样本架上处于样本容器检测位置P3的样本容器的管壁与电容传感器7的检测面的最小距离处于0.5毫米至10毫米的范围内,优选处于2毫米至5毫米的范围内。
在一些实施例中,电容传感器7以静态检测的方式检测样本容器中的样本量,即,在检测样本容器中的样本量期间,电容传感器与样本容器不发生相对运动。例如当样本架90上的样本容器到达样本量检测位置P3时,电容传感器7即能够对该样本容器中的样本量进行检测,无需将该样本容器从样本架90中移出。
例如,如果采用静态检测的方式检测样本容器中的样本量,为了能够区分不同样本量,电容传感器7这样布置在样本分析仪区P中,使得当样本架90上处于样本容器检测位置P3的样本容器为第一类样本容器(装载有规定的第一量样本)时电容传感器7检测到第一值,以及当样本架90上处于样本容器检测位置P3的样本容器为第二类样本容器(装载有规定的第二量样本)时电容传感器7检测到第二值,第一值明显不同于第二值。
电容传感器7以静态检测的方式探测容纳于样本容器中的样本量的流程如图29所示。
在步骤S101中,电容传感器7检测位于样本量检测位置P3的样本容器中样本所引起的电容变化值△C;
在步骤S102中,将电容变化值△C与预先设定的阈值△Ca比较,若△C≥△Ca,说明样本容器中容纳的样本量≥V1,则跳到步骤S103,判定该样本容器中容纳的是第一量的样本(例如常量样本或静脉血样本);若△C<△Ca,则说明样本容器中容纳的样本量<V1,则跳到步骤S104,判定该样本容器中容纳的是比第一量小的第二量的样本(例如微量样本或末梢血样本)。
对于模拟量输出的电容传感器,△C与△Ca的比较通过控制装置30实现;对于数字量输出的电容式接近开关,△C与△Ca的比较在传感器内部完成,控制装置30只需要获取数字量输出的电容式接近开关的输出电平信号并转化成对应的检测结果即可。
图29所示的流程对于样本量检测位置P3与混匀位P1重合或不重合的情况均可适用。
在一些实施例中,电容传感器7还可以以动态检测的方式检测样本容器中的样本的样本量或样本位置,即,在检测样本量或样本位置期间,电容传感器7固定不动,而样本容器相对于电容传感器7发生相对运动,通过电容传感器7的信号动态变化来检测样本量或样本位置。
例如,电容传感器7固定设置在样本分析区P中,即与样本量检测位置P3对应设置。样本分析仪1包括上述与控制装置30通信连接的样本容器搬运装置4。电容传感器7具有第一检测状态和第二检测状态,在第一检测状态下电容传感器7检测到的电容变化值大于等于预设电容变化阈值,在第二检测状态下电容传感器7检测到的电容变化值小于所述预设电容变化阈值。电容传感器7这样固定设置在样本分析区P中,使得在样本容器搬运装置4将样本架90上处于样本量检测位置P3的样本容器提出的过程中电容传感器7至少从第一检测状态变化到第二检测状态。此时,所述样本信息包括所述第一检测状态的持续时间和/或所述第一检测状态变化到第二检测状态的变化时刻。
动态检测的方式尤其是适用于样本量检测位置P3与混匀位置P1重合以及第一混匀部件4用作样本容器搬运装置的情况。由此能够将电容传感器7的检测过程与混匀装置的混匀过程结合,加快样本分析检测分析速度。
在动态检测的一种实施例中,电容传感器7为检测阈值可调的数字量输出的电容式接近开关。将电容传感器7的检测阈值设为△Cb,其中△Cb为样本容器中容纳的样本量为V2时所对应的电容值,样本量V2小于第二类样本容器92(或93)中规定容纳的样本量,比如V2取40uL。那么当样本容器中的样本量V大于等于V2时,电容式接近开关输出第一电平L1,当样本容器中的样本量V<V2时,电容式接近开关输出不同于第一电平L1的第二电平L2。假定L1为低电平,L2为高电平。在第一混匀部件4的夹爪41夹取样本架90上固定的样本容器并沿Z1方向上升时,电容传感器7检测样本容器中的样本量或样本位置。
如图30所示,当夹爪41夹取第一类样本容器91沿Z1方向上升时,电容传感器7将产生如图31(a)或(b)所示信号。如图32所示,当夹爪41夹取第二类样本容器92(或93)沿Z1方向上升时,电容传感器7将产生如图33(a)或(b)所示信号。其中,t0为夹爪41夹取第一类样本容器91或第二类样本容器92(或93)沿Z1方向上升的起始时刻,t2为夹爪41夹取第一类样本容器91或第二类样本容器92(或93)沿Z1方向上升的结束时刻,t1为第一类样本容器91或第二类样本容器92(或93)中的样本在电容传感器7的检测区域内的有效体积开始小于V2的时刻。图31(a)示 出,在夹爪41夹取第一类样本容器91沿Z1方向上升的起始时刻,第一类样本容器91中的样本未处于电容传感器7的检测范围内;图31(b)示出,夹爪41夹取第一类样本容器91沿Z1方向上升的起始时刻,第一类样本容器91中的部分样本已经处于电容传感器7的检测范围内。图33(a)示出,夹爪41夹取第二类样本容器92(或93)沿Z1方向上升的起始时刻,第二类样本容器92(或93)中的样本未处于电容传感器7的检测范围内;图33(b)示出,夹爪41夹取第二类样本容器92(或93)沿Z1方向上升的起始时刻,第二类样本容器92(或93)中的部分样本已经处于电容传感器7的检测范围内。
第一类样本容器91是常量血样本容器,通常装有不少于1ml的血样,血样在第一类样本容器91中沿Z1、Z2方向的分布高度较大;而第二类样本容器92(或93)是微量血样本容器,通常装有不多于200uL血样,血样在第二类样本容器92(或93)中沿Z1、Z2方向的分布高度较小。因此,在夹爪41夹取第一类样本容器91沿Z1方向上升过程中电容传感器7输出L1电平的持续时间△t1比夹爪41夹取第二类样本容器92(或93)沿Z1方向上升过程中电容传感器7输出L1电平的持续时间△t2的时间要长,即△t1>△t2。
因此,可根据上述t0、t1、t2、△t1、△t2来选取阈值,并按照如图34、图35或图36所示的流程来探测容纳于样本容器中的样本量。
如图34所示,在步骤S201中,第一混匀装置部件4的夹爪41夹取样本容器沿Z1方向上升,在夹爪上升过程中,控制装置30求取电容传感器7输出的L1电平的持续时间△t。其中,电容传感器7输出L1电平表示电容传感器检测出样本容器中有样本。在步骤S202中,控制装置30判断夹爪42是否已经沿Z1上升到达顶部,若判断结果为否,说明夹爪41夹取样本容器沿Z1方向上升动作未结束,需要继续上升;若判断结果为是,说明夹爪41夹取样本容器沿Z1方向上升动作完成,跳转到步骤S203。在步骤S203中,控制装置30判断△t是否大于等于阈值Ta(Ta例如为△t1和△t2的平均值),若判断结果为是,说明样本容器中的样本沿Z1、Z2方向分布高度较大,则跳到步骤S204,判定该样本容器中容纳的是第一量的样本(常量样本或静脉血);若判断结果为否,说明样本容器中的样本沿Z1、Z2方向分布高度较小,则跳到步骤S205,判定该样本容器中容纳的是比第一量小的第二量的样本(微量样本或末梢血)。
如图35所示,在步骤S301,第一混匀装置部件4的夹爪41夹取样本容器沿Z1方向上升,控制装置30记录夹爪41向Z1方向运动的启动时刻t0,其中t0可以为零。在步骤S302中,控制装置30监控电容式接近开关输出电平从L1变为L2的时刻t2,电容式接近开关输出电平从L1变为L2,代表电容式接近开关检测区域内的样本体积V从≥V2变成<V2,即电容式接近开关的检测区域内的样本即将离开检测区域。在步骤S303中,控制装置30计算△t=t1-t0,△t越大,说明样本越靠近样本容器底部。在步骤S304中,控制装置30判断△t是否≥阈值Tb,若判断结果为是,说明样本靠近样本容器底部,则跳到步骤S305,判定该样本容器中容纳的是第一类样本;若判断结果为否,说明样本远离样本容器底部,则跳到步骤S306,判定该样本容器中容纳的第二类样本,其中第一类样本为常量样本或静脉血,第二类样本为微量样本或末梢血。
如图36所示,在步骤S401中,第一混匀装置部件4的夹爪41夹取样本容器沿Z1方向上升,控制装置30记录夹爪41向Z1方向运动的夹爪初始位置s0。在步骤S402中,控制装置30监控电容式接近开关输出电平从L1变为L2时夹爪的位置s1,电容式接近开关输出电平从L1变为L2,代表电容式接近开关检测区域内的样本体积V从≥V2变成<V2,即电容式接近开关检测区域内的样本即将离开检测区域。在步骤S403中,控制装置30计算△s=s1-s0,△s越大,说明样本越靠近样本容器底部。在步骤S404中,控制装置30判断△s是否≥阈值Sb,若判断结果为是,说明样本靠近样本容器底部,则跳到步骤S405,判定该样本容器中容纳的是第一类样本;若判断结果为 否,说明样本远离样本容器底部,则跳到步骤S406,判定该样本容器中容纳的第二类样本,其中第一类样本为常量样本或静脉血,第二类样本为微量样本或末梢血。
