WO2021261412A1 - Method for producing polyester film, polyester film, laminated film - Google Patents

Method for producing polyester film, polyester film, laminated film Download PDF

Info

Publication number
WO2021261412A1
WO2021261412A1 PCT/JP2021/023294 JP2021023294W WO2021261412A1 WO 2021261412 A1 WO2021261412 A1 WO 2021261412A1 JP 2021023294 W JP2021023294 W JP 2021023294W WO 2021261412 A1 WO2021261412 A1 WO 2021261412A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyester film
polyester
particle
heat
Prior art date
Application number
PCT/JP2021/023294
Other languages
French (fr)
Japanese (ja)
Inventor
佑記 福岡
享春 永尾
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202180044770.4A priority Critical patent/CN115943032A/en
Priority to KR1020227044060A priority patent/KR20230011388A/en
Priority to JP2022531954A priority patent/JP7428798B2/en
Publication of WO2021261412A1 publication Critical patent/WO2021261412A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0021Combinations of extrusion moulding with other shaping operations combined with joining, lining or laminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/91Heating, e.g. for cross linking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material

Definitions

  • the present invention relates to a method for manufacturing a polyester film, a polyester film, and a laminated film.
  • Biaxially oriented polyester films are used in a wide range of applications from the viewpoints of processability, mechanical properties, electrical properties, dimensional stability, transparency, chemical resistance, etc., for example, decorative films and dry films. It is used in various applications such as a support for a photoresist, a protective film, a magnetic tape, and a release film used for producing a ceramic green sheet for manufacturing a laminated ceramic capacitor.
  • Patent Document 1 describes a biaxially oriented polyester film in which a slippery resin layer having an average thickness of 3 to 80 nm is laminated on the opposite side of a resist-coated surface, which does not contain particles having an average particle size of more than 40 nm.
  • a polyester film for a photoresist in which a 10-point average roughness (SRz), haze, static friction coefficient ( ⁇ s), and heat shrinkage stress at 150 ° C. on the slippery resin layer side of the polyester film are specified.
  • the present inventors further investigated a method for producing a polyester film having a particle-containing layer with reference to the technique described in Patent Document 1, and found that a functional layer was formed on a biaxially oriented polyester film to form a laminated film.
  • a liquid composition for example, a coating liquid
  • a coating liquid is applied to the surface of the biaxially oriented polyester film and heat-treated, even though unevenness or wrinkles are not visible before the functional layer is formed.
  • uneven thickness of the functional layer may occur in the laminated film after the functional layer is formed.
  • Such uneven thickness of the functional layer is, for example, in a decorative film having a decorative layer as the functional layer, the uneven thickness of the decorative layer is expressed as color unevenness, which may reduce the visibility of the decorative film. .. Further, if the thickness unevenness occurs in other functional layers, it may affect the characteristics or appearance of the laminated film having functionality.
  • an object of the present invention to provide a method for producing a polyester film capable of further suppressing the thickness unevenness of the functional layer provided on the surface of the polyester film.
  • Another object of the present invention is to provide a polyester film and a laminated film capable of further suppressing the thickness unevenness of the functional layer provided on the surface.
  • a polyester base material having an expansion step of expanding the heat-relaxed polyester film in the width direction, and a particle-containing layer containing particles on at least one surface of the polyester base material.
  • the polyester film was heat-treated for 20 seconds under the condition that the temperature of the film surface was 90 ° C. while transporting under the conditions of a transport speed of 30 m / min and a tension of 100 N / m in the transport direction.
  • a polyester film in which the total area of streaky defect regions observed in is 40% or less of the total area of the observed region.
  • the particles contained in the particle-containing layer are resin particles, or the particles contained in the particle-containing layer are inorganic particles, and the maximum mountain height Rp of at least one surface of the polyester film is 5 to 200 nm. , [8] to [15].
  • the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
  • the amount of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. ..
  • process is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. .. In the present disclosure, a combination of two or more preferred embodiments is a more preferred embodiment.
  • the description of a mere “polyester film” includes both a polyester base material alone and a laminate of a polyester base material and a particle-containing layer.
  • the "longitudinal direction” means the elongated direction of the polyester film at the time of manufacturing the polyester film, and is synonymous with the "transport direction” and the “mechanical direction”.
  • the "width direction” means a direction orthogonal to the longitudinal direction.
  • “orthogonal” is not limited to strict orthogonality, but includes substantially orthogonality. “Approximately orthogonal” means intersecting at 90 ° ⁇ 5 °, preferably 90 ° ⁇ 3 °, and more preferably 90 ° ⁇ 1 °.
  • the "film width” means the distance between both ends of the polyester film in the width direction.
  • the polyester film according to the present disclosure (hereinafter, also referred to as "the present film”) has at least a polyester base material and a particle-containing layer on the surface of at least one of the polyester base materials and containing particles.
  • the thickness of the polyester film is less than 50 ⁇ m, and the area of the streak defect region observed in the heat-treated polyester film described later is 40 with respect to the total area of the observation region. % Or less.
  • the film has a polyester substrate and a particle-containing layer on at least one surface of the substrate.
  • the particle-containing layer may be formed on only one surface of the polyester base material, or may be formed on both sides of the polyester base material.
  • each of the polyester base material and the particle-containing layer will be described in more detail.
  • the polyester base material is a film-like object containing polyester as a main polymer component.
  • the "main polymer component” means the polymer having the highest content (mass) among all the polymers contained in the film.
  • the polyester base material may contain one kind of polyester alone or may contain two or more kinds of polyesters.
  • Polyester is a polymer having an ester bond in the main chain. Polyester is usually formed by polycondensing a dicarboxylic acid compound and a diol compound, which will be described later.
  • the polyester is not particularly limited, and known polyesters can be used. Examples of the polyester include polyethylene terephthalate (PET), polyethylene-2,6-naphthalate (PEN), polypropylene terephthalate (PPT), polybutylene terephthalate (PBT) and copolymers thereof, and among them, polyethylene. At least one selected from the group consisting of terephthalate (PET), polyethylene-2,6-naphthalate (PEN), and polymers thereof is preferable, and PET is more preferable.
  • the intrinsic viscosity of the polyester is preferably 0.50 dl / g or more and less than 0.80 dl / g, and more preferably 0.55 dl / g or more and less than 0.70 dl / g.
  • the melting point (Tm) of the polyester is preferably 220 to 270 ° C, more preferably 245 to 265 ° C.
  • the glass transition temperature (Tg) of polyester is preferably 65 to 90 ° C, more preferably 70 to 85 ° C.
  • polyester can be produced by polycondensing at least one dicarboxylic acid compound and at least one diol compound in the presence of a catalyst.
  • the catalyst used for producing the polyester is not particularly limited, and a known catalyst that can be used for synthesizing the polyester can be used.
  • the catalyst include alkali metal compounds (for example, potassium compounds and sodium compounds), alkaline earth metal compounds (for example, calcium compounds and magnesium compounds), zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, and antimony compounds.
  • alkali metal compounds for example, potassium compounds and sodium compounds
  • alkaline earth metal compounds for example, calcium compounds and magnesium compounds
  • zinc compounds for example, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, and antimony compounds.
  • examples thereof include compounds, titanium compounds, germanium compounds and phosphorus compounds. Of these, titanium compounds are preferable from the viewpoint of catalytic activity and cost. Only one type of catalyst may be used, or two or more types may be used in combination.
  • At least one metal catalyst selected from potassium compound, sodium compound, calcium compound, magnesium compound, zinc compound, lead compound, manganese compound, cobalt compound, aluminum compound, antimony compound, titanium compound, germanium compound, and phosphorus compound. It is preferable to use in combination, and it is more preferable to use a titanium compound and a phosphorus compound in combination.
  • the titanium compound an organic chelated titanium complex is preferable.
  • the organic chelated titanium complex is a titanium compound having an organic acid as a ligand.
  • the organic acid include citric acid, lactic acid, trimellitic acid, and malic acid.
  • the titanium compound the titanium compounds described in paragraphs 0049 to 0053 of Japanese Patent No. 5575671 can also be used, and the contents of the above publication are incorporated in the present specification.
  • the dicarboxylic acid compound is preferably a dicarboxylic acid or a dicarboxylic acid ester, and examples thereof include an aliphatic dicarboxylic acid compound, an alicyclic dicarboxylic acid compound, an aromatic dicarboxylic acid compound, and a methyl ester compound or an ethyl ester compound thereof. .. Of these, aromatic dicarboxylic acid or methyl aromatic dicarboxylic acid is more preferable.
  • Examples of the aliphatic dicarboxylic acid compound include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecandionic acid, dimer acid, eicosandionic acid, pimelic acid, azelaic acid, and methylmalonic acid. And ethylmalonic acid.
  • Examples of the alicyclic dicarboxylic acid compound include adamantandicarboxylic acid, norbornenedicarboxylic acid, cyclohexanedicarboxylic acid, and decalindicarboxylic acid.
  • aromatic dicarboxylic acid compound examples include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 1,8-naphthalenedicarboxylic acid.
  • dicarboxylic acid compound Only one type of dicarboxylic acid compound may be used, or two or more types may be used in combination.
  • terephthalic acid When terephthalic acid is used as the dicarboxylic acid compound, terephthalic acid may be used alone, or it may be copolymerized with another aromatic dicarboxylic acid such as isophthalic acid or an aliphatic dicarboxylic acid.
  • diol compound examples include an aliphatic diol compound, an alicyclic diol compound, and an aromatic diol compound, and an aliphatic diol compound is preferable.
  • Examples of the aliphatic diol compound include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, and neo. Examples thereof include pentyl glycol, and ethylene glycol is preferable. Examples of the alicyclic diol compound include cyclohexanedimethanol, spiroglycol, and isosorbide. Examples of the aromatic diol compound include bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, and 9,9'-bis (4-hydroxyphenyl) fluorene. Only one kind of diol compound may be used, or two or more kinds may be used in combination.
  • an end-capping agent may be used if necessary.
  • the end sealant By using the end sealant, a structure derived from the end sealant is introduced into the end of the polyester.
  • the terminal encapsulant a known end encapsulant can be used without limitation. Examples of the terminal encapsulant include oxazoline compounds, carbodiimide compounds, and epoxy compounds.
  • the terminal encapsulant the contents described in paragraphs 0055 to 0064 of JP-A-2014-189002 can also be referred to, and the contents of the above-mentioned publication are incorporated in the present specification.
  • the reaction temperature is not limited and may be appropriately set according to the raw material.
  • the reaction temperature is preferably 260 to 300 ° C, more preferably 275 to 285 ° C.
  • the pressure is not limited and may be set appropriately according to the raw material.
  • the pressure is preferably 1.33 ⁇ 10 -3 to 1.33 ⁇ 10 -5 MPa, more preferably 6.67 ⁇ 10 -4 to 6.67 ⁇ 10 -5 MPa.
  • the polyester content in the polyester base material is preferably 85% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, still more preferably 98% by mass, based on the total mass of the polymer in the polyester base material.
  • the above is particularly preferable.
  • the upper limit of the polyester content is not limited and can be appropriately set within a range of 100% by mass or less with respect to the total mass of the polymer in the polyester substrate.
  • the content of polyethylene terephthalate is preferably 90 to 100% by mass, more preferably 95 to 100% by mass, and 98 to 90 to the total mass of the polyester in the polyester base material. 100% by mass is more preferable, and 100% by mass is particularly preferable.
  • the polyester base material may contain components other than polyester (for example, catalyst, unreacted raw material component, water, etc.).
  • the polyester substrate preferably contains substantially no particles.
  • substantially free of particles means that the content of particles is a polyester group when the elements derived from the particles are quantitatively analyzed by fluorescent X-ray analysis for both the polyester base material and the particle-containing layer. It is defined as 50 mass ppm or less with respect to the total mass of the material, preferably 10 mass ppm or less, and more preferably the detection limit or less. This means that even if particles are not actively added to the base film, contamination components derived from foreign substances or stains adhering to the raw material resin or the line or device in the manufacturing process of the film are peeled off and into the film. This is because it may be mixed.
  • the thickness of the polyester base material is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, still more preferably 40 ⁇ m or less, in that an increase in haze value can be suppressed.
  • the lower limit of the thickness is not particularly limited, but 3 ⁇ m or more is preferable, 4 ⁇ m or more is more preferable, and 10 ⁇ m or more is further preferable, in terms of improving the strength and the workability.
  • the thickness of the polyester base material is measured according to the method for measuring the thickness of the polyester film described later.
  • the particle-containing layer is a layer containing particles and is formed on at least one surface of a polyester substrate.
  • the present film can improve the transportability by having a particle-containing layer. More specifically, it is possible to improve the winding quality (suppress blocking), suppress the occurrence of scratches and defects during transport, and reduce transport wrinkles.
  • the particle-containing layer may be provided directly on the surface of the polyester base material or may be provided on the surface of the polyester base material via another layer, but the particle-containing layer may be provided directly on the surface of the polyester base material in terms of better adhesion. It is preferable to provide it.
  • Examples of the particles contained in the particle-containing layer include organic particles and inorganic particles. Among them, inorganic particles are preferable from the viewpoint of further improving film winding quality, haze, and durability (for example, thermal stability).
  • As the organic particles resin particles are preferable.
  • Examples of the resin constituting the resin particles include acrylic resins such as polymethyl methacrylate resin (PMMA), polyester resins, silicone resins, and styrene-acrylic resins.
  • the resin particles preferably have a crosslinked structure.
  • Examples of the resin particles having a crosslinked structure include divinylbenzene crosslinked particles having a crosslinked structure derived from divinylbenzene (for example, divinylbenzene / styrene copolymer crosslinked particles).
  • Resin particles are preferable from the viewpoint of suppressing transfer marks.
  • the inorganic particles include silica particles (silicon dioxide particles), titania particles (titanium oxide particles), calcium carbonate, barium sulfate, and alumina particles (aluminum oxide particles).
  • the inorganic particles are preferably silica particles from the viewpoint of further improving haze and durability.
  • the shape of the particles is not particularly limited, and examples thereof include rice granules, spheres, cubes, spindles, scales, agglutinates, and indefinite shapes.
  • the aggregated state means a state in which the primary particles are aggregated.
  • the shape of the aggregated particles is not limited, but a spherical or irregular shape is preferable.
  • the particle-containing layer it is preferable to form a coating liquid having at least one of aggregated particles and non-aggregated particles by in-line coating.
  • the agglomerated particles mean particles that are in the agglomerated state in the coating liquid
  • the non-aggregating particles mean particles that are not in the agglomerated state in the coating liquid.
  • fumed silica particles are preferably mentioned.
  • examples of commercially available products include Aerosil series manufactured by Nippon Aerosil Co., Ltd.
  • Preferred examples of the non-aggregated particles include colloidal silica particles.
  • examples of commercially available products include the Snowtex series manufactured by Nissan Chemical Industries, Ltd.
  • the particle-containing layer may contain one type of particles alone or may contain two or more types of particles.
  • the particle content is preferably 0.01 to 20% by mass, preferably 0.5 to 15% by mass, based on the total mass of the particle-containing layer from the viewpoint of improving the winding quality of the film and suppressing transfer defects. Is more preferable, and 1 to 10% by mass is further preferable.
  • the content of the particles is preferably 0.0001 to 0.01% by mass, more preferably 0.0005 to 0.005% by mass, based on the total mass of the polyester film.
  • the particle-containing layer preferably contains particles P having an average particle diameter of 10 nm or more and less than 1 ⁇ m in terms of improving winding quality and suppressing transfer failure.
  • the average particle size of the particles P is preferably 0.03 ⁇ m or more in that the winding quality can be further improved.
  • the average particle size of the particles P is preferably 0.4 ⁇ m or less, more preferably 0.25 ⁇ m or less, in that transfer failure can be further suppressed. Further, in one embodiment, it is preferable that the average particle size of the particles P is larger than the thickness of the particle-containing layer in terms of improving the transportability and the winding quality.
  • the particle-containing layer preferably contains particles P having an average particle size of 10 nm or more and less than 1 ⁇ m and an average particle size larger than the thickness of the particle-containing layer.
  • the particle-containing layer contains two or more kinds of particles having different particle sizes
  • at least one kind of two or more kinds of particles having different particle sizes is particles P, and transfer failure and winding quality are further improved. From this viewpoint, it is more preferable that the particle-containing layer contains two or more kinds of particles P having different particle diameters.
  • the average particle size of the particles contained in the particle-containing layer can be determined by the following method using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). That is, the cross section of the particle-containing layer is observed by SEM or TEM, and the area of each particle is measured using image software for all the particles existing in the field of view of 3 ⁇ m ⁇ 4 ⁇ m, and the diameter of the circle having the same area. (Area circle equivalent diameter) is calculated, and the calculated average value of the obtained area circle equivalent diameter is used as the average particle diameter of the particles.
  • the particle size (secondary particle size) of the secondary particles in the agglomerated state shall be measured.
  • the particle-containing layer contains two or more kinds of particles having different particle diameters
  • two or more peaks having different particle diameters can be seen in the distribution of the area equivalent circle diameter measured by the above measuring method.
  • the average value of the area circle equivalent diameter is calculated for each peak. Therefore, the average particle size shall be calculated for each particle with a different particle size.
  • the particle-containing layer may contain one type of single particle P, or may contain two or more types of particle P.
  • the content of the particles P may be the same as the content of the above-mentioned particles, including the preferred embodiment thereof.
  • the particle-containing layer preferably contains particles having a small average particle diameter (hereinafter, also referred to as “particle P1”) from the viewpoint of transparency and transfer failure.
  • particle P1 particles having a small average particle diameter
  • the particle-containing layer preferably contains particles having an average particle diameter of 100 nm or less, and more preferably particles having an average particle diameter of 70 nm or less, as the particles P1.
  • the lower limit of the particles P1 is not particularly limited, but 10 nm or more is preferable from the viewpoint of further improving the winding quality.
  • the particle P1 may be used alone or in combination of two or more.
  • the content of the particles P1 varies depending on the purpose and / or use of the polyester film, but is preferably 0.01 to 20% by mass, more preferably 0.5 to 15% by mass, based on the total mass of the particle-containing layer. 1 to 10% by mass is more preferable.
  • the particle-containing layer preferably contains particles having a large average particle diameter (hereinafter, also referred to as “particle P2”) from the viewpoint of improving the winding quality.
  • particle P2 a large average particle diameter
  • the particle-containing layer preferably contains particles having an average particle diameter of more than 100 nm as the particles P2.
  • the upper limit of the particles P2 is not particularly limited, but is preferably less than 1 ⁇ m, more preferably 400 nm or less, still more preferably 250 nm or less, from the viewpoint of further improving transfer failure and winding quality.
  • the particles P2 may be aggregated particles or non-aggregated particles, but are preferably aggregated particles from the viewpoint of transfer failure.
  • the aggregated particles as the particles P2 preferably have an average secondary particle diameter of more than 100 nm. Further, as the agglomerated particles, it is preferable that particles having an average primary particle diameter of 100 nm or less are agglomerated. When aggregated particles having an average primary particle diameter of 100 nm or less and having an average secondary particle diameter of more than 100 nm are used, the desired Rp is obtained especially when a particle-containing layer is formed by in-line coating. It is possible to improve transfer failure and winding quality.
  • the particles P2 may be used alone or in combination of two or more.
  • the content of the particles P2 varies depending on the purpose and / or use of the polyester film, but is preferably 0.01 to 15% by mass, more preferably 0.05 to 10% by mass, based on the total mass of the particle-containing layer. It is more preferably 0.1 to 5% by mass.
  • the particle-containing layer preferably contains at least one kind of particle P1 and at least one kind of particle P2 from the viewpoint of further improving transfer failure and winding quality.
  • the particles contained in the particle-containing layer can be appropriately selected depending on the purpose and / or use.
  • the support When used as a support for a dry film resist for forming a fine pattern, the support may have pattern defects if particles are scattered when exposed through the support. High transparency is required.
  • the content of the particles P1 is preferably 50 to 100% by mass, preferably 70 to 100% by mass, based on the total content of all the particles contained in the particle-containing layer. Is more preferable. In this case, the balance is preferably particles P2.
  • the content of the particles P2 is preferably 10 to 100% by mass, preferably 10 to 50% by mass, based on the total content of all the particles contained in the particle-containing layer. Is more preferable, and 10 to 30% by mass is further preferable. In this case, the balance is preferably particles P1.
  • the particle-containing layer preferably contains a binder.
  • a resin binder is preferable.
  • the resin binder include polyacrylic acid, polyurethane, polyester and polyolefin.
  • the polyacrylic acid is not limited as long as it is a polymer having a structural unit derived from at least one compound selected from the group consisting of an acrylic acid ester and a methacrylic acid ester, and known polyacrylic acid can be used.
  • Polyacrylic acid may have a structural unit derived from a compound other than the acrylic acid ester and the methacrylic acid ester (for example, an olefin compound and a styrene compound).
  • the polyurethane is not limited as long as it is a polymer having a urethane bond, and known polyurethane can be used. Polyurethane is usually produced by reacting an isocyanate compound with a polyol compound.
  • polyester As the polyester, the polyester described in the above item "Polyester” can be applied, and the preferred type is also the same.
  • the polyolefin is not limited, and known polyolefins can be used. Examples of the polyolefin include polyethylene and polypropylene.
  • the particle-containing layer may contain one kind of binder alone or may contain two or more kinds of binders.
  • the content of the binder is preferably 30 to 99.8% by mass, preferably 50 to 99.5% by mass, based on the total mass of the particle-containing layer, from the viewpoint of the durability of the particle-containing layer and / or the dispersibility of the particles. Is more preferable.
  • the particle-containing layer may contain additives other than the above particles and binder.
  • Additives contained in the particle-containing layer include, for example, surfactants, waxes, cross-linking agents, antioxidants, UV absorbers, colorants, strengthening agents, plasticizers, antistatic agents, flame retardants, and rust preventives. , And antistatic agents.
  • the surfactant is not particularly limited, and examples thereof include an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant.
  • One type of surfactant may be used, or two or more types may be used in combination.
  • the content of the surfactant is preferably 0.1 to 10% by mass with respect to the total mass of the particle-containing layer.
  • the wax is not particularly limited, and may be a natural wax or a synthetic wax.
  • the natural wax include carnauba wax, candelilla wax, beeswax, montan wax, paraffin wax, and petroleum wax.
  • the slip agent described in [0087] of International Publication No. 2017/169844 can also be used.
  • the wax content is preferably 0 to 10% by mass with respect to the total mass of the particle-containing layer.
  • the cross-linking agent is not particularly limited, and known ones can be used.
  • Examples of the cross-linking agent include melamine compounds, oxazoline compounds, epoxy compounds, isocyanate compounds, and carbodiimide-based compounds, and oxazoline-based compounds and carbodiimide-based compounds are preferable.
  • Examples of commercially available products include Carbodilite V-02-L2 (manufactured by Nisshinbo Co., Ltd.) and Epocross K-2020E (manufactured by Nippon Shokubai Co., Ltd.).
  • the description of [0081] to [0083] of JP2015-163457 can be referred to.
  • the cross-linking agent described in [2002] to [0084] of International Publication No. 2017/169844 can also be preferably used.
  • the carbodiimide compound the description of [0038] to [0040] of JP-A-2017-087421 can be referred to.
  • the cross-linking agent described in [0074] to [0075] of International Publication No. 2018/034294 can also be preferably used.
  • the content of the cross-linking agent can be appropriately changed depending on the intended use, and is preferably 0 to 50% by mass with respect to the total mass of the particle-containing layer. From the viewpoint of being suitable as a support for a dry film, the content of the cross-linking agent is preferably 0.1 to 10% by mass with respect to the total mass of the particle-containing layer.
  • the thickness of the particle-containing layer may be 0.001 to 5 ⁇ m, but from the viewpoint of manufacturing suitability of the particle-containing layer and reduction of haze, 0.001 to 2.5 ⁇ m is preferable, and 0.005 to 2 9.0 ⁇ m is more preferable, 0.01 to 0.18 ⁇ m is further preferable, and 0.01 to 0.1 ⁇ m is particularly preferable.
  • the thickness of the particle-containing layer is an arithmetic average value of five thicknesses measured using a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
  • This film may have a layer other than the polyester base material and the particle-containing layer, but is preferably composed of the polyester base material and the particle-containing layer. Further, it is preferable that the present film has only one particle-containing layer formed on one surface of the polyester base material.
  • This film is a biaxially oriented polyester film.
  • "biaxial orientation” means a property having molecular orientation in the biaxial direction.
  • the molecular orientation is measured using a microwave transmission type molecular orientation meter (for example, MOA-6004, manufactured by Oji Measuring Instruments Co., Ltd.).
  • the angle formed in the biaxial direction is preferably 90 ° ⁇ 5 °, more preferably 90 ° ⁇ 3 °, and even more preferably 90 ° ⁇ 1 °.
  • This film preferably has molecular orientation in the longitudinal direction and the width direction.
  • the total area of streaky defect regions observed in the polyester film subjected to the following heat treatment is preferably 40% or less with respect to the total area of the observation region.
  • the "streak defect” means a wrinkle that extends in a streak shape along the longitudinal direction of the film and appears as unevenness in the width direction of the film.
  • the streak defects occur in the film after production, they are often wrinkles that occur irreversibly.
  • the streak defects do not occur in the heat treatment during the production of the film, but are derived from the wrinkles generated in the heat treatment for the film after the production, and the wrinkles are solidified by cooling after the heat treatment.
  • the "streak defect region” means a portion in the film surface where the streak defect has occurred.
  • the functional layer formed on the film may have uneven thickness, which may affect the characteristics or appearance of the functional layer. There is sex. Further, streak defect regions tend to be prominent when heated in a state where a tensile load is applied in the longitudinal direction of the film. On the other hand, when the total area of the streaky defect regions observed after performing the following heat treatment on the biaxially oriented polyester film is less than the above range, the thickness unevenness of the functional layer formed on the film is uneven. Can be reduced.
  • the ratio of the total area of streaky defect regions generated when heated at 90 ° C. to the total area of the observation region of the polyester film (hereinafter, also referred to as “area ratio of streak defect regions”) is 40. % Or less is preferable, 30% or less is more preferable, and 18% or less is further preferable. The smaller the value of the area ratio of the streak defect region is, the better, and the lower limit is, for example, 0%. Further, in this film, the area ratio of the streak defect region generated when heated at 120 ° C. is preferably 90% or less, more preferably 65% or less, still more preferably 40% or less. When the area ratio of the streak defect region is not more than the above range, the uneven thickness of the functional layer formed on the film can be reduced.
  • the lower limit of the area ratio of the streak defect region is not particularly limited, but the area ratio of the streak defect region generated when heated at 90 ° C. or 120 ° C. is preferably small, and there is no streak defect region, that is, 0. % Is more preferable.
  • the area ratio of the streak defect region generated when heated at each temperature of 90 ° C. and 120 ° C. is measured by the following method. (1) Using a heating and transporting device, heat the polyester film at a surface temperature of 90 ° C. or 120 ° C. while transporting the polyester film under the conditions of a transport speed of 30 m / min and a tension of 100 N / m in the transport direction. The process is performed for 20 seconds. The heating time in the heat treatment is calculated from the time when the surface temperature of the film reaches the target temperature (90 ° C. or 120 ° C.), and the film is heated for 20 consecutive seconds from there.
  • the surface temperature of the film can be measured using a non-contact thermometer (for example, a radiation thermometer).
  • the surface temperature of the film measures whether or not the temperature of the central portion, which is approximately equidistant from both ends in the width direction of the film, has reached the target temperature.
  • a heat-treated polyester film was placed on a black flat plate, and then a fluorescent lamp installed on the ceiling of the room [For example, Lupica Ace manufactured by Mitsubishi Electric Co., Ltd. (color temperature: 5000K, average color rendering index) ( The polyester film is visually observed from an angle while changing the viewpoint so that the light of Ra): 84)] is reflected.
  • the region where the reflected image of the fluorescent lamp reflected on the surface of the polyester film, which is visually observed, is undulating is defined as a streak defect region.
  • each streak defect region is counted, and the outer circumference of each streak defect region existing in the visually observed observation region (area 1 m 2) of the polyester film is marked.
  • the distance between the two parallel tangents selected so as to maximize the distance between the tangents is defined as the length L of the major axis.
  • the distance between two parallel tangents orthogonal to the two parallel tangents giving the length L and circumscribing the outer periphery of the streak defect region is measured with the length S of the minor axis. From the obtained lengths L and S, the area of each streak defect region is calculated by the following formula.
  • the ratio of the total area of the streak defect region to the total area of the observation region of the polyester film is calculated.
  • Length of the minor axis of the streak defect region S ⁇ ⁇ Area of the streak defect region
  • the streak defect region may be elliptical or circular as described above. Since there are many, the area of the streak defect region can be calculated by the calculation method of (3) above.
  • FIG. 1 shows an image (photograph) of a polyester film in which a streak defect region generated by the heat treatment of (1) above is observed.
  • the region surrounded by the solid line shown in FIG. 1 is the streak defect region.
  • an uneven shape extending in the transport (MD) direction is observed.
  • the image (photograph) shown in FIG. 1 shows only a part of the observation area.
  • the streak defect region is often elliptical or circular. Further, when a streak defect region is generated, at least one elliptical streak defect region whose long axis direction is along the transport direction often appears.
  • the cooling rate V of the polyester film in the cooling step is 2200 to 3500 ° C./min in the method for producing the polyester film, and the condition 1 described later It can be manufactured by setting the conditions of each process so as to satisfy the above conditions.
  • the expansion rate of the polyester film in the width direction at 90 ° C. and 120 ° C. is preferably ⁇ 0.15 to 0.15% with respect to the film width at 30 ° C., respectively, and is ⁇ 0.10 to 0. It is more preferably 10%, further preferably 0 to 0.10%, and particularly preferably 0 to 0.05%.
  • the coefficient of expansion in the width direction at each temperature of 90 ° C. and 120 ° C. is measured by the following method using a thermomechanical analyzer.
  • a thermomechanical analyzer for example, TMA-60, manufactured by Shimadzu Corporation
  • a tensile load of 0.1 g is applied to a sample having a width of 4 mm and a length (distance between chucks) of 20 mm.
  • a thermomechanical analyzer for example, TMA-60, manufactured by Shimadzu Corporation
  • the expansion coefficient in the width direction at each temperature of 90 ° C. and 120 ° C. is an arithmetic mean value of the expansion coefficient obtained by using five samples, respectively.
  • a positive expansion rate means expansion
  • the ratio (E120 / E90) of the expansion coefficient (E120) in the width direction at 120 ° C. to the expansion coefficient (E90) in the width direction at 90 ° C. is preferably 0 to 1.5, preferably 0 to 1.1. It is more preferably 0 to 1.05, and even more preferably 0 to 1.05.
  • E120 / E90 is within the above range, uneven thickness of the functional layer can be further suppressed.
  • the coefficient of expansion in the width direction (E90) at 90 ° C. and the coefficient of expansion in the width direction (E120) at 120 ° C. are obtained by the methods using the thermomechanical analyzer described above, respectively.
  • the expansion rate in the width direction of the polyester film can be adjusted, for example, by appropriately setting the draw ratio in the manufacturing process of the biaxially oriented film, the heat treatment temperature, and the film width during cooling.
  • the maximum mountain height Rp of the particle-containing layer surface is preferably 0.005 ⁇ m (5 nm) or more, more preferably 0.01 ⁇ m (10 nm) or more, from the viewpoint of further improving the winding quality.
  • the maximum mountain height Rp of the surface of the particle-containing layer is preferably 1 ⁇ m or less, more preferably 0.5 ⁇ m or less, and more preferably 0.25 ⁇ m (250 nm) in terms of further suppressing transfer failure. It is more preferably 0.2 ⁇ m (200 nm) or less, and particularly preferably 0.2 ⁇ m (200 nm) or less.
  • the maximum mountain height Rp of the surface of the particle-containing layer can be adjusted by adjusting the average particle diameter of the particles of the particle-containing layer and the thickness of the particle-containing layer when the particle-containing layer is formed by in-line coating.
  • the maximum mountain height Rp of the surface of the polyester film is obtained by cutting out the polyester film to prepare a test piece, measuring the surface of the obtained test piece under the following conditions using the following fine shape measuring device, and then incorporating the test piece. It is obtained by performing particle analysis (multiple levels) with the analysis software used. The measuring machine and measuring conditions are shown below. In the above measurement, the slice levels are set at equal intervals of 10 nm, the average diameter and density of each slice level are measured 5 times while changing the measurement position, and these average values are calculated to obtain the maximum mountain height Rp. The measured value of. The test piece is fixed to the sample table so that the X direction of the visual field measurement is the width direction of the polyester film.
  • ⁇ Measuring device surf-corder ET-4000A manufactured by Kosaka Laboratory ⁇ Analysis software: i-Face model TDA31 Ver2.2.0.4 JSIS ⁇ Radius of stylus tip: 0.5 ⁇ m -Measurement field of view: X direction: 380 ⁇ m, pitch: 1 ⁇ m Y direction: 280 ⁇ m, pitch: 5 ⁇ m ⁇ Needle pressure: 50 ⁇ N ⁇ Measurement speed: 0.1 mm / s ⁇ Cutoff value: Low range-0.8mm, High range-None ⁇ Leveling: Whole area ⁇ Filter: Gaussian filter (2D) ⁇ Magnification: 100,000 times ⁇ Particle analysis (multiple levels) conditions ⁇ Output content setting: Mountain particles ⁇ Hysteresis width: 5 nm ⁇ Slice level equal spacing: 10 nm
  • the density of the polyester film in view of more excellent effects of the present invention, preferably 1.39 ⁇ 1.41g / cm 3, more preferably 1.395 ⁇ 1.405g / cm 3, 1.398 ⁇ 1.400g / cm 3 is more preferred.
  • the density of the polyester film can be measured using an electronic hydrometer (product name "SD-200L", manufactured by Alpha Mirage Co., Ltd.).
  • the haze of the polyester film is preferably 1% or less, more preferably 0.5% or less, further preferably 0.4% or less, and particularly preferably 0.3% or less. The smaller the haze, the better, so the lower limit of the haze is not limited. If the lower limit of the haze is set for convenience, it is 0% or more.
  • the haze By setting the haze to the above upper limit or less, it is possible to reduce the scattering of ultraviolet rays by the polyester film, which is the support of the resist layer when the resist layer is laminated on the polyester film and then exposed to ultraviolet rays, and after development. It is possible to improve the state of the resist pattern wall surface such as distortion and omission in the patterning of the resist.
  • Haze is measured by a method according to JIS K7105 using a haze meter (for example, NDH-2000, manufactured by Nippon Denshoku Industries Co., Ltd.).
  • a haze meter for example, NDH-2000, manufactured by Nippon Denshoku Industries Co., Ltd.
  • the b * value in the L * a * b * color system is preferably 0 to 1, more preferably 0 to 0.8, further preferably 0 to 0.6, and particularly preferably 0 to 0.4. preferable.
  • the b * value in the L * a * b * color system is 0 to 1, the yellowness of the film can be reduced, so that the hue of the film can be made almost colorless.
  • the polyester film can be preferably applied, for example, in applications where high visibility is required (for example, a display device).
  • the b * value in the L * a * b * color system is measured by a transmission method using a spectral color difference meter (for example, SE-2000, manufactured by Nippon Denshoku Industries Co., Ltd.).
  • a spectral color difference meter for example, SE-2000, manufactured by Nippon Denshoku Industries Co., Ltd.
  • the thickness of the polyester film is preferably 100 ⁇ m or less, more preferably less than 50 ⁇ m, still more preferably 40 ⁇ m or less, in that an increase in haze value can be suppressed and laminating suitability can be improved.
  • the lower limit of the thickness is not particularly limited, but 3 ⁇ m or more is preferable, 5 ⁇ m or more is more preferable, and 10 ⁇ m or more is further preferable, in terms of improving the strength and the workability.
  • the thickness of the polyester film is an arithmetic mean value of the thickness of five points measured by a scanning electron microscope (SEM).
  • Examples of the method for producing this film include a method of biaxially stretching an unstretched polyester film.
  • the biaxial stretching may be simultaneous biaxial stretching in which longitudinal stretching and transverse stretching are performed at the same time, or sequential biaxial stretching in which longitudinal stretching and transverse stretching are divided into two or more stages.
  • sequential biaxial stretching include longitudinal stretching ⁇ transverse stretching, longitudinal stretching ⁇ transverse stretching ⁇ longitudinal stretching, longitudinal stretching ⁇ longitudinal stretching ⁇ transverse stretching, and transverse stretching ⁇ longitudinal stretching, longitudinal stretching ⁇ transverse stretching. Is preferable.
  • the apparatus used for biaxial stretching is not particularly limited, and a known stretching machine can be used.
  • a known stretching machine can be used.
  • an example of the stretching machine will be described with reference to the drawings.
  • FIG. 2 is a plan view showing an example of a stretching machine used for manufacturing a polyester film.
  • the stretching machine 100 shown in FIG. 2 includes a pair of annular rails 60a and 60b, and gripping members 2a to 2l attached to each annular rail and movable along the rails.
  • the annular rails 60a and 60b are arranged symmetrically with respect to each other with the film 200 interposed therebetween.
  • the stretching machine 100 can stretch the film 200 in the width direction by gripping the film 200 with the gripping members 2a to 2l and moving the gripping members 2a to 2l along the rail.
  • the stretching machine 100 has a region including a preheating section 10, a stretching section 20, a heat fixing section 30, a heat relaxing section 40, and a cooling section 50 in this order from the upstream side in the transport direction.
  • the above-mentioned region of the stretching machine 100 is divided by a windbreak curtain, and the temperature in the region can be individually adjusted by hot air or the like.
  • the preheating unit 10 is a region for preheating the film 200.
  • the stretched portion 20 is a region in which the preheated film 200 is stretched by applying tension in the direction of the arrow TD (width direction), which is a direction orthogonal to the direction of the arrow MD (longitudinal direction). As shown in FIG. 2, in the stretched portion 20, the film 200 is stretched from the width L0 to the width L1.
  • the heat fixing portion 30 is a region where the film 200 to which tension is applied is heated and heat-fixed while being tensioned.
  • the heat relaxation unit 40 is a region for heat-relaxing the tension of the heat-fixed film 200 by heating the heat-fixed film 200. As shown in FIG. 2, in the heat relaxation unit 40, the film 200 is reduced (relaxed) from the width L1 to the width L2.
  • the cooling unit 50 is a region for cooling the heat-relaxed film 200. By cooling the film 200, the shape of the film 200 can be fixed.
  • FIG. 2 shows that the width of the film 200 carried into the cooling unit 50 is L2, and the width of the film 200 carried out from the cooling unit 50 is L3.
  • the annular rail 60a is attached with gripping members 2a, 2b, 2e, 2f, 2i, and 2j that are movable along the annular rail 60a.
  • the annular rail 60b is attached with gripping members 2c, 2d, 2g, 2h, 2k, and 2l that are movable along the annular rail 60b.
  • the gripping members 2a, 2b, 2e, 2f, 2i, and 2j grip one end of the film 200 in the direction of the arrow TD.
  • the gripping members 2c, 2d, 2g, 2h, 2k, and 2l grip the other end of the film 200 in the direction of the arrow TD.
  • the gripping members 2a to 2l are often referred to as chucks, clips, or the like.
  • the gripping members 2a, 2b, 2e, 2f, 2i, and 2j move counterclockwise along the annular rail 60a.
  • the gripping members 2c, 2d, 2g, 2h, 2k, and 2l move clockwise along the annular rail 60b.
  • the gripping members 2a to 2d move along the annular rail 60a or 60b while gripping the end portion of the film 200 in the preheating portion 10, pass through the stretching portion 20, the heat fixing portion 30, and the heat relaxing portion 40, and then the cooling portion. Proceed to 50.
  • the gripping members 2a and 2b and the gripping members 2c and 2d are end portions on the downstream side in the direction of the arrow MD of the cooling unit 50 (for example, the gripping release point P and the grip release point Q in FIG. 2) in the order of transport direction.
  • the film After separating the end portion of the film 200 at), the film further moves along the annular rail 60a or 60b and returns to the preheating portion 10.
  • the transport speed of the film 200 can be adjusted. Further, the gripping members 2a to 2l can independently change the moving speed.
  • the stretching machine 100 enables lateral stretching in the stretching portion 20 to stretch the film 200 in the direction of the arrow TD.
  • the stretching machine 100 can also stretch the film 200 in the direction of the arrow MD by changing the moving speed of the gripping members 2a to 2l. That is, it is also possible to perform simultaneous biaxial stretching using the stretching machine 100.
  • the stretching machine 100 may further have other gripping members in addition to the gripping members 2a to 2l in order to support the film 200 (not shown).
  • the present production method a method for producing a polyester film according to an example of the embodiment of the present invention (hereinafter, also referred to as “the present production method”) will be specifically described.
  • This manufacturing method is a method for manufacturing a biaxially oriented polyester film, which includes an extrusion molding step of extruding a molten resin containing a raw material polyester into a film to form an unstretched polyester film containing at least a polyester base material, and a non-extrusion molding step.
  • a heat fixing step that heats and fixes the oriented polyester film, a heat relaxation step that heats the heat-fixed polyester film at a temperature lower than that of the heat fixing step to relieve heat, and a heat relaxation step that heats the film. It has a cooling step of cooling the relaxed polyester film and an expansion step of expanding the heat-relaxed polyester film in the width direction in the cooling step.
  • the present production method further includes a particle-containing layer forming step of providing a particle-containing layer containing particles on at least one surface of the polyester base material.
  • the extrusion molding step is a step of extruding a molten resin containing polyester as a raw material into a film by an extrusion molding method to form an unstretched polyester film.
  • the raw material polyester has the same meaning as the polyester described in the above item (polyester).
  • the unstretched polyester film formed by the extrusion molding step contains at least a polyester substrate.
  • the extrusion molding method is a method of molding a raw material resin into a desired shape by extruding a melt of the raw material resin using, for example, an extruder.
  • the polyester described above is heated to a temperature equal to or higher than the melting point, and the screw is rotated to melt and knead. Is formed by. Polyester is melted in an extruder by heating and kneading with a screw to form a melt.
  • the melt is extruded from the extrusion die through a gear pump, a filter, etc.
  • the extrusion die is also simply referred to as a "die" (see JIS B8650: 2006, a, extruder, number 134).
  • the extrusion die described in JP-A-2005-297266, the extrusion die described in JP-A-1-154720, and a combination thereof can also be used.
  • the melt may be extruded in a single layer or in multiple layers.
  • melt extrusion it is preferable to replace the inside of the extruder with nitrogen from the viewpoint of suppressing thermal decomposition (for example, hydrolysis of polyester) in the extruder.
  • the extruder is preferably a twin-screw extruder because the kneading temperature can be kept low.
  • the melt extruded from the extrusion die is cooled to form a film.
  • the melt can be formed into a film by bringing the melt into contact with a casting roll and cooling and solidifying the melt on the casting roll. In cooling the melt, it is more preferable to blow wind (preferably cold air) on the melt.
  • the temperature of the casting roll is preferably more than (Tg-10) ° C. and (Tg + 30) ° C., more preferably (Tg-7) to (Tg + 20) ° C., and even more preferably (Tg-5) to (Tg + 10) ° C.
  • Tg means the glass transition temperature of the polyester constituting the film.
  • the temperature of the polyester film and each member in the present manufacturing method can be measured by using a non-contact thermometer (for example, a radiation thermometer).
  • the surface temperature of the film is obtained by measuring the temperature of the central portion in the width direction of the film five times and calculating the average value of the obtained measured values.
  • the method for improving the adhesion include an electrostatic application method, an air knife method, an air chamber method, a vacuum nozzle method, and a touch roll method.
  • the molded product (unstretched polyester film) cooled using a casting roll or the like is stripped from the cooling member such as a casting roll by using a stripping member such as a stripping roll.
  • the longitudinal stretching step is a step of stretching an unstretched polyester film in the transport direction (hereinafter, also referred to as “longitudinal stretching”).
  • a uniaxially oriented polyester film is formed by the longitudinal stretching step.
  • the polyester film In the longitudinal stretching step, it is preferable to preheat the unstretched polyester film before longitudinal stretching.
  • the preheating temperature of the unstretched polyester film is preferably (Tg-30) to (Tg + 40) ° C, more preferably (Tg-20) to (Tg + 30) ° C.
  • the preheating temperature is preferably 60 to 100 ° C, more preferably 65 to 80 ° C.
  • a method for preheating the unstretched polyester film for example, a method of arranging a preheating roll having a function of preheating the film on the upstream side of the vertically stretched stretch roll and preheating while transporting the unstretched polyester film can be mentioned. Be done.
  • the stretched roll may have a function of preheating the film.
  • the preferable range of the preheating temperature of the film by the stretch roll is the same as the preferable range of the preheating temperature of the preheating roll described above.
  • Longitudinal stretching can be performed, for example, by applying tension between two or more pairs of stretch rolls installed in the transport direction while transporting the unstretched polyester film in the longitudinal direction.
  • tension between two or more pairs of stretch rolls installed in the transport direction For example, when a pair of stretched rolls A and a pair of stretched rolls B are installed on the upstream side in the transport direction, the rotation speed of the stretched rolls B is set when the unstretched polyester film is transported. By increasing the rotation speed of A, the unstretched polyester film is stretched in the longitudinal direction.
  • the transport speed (peripheral speed) of the film by the pair of stretch rolls A provided on the upstream side in the transport direction and the pair of stretch rolls B provided on the downstream side in the transport direction is the film by the stretch roll A.
  • the transport speed of the film is not particularly limited as long as it is slower than the transport speed of the film by the stretch roll B.
  • the transport speed of the film by the stretch roll A is, for example, 5 to 60 m / min, preferably 10 to 50 m / min, and more preferably 15 to 45 m / min.
  • the transport speed of the film by the stretch roll B is, for example, 40 to 160 m / min, preferably 50 to 150 m / min, and more preferably 60 to 140 m / min.
  • the draw ratio in the longitudinal stretching step is appropriately set depending on the application, but is preferably 2.0 to 5.0 times, more preferably 2.5 to 4.0 times, still more preferably 2.8 to 4.0 times. ..
  • the stretching speed in the longitudinal stretching step is preferably 800 to 1500% / sec, more preferably 1000 to 1400% / sec, and even more preferably 1200 to 1400% / sec.
  • the "stretching speed" is a value obtained by dividing the length ⁇ d in the transport direction of the polyester film stretched in 1 second in the longitudinal stretching step by the length d0 in the transport direction of the polyester film before stretching as a percentage. It is a value expressed by.
  • the heating temperature in the longitudinal stretching step is preferably (Tg-20) to (Tg + 50) ° C, more preferably (Tg-10) to (Tg + 40) ° C, and even more preferably (Tg) to (Tg + 30) ° C.
  • the heating temperature in the longitudinal stretching step is preferably 70 to 120 ° C, more preferably 80 to 110 ° C, and even more preferably 85 to 100 ° C.
  • Examples of the method of heating the unstretched polyester film in the longitudinal stretching step include a method of heating a roll such as a stretched roll in contact with the unstretched polyester film.
  • Examples of the method of heating the roll include a method of providing a heater inside the roll and a method of providing a pipe inside the roll and allowing the heated fluid to flow in the pipe.
  • a method of applying warm air to the unstretched polyester film, and heating the unstretched polyester film by bringing the unstretched polyester film into contact with a heat source such as a heater or passing it in the vicinity of the heat source The method can be mentioned.
  • the longitudinal stretching step of longitudinally stretching the unstretched polyester film is not limited to the above method.
  • the unstretched polyester film is longitudinally stretched by utilizing the difference in the transport speeds of the two stretched rolls, but it is arranged between the two stretched rolls and is faster than those stretched rolls.
  • a uniaxially oriented polyester film may be produced by longitudinally stretching an unstretched polyester film using one or more high-speed stretching rolls that transport the film at a transport speed.
  • the film is sandwiched and conveyed by two rolls (a pair of rolls) facing each other, but the stretching rolls used in the longitudinal stretching step have the opposing rolls. It may be composed of only one roll in contact with one surface of the polyester film.
  • the transverse stretching step is a step of transversely stretching a uniaxially oriented polyester film.
  • the transverse stretching step is carried out, for example, in the transverse stretching portion 20 of the stretching machine 100.
  • the preheating temperature is preferably (Tg-10) to (Tg + 60) ° C, more preferably (Tg) to (Tg + 50) ° C. Specifically, the preheating temperature is preferably 80 to 120 ° C, more preferably 90 to 110 ° C.
  • the stretching ratio in the width direction (transverse stretching ratio a) of the uniaxially oriented polyester film in the transverse stretching step is not particularly limited, but is preferably larger than the stretching ratio in the longitudinal stretching step.
  • the stretching ratio a in the transverse stretching step is preferably 3.0 to 6.0 times, more preferably 3.5 to 5.0 times, still more preferably 3.5 to 4.5 times.
  • the transverse stretching ratio a is the ratio of the film width L1 at the time of carrying out from the transverse stretching portion 20 to the film width L0 at the time of carrying in the transverse stretching portion 20. It is obtained from L1 / L0).
  • the area magnification represented by the product of the stretching ratio in the longitudinal stretching step and the stretching ratio in the transverse stretching step is preferably 12.8 to 15.5 times, more preferably 13.5 to 15.2 times, and 14. It is more preferably 0 to 15.0 times.
  • the area magnification is at least the above lower limit value, the molecular orientation in the film width direction becomes good. Further, when the area magnification is not more than the above upper limit value, it is easy to maintain a state in which the molecular orientation is difficult to be relaxed when subjected to the heat treatment.
  • the heating temperature in the transverse stretching step is preferably (Tg-10) to (Tg + 80) ° C, more preferably (Tg) to (Tg + 70) ° C, and even more preferably (Tg) to (Tg + 60) ° C.
  • the heating temperature in the transverse stretching step is preferably 100 to 140 ° C, more preferably 110 to 135 ° C, and even more preferably 115 to 130 ° C.
  • the stretching speed in the transverse stretching step is preferably 8 to 45% / sec, more preferably 10 to 30% / sec, and even more preferably 15 to 20% / sec.
  • a heat fixing step and a heat relaxation step are performed as heat treatment for the polyester film laterally stretched by the transverse stretching step.
  • the heat fixing step the biaxially oriented polyester film obtained by the transverse stretching step is heated and heat-fixed. By crystallizing the polyester by heat fixing, shrinkage of the polyester film can be suppressed.
  • the heat fixing step is carried out, for example, in the heat fixing portion 30 of the stretching machine 100.
  • the surface temperature (heat fixing temperature T1) of the polyester film in the heat fixing step is preferably 190 to 240 ° C., more preferably 200 to 240 ° C., and even more preferably 210 to 230 ° C.
  • the heat treatment is performed while controlling the maximum temperature reached on the surface of the polyester film to be the heat fixing temperature T1.
  • the variation in the surface temperature in the film width direction is preferably 0.5 to 10.0 ° C, more preferably 0.5 to 7.0 ° C, still more preferably 0.5 to 5.0 ° C. 0.5 to 4.0 ° C. is particularly preferable.
  • the variation in the surface temperature in the film width direction within the above range, the variation in the crystallinity in the width direction can be suppressed.
  • Examples of the heating method include a method of applying hot air to the film and a method of radiant heating of the film.
  • Examples of the device used in the method of radiant heating include an infrared heater.
  • the heating time in the heat fixing step is preferably 5 to 50 seconds, more preferably 5 to 30 seconds, and even more preferably 5 to 10 seconds.
  • the polyester film heat-fixed by the heat-fixing step is heated at a temperature lower than that of the heat-fixing step to heat-relax. Residual strain of the polyester film can be alleviated by heat relaxation.
  • the heat relaxation step is carried out, for example, in the heat relaxation unit 40 of the stretching machine 100.
  • the surface temperature (heat relaxation temperature T2) of the polyester film in the heat relaxation step is preferably 5 ° C. or higher lower than the heat fixation temperature T1, more preferably 15 ° C. or higher, further preferably 25 ° C. or higher, and 30. Temperatures as low as ° C. or higher are particularly preferred. That is, the heat relaxation temperature T2 is preferably 235 ° C or lower, more preferably 225 ° C or lower, further preferably 210 ° C or lower, and particularly preferably 200 ° C or lower. The lower limit of the heat relaxation temperature T2 is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, still more preferably 120 ° C. or higher. In the heat relaxation step, the heat treatment is performed while controlling the maximum temperature reached on the surface of the polyester film to be the heat relaxation temperature T2.
  • Examples of the heating method include a method of applying hot air to the film and a method of radiant heating of the film.
  • Examples of the device used in the method of radiant heating include an infrared heater.
  • the manufacturing method comprises a cooling step of cooling the heat-relaxed polyester film.
  • the cooling step and the expansion step described later are carried out, for example, in the cooling unit 50 of the stretching machine 100.
  • Examples of the method for cooling the polyester film in the cooling step include a method of blowing air (preferably cold air) on the film and a method of bringing the film into contact with a temperature-adjustable member (for example, a temperature control roll).
  • the cooling temperature in the cooling step is preferably 130 ° C. or lower in order to distinguish it from the heat relaxation step.
  • the cooling temperature is more preferably 30 to 120 ° C, further preferably 30 to 100 ° C, and particularly preferably 30 to 80 ° C.
  • the cooling step is carried out so that the cooling rate V of the polyester film is 2200 to 3500 ° C./min.
  • the cooling rate V in the cooling step is preferably 2200 to 3000 ° C./min, more preferably 2300 to 2600 ° C./min.
  • the cooling rate V of the polyester film in the cooling step can be measured using a non-contact thermometer.
  • the surface temperature of the film 200 carried from the heat relaxation unit 40 to the cooling unit 50 and the surface temperature of the film 200 carried out from the cooling unit 50 Is measured to obtain the temperature difference ⁇ T (° C.) between the two.
  • the cooling rate V is obtained by dividing the obtained temperature difference ⁇ T (° C.) by the residence time ta of the film 200 in the cooling unit 50.
  • the cooling speed of the polyester film can be adjusted by the operating conditions of the cooling device and the transport speed of the film.
  • the above-mentioned heat fixing step, heat relaxation step and cooling step in this manufacturing method are continuously carried out in this order. This is because the load (heat history) due to repeated heating and cooling of the polyester film can be reduced, the strain inherent in the film can be reduced, and the occurrence of streak defects can be suppressed.
  • the present manufacturing method has an expansion step of expanding the heat-relaxed polyester film in the width direction in the cooling step.
  • Expanding the polyester film in the width direction means the film width at the end of the cooling step (L2 in FIG. 2) rather than the film width of the polyester film at the start of the cooling step (L2 in FIG. 2). It means applying tension in the width direction to the polyester film during the cooling step so that L3) becomes wider.
  • the method of expanding the polyester film in the width direction is not particularly limited.
  • the end point of the cooling unit 50 (grasping release point P and gripping release point P) is more than the distance between the annular rails 60a and 60b at the start point of the cooling unit 50.
  • the expansion step may be carried out continuously or intermittently from the start to the end of the cooling step as long as the film width is expanded before and after the cooling step, or may be carried out only at one time during the cooling step.
  • the expansion step is preferably performed at 130 ° C. or lower. Among them, 30 to 120 ° C. is more preferable, 30 to 100 ° C. is further preferable, and 30 to 80 ° C. is particularly preferable.
  • the expansion ratio in the width direction of the polyester film by the expansion step is not particularly limited as long as it is larger than 0, but the effect of the present invention is effective. From a more excellent point, the percentage b of the expansion rate is preferably 0.001% or more, and more preferably 0.01% or more. The upper limit is not particularly limited, but the percentage b of the expansion rate is preferably 1.3% or less, more preferably 1.2% or less, and further preferably 1.0% or less.
  • the present production method includes a particle-containing layer forming step of providing a particle-containing layer on at least one surface of a polyester base material.
  • the particle-containing layer formed by the particle-containing layer forming step has the same meaning as the particle-containing layer described in detail in the above item ⁇ Particle-containing layer>.
  • the formation of the particle-containing layer may be performed at any stage of the present production method, for example, at least one of the unstretched or stretched polyester base materials using a coating liquid containing the material constituting the particle-containing layer. Examples thereof include a method of forming a coating film on the surface of the polyester and drying it if necessary, and a method of forming a particle-containing layer at the same time as forming a polyester base material by a coextrusion method.
  • the coating liquid for the particle-containing layer can be prepared by mixing the particles contained in the particle-containing layer, the binder and additives added as necessary, and the solvent.
  • the solvent include water, ethanol, toluene, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether. Of these, water is preferable from the viewpoint of environment, safety and economy.
  • the coating liquid for a particle-containing layer may contain one type of solvent alone, or may contain two or more types of solvents.
  • the content of the solvent is preferably 80 to 99% by mass, more preferably 90 to 98% by mass, based on the total mass of the coating liquid for the particle-containing layer. That is, the total content of the components (solid content) other than the solvent in the coating liquid for the particle-containing layer is preferably 0.5 to 20% by mass, preferably 1 to 10% by mass, based on the total mass of the coating liquid for the particle-containing layer. More preferably by mass.
  • the components other than the solvent in the coating liquid for the particle-containing layer are the same as those described for each component contained in the particle-containing layer, including the preferred embodiment thereof.
  • the content of each component in the coating liquid is such that the content of each component with respect to the total mass of the solid content of the coating liquid for the particle-containing layer is the same as the preferable content of each component with respect to the total mass of the particle-containing layer described above. It is preferable to adjust the amount.
  • the average particle size of the particles contained in the coating liquid for the particle-containing layer is measured using a laser diffraction / scattering type particle size distribution measuring device (“LA-950”, manufactured by HORIBA, Ltd.). When a commercially available particle product is used, the average particle size of the particles may be a catalog value.
  • the coating method of the coating liquid for the particle-containing layer is not particularly limited, and a known method can be used.
  • the coating method include a spray coating method, a slit coating method, a roll coating method, a blade coating method, a spin coating method, a bar coating method and a dip coating method.
  • the polyester base material to which the coating liquid for the particle-containing layer is applied may be an unstretched polyester base material or a uniaxially oriented polyester base material, but may be uniaxially oriented. It is preferably a polyester base material.
  • the method for forming the particle-containing layer by the coextrusion method is not particularly limited.
  • a resin composition containing the particles and binders constituting the particle-containing layer and additives added as needed is prepared and obtained according to the method described in the above ⁇ Extrusion molding step>.
  • a particle-containing layer can be formed by heating and melt-kneading the resin composition to prepare a melt of the resin composition and extruding it together with the melt of polyester using an extruder.
  • the heating time of the polyester base material in the manufacturing process can be shortened, and the strain inside the polyester base material can be reduced.
  • a coating liquid for a particle-containing layer is applied to at least one surface of a uniaxially oriented polyester base material to form a particle-containing layer, and then the polyester base material and the particle-containing layer are simultaneously transversely stretched to form a polyester group.
  • the adhesion of the material and the particle-containing layer can be improved.
  • the specific method of lateral stretching at that time is as described in the above-mentioned transverse stretching step.
  • the present manufacturing method may include a winding step of obtaining a roll-shaped biaxially oriented polyester film by winding the biaxially oriented polyester film obtained through the above steps. Further, the present manufacturing method further includes a trimming step of continuously cutting the polyester film along the transport direction and cutting off at least one end in the width direction of the polyester film before carrying out the winding step. You may.
  • the details of the mechanism by which the thickness unevenness of the functional layer is reduced by setting the conditions of each step so as to satisfy the above condition 1 are not clear, but the excessive crystallization of polyester in the heat fixing step is suppressed and the polyester is not excessively crystallized.
  • the abundance ratio of the polyester molecular chains oriented in the width direction increases, thereby reducing the dimensional change rate due to heating in the subsequent process, and as a result, the function. It is presumed that this is because the generation of waviness due to high temperature treatment in the process of laminating layers can be suppressed.
  • the absolute value of the above value C is preferably 0.1 to 0.7, and more preferably the above value C is 0.1 to 0.5. As described above, if only one of A and B is 0, the condition 1 is not satisfied, but if both A and B are 0, the condition 1 is satisfied.
  • the melting point of the polyester constituting the polyester base material is Tm (° C.)
  • the heat fixing temperature in the heat fixing step is T1 (° C.)
  • the stretching ratio of the uniaxially oriented polyester film in the transverse stretching step is a.
  • the above value D is preferably 0.1 to 6000, more preferably 1 to 1500, from the above viewpoint.
  • the transport speed of the polyester film in each step other than the longitudinal stretching step of this production method is not particularly limited, but the transverse stretching step, the heat fixing step, the heat relaxation step, the cooling step and the expansion step are performed by using the stretching machine 100.
  • the transport speed of the polyester film is preferably 50 to 200 m / min, more preferably 80 to 150 m / min in terms of productivity and quality.
  • the transport speed of the polyester film from the cooling step to the winding in the above winding step is preferably 50 to 200 m / min, more preferably 80 to 150 m / min.
  • the transport speed of the polyester film in the longitudinal stretching step is as described above.
  • the tension applied to the polyester film in the transport direction is not particularly limited, but the transverse stretching step, the heat fixing step, the heat relaxation step, the cooling step and the expansion step are performed on the stretching machine 100.
  • the tension applied to the polyester film in the transport direction can be adjusted by the stretching conditions.
  • the tension applied to the polyester film in the transport direction after the cooling step is applied until the polyester film is taken up in the above winding step is preferably 3 to 30 N / m, more preferably 5 to 20 N / m.
  • the use of this film is not particularly limited, but it is preferable to further laminate functional layers to produce a laminated film.
  • the functional layer laminated on this film include a decorative layer, a photosensitive resin layer, a magnetic layer, a peeling layer, an adhesive layer, a conductive layer, a refractive index adjusting layer, and a visibility layer.
  • the particle-containing layer in order to maintain slipperiness (transportability) due to the particle-containing layer, the particle-containing layer is provided only on one surface of the polyester base material, and is opposite to the particle-containing layer of the polyester base material. It is preferable that the functional layer is provided on the surface on the side.
  • the laminated film include a decorative film whose functional layer is a decorative layer, a photosensitive transfer film whose functional layer is a photosensitive resin layer and used as a support for a dry film resist, and a functional layer.
  • the method of laminating the functional layer on the surface of this film is not particularly limited, but it is preferable to apply a coating liquid containing the material constituting the functional layer to the surface of the biaxially oriented polyester film to form the functional layer, and the productivity is preferable. It is more preferable to form the functional layer by applying the coating liquid for the functional layer to the surface of the present film and then heating the coating film while transporting the present film.
  • This film can suppress the generation of streaky defect regions in the biaxially oriented polyester film and suppress the uneven thickness of the laminated functional layer even when the heat treatment is performed in the process of forming the functional layer. ..
  • the laminated film may have a layer other than the present film and the functional layer.
  • the layer other than the present film and the functional layer include a base layer containing a binder resin provided for the purpose of improving the adhesion between the present film and the functional layer.
  • this film is preferable to apply this film as a support for a dry film resist.
  • a photosensitive resin layer may be provided, and a decorative layer, a refractive index adjusting layer, and / or a visible layer may be further laminated.
  • the photosensitive resin layer is not particularly limited, but is preferably a negative type.
  • the binder polymer, ethylenically unsaturated compound, or photopolymerization initiator described in International Publication No. 2018/105313 can be mentioned as a preferable form.
  • the photosensitive resin layer is more preferably a layer having an alkali-soluble acrylic resin having a cyclic structure, a polyfunctional acrylate, and an oxime-based photopolymerization initiator or a bisimidazole-type photopolymerization initiator.