在一些备选的实施例中,样本量检测装置7可以是一对对射型光电传感器7a和7b,如图37所示。由于第一类样本容器91和第二类样本容器92(或93)由透明的玻璃或塑料制成,在样本容器内没有血样的区域,对射型光电传感器的发光管发出的光可以透过样本容器被对射型光电传感器的接收管接收,而在样本容器内有血样的区域,发光管发出的光被血样遮挡,无法被接收管接收。在夹爪41夹取样本容器沿Z1上升过程中,同样可以产生如图31、图33所示的信号。然而,在采用对射型光电传感器的情况下不利的是,当样本容器表面粘贴有条码标签时,对射型光电传感器的光难以穿透标签。
在另一些备选的实施例中,样本量检测装置7可以是图像传感器,例如灰度图像传感器或彩色图像传感器,优选为彩色图像传感器。通过图像传感器拍摄样本容器的照片并对该照片进行算法识别,可以获取样本容器中样本量的多少。通过设置合理的阈值,将样本容器中容纳的样本区分为第一量样本和第二量样本。然而同样地,采用图像传感器会受到样本容器表面粘贴的条码标签所影响,当样本容器表面粘贴有条码标签时,图像传感器将无法拍摄到容器中的样本。
在一些实施例中,样本架90可以构造用于仅容纳用于装载第一类样本的样本容器(例如第一类样本容器91)或用于装载第二类样本的样本容器(例如第二类样本容器92或93)。因此可以通过不同的样本架来区分静脉血样本和末梢血样本,从而确定后续的处理方式。然而,在该情况下,如果用户将样本放在错误的样本架上时(比如将静脉血样本放置在末梢血样本架上或将末梢血样本放置在静脉血样本架上时)会带来风险,因此通过样本量检测装置7来检测样本架90上的各个样本容器中的样本的类型,以便确认样本架90上的样本容器没有放错,提高样本分析仪的安全性。
因此,在上述实施例中,为了区分不同的样本架,样本分析仪1还包括用于识别样本架的类型的样本架识别装置9,该样本架识别装置与控制装置30通信连接。控制装置30进一步配置用于从样本架识别装置9获取样本架识别信息,并根据样本量检测装置7测得的样本信息和样本架识别信息来控制样本处理装置50的动作,例如控制混匀装置4、5的动作。
具体地,控制装置30可以配置用于在根据样本量检测装置7测得的样本信息控制样本处理装置50的处理动作和/或确定样本处理装置50是否实施处理动作时执行下列步骤:
从样本架识别装置9获取样本架识别信息;
如果所述样本信息与所述样本架识别信息匹配且均表明所述样本容器装载有第一类样本(第一类样本容器91),则控制所述样本处理装置50用第一处理条件来处理所述样本容器中的样本;
如果所述样本信息与所述样本架识别信息匹配且均表明所述样本容器装载有第二类样本(第二类样本容器92、93),则控制所述样本处理装置50用不同于第一处理条件的第二处理条件来处理所述样本容器中的样本;
如果所述样本信息与所述样本架识别信息不匹配,则控制所述样本处理装置50不对该样本容器中的样本进行处理。
可以理解的,“样本信息与样本架识别信息匹配”表示,根据样本信息可知当前样本容器中装载有第一类样本(或第二类样本),并且根据样本架识别信息可知,当前样本容器所在的样本架是用于容纳用于装载第一类样本(或第二类样本)的样本容器的样本架。“样本信息与样本架识别信息不匹配”表示,根据样本信息可知当前样本容器中装载有第一类样本(或第二类样本),并且根据样本架识别信息可知,当前样本容器所在的样本架是用于容纳用于装载第二类样本(或第一类样本)的样本容器 的样本架。
可以理解的,第一处理条件和第二处理条件在上面已经详细描述,在此不再赘述。
例如,控制装置30可以进一步配置用于在根据样本量检测装置7测得的样本信息控制混匀装置4、5的动作时执行下列步骤:
从样本架识别装置9获取样本架识别信息;
如果所述样本信息与样本架识别信息匹配且均表明样本容器装载有第一类样本,则控制第一混匀部件4对样本容器中的样本进行混匀;
如果所述样本信息与根据样本架识别信息匹配且均表明样本容器装载有第二类样本,则控制第一混匀部件4将样本容器移动到第二混匀部件5中,并且然后控制第二混匀部件5对样本容器中的样本进行混匀;
如果所述样本信息与所述样本架识别信息不匹配,则控制第一混匀部件4直接将样本容器搬运回到样本架90上,而不再对该样本容器中的样本进行混匀。
在此,将容纳第一类样本容器91或者第一类样本(静脉血样本)的样本架称为第一类样本架,将容纳第二类样本容器92(或93)或者第二类样本(末梢血样本)的样本架称为第二类样本架。
第一类样本架和第二类样本架可以在外观上有所区分,例如可以在形状、颜色、标签等方面有所区分。
优选的,第一类样本架和第二类样本架具有颜色区别,比如第一类样本架为米白色,而第二类样本架为粉红色。所述颜色区别可以是样本架的整体颜色的区别,也可以是样本架的局部颜色(比如说样本架的顶面颜色或侧面颜色)的区别。所述样本架颜色可以通过调配注塑材料的颜色实现,也可以是在样本架上粘贴有颜色的标签。
备选的,第一类样本架和第二类样本架还可以通过透明和有色进行区分,比如第一类样本架为米白色,而第二类样本架为透明的。
备选的,第一类样本架和第二类样本架还可以通过形状进行区分,比如第一类样本架和第二类样本架高度设计成不同。
可选的,样本架识别装置可以是颜色或色标传感器,或者是视觉传感器,又或者是光电传感器。通过传感器来检测样本架的颜色、形状等信息来区分当前样本架是第一类样本架还是第二类样本架。
可选的,控制装置30可以进一步配置用于,如果所述样本信息与所述样本架识别信息不匹配,则输出报警提示,例如声音报警或震动报警或在样本分析仪1的显示屏2上显示报警提示。
进一步地,除了输出报警提示之外,控制装置30可以配置用于,在控制第一混匀部件4将该样本容器搬运回到样本架90后控制样本架运送装置3直接将样本架90从样本分析区P中运出。也就是说,当样本架类型和样本类型不匹配时,除了不对当前样本进行处理,还可以将整排样本架推出不做,但继续后面样本架的测量;或者还可以将整排样本架推出不做,并且结束自动进样,即后续的样本架也不处理。
此外,本发明第一方面不仅适用于自动进样的检测流程,而且也适用于封闭进样(也可以称为手动进样)的检测流程。不同于现有技术中需要具有两个固定孔(一个用于放置常量样本容器,另一个用于放置微量样本容器)的封闭进样仓,本发明实施例的样本容器容纳装置可以具有仅一个样本容器容置孔,用于接收手动放入的样本容器。样本容器容纳装置和电容传感器这样设置在样本分析仪1中,使得电容传感器的检测面面向容纳于样本容器容纳装置中的样本容器并能对该样本容器的样本信息进行检测。
在一个实施例中,如图38所示,控制装置30至少包括处理组件31、RAM32、ROM33、通信接口34、存储器36和I/O接口35,其中,处理组件31、RAM32、ROM33、通信接口34、存储器36和I/O接口35通过总线17进行通信。
处理组件31可以为CPU,GPU或其它具有运算能力的芯片。
存储器36中装有操作系统和应用程序等供处理器组件31执行的各种计算机程序及执行该计算机程序所需的数据。另外,在控制过程中,如有需要本地存储的数据,均可以存储到存储器36中。
I/O接口35由比如USB、IEEE1394或RS-232C等串行接口、SCSI、IDE或IEEE1284等并行接口以及由D/A转换器和A/D转换器等组成的模拟信号接口构成。I/O接口35上连接有由键盘、鼠标、触摸屏或其它控制按钮构成的输入设备,用户可以用输入设备直接向控制装置30输入数据。另外,I/O接口35上还可以连接由具有显示功能的显示器,例如:液晶屏、触摸屏、LED显示屏等,控制装置30可以将处理的数据以图像显示数据输出到显示器上进行显示。
通信接口34是可以是目前已知的任意通信协议的接口。通信接口34通过网络与外界进行通信。控制装置30可以通过通信接口34以一定的通信协议,与通过该网连接的任意装置之间传输数据。
此外,如图39所示,本发明第二方面还提供了另一种样本分析仪1',包括样本架、样本架运送装置3'、样本处理装置、样本架识别装置9'、样本识别装置7'以及控制装置30'。样本架设置用于装载多个样本容器,每个样本容器用于装载样本。样本架运送装置3'设置用于在样本分析区P'中运送所述样本架。样本处理装置设置用于对在样本分析区P'中的样本架上的样本容器中的样本进行处理。样本架识别装置9'设置用于识别所述样本架的类型。样本识别装置7'设置用于识别所述样本容器的类型或所述样本容器所装载的样本的类型。
在发明第二方面提供的样本分析仪1'中,控制装置30'配置用于:
如果所述样本架的类型与所述样本容器的类型或所述样本容器所装载的样本的类型匹配,则控制所述样本处理装置对所述样本容器中的样本进行处理;
如果所述样本架的类型与所述样本容器的类型或所述样本容器所装载的样本的类型不匹配,则控制所述样本处理装置不对所述样本容器中的样本进行处理。
在本发明第二方面提供的样本分析仪1'中,通过不同的样本架来区分静脉血样本和末梢血样本,但是可能存在用户将样本放错样本架的风险,因此通过增加样本容器类型或样本类型的检测来确认样本架上放置的样本容器是否正确,通过判断样本架类型与样本容器类型或样本类型是否匹配来决定是否继续后面的操作流程,当样本架类型与样本容器类型或样本类型不匹配时,说明用户放错了样本架,此时仪器不对当前样本进行处理,可选地进行报警提示。由此能够消除由于用户将样本放错样本架所带来的风险。
可以理解的,“样本架类型与样本容器类型或样本类型匹配”表示,当前样本架为用于容纳第一类样本容器(或第二类样本容器)的样本架,当前样本容器为第一类样本容器(或第二类样本容器);或者当前样本架为用于容纳用于装载第一类样本(或第二类样本)的样本容器的样本架,当前样本容器中装载的样本为第一类样本(或第二类样本)。“样本架类型与样本容器类型或样本类型不匹配”表示,当前样本架为用于容纳第一类样本容器(或第二类样本容器)的样本架,当前样本容器为第二类样本容器(或第一类样本容器);或者当前样本架为用于容纳用于装载第一类样本(或第二类样本)的样本容器的样本架,当前样本容器中装载的样本为第二类样本(或第一类样本)。
进一步地,控制装置30'可以配置用于:
如果所述样本架的类型与所述样本容器的类型或所述样本容器所装载的样本的类型不匹配,则输出报警提示;和/或跳过对所述样本容器的后续处理和检测;和/或控制所述样本架运送装置3'直接将所述样本架从所述样本分析区P'中运出。
在一些实施例中,样本识别装置7'布置在样本分析区P'之外。样本分析仪还包 括样本容器搬运装置4',该样本容器搬运装置设置用于将样本架上的样本容器从该样本架中提出并移动到样本识别装置7'的检测范围内,以便样本识别装置7'能识别该样本容器的类型或所述样本容器所装载的样本的类型。
在一些实施例中,样本识别装置7'为电容传感器或对射式光电传感器或图像传感器,如以上所描述的,在此不再赘述。
在一些备选的实施例中,如图39至41所示,样本识别装置为反射式光电传感器并且布置在样本分析区P'之外。优选的,样本识别装置可以是检测距离可调的小光斑的激光反射式传感器。例如,第一混匀部件4'的夹爪41'夹取样本架上固定的第一类样本容器91或第二类样本容器92并沿Z1方向上升,然后所述第一混匀部件4'的夹爪41'夹取第一类样本容器91或第二类样本容器92沿R1方向摆动一定角度,使得第一类样本容器91或第二类样本容器92底部朝向反射式光电传感器7'。
如图40所示,反射式光电传感器7'发出的激光光束由于光斑较小,可以进入第二类样本容器92下部存在一个半开放式的空腔921b,照射在空腔顶部921c上并反射光束,反射式光电传感器7'的检测面到第二类样本容器92反射面的距离为h2。如图41所示,反射式光电传感器7'发出的激光光束照射在容器底部911c上并反射光束,反射式光电传感器7'的检测面到第一类样本容器91反射面的距离为h1。显然有h1<h2。将反射式光电传感器7'的检测距离设为h1和h2的平均值,则反射式光电传感器7'可以检出第一类样本容器91,无法检出第二类样本容器92。如此,通过反射式光电传感器可以区分样本容器是第一类样本容器91还是第二类样本容器92,进而区分样本容器中的样本是第一类样本还是第二类样本。但该方案的局限是无法区分第一类样本容器91和第二类样本容器93。
本发明第二方面提供的样本分析仪1'的其他实施例及其优点,包括但不限于样本架运送装置3'、样本处理装置、样本架识别装置9'、样本识别装置7'、第一处理条件、第二处理条件等的其他细节,可参考上述对本发明第一方面提供的样本分析仪1的描述,在此不再赘述。
本发明第三方面还提供另一种样本分析仪,包括样本架、样本架运送装置、样本处理装置、样本识别装置、样本容器搬运装置以及控制装置。样本架,设置用于装载多个样本容器,每个样本容器用于装载样本。样本架运送装置设置用于在样本分析区中运送所述样本架。样本处理装置设置用于对在所述样本分析区中的样本架上的样本容器中的样本进行处理。样本识别装置设置用于识别所述样本容器的类型或所述样本容器所装载的样本的类型并且设置在所述样本分析区之外。样本容器搬运装置,设置用于将所述样本架上的样本容器从该样本架中提出并移动到所述样本识别装置的检测范围内。控制装置,设置用于,根据所述样本容器的类型或所述样本容器所装载的样本的类型控制所述样本处理装置对该样本容器中的样本的处理动作,和/或确定所述样本处理装置是否实施处理动作。
在样本分析区之外能够更加灵活地布置样本识别装置,使得样本分析仪的其他部分不会干扰样本识别装置的检测。
在一些实施例中,样本识别装置可以为电容传感器或对射式光电传感器或反射式光电传感器或图像传感器。优选地,样本识别装置为电容传感器,如上面对本发明第一方面的描述的那样。
本发明第三方面提供的样本分析仪的其他实施例及其优点可参考上述对本发明第一方面和第二方面提供的样本分析仪的描述,在此不再赘述。
本发明第四方面提供一种样本分析方法,该样本分析方法可应用于本发明第一方面提供的样本分析仪1。如图42所示,该样本分析方法500包括:
步骤S510,控制装置30控制样本架运送装置3在样本分析区P中运送样本架90,所述样本架90上容纳有装载样本的样本容器;
步骤S520,利用样本量检测装置7以不接触样本的方式检测所述样本容器中的样本的样本量或样本位置;
步骤S530,控制装置30从样本量检测装置7获取所述样本容器的样本信息,所述样本信息包括样本量信息和样本位置信息中的至少一种;
步骤S540,控制装置30根据所述样本信息控制样本处理装置50的处理动作或确定样本处理装置50是否实施处理动作。
由此,通过检测样本容器中的样本的样本量或样本位置能够可靠地识别样本容器类型或样本类型,而无需针对样本容器设计特殊的结构,而且能够适应各种不同的样本容器。
在一些实施例中,样本量检测装置7构造为电容传感器7,例如参考以上对本发明第一方面的样本分析仪1的描述。进一步地,电容传感器固定设置在样本分析仪中,使得所述样本分析仪的金属部件不干扰所述电容传感器的检测,或者使得所述样本分析仪的金属部件不在所述电容传感器的检测范围内。
在一些实施例中,如图43所示,步骤S540包括:
步骤S541a,如果所述样本信息表明所述样本容器装载有第一类样本,则控制所述样本处理装置用第一处理条件来处理所述样本容器中的样本;
步骤S542a,如果所述样本信息表明所述样本容器装载有第二类样本,则控制所述样本处理装置用不同于第一处理条件的第二处理条件来处理所述样本容器中的样本,其中,所述第一类样本和所述第二类样本的区别在于样本量不同和样本位置不同中的至少一种。
在一些备选的实施例中,如图44所示,在步骤S540之前,所述方法还包括:
步骤S550,利用样本架识别装置识别所述样本架的类型以获取样本架识别信息。
相应地,步骤S540包括:
步骤S541b,如果所述样本信息与所述样本架识别信息匹配且均表明所述样本容器装载有第一类样本,则控制装置控制样本处理装置用第一处理条件来处理所述样本容器中的样本;
步骤S542b,如果所述样本信息与所述样本架识别信息匹配且均表明所述样本容器装载有第二类样本,则控制装置控制样本处理装置用不同于第一处理条件的第二处理条件来处理所述样本容器中的样本,其中,所述第一类样本和所述第二类样本的区别在于样本量不同和样本位置不同中的至少一种;
步骤S543b,如果所述样本信息与所述样本架识别信息不匹配,则控制装置控制样本处理装置不对该样本容器中的样本进行处理,可选地输出报警提示。
由此,在使用不同样本架来放置不同样本容器或不同样本的情况下,能够通过对比样本量检测装置与样本架识别装置的信息来识别出用户在样本架上放错样本的错误,以降低样本检测的风险。
在一些实施例中,所述样本处理装置包括彼此独立的第一混匀部件和第二混匀部件,所述第一处理条件包括用所述第一混匀部件对所述样本容器中的样本进行混匀,所述第二处理条件包括用所述第二混匀部件对所述样本容器中的样本进行混匀。
进一步地,所述第一类样本的量大于所述第二类样本的量,所述第一处理条件包括用所述第一混匀部件对所述样本容器中的样本进行颠倒混匀,所述第二处理条件包括用所述第二混匀部件对所述样本容器中的样本进行旋转混匀。