  • a refractive index adjusting layer is laminated separately from the photosensitive resin layer.
  • Preferred forms of the refractive index adjusting layer include the second curable transparent resin layer described in JP-A-2014-108541.
  • the refractive index of the refractive index adjusting layer is preferably 1.6 or more, and the refractive index adjusting layer preferably has metal oxide particles having a high refractive index such as titanium oxide and zirconium oxide.
  • the photosensitive resin layer is colored.
  • the colored photosensitive resin layer is preferably formed from the photosensitive resin composition described in International Publication No. 2017/208849.
  • the colored photosensitive resin layer is preferably a layer having a pigment as a colorant, and more preferably a layer having a pigment, a binder polymer, a polyfunctional acrylate, and a photopolymerization initiator.
  • a visibility layer is laminated separately from the photosensitive resin layer. Since there is a visibility layer, it can be visually recognized in the process of confirming the pattern latent image.
  • this film is also preferable to apply this film as a release film for producing a ceramic green sheet.
  • a release film is often provided as a functional layer.
  • a preferred form of the release layer is a layer having a silicone resin.
  • the term "film” includes both a polyester base material alone and an embodiment having a polyester base material and a particle-containing layer, and an unstretched film, a uniaxially oriented film, and the like. And all of the biaxially oriented films shall be included.
  • a non-contact thermometer AD-5616 (product name), manufactured by A & D Co., Ltd., emissivity 0.95) is used to measure the temperature of the central portion in the width direction of the film five times. Then, the arithmetic mean value of the obtained measured values was used as the measured value of the surface temperature of the film.
  • Example 1 ⁇ Extrusion molding process> Pellets of polyethylene terephthalate were produced using a titanium compound (citrate chelated titanium complex, VERTEC AC-420, manufactured by Johnson Matthey) described in Japanese Patent No. 5575671 as a polymerization catalyst. Specifically, 1 ton (1000 kg) of terephthalic acid, 390 kg of ethylene glycol, and 9 mass ppm of Ti atom with respect to polyethylene terephthalate produced as a titanium compound were mixed. The obtained mixture was continuously supplied to the reactor to carry out an esterification reaction.
  • a titanium compound carbonitrate chelated titanium complex, VERTEC AC-420, manufactured by Johnson Matthey
  • magnesium acetate tetrahydrate in an amount of 81 mass ppm of Mg atom with respect to the produced polyethylene terephthalate and trimethyl phosphate in an amount of 73 mass ppm of P atom with respect to the produced polyethylene terephthalate. was added to the mixture and a polycondensation reaction was carried out to produce pellets of polyethylene terephthalate.
  • the obtained pellets were dried to a water content of 50 ppm or less, charged into a hopper of a uniaxial kneading extruder having a diameter of 30 mm, and then melted and extruded at 280 ° C.
  • the melt was passed through a filter (pore diameter 3 ⁇ m) and then extruded from the die into a cooling drum at 25 ° C. to obtain an unstretched film made of polyethylene terephthalate.
  • the extruded melt was brought into close contact with the cooling drum by the electrostatic application method.
  • the melting point (Tm) of polyethylene terephthalate constituting the unstretched film was 258 ° C., and the glass transition temperature (Tg) was 80 ° C.
  • ⁇ Particle-containing layer forming process> The following coating liquid for a particle-containing layer is applied to one side of a vertically stretched uniaxially oriented film (polyester base material), and the weight of the solid content of the coating film with respect to the surface area of the uniaxially oriented film is 5.6 g / m 2. As such, it was applied with a bar coater.
  • Coating liquid for particle-containing layer A coating liquid for a particle-containing layer (coating liquid A) was prepared by mixing each of the components shown below. Filtration treatment of the prepared coating liquid A using a filter having a pore size of 6 ⁇ m (F20, manufactured by Mare Filter Systems Co., Ltd.) and membrane degassing (2x6 radial flow superphobic, manufactured by Polypore Co., Ltd.). was applied to the surface of the uniaxially oriented film and dried in hot air at 100 ° C. to form an easy-to-slip coating layer.
  • a copolymer composed of an acrylic resin (methyl methacrylate, styrene, 2-ethoxyhexyl acrylate, 2-hydroxyethyl methacrylate and acrylic acid (containing in a mass ratio of 59: 8: 26: 5: 2)) is used as a solid content in 27.
  • Water dispersion containing 5% by mass 167 parts, nonionic surfactant ("Naroacty (registered trademark) CL95), manufactured by Sanyo Kasei Kogyo Co., Ltd., polyoxyalkylene alkyl ether, solid content 100% by mass): 0 .7 parts, anionic surfactant ("Lapisol (registered trademark) A-90", manufactured by Nichiyu Co., Ltd., 1% by mass water diluted solid content): 55.7 parts, wax (“Cerozol (registered trademark)) 524 ”, manufactured by Chukyo Oil & Fat Co., Ltd., ester wax dispersion, solid content 30% by mass): 7 parts, cross-linking agent (“Carbodilite (registered trademark) V-02-L2”, manufactured by Nisshinbo Chemical Co., Ltd., Carbodiimide compound, solid 10% by mass water diluted solution): 20.9 parts, non-aggregated particles ("Snowtex XL", average particle diameter 50 nm
  • Heat relaxation process> the heat-fixed film was heated under the following conditions to perform a heat relaxation step of relaxing the tension of the film. Further, in the heat relaxation step, the film width was reduced as compared with the end of the heat fixing step by narrowing the distance (tenter width) between the gripping members of the tenter that grips both ends of the film.
  • ⁇ Cooling process and expansion process> A cooling step of cooling the heat-relaxed film under the following conditions was performed. Further, in the cooling step, an expansion step was carried out in which the film width was expanded as compared with the time when the heat relaxation step was completed by widening the tenter width.
  • the cooling rate V below is the film surface temperature and the cooling unit 50 measured at the time of loading into the cooling unit 50, with the residence time from the time the film is carried into the cooling unit 50 of the stretching machine 100 to the time it is carried out as the cooling time ta. It was obtained by dividing the temperature difference ⁇ T (° C.) from the film surface temperature measured at the time of carrying out by the cooling time ta.
  • Example 2 A biaxially oriented film was produced according to the method described in Example 1 except that the coating liquid B having the same composition as the coating liquid A was used as the coating liquid for the particle-containing layer except that it did not contain non-aggregating particles. did.
  • Examples 3 to 11 The method according to Example 1 except that the heat fixing temperature T1 in the heat fixing step, the cooling rate V in the cooling step, and the expansion rate ⁇ L in the expansion step are controlled to be the values shown in Table 1 described later.
  • a biaxially oriented film was prepared according to the above.
  • Example 12 In Example 1, except that the particles shown in Table 1 were used as non-aggregated particles without containing agglomerated particles, and the thickness of the particle-containing layer was adjusted to the values shown in Table 1. A biaxially oriented film was prepared according to the method described. Details of the particles listed in Table 1 are shown below.
  • non-aggregated particles Snowtex MP-4540M, manufactured by Nissan Chemical Co., Ltd., average particle diameter 450 nm, colloidal silica 200 nm non-aggregated particles: Snowtex MP-2040, manufactured by Nissan Chemical Co., Ltd., average particle diameter 200 nm, colloidal silica 100 nm non-aggregated particles: Snowtex ZL, manufactured by Nissan Chemical Co., Ltd., average particle diameter 100 nm, colloidal silica 50 nm non-aggregated particles: Snowtex XL, manufactured by Nissan Chemical Co., Ltd., average particle diameter 50 nm, colloidal silica 300 nm non-aggregated particles Particles: Divinylbenzene / styrene copolymer crosslinked particles, average particle size 300 nm
  • Example 18 instead of the extrusion molding step carried out in Example 1, the melt produced in the extrusion molding step of Example 1 and the melt of the following resin H are co-extruded into a cooling drum at 25 ° C. by co-extrusion molding. By doing so, a biaxially oriented film was produced according to the method described in Example 1, except that an unstretched film composed of polyethylene terephthalate and a particle-containing layer was produced. Resin H pellets containing non-aggregated particles were produced according to the method for producing polyethylene terephthalate pellets in Example 1 except that divinylbenzene / styrene copolymer crosslinked particles having an average particle diameter of 300 nm were mixed.
  • the obtained pellets are dried to a water content of 50 ppm or less, charged into a hopper of a uniaxial kneading extruder having a diameter of 30 mm, and then melted at 280 ° C. to produce a melt of resin H. did.
  • the thickness of the obtained biaxially oriented film was 31 ⁇ m, and the thickness of the particle-containing layer was 2 ⁇ m.
  • Example 19 to 21 Described in Example 1 except that the thickness of the unstretched film made of polyethylene terephthalate was adjusted in the extrusion molding step so that the thickness of the produced biaxially oriented polyester film becomes the numerical value shown in Table 1.
  • a biaxially oriented film was prepared according to the above method.
  • the coating liquid F was used as the coating liquid for the particle-containing layer.
  • Example 22 A biaxially oriented film was produced according to the method described in Example 1 except that the heat fixing temperature T1 was controlled to be the numerical value shown in Table 1 in the heat fixing step.
  • the biaxially oriented film was heat-treated at 90 ° C. or 120 ° C. for 20 seconds while being conveyed at a transfer speed of 30 m / min and a tension of 100 N / m in the transfer direction using a heat transfer device.
  • the heating temperature in the heat treatment refers to the surface temperature of the film.
  • the heating time in the heat treatment was calculated from the time when the surface temperature of the film reached the target temperature (90 ° C. or 120 ° C.).
  • the heat-treated biaxially oriented film was placed on a black flat plate, and then a fluorescent lamp installed on the ceiling of the room [Lupica Ace manufactured by Mitsubishi Electric Corporation (color temperature: 5000K, average color rendering index (Ra): 84). )]
  • the biaxially oriented film was visually observed from an angle while changing the viewpoint so that the light was reflected.
  • a region of 1 m ⁇ 1 m was visually observed, and a region where the reflected image of the fluorescent lamp was undulating on the surface of the biaxially oriented film was defined as a streak defect region.
  • the ratio (area ratio) of the total area of the observed streaky defect regions to the total area of the observation region of the biaxially oriented film was calculated by the method described above (see the item of "streaky defect region" above). ..
  • ⁇ Maximum mountain height Rp> For the maximum peak height Rp of the surface of the biaxially oriented film, the manufactured biaxially oriented film is cut out to prepare a test piece, and the surface of the obtained test piece is described above using the above-mentioned fine shape measuring device. The measurement was performed under the above conditions, and then particle analysis (multiple levels) was performed using the built-in analysis software. To measure the maximum mountain height Rp, set the slice levels at equal intervals of 10 nm, measure the average diameter and density of each slice level 5 times while changing the measurement position, calculate the average value, and calculate the maximum. The measured value of the mountain height Rp was used. The test piece was fixed to the sample table so that the X direction of the visual field measurement was the width direction of the polyester film.
  • a biaxially oriented film provided with a base layer and a black layer was placed on a light table, and color unevenness of the black layer was visually observed at a position 1 m away from the biaxially oriented film.
  • a biaxially oriented film provided with the underlayer and the black layer was formed according to the above method except that the drying temperature conditions at the time of forming the underlayer and the formation of the black layer were both changed to 120 ° C., and visually observed. The observation was made at. Based on the observation results of each biaxially oriented film produced with the drying temperature condition of the coating film set to 90 ° C. or 120 ° C., the thickness unevenness of the biaxially oriented film was evaluated according to the following criteria.
  • Both ends were trimmed so that the width of the biaxially oriented film having the base layer and the black layer prepared in the evaluation of the thickness unevenness was 45 cm.
  • the length of the wound biaxially oriented film in the longitudinal direction was 100 m.
  • the obtained test piece was allowed to stand for 30 days under the conditions of 25 ° C. and 50% RH.
  • the surface of the black layer in the biaxially oriented film wound around the winding core was exposed to a fluorescent lamp [Lupica Ace manufactured by Mitsubishi Electric Corporation (color temperature: 5000K, average color rendering index (Ra): 84)]. Observed under. The unevenness of the film surface was visually observed by the reflected light of the fluorescent lamp, and the transfer failure was evaluated according to the following criteria.
  • Table 1 shows the evaluation results of each Example and Comparative Example.
  • the "forming method" column of the "particle-containing layer” means that the particle-containing layer was formed by the following method as the particle-containing layer forming step in each Example and Comparative Example.
  • Examples 1 to 22 in which the cooling rate V of the polyester film in the cooling step is in the range of 2200 to 3500 ° C./min and satisfy the above condition 1 are compared with Comparative Examples 1 to 5. It was confirmed that uneven thickness of the functional layers to be laminated can be suppressed. Further, from Table 1, Examples 1 to 22 in which the area of the streak defect region observed on the polyester film is 40% or less of the total area of the observation region after the specific heat treatment is performed are Comparative Examples. It was confirmed that the thickness unevenness of the functional layers to be laminated can be suppressed as compared with 1 to 5.
  • the absolute value of the value C which is the product of A calculated by the formula (1) and B calculated by the formula (2), is 0.1.
  • it is ⁇ 0.7, it is confirmed that the thickness unevenness of the laminated functional layers can be further suppressed, and when the above value C is 0.1 to 0.5, the thickness unevenness of the laminated functional layers is further suppressed. It was confirmed that it could be suppressed.
  • the thickness unevenness of the functional layers to be laminated can be further suppressed, and it is 2300 to 2600 ° C./min. In this case, it was confirmed that the thickness unevenness of the functional layers to be laminated can be further suppressed.
  • Example 23 Using the biaxially oriented film prepared in Example 1 as a support, a transfer film for decoration was prepared by the following procedure.
  • the thermoplastic (non-photosensitive) resin layer coating liquid described in [0106] of International Publication No. 2017/208849 is applied to the surface of the biaxially oriented film produced in Example 1 on the side opposite to the particle-containing layer. Then, it was dried at 80 ° C. to form a thermoplastic (non-photosensitive) resin layer. Subsequently, a coating liquid for a base layer made of the above-mentioned formulation A was applied and dried at 120 ° C. to form a base layer.
  • a composition for forming a photosensitive resin layer comprising the following formulation C was applied thereto and dried at 90 ° C. to form a photosensitive resin layer.
  • the thickness of the base layer was 1.6 ⁇ m
  • the thickness of the photosensitive resin layer was 2.0 ⁇ m.
  • a polypropylene film having a thickness of 12 ⁇ m was pressure-bonded to the surface of the photosensitive resin layer as a protective film to prepare a transfer film for decoration.
  • the obtained decorative transfer film had good characteristics without color unevenness and transfer failure. Further, when the decorative transfer film was used to form a decorative pattern with reference to the description in [0109] of International Publication No. 2017/208849, a good pattern could be formed.
  • Example 24 Using the biaxially oriented film prepared in Example 21 as a support, a dry film for forming a touch panel protective film was prepared by the following procedure. A coating liquid for forming a second transparent transfer layer having the following formulation D was applied to the surface of the biaxially oriented film produced in Example 21 on the opposite side of the particle-containing layer, dried at 90 ° C., and the second transparent transfer was performed. Formed a layer. Next, a coating liquid for forming a first transparent transfer layer consisting of the following formulation E was applied onto the second transparent transfer layer and then dried at 70 ° C. to form the first transparent transfer layer. The thickness of the second transparent transfer layer was 5.0 ⁇ m, and the thickness of the first transparent transfer layer was about 80 nm.
  • a polyethylene terephthalate film having a thickness of 16 ⁇ m was pressure-bonded to the surface of the first transparent transfer layer as a protective film to prepare a transfer film for forming a touch panel protective film.
  • the obtained transfer film had no change in the refractive index due to uneven thickness, no transfer failure, and had good characteristics.
  • contact holes were formed in the obtained transfer film with reference to [0122] to [0128] of International Publication No. 2018/186428, a good pattern could be formed.
  • Example 25 Using the biaxially oriented film prepared in Example 21 as a support, a dry film for forming an etching resist was prepared by the following procedure. A coating liquid for forming a thermoplastic resin layer consisting of the following formulation F was applied to the surface of the biaxially oriented film produced in Example 21 on the opposite side of the particle-containing layer, and dried at 80 ° C. to form a thermoplastic resin layer. Formed. Next, a coating liquid for forming a water-soluble resin layer consisting of the following formulation G was applied onto the thermoplastic resin layer and then dried at 80 ° C. to form a water-soluble resin layer.
  • a coating liquid for forming a thermoplastic resin layer consisting of the following formulation F was applied to the surface of the biaxially oriented film produced in Example 21 on the opposite side of the particle-containing layer, and dried at 80 ° C. to form a thermoplastic resin layer. Formed.
  • a coating liquid for forming a water-soluble resin layer consisting of the following formulation G was applied onto the thermoplastic
  • a coating liquid for forming a photosensitive resin layer consisting of the following formulation H was applied onto the water-soluble resin layer and then dried at 80 ° C. to form a photosensitive resin layer.
  • the thickness of the thermoplastic resin layer was 2 ⁇ m
  • the thickness of the water-soluble resin layer was 1 ⁇ m
  • the thickness of the photosensitive resin layer was 2 ⁇ m.
  • a polyethylene terephthalate film having a thickness of 16 ⁇ m was pressure-bonded to the surface of the photosensitive resin layer as a protective film to prepare a transfer film for forming an etching resist.
  • ⁇ Prescription F Coating liquid for forming a thermoplastic resin layer> ⁇ Polymer of benzyl methacrylate / methacrylic acid / acrylic acid (75/10/15 mass%, molecular weight 30,000, solid content concentration 30%) 22.7 parts ⁇ 3,6-bis (diphenylamino) fluorane 0.12 parts A-1, oxime sulfonate type photoacid generator 0.2 part, tricyclodecanedimethanol diacrylate 3.32 part, 8UX-015A (Taisei Fine Chemical Co., Ltd.) described in paragraph 0227 of JP2013-047765A. ), 15 functional parts) 1.66 parts ⁇ Aronix TO-2349 (Toa Synthetic Co., Ltd.) 0.55 parts ⁇ Surfactant (DIC Corporation, Megafuck F-552) 0.02 parts
  • ⁇ Prescription G Coating liquid for forming a water-soluble resin layer> -Polyvinyl alcohol (Kuraray Poval 4-88LA, manufactured by Kuraray Co., Ltd.) 3.22 parts-Polyvinylpyrrolidone (manufactured by Nippon Catalyst Co., Ltd., K-30) 1.49 parts-Surfactant (Megafuck F-444, DIC Co., Ltd.) 0.0035 parts, methanol (Mitsubishi Gas Chemical Co., Ltd.) 57.1 parts, ion-exchanged water 38.12 parts
  • ⁇ Prescription H Coating liquid for forming a photosensitive resin layer> ⁇ Polymer of styrene / methacrylic acid / methyl methacrylate (52/29/19 mass%, molecular weight 60,000, solid content concentration 30%) 25.2 parts ⁇ Leuco crystal violet 0.06 parts ⁇ Photopolymerization initiator (2) -(2-Chlorophenyl) -4,5-diphenylimidazole dimer) 1.03 parts ⁇ 4,4'-bis (diethylamino) benzophenone 0.04 parts ⁇ (N-phenylcarbamoylmethyl-N-carboxymethylaniline 0) .02 parts ⁇ ethoxylated bisphenol A dimethacrylate NK ester BPE-500 (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) 5.61 parts ⁇ Aronix M-270 (manufactured by Toa Synthetic Co., Ltd.) 0.58 parts ⁇ Phenothiazine 0.
  • Example 26 Using the biaxially oriented film produced in Example 1 as a support, a release film for producing a ceramic green sheet was produced by the following procedure. A coating liquid for forming a release layer consisting of the following formulation J was applied to the surface of the biaxially oriented film produced in Example 1 on the opposite side of the particle-containing layer, and dried at 120 ° C. to form a release layer. The thickness of the release layer was 0.1 ⁇ m. Next, a ceramic slurry consisting of the following formulation K was applied onto the release layer so that the thickness after drying was 0.5 ⁇ m, and then dried at 90 ° C.
  • the slurry surface and the particle-containing layer surface were overlapped with each other, and a load of 1 kg / cm 2 was applied for 10 minutes, and then the release film was peeled off to obtain a ceramic green sheet.
  • the obtained ceramic green sheet had good characteristics without uneven thickness or transfer failure.
  • ⁇ Prescription J Coating liquid for forming a release layer> ⁇ Silicone resin (manufactured by Tohredo Dow Corning Co., Ltd., SRX-345, addition reaction type silicone) 10 parts ⁇ Platinum catalyst (manufactured by Tohredo Dow Corning Co., Ltd., SRX-212) 0.1 parts ⁇ Toluene / methyl ethyl ketone mixed solvent 490 copies
  • ⁇ Prescription K Ceramic Rally> ⁇ Polyvinyl butyral (manufactured by Sekisui Chemical Co., Ltd., Eslek BH-3) 5 parts ⁇ Barium titanate (manufactured by Fuji Titanium Industry Co., Ltd., HPBT) 50 parts ⁇ Toluene / ethanol mixed solvent 45 parts
  • Grip member 10 Preheating part 20: Stretching part 30: Heat fixing part 40: Heat relaxation part 50: Cooling part 60a, 60b: Circular rail 100: Stretching machine 200: Film P, Q: Gripping release point MD: Transport direction (longitudinal direction) TD: Width direction L0, L1, L2, L3: Film width

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention addresses the problem of providing: a method for producing a polyester film capable of further suppressing uneven thickness of a functional layer provided on the surface of a polyester film; and a polyester film and a laminated film capable of further suppressing uneven thickness of a functional layer provided on the surface. The method for producing a polyester film of the present invention has an extrusion molding step for extruding a molten resin containing a polyester into a film to form an unoriented polyester film; a longitudinal orientation step for orienting the unoriented polyester film in the transport direction; a widthwise orientation step for orienting the uniaxially oriented polyester film in the width direction; a heat fixation step for heating to heat fix the biaxially oriented polyester film; a heat relaxation step for heating at a lower temperature than the heat fixation step to heat relax the heat-fixed polyester film; a cooling step for cooling the heat-relaxed polyester film; an expansion step for expanding the heat-relaxed polyester film in the width direction in the cooling step; and a particle-containing layer formation step for providing a particle-containing layer that contains particles on at least one surface of the polyester base material, the cooling velocity of the polyester film in the cooling step being 2200-3500°C/min and satisfying the following specific condition 1.

Description

ポリエステルフィルムの製造方法、ポリエステルフィルム、積層フィルムManufacturing method of polyester film, polyester film, laminated film
 本発明は、ポリエステルフィルムの製造方法、ポリエステルフィルム、及び、積層フィルムに関する。 The present invention relates to a method for manufacturing a polyester film, a polyester film, and a laminated film.
 2軸配向ポリエステルフィルムは、加工性、機械的性質、電気的性質、寸法安定性、透明性、及び、耐薬品性等の観点から幅広い用途に使用されており、例えば、加飾フィルム、ドライフィルムフォトレジストの支持体及び保護フィルム、磁気テープ、及び、積層セラミックコンデンサー製造用のセラミックグリーンシートの作製等に用いられる剥離フィルム等の各種用途に使用されている。 Biaxially oriented polyester films are used in a wide range of applications from the viewpoints of processability, mechanical properties, electrical properties, dimensional stability, transparency, chemical resistance, etc., for example, decorative films and dry films. It is used in various applications such as a support for a photoresist, a protective film, a magnetic tape, and a release film used for producing a ceramic green sheet for manufacturing a laminated ceramic capacitor.
 一方、2軸配向ポリエステルフィルムの製造工程において、ポリエステルフィルムの搬送時に生じるシワ(搬送シワ)の発生を抑制する技術として、表面に粒子含有層を設ける技術が知られている。
 例えば、特許文献1には、レジスト塗布面の逆面側に平均粒径が40nmより大きな粒子を含有しない、平均厚さ3~80nmの易滑樹脂層を積層した二軸配向ポリエステルフィルムであって、ポリエステルフィルムの易滑樹脂層側の10点平均粗さ(SRz)、ヘイズ、静摩擦係数(μs)、150℃での熱収縮応力が特定されたフォトレジスト用ポリエステルフィルムが開示されている。
On the other hand, in the manufacturing process of the biaxially oriented polyester film, a technique of providing a particle-containing layer on the surface is known as a technique of suppressing the generation of wrinkles (conveyed wrinkles) that occur during the transfer of the polyester film.
For example, Patent Document 1 describes a biaxially oriented polyester film in which a slippery resin layer having an average thickness of 3 to 80 nm is laminated on the opposite side of a resist-coated surface, which does not contain particles having an average particle size of more than 40 nm. Disclosed is a polyester film for a photoresist in which a 10-point average roughness (SRz), haze, static friction coefficient (μs), and heat shrinkage stress at 150 ° C. on the slippery resin layer side of the polyester film are specified.
特開2004-361446号公報Japanese Unexamined Patent Publication No. 2004-361446
 本発明者らは、特許文献1に記載された技術を参考にして、粒子含有層を有するポリエステルフィルムの製造方法について更に検討したところ、2軸配向ポリエステルフィルムに機能層を形成して積層フィルムを製造する際、機能層の形成前には凹凸又はシワ等が視認されないにもかかわらず、2軸配向ポリエステルフィルムの表面に液状の組成物(例えば、塗布液)を塗布し、加熱処理をして機能層を形成した後の積層フィルムにおいて、機能層の厚みムラが発生することがあることを知見した。
 このような機能層の厚みムラは、例えば、機能層として加飾層を有する加飾フィルムでは、加飾層の厚みムラは色ムラとして表され、加飾フィルムの視認性を低下させるおそれがある。また、他の機能層においても厚みムラが生じると、機能性を有する積層フィルムの特性又は外観に影響を及ぼす可能性がある。
The present inventors further investigated a method for producing a polyester film having a particle-containing layer with reference to the technique described in Patent Document 1, and found that a functional layer was formed on a biaxially oriented polyester film to form a laminated film. During production, a liquid composition (for example, a coating liquid) is applied to the surface of the biaxially oriented polyester film and heat-treated, even though unevenness or wrinkles are not visible before the functional layer is formed. It was found that uneven thickness of the functional layer may occur in the laminated film after the functional layer is formed.
Such uneven thickness of the functional layer is, for example, in a decorative film having a decorative layer as the functional layer, the uneven thickness of the decorative layer is expressed as color unevenness, which may reduce the visibility of the decorative film. .. Further, if the thickness unevenness occurs in other functional layers, it may affect the characteristics or appearance of the laminated film having functionality.
 本発明は、上記実情に鑑みて、ポリエステルフィルムの表面上に設けられる機能層の厚みムラをより抑制できるポリエステルフィルムの製造方法を提供することを課題とする。
 また、本発明は、表面上に設けられる機能層の厚みムラをより抑制できるポリエステルフィルム、及び、積層フィルムを提供することを課題とする。
In view of the above circumstances, it is an object of the present invention to provide a method for producing a polyester film capable of further suppressing the thickness unevenness of the functional layer provided on the surface of the polyester film.
Another object of the present invention is to provide a polyester film and a laminated film capable of further suppressing the thickness unevenness of the functional layer provided on the surface.
 本発明者らは、上記課題について鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。 As a result of diligent studies on the above problems, the present inventors have found that the above problems can be solved by the following configuration.
 〔1〕
 ポリエステルを含有する溶融樹脂をフィルム状に押し出して、ポリエステル基材を少なくとも含む未延伸ポリエステルフィルムを形成する押出成形工程と、上記未延伸ポリエステルフィルムを搬送方向に延伸して1軸配向ポリエステルフィルムを形成する縦延伸工程と、上記1軸配向ポリエステルフィルムを幅方向に延伸して2軸配向ポリエステルフィルムを形成する横延伸工程と、上記2軸配向ポリエステルフィルムを加熱して熱固定する熱固定工程と、上記熱固定工程により熱固定されたポリエステルフィルムを上記熱固定工程よりも低い温度で加熱して熱緩和する熱緩和工程と、上記熱緩和工程により熱緩和されたポリエステルフィルムを冷却する冷却工程と、上記冷却工程において、上記熱緩和されたポリエステルフィルムを幅方向に拡張する拡張工程と、を有する、ポリエステル基材と、上記ポリエステル基材の少なくとも一方の表面上にある粒子を含有する粒子含有層と、を有するポリエステルフィルムの製造方法であって、
 上記冷却工程における上記ポリエステルフィルムの冷却速度Vが、2200~3500℃/分であり、かつ、後述する条件1を満たす、ポリエステルフィルムの製造方法。
 〔2〕
 上記A、上記B、及び、上記冷却速度Vから後述する式(3)により算出される値Dが、1~10000である、〔1〕に記載の製造方法。
 〔3〕
 上記ポリエステルフィルムの厚さが50μm未満である、〔1〕又は〔2〕に記載の製造方法。
 〔4〕
 上記縦延伸工程と上記横延伸工程との間に、上記粒子を含有する塗布液を用いて上記粒子含有層を形成する工程を更に有するか、又は、上記押出成形工程において、上記粒子及びバインダーを含有する第2の溶融体を上記溶融樹脂と同時に押し出すことにより、上記粒子含有層を形成する工程を更に有する、〔1〕~〔3〕のいずれかに記載の製造方法。
 〔5〕
 上記熱緩和工程における上記ポリエステルフィルムの表面温度T2が、210℃以下である、〔1〕~〔4〕のいずれかに記載の製造方法。
 〔6〕
 上記冷却工程による上記ポリエステルフィルムの冷却速度Vが、2200~3000℃/分である、〔1〕~〔5〕のいずれかに記載の製造方法。
 〔7〕
 上記bが、0%を超え1.2%以下である、〔1〕~〔6〕のいずれかに記載の製造方法。
 〔8〕
 ポリエステル基材と、上記ポリエステル基材の少なくとも一方の表面上にある、粒子を含有する粒子含有層と、を有するポリエステルフィルムであって、上記ポリエステルフィルムの厚さが50μm未満であり、上記ポリエステルフィルムに対して、搬送速度30m/分、及び、搬送方向の張力100N/mの条件で搬送しながら、フィルム表面の温度が90℃となる条件にて20秒間加熱処理を行った後、上記ポリエステルフィルムに観察される筋状欠陥領域の面積の合計が、観察領域の全面積に対して40%以下である、ポリエステルフィルム。
 〔9〕
 上記ポリエステルフィルムの90℃における幅方向の膨張率が、上記ポリエステルフィルムの30℃における幅方向の寸法に対して、-0.15~0.15%である、〔8〕に記載のポリエステルフィルム。
 〔10〕
 上記ポリエステルフィルムの密度が、1.39~1.41g/cmである、〔8〕又は〔9〕に記載のポリエステルフィルム。
 〔11〕
 上記ポリエステル基材の厚さが、3~40μmであり、上記粒子含有層の厚さが、0.001~2.5μmである、〔8〕~〔10〕のいずれかに記載のポリエステルフィルム。
 〔12〕
 上記粒子含有層が、平均粒子径が10nm以上1μm未満である粒子Pを含有する、〔8〕~〔11〕のいずれかに記載のポリエステルフィルム。
 〔13〕
 上記粒子Pの平均粒子径が、上記粒子含有層の厚さよりも大きい、〔12〕に記載のポリエステルフィルム。
 〔14〕
 上記粒子含有層が、平均粒子径が10~100nmである粒子P1を含有する、〔8〕~〔13〕のいずれかに記載のポリエステルフィルム。
 〔15〕
 上記粒子含有層が、平均粒子径が100nm超400nm以下である粒子P2を含有する、〔8〕~〔14〕のいずれかに記載のポリエステルフィルム。
 〔16〕
 上記粒子含有層が含む粒子が樹脂粒子であるか、又は、上記粒子含有層が含む粒子が無機粒子であり、かつ、上記ポリエステルフィルムの少なくとも一方の表面の最大山高さRpが5~200nmである、〔8〕~〔15〕のいずれかに記載のポリエステルフィルム。
 〔17〕
 上記ポリエステル基材が粒子を実質的に含有しない、〔8〕~〔16〕のいずれかに記載のポリエステルフィルム。
 〔18〕
 〔1〕~〔7〕のいずれかに記載の製造方法により製造されたポリエステルフィルム、又は、〔8〕~〔17〕のいずれかに記載のポリエステルフィルムであって、ポリエステル基材の一方の表面上のみに粒子含有層を有するポリエステルフィルムと、上記ポリエステル基材の上記粒子含有層とは反対側の表面上にあり、加飾層、感光性樹脂層、及び、剥離層からなる群より選択される機能層と、を有する、積層フィルム。
 〔19〕
 上記機能層が加飾層であり、上記積層フィルムが加飾フィルムである、〔18〕に記載の積層フィルム。
 〔20〕
 上記機能層が感光性樹脂層であり、上記積層フィルムが感光性転写フィルムである、〔18〕に記載の積層フィルム。
 〔21〕
 上記機能層が剥離層であり、上記積層フィルムがセラミックグリーンシート製造用剥離フィルムである、〔18〕に記載の積層フィルム。
[1]
An extrusion molding step of extruding a molten resin containing polyester into a film to form an unstretched polyester film containing at least a polyester base material, and stretching the unstretched polyester film in a transport direction to form a uniaxially oriented polyester film. A longitudinal stretching step, a transverse stretching step of stretching the uniaxially oriented polyester film in the width direction to form a biaxially oriented polyester film, and a heat fixing step of heating and heat-fixing the biaxially oriented polyester film. A heat relaxation step of heating the polyester film heat-fixed by the heat-fixing step at a temperature lower than that of the heat-fixing step to relax the heat, and a cooling step of cooling the heat-relaxed polyester film by the heat-relaxing step. In the cooling step, a polyester base material having an expansion step of expanding the heat-relaxed polyester film in the width direction, and a particle-containing layer containing particles on at least one surface of the polyester base material. Is a method for producing a polyester film having,
A method for producing a polyester film, wherein the cooling rate V of the polyester film in the cooling step is 2200 to 3500 ° C./min, and the condition 1 described later is satisfied.