备选的或附加的,所述样本处理装置包括具有吸样针的吸样装置,所述第一处理条件包括使所述吸样针下降第一距离以采集所述样本容器中的样本,所述第二处理条件包括使所述吸样针下降第二距离以采集所述样本容器中的样本,其中,当所述第一类样本的量大于所述第二类样本的量时,所述第一距离大于所述第二距离。
此外备选的或附加的,所述第一处理条件包括使所述吸样针从所述样本容器中吸 取第一样本量,所述第二处理条件包括使所述吸样针从所述样本容器中吸取第二样本量,当所述第一类样本的量大于所述第二类样本的量时,所述第一样本量大于所述第二样本量。
在一些实施例中,样本量检测装置7、尤其是电容传感器7设置在样本分析区P之外。其中,步骤S520包括:控制装置控制样本容器搬运装置将样本架上的样本容器从该样本架中提出并移动到样本量检测装置7、尤其是电容传感器7的检测范围内,以便所述电容传感器检测所述样本容器中的样本的样本量或样本位置。
在一些实施例中,所述样本处理装置包括彼此独立的第一混匀部件和第二混匀部件。其中,步骤S520包括:控制装置控制第一混匀部件作为样本容器搬运装置将样本架上的样本容器从该样本架中提出并移动到样本量检测装置7、尤其是电容传感器7的检测范围内。相应地,步骤S540包括:控制装置根据所述样本信息控制第一混匀部件或第二混匀部件的动作。
具体地,在一些实施例中,所述控制装置根据所述样本信息控制所述第一混匀部件或第二混匀部件的动作,包括:
步骤S541c,如果所述样本信息表明所述样本容器装载有第一类样本,则控制装置控制第一混匀部件对所述样本容器中的样本进行混匀;
步骤S542c,如果所述样本信息表明所述样本容器装载有第二类样本,则控制装置控制第一混匀部件将所述样本容器移动到第二混匀部件中,并且然后控制第二混匀部件对所述样本容器中的样本进行混匀,其中,所述第一类样本容器和所述第二类样本容器分别用于装载不同类型的样本或用于装载不同量的样本。
在另一些实施例中,在步骤S540之前,所述方法还包括:S550,利用样本架识别装置识别所述样本架的类型以获取样本架识别信息。
相应地,步骤S540包括:
步骤S541d,如果所述样本信息与所述样本架识别信息匹配且均表明所述样本容器装载有第一类样本,则控制装置控制第一混匀部件对所述样本容器中的样本进行混匀;
步骤S542d,如果所述样本信息与所述样本架识别信息匹配且均表明所述样本容器装载有第二类样本容器,则控制装置控制第一混匀部件将所述样本容器移动到第二混匀部件中,并且然后控制第二混匀部件对所述样本容器中的样本进行混匀,其中,所述第一类样本容器和所述第二类样本容器分别用于装载不同类型的样本或用于装载不同量的样本;
步骤S543d,如果所述样本信息与所述样本架识别信息不匹配,则控制装置控制第一混匀部件直接将所述样本容器搬运回到所述样本架上,而不再对该样本容器中的样本进行混匀。
本发明第四方面提供的样本分析方法的其他细节及优点可参考以上对本发明第一方面提供的样本分析仪1的描述,在此不再赘述。
本发明第五方面提供了另一种样本分析方法,该样本分析方法可应用于本发明第二方面提供的样本分析仪。如图45所示,该样本分析方法600包括:
步骤S610,控制装置控制样本架运送装置在样本分析区中运送样本架,所述样本架上容纳有装载样本的样本容器;
步骤S620,利用样本架识别装置识别所述样本架的类型;
步骤S630,利用样本识别装置识别所述样本容器的类型或所述样本容器所装载的样本的类型;
步骤S640,如果所述样本架的类型与所述样本容器的类型或所述样本容器所装载的样本的类型匹配,则控制装置控制样本处理装置对所述样本容器中的样本进行处理;
步骤S650,如果所述样本架的类型与所述样本容器的类型或所述样本容器所装载的样本的类型不匹配,则控制装置控制样本处理装置不对所述样本容器中的样本进行处理。
通过样本分析方法600,能够防止由于用户将样本容器放置在了错误类型的样本架上而导致仪器发生故障或者输出错误的结果。
可以理解地,步骤S620和步骤S630的先后顺序不作限定。比如通过扫码部件8作为样本架识别装置获取样本架类型,扫码部件8对应扫码位置P4设置,样本识别装置7对应样本量检测位置P3设置。样本量检测位置P3可以位于扫码位置P4之后、之前或者与扫码位置P4重合。
在样本分析方法600中,控制装置判断样本架类型和该样本架上的样本容器类型或样本类型是否匹配。所谓匹配,是指第一类样本架100上放置的是第一类样本容器91或第一类样本,第二类样本架101上放置的是第二类样本容器92(93)或第二类样本。当样本架类型和该样本架上的样本容器类型或样本类型不匹配时,实施步骤S650,样本分析仪1报错并不对该样本进行处理(例如跳过该样本不处理,但继续处理后面的样本);当样本架类型和该样本架上的样本容器类型或样本类型匹配时,实施步骤S640。
在步骤S640中,控制装置控制混匀装置、吸样装置、样本制备部件、检测部件、分析部件按照该样本架定义的类型对该样本架上样本进行处理。
一个示例性的流程如图46所示。
在步骤S710中,判断当前样本架是第一类样本架还是第二类样本架,若是第一类样本架,则跳到步骤S720;若是第二类样本架,则跳到步骤S730。
在步骤S720中,按照第一处理条件处理该样本架上的样本。其中第一处理条件可以包括下列之一:
采用第一混匀部件4混匀该样本;
使吸样装置6的电机63按照第一电流驱动吸样针61向下移动插入样本容器中,其中,第一电流较大,可为电机63提供较大驱动力,使得吸样针61刺破样本容器的帽体进入样本容器内腔;
使吸样针61吸移第一吸移量的样本;
样本制备部件按照第一稀释比稀释样本,和/或按照第一比例混合样本和试剂,和/或使样本和试剂反应第一时间,以制备待测试样;
检测部件检测第一检测量的待测试样;
分析部件按照第一分析条件分析检测部件测得的检测数据。
在步骤S730中,按照不同于第一处理条件的第二处理条件处理该样本架上的样本。其中第二处理条件相应地可以包括下列之一:
采用第二混匀部件5混匀该样本;
使吸样装置6的电机63按照小于第一电流的第二电流驱动吸样针61向下移动插入样本容器中,其中,第二电流较小,仅能为电机63提供较小驱动力,由于第二类样本容器92或93为无帽体的容器或者有帽体但帽体开了贯通的十字槽,电机63不需要多大的驱动力就可以使吸样针61进入第二类样本容器92或93内腔,当吸样针61向下运动至抵接到第二类样本容器92或93的内腔底部时,吸样针61发生堵转,较小的电流可以避免吸样针或管体发生损伤;
使吸样针61吸移少于第一吸样量的第二吸移量的样本;
样本制备部件按照大于第一稀释比的第二稀释比稀释该样本,和/或按照第二比例混合该样本和试剂,在第二比例中,试剂占比大于第一比例,和/或使样本和试剂反应比第一时间长的第二时间;
检测部件检测多于第一检测量的第二检测量的待测试样;
分析部件按照不同于第一分析条件的第二分析条件分析检测部件测得的检测数据。
此外,在一些实施例中,样本识别装置设置在样本分析区P之外。其中,步骤S630包括:
所述控制装置控制样本容器搬运装置将所述样本架上的样本容器从该样本架中提出并移动到所述样本识别装置的检测范围内,以便所述样本识别装置识别该样本容器的类型。
本发明第五方面提供的样本分析方法的其他细节及优点可参考以上对本发明第一方面和第二方面提供的样本分析仪的描述,在此不再赘述。
本发明第六方面提供了另一种样本分析方法,该样本分析方法可应用于本发明第三方面提供的样本分析仪。如图47所示,该样本分析方法800包括:
步骤S810,控制装置控制样本架运送装置在样本分析区中运送样本架,所述样本架上容纳有装载样本的样本容器;
步骤S820,所述控制装置控制样本容器搬运装置将所述样本架上的样本容器从该样本架中提出并移动到设置于所述样本分析区之外的样本识别装置的检测范围内;
步骤S830,利用样本识别装置识别样本容器的类型或所述样本容器中的样本的类型;
步骤S840,控制装置根据所述样本容器的类型或所述样本容器中的样本的类型控制样本处理装置的处理动作或确定所述样本处理装置是否实施处理动作。
本发明第五方面提供的样本分析方法的其他细节及优点可参考以上对本发明第一方面至第三方面提供的样本分析仪的描述,在此不再赘述。
以上在说明书、附图以及权利要求书中提及的特征或者特征组合,只要在本发明的范围内是有意义的并且不会相互矛盾,均可以任意相互组合使用或者单独使用。针对本发明实施例提供的样本分析仪所说明的优点和特征以相应的方式适用于本发明实施例提供的样本分析方法,反之亦然。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是在本发明的发明构思下,利用本发明说明书及附图内容所作的等效结构变换,或直接/间接运用在其他相关的技术领域均包括在本发明的专利保护范围内。

Claims (39)

  1. 一种样本分析仪,其特征在于,包括:
    样本容器容纳装置,设置用于容纳样本容器,所述样本容器用于装载样本;
    电容传感器,设置用于以不接触样本的方式检测所述样本容器中的样本的样本量或样本位置;
    样本处理装置,设置用于对所述样本容器中的样本进行处理;
    控制装置,与所述电容传感器和所述样本处理装置通信连接,并且配置用于:
    从所述电容传感器获取所述样本容器的样本信息,所述样本信息包括样本量信息和样本位置信息中的至少一种,以及
    根据所述样本信息控制所述样本处理装置的处理动作和/或确定所述样本处理装置是否实施处理动作。
  2. 根据权利要求1所述的样本分析仪,其特征在于,所述电容传感器固定设置在所述样本分析仪中,使得所述样本分析仪的金属部件不干扰所述电容传感器的检测,或者使得所述样本分析仪的金属部件不在所述电容传感器的检测范围内。
  3. 根据权利要求1或2所述的样本分析仪,其特征在于,所述电容传感器为电容式接近传感器。
  4. 根据权利要求1至3中任一项所述的样本分析仪,其特征在于,所述电容传感器为阈值可调的电容传感器。
  5. 根据权利要求1至4中任一项所述的样本分析仪,其特征在于,所述控制装置进一步配置用于在根据所述样本信息控制所述样本处理装置的处理动作时执行下列步骤:
    如果所述样本信息表明所述样本容器装载有第一类样本,则控制所述样本处理装置用第一处理条件来处理所述样本容器中的样本;
    如果所述样本信息表明所述样本容器装载有第二类样本,则控制所述样本处理装置用不同于第一处理条件的第二处理条件来处理所述样本容器中的样本,其中,所述第一类样本和所述第二类样本的区别在于样本量不同和样本位置不同中的至少一种。
  6. 根据权利要求1至5中任一项所述的样本分析仪,其特征在于,所述样本容器容纳装置构造为能容纳多个用于装载第一类样本的样本容器或用于装载第二类样本的样本容器的样本架,其中,所述第一类样本和所述第二类样本的区别在于样本量不同和样本位置不同中的至少一种;
    所述样本分析仪还包括用于识别所述样本架的类型的样本架识别装置,该样本架识别装置与所述控制装置通信连接;以及
    所述控制装置进一步配置用于在根据所述样本信息控制所述样本处理装置的处理动作和/或确定所述样本处理装置是否实施处理动作时执行下列步骤:
    从所述样本架识别装置获取样本架识别信息,
    如果所述样本信息与所述样本架识别信息匹配且均表明所述样本容器装载有第一类样本,则控制所述样本处理装置用第一处理条件来处理所述样本容器中的样本;
    如果所述样本信息与所述样本架识别信息匹配且均表明所述样本容器装载有第二类样本,则控制所述样本处理装置用不同于第一处理条件的第二处理条件来处理所述样本容器中的样本;
    如果所述样本信息与所述样本架识别信息不匹配,则控制所述样本处理装置不对该样本容器中的样本进行处理。
  7. 根据权利要求6所述的样本分析仪,其特征在于,所述控制装置进一步配置用于:
    如果所述样本信息与所述样本架识别信息不匹配,则输出报警提示。
  8. 根据权利要求5至7中任一项所述的样本分析仪,其特征在于,所述第一类样本为静脉血样本,所述第二类样本为末梢血样本。
  9. 根据权利要求5至8中任一项所述的样本分析仪,其特征在于,所述样本处理装置包括彼此独立的第一混匀部件和第二混匀部件,所述第一处理条件包括用所述第一混匀部件对所述样本容器中的样本进行混匀,所述第二处理条件包括用所述第二混匀部件对所述样本容器中的样本进行混匀。
  10. 根据权利要求9所述的样本分析仪,其特征在于,所述第一类样本的量大于所述第二类样本的量,所述第一混匀部件构造为通过摆动的方式对样本容器中的样本进行颠倒混匀,而所述第二混匀部件构造为通过旋转的方式对样本容器中的样本进行旋转混匀。
  11. 根据权利要求10所述的样本分析仪,其特征在于,所述样本处理装置包括具有吸样针的吸样装置,所述第一处理条件包括使所述吸样针从所述样本容器中吸取第一样本量,所述第二处理条件包括使所述吸样针从所述样本容器中吸取第二样本量,所述第一样本量大于所述第二样本量。
  12. 根据权利要求11所述的样本分析仪,其特征在于,所述第一处理条件包括使所述吸样针下降第一距离以采集所述样本容器中的样本,所述第二处理条件包括使所述吸样针下降第二距离以采集所述样本容器中的样本,其中,所述第一距离大于所述第二距离。
  13. 根据权利要求1至12中任一项所述的样本分析仪,其特征在于,所述样本分析仪还包括设有样本量检测位置和混匀位置的样本分析区,所述样本处理装置包括混匀装置;
    所述样本容器容纳装置构造为能容纳多个样本容器的样本架,所述样本分析仪还包括与所述控制装置通信连接的样本架运送装置,所述样本架运送装置设置用于在所述样本分析区中运送所述样本架,使得所述样本架上的各个样本容器依次到达所述样本量检测位置和所述混匀位置;
    所述混匀装置设置用于对所述样本架上处于所述混匀位置的样本容器中的样本进行混匀;
    所述电容传感器固定设置在所述样本分析区中,使得所述电容传感器的检测面面向所述样本架上处于所述样本量检测位置的样本容器并能对该样本容器的样本信息进行检测。
  14. 根据权利要求13所述的样本分析仪,其特征在于,所述样本分析仪还包括与所述控制装置通信连接的样本容器搬运装置,所述样本容器搬运装置设置用于将所述样本架上处于所述样本量检测位置的样本容器从该样本架中提出;
    所述电容传感器具有第一检测状态和第二检测状态,在所述第一检测状态下所述电容传感器检测到的电容变化值大于等于预设电容变化阈值,在所述第二检测状态下所述电容传感器检测到的电容变化值小于所述预设电容变化阈值;以及
    所述电容传感器固定设置在所述样本分析区中,使得在所述样本容器搬运装置将所述样本架上处于所述样本量检测位置的样本容器提出的过程中所述电容传感器至少从第一检测状态变化到第二检测状态,其中,所述样本信息包括所述第一检测状态的持续时间和/或所述第一检测状态变化到第二检测状态的变化时刻。
  15. 根据权利要求1至12中任一项所述的样本分析仪,其特征在于,所述样本分析仪还包括设有样本量检测位置和混匀位置的样本分析区,所述样本处理装置包括混匀装置;
    所述样本容器容纳装置构造为能容纳多个样本容器的样本架,所述样本分析仪还包括与所述控制装置通信连接的样本架运送装置,所述样本架运送装置设置用于在所述样本分析区中运送所述样本架,使得所述样本架上的各个样本容器依次到达所述样本量检测位置和所述混匀位置;
    所述混匀装置设置用于对所述样本架上处于所述混匀位置的样本容器中的样本进行混匀;
    所述电容传感器布置在所述样本分析区之外;以及
    所述样本分析仪还包括样本容器搬运装置,所述样本容器搬运装置设置用于将所述样本架上处于所述样本量检测位置的样本容器从该样本架中提出并移动到所述电容传感器的检测范围内,以便所述电容传感器能检测所述样本容器中的样本的样本量或样本位置。