[2]
The manufacturing method according to [1], wherein the value D calculated from the above-mentioned A, the above-mentioned B, and the above-mentioned cooling rate V by the formula (3) described later is 1 to 10000.
[3]
The production method according to [1] or [2], wherein the thickness of the polyester film is less than 50 μm.
[4]
Between the longitudinal stretching step and the transverse stretching step, there is a further step of forming the particle-containing layer using the coating liquid containing the particles, or in the extrusion molding step, the particles and the binder are used. The production method according to any one of [1] to [3], further comprising a step of forming the particle-containing layer by extruding the contained second melt at the same time as the molten resin.
[5]
The production method according to any one of [1] to [4], wherein the surface temperature T2 of the polyester film in the heat relaxation step is 210 ° C. or lower.
[6]
The production method according to any one of [1] to [5], wherein the cooling rate V of the polyester film by the cooling step is 2200 to 3000 ° C./min.
[7]
The production method according to any one of [1] to [6], wherein b is more than 0% and 1.2% or less.
[8]
A polyester film having a polyester base material and a particle-containing layer containing particles on the surface of at least one of the polyester base materials, wherein the thickness of the polyester film is less than 50 μm, and the polyester film has a thickness of less than 50 μm. On the other hand, the polyester film was heat-treated for 20 seconds under the condition that the temperature of the film surface was 90 ° C. while transporting under the conditions of a transport speed of 30 m / min and a tension of 100 N / m in the transport direction. A polyester film in which the total area of streaky defect regions observed in is 40% or less of the total area of the observed region.
[9]
The polyester film according to [8], wherein the expansion rate in the width direction of the polyester film at 90 ° C. is −0.15 to 0.15% with respect to the dimension in the width direction of the polyester film at 30 ° C.
[10]
The polyester film according to [8] or [9], wherein the polyester film has a density of 1.39 to 1.41 g / cm 3.
[11]
The polyester film according to any one of [8] to [10], wherein the polyester base material has a thickness of 3 to 40 μm and the particle-containing layer has a thickness of 0.001 to 2.5 μm.
[12]
The polyester film according to any one of [8] to [11], wherein the particle-containing layer contains particles P having an average particle diameter of 10 nm or more and less than 1 μm.
[13]
The polyester film according to [12], wherein the average particle diameter of the particles P is larger than the thickness of the particle-containing layer.
[14]
The polyester film according to any one of [8] to [13], wherein the particle-containing layer contains particles P1 having an average particle diameter of 10 to 100 nm.
[15]
The polyester film according to any one of [8] to [14], wherein the particle-containing layer contains particles P2 having an average particle diameter of more than 100 nm and 400 nm or less.
[16]
The particles contained in the particle-containing layer are resin particles, or the particles contained in the particle-containing layer are inorganic particles, and the maximum mountain height Rp of at least one surface of the polyester film is 5 to 200 nm. , [8] to [15].
[17]
The polyester film according to any one of [8] to [16], wherein the polyester substrate does not substantially contain particles.
[18]
The polyester film produced by the production method according to any one of [1] to [7], or the polyester film according to any one of [8] to [17], which is one surface of a polyester base material. It is on the surface opposite to the particle-containing layer of the polyester base material and the polyester film having the particle-containing layer only on the top, and is selected from the group consisting of a decorative layer, a photosensitive resin layer, and a peeling layer. A laminated film having a functional layer and.
[19]
The laminated film according to [18], wherein the functional layer is a decorative layer and the laminated film is a decorative film.
[20]
The laminated film according to [18], wherein the functional layer is a photosensitive resin layer and the laminated film is a photosensitive transfer film.
[21]
The laminated film according to [18], wherein the functional layer is a release layer and the laminated film is a release film for manufacturing a ceramic green sheet.
 本発明によれば、ポリエステルフィルムの表面上に設けられる機能層の厚みムラをより抑制できるポリエステルフィルムの製造方法を提供することができる。
 また、本発明によれば、表面上に設けられる機能層の厚みムラをより抑制できるポリエステルフィルム、及び、積層フィルムを提供することができる。
INDUSTRIAL APPLICABILITY According to the present invention, it is possible to provide a method for producing a polyester film capable of further suppressing the thickness unevenness of the functional layer provided on the surface of the polyester film.
Further, according to the present invention, it is possible to provide a polyester film and a laminated film capable of further suppressing the thickness unevenness of the functional layer provided on the surface.
筋状欠陥領域が発生したポリエステルフィルムの観察画像である。It is an observation image of a polyester film in which a streak defect region was generated. ポリエステルフィルムの製造に用いられる延伸機の一例を示す平面図である。It is a top view which shows an example of the stretching machine used for manufacturing a polyester film.
 以下、本発明の実施形態について詳細に説明する。なお、本発明は、以下の実施形態に何ら制限されず、本発明の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, embodiments of the present invention will be described in detail. The present invention is not limited to the following embodiments, and can be carried out with appropriate modifications within the scope of the object of the present invention.
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
 本開示において、「工程」との用語には、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
In the present disclosure, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value. In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
In the present disclosure, the amount of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. ..
In the present disclosure, the term "process" is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. ..
In the present disclosure, a combination of two or more preferred embodiments is a more preferred embodiment.
 本開示において、単なる「ポリエステルフィルム」との記載は、ポリエステル基材単体、並びに、ポリエステル基材及び粒子含有層の積層体の両者を包含する。
 本開示において、「長手方向」とは、ポリエステルフィルムの製造時におけるポリエステルフィルムの長尺方向を意味し、「搬送方向」及び「機械方向」と同義である。
 本開示において、「幅方向」とは、長手方向に直交する方向を意味する。本開示において、「直交」は、厳密な直交に限られず、略直交を含む。「略直交」とは、90°±5°で交わることを意味し、90°±3°で交わることが好ましく、90°±1°で交わることがより好ましい。
 また、本開示において、「フィルム幅」とは、ポリエステルフィルムの幅方向の両端間の距離を意味する。
In the present disclosure, the description of a mere "polyester film" includes both a polyester base material alone and a laminate of a polyester base material and a particle-containing layer.
In the present disclosure, the "longitudinal direction" means the elongated direction of the polyester film at the time of manufacturing the polyester film, and is synonymous with the "transport direction" and the "mechanical direction".
In the present disclosure, the "width direction" means a direction orthogonal to the longitudinal direction. In the present disclosure, "orthogonal" is not limited to strict orthogonality, but includes substantially orthogonality. “Approximately orthogonal” means intersecting at 90 ° ± 5 °, preferably 90 ° ± 3 °, and more preferably 90 ° ± 1 °.
Further, in the present disclosure, the "film width" means the distance between both ends of the polyester film in the width direction.
[ポリエステルフィルム]
 本開示に係るポリエステルフィルム(以下、「本フィルム」とも記載する。)は、ポリエステル基材と、ポリエステル基材の少なくとも一方の表面上にあり、粒子を含有する粒子含有層とを少なくとも有する。
 本フィルムの実施形態の一例では、ポリエステルフィルムの厚さが50μm未満であり、後述する加熱処理を行ったポリエステルフィルムに観察される筋状欠陥領域の面積が、観察領域の全面積に対して40%以下である。
[Polyester film]
The polyester film according to the present disclosure (hereinafter, also referred to as "the present film") has at least a polyester base material and a particle-containing layer on the surface of at least one of the polyester base materials and containing particles.
In an example of the embodiment of this film, the thickness of the polyester film is less than 50 μm, and the area of the streak defect region observed in the heat-treated polyester film described later is 40 with respect to the total area of the observation region. % Or less.
〔構造〕
 本フィルムは、上記の通り、ポリエステル基材と、上記基材の少なくとも一方の表面にある粒子含有層とを有する。粒子含有層は、ポリエステル基材の一方の表面にのみ形成されていてもよいし、ポリエステル基材の両面に形成されていてもよい。
 以下、ポリエステル基材及び粒子含有層のそれぞれについてより詳しく記載する。
〔structure〕
As described above, the film has a polyester substrate and a particle-containing layer on at least one surface of the substrate. The particle-containing layer may be formed on only one surface of the polyester base material, or may be formed on both sides of the polyester base material.
Hereinafter, each of the polyester base material and the particle-containing layer will be described in more detail.
<ポリエステル基材>
 ポリエステル基材は、主たる重合体成分としてポリエステルを含有するフィルム状の物体である。ここで、「主たる重合体成分」とは、フィルムに含まれる全ての重合体のうち最も含有量(質量)が多い重合体を意味する。
 ポリエステル基材は、1種単独のポリエステルを含有していてもよく、2種以上のポリエステルを含有していてもよい。
<Polyester base material>
The polyester base material is a film-like object containing polyester as a main polymer component. Here, the "main polymer component" means the polymer having the highest content (mass) among all the polymers contained in the film.
The polyester base material may contain one kind of polyester alone or may contain two or more kinds of polyesters.
(ポリエステル)
 ポリエステルは、主鎖にエステル結合を有する重合体である。ポリエステルは、通常、後述するジカルボン酸化合物とジオール化合物とを重縮合させることにより形成される。
 ポリエステルとしては特に制限されず、公知のポリエステルを利用できる。ポリエステルとしては、例えば、ポリエチレンテレフタレート(PET)、及びポリエチレン-2,6-ナフタレート(PEN)、ポリプロピレンテレフタレート(PPT)、ポリブチレンテレフタレート(PBT)及びそれらの共重合体が挙げられ、なかでも、ポリエチレンテレフタレート(PET)、ポリエチレン-2,6-ナフタレート(PEN)、及び、それらの共重合体からなる群より選択される少なくとも1つが好ましく、PETがより好ましい。
(polyester)
Polyester is a polymer having an ester bond in the main chain. Polyester is usually formed by polycondensing a dicarboxylic acid compound and a diol compound, which will be described later.
The polyester is not particularly limited, and known polyesters can be used. Examples of the polyester include polyethylene terephthalate (PET), polyethylene-2,6-naphthalate (PEN), polypropylene terephthalate (PPT), polybutylene terephthalate (PBT) and copolymers thereof, and among them, polyethylene. At least one selected from the group consisting of terephthalate (PET), polyethylene-2,6-naphthalate (PEN), and polymers thereof is preferable, and PET is more preferable.
 ポリエステルの固有粘度は、0.50dl/g以上0.80dl/g未満が好ましく、0.55dl/g以上0.70dl/g未満がより好ましい。
 ポリエステルの融点(Tm)は、220~270℃が好ましく、245~265℃がより好ましい。
 ポリエステルのガラス転移温度(Tg)は、65~90℃が好ましく、70~85℃がより好ましい。
The intrinsic viscosity of the polyester is preferably 0.50 dl / g or more and less than 0.80 dl / g, and more preferably 0.55 dl / g or more and less than 0.70 dl / g.
The melting point (Tm) of the polyester is preferably 220 to 270 ° C, more preferably 245 to 265 ° C.
The glass transition temperature (Tg) of polyester is preferably 65 to 90 ° C, more preferably 70 to 85 ° C.
 ポリエステルの製造方法は特に制限されず、公知の方法を利用できる。例えば、触媒存在下で、少なくとも1種のジカルボン酸化合物と、少なくとも1種のジオール化合物とを重縮合させることによりポリエステルを製造できる。 The method for producing polyester is not particularly limited, and a known method can be used. For example, polyester can be produced by polycondensing at least one dicarboxylic acid compound and at least one diol compound in the presence of a catalyst.
-触媒-
 ポリエステルの製造に使用する触媒は、特に制限されず、ポリエステルの合成に使用可能な公知の触媒を利用できる。
 触媒としては、例えば、アルカリ金属化合物(例えば、カリウム化合物、ナトリウム化合物)、アルカリ土類金属化合物(例えば、カルシウム化合物、マグネシウム化合物)、亜鉛化合物、鉛化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、ゲルマニウム化合物及びリン化合物が挙げられる。中でも、触媒活性、及びコストの観点から、チタン化合物が好ましい。
 触媒は、1種のみ用いてもよく、2種以上を併用してもよい。カリウム化合物、ナトリウム化合物、カルシウム化合物、マグネシウム化合物、亜鉛化合物、鉛化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、ゲルマニウム化合物から選択される少なくとも1種の金属触媒と、リン化合物とを併用することが好ましく、チタン化合物とリン化合物を併用することがより好ましい。
-catalyst-
The catalyst used for producing the polyester is not particularly limited, and a known catalyst that can be used for synthesizing the polyester can be used.
Examples of the catalyst include alkali metal compounds (for example, potassium compounds and sodium compounds), alkaline earth metal compounds (for example, calcium compounds and magnesium compounds), zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, and antimony compounds. Examples thereof include compounds, titanium compounds, germanium compounds and phosphorus compounds. Of these, titanium compounds are preferable from the viewpoint of catalytic activity and cost.
Only one type of catalyst may be used, or two or more types may be used in combination. At least one metal catalyst selected from potassium compound, sodium compound, calcium compound, magnesium compound, zinc compound, lead compound, manganese compound, cobalt compound, aluminum compound, antimony compound, titanium compound, germanium compound, and phosphorus compound. It is preferable to use in combination, and it is more preferable to use a titanium compound and a phosphorus compound in combination.
 チタン化合物としては、有機キレートチタン錯体が好ましい。有機キレートチタン錯体は、配位子として有機酸を有するチタン化合物である。
 有機酸としては、例えば、クエン酸、乳酸、トリメリット酸、及びリンゴ酸が挙げられる。
 チタン化合物としては、特許第5575671号公報の段落0049~段落0053に記載されたチタン化合物も利用でき、上記公報の記載内容は、本明細書に組み込まれる。
As the titanium compound, an organic chelated titanium complex is preferable. The organic chelated titanium complex is a titanium compound having an organic acid as a ligand.
Examples of the organic acid include citric acid, lactic acid, trimellitic acid, and malic acid.
As the titanium compound, the titanium compounds described in paragraphs 0049 to 0053 of Japanese Patent No. 5575671 can also be used, and the contents of the above publication are incorporated in the present specification.
-ジカルボン酸化合物-
 ジカルボン酸化合物としては、ジカルボン酸またはジカルボン酸エステルが好ましく、例えば、脂肪族ジカルボン酸化合物、脂環式ジカルボン酸化合物、芳香族ジカルボン酸化合物、及び、それらのメチルエステル化合物又はエチルエステル化合物が挙げられる。中でも、芳香族ジカルボン酸、又は、芳香族ジカルボン酸メチルがより好ましい。
-Dicarboxylic acid compound-
The dicarboxylic acid compound is preferably a dicarboxylic acid or a dicarboxylic acid ester, and examples thereof include an aliphatic dicarboxylic acid compound, an alicyclic dicarboxylic acid compound, an aromatic dicarboxylic acid compound, and a methyl ester compound or an ethyl ester compound thereof. .. Of these, aromatic dicarboxylic acid or methyl aromatic dicarboxylic acid is more preferable.
 脂肪族ジカルボン酸化合物としては、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸、及びエチルマロン酸が挙げられる。
 脂環式ジカルボン酸化合物としては、例えば、アダマンタンジカルボン酸、ノルボルネンジカルボン酸、シクロヘキサンジカルボン酸、及びデカリンジカルボン酸が挙げられる。
Examples of the aliphatic dicarboxylic acid compound include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecandionic acid, dimer acid, eicosandionic acid, pimelic acid, azelaic acid, and methylmalonic acid. And ethylmalonic acid.
Examples of the alicyclic dicarboxylic acid compound include adamantandicarboxylic acid, norbornenedicarboxylic acid, cyclohexanedicarboxylic acid, and decalindicarboxylic acid.
 芳香族ジカルボン酸化合物としては、例えば、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、フェニルインダンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸、9,9’-ビス(4-カルボキシフェニル)フルオレン酸、及び、それらのメチルエステル体が挙げられる。
 中でも、テレフタル酸又は2,6-ナフタレンジカルボン酸が好ましく、テレフタル酸がより好ましい。
Examples of the aromatic dicarboxylic acid compound include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 1,8-naphthalenedicarboxylic acid. , 4,4'-diphenyldicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, 5-sodium sulfoisophthalic acid, phenylindandandicarboxylic acid, anthracendicarboxylic acid, phenanthrangecarboxylic acid, 9,9'-bis (4-carboxyphenyl) ) Dicarboxylic acids and their methyl ester forms are mentioned.
Of these, terephthalic acid or 2,6-naphthalenedicarboxylic acid is preferable, and terephthalic acid is more preferable.
 ジカルボン酸化合物は1種のみ用いてもよく、2種以上を併用してもよい。ジカルボン酸化合物として、テレフタル酸を使用する場合、テレフタル酸単独で用いてもよく、イソフタル酸等の他の芳香族ジカルボン酸又は脂肪族ジカルボン酸と共重合してもよい。 Only one type of dicarboxylic acid compound may be used, or two or more types may be used in combination. When terephthalic acid is used as the dicarboxylic acid compound, terephthalic acid may be used alone, or it may be copolymerized with another aromatic dicarboxylic acid such as isophthalic acid or an aliphatic dicarboxylic acid.
-ジオール化合物-
 ジオール化合物としては、例えば、脂肪族ジオール化合物、脂環式ジオール化合物、及び芳香族ジオール化合物が挙げられ、脂肪族ジオール化合物が好ましい。
-Diol compound-
Examples of the diol compound include an aliphatic diol compound, an alicyclic diol compound, and an aromatic diol compound, and an aliphatic diol compound is preferable.
 脂肪族ジオール化合物としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール、及び、ネオペンチルグリコールが挙げられ、エチレングリコールが好ましい。
 脂環式ジオール化合物としては、例えば、シクロヘキサンジメタノール、スピログリコール、及びイソソルビドが挙げられる。
 芳香族ジオール化合物としては、例えば、ビスフェノールA、1,3―ベンゼンジメタノール,1,4-ベンゼンジメタノール、及び9,9’-ビス(4-ヒドロキシフェニル)フルオレンが挙げられる。
 ジオール化合物は、1種のみ用いてもよく、2種以上を併用してもよい。
Examples of the aliphatic diol compound include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, and neo. Examples thereof include pentyl glycol, and ethylene glycol is preferable.
Examples of the alicyclic diol compound include cyclohexanedimethanol, spiroglycol, and isosorbide.
Examples of the aromatic diol compound include bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, and 9,9'-bis (4-hydroxyphenyl) fluorene.
Only one kind of diol compound may be used, or two or more kinds may be used in combination.
-末端封止剤-
 ポリエステルの製造においては、必要に応じて、末端封止剤を用いてもよい。末端封止剤を用いることで、ポリエステルの末端に末端封止剤に由来する構造が導入される。
 末端封止剤としては、制限されず、公知の末端封止剤を利用できる。末端封止剤としては、例えば、オキサゾリン系化合物、カルボジイミド化合物、及びエポキシ化合物が挙げられる。
 末端封止剤としては、特開2014-189002号公報の段落0055~0064に記載の内容も参照でき、上記公報の内容は、本明細書に組み込まれる。
-End sealant-
In the production of polyester, an end-capping agent may be used if necessary. By using the end sealant, a structure derived from the end sealant is introduced into the end of the polyester.
As the terminal encapsulant, a known end encapsulant can be used without limitation. Examples of the terminal encapsulant include oxazoline compounds, carbodiimide compounds, and epoxy compounds.
As the terminal encapsulant, the contents described in paragraphs 0055 to 0064 of JP-A-2014-189002 can also be referred to, and the contents of the above-mentioned publication are incorporated in the present specification.
-製造条件-
 反応温度は、制限されず、原材料に応じて適宜設定すればよい。反応温度は、260~300℃が好ましく、275~285℃がより好ましい。
 圧力は、制限されず、原材料に応じて適宜設定すればよい。圧力は、1.33×10-3~1.33×10-5MPaが好ましく、6.67×10-4~6.67×10-5MPaがより好ましい。
-Manufacturing conditions-
The reaction temperature is not limited and may be appropriately set according to the raw material. The reaction temperature is preferably 260 to 300 ° C, more preferably 275 to 285 ° C.
The pressure is not limited and may be set appropriately according to the raw material. The pressure is preferably 1.33 × 10 -3 to 1.33 × 10 -5 MPa, more preferably 6.67 × 10 -4 to 6.67 × 10 -5 MPa.
 ポリエステルの合成方法としては、特許第5575671号公報の段落0033~段落0070に記載された方法も利用でき、上記公報の内容は、本明細書に組み込まれる。 As a method for synthesizing polyester, the methods described in paragraphs 0033 to 0070 of Japanese Patent No. 5575671 can also be used, and the contents of the above publication are incorporated in the present specification.
 ポリエステル基材におけるポリエステルの含有量は、ポリエステル基材中の重合体の全質量に対して、85質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましく、98質量%以上が特に好ましい。
 ポリエステルの含有量の上限は、制限されず、ポリエステル基材中の重合体の全質量に対して、100質量%以下の範囲で適宜設定できる。
The polyester content in the polyester base material is preferably 85% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, still more preferably 98% by mass, based on the total mass of the polymer in the polyester base material. The above is particularly preferable.
The upper limit of the polyester content is not limited and can be appropriately set within a range of 100% by mass or less with respect to the total mass of the polymer in the polyester substrate.
 ポリエステル基材がポリエチレンテレフタレートを含有する場合、ポリエチレンテレフタレートの含有量は、ポリエステル基材中のポリエステルの全質量に対して、90~100質量%が好ましく、95~100質量%がより好ましく、98~100質量%が更に好ましく、100質量%が特に好ましい。 When the polyester base material contains polyethylene terephthalate, the content of polyethylene terephthalate is preferably 90 to 100% by mass, more preferably 95 to 100% by mass, and 98 to 90 to the total mass of the polyester in the polyester base material. 100% by mass is more preferable, and 100% by mass is particularly preferable.
 ポリエステル基材は、ポリエステル以外の成分(例えば、触媒、未反応の原料成分、及び、水等)を含有してもよい。
 ポリエステル基材は、粒子を実質的に含有しないことが好ましい。ここで、「粒子を実質的に含有しない」とは、ポリエステル基材及び粒子含有層の両者について、蛍光X線分析で粒子に由来する元素を定量分析した際に、粒子の含有量がポリエステル基材の全質量に対して50質量ppm以下であることで定義され、好ましくは10質量ppm以下であり、より好ましくは検出限界以下である。これは積極的に粒子を基材フィルム中に添加させなくても、外来異物由来のコンタミ成分、または、原料樹脂あるいはフィルムの製造工程におけるライン又は装置に付着した汚れが剥離して、フィルム中に混入する場合があるためである。
The polyester base material may contain components other than polyester (for example, catalyst, unreacted raw material component, water, etc.).
The polyester substrate preferably contains substantially no particles. Here, "substantially free of particles" means that the content of particles is a polyester group when the elements derived from the particles are quantitatively analyzed by fluorescent X-ray analysis for both the polyester base material and the particle-containing layer. It is defined as 50 mass ppm or less with respect to the total mass of the material, preferably 10 mass ppm or less, and more preferably the detection limit or less. This means that even if particles are not actively added to the base film, contamination components derived from foreign substances or stains adhering to the raw material resin or the line or device in the manufacturing process of the film are peeled off and into the film. This is because it may be mixed.
 ポリエステル基材の厚さは、ヘイズ値の上昇を抑制できる点で、100μm以下が好ましく、50μm以下がより好ましく、40μm以下が更に好ましい。厚さの下限は特に制限されないが、強度が向上し、加工性が向上する点で、3μm以上が好ましく、4μm以上がより好ましく、10μm以上が更に好ましい。
 ポリエステル基材の厚さは、後述するポリエステルフィルムの厚さの測定方法に従って、測定される。
The thickness of the polyester base material is preferably 100 μm or less, more preferably 50 μm or less, still more preferably 40 μm or less, in that an increase in haze value can be suppressed. The lower limit of the thickness is not particularly limited, but 3 μm or more is preferable, 4 μm or more is more preferable, and 10 μm or more is further preferable, in terms of improving the strength and the workability.
The thickness of the polyester base material is measured according to the method for measuring the thickness of the polyester film described later.
<粒子含有層>
 粒子含有層は、粒子を含有する層であり、ポリエステル基材の少なくとも一方の表面に形成される。本フィルムは、粒子含有層を有することで搬送性を向上できる。より具体的には、巻き品質を向上(ブロッキングを抑制)し、搬送時のキズ及び欠陥の発生を抑制し、搬送シワを低減することができる。
 粒子含有層は、ポリエステル基材の表面に直接設けてもよく、他の層を介してポリエステル基材の表面に設けてもよいが、密着性がより優れる点で、ポリエステル基材の表面に直接設けることが好ましい。
<Particle-containing layer>
The particle-containing layer is a layer containing particles and is formed on at least one surface of a polyester substrate. The present film can improve the transportability by having a particle-containing layer. More specifically, it is possible to improve the winding quality (suppress blocking), suppress the occurrence of scratches and defects during transport, and reduce transport wrinkles.
The particle-containing layer may be provided directly on the surface of the polyester base material or may be provided on the surface of the polyester base material via another layer, but the particle-containing layer may be provided directly on the surface of the polyester base material in terms of better adhesion. It is preferable to provide it.
 粒子含有層が含有する粒子としては、例えば、有機粒子、及び無機粒子が挙げられる。中でも、フィルム巻き品質、ヘイズ、及び耐久性(例えば、熱安定性)がより向上する観点から、無機粒子が好ましい。
 有機粒子としては、樹脂粒子が好ましい。樹脂粒子を構成する樹脂としては、例えば、ポリメタクリル酸メチル樹脂(PMMA)等のアクリル樹脂、ポリエステル樹脂、シリコーン樹脂、及び、スチレン-アクリル樹脂が挙げられる。樹脂粒子は、架橋構造を有することが好ましい。架橋構造を有する樹脂粒子としては、例えば、ジビニルベンゼン由来の架橋構造を有するジビニルベンゼン架橋粒子(例えば、ジビニルベンゼン/スチレン共重合架橋粒子)が挙げられる。転写痕が抑制される観点からは、樹脂粒子が好ましい。
 無機粒子としては、例えば、シリカ粒子(二酸化ケイ素粒子)、チタニア粒子(酸化チタン粒子)、炭酸カルシウム、硫酸バリウム、及び、アルミナ粒子(酸化アルミニウム粒子)が挙げられる。上記の中でも、無機粒子は、ヘイズ、及び、耐久性がより向上する観点から、シリカ粒子であることが好ましい。
Examples of the particles contained in the particle-containing layer include organic particles and inorganic particles. Among them, inorganic particles are preferable from the viewpoint of further improving film winding quality, haze, and durability (for example, thermal stability).
As the organic particles, resin particles are preferable. Examples of the resin constituting the resin particles include acrylic resins such as polymethyl methacrylate resin (PMMA), polyester resins, silicone resins, and styrene-acrylic resins. The resin particles preferably have a crosslinked structure. Examples of the resin particles having a crosslinked structure include divinylbenzene crosslinked particles having a crosslinked structure derived from divinylbenzene (for example, divinylbenzene / styrene copolymer crosslinked particles). Resin particles are preferable from the viewpoint of suppressing transfer marks.
Examples of the inorganic particles include silica particles (silicon dioxide particles), titania particles (titanium oxide particles), calcium carbonate, barium sulfate, and alumina particles (aluminum oxide particles). Among the above, the inorganic particles are preferably silica particles from the viewpoint of further improving haze and durability.
 粒子の形状は、特に制限されず、例えば、米粒状、球形状、立方体状、紡錘形状、鱗片状、凝集状、及び、不定形状が挙げられる。凝集状とは、1次粒子が凝集した状態を意味する。凝集状にある粒子の形状は制限されないが、球状又は不定形状が好ましい。 The shape of the particles is not particularly limited, and examples thereof include rice granules, spheres, cubes, spindles, scales, agglutinates, and indefinite shapes. The aggregated state means a state in which the primary particles are aggregated. The shape of the aggregated particles is not limited, but a spherical or irregular shape is preferable.
 粒子含有層は、凝集粒子、非凝集粒子の少なくともいずれかを有する塗布液をインラインコーティングにて形成することが好ましい。ここで、凝集粒子とは、塗布液中で凝集状にある粒子を意味し、非凝集粒子とは、塗布液中で凝集状態にない粒子を意味する。 For the particle-containing layer, it is preferable to form a coating liquid having at least one of aggregated particles and non-aggregated particles by in-line coating. Here, the agglomerated particles mean particles that are in the agglomerated state in the coating liquid, and the non-aggregating particles mean particles that are not in the agglomerated state in the coating liquid.
 凝集粒子としては、ヒュームドシリカ粒子が好ましく挙げられる。入手可能な市販品としては、例えば、日本アエロジル株式会社のアエロジルシリーズが挙げられる。
 非凝集粒子としては、コロイダルシリカ粒子が好ましく挙げられる。入手可能な市販品としては、例えば、日産化学株式会社製のスノーテックスシリーズが挙げられる。
As the agglomerated particles, fumed silica particles are preferably mentioned. Examples of commercially available products include Aerosil series manufactured by Nippon Aerosil Co., Ltd.
Preferred examples of the non-aggregated particles include colloidal silica particles. Examples of commercially available products include the Snowtex series manufactured by Nissan Chemical Industries, Ltd.
 粒子含有層は、1種単独の粒子を含有していてもよく、2種以上の粒子を含有していてもよい。
 粒子の含有量は、フィルムの巻き品質の向上、及び、転写欠陥の抑制の観点から、粒子含有層の全質量に対して、0.01~20質量%が好ましく、0.5~15質量%がより好ましく、1~10質量%が更に好ましい。
 また、粒子の含有量は、ポリエステルフィルムの全質量に対して、0.0001~0.01質量%が好ましく、0.0005~0.005質量%がより好ましい。
The particle-containing layer may contain one type of particles alone or may contain two or more types of particles.
The particle content is preferably 0.01 to 20% by mass, preferably 0.5 to 15% by mass, based on the total mass of the particle-containing layer from the viewpoint of improving the winding quality of the film and suppressing transfer defects. Is more preferable, and 1 to 10% by mass is further preferable.
The content of the particles is preferably 0.0001 to 0.01% by mass, more preferably 0.0005 to 0.005% by mass, based on the total mass of the polyester film.
(粒子P)
 粒子含有層は、巻き品質の向上及び転写故障の抑制の点で、平均粒子径が10nm以上1μm未満である粒子Pを含有することが好ましい。
 粒子Pの平均粒子径は、巻き品質をより向上できる点で、0.03μm以上が好ましい。また、粒子Pの平均粒子径は、転写故障をより抑制できる点で、0.4μm以下が好ましく、0.25μm以下がより好ましい。
 また、ある実施形態では、搬送性及び巻き品質の向上の点で、粒子Pの平均粒子径は、粒子含有層の厚さよりも大きいことが好ましい。換言すると、粒子含有層は、平均粒子径が10nm以上1μm未満であり、且つ、粒子含有層の厚さよりも大きい平均粒子径を有する粒子Pを含有することが好ましい。
(Particle P)
The particle-containing layer preferably contains particles P having an average particle diameter of 10 nm or more and less than 1 μm in terms of improving winding quality and suppressing transfer failure.
The average particle size of the particles P is preferably 0.03 μm or more in that the winding quality can be further improved. The average particle size of the particles P is preferably 0.4 μm or less, more preferably 0.25 μm or less, in that transfer failure can be further suppressed.
Further, in one embodiment, it is preferable that the average particle size of the particles P is larger than the thickness of the particle-containing layer in terms of improving the transportability and the winding quality. In other words, the particle-containing layer preferably contains particles P having an average particle size of 10 nm or more and less than 1 μm and an average particle size larger than the thickness of the particle-containing layer.
 粒子含有層が、粒子径の異なる2種以上の粒子を含有する場合、粒子径の異なる2種以上の粒子のうち少なくとも1種が粒子Pであることが好ましく、転写故障及び巻き品質がより向上する観点から、粒子含有層が粒子径の異なる2種以上の粒子Pを含有することがより好ましい。 When the particle-containing layer contains two or more kinds of particles having different particle sizes, it is preferable that at least one kind of two or more kinds of particles having different particle sizes is particles P, and transfer failure and winding quality are further improved. From this viewpoint, it is more preferable that the particle-containing layer contains two or more kinds of particles P having different particle diameters.
 粒子含有層に含まれる粒子の平均粒子径は、走査型電子顕微鏡(SEM:Scanning Electron Microscope)又は透過型電子顕微鏡(TEM:Transmission Electron Microscope)を用いて、下記の方法により求められる。即ち、粒子含有層の断面をSEM又はTEMにより観察し、3μm×4μmの視野に存在する全ての粒子について、画像ソフトウエアを用いて個々の粒子の面積を測定し、同一面積を有する円の直径(面積円相当径)を算出して、得られる面積円相当径の算術平均値を粒子の平均粒子径とする。
 なお、平均粒子径の測定において、凝集粒子については、凝集した状態の2次粒子の粒子径(2次粒子径)を測定するものとする。
 また、粒子含有層が、粒子径の異なる2種以上の粒子を含有する場合、上記の測定方法で測定される面積円相当径の分布には、粒子径の異なる2以上のピークが見られる。このように、上記の測定方法で測定される面積円相当径の分布が、粒子径の異なる2以上のピークを有している場合、それぞれのピークごとに面積円相当径の平均値を算出して、粒子径の異なるそれぞれの粒子について、平均粒子径を算出するものとする。
The average particle size of the particles contained in the particle-containing layer can be determined by the following method using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). That is, the cross section of the particle-containing layer is observed by SEM or TEM, and the area of each particle is measured using image software for all the particles existing in the field of view of 3 μm × 4 μm, and the diameter of the circle having the same area. (Area circle equivalent diameter) is calculated, and the calculated average value of the obtained area circle equivalent diameter is used as the average particle diameter of the particles.
In the measurement of the average particle size, for the agglomerated particles, the particle size (secondary particle size) of the secondary particles in the agglomerated state shall be measured.
Further, when the particle-containing layer contains two or more kinds of particles having different particle diameters, two or more peaks having different particle diameters can be seen in the distribution of the area equivalent circle diameter measured by the above measuring method. In this way, when the distribution of the area circle equivalent diameter measured by the above measurement method has two or more peaks with different particle diameters, the average value of the area circle equivalent diameter is calculated for each peak. Therefore, the average particle size shall be calculated for each particle with a different particle size.
 粒子含有層は、1種単独の粒子Pを含有していてもよく、2種以上の粒子Pを含有していてもよい。
 粒子Pの含有量は、その好ましい態様も含めて、上記の粒子の含有量と同じであってよい。
The particle-containing layer may contain one type of single particle P, or may contain two or more types of particle P.
The content of the particles P may be the same as the content of the above-mentioned particles, including the preferred embodiment thereof.
 ある実施形態では、粒子含有層は、透明性及び転写故障の観点から、平均粒子径が小さい粒子(以下「粒子P1」ともいう。)を含有することが好ましい。具体的には、粒子含有層は、粒子P1として、平均粒子径が100nm以下の粒子を含有することが好ましく、平均粒子径が70nm以下の粒子を含有することがより好ましい。粒子P1の下限は特に制限されないが、巻き品質がより向上する点から、10nm以上が好ましい。 In certain embodiments, the particle-containing layer preferably contains particles having a small average particle diameter (hereinafter, also referred to as “particle P1”) from the viewpoint of transparency and transfer failure. Specifically, the particle-containing layer preferably contains particles having an average particle diameter of 100 nm or less, and more preferably particles having an average particle diameter of 70 nm or less, as the particles P1. The lower limit of the particles P1 is not particularly limited, but 10 nm or more is preferable from the viewpoint of further improving the winding quality.
 粒子P1は、1種単独で用いてもよく、2種以上を用いてもよい。
 粒子P1の含有量は、ポリエステルフィルムの目的及び/又は用途によって異なるが、粒子含有層の全質量に対して、0.01~20質量%が好ましく、0.5~15質量%がより好ましく、1~10質量%が更に好ましい。
The particle P1 may be used alone or in combination of two or more.
The content of the particles P1 varies depending on the purpose and / or use of the polyester film, but is preferably 0.01 to 20% by mass, more preferably 0.5 to 15% by mass, based on the total mass of the particle-containing layer. 1 to 10% by mass is more preferable.
 ある実施形態では、粒子含有層は、巻き品質を向上させる観点から、平均粒子径が大きい粒子(以下「粒子P2」ともいう。)を含有することが好ましい。具体的には、粒子含有層は、粒子P2として、平均粒子径が100nm超の粒子を含有することが好ましい。粒子P2の上限は特に制限されないが、1μm未満が好ましく、転写故障及び巻き品質をより向上する観点から、400nm以下がより好ましく、250nm以下が更に好ましい。 In a certain embodiment, the particle-containing layer preferably contains particles having a large average particle diameter (hereinafter, also referred to as “particle P2”) from the viewpoint of improving the winding quality. Specifically, the particle-containing layer preferably contains particles having an average particle diameter of more than 100 nm as the particles P2. The upper limit of the particles P2 is not particularly limited, but is preferably less than 1 μm, more preferably 400 nm or less, still more preferably 250 nm or less, from the viewpoint of further improving transfer failure and winding quality.
 粒子P2は、凝集粒子であっても非凝集粒子であってもよいが、転写故障の観点から凝集粒子であることが好ましい。
 粒子P2としての凝集粒子は、平均2次粒子径が100nm超であることが好ましい。また、凝集粒子は、平均1次粒子径が100nm以下の粒子が凝集していることが好ましい。平均1次粒子径が100nm以下の粒子が凝集した、平均2次粒子径が100nm超の凝集粒子を用いると、特に、インラインコーティングにて粒子含有層を形成した際に、所望のRpとすることができ、転写故障及び巻き品質をより向上できる。
The particles P2 may be aggregated particles or non-aggregated particles, but are preferably aggregated particles from the viewpoint of transfer failure.
The aggregated particles as the particles P2 preferably have an average secondary particle diameter of more than 100 nm. Further, as the agglomerated particles, it is preferable that particles having an average primary particle diameter of 100 nm or less are agglomerated. When aggregated particles having an average primary particle diameter of 100 nm or less and having an average secondary particle diameter of more than 100 nm are used, the desired Rp is obtained especially when a particle-containing layer is formed by in-line coating. It is possible to improve transfer failure and winding quality.
 粒子P2は、1種単独で用いてもよく、2種以上を用いてもよい。
 粒子P2の含有量は、ポリエステルフィルムの目的及び/又は用途によって異なるが、粒子含有層の全質量に対して、0.01~15質量%が好ましく、0.05~10質量%がより好ましく、0.1~5質量%が更に好ましい。
The particles P2 may be used alone or in combination of two or more.
The content of the particles P2 varies depending on the purpose and / or use of the polyester film, but is preferably 0.01 to 15% by mass, more preferably 0.05 to 10% by mass, based on the total mass of the particle-containing layer. It is more preferably 0.1 to 5% by mass.
 粒子含有層は、転写故障及び巻き品質を更に向上する観点から、少なくとも1種の粒子P1と、少なくとも1種の粒子P2とを含有することが好ましい。 The particle-containing layer preferably contains at least one kind of particle P1 and at least one kind of particle P2 from the viewpoint of further improving transfer failure and winding quality.
 粒子含有層に含有される粒子については、目的及び/又は用途に応じて適宜選択できる。
 微細パターンを形成するためのドライフィルムレジストの支持体として使用する場合には、支持体を介して露光する際に、粒子が光散乱させるとパターン欠陥の原因となってしまうため、支持体には高い透明性が求められる。透明性をより向上させる観点からは、粒子P1の含有量が、粒子含有層に含有される全粒子の合計含有量に対して、50~100質量%であることが好ましく、70~100質量%であることがより好ましい。
 この場合、残部は粒子P2であることが好ましい。
The particles contained in the particle-containing layer can be appropriately selected depending on the purpose and / or use.
When used as a support for a dry film resist for forming a fine pattern, the support may have pattern defects if particles are scattered when exposed through the support. High transparency is required. From the viewpoint of further improving the transparency, the content of the particles P1 is preferably 50 to 100% by mass, preferably 70 to 100% by mass, based on the total content of all the particles contained in the particle-containing layer. Is more preferable.
In this case, the balance is preferably particles P2.
 一方で、生産性を向上する目的でより高速で搬送する必要がある場合には、高い搬送性が求められる。搬送性をより向上させる観点からは、粒子P2の含有量が、粒子含有層に含有される全粒子の合計含有量に対して、10~100質量%であることが好ましく、10~50質量%がより好ましく、10~30質量%が更に好ましい。
 この場合、残部は粒子P1であることが好ましい。
On the other hand, when it is necessary to transport at a higher speed for the purpose of improving productivity, high transportability is required. From the viewpoint of further improving the transportability, the content of the particles P2 is preferably 10 to 100% by mass, preferably 10 to 50% by mass, based on the total content of all the particles contained in the particle-containing layer. Is more preferable, and 10 to 30% by mass is further preferable.
In this case, the balance is preferably particles P1.
(バインダー)
 粒子含有層は、バインダーを含有することが好ましい。バインダーとしては、樹脂バインダーが好ましい。樹脂バインダーとしては、例えば、ポリアクリル、ポリウレタン、ポリエステル及びポリオレフィンが挙げられる。
(binder)
The particle-containing layer preferably contains a binder. As the binder, a resin binder is preferable. Examples of the resin binder include polyacrylic acid, polyurethane, polyester and polyolefin.
 ポリアクリルとしては、アクリル酸エステル、及びメタクリル酸エステルからなる群より選択される少なくとも1種の化合物に由来する構成単位を有する重合体であれば制限されず、公知のポリアクリルを利用できる。ポリアクリルは、アクリル酸エステル及びメタクリル酸エステル以外の化合物(例えば、オレフィン化合物、及びスチレン化合物)に由来する構成単位を有していてもよい。
 ポリウレタンとしては、ウレタン結合を有する重合体であれば制限されず、公知のポリウレタンを利用できる。ポリウレタンは、通常、イソシアネート化合物とポリオール化合物とを反応させることにより製造される。
 ポリエステルとしては、上記「ポリエステル」の項目において説明したポリエステルを適用でき、好ましい種類も同様である。
 ポリオレフィンとしては、制限されず、公知のポリオレフィンを利用できる。ポリオレフィンとしては、例えば、ポリエチレン、及びポリプロピレンが挙げられる。
The polyacrylic acid is not limited as long as it is a polymer having a structural unit derived from at least one compound selected from the group consisting of an acrylic acid ester and a methacrylic acid ester, and known polyacrylic acid can be used. Polyacrylic acid may have a structural unit derived from a compound other than the acrylic acid ester and the methacrylic acid ester (for example, an olefin compound and a styrene compound).
The polyurethane is not limited as long as it is a polymer having a urethane bond, and known polyurethane can be used. Polyurethane is usually produced by reacting an isocyanate compound with a polyol compound.
As the polyester, the polyester described in the above item "Polyester" can be applied, and the preferred type is also the same.
The polyolefin is not limited, and known polyolefins can be used. Examples of the polyolefin include polyethylene and polypropylene.
 粒子含有層は、1種単独のバインダーを含有していてもよく、2種以上のバインダーを含有していてもよい。
 バインダーの含有量は、粒子含有層の耐久性及び/又は粒子の分散性の観点から、粒子含有層の全質量に対して、30~99.8質量%が好ましく、50~99.5質量%がより好ましい。
The particle-containing layer may contain one kind of binder alone or may contain two or more kinds of binders.
The content of the binder is preferably 30 to 99.8% by mass, preferably 50 to 99.5% by mass, based on the total mass of the particle-containing layer, from the viewpoint of the durability of the particle-containing layer and / or the dispersibility of the particles. Is more preferable.
(添加剤)
 粒子含有層は、上記の粒子及びバインダー以外の添加剤を含有していてもよい。
 粒子含有層に含有される添加剤としては、例えば、界面活性剤、ワックス、架橋剤、酸化防止剤、紫外線吸収剤、着色剤、強化剤、可塑剤、帯電防止剤、難燃剤、防錆剤、及び、防黴剤が挙げられる。
(Additive)
The particle-containing layer may contain additives other than the above particles and binder.
Additives contained in the particle-containing layer include, for example, surfactants, waxes, cross-linking agents, antioxidants, UV absorbers, colorants, strengthening agents, plasticizers, antistatic agents, flame retardants, and rust preventives. , And antistatic agents.
 界面活性剤としては、特に制限されず、アニオン系界面活性剤、ノニオン系界面活性剤、カチオン系界面活性剤、及び、両性界面活性剤が挙げられる。
 界面活性剤は1種用いてもよいし、2種以上併用してもよい。
 界面活性剤の含有量は、粒子含有層の全質量に対して、0.1~10質量%が好ましい。
The surfactant is not particularly limited, and examples thereof include an anionic surfactant, a nonionic surfactant, a cationic surfactant, and an amphoteric surfactant.
One type of surfactant may be used, or two or more types may be used in combination.
The content of the surfactant is preferably 0.1 to 10% by mass with respect to the total mass of the particle-containing layer.
 ワックスとしては、特に制限されず、天然ワックスも合成ワックスでもよい。天然ワックスとしては、カルナバワックス、キャンデリラワックス、ミツロウ、モンタンワックス、パラフィンワックス、及び、石油ワックスが挙げられる。その他、国際公開2017/169844号明細書の[0087]の記載の滑り剤も使用できる。
 ワックスの含有量は、粒子含有層の全質量に対して、0~10質量%が好ましい。
The wax is not particularly limited, and may be a natural wax or a synthetic wax. Examples of the natural wax include carnauba wax, candelilla wax, beeswax, montan wax, paraffin wax, and petroleum wax. In addition, the slip agent described in [0087] of International Publication No. 2017/169844 can also be used.
The wax content is preferably 0 to 10% by mass with respect to the total mass of the particle-containing layer.
 架橋剤としては、特に制限されず、公知のものを使用できる。
 架橋剤としては、例えば、メラミン化合物、オキサゾリン化合物、エポキシ化合物、イソシアネート系化合物、及び、カルボジイミド系化合物が挙げられ、オキサゾリン系化合物及びカルボジイミド系化合物が好ましい。市販品としては、例えば、カルボジライトV-02-L2(日清紡(株)製)及びエポクロスK-2020E(日本触媒(株)製)が挙げられる。エポキシ系化合物、イソシアネート系化合物、及びメラミン系化合物の詳細については、特開2015-163457号公報の[0081]~[0083]の記載を参照することができる。国際公開2017/169844号明細書の[0082]~[0084]の記載の架橋剤も好ましく使用できる。カルボジイミド化合物としては、特開2017-087421号公報の[0038]~[0040]の記載を参照できる。
 オキサゾリン化合物、カルボジイミド化合物、および、イソシアネート化合物については、国際公開2018/034294号明細書の[0074]~[0075]の記載の架橋剤も好ましく使用できる。
 架橋剤の含有量は、用途に応じて適宜変更でき、粒子含有層の全質量に対して、0~50質量%が好ましい。ドライフィルムの支持体として適する点では、架橋剤の含有量は、粒子含有層の全質量に対して0.1~10質量%であることが好ましい。
The cross-linking agent is not particularly limited, and known ones can be used.
Examples of the cross-linking agent include melamine compounds, oxazoline compounds, epoxy compounds, isocyanate compounds, and carbodiimide-based compounds, and oxazoline-based compounds and carbodiimide-based compounds are preferable. Examples of commercially available products include Carbodilite V-02-L2 (manufactured by Nisshinbo Co., Ltd.) and Epocross K-2020E (manufactured by Nippon Shokubai Co., Ltd.). For details of the epoxy-based compound, the isocyanate-based compound, and the melamine-based compound, the description of [0081] to [0083] of JP2015-163457 can be referred to. The cross-linking agent described in [2002] to [0084] of International Publication No. 2017/169844 can also be preferably used. As the carbodiimide compound, the description of [0038] to [0040] of JP-A-2017-087421 can be referred to.
For the oxazoline compound, the carbodiimide compound, and the isocyanate compound, the cross-linking agent described in [0074] to [0075] of International Publication No. 2018/034294 can also be preferably used.
The content of the cross-linking agent can be appropriately changed depending on the intended use, and is preferably 0 to 50% by mass with respect to the total mass of the particle-containing layer. From the viewpoint of being suitable as a support for a dry film, the content of the cross-linking agent is preferably 0.1 to 10% by mass with respect to the total mass of the particle-containing layer.
 粒子含有層の厚さは、0.001~5μmであってもよいが、粒子含有層の製造適性、及び、ヘイズ低減の観点から、0.001~2.5μmが好ましく、0.005~2.0μmがより好ましく、0.01~0.18μmが更に好ましく、0.01~0.1μmが特に好ましい。
 粒子含有層の厚さは、走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM)を用いて測定される5か所の厚さの算術平均値とする。
The thickness of the particle-containing layer may be 0.001 to 5 μm, but from the viewpoint of manufacturing suitability of the particle-containing layer and reduction of haze, 0.001 to 2.5 μm is preferable, and 0.005 to 2 9.0 μm is more preferable, 0.01 to 0.18 μm is further preferable, and 0.01 to 0.1 μm is particularly preferable.
The thickness of the particle-containing layer is an arithmetic average value of five thicknesses measured using a scanning electron microscope (SEM) or a transmission electron microscope (TEM).
 粒子含有層の形成方法については、後述する「粒子含有層形成工程」において詳しく説明する。 The method for forming the particle-containing layer will be described in detail in the "particle-containing layer forming step" described later.
 本フィルムは、ポリエステル基材及び粒子含有層以外の層を有していてもよいが、ポリエステル基材及び粒子含有層からなることが好ましい。また、本フィルムは、ポリエステル基材の一方の表面に形成された粒子含有層を1層のみ有することが好ましい。 This film may have a layer other than the polyester base material and the particle-containing layer, but is preferably composed of the polyester base material and the particle-containing layer. Further, it is preferable that the present film has only one particle-containing layer formed on one surface of the polyester base material.
〔物性等〕
 次に、本フィルムの物性等について説明する。
[Physical characteristics, etc.]
Next, the physical characteristics of this film will be described.
(配向性)
 本フィルムは、2軸配向ポリエステルフィルムである。本開示において「2軸配向」とは、2軸方向に分子配向性を有する性質を意味する。
 分子配向性は、マイクロ波透過型分子配向計(例えば、MOA-6004、株式会社王子計測機器社製)を用いて測定する。2軸方向のなす角は、90°±5°が好ましく、90°±3°がより好ましく、90°±1°が更に好ましい。本フィルムは、長手方向及び幅方向に分子配向性を有することが好ましい。
(Orientation)
This film is a biaxially oriented polyester film. In the present disclosure, "biaxial orientation" means a property having molecular orientation in the biaxial direction.
The molecular orientation is measured using a microwave transmission type molecular orientation meter (for example, MOA-6004, manufactured by Oji Measuring Instruments Co., Ltd.). The angle formed in the biaxial direction is preferably 90 ° ± 5 °, more preferably 90 ° ± 3 °, and even more preferably 90 ° ± 1 °. This film preferably has molecular orientation in the longitudinal direction and the width direction.
(筋状欠陥領域)
 本フィルムは、下記の加熱処理を行ったポリエステルフィルムに観察される筋状欠陥領域の面積の合計が、観察領域の全面積に対して40%以下であることが好ましい。
(Streak defect area)
In this film, the total area of streaky defect regions observed in the polyester film subjected to the following heat treatment is preferably 40% or less with respect to the total area of the observation region.
 本開示において「筋状欠陥」とは、フィルムの長手方向に沿って筋状に延び、かつ、フィルムの幅方向においては凹凸として現れるシワをいう。後述するように、筋状欠陥は製造後のフィルムに生じるものであるから、不可逆的に発生するシワである場合が多い。筋状欠陥は、フィルムの製造時の熱処理において生じるものではなく、製造後のフィルムに対する熱処理において生じる波状のシワに由来し、上記波状のシワが、熱処理後の冷却により固化したものである。そして、「筋状欠陥領域」とは、フィルム面内において筋状欠陥が発生した部分を意味する。
 筋状欠陥領域が発生(すなわち、フィルム面内において筋状欠陥が部分的に発生)すると、フィルム上に形成された機能層に厚みムラを生じさせ、機能層の特性又は外観に影響を及ぼす可能性がある。さらに、筋状欠陥領域は、フィルムの長手方向に引張荷重が加えられた状態で加熱された際に顕著に発生する傾向にある。
 それに対して、2軸配向ポリエステルフィルムに対して下記の加熱処理を行った後に観察される筋状欠陥領域の面積の合計が上記範囲以下である場合、フィルム上に形成された機能層の厚みムラを低減できる。
In the present disclosure, the "streak defect" means a wrinkle that extends in a streak shape along the longitudinal direction of the film and appears as unevenness in the width direction of the film. As will be described later, since the streak defects occur in the film after production, they are often wrinkles that occur irreversibly. The streak defects do not occur in the heat treatment during the production of the film, but are derived from the wrinkles generated in the heat treatment for the film after the production, and the wrinkles are solidified by cooling after the heat treatment. The "streak defect region" means a portion in the film surface where the streak defect has occurred.
When a streak defect region is generated (that is, a streak defect is partially generated in the film surface), the functional layer formed on the film may have uneven thickness, which may affect the characteristics or appearance of the functional layer. There is sex. Further, streak defect regions tend to be prominent when heated in a state where a tensile load is applied in the longitudinal direction of the film.
On the other hand, when the total area of the streaky defect regions observed after performing the following heat treatment on the biaxially oriented polyester film is less than the above range, the thickness unevenness of the functional layer formed on the film is uneven. Can be reduced.
 本フィルムにおいて、90℃で加熱した場合に発生する筋状欠陥領域の合計面積のポリエステルフィルムの観察領域の全面積に対する比率(以下、「筋状欠陥領域の面積比」ともいう。)は、40%以下が好ましく、30%以下がより好ましく、18%以下が更に好ましい。筋状欠陥領域の面積比の値は小さいほどよく、下限としては、例えば、0%が挙げられる。
 また、本フィルムにおいて、120℃で加熱した場合に発生する筋状欠陥領域の面積比は、90%以下が好ましく、65%以下がより好ましく、40%以下が更に好ましい。
 筋状欠陥領域の面積比が上記範囲以下であることで、本フィルム上に形成される機能層の厚みムラを低減できる。筋状欠陥領域の面積比の値は小さいほどよく、下限としては、例えば、0%が挙げられる。
 筋状欠陥領域の面積比の下限は特に制限されないが、90℃又は120℃で加熱した場合に発生する筋状欠陥領域の面積比は、少ないことが好ましく、筋状欠陥領域がない、つまり0%であることがより好ましい。
In this film, the ratio of the total area of streaky defect regions generated when heated at 90 ° C. to the total area of the observation region of the polyester film (hereinafter, also referred to as “area ratio of streak defect regions”) is 40. % Or less is preferable, 30% or less is more preferable, and 18% or less is further preferable. The smaller the value of the area ratio of the streak defect region is, the better, and the lower limit is, for example, 0%.
Further, in this film, the area ratio of the streak defect region generated when heated at 120 ° C. is preferably 90% or less, more preferably 65% or less, still more preferably 40% or less.
When the area ratio of the streak defect region is not more than the above range, the uneven thickness of the functional layer formed on the film can be reduced. The smaller the value of the area ratio of the streak defect region is, the better, and the lower limit is, for example, 0%.
The lower limit of the area ratio of the streak defect region is not particularly limited, but the area ratio of the streak defect region generated when heated at 90 ° C. or 120 ° C. is preferably small, and there is no streak defect region, that is, 0. % Is more preferable.
 90℃及び120℃の各温度で加熱した場合に発生する筋状欠陥領域の面積比は、以下の方法により測定する。
(1)加熱搬送装置を用いて、ポリエステルフィルムに対して、搬送速度30m/分、及び、搬送方向の張力100N/mの条件で搬送しながら、フィルムの表面温度が90℃又は120℃で加熱処理を20秒間行う。加熱処理における加熱時間は、フィルムの表面温度が目的とする温度(90℃又は120℃)に達した時点から起算し、そこから連続した20秒間、加熱する。ここで、フィルムの表面温度は、非接触式温度計(例えば、放射温度計)を用いて測定できる。フィルムの表面温度は、フィルムの幅方向の両端に対しておよそ等距離にある中央部の温度が、目的とする温度になったか否かを計測する。
(2)加熱処理を施したポリエステルフィルムを黒色の平板上に置き、次いで、室内の天井に設置された蛍光灯〔例えば、三菱電機株式会社製のルピカエース(色温度:5000K、平均演色評価数(Ra):84)〕の光が反射するように視点を変えながらポリエステルフィルムを斜めから目視で観察する。目視により観察される、ポリエステルフィルムの表面に映った蛍光灯の反射像がうねっている領域を筋状欠陥領域とする。
(3)観察される筋状欠陥領域の個数を数えるとともに、目視で観察されるポリエステルフィルムの観察領域(面積1mの領域)に存在する各筋状欠陥領域の外周をマーキングする。次いで、各筋状欠陥領域の外周に外接する平行な2本の接線のうち、接線間の距離が最大となるように選ばれる平行な2本の接線の距離を長軸の長さLと、長さLを与える平行な2本の接線に直交し、且つ、筋状欠陥領域の外周に外接する平行な2本の接線の距離を短軸の長さSとを計測する。得られた長さL及びSから、下記式により各筋状欠陥領域の面積を算出する。これらの値から、筋状欠陥領域の合計面積のポリエステルフィルムの観察領域の全面積に対する比率を算出する。
 筋状欠点領域の長軸の長さL×筋状欠点領域の短軸の長さS×π=筋状欠点領域の面積
 筋状欠陥領域は、上記の通り楕円状又は円状であることが多いため、上記(3)の算出方法により筋状欠陥領域の面積が算出できる。
The area ratio of the streak defect region generated when heated at each temperature of 90 ° C. and 120 ° C. is measured by the following method.
(1) Using a heating and transporting device, heat the polyester film at a surface temperature of 90 ° C. or 120 ° C. while transporting the polyester film under the conditions of a transport speed of 30 m / min and a tension of 100 N / m in the transport direction. The process is performed for 20 seconds. The heating time in the heat treatment is calculated from the time when the surface temperature of the film reaches the target temperature (90 ° C. or 120 ° C.), and the film is heated for 20 consecutive seconds from there. Here, the surface temperature of the film can be measured using a non-contact thermometer (for example, a radiation thermometer). The surface temperature of the film measures whether or not the temperature of the central portion, which is approximately equidistant from both ends in the width direction of the film, has reached the target temperature.
(2) A heat-treated polyester film was placed on a black flat plate, and then a fluorescent lamp installed on the ceiling of the room [For example, Lupica Ace manufactured by Mitsubishi Electric Co., Ltd. (color temperature: 5000K, average color rendering index) ( The polyester film is visually observed from an angle while changing the viewpoint so that the light of Ra): 84)] is reflected. The region where the reflected image of the fluorescent lamp reflected on the surface of the polyester film, which is visually observed, is undulating is defined as a streak defect region.
(3) The number of observed streak defect regions is counted, and the outer circumference of each streak defect region existing in the visually observed observation region (area 1 m 2) of the polyester film is marked. Next, of the two parallel tangents circumscribing the outer periphery of each streak defect region, the distance between the two parallel tangents selected so as to maximize the distance between the tangents is defined as the length L of the major axis. The distance between two parallel tangents orthogonal to the two parallel tangents giving the length L and circumscribing the outer periphery of the streak defect region is measured with the length S of the minor axis. From the obtained lengths L and S, the area of each streak defect region is calculated by the following formula. From these values, the ratio of the total area of the streak defect region to the total area of the observation region of the polyester film is calculated.
Length of the major axis of the streak defect region L × Length of the minor axis of the streak defect region S × π = Area of the streak defect region The streak defect region may be elliptical or circular as described above. Since there are many, the area of the streak defect region can be calculated by the calculation method of (3) above.
 図1に、上記(1)の加熱処理により発生した筋状欠陥領域が観察されるポリエステルフィルムの画像(写真)を示す。図1において示す実線で囲まれた領域が筋状欠陥領域である。図1に示す筋状欠陥領域では、搬送(MD)方向に延びる凹凸形状が観察される。なお、図1に示す画像(写真)は、観察領域の一部のみを示している。
 このように、筋状欠陥領域は、楕円形状又は円形状であることが多い。また、筋状欠陥領域が発生する場合、長軸の方向が搬送方向に沿っている楕円形状の筋状欠陥領域が少なくとも1つ現れることが多い。
FIG. 1 shows an image (photograph) of a polyester film in which a streak defect region generated by the heat treatment of (1) above is observed. The region surrounded by the solid line shown in FIG. 1 is the streak defect region. In the streak defect region shown in FIG. 1, an uneven shape extending in the transport (MD) direction is observed. The image (photograph) shown in FIG. 1 shows only a part of the observation area.
As described above, the streak defect region is often elliptical or circular. Further, when a streak defect region is generated, at least one elliptical streak defect region whose long axis direction is along the transport direction often appears.
 筋状欠陥領域の面積比が上記範囲にある2軸配向ポリエステルフィルムは、ポリエステルフィルムの製造方法において、冷却工程におけるポリエステルフィルムの冷却速度Vが2200~3500℃/分となり、かつ、後述する条件1を満たすように各工程の条件を設定することにより、製造できる。 In the biaxially oriented polyester film in which the area ratio of the streak defect region is in the above range, the cooling rate V of the polyester film in the cooling step is 2200 to 3500 ° C./min in the method for producing the polyester film, and the condition 1 described later It can be manufactured by setting the conditions of each process so as to satisfy the above conditions.