  16. 根据权利要求15所述的样本分析仪,其特征在于,所述样本架构造为能容纳用于装载第一类样本的样本容器和用于装载第二类样本的样本容器中的至少一种,其中,所述第一类样本和所述第二类样本的区别在于样本量不同和样本位置不同中的至少一种;
    所述样本量检测位置与所述混匀位置设置在同一位置,所述混匀装置包括第一混匀部件和第二混匀部件,所述第一混匀部件用于对所述第一类样本进行混匀并且还用作所述样本容器搬运装置,所述第二混匀部件用于对所述第二类样本进行混匀;
    所述控制装置进一步配置用于:
    控制所述样本架运送装置运送所述样本架,使得所述样本架上的各个样本容器依次到达所述混匀位置,
    控制所述第一混匀部件将所述样本架上处于所述混匀位置的样本容器从该样本架中提出并移动到所述电容传感器的检测范围内,
    从所述电容传感器中获取所述样本容器的样本信息,
    根据所述样本信息控制所述混匀装置的动作。
  17. 根据权利要求16所述的样本分析仪,其特征在于,所述控制装置进一步配置用于在根据所述样本信息控制所述混匀装置的动作时执行下列步骤:
    如果所述样本信息表明所述样本架上处于所述混匀位置的样本容器装载有第一类样本,则控制所述第一混匀部件对所述样本容器中的样本进行混匀;
    如果所述样本信息表明所述样本架上处于所述混匀位置的样本容器装载有第二类样本,则控制所述第一混匀部件将所述样本容器移动到所述第二混匀部件中,并且然后控制所述第二混匀部件对所述样本容器中的样本进行混匀。
  18. 根据权利要求16所述的样本分析仪,其特征在于,所述样本分析仪还包括用于识别所述样本架的类型的样本架识别装置,该样本架识别装置与所述控制装置通信连接;以及
    所述控制装置进一步配置用于在根据所述样本信息控制所述混匀装置的动作时执行下列步骤:
    从所述样本架识别装置获取样本架识别信息,
    如果所述样本信息与所述样本架识别信息匹配且均表明所述样本容器装载有第一类样本,则控制所述第一混匀部件对所述样本容器中的样本进行混匀,
    如果所述样本信息与所述样本架识别信息匹配且均表明所述样本容器装载有第二类样本,则控制所述第一混匀部件将所述样本容器移动到所述第二混匀部件中,并 且然后控制所述第二混匀部件对所述样本容器中的样本进行混匀,
    如果所述样本信息与所述样本架识别信息不匹配,则控制所述第一混匀部件不再对该样本容器中的样本进行混匀。
  19. 根据权利要求1至5中任一项所述的样本分析仪,其特征在于,所述样本容器容纳装置具有仅一个样本容器容置孔;
    所述样本容器容纳装置和所述电容传感器这样设置在所述样本分析仪中,使得所述电容传感器的检测面面向容纳于所述样本容器容纳装置中的样本容器并能对该样本容器的样本信息进行检测。
  20. 一种样本分析仪,包括:
    样本架,设置用于装载多个样本容器,每个样本容器用于装载样本;
    样本架运送装置,设置用于在样本分析区中运送所述样本架;
    样本处理装置,设置用于对在所述样本分析区中的样本架上的样本容器中的样本进行处理;
    样本架识别装置,设置用于识别所述样本架的类型;
    样本识别装置,设置用于识别所述样本容器的类型或所述样本容器中的样本的类型;
    控制装置,配置用于:
    如果所述样本架的类型与所述样本容器的类型或所述样本容器中的样本的类型匹配,则控制所述样本处理装置对所述样本容器中的样本进行处理,
    如果所述样本架的类型与所述样本容器的类型或所述样本容器中的样本的类型不匹配,则控制所述样本处理装置不对所述样本容器中的样本进行处理。
  21. 根据权利要求20所述的样本分析仪,其特征在于,所述控制装置进一步配置用于:
    如果所述样本架的类型与所述样本容器的类型或所述样本容器中的样本的类型不匹配,则输出报警提示;和/或跳过对所述样本容器的后续处理和检测;和/或控制所述样本架运送装置直接将所述样本架从所述样本分析区中运出。
  22. 根据权利要求20或21所述的样本分析仪,其特征在于,所述样本识别装置为电容传感器或对射式光电传感器或反射式光电传感器或图像传感器。
  23. 根据权利要求20至22中任一项所述的样本分析仪,其特征在于,所述样本识别装置布置在所述样本分析区之外;以及
    所述样本分析仪还包括样本容器搬运装置,所述样本容器搬运装置设置用于将所述样本架上的样本容器从该样本架中提出并移动到所述样本识别装置的检测范围内,以便所述样本识别装置能识别该样本容器的类型或所述样本容器中的样本的类型。
  24. 一种样本分析仪,包括:
    样本架,设置用于装载多个样本容器,每个样本容器用于装载样本;
    样本架运送装置,设置用于在样本分析区中运送所述样本架;
    样本处理装置,设置用于对在所述样本分析区中的样本架上的样本容器中的样本进行处理;
    样本识别装置,设置用于识别所述样本容器的类型或所述样本容器中的样本的类型并且设置在所述样本分析区之外;
    样本容器搬运装置,设置用于将所述样本架上的样本容器从该样本架中提出并移动到所述样本识别装置的检测范围内;
    控制装置,配置用于,根据所述样本容器的类型或所述样本容器中的样本的类型 控制所述样本处理装置的处理动作,和/或确定所述样本处理装置是否实施处理动作。
  25. 一种样本分析方法,包括:
    控制装置控制样本架运送装置在样本分析区中运送样本架,所述样本架上容纳有装载样本的样本容器;
    利用电容传感器以不接触样本的方式检测所述样本容器中的样本的样本量或样本位置;
    所述控制装置从所述电容传感器中获取所述样本容器的样本信息,所述样本信息包括样本量信息和样本位置信息中的至少一种;
    所述控制装置根据所述样本信息控制样本处理装置的处理动作和/或确定所述样本处理装置是否实施处理动作。
  26. 根据权利要求25所述的样本分析方法,其特征在于,所述控制装置根据所述样本信息控制样本处理装置的处理动作和/或确定所述样本处理装置是否实施处理动作,包括:
    如果所述样本信息表明所述样本容器装载有第一类样本,则控制所述样本处理装置用第一处理条件来处理所述样本容器中的样本;
    如果所述样本信息表明所述样本容器装载有第二类样本,则控制所述样本处理装置用不同于第一处理条件的第二处理条件来处理所述样本容器中的样本,其中,所述第一类样本和所述第二类样本的区别在于样本量不同和样本位置不同中的至少一种。
  27. 根据权利要求25或26所述的样本分析方法,其特征在于,在所述控制装置根据所述样本信息控制样本处理装置的处理动作和/或确定所述样本处理装置是否实施处理动作之前,所述方法还包括:
    利用样本架识别装置识别所述样本架的类型以获取样本架识别信息;
    所述控制装置根据所述样本信息控制样本处理装置的处理动作和/或确定所述样本处理装置是否实施处理动作,包括:
    如果所述样本信息与所述样本架识别信息匹配且均表明所述样本容器装载有第一类样本,则所述控制装置控制所述样本处理装置用第一处理条件来处理所述样本容器中的样本;