(膨張率)
 ポリエステルフィルムは、90℃及び120℃における幅方向の膨張率が、それぞれ、30℃におけるフィルム幅に対して、-0.15~0.15%であることが好ましく、-0.10~0.10%であることがより好ましく、0~0.10%であることが更に好ましく、0~0.05%であることが特に好ましい。
 ポリエステルフィルムにおける90℃及び120℃における幅方向の膨張率を上記範囲に調整することで、加熱過程におけるフィルムの幅方向への膨張を抑えるだけでなく、フィルム面の場所ごとの膨張率ムラを小さくできる。その結果、加熱に起因する筋状欠陥領域の発生を抑制できると推察される。
(Expansion rate)
The expansion rate of the polyester film in the width direction at 90 ° C. and 120 ° C. is preferably −0.15 to 0.15% with respect to the film width at 30 ° C., respectively, and is −0.10 to 0. It is more preferably 10%, further preferably 0 to 0.10%, and particularly preferably 0 to 0.05%.
By adjusting the expansion coefficient in the width direction of the polyester film at 90 ° C. and 120 ° C. within the above range, not only the expansion in the width direction of the film in the heating process is suppressed, but also the expansion coefficient unevenness at each location on the film surface is reduced. can. As a result, it is presumed that the generation of streaky defect regions due to heating can be suppressed.
 90℃及び120℃の各温度における幅方向の膨張率は、熱機械分析装置を用いて以下の方法により測定する。
(1)2軸配向フィルムの幅方向に対して平行な方向に少なくとも20mm、2軸配向フィルムの幅方向に対して直交する方向に4mmの寸法に調節された試料を準備する。
(2)熱機械分析装置(例えば、TMA-60、株式会社島津製作所製)を用い、幅4mm及び長さ(チャック間距離)20mmの試料に対し、引張荷重0.1gを負荷する。
(3)上記試料を20℃以上30℃未満の温度(好ましくは25℃)から150℃まで昇温速度5℃/分で昇温させることにより、各温度(℃)における試料の寸法の値を得る。
(4)30℃における試料の寸法(L30)、90℃における寸法(L90)、及び120℃における寸法(L120)から、下記式を用いて90℃及び120℃の各温度における幅方向の膨張率を求める。本開示において、90℃及び120℃における幅方向の膨張率は、それぞれ、5つの試料を用いて得られる膨張率の算術平均値とする。なお、正の膨張率は膨張を意味し、負の膨張率は収縮を意味する。
 式:膨張率(%)=[(L120又はL90)-L30]/L30×100
The coefficient of expansion in the width direction at each temperature of 90 ° C. and 120 ° C. is measured by the following method using a thermomechanical analyzer.
(1) Prepare a sample adjusted to a size of at least 20 mm in a direction parallel to the width direction of the biaxially oriented film and 4 mm in a direction orthogonal to the width direction of the biaxially oriented film.
(2) Using a thermomechanical analyzer (for example, TMA-60, manufactured by Shimadzu Corporation), a tensile load of 0.1 g is applied to a sample having a width of 4 mm and a length (distance between chucks) of 20 mm.
(3) By raising the temperature of the above sample from a temperature of 20 ° C. or higher and lower than 30 ° C. (preferably 25 ° C.) to 150 ° C. at a heating rate of 5 ° C./min, the dimensional value of the sample at each temperature (° C.) can be adjusted. obtain.
(4) From the sample size at 30 ° C. (L30), the size at 90 ° C. (L90), and the size at 120 ° C. (L120), the expansion coefficient in the width direction at each temperature of 90 ° C. and 120 ° C. using the following formula. Ask for. In the present disclosure, the expansion coefficient in the width direction at 90 ° C. and 120 ° C. is an arithmetic mean value of the expansion coefficient obtained by using five samples, respectively. A positive expansion rate means expansion, and a negative expansion rate means contraction.
Equation: Expansion rate (%) = [(L120 or L90) -L30] / L30 × 100
 90℃における幅方向の膨張率(E90)に対する120℃における幅方向の膨張率(E120)の比(E120/E90)は、0~1.5であることが好ましく、0~1.1であることがより好ましく、0~1.05であることが更に好ましい。E120/E90が上記範囲内であることで、機能層の厚みムラを更に抑制できる。90℃における幅方向の膨張率(E90)、及び120℃における幅方向の膨張率(E120)は、それぞれ、既述の熱機械分析装置を用いる方法により求められる。 The ratio (E120 / E90) of the expansion coefficient (E120) in the width direction at 120 ° C. to the expansion coefficient (E90) in the width direction at 90 ° C. is preferably 0 to 1.5, preferably 0 to 1.1. It is more preferably 0 to 1.05, and even more preferably 0 to 1.05. When E120 / E90 is within the above range, uneven thickness of the functional layer can be further suppressed. The coefficient of expansion in the width direction (E90) at 90 ° C. and the coefficient of expansion in the width direction (E120) at 120 ° C. are obtained by the methods using the thermomechanical analyzer described above, respectively.
 ポリエステルフィルムの幅方向の膨張率は、例えば、2軸配向フィルムの製造過程における延伸倍率、熱処理温度、及び冷却中のフィルム幅を適宜設定することにより調節できる。 The expansion rate in the width direction of the polyester film can be adjusted, for example, by appropriately setting the draw ratio in the manufacturing process of the biaxially oriented film, the heat treatment temperature, and the film width during cooling.
(表面の最大山高さRp)
 ポリエステルフィルムは、巻取り品質をより向上する点で、粒子含有層表面の最大山高さRpは、0.005μm(5nm)以上が好ましく、0.01μm(10nm)以上がより好ましい。ポリエステルフィルムは、転写故障をより抑制する点で、粒子含有層の表面の最大山高さRpが、1μm以下であることが好ましく、0.5μm以下であることがより好ましく、0.25μm(250nm)以下であることが更に好ましく、0.2μm(200nm)以下であることが特に好ましい。なかでも、粒子含有層が無機粒子を含む場合、転写故障の抑制性能がより顕著に現れるため、粒子含有層の表面の最大山高さRpを上記範囲にすることが好ましい。粒子含有層表面の最大山高さRpは、インラインコーティングにて粒子含有層を形成する場合には、粒子含有層が有する粒子の平均粒子径と粒子含有層の厚さとで調節することができる。
(Maximum height of mountain on the surface Rp)
In the polyester film, the maximum mountain height Rp of the particle-containing layer surface is preferably 0.005 μm (5 nm) or more, more preferably 0.01 μm (10 nm) or more, from the viewpoint of further improving the winding quality. In the polyester film, the maximum mountain height Rp of the surface of the particle-containing layer is preferably 1 μm or less, more preferably 0.5 μm or less, and more preferably 0.25 μm (250 nm) in terms of further suppressing transfer failure. It is more preferably 0.2 μm (200 nm) or less, and particularly preferably 0.2 μm (200 nm) or less. In particular, when the particle-containing layer contains inorganic particles, the performance of suppressing transfer failure appears more remarkably, so it is preferable to set the maximum mountain height Rp of the surface of the particle-containing layer within the above range. The maximum mountain height Rp on the surface of the particle-containing layer can be adjusted by adjusting the average particle diameter of the particles of the particle-containing layer and the thickness of the particle-containing layer when the particle-containing layer is formed by in-line coating.
 ポリエステルフィルムの表面の最大山高さRpは、ポリエステルフィルムを切り出してテストピースを作製し、得られたテストピースの表面を、下記の微細形状測定装置を用いて下記条件にて測定し、その後、内蔵されている解析ソフトにて粒子解析(複数レベル)を実施することにより、求められる。
 以下に、測定機及び測定条件を示す。上記の測定は、スライスレベルを10nmの等間隔に設定して、測定位置を変更しながら各スライスレベルの平均直径と密度を5回測定し、これらの平均値を算出して、最大山高さRpの測定値とする。テストピースは、視野測定のX方向がポリエステルフィルムの幅方向になるように試料台に固定する。
The maximum mountain height Rp of the surface of the polyester film is obtained by cutting out the polyester film to prepare a test piece, measuring the surface of the obtained test piece under the following conditions using the following fine shape measuring device, and then incorporating the test piece. It is obtained by performing particle analysis (multiple levels) with the analysis software used.
The measuring machine and measuring conditions are shown below. In the above measurement, the slice levels are set at equal intervals of 10 nm, the average diameter and density of each slice level are measured 5 times while changing the measurement position, and these average values are calculated to obtain the maximum mountain height Rp. The measured value of. The test piece is fixed to the sample table so that the X direction of the visual field measurement is the width direction of the polyester film.
・測定装置:小坂研究所製surf-corder ET-4000A
・解析ソフト:i-Face model TDA31 Ver2.2.0.4 JSIS
・触針先端半径:0.5μm
・測定視野  :X方向:380μm、ピッチ:1μm
        Y方向:280μm、ピッチ:5μm
・針圧    :50μN
・測定速度  :0.1mm/s
・カットオフ値:低域-0.8mm、高域-なし
・レベリング :全域
・フィルター :ガウシアンフィルタ(2D)
・倍率    :10万倍
・粒子解析(複数レベル)条件
・出力内容設定:山粒子
・ヒステリシス幅:5nm
・スライスレベル等間隔:10nm
・ Measuring device: surf-corder ET-4000A manufactured by Kosaka Laboratory
・ Analysis software: i-Face model TDA31 Ver2.2.0.4 JSIS
・ Radius of stylus tip: 0.5 μm
-Measurement field of view: X direction: 380 μm, pitch: 1 μm
Y direction: 280 μm, pitch: 5 μm
・ Needle pressure: 50 μN
・ Measurement speed: 0.1 mm / s
・ Cutoff value: Low range-0.8mm, High range-None ・ Leveling: Whole area ・ Filter: Gaussian filter (2D)
・ Magnification: 100,000 times ・ Particle analysis (multiple levels) conditions ・ Output content setting: Mountain particles ・ Hysteresis width: 5 nm
・ Slice level equal spacing: 10 nm
(密度)
 ポリエステルフィルムの密度は、本発明の効果により優れる点で、1.39~1.41g/cmが好ましく、1.395~1.405g/cmがより好ましく、1.398~1.400g/cmが更に好ましい。
 ポリエステルフィルムの密度は、電子比重計(製品名「SD-200L」、アルファーミラージュ社製)を使用して測定できる。
(density)
The density of the polyester film, in view of more excellent effects of the present invention, preferably 1.39 ~ 1.41g / cm 3, more preferably 1.395 ~ 1.405g / cm 3, 1.398 ~ 1.400g / cm 3 is more preferred.
The density of the polyester film can be measured using an electronic hydrometer (product name "SD-200L", manufactured by Alpha Mirage Co., Ltd.).
(ヘイズ)
 ポリエステルフィルムをドライフィルムレジストの支持体として使用する場合には、高い透明性が要求される。特に、50μm以下のラインアンドスペースなどの微細パターン形成する際には、より高い透明性が求められる。その点で、ポリエステルフィルムのヘイズは、1%以下が好ましく、0.5%以下がより好ましく、0.4%以下が更に好ましく、0.3%以下が特に好ましい。ヘイズは小さいほど好ましいため、ヘイズの下限は制限されない。ヘイズの下限を便宜上設定するとすれば、0%以上である。ヘイズを上記上限値以下とすることにより、ポリエステルフィルムにレジスト層を積層した後、紫外線を照射して露光するにあたってのレジスト層の支持体であるポリエステルフィルムによる紫外光線の散乱を小さくでき、現像後のレジストのパターニングにおけるゆがみ及び抜け等のレジストパターン壁面の状態を改善できる。
(Haze)
When a polyester film is used as a support for a dry film resist, high transparency is required. In particular, higher transparency is required when forming a fine pattern such as a line and space of 50 μm or less. In that respect, the haze of the polyester film is preferably 1% or less, more preferably 0.5% or less, further preferably 0.4% or less, and particularly preferably 0.3% or less. The smaller the haze, the better, so the lower limit of the haze is not limited. If the lower limit of the haze is set for convenience, it is 0% or more. By setting the haze to the above upper limit or less, it is possible to reduce the scattering of ultraviolet rays by the polyester film, which is the support of the resist layer when the resist layer is laminated on the polyester film and then exposed to ultraviolet rays, and after development. It is possible to improve the state of the resist pattern wall surface such as distortion and omission in the patterning of the resist.
 ヘイズは、ヘイズメーター(例えば、NDH-2000、日本電色工業株式会社製)を用いて、JIS K 7105に準ずる方法により測定される。 Haze is measured by a method according to JIS K7105 using a haze meter (for example, NDH-2000, manufactured by Nippon Denshoku Industries Co., Ltd.).
(b値)
 ポリエステルフィルムをドライフィルムレジストの支持体として使用する場合には、高い透明性が要求される。その点で、L表色系におけるb値は、0~1が好ましく、0~0.8がより好ましく、0~0.6が更に好ましく、0~0.4が特に好ましい。L表色系におけるb値が0~1であることで、フィルムの黄色度を小さくできるため、フィルムの色相を無色に近づけることができる。この結果、例えば、高い視認性が求められる用途(例えば、表示装置)において、ポリエステルフィルムを好ましく適用できる。
(B * value)
When a polyester film is used as a support for a dry film resist, high transparency is required. In that respect, the b * value in the L * a * b * color system is preferably 0 to 1, more preferably 0 to 0.8, further preferably 0 to 0.6, and particularly preferably 0 to 0.4. preferable. When the b * value in the L * a * b * color system is 0 to 1, the yellowness of the film can be reduced, so that the hue of the film can be made almost colorless. As a result, the polyester film can be preferably applied, for example, in applications where high visibility is required (for example, a display device).
 L表色系におけるb値は、分光色差計(例えば、SE-2000、日本電色工業株式会社製)を用いて、透過法により測定される。 The b * value in the L * a * b * color system is measured by a transmission method using a spectral color difference meter (for example, SE-2000, manufactured by Nippon Denshoku Industries Co., Ltd.).
(厚さ)
 ポリエステルフィルムの厚さは、ヘイズ値の上昇を抑制できる点及びラミネート適正を向上できる点で、100μm以下が好ましく、50μm未満がより好ましく、40μm以下が更に好ましい。厚さの下限は特に制限されないが、強度が向上し、加工性が向上する点で、3μm以上が好ましく、5μm以上がより好ましく、10μm以上が更に好ましい。
 ポリエステルフィルムの厚さは、走査型電子顕微鏡(SEM)により測定される5か所の厚さの算術平均値とする。
(thickness)
The thickness of the polyester film is preferably 100 μm or less, more preferably less than 50 μm, still more preferably 40 μm or less, in that an increase in haze value can be suppressed and laminating suitability can be improved. The lower limit of the thickness is not particularly limited, but 3 μm or more is preferable, 5 μm or more is more preferable, and 10 μm or more is further preferable, in terms of improving the strength and the workability.
The thickness of the polyester film is an arithmetic mean value of the thickness of five points measured by a scanning electron microscope (SEM).
〔製造方法〕
 本フィルムの製造方法としては、例えば、未延伸ポリエステルフィルムを2軸延伸する方法が挙げられる。
〔Production method〕
Examples of the method for producing this film include a method of biaxially stretching an unstretched polyester film.
 2軸延伸は、縦延伸及び横延伸を同時に行う同時2軸延伸であってもよく、縦延伸及び横延伸を2段階以上の多段階に分けて行う逐次2軸延伸であってもよい。逐次2軸延伸の形態としては、例えば、縦延伸→横延伸、縦延伸→横延伸→縦延伸、縦延伸→縦延伸→横延伸、及び横延伸→縦延伸が挙げられる、縦延伸→横延伸が好ましい。 The biaxial stretching may be simultaneous biaxial stretching in which longitudinal stretching and transverse stretching are performed at the same time, or sequential biaxial stretching in which longitudinal stretching and transverse stretching are divided into two or more stages. Examples of the form of sequential biaxial stretching include longitudinal stretching → transverse stretching, longitudinal stretching → transverse stretching → longitudinal stretching, longitudinal stretching → longitudinal stretching → transverse stretching, and transverse stretching → longitudinal stretching, longitudinal stretching → transverse stretching. Is preferable.
<延伸機>
 2軸延伸に使用する装置は特に制限されず、公知の延伸機を利用できる。以下、延伸機の一例について図面を参照して説明する。
<Stretching machine>
The apparatus used for biaxial stretching is not particularly limited, and a known stretching machine can be used. Hereinafter, an example of the stretching machine will be described with reference to the drawings.
 図2は、ポリエステルフィルムの製造に用いられる延伸機の一例を示す平面図である。
 図2に示す延伸機100は、1対の環状レール60a及び60bと、各環状レールに取り付けられ、レールに沿って移動可能な把持部材2a~2lと、を備えている。環状レール60a及び60bは、フィルム200を挟んで互いに対称的に配置されている。延伸機100は、把持部材2a~2lでフィルム200を把持し、レールに沿って把持部材2a~2lを移動させることにより、フィルム200を幅方向に延伸できる。
FIG. 2 is a plan view showing an example of a stretching machine used for manufacturing a polyester film.
The stretching machine 100 shown in FIG. 2 includes a pair of annular rails 60a and 60b, and gripping members 2a to 2l attached to each annular rail and movable along the rails. The annular rails 60a and 60b are arranged symmetrically with respect to each other with the film 200 interposed therebetween. The stretching machine 100 can stretch the film 200 in the width direction by gripping the film 200 with the gripping members 2a to 2l and moving the gripping members 2a to 2l along the rail.
 延伸機100は、搬送方向上流側から順に、予熱部10と、延伸部20と、熱固定部30と、熱緩和部40と、冷却部50と、からなる領域を有する。
 延伸機100が有する上記の領域は、遮風カーテンで区分され、熱風等により個々に領域内の温度を調整できる。
The stretching machine 100 has a region including a preheating section 10, a stretching section 20, a heat fixing section 30, a heat relaxing section 40, and a cooling section 50 in this order from the upstream side in the transport direction.
The above-mentioned region of the stretching machine 100 is divided by a windbreak curtain, and the temperature in the region can be individually adjusted by hot air or the like.
 予熱部10は、フィルム200を予熱する領域である。 The preheating unit 10 is a region for preheating the film 200.
 延伸部20は、予熱されたフィルム200を矢印MDの方向(長手方向)と直交する方向である矢印TDの方向(幅方向)に緊張を与えて延伸する領域である。図2に示すように、延伸部20において、フィルム200は幅L0から幅L1まで延伸される。 The stretched portion 20 is a region in which the preheated film 200 is stretched by applying tension in the direction of the arrow TD (width direction), which is a direction orthogonal to the direction of the arrow MD (longitudinal direction). As shown in FIG. 2, in the stretched portion 20, the film 200 is stretched from the width L0 to the width L1.
 熱固定部30は、緊張が与えられたフィルム200に緊張を与えたまま加熱して熱固定する領域である。 The heat fixing portion 30 is a region where the film 200 to which tension is applied is heated and heat-fixed while being tensioned.
 熱緩和部40は、熱固定したフィルム200を加熱することにより熱固定したフィルム200の緊張を熱緩和する領域である。
 図2に示すように、熱緩和部40において、フィルム200は幅L1から幅L2にまで縮小(緩和)される。
The heat relaxation unit 40 is a region for heat-relaxing the tension of the heat-fixed film 200 by heating the heat-fixed film 200.
As shown in FIG. 2, in the heat relaxation unit 40, the film 200 is reduced (relaxed) from the width L1 to the width L2.
 冷却部50は、熱緩和されたフィルム200を冷却する領域である。フィルム200を冷却することにより、フィルム200の形状を固定化できる。
 図2には、冷却部50に搬入されるフィルム200の幅がL2であり、冷却部50から搬出されるフィルム200の幅がL3であることが示されている。
The cooling unit 50 is a region for cooling the heat-relaxed film 200. By cooling the film 200, the shape of the film 200 can be fixed.
FIG. 2 shows that the width of the film 200 carried into the cooling unit 50 is L2, and the width of the film 200 carried out from the cooling unit 50 is L3.
 環状レール60aには、環状レール60aに沿って移動可能な把持部材2a、2b、2e、2f、2i、及び2jが取り付けられている。環状レール60bには、環状レール60bに沿って移動可能な把持部材2c、2d、2g、2h、2k、及び2lが取り付けられている。
 把持部材2a、2b、2e、2f、2i、及び2jは、フィルム200の矢印TDの方向の一方の端部を把持する。把持部材2c、2d、2g、2h、2k、及び2lは、フィルム200の矢印TDの方向の他方の端部を把持する。把持部材2a~2lは、チャックまたはクリップ等と称されることが多い。
 把持部材2a、2b、2e、2f、2i、及び2jは、環状レール60aに沿って反時計回りに移動する。把持部材2c、2d、2g、2h、2k、及び2lは、環状レール60bに沿って時計回りに移動する。
The annular rail 60a is attached with gripping members 2a, 2b, 2e, 2f, 2i, and 2j that are movable along the annular rail 60a. The annular rail 60b is attached with gripping members 2c, 2d, 2g, 2h, 2k, and 2l that are movable along the annular rail 60b.
The gripping members 2a, 2b, 2e, 2f, 2i, and 2j grip one end of the film 200 in the direction of the arrow TD. The gripping members 2c, 2d, 2g, 2h, 2k, and 2l grip the other end of the film 200 in the direction of the arrow TD. The gripping members 2a to 2l are often referred to as chucks, clips, or the like.
The gripping members 2a, 2b, 2e, 2f, 2i, and 2j move counterclockwise along the annular rail 60a. The gripping members 2c, 2d, 2g, 2h, 2k, and 2l move clockwise along the annular rail 60b.
 把持部材2a~2dは、予熱部10においてフィルム200の端部を把持したまま環状レール60a又は60bに沿って移動し、延伸部20、熱固定部30、及び熱緩和部40を経て、冷却部50まで進行する。次に、把持部材2a及び2bと、把持部材2c及び2dとは、搬送方向順に、冷却部50の矢印MDの方向下流側の端部(例えば、図2における把持解除点P及び把持解除点Q)でフィルム200の端部を離した後、さらに環状レール60a又は60bに沿って移動し、予熱部10に戻る。上記過程において、フィルム200は、矢印MDの方向に移動することで、予熱部10での予熱、延伸部20での延伸、熱固定部30での熱固定、熱緩和部40での熱緩和、及び冷却部50での冷却が行われ、横延伸される。 The gripping members 2a to 2d move along the annular rail 60a or 60b while gripping the end portion of the film 200 in the preheating portion 10, pass through the stretching portion 20, the heat fixing portion 30, and the heat relaxing portion 40, and then the cooling portion. Proceed to 50. Next, the gripping members 2a and 2b and the gripping members 2c and 2d are end portions on the downstream side in the direction of the arrow MD of the cooling unit 50 (for example, the gripping release point P and the grip release point Q in FIG. 2) in the order of transport direction. After separating the end portion of the film 200 at), the film further moves along the annular rail 60a or 60b and returns to the preheating portion 10. In the above process, by moving the film 200 in the direction of the arrow MD, preheating in the preheating section 10, stretching in the stretching section 20, heat fixing in the heat fixing section 30, heat relaxation in the heat relaxing section 40, And cooling is performed by the cooling unit 50, and the film is laterally stretched.
 把持部材2a~2lの移動速度を調節することで、フィルム200の搬送速度を調節できる。また、把持部材2a~2lは、各々独立に、移動速度を変化することができる。 By adjusting the moving speed of the gripping members 2a to 2l, the transport speed of the film 200 can be adjusted. Further, the gripping members 2a to 2l can independently change the moving speed.
 上記のとおり、延伸機100は、延伸部20において、フィルム200を矢印TDの方向に延伸する横延伸を可能とするものである。一方、延伸機100は、把持部材2a~2lの移動速度を変化させることにより、フィルム200を矢印MDの方向に延伸することもできる。すなわち、延伸機100を用いて同時2軸延伸を行うことも可能である。 As described above, the stretching machine 100 enables lateral stretching in the stretching portion 20 to stretch the film 200 in the direction of the arrow TD. On the other hand, the stretching machine 100 can also stretch the film 200 in the direction of the arrow MD by changing the moving speed of the gripping members 2a to 2l. That is, it is also possible to perform simultaneous biaxial stretching using the stretching machine 100.
 延伸機100は、フィルム200を支えるために、把持部材2a~2lに加えて、他の把持部材をさらに有していてもよい(不図示)。 The stretching machine 100 may further have other gripping members in addition to the gripping members 2a to 2l in order to support the film 200 (not shown).
 次に、本発明の実施形態の一例に係るポリエステルフィルムの製造方法(以下、「本製造方法」ともいう。)について、具体的に説明する。 Next, a method for producing a polyester film according to an example of the embodiment of the present invention (hereinafter, also referred to as "the present production method") will be specifically described.
 本製造方法は、2軸配向ポリエステルフィルムを製造する方法であり、原料ポリエステルを含有する溶融樹脂をフィルム状に押し出して、ポリエステル基材を少なくとも含む未延伸ポリエステルフィルムを形成する押出成形工程と、未延伸ポリエステルフィルムを搬送方向に延伸して1軸配向ポリエステルフィルムを形成する縦延伸工程と、1軸配向ポリエステルフィルムを幅方向に延伸して2軸配向ポリエステルフィルムを形成する横延伸工程と、2軸配向ポリエステルフィルムを加熱して熱固定する熱固定工程と、熱固定工程により熱固定されたポリエステルフィルムを熱固定工程よりも低い温度で加熱して熱緩和する熱緩和工程と、熱緩和工程により熱緩和されたポリエステルフィルムを冷却する冷却工程と、冷却工程において、熱緩和されたポリエステルフィルムを幅方向に拡張する拡張工程と、を有する。
 本製造方法は、更に、ポリエステル基材の少なくとも一方の表面に粒子を含有する粒子含有層を設ける粒子含有層形成工程を有する。
This manufacturing method is a method for manufacturing a biaxially oriented polyester film, which includes an extrusion molding step of extruding a molten resin containing a raw material polyester into a film to form an unstretched polyester film containing at least a polyester base material, and a non-extrusion molding step. A longitudinal stretching step of stretching a stretched polyester film in a transport direction to form a uniaxially oriented polyester film, a transverse stretching step of stretching a uniaxially oriented polyester film in the width direction to form a biaxially oriented polyester film, and a biaxially oriented polyester film. A heat fixing step that heats and fixes the oriented polyester film, a heat relaxation step that heats the heat-fixed polyester film at a temperature lower than that of the heat fixing step to relieve heat, and a heat relaxation step that heats the film. It has a cooling step of cooling the relaxed polyester film and an expansion step of expanding the heat-relaxed polyester film in the width direction in the cooling step.
The present production method further includes a particle-containing layer forming step of providing a particle-containing layer containing particles on at least one surface of the polyester base material.
<押出成形工程>
 押出成形工程は、押出成形法により原料のポリエステルを含有する溶融樹脂をフィルム状に押し出して、未延伸ポリエステルフィルムを形成する工程である。原料のポリエステルについては、上記の(ポリエステル)の項目において説明したポリエステルと同義である。押出成形工程により形成される未延伸ポリエステルフィルムは、ポリエステル基材を少なくとも含む。
<Extrusion molding process>
The extrusion molding step is a step of extruding a molten resin containing polyester as a raw material into a film by an extrusion molding method to form an unstretched polyester film. The raw material polyester has the same meaning as the polyester described in the above item (polyester). The unstretched polyester film formed by the extrusion molding step contains at least a polyester substrate.
 押出成形法は、例えば押出機を用いて原料樹脂の溶融体を押し出すことによって、原料樹脂を所望の形状に成形する方法である。
 ポリエステルを含有する溶融樹脂は、例えば、1本又は2本以上のスクリュを備えた押出機を用いて、上述したポリエステルを融点以上の温度に加熱し、そして、スクリュを回転させて溶融混練することにより、形成される。ポリエステルは、加熱及びスクリュによる混練により、押出機内で溶融して溶融体(メルト)となる。
The extrusion molding method is a method of molding a raw material resin into a desired shape by extruding a melt of the raw material resin using, for example, an extruder.
For the molten resin containing polyester, for example, using an extruder equipped with one or more screws, the polyester described above is heated to a temperature equal to or higher than the melting point, and the screw is rotated to melt and knead. Is formed by. Polyester is melted in an extruder by heating and kneading with a screw to form a melt.
 溶融体は、ギアポンプ、及び濾過器等を通して、押出ダイから押し出される。押出ダイは、単に「ダイ」とも称する(JIS B8650:2006、a、押出成形機、番号134参照)。例えば、特開2005-297266号公報に記載の押出しダイ、特開平1-154720号公報に記載の押出しダイ、及び、それらの組合せを使用することもできる。溶融体は、単層で押出されてもよく、多層で押出されてもよい。 The melt is extruded from the extrusion die through a gear pump, a filter, etc. The extrusion die is also simply referred to as a "die" (see JIS B8650: 2006, a, extruder, number 134). For example, the extrusion die described in JP-A-2005-297266, the extrusion die described in JP-A-1-154720, and a combination thereof can also be used. The melt may be extruded in a single layer or in multiple layers.
 溶融押出においては、押出機内での熱分解(例えばポリエステルの加水分解)を抑制する観点から、押出機内を窒素置換することが好ましい。また、押出機は、混練温度が低く抑えられる点で2軸押出機が好ましい。 In melt extrusion, it is preferable to replace the inside of the extruder with nitrogen from the viewpoint of suppressing thermal decomposition (for example, hydrolysis of polyester) in the extruder. Further, the extruder is preferably a twin-screw extruder because the kneading temperature can be kept low.
 押出ダイから押し出された溶融体は、冷却されることによってフィルム状に成形される。例えば、溶融体をキャスティングロールに接触させ、キャスティングロール上で溶融体を冷却及び固化することで、溶融体をフィルム状に成形できる。溶融体の冷却においては、更に、溶融体に風(好ましくは冷風)を当てることが好ましい。 The melt extruded from the extrusion die is cooled to form a film. For example, the melt can be formed into a film by bringing the melt into contact with a casting roll and cooling and solidifying the melt on the casting roll. In cooling the melt, it is more preferable to blow wind (preferably cold air) on the melt.
 キャスティングロールの温度は、(Tg-10)℃を超え(Tg+30)℃以下が好ましく、(Tg-7)~(Tg+20)℃がより好ましく、(Tg-5)~(Tg+10)℃が更に好ましい。上記の「Tg」は、フィルムを構成するポリエステルのガラス転移温度を意味する。
 ここで、本製造方法におけるポリエステルフィルム及び各部材の温度は、非接触式温度計(例えば、放射温度計)を用いて測定できる。フィルムの表面温度は、フィルムの幅方向中央部の温度を5回計測し、得られた計測値の平均値を算出することにより求められる。
The temperature of the casting roll is preferably more than (Tg-10) ° C. and (Tg + 30) ° C., more preferably (Tg-7) to (Tg + 20) ° C., and even more preferably (Tg-5) to (Tg + 10) ° C. The above-mentioned "Tg" means the glass transition temperature of the polyester constituting the film.
Here, the temperature of the polyester film and each member in the present manufacturing method can be measured by using a non-contact thermometer (for example, a radiation thermometer). The surface temperature of the film is obtained by measuring the temperature of the central portion in the width direction of the film five times and calculating the average value of the obtained measured values.
 押出成形工程においてキャスティングロールを用いる場合、キャスティングロールと溶融体との密着性を上げることが好ましい。密着性を上げる方法としては、例えば、静電印加法、エアーナイフ法、エアーチャンバー法、バキュームノズル法、及びタッチロール法が挙げられる。 When a casting roll is used in the extrusion molding process, it is preferable to improve the adhesion between the casting roll and the melt. Examples of the method for improving the adhesion include an electrostatic application method, an air knife method, an air chamber method, a vacuum nozzle method, and a touch roll method.