    如果所述样本信息与所述样本架识别信息匹配且均表明所述样本容器装载有第二类样本,则所述控制装置控制所述样本处理装置用不同于第一处理条件的第二处理条件来处理所述样本容器中的样本,其中,所述第一类样本和所述第二类样本的区别在于样本量不同和样本位置不同中的至少一种;
    如果所述样本信息与所述样本架识别信息不匹配,则所述控制装置控制所述样本处理装置不对该样本容器中的样本进行处理。
  28. 根据权利要求27所述的样本分析方法,其特征在于,所述方法还包括:
    如果所述样本信息与所述样本架识别信息不匹配,则输出报警提示。
  29. 根据权利要求26至28中任一项所述的样本分析方法,其特征在于,所述样本处理装置包括彼此独立的第一混匀部件和第二混匀部件,所述第一处理条件包括用所述第一混匀部件对所述样本容器中的样本进行混匀,所述第二处理条件包括用所述第二混匀部件对所述样本容器中的样本进行混匀。
  30. 根据权利要求29所述的样本分析仪,其特征在于,所述第一类样本的量大于所述第二类样本的量,所述第一处理条件包括用所述第一混匀部件对所述样本容器中的样本进行颠倒混匀,所述第二处理条件包括用所述第二混匀部件对所述样本容器中的样本进行旋转混匀。
  31. 根据权利要求30所述的样本分析方法,其特征在于,所述样本处理装置包括具有吸样针的吸样装置,所述第一处理条件包括使所述吸样针从所述样本容器中吸取第一样本量,所述第二处理条件包括使所述吸样针从所述样本容器中吸取第二样本量,所述第一样本量大于所述第二样本量。
  32. 根据权利要求25至31中任一项所述的样本分析方法,其特征在于,所述电容传感器设置在所述样本分析区之外;
    其中,利用电容传感器以不接触样本的方式检测所述样本容器中的样本的样本量或样本位置,包括:
    所述控制装置控制样本容器搬运装置将所述样本架上的样本容器从该样本架中提出并移动到所述电容传感器的检测范围内,以便所述电容传感器检测所述样本容器中的样本的样本量或样本位置。
  33. 根据权利要求32所述的样本分析方法,其特征在于,所述样本处理装置包括彼此独立的第一混匀部件和第二混匀部件;
    其中,利用电容传感器以不接触样本的方式检测所述样本容器中的样本的样本量或样本位置,包括:
    所述控制装置控制所述第一混匀部件作为所述样本容器搬运装置将所述样本架上的样本容器从该样本架中提出并移动到所述电容传感器的检测范围内;
    所述控制装置根据所述样本信息控制样本处理装置的处理动作和/或确定所述样本处理装置是否实施处理动作,包括:
    所述控制装置根据所述样本信息控制所述第一混匀部件或第二混匀部件的动作。
  34. 根据权利要求33所述的样本分析方法,其特征在于,所述控制装置根据所述样本信息控制所述第一混匀部件或第二混匀部件的动作,包括:
    如果所述样本信息表明所述样本容器装载有第一类样本,则所述控制装置控制所述第一混匀部件对所述样本容器中的样本进行混匀;
    如果所述样本信息表明所述样本容器装载有第二类样本,则所述控制装置控制所述第一混匀部件将所述样本容器移动到所述第二混匀部件中,并且然后控制所述第二混匀部件对所述样本容器中的样本进行混匀,其中,所述第一类样本和所述第二类样本的区别在于样本量不同和样本位置不同中的至少一种。
  35. 根据权利要求33所述的样本分析方法,其特征在于,在所述控制装置根据所述样本信息控制样本处理装置的处理动作和/或确定所述样本处理装置是否实施处理动作之前,所述方法还包括:利用样本架识别装置识别所述样本架的类型以获取样本架识别信息;
    所述控制装置根据所述样本信息控制样本处理装置的处理动作和/或确定所述样本处理装置是否实施处理动作,包括:
    如果所述样本信息与所述样本架识别信息匹配且均表明所述样本容器装载有第一类样本,则所述控制装置控制所述第一混匀部件对所述样本容器中的样本进行混匀,
    如果所述样本信息与所述样本架识别信息匹配且均表明所述样本容器装载有第二类样本,则所述控制装置控制所述第一混匀部件将所述样本容器移动到所述第二混匀部件中,并且然后控制所述第二混匀部件对所述样本容器中的样本进行混匀,其中,所述第一类样本和所述第二类样本的区别在于样本量不同和样本位置不同中的至少一种,
    如果所述样本信息与所述样本架识别信息不匹配,则所述控制装置控制所述第一混匀部件不再对该样本容器中的样本进行混匀。
  36. 一种样本分析方法,包括:
    控制装置控制样本架运送装置在样本分析区中运送样本架,所述样本架上容纳有装载样本的样本容器;
    利用样本架识别装置识别所述样本架的类型;
    利用样本识别装置识别所述样本容器的类型或所述样本容器中的样本的类型;
    如果所述样本架的类型与所述样本容器的类型或所述样本容器中的样本的类型匹配,则所述控制装置控制样本处理装置对所述样本容器中的样本进行处理;
    如果所述样本架的类型与所述样本容器的类型或所述样本容器中的样本的类型不匹配,则所述控制装置控制所述样本处理装置不对所述样本容器中的样本进行处理。
  37. 根据权利要求36所述的样本分析方法,其特征在于,所述方法还包括:
    如果所述样本架的类型与所述样本容器的类型或所述样本容器中的样本的类型不匹配,则输出报警提示。
  38. 根据权利要求36或37所述的样本分析方法,其特征在于,所述样本识别装置在所述样本分析区之外;
    其中,所述利用样本识别装置识别所述样本容器的类型,包括:
    所述控制装置控制样本容器搬运装置将所述样本架上的样本容器从该样本架中提出并移动到所述样本识别装置的检测范围内,以便所述样本识别装置识别该样本容器的类型。
  39. 一种样本分析仪方法,包括:
    控制装置控制样本架运送装置在样本分析区中运送样本架,所述样本架上容纳有装载样本的样本容器;
    所述控制装置控制样本容器搬运装置将所述样本架上的样本容器从该样本架中提出并移动到设置于所述样本分析区之外的样本识别装置的检测范围内;
    利用所述样本识别装置识别所述样本容器的类型或所述样本容器中的样本的类型;
    所述控制装置根据所述样本容器的类型或所述样本容器中的样本的类型控制样本处理装置的处理动作和/或确定所述样本处理装置是否实施处理动作。
PCT/CN2020/100272 2020-07-03 2020-07-03 样本分析仪以及样本分析方法 WO2022000511A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/100272 WO2022000511A1 (zh) 2020-07-03 2020-07-03 样本分析仪以及样本分析方法
CN202080102457.7A CN115867810A (zh) 2020-07-03 2020-07-03 样本分析仪以及样本分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/100272 WO2022000511A1 (zh) 2020-07-03 2020-07-03 样本分析仪以及样本分析方法