 キャスティングロール等を用いて冷却された成形体(未延伸ポリエステルフィルム)は、剥ぎ取りロール等の剥ぎ取り部材を用いて、キャスティングロール等の冷却部材から剥ぎ取られる。 The molded product (unstretched polyester film) cooled using a casting roll or the like is stripped from the cooling member such as a casting roll by using a stripping member such as a stripping roll.
<縦延伸工程>
 縦延伸工程は、未延伸ポリエステルフィルムを搬送方向に延伸(以下、「縦延伸」ともいう。)する工程である。縦延伸工程により、1軸配向ポリエステルフィルムが形成される。
<Vertical stretching process>
The longitudinal stretching step is a step of stretching an unstretched polyester film in the transport direction (hereinafter, also referred to as “longitudinal stretching”). A uniaxially oriented polyester film is formed by the longitudinal stretching step.
 縦延伸工程においては、縦延伸前に、未延伸ポリエステルフィルムを予熱することが好ましい。未延伸ポリエステルフィルムを予熱することで、ポリエステルフィルムを容易に縦延伸できる。
 未延伸ポリエステルフィルムの予熱温度は、(Tg-30)~(Tg+40)℃が好ましく、(Tg-20)~(Tg+30)℃がより好ましい。具体的に、予熱温度は、60~100℃が好ましく、65~80℃がより好ましい。
 未延伸ポリエステルフィルムを予熱する方法としては、例えば、縦延伸する延伸ロールよりも上流側に、フィルムを予熱する機能を有する予熱ロールを配置し、未延伸ポリエステルフィルムを搬送しながら予熱する方法が挙げられる。
In the longitudinal stretching step, it is preferable to preheat the unstretched polyester film before longitudinal stretching. By preheating the unstretched polyester film, the polyester film can be easily stretched vertically.
The preheating temperature of the unstretched polyester film is preferably (Tg-30) to (Tg + 40) ° C, more preferably (Tg-20) to (Tg + 30) ° C. Specifically, the preheating temperature is preferably 60 to 100 ° C, more preferably 65 to 80 ° C.
As a method for preheating the unstretched polyester film, for example, a method of arranging a preheating roll having a function of preheating the film on the upstream side of the vertically stretched stretch roll and preheating while transporting the unstretched polyester film can be mentioned. Be done.
 また、延伸ロールがフィルムを予熱する機能を有してもよい。延伸ロールによるフィルムの予熱温度の好ましい範囲は、上記の予熱ロールの予熱温度の好ましい範囲と同じである。 Further, the stretched roll may have a function of preheating the film. The preferable range of the preheating temperature of the film by the stretch roll is the same as the preferable range of the preheating temperature of the preheating roll described above.
 縦延伸は、例えば、未延伸ポリエステルフィルムを長手方向に搬送しながら、搬送方向に設置した2対以上の延伸ロール間で緊張を与えることによって行うことができる。例えば、搬送方向上流側に1対の延伸ロールA、及び搬送方向下流側に1対の延伸ロールBを設置した場合、未延伸ポリエステルフィルムを搬送する際に延伸ロールBの回転速度を、延伸ロールAの回転速度より速くすることで、未延伸ポリエステルフィルムが長手方向に延伸される。 Longitudinal stretching can be performed, for example, by applying tension between two or more pairs of stretch rolls installed in the transport direction while transporting the unstretched polyester film in the longitudinal direction. For example, when a pair of stretched rolls A and a pair of stretched rolls B are installed on the upstream side in the transport direction, the rotation speed of the stretched rolls B is set when the unstretched polyester film is transported. By increasing the rotation speed of A, the unstretched polyester film is stretched in the longitudinal direction.
 縦延伸工程における、搬送方向上流側に設けた1対の延伸ロールA、及び、搬送方向下流側に設けた1対の延伸ロールBによるフィルムの搬送速度(周速度)は、延伸ロールAによるフィルムの搬送速度が、延伸ロールBによるフィルムの搬送速度よりも遅ければ、特に制限されない。
 延伸ロールAによるフィルムの搬送速度は、例えば、5~60m/分であり、10~50m/分が好ましく、15~45m/分がより好ましい。延伸ロールBによるフィルムの搬送速度は、例えば40~160m/分であり、50~150m/分が好ましく、60~140m/分がより好ましい。
In the longitudinal stretching step, the transport speed (peripheral speed) of the film by the pair of stretch rolls A provided on the upstream side in the transport direction and the pair of stretch rolls B provided on the downstream side in the transport direction is the film by the stretch roll A. The transport speed of the film is not particularly limited as long as it is slower than the transport speed of the film by the stretch roll B.
The transport speed of the film by the stretch roll A is, for example, 5 to 60 m / min, preferably 10 to 50 m / min, and more preferably 15 to 45 m / min. The transport speed of the film by the stretch roll B is, for example, 40 to 160 m / min, preferably 50 to 150 m / min, and more preferably 60 to 140 m / min.
 縦延伸工程における延伸倍率は、用途によって適宜設定されるが、2.0~5.0倍が好ましく、2.5~4.0倍がより好ましく、2.8~4.0倍が更に好ましい。 The draw ratio in the longitudinal stretching step is appropriately set depending on the application, but is preferably 2.0 to 5.0 times, more preferably 2.5 to 4.0 times, still more preferably 2.8 to 4.0 times. ..
 縦延伸工程における延伸速度は、800~1500%/秒が好ましく、1000~1400%/秒がより好ましく、1200~1400%/秒が更に好ましい。ここで、「延伸速度」とは、縦延伸工程において1秒間に延伸されたポリエステルフィルムの搬送方向の長さΔdを、延伸前のポリエステルフィルムの搬送方向の長さd0で除した値を、百分率で表した値である。 The stretching speed in the longitudinal stretching step is preferably 800 to 1500% / sec, more preferably 1000 to 1400% / sec, and even more preferably 1200 to 1400% / sec. Here, the "stretching speed" is a value obtained by dividing the length Δd in the transport direction of the polyester film stretched in 1 second in the longitudinal stretching step by the length d0 in the transport direction of the polyester film before stretching as a percentage. It is a value expressed by.
 縦延伸工程においては、未延伸ポリエステルフィルムを加熱することが好ましい。加熱により縦延伸が容易になるためである。
 縦延伸工程における加熱温度は、(Tg-20)~(Tg+50)℃が好ましく、(Tg-10)~(Tg+40)℃がより好ましく、(Tg)~(Tg+30)℃が更に好ましい。具体的に、縦延伸工程における加熱温度は、70~120℃が好ましく、80~110℃がより好ましく、85~100℃が更に好ましい。
In the longitudinal stretching step, it is preferable to heat the unstretched polyester film. This is because longitudinal stretching becomes easier by heating.
The heating temperature in the longitudinal stretching step is preferably (Tg-20) to (Tg + 50) ° C, more preferably (Tg-10) to (Tg + 40) ° C, and even more preferably (Tg) to (Tg + 30) ° C. Specifically, the heating temperature in the longitudinal stretching step is preferably 70 to 120 ° C, more preferably 80 to 110 ° C, and even more preferably 85 to 100 ° C.
 縦延伸工程において未延伸ポリエステルフィルムを加熱する方法としては、未延伸ポリエステルフィルムに接触する延伸ロール等のロールを加熱する方法が挙げられる。ロールを加熱する方法としては、例えば、ロール内部にヒーターを設ける方法、及び、ロール内部に配管を設け、その配管内に加熱した流体を流す方法が挙げられる。上記の他、例えば、未延伸ポリエステルフィルムに温風を当てる方法、並びに、未延伸ポリエステルフィルムをヒーター等の熱源に接触させるか、又は、熱源の近傍を通過させることによって未延伸ポリエステルフィルムを加熱する方法が挙げられる。 Examples of the method of heating the unstretched polyester film in the longitudinal stretching step include a method of heating a roll such as a stretched roll in contact with the unstretched polyester film. Examples of the method of heating the roll include a method of providing a heater inside the roll and a method of providing a pipe inside the roll and allowing the heated fluid to flow in the pipe. In addition to the above, for example, a method of applying warm air to the unstretched polyester film, and heating the unstretched polyester film by bringing the unstretched polyester film into contact with a heat source such as a heater or passing it in the vicinity of the heat source. The method can be mentioned.
 未延伸ポリエステルフィルムに対して縦延伸する縦延伸工程は、上記の方法に制限されない。
 上記の縦延伸工程では、2対の延伸ロールの搬送速度の差を利用して未延伸ポリエステルフィルムを縦延伸しているが、2つの延伸ロールの間に配置され、それらの延伸ロールよりも速い搬送速度でフィルムを搬送する高速延伸ロールを1つ以上用いて、未延伸ポリエステルフィルムを縦延伸して、1軸配向ポリエステルフィルムを作製してもよい。
 また、上記の縦延伸工程では、互いに対向する2つのロール(1対のロール)によりフィルムを挟んで搬送する構成を有しているが、縦延伸工程に使用する延伸ロールが、対向するロールを有さず、ポリエステルフィルムの一方の面に接する1つのロールのみで構成されていてもよい。
The longitudinal stretching step of longitudinally stretching the unstretched polyester film is not limited to the above method.
In the above-mentioned longitudinal stretching step, the unstretched polyester film is longitudinally stretched by utilizing the difference in the transport speeds of the two stretched rolls, but it is arranged between the two stretched rolls and is faster than those stretched rolls. A uniaxially oriented polyester film may be produced by longitudinally stretching an unstretched polyester film using one or more high-speed stretching rolls that transport the film at a transport speed.
Further, in the above-mentioned longitudinal stretching step, the film is sandwiched and conveyed by two rolls (a pair of rolls) facing each other, but the stretching rolls used in the longitudinal stretching step have the opposing rolls. It may be composed of only one roll in contact with one surface of the polyester film.
<横延伸工程>
 横延伸工程は、1軸配向ポリエステルフィルムを横延伸する工程である。横延伸工程は、例えば、上記延伸機100の横延伸部20において実施される。
<Transverse stretching process>
The transverse stretching step is a step of transversely stretching a uniaxially oriented polyester film. The transverse stretching step is carried out, for example, in the transverse stretching portion 20 of the stretching machine 100.
 横延伸工程においては、横延伸前に、ポリエステルフィルムを予熱することが好ましい。ポリエステルフィルムを予熱することで、ポリエステルフィルムを容易に横延伸できる。
 予熱温度は、(Tg-10)~(Tg+60)℃が好ましく、(Tg)~(Tg+50)℃がより好ましい。具体的に、予熱温度は、80~120℃が好ましく、90~110℃がより好ましい。
In the transverse stretching step, it is preferable to preheat the polyester film before the transverse stretching. By preheating the polyester film, the polyester film can be easily stretched laterally.
The preheating temperature is preferably (Tg-10) to (Tg + 60) ° C, more preferably (Tg) to (Tg + 50) ° C. Specifically, the preheating temperature is preferably 80 to 120 ° C, more preferably 90 to 110 ° C.
 横延伸工程における1軸配向ポリエステルフィルムの幅方向の延伸倍率(横延伸倍率a)は特に制限されないが、上記縦延伸工程における延伸倍率より大きいことが好ましい。横延伸工程における延伸倍率aは、3.0~6.0倍が好ましく、3.5~5.0倍がより好ましく、3.5~4.5倍が更に好ましい。
 横延伸工程を延伸機100の横延伸部20において実施する場合、横延伸倍率aは、横延伸部20の搬入時のフィルム幅L0に対する横延伸部20からの搬出時のフィルム幅L1の比率(L1/L0)から求められる。
The stretching ratio in the width direction (transverse stretching ratio a) of the uniaxially oriented polyester film in the transverse stretching step is not particularly limited, but is preferably larger than the stretching ratio in the longitudinal stretching step. The stretching ratio a in the transverse stretching step is preferably 3.0 to 6.0 times, more preferably 3.5 to 5.0 times, still more preferably 3.5 to 4.5 times.
When the transverse stretching step is carried out in the transverse stretching portion 20 of the stretching machine 100, the transverse stretching ratio a is the ratio of the film width L1 at the time of carrying out from the transverse stretching portion 20 to the film width L0 at the time of carrying in the transverse stretching portion 20. It is obtained from L1 / L0).
 縦延伸工程における延伸倍率と、横延伸工程における延伸倍率との積で表される面積倍率は、12.8~15.5倍が好ましく、13.5~15.2倍がより好ましく、14.0~15.0倍が更に好ましい。面積倍率が上記の下限値以上であると、フィルム幅方向における分子配向が良好になる。また、面積倍率が上記の上限値以下であると、加熱処理に供された際に分子配向が緩和されにくい状態を維持しやすい。 The area magnification represented by the product of the stretching ratio in the longitudinal stretching step and the stretching ratio in the transverse stretching step is preferably 12.8 to 15.5 times, more preferably 13.5 to 15.2 times, and 14. It is more preferably 0 to 15.0 times. When the area magnification is at least the above lower limit value, the molecular orientation in the film width direction becomes good. Further, when the area magnification is not more than the above upper limit value, it is easy to maintain a state in which the molecular orientation is difficult to be relaxed when subjected to the heat treatment.
 横延伸工程における加熱温度は、(Tg-10)~(Tg+80)℃が好ましく、(Tg)~(Tg+70)℃がより好ましく、(Tg)~(Tg+60)℃が更に好ましい。具体的に、横延伸工程における加熱温度は、100~140℃が好ましく、110~135℃がより好ましく、115~130℃が更に好ましい。 The heating temperature in the transverse stretching step is preferably (Tg-10) to (Tg + 80) ° C, more preferably (Tg) to (Tg + 70) ° C, and even more preferably (Tg) to (Tg + 60) ° C. Specifically, the heating temperature in the transverse stretching step is preferably 100 to 140 ° C, more preferably 110 to 135 ° C, and even more preferably 115 to 130 ° C.
 横延伸工程における延伸速度は、8~45%/秒が好ましく、10~30%/秒がより好ましく、15~20%/秒が更に好ましい。 The stretching speed in the transverse stretching step is preferably 8 to 45% / sec, more preferably 10 to 30% / sec, and even more preferably 15 to 20% / sec.
<熱固定工程>
 本製造方法では、横延伸工程により横延伸されたポリエステルフィルムに対する加熱処理として、熱固定工程及び熱緩和工程を行う。
 熱固定工程においては、横延伸工程により得られた2軸配向ポリエステルフィルムを加熱して、熱固定する。熱固定によってポリエステルを結晶化させることにより、ポリエステルフィルムの収縮を抑えることができる。
 熱固定工程は、例えば、上記延伸機100の熱固定部30において実施される。
<Heat fixing process>
In this production method, a heat fixing step and a heat relaxation step are performed as heat treatment for the polyester film laterally stretched by the transverse stretching step.
In the heat fixing step, the biaxially oriented polyester film obtained by the transverse stretching step is heated and heat-fixed. By crystallizing the polyester by heat fixing, shrinkage of the polyester film can be suppressed.
The heat fixing step is carried out, for example, in the heat fixing portion 30 of the stretching machine 100.
 熱固定工程におけるポリエステルフィルムの表面温度(熱固定温度T1)は、190~240℃が好ましく、200~240℃がより好ましく、210~230℃が更に好ましい。
 熱固定工程では、ポリエステルフィルムの表面の最高到達温度が上記熱固定温度T1となるように制御しながら加熱処理が行われる。
The surface temperature (heat fixing temperature T1) of the polyester film in the heat fixing step is preferably 190 to 240 ° C., more preferably 200 to 240 ° C., and even more preferably 210 to 230 ° C.
In the heat fixing step, the heat treatment is performed while controlling the maximum temperature reached on the surface of the polyester film to be the heat fixing temperature T1.
 熱固定工程において、フィルム幅方向の表面温度のバラツキは、0.5~10.0℃が好ましく、0.5~7.0℃がより好ましく、0.5~5.0℃が更に好ましく、0.5~4.0℃が特に好ましい。フィルム幅方向の表面温度のバラツキを上記範囲内に制御することで、幅方向における結晶化度のバラツキを抑制できる。 In the heat fixing step, the variation in the surface temperature in the film width direction is preferably 0.5 to 10.0 ° C, more preferably 0.5 to 7.0 ° C, still more preferably 0.5 to 5.0 ° C. 0.5 to 4.0 ° C. is particularly preferable. By controlling the variation in the surface temperature in the film width direction within the above range, the variation in the crystallinity in the width direction can be suppressed.
 加熱方法としては、例えば、フィルムに熱風を当てる方法、及び、フィルムを輻射加熱する方法が挙げられる。輻射加熱する方法において用いられる装置としては、例えば、赤外線ヒーターが挙げられる。 Examples of the heating method include a method of applying hot air to the film and a method of radiant heating of the film. Examples of the device used in the method of radiant heating include an infrared heater.
 熱固定工程における加熱時間は、5~50秒間が好ましく、5~30秒間がより好ましく、5~10秒間が更に好ましい。 The heating time in the heat fixing step is preferably 5 to 50 seconds, more preferably 5 to 30 seconds, and even more preferably 5 to 10 seconds.
<熱緩和工程>
 熱緩和工程においては、熱固定工程により熱固定されたポリエステルフィルムを、熱固定工程よりも低い温度で加熱することで熱緩和する。熱緩和によってポリエステルフィルムの残留歪みを緩和できる。
 熱緩和工程は、例えば、上記延伸機100の熱緩和部40において実施される。
<Heat relaxation process>
In the heat relaxation step, the polyester film heat-fixed by the heat-fixing step is heated at a temperature lower than that of the heat-fixing step to heat-relax. Residual strain of the polyester film can be alleviated by heat relaxation.
The heat relaxation step is carried out, for example, in the heat relaxation unit 40 of the stretching machine 100.
 熱緩和工程におけるポリエステルフィルムの表面温度(熱緩和温度T2)は、熱固定温度T1より、5℃以上低い温度が好ましく、15℃以上低い温度がより好ましく、25℃以上低い温度が更に好ましく、30℃以上低い温度が特に好ましい。即ち、熱緩和温度T2は、235℃以下が好ましく、225℃以下がより好ましく、210℃以下が更に好ましく、200℃以下が特に好ましい。
 熱緩和温度T2の下限は、100℃以上が好ましく、110℃以上がより好ましく、120℃以上が更に好ましい。
 熱緩和工程では、ポリエステルフィルムの表面の最高到達温度が上記熱緩和温度T2となるように制御しながら加熱処理が行われる。
The surface temperature (heat relaxation temperature T2) of the polyester film in the heat relaxation step is preferably 5 ° C. or higher lower than the heat fixation temperature T1, more preferably 15 ° C. or higher, further preferably 25 ° C. or higher, and 30. Temperatures as low as ° C. or higher are particularly preferred. That is, the heat relaxation temperature T2 is preferably 235 ° C or lower, more preferably 225 ° C or lower, further preferably 210 ° C or lower, and particularly preferably 200 ° C or lower.
The lower limit of the heat relaxation temperature T2 is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, still more preferably 120 ° C. or higher.
In the heat relaxation step, the heat treatment is performed while controlling the maximum temperature reached on the surface of the polyester film to be the heat relaxation temperature T2.
 加熱方法としては、例えば、フィルムに熱風を当てる方法、フィルムを輻射加熱する方法が挙げられる。輻射加熱する方法において用いられる装置としては、例えば、赤外線ヒーターが挙げられる。 Examples of the heating method include a method of applying hot air to the film and a method of radiant heating of the film. Examples of the device used in the method of radiant heating include an infrared heater.
<冷却工程>
 本製造方法は、熱緩和されたポリエステルフィルムを冷却する冷却工程を有する。冷却工程及び後述する拡張工程は、例えば、上記延伸機100の冷却部50において実施される。
<Cooling process>
The manufacturing method comprises a cooling step of cooling the heat-relaxed polyester film. The cooling step and the expansion step described later are carried out, for example, in the cooling unit 50 of the stretching machine 100.
 冷却工程におけるポリエステルフィルムの冷却方法としては、例えば、フィルムに風(好ましくは冷風)を当てる方法、及び温度調節可能な部材(例えば、温調ロール)にフィルムを接触させる方法が挙げられる。
 冷却工程における冷却温度は、熱緩和工程と区別する点で、130℃以下が好ましい。冷却温度は、30~120℃がより好ましく、30~100℃が更に好ましく、30~80℃が特に好ましい。
Examples of the method for cooling the polyester film in the cooling step include a method of blowing air (preferably cold air) on the film and a method of bringing the film into contact with a temperature-adjustable member (for example, a temperature control roll).
The cooling temperature in the cooling step is preferably 130 ° C. or lower in order to distinguish it from the heat relaxation step. The cooling temperature is more preferably 30 to 120 ° C, further preferably 30 to 100 ° C, and particularly preferably 30 to 80 ° C.
 本製造方法では、ポリエステルフィルムの冷却速度Vが2200~3500℃/分となるように冷却工程を実施する。冷却速度Vを上記範囲内に調節することで、2軸配向フィルムに積層される機能層の厚みムラを低減できる。
 冷却速度Vの範囲を特定することにより機能層の厚みムラが低減されるメカニズムの詳細は明らかではないが、フィルム表面の温度が効率的に低下され、かつ、フィルム表面の温度ムラを抑制できる冷却速度とすることにより、冷却後のフィルムに内在する歪みが低減され、機能層積層時の高温処理に伴ううねりの発生を抑制できるためと推測される。
 上記の観点から、冷却工程における冷却速度Vは、2200~3000℃/分が好ましく、2300~2600℃/分がより好ましい。
In this manufacturing method, the cooling step is carried out so that the cooling rate V of the polyester film is 2200 to 3500 ° C./min. By adjusting the cooling rate V within the above range, it is possible to reduce the thickness unevenness of the functional layer laminated on the biaxially oriented film.
Although the details of the mechanism by which the thickness unevenness of the functional layer is reduced by specifying the range of the cooling rate V are not clear, the cooling that can efficiently lower the temperature of the film surface and suppress the temperature unevenness of the film surface. It is presumed that by setting the speed, the strain inherent in the film after cooling can be reduced, and the generation of waviness due to the high temperature treatment at the time of laminating the functional layer can be suppressed.
From the above viewpoint, the cooling rate V in the cooling step is preferably 2200 to 3000 ° C./min, more preferably 2300 to 2600 ° C./min.
 冷却工程におけるポリエステルフィルムの冷却速度Vは、非接触式温度計を用いて、測定できる。例えば、上記延伸機100の冷却部50において冷却工程を実施する場合、熱緩和部40から冷却部50に搬入されるフィルム200の表面温度と、冷却部50から搬出されるフィルム200の表面温度とを測定して、両者の温度差ΔT(℃)を得る。得られた温度差ΔT(℃)を、冷却部50におけるフィルム200の滞在時間taで割ることにより、冷却速度Vが求められる。
 ポリエステルフィルムの冷却速度は、冷却装置の運転条件、及び、フィルムの搬送速度により、調整できる。
The cooling rate V of the polyester film in the cooling step can be measured using a non-contact thermometer. For example, when the cooling step is carried out in the cooling unit 50 of the stretching machine 100, the surface temperature of the film 200 carried from the heat relaxation unit 40 to the cooling unit 50 and the surface temperature of the film 200 carried out from the cooling unit 50 Is measured to obtain the temperature difference ΔT (° C.) between the two. The cooling rate V is obtained by dividing the obtained temperature difference ΔT (° C.) by the residence time ta of the film 200 in the cooling unit 50.
The cooling speed of the polyester film can be adjusted by the operating conditions of the cooling device and the transport speed of the film.
 本製造方法における上記の熱固定工程、熱緩和工程及び冷却工程は、この順に連続して実施することが好ましい。これにより、ポリエステルフィルムに対する加熱及び冷却の繰返しによる負荷(熱履歴)を低減し、フィルムに内在する歪み等を低減して、筋状欠陥の発生を抑制できるためである。 It is preferable that the above-mentioned heat fixing step, heat relaxation step and cooling step in this manufacturing method are continuously carried out in this order. This is because the load (heat history) due to repeated heating and cooling of the polyester film can be reduced, the strain inherent in the film can be reduced, and the occurrence of streak defects can be suppressed.
<拡張工程>
 本製造方法は、上記冷却工程において、熱緩和されたポリエステルフィルムを幅方向に拡張する拡張工程を有する。
 冷却工程においてポリエステルフィルムを「幅方向に拡張する」とは、冷却工程の開始時におけるポリエステルフィルムのフィルム幅(図2中のL2)よりも、冷却工程の終了時におけるフィルム幅(図2中のL3)が広くなるように、冷却工程の間に、ポリエステルフィルムに対して幅方向に張力を付与することを意味する。
<Expansion process>
The present manufacturing method has an expansion step of expanding the heat-relaxed polyester film in the width direction in the cooling step.
"Expanding the polyester film in the width direction" in the cooling step means the film width at the end of the cooling step (L2 in FIG. 2) rather than the film width of the polyester film at the start of the cooling step (L2 in FIG. 2). It means applying tension in the width direction to the polyester film during the cooling step so that L3) becomes wider.
 冷却工程において、ポリエステルフィルムを幅方向に拡張する方法は、特に制限されない。例えば、上記の延伸機100を用いて2軸配向ポリエステルフィルムを製造する場合、冷却部50の開始地点における環状レール60a及び60bの距離よりも、冷却部50の終了地点(把持解除点P及び把持解除点Q)における環状レール60a及び60bの距離を広げることにより、冷却工程において、各把持部材により把持されるフィルム200を幅方向に拡張することができる。
 拡張工程は、冷却工程の前後でフィルム幅が拡張される限り、冷却工程の開始から終了まで連続的又は断続的に実施してもよく、冷却工程の間の一時期においてのみ実施してもよい。
 拡張工程は、130℃以下で行われることが好ましい。なかでも、30~120℃がより好ましく、30~100℃が更に好ましく、30~80℃が特に好ましい。
In the cooling step, the method of expanding the polyester film in the width direction is not particularly limited. For example, when a biaxially oriented polyester film is manufactured using the above-mentioned stretching machine 100, the end point of the cooling unit 50 (grasping release point P and gripping release point P) is more than the distance between the annular rails 60a and 60b at the start point of the cooling unit 50. By increasing the distance between the annular rails 60a and 60b at the release point Q), the film 200 gripped by each gripping member can be expanded in the width direction in the cooling step.
The expansion step may be carried out continuously or intermittently from the start to the end of the cooling step as long as the film width is expanded before and after the cooling step, or may be carried out only at one time during the cooling step.
The expansion step is preferably performed at 130 ° C. or lower. Among them, 30 to 120 ° C. is more preferable, 30 to 100 ° C. is further preferable, and 30 to 80 ° C. is particularly preferable.
 拡張工程によるポリエステルフィルムの幅方向の拡張率、即ち、冷却工程の開始前におけるフィルム幅に対する冷却工程の終了時におけるフィルム幅の比率は、0よりも大きければ特に制限されないが、本発明の効果がより優れる点で、上記拡張率の百分率bが0.001%以上であることが好ましく、0.01%以上であることがより好ましい。
 上限は特に制限されないが、上記拡張率の百分率bが1.3%以下であることが好ましく、1.2%以下であることがより好ましく、1.0%以下であることが更に好ましい。フィルム幅の拡張率を上記の上限値以下に設定することにより、フィルム製造時に高速で搬送するために搬送方向に強い張力を付与した場合(例えば、搬送方向の張力が100N/m以上である場合)であっても、後述するトリミング工程における切断面の乱れ、更には、その切断乱れに伴うフィルムの破断を抑制できる。
The expansion ratio in the width direction of the polyester film by the expansion step, that is, the ratio of the film width at the end of the cooling step to the film width before the start of the cooling step is not particularly limited as long as it is larger than 0, but the effect of the present invention is effective. From a more excellent point, the percentage b of the expansion rate is preferably 0.001% or more, and more preferably 0.01% or more.
The upper limit is not particularly limited, but the percentage b of the expansion rate is preferably 1.3% or less, more preferably 1.2% or less, and further preferably 1.0% or less. When a strong tension is applied in the transport direction in order to transport the film at high speed by setting the expansion rate of the film width to the above upper limit value or less (for example, when the tension in the transport direction is 100 N / m or more). ), It is possible to suppress the disorder of the cut surface in the trimming step described later, and further, the breakage of the film due to the cutting disorder.
<粒子含有層形成工程>
 本製造方法は、ポリエステル基材の少なくとも一方の表面に粒子含有層を設ける粒子含有層形成工程を有する。粒子含有層形成工程により形成される粒子含有層については、上記<粒子含有層>の項目において詳しく説明した粒子含有層と同義である。
 粒子含有層の形成は、本製造方法のいずれの段階で行ってもよく、例えば、粒子含有層を構成する材料を含有する塗布液を用いて、未延伸又は延伸されたポリエステル基材の少なくとも一方の表面上に塗布膜を形成し、必要に応じて乾燥する方法、及び、共押出法によって、ポリエステル基材の形成と同時に粒子含有層を形成する方法が挙げられる。
<Particle-containing layer forming process>
The present production method includes a particle-containing layer forming step of providing a particle-containing layer on at least one surface of a polyester base material. The particle-containing layer formed by the particle-containing layer forming step has the same meaning as the particle-containing layer described in detail in the above item <Particle-containing layer>.
The formation of the particle-containing layer may be performed at any stage of the present production method, for example, at least one of the unstretched or stretched polyester base materials using a coating liquid containing the material constituting the particle-containing layer. Examples thereof include a method of forming a coating film on the surface of the polyester and drying it if necessary, and a method of forming a particle-containing layer at the same time as forming a polyester base material by a coextrusion method.
 まず、粒子含有層用塗布液を用いて粒子含有層を形成する方法について、説明する。
 粒子含有層用塗布液は、粒子含有層が含有する粒子、必要に応じて添加されるバインダー及び添加剤、並びに、溶剤を混合することにより調製できる。溶剤としては、例えば、水、エタノール、トルエン、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル及びプロピレングリコールモノエチルエーテルが挙げられる。中でも、環境、安全性及び経済性の観点から、水が好ましい。
First, a method of forming a particle-containing layer using a coating liquid for a particle-containing layer will be described.
The coating liquid for the particle-containing layer can be prepared by mixing the particles contained in the particle-containing layer, the binder and additives added as necessary, and the solvent. Examples of the solvent include water, ethanol, toluene, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether. Of these, water is preferable from the viewpoint of environment, safety and economy.
 粒子含有層用塗布液は、1種単独の溶剤を含有していてもよく、2種以上の溶剤を含有していてもよい。
 溶剤の含有量は、粒子含有層用塗布液の全質量に対して、80~99質量%が好ましく、90~98質量%がより好ましい。
 即ち、粒子含有層用塗布液において、溶剤以外の成分(固形分)の合計含有量は、粒子含有層用塗布液の全質量に対して、0.5~20質量%が好ましく、1~10質量%がより好ましい。
 粒子含有層用塗布液における溶剤以外の各成分については、その好ましい態様も含めて、上記の粒子含有層に含有される各成分について説明した内容と同じである。また、粒子含有層用塗布液の固形分の全質量に対する各成分の含有量が上記の粒子含有層の全質量に対する各成分の好ましい含有量と同じになるように、塗布液における各成分の含有量を調整することが好ましい。
 粒子含有層用塗布液に含まれる粒子の平均粒子径は、レーザー回折/散乱式粒子径分布測定装置(「LA-950」、株式会社堀場製作所製)を用いて測定する。また、粒子の市販品を用いる場合は、粒子の平均粒子径はカタログ値であってもよい。
The coating liquid for a particle-containing layer may contain one type of solvent alone, or may contain two or more types of solvents.
The content of the solvent is preferably 80 to 99% by mass, more preferably 90 to 98% by mass, based on the total mass of the coating liquid for the particle-containing layer.
That is, the total content of the components (solid content) other than the solvent in the coating liquid for the particle-containing layer is preferably 0.5 to 20% by mass, preferably 1 to 10% by mass, based on the total mass of the coating liquid for the particle-containing layer. More preferably by mass.