Publications (1)

Publication Number Publication Date
WO2022000511A1 true WO2022000511A1 (zh) 2022-01-06

Family

ID=79315057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100272 WO2022000511A1 (zh) 2020-07-03 2020-07-03 样本分析仪以及样本分析方法

Country Status (2)

Country Link
CN (1) CN115867810A (zh)
WO (1) WO2022000511A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114460320A (zh) * 2022-04-14 2022-05-10 深圳市帝迈生物技术有限公司 样本分析仪及其样本检测流程
CN117391113A (zh) * 2023-12-08 2024-01-12 广州泛美实验室系统科技股份有限公司 样本自动化处理方法以及实验室自动化流水线

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262731A (en) * 1991-04-18 1993-11-16 Olympus Optical Co., Ltd. Liquid level detector
EP0694784A1 (en) * 1994-07-28 1996-01-31 Hitachi, Ltd. Liquid sampling apparatus
DE19736178C1 (de) * 1997-08-13 1999-01-28 Ifak Inst Fuer Automation Und Vorrichtung zur Erfassung von Phasengrenzen in Fluiden
CN102445248A (zh) * 2010-10-05 2012-05-09 株式会社堀场制作所 试样液体计量装置
CN102735860A (zh) * 2011-04-15 2012-10-17 深圳迈瑞生物医疗电子股份有限公司 一种体液检验流水线工作站样本处理方法、装置及系统
WO2015056649A1 (ja) * 2013-10-17 2015-04-23 株式会社日立ハイテクノロジーズ 検体検査自動化システムおよび容量チェックモジュールならびに生体試料のチェック方法
CN109142762A (zh) * 2018-07-04 2019-01-04 深圳迈瑞生物医疗电子股份有限公司 一种样本管理方法、系统及计算机可读存储介质
CN109490562A (zh) * 2018-10-22 2019-03-19 迪瑞医疗科技股份有限公司 一种样本架传送系统
CN110873809A (zh) * 2018-08-31 2020-03-10 深圳市帝迈生物技术有限公司 样本分析仪、自动进样装置以及进样控制方法
CN110927397A (zh) * 2018-10-23 2020-03-27 深圳迈瑞生物医疗电子股份有限公司 一种样本分析仪、样本分析方法及存储介质
CN110967504A (zh) * 2018-09-30 2020-04-07 深圳迈瑞生物医疗电子股份有限公司 一种分析仪及其样本回收方法、存储介质

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5262731A (en) * 1991-04-18 1993-11-16 Olympus Optical Co., Ltd. Liquid level detector
EP0694784A1 (en) * 1994-07-28 1996-01-31 Hitachi, Ltd. Liquid sampling apparatus
DE19736178C1 (de) * 1997-08-13 1999-01-28 Ifak Inst Fuer Automation Und Vorrichtung zur Erfassung von Phasengrenzen in Fluiden
CN102445248A (zh) * 2010-10-05 2012-05-09 株式会社堀场制作所 试样液体计量装置
CN102735860A (zh) * 2011-04-15 2012-10-17 深圳迈瑞生物医疗电子股份有限公司 一种体液检验流水线工作站样本处理方法、装置及系统
WO2015056649A1 (ja) * 2013-10-17 2015-04-23 株式会社日立ハイテクノロジーズ 検体検査自動化システムおよび容量チェックモジュールならびに生体試料のチェック方法
CN109142762A (zh) * 2018-07-04 2019-01-04 深圳迈瑞生物医疗电子股份有限公司 一种样本管理方法、系统及计算机可读存储介质
CN110873809A (zh) * 2018-08-31 2020-03-10 深圳市帝迈生物技术有限公司 样本分析仪、自动进样装置以及进样控制方法
CN110967504A (zh) * 2018-09-30 2020-04-07 深圳迈瑞生物医疗电子股份有限公司 一种分析仪及其样本回收方法、存储介质
CN109490562A (zh) * 2018-10-22 2019-03-19 迪瑞医疗科技股份有限公司 一种样本架传送系统
CN110927397A (zh) * 2018-10-23 2020-03-27 深圳迈瑞生物医疗电子股份有限公司 一种样本分析仪、样本分析方法及存储介质

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114460320A (zh) * 2022-04-14 2022-05-10 深圳市帝迈生物技术有限公司 样本分析仪及其样本检测流程
CN114460320B (zh) * 2022-04-14 2022-06-21 深圳市帝迈生物技术有限公司 样本分析仪及其样本检测流程
CN117391113A (zh) * 2023-12-08 2024-01-12 广州泛美实验室系统科技股份有限公司 样本自动化处理方法以及实验室自动化流水线
CN117391113B (zh) * 2023-12-08 2024-03-29 广州泛美实验室系统科技股份有限公司 样本自动化处理方法以及实验室自动化流水线

Also Published As

Publication number Publication date
CN115867810A (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
US10261016B2 (en) Specimen analyzing method and specimen analyzing apparatus
JP5178830B2 (ja) 自動分析装置
US8721966B2 (en) Chemical analyzer, method for dispensing and dilution cup
US8329101B2 (en) Sample analyzer
JP4938082B2 (ja) 洗浄装置、吸引ノズルの詰り検知方法及び自動分析装置
WO2022000511A1 (zh) 样本分析仪以及样本分析方法
JP4938083B2 (ja) 洗浄装置、洗浄ノズルの詰り検知方法及び自動分析装置
US20150268230A1 (en) Analyzer, and method of detection liquid level in an analyzer
JP7177596B2 (ja) 検体測定装置及び検体測定方法
WO2007129741A1 (ja) 自動分析装置
WO2020037671A1 (zh) 血样分析仪、血样分析方法及计算机存储介质
JP5583337B2 (ja) 自動分析装置及びその分注方法
EP3926345A1 (en) Sample rack, adaptor for sample rack, and automatic analysis device
JP5941692B2 (ja) 自動分析装置
JPH11304797A (ja) 生化学自動分析装置
JP5336555B2 (ja) 検体分析装置
JP4045211B2 (ja) 自動分析装置
JPH02243960A (ja) 分析装置の分注器操作方式
JPH0729465U (ja) 生化学自動分析装置
JP6251068B2 (ja) 自動分析装置及び自動分析システム
JP2003254983A (ja) 液面検知装置及びこれを用いた自動分析装置
JPH08101216A (ja) 自動分析装置
JP4221337B2 (ja) 自動分析装置
WO2022176556A1 (ja) 自動分析装置、および自動分析装置における検体の吸引方法
JP2011007697A (ja) 自動分析装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20943403

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20943403

Country of ref document: EP

Kind code of ref document: A1