The components other than the solvent in the coating liquid for the particle-containing layer are the same as those described for each component contained in the particle-containing layer, including the preferred embodiment thereof. Further, the content of each component in the coating liquid is such that the content of each component with respect to the total mass of the solid content of the coating liquid for the particle-containing layer is the same as the preferable content of each component with respect to the total mass of the particle-containing layer described above. It is preferable to adjust the amount.
The average particle size of the particles contained in the coating liquid for the particle-containing layer is measured using a laser diffraction / scattering type particle size distribution measuring device (“LA-950”, manufactured by HORIBA, Ltd.). When a commercially available particle product is used, the average particle size of the particles may be a catalog value.
 粒子含有層用塗布液の塗布方法は特に制限されず、公知の方法を利用できる。塗布方法としては、例えば、スプレーコート法、スリットコート法、ロールコート法、ブレードコート法、スピンコート法、バーコート法及びディップコート法が挙げられる。 The coating method of the coating liquid for the particle-containing layer is not particularly limited, and a known method can be used. Examples of the coating method include a spray coating method, a slit coating method, a roll coating method, a blade coating method, a spin coating method, a bar coating method and a dip coating method.
 粒子含有層用塗布液を用いて粒子含有層を形成する方法としては、ポリエステル基材を搬送しながら、ポリエステル基材の少なくとも一方に表面に塗布液を塗布する所謂インラインコーティング法、及び、2軸配向されたポリエステル基材を製造した後、別途塗布液を塗布する所謂オフラインコーティング法のいずれも適用できるが、効率性がより優れる点、及び、透明性を付与する点で、インラインコーティング法が好ましい。
 インラインコーティング法において、粒子含有層用塗布液を塗布するポリエステル基材は、未延伸のポリエステル基材であってもよく、1軸配向されたポリエステル基材であってもよよいが、1軸配向されたポリエステル基材であることが好ましい。
As a method for forming the particle-containing layer using the coating liquid for the particle-containing layer, a so-called in-line coating method in which the coating liquid is applied to the surface of at least one of the polyester base materials while transporting the polyester base material, and biaxial Any of the so-called offline coating methods in which a coating liquid is separately applied after producing the oriented polyester base material can be applied, but the in-line coating method is preferable in terms of higher efficiency and imparting transparency. ..
In the in-line coating method, the polyester base material to which the coating liquid for the particle-containing layer is applied may be an unstretched polyester base material or a uniaxially oriented polyester base material, but may be uniaxially oriented. It is preferably a polyester base material.
 次いで、共押出法によって、ポリエステル基材の形成と同時に粒子含有層を形成する方法について、説明する。
 共押出法による粒子含有層の形成方法は、特に制限されない。例えば、粒子含有層を構成する粒子及びバインダー、並びに、必要に応じて添加される添加剤を含有する樹脂組成物を調製し、上記の<押出成形工程>に記載の方法に準じて、得られた樹脂組成物を加熱、及び、溶融混練することにより樹脂組成物の溶融体を作製し、ポリエステルの溶融体と共に押出機を用いて押し出すことによって、粒子含有層を形成できる。
Next, a method of forming the particle-containing layer at the same time as forming the polyester base material by the coextrusion method will be described.
The method for forming the particle-containing layer by the coextrusion method is not particularly limited. For example, a resin composition containing the particles and binders constituting the particle-containing layer and additives added as needed is prepared and obtained according to the method described in the above <Extrusion molding step>. A particle-containing layer can be formed by heating and melt-kneading the resin composition to prepare a melt of the resin composition and extruding it together with the melt of polyester using an extruder.
 粒子含有層形成工程としては、製造工程におけるポリエステル基材の加熱時間を短くでき、ポリエステル基材内部の歪みを低減できる点で、縦延伸工程と横延伸工程との間に粒子含有層用塗布液を用いて粒子含有層を形成するインラインコーティング工程、又は、ポリエステル基材を構成するポリエステルを含有する第1の溶融体並びに粒子及びバインダーを含有する第2の溶融体を用いて、ポリエステル基材と粒子含有層とを同時に形成する共押出成形工程であることが好ましい。
 中でも、縦延伸工程と横延伸工程との間に、1軸配向されたポリエステル基材に対して、上記のインラインコーティング法を適用して粒子含有層を形成することが好ましい。1軸配向されたポリエステル基材の少なくとも一方の表面に粒子含有層用塗布液を塗布して粒子含有層を形成した後、ポリエステル基材と粒子含有層とを同時に横延伸することにより、ポリエステル基材及び粒子含有層の密着性を向上できる。その際の横延伸の具体的な方法については上記横延伸工程において説明した通りである。
In the particle-containing layer forming step, the heating time of the polyester base material in the manufacturing process can be shortened, and the strain inside the polyester base material can be reduced. The in-line coating step of forming the particle-containing layer using the polyester base material, or the polyester base material using the first melt containing polyester and the second melt containing particles and the binder constituting the polyester base material. It is preferably a coextrusion molding step of forming the particle-containing layer at the same time.
Above all, it is preferable to apply the above-mentioned in-line coating method to the uniaxially oriented polyester base material between the longitudinal stretching step and the transverse stretching step to form a particle-containing layer. A coating liquid for a particle-containing layer is applied to at least one surface of a uniaxially oriented polyester base material to form a particle-containing layer, and then the polyester base material and the particle-containing layer are simultaneously transversely stretched to form a polyester group. The adhesion of the material and the particle-containing layer can be improved. The specific method of lateral stretching at that time is as described in the above-mentioned transverse stretching step.
 本製造方法は、上記の工程を経て得られた2軸配向ポリエステルフィルムを巻き取ることにより、ロール状の2軸配向ポリエステルフィルムを得る巻き取り工程を有していてもよい。
 また、本製造方法は、巻き取り工程を実施する前に、ポリエステルフィルムを搬送方向に沿って連続的に切断して、ポリエステルフィルムの幅方向の少なくとも一方の端部を切り取るトリミング工程を更に有してもよい。
The present manufacturing method may include a winding step of obtaining a roll-shaped biaxially oriented polyester film by winding the biaxially oriented polyester film obtained through the above steps.
Further, the present manufacturing method further includes a trimming step of continuously cutting the polyester film along the transport direction and cutting off at least one end in the width direction of the polyester film before carrying out the winding step. You may.
<製造条件>
 本製造方法は、下記条件1を満たす。
 条件1:ポリエステル基材を構成するポリエステルの融点をTm(℃)、熱固定工程における熱固定温度をT1(℃)、横延伸工程における1軸配向ポリエステルフィルムの延伸倍率をa、拡張工程における熱緩和されたポリエステルフィルムの幅方向の拡張率の百分率をb(%)としたとき、下記式(1)で算出されるAと下記式(2)で算出されるBとの積(A×B)である値Cが、-4.0~4.0である。ただし、A及びBのいずれか一方のみが0である場合は除く。
  A=Tm-T1-30   (1)
  B=a/5-b   (2)
<Manufacturing conditions>
This manufacturing method satisfies the following condition 1.
Condition 1: The melting point of the polyester constituting the polyester substrate is Tm (° C), the heat fixing temperature in the heat fixing step is T1 (° C), the draw ratio of the uniaxially oriented polyester film in the transverse stretching step is a, and the heat in the expansion step. When the percentage of the expansion rate in the width direction of the relaxed polyester film is b (%), the product of A calculated by the following formula (1) and B calculated by the following formula (2) (A × B). ) Is a value C of -4.0 to 4.0. However, this excludes cases where only one of A and B is 0.
A = Tm-T1-30 (1)
B = a / 5-b (2)
 上記条件1を満たすように各工程の条件を設定することにより機能層の厚みムラが低減されるメカニズムの詳細は明らかではないが、熱固定工程においてポリエステルの過剰な結晶化を抑制し、かつ、冷却工程において所定の拡張率で幅方向に拡張することで、幅方向に向いたポリエステル分子鎖の存在比率が上昇することにより、後工程での加熱による寸法変化率を低減し、その結果、機能層を積層する工程における高温処理に伴ううねりの発生を抑制できるためと推測される。
 上記の観点から、上記の値Cの絶対値が0.1~0.7であることが好ましく、上記の値Cが0.1~0.5であることがより好ましい。
 なお、上記の通り、A及びBのいずれか一方のみが0である場合は条件1を満たさないが、A及びBの両者が0である場合、条件1を満たすものとする。
Although the details of the mechanism by which the thickness unevenness of the functional layer is reduced by setting the conditions of each step so as to satisfy the above condition 1, the details of the mechanism are not clear, but the excessive crystallization of polyester in the heat fixing step is suppressed and the polyester is not excessively crystallized. By expanding in the width direction at a predetermined expansion rate in the cooling process, the abundance ratio of the polyester molecular chains oriented in the width direction increases, thereby reducing the dimensional change rate due to heating in the subsequent process, and as a result, the function. It is presumed that this is because the generation of waviness due to high temperature treatment in the process of laminating layers can be suppressed.
From the above viewpoint, the absolute value of the above value C is preferably 0.1 to 0.7, and more preferably the above value C is 0.1 to 0.5.
As described above, if only one of A and B is 0, the condition 1 is not satisfied, but if both A and B are 0, the condition 1 is satisfied.
 本製造方法は、更に、ポリエステル基材を構成するポリエステルの融点をTm(℃)、熱固定工程における熱固定温度をT1(℃)、横延伸工程における1軸配向ポリエステルフィルムの延伸倍率をa、拡張工程における熱緩和されたポリエステルフィルムの幅方向の拡張率の百分率をb(%)、冷却工程における冷却速度をV(℃/分)としたとき、上記式(1)で算出されるA、上記式(2)で算出されるB、及び、冷却速度Vから下記式(3)より算出されるDが、1~10000であることが好ましい。
  D=(A×B)×V   (3)
In this production method, the melting point of the polyester constituting the polyester base material is Tm (° C.), the heat fixing temperature in the heat fixing step is T1 (° C.), and the stretching ratio of the uniaxially oriented polyester film in the transverse stretching step is a. When the percentage of the expansion rate in the width direction of the heat-relaxed polyester film in the expansion step is b (%) and the cooling rate in the cooling step is V (° C./min), A, calculated by the above formula (1). It is preferable that B calculated by the above formula (2) and D calculated from the following formula (3) from the cooling rate V are 1 to 10000.
D = (A x B) 2 x V (3)
 上記の値Dが上記の範囲となるように各工程の条件を設定することにより機能層の厚みムラが低減されるメカニズムの詳細は明らかではないが、上記の冷却速度Vの範囲、及び、値Cの範囲を特定したことにより厚みムラが低減されるメカニズムと同様のメカニズムが推測される。
 上記の値Dは、上記の観点から、0.1~6000が好ましく、1~1500がより好ましい。
Although the details of the mechanism for reducing the thickness unevenness of the functional layer by setting the conditions of each step so that the above value D is within the above range are not clear, the above range and value of the cooling rate V are not clear. A mechanism similar to the mechanism in which the thickness unevenness is reduced by specifying the range of C is presumed.
The above value D is preferably 0.1 to 6000, more preferably 1 to 1500, from the above viewpoint.
 本製造方法の縦延伸工程以外の各工程におけるポリエステルフィルムの搬送速度は、特に制限されないが、横延伸工程、熱固定工程、熱緩和工程、冷却工程及び拡張工程を上記延伸機100を用いて行う場合、生産性及び品質の点で、ポリエステルフィルムの搬送速度は、50~200m/分が好ましく、80~150m/分がより好ましい。また、冷却工程を施された後、上記の巻き取り工程において巻き取られるまでのポリエステルフィルムの搬送速度は、50~200m/分が好ましく、80~150m/分がより好ましい。縦延伸工程におけるポリエステルフィルムの搬送速度は、上記の通りである。 The transport speed of the polyester film in each step other than the longitudinal stretching step of this production method is not particularly limited, but the transverse stretching step, the heat fixing step, the heat relaxation step, the cooling step and the expansion step are performed by using the stretching machine 100. In this case, the transport speed of the polyester film is preferably 50 to 200 m / min, more preferably 80 to 150 m / min in terms of productivity and quality. Further, the transport speed of the polyester film from the cooling step to the winding in the above winding step is preferably 50 to 200 m / min, more preferably 80 to 150 m / min. The transport speed of the polyester film in the longitudinal stretching step is as described above.
 また、縦延伸工程以外の各工程において、ポリエステルフィルムに付与される搬送方向の張力は、特に制限されないが、横延伸工程、熱固定工程、熱緩和工程、冷却工程及び拡張工程を上記延伸機100を用いて行う場合、ポリエステルフィルムに付与される搬送方向の張力は、延伸条件によって調節できる。
 また、冷却工程を施された後、上記の巻き取り工程において巻き取られるまでのポリエステルフィルムに付与される搬送方向の張力は、3~30N/mが好ましく、5~20N/mがより好ましい。
Further, in each step other than the longitudinal stretching step, the tension applied to the polyester film in the transport direction is not particularly limited, but the transverse stretching step, the heat fixing step, the heat relaxation step, the cooling step and the expansion step are performed on the stretching machine 100. The tension applied to the polyester film in the transport direction can be adjusted by the stretching conditions.
Further, the tension applied to the polyester film in the transport direction after the cooling step is applied until the polyester film is taken up in the above winding step is preferably 3 to 30 N / m, more preferably 5 to 20 N / m.
[積層フィルム]
 本フィルムの用途は特に制限されないが、更に機能層を積層して、積層フィルムを製造することが好ましい。
 本フィルムに積層する機能層としては、例えば、加飾層、感光性樹脂層、磁気層、剥離層、粘着層、導電層、屈折率調製層、及び、視認性層が挙げられる。
 積層フィルムとしては粒子含有層による易滑性(搬送性)を維持するために、粒子含有層がポリエステル基材の一方の表面上のみに設けられ、かつ、ポリエステル基材の粒子含有層とは反対側の表面上に機能層が設けられていることが好ましい。
[Laminated film]
The use of this film is not particularly limited, but it is preferable to further laminate functional layers to produce a laminated film.
Examples of the functional layer laminated on this film include a decorative layer, a photosensitive resin layer, a magnetic layer, a peeling layer, an adhesive layer, a conductive layer, a refractive index adjusting layer, and a visibility layer.
As a laminated film, in order to maintain slipperiness (transportability) due to the particle-containing layer, the particle-containing layer is provided only on one surface of the polyester base material, and is opposite to the particle-containing layer of the polyester base material. It is preferable that the functional layer is provided on the surface on the side.
 積層フィルムのより具体的な例としては、機能層が加飾層である加飾フィルム、機能層が感光性樹脂層であり、ドライフィルムレジストの支持体として用いられる感光性転写フィルム、機能層が剥離層である剥離フィルム(ドライフィルムレジストの保護フィルム、セラミックグリーンシート製造用剥離フィルム、半導体工程製造用剥離フィルム)、機能層が粘着層である粘着フィルム(半導体工程製造用粘着フィルム)、機能層が透明導電層である透明導電性基板用フィルム、機能層が感光性樹脂層及び視認性層であるエッチングレジスト膜形成用感光性転写フィルム、並びに、機能層が感光性樹脂層及び屈折率調製層であるタッチパネル用保護膜形成用感光性転写フィルムが挙げられる。 More specific examples of the laminated film include a decorative film whose functional layer is a decorative layer, a photosensitive transfer film whose functional layer is a photosensitive resin layer and used as a support for a dry film resist, and a functional layer. A release film that is a release layer (protective film for dry film resist, release film for ceramic green sheet production, release film for semiconductor process production), adhesive film whose functional layer is an adhesive layer (adhesive film for semiconductor process production), functional layer Is a transparent conductive substrate film, the functional layer is a photosensitive resin layer, a photosensitive transfer film for forming an etching resist film, which is a visibility layer, and the functional layer is a photosensitive resin layer and a refractive index adjusting layer. Examples thereof include a photosensitive transfer film for forming a protective film for a touch panel.
 本フィルムの表面に機能層を積層する方法は特に制限されないが、機能層を構成する材料を含む塗布液を2軸配向ポリエステルフィルムの表面に塗布して機能層を形成することが好ましく、生産性がより優れる点で、本フィルムを搬送しながら、機能層用塗布液を本フィルムの表面に塗布した後、塗膜を加熱することにより機能層を形成することがより好ましい。
 本フィルムは、機能層の形成工程において加熱処理を行う場合であっても、2軸配向ポリエステルフィルムにおける筋状欠陥領域の発生を抑え、積層される機能性層の厚みムラを抑制することができる。
The method of laminating the functional layer on the surface of this film is not particularly limited, but it is preferable to apply a coating liquid containing the material constituting the functional layer to the surface of the biaxially oriented polyester film to form the functional layer, and the productivity is preferable. It is more preferable to form the functional layer by applying the coating liquid for the functional layer to the surface of the present film and then heating the coating film while transporting the present film.
This film can suppress the generation of streaky defect regions in the biaxially oriented polyester film and suppress the uneven thickness of the laminated functional layer even when the heat treatment is performed in the process of forming the functional layer. ..
 積層フィルムは、本フィルム及び機能層以外の層を有してもよい。本フィルム及び機能層以外の層としては、例えば、本フィルムと機能層との密着性を向上する目的で設けられる、バインダー樹脂を含有する下地層が挙げられる。 The laminated film may have a layer other than the present film and the functional layer. Examples of the layer other than the present film and the functional layer include a base layer containing a binder resin provided for the purpose of improving the adhesion between the present film and the functional layer.
 本フィルムをドライフィルムレジストの支持体として適用することが好ましい。機能層としては感光性樹脂層が設けられ、加飾層、屈折率調製層、及び/又は、視認性層が更に積層されていてもよい。機能層が複数であると、積層のたびに加熱され厚みムラが発生しやすくなる傾向にあるが、本フィルムを用いることにより厚みムラの課題が解決できる。
 感光性樹脂層としては、特に制限されないが、ネガ型であることが好ましい。具体的には、国際公開第2018/105313号明細書に記載のバインダーポリマー、エチレン性不飽和化合物、又は、光重合開始剤が好ましい形態として挙げられる。感光性樹脂層は、環状構造を有するアルカリ可溶性のアクリル樹脂と、多官能アクリレートと、オキシム系光重合開始剤あるいはビスイミダゾール型光重合開始剤とを有する層であることがより好ましい。
It is preferable to apply this film as a support for a dry film resist. As the functional layer, a photosensitive resin layer may be provided, and a decorative layer, a refractive index adjusting layer, and / or a visible layer may be further laminated. When there are a plurality of functional layers, they tend to be heated each time they are laminated and uneven thickness tends to occur. However, by using this film, the problem of uneven thickness can be solved.
The photosensitive resin layer is not particularly limited, but is preferably a negative type. Specifically, the binder polymer, ethylenically unsaturated compound, or photopolymerization initiator described in International Publication No. 2018/105313 can be mentioned as a preferable form. The photosensitive resin layer is more preferably a layer having an alkali-soluble acrylic resin having a cyclic structure, a polyfunctional acrylate, and an oxime-based photopolymerization initiator or a bisimidazole-type photopolymerization initiator.
 タッチパネル用電極保護膜を形成するためのドライフィルムレジスト支持体の場合には、感光性樹脂層とは別に屈折率調整層が積層されていることが好ましい。屈折率調整層の好ましい形態としては、特開2014-108541公報に記載の第2の硬化性透明樹脂層が挙げられる。屈折率調整層の屈折率は、1.6以上が好ましく、また、屈折率調整層は、酸化チタン及び酸化ジルコニウム等の屈折率の高い金属酸化粒子を有することが好ましい。 In the case of a dry film resist support for forming an electrode protective film for a touch panel, it is preferable that a refractive index adjusting layer is laminated separately from the photosensitive resin layer. Preferred forms of the refractive index adjusting layer include the second curable transparent resin layer described in JP-A-2014-108541. The refractive index of the refractive index adjusting layer is preferably 1.6 or more, and the refractive index adjusting layer preferably has metal oxide particles having a high refractive index such as titanium oxide and zirconium oxide.
 加飾パターンを形成するためのドライフィルムレジスト支持体の場合には、感光性樹脂層は着色していることが好ましい。着色した感光性樹脂層としては、国際公開第2017/208849号明細書に記載の感光性樹脂組成物から形成されること好ましい。着色した感光性樹脂層は、着色剤として顔料を有する層であることが好ましく、顔料と、バインダーポリマーと、多官能アクリレートと、光重合開始剤とを有する層であることがより好ましい。 In the case of a dry film resist support for forming a decorative pattern, it is preferable that the photosensitive resin layer is colored. The colored photosensitive resin layer is preferably formed from the photosensitive resin composition described in International Publication No. 2017/208849. The colored photosensitive resin layer is preferably a layer having a pigment as a colorant, and more preferably a layer having a pigment, a binder polymer, a polyfunctional acrylate, and a photopolymerization initiator.
 50μm以下の微細パターンの形成に用いるエッチングレジストを形成するためのドライフィルムレジスト支持体の場合には、感光性樹脂層とは別に視認性層が積層されていることが好ましい。視認性層があることで、パターン潜像を確認する工程において視認することができる。 In the case of a dry film resist support for forming an etching resist used for forming a fine pattern of 50 μm or less, it is preferable that a visibility layer is laminated separately from the photosensitive resin layer. Since there is a visibility layer, it can be visually recognized in the process of confirming the pattern latent image.
 本フィルムをセラミックグリーンシートを製造するための剥離フィルムとして適用することも好ましい。剥離フィルムの場合には、機能層としては剥離層が設けられることが多い。剥離層の好ましい形態としては、シリコーン樹脂を有する層が挙げられる。 It is also preferable to apply this film as a release film for producing a ceramic green sheet. In the case of a release film, a release layer is often provided as a functional layer. A preferred form of the release layer is a layer having a silicone resin.
 以下に実施例を挙げて本開示を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順は、本開示の趣旨を逸脱しない限り、適宜、変更することができる。したがって、本開示の範囲は以下に示す具体例に制限されない。なお、特に断りのない限り、「部」及び「%」は質量基準である。 The present disclosure will be described in more detail with reference to examples below. The materials, amounts, ratios, treatment contents, and treatment procedures shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present disclosure. Therefore, the scope of the present disclosure is not limited to the specific examples shown below. Unless otherwise specified, "parts" and "%" are based on mass.
 以下、本実施例において、単なる「フィルム」との表記は、ポリエステル基材単体、及び、ポリエステル基材と粒子含有層とを有する態様の両者を包含するとともに、未延伸フィルム、1軸配向フィルム、及び、2軸配向フィルムの全てを包含するものとする。
 また、本実施例の各工程では、非接触式温度計(AD-5616(製品名)、A&D社製、放射率0.95)を用いて、フィルムの幅方向中央部の温度を5回計測し、得られた計測値の算術平均値をフィルムの表面温度の測定値とした。
Hereinafter, in the present embodiment, the term "film" includes both a polyester base material alone and an embodiment having a polyester base material and a particle-containing layer, and an unstretched film, a uniaxially oriented film, and the like. And all of the biaxially oriented films shall be included.
Further, in each step of this embodiment, a non-contact thermometer (AD-5616 (product name), manufactured by A & D Co., Ltd., emissivity 0.95) is used to measure the temperature of the central portion in the width direction of the film five times. Then, the arithmetic mean value of the obtained measured values was used as the measured value of the surface temperature of the film.
〔実施例1〕
<押出成形工程>
 重合触媒として特許第5575671号公報に記載のチタン化合物(クエン酸キレートチタン錯体、VERTEC AC-420、ジョンソン・マッセイ社製)を用いて、ポリエチレンテレフタレートのペレットを製造した。具体的には、テレフタル酸を1トン(1000kg)に対して、エチレングリコールを390kg、チタン化合物を生成されるポリエチレンテレフタレートに対してTi原子が9質量ppmとなる量で、これらを混合した。得られた混合物を反応装置に連続供給してエステル化反応を行った。更に、生成されるポリエチレンテレフタレートに対してMg原子が81質量ppmとなる量の酢酸マグネシウム四水和物と、生成されるポリエチレンテレフタレートに対してP原子が73質量ppmとなる量のリン酸トリメチルとを混合物に添加し、重縮合反応を行い、ポリエチレンテレフタレートのペレットを製造した。
 得られたペレットを、含水率が50ppm以下になるまで乾燥させた後、直径30mmの1軸混練押出し機のホッパーに投入し、次いで、280℃で溶融して押出した。溶融体(メルト)を、濾過器(孔径3μm)に通した後、ダイから25℃の冷却ドラムに押し出すことにより、ポリエチレンテレフタレートからなる未延伸フィルムを得た。なお、押し出された溶融体(メルト)は、静電印加法により冷却ドラムに密着させた。
 未延伸フィルムを構成するポリエチレンテレフタレートの融点(Tm)は258℃であり、ガラス転移温度(Tg)は80℃であった。
[Example 1]
<Extrusion molding process>
Pellets of polyethylene terephthalate were produced using a titanium compound (citrate chelated titanium complex, VERTEC AC-420, manufactured by Johnson Matthey) described in Japanese Patent No. 5575671 as a polymerization catalyst. Specifically, 1 ton (1000 kg) of terephthalic acid, 390 kg of ethylene glycol, and 9 mass ppm of Ti atom with respect to polyethylene terephthalate produced as a titanium compound were mixed. The obtained mixture was continuously supplied to the reactor to carry out an esterification reaction. Further, magnesium acetate tetrahydrate in an amount of 81 mass ppm of Mg atom with respect to the produced polyethylene terephthalate and trimethyl phosphate in an amount of 73 mass ppm of P atom with respect to the produced polyethylene terephthalate. Was added to the mixture and a polycondensation reaction was carried out to produce pellets of polyethylene terephthalate.
The obtained pellets were dried to a water content of 50 ppm or less, charged into a hopper of a uniaxial kneading extruder having a diameter of 30 mm, and then melted and extruded at 280 ° C. The melt was passed through a filter (pore diameter 3 μm) and then extruded from the die into a cooling drum at 25 ° C. to obtain an unstretched film made of polyethylene terephthalate. The extruded melt was brought into close contact with the cooling drum by the electrostatic application method.
The melting point (Tm) of polyethylene terephthalate constituting the unstretched film was 258 ° C., and the glass transition temperature (Tg) was 80 ° C.
<縦延伸工程>
 上記未延伸フィルムに対し、以下の方法により縦延伸工程を施した。
 予熱された未延伸フィルムを、下記の条件にて、周速の異なる2対のロールの間に通過させて縦方向(搬送方向)に延伸することにより、1軸配向フィルムを作製した。
(縦延伸条件)
 予熱温度:75℃
 延伸温度:90℃
 延伸倍率:3.4倍
 延伸速度:1300%/秒
<Vertical stretching process>
The unstretched film was subjected to a longitudinal stretching step by the following method.
A uniaxially oriented film was produced by passing a preheated unstretched film between two pairs of rolls having different peripheral speeds and stretching the film in the vertical direction (conveyance direction) under the following conditions.
(Vertical stretching conditions)
Preheating temperature: 75 ° C
Stretching temperature: 90 ° C
Stretching ratio: 3.4 times Stretching speed: 1300% / sec
<粒子含有層形成工程>
 縦延伸された1軸配向フィルム(ポリエステル基材)の片面に、下記の粒子含有層用塗布液を、1軸配向フィルムの表面積に対する塗布膜の固形分の重量が5.6g/mとなるように、バーコーターで塗布した。
<Particle-containing layer forming process>
The following coating liquid for a particle-containing layer is applied to one side of a vertically stretched uniaxially oriented film (polyester base material), and the weight of the solid content of the coating film with respect to the surface area of the uniaxially oriented film is 5.6 g / m 2. As such, it was applied with a bar coater.
(粒子含有層用塗布液)
 下記に示す各成分を混合することにより、粒子含有層用塗布液(塗布液A)を調製した。調製された塗布液Aに対して、孔径が6μmであるフィルター(F20、株式会社マーレフィルターシステムズ製)を用いたろ過処理、及び、膜脱気(2x6ラジアルフロースーパーフォビック、ポリポア株式会社製)を実施した後、1軸配向フィルムの表面に塗布し、100℃の熱風中にて乾燥させて易滑塗布層を形成した。

・アクリル樹脂(メタクリル酸メチル、スチレン、2-エトキシヘキシルアクリレート、2-ヒドロキシエチルメタクリレート及びアクリル酸(59:8:26:5:2の質量比で含有)からなるコポリマーを、固形分として27.5質量%含有する水分散液):167部
・ノニオン系界面活性剤(「ナロアクティー(登録商標)CL95)、三洋化成工業株式会社製、ポリオキシアルキレンアルキルエーテル、固形分100質量%):0.7部
・アニオン系界面活性剤(「ラピゾール(登録商標)A-90」、日油株式会社製、固形分1質量%水希釈液):55.7部
・ワックス(「セロゾール(登録商標)524」、中京油脂株式会社製、エステルワックス分散物、固形分30質量%):7部
・架橋剤(「カルボジライト(登録商標)V-02-L2」、日清紡ケミカル株式会社製、カルボジイミド化合物、固形分10質量%水希釈液):20.9部
・非凝集粒子(「スノーテックスXL」、平均粒子径50nm、コロイダルシリカ、日産化学株式会社製、固形分40質量%水分散液):2.8部
・凝集粒子(「アエロジルOX50」、平均2次粒子径200nm、凝集シリカ、平均一次粒径40nm、日本アエロジル株式会社製、固形分10質量%水分散液):2.95部
・水:743部 
(Coating liquid for particle-containing layer)
A coating liquid for a particle-containing layer (coating liquid A) was prepared by mixing each of the components shown below. Filtration treatment of the prepared coating liquid A using a filter having a pore size of 6 μm (F20, manufactured by Mare Filter Systems Co., Ltd.) and membrane degassing (2x6 radial flow superphobic, manufactured by Polypore Co., Ltd.). Was applied to the surface of the uniaxially oriented film and dried in hot air at 100 ° C. to form an easy-to-slip coating layer.

A copolymer composed of an acrylic resin (methyl methacrylate, styrene, 2-ethoxyhexyl acrylate, 2-hydroxyethyl methacrylate and acrylic acid (containing in a mass ratio of 59: 8: 26: 5: 2)) is used as a solid content in 27. Water dispersion containing 5% by mass): 167 parts, nonionic surfactant ("Naroacty (registered trademark) CL95), manufactured by Sanyo Kasei Kogyo Co., Ltd., polyoxyalkylene alkyl ether, solid content 100% by mass): 0 .7 parts, anionic surfactant ("Lapisol (registered trademark) A-90", manufactured by Nichiyu Co., Ltd., 1% by mass water diluted solid content): 55.7 parts, wax ("Cerozol (registered trademark)) 524 ”, manufactured by Chukyo Oil & Fat Co., Ltd., ester wax dispersion, solid content 30% by mass): 7 parts, cross-linking agent (“Carbodilite (registered trademark) V-02-L2”, manufactured by Nisshinbo Chemical Co., Ltd., Carbodiimide compound, solid 10% by mass water diluted solution): 20.9 parts, non-aggregated particles ("Snowtex XL", average particle diameter 50 nm, colloidal silica, manufactured by Nissan Chemical Co., Ltd., 40% by mass aqueous dispersion with solid content): 2. 8 parts ・ Aggregated particles (“Aerodil OX50”, average secondary particle diameter 200 nm, aggregated silica, average primary particle size 40 nm, manufactured by Nippon Aerozil Co., Ltd., solid content 10% by mass aqueous dispersion): 2.95 parts ・ Water: 743 copies
<横延伸工程>
 縦延伸工程及び粒子含有層形成工程を行ったフィルムに対し、テンターを用いて下記の条件にて幅方向に延伸し、2軸配向フィルムを作製した。
(横延伸条件)
 予熱温度:100℃
 延伸温度:120℃
 延伸倍率:4.3倍
 延伸速度:50%/秒
<Transverse stretching process>
The film subjected to the longitudinal stretching step and the particle-containing layer forming step was stretched in the width direction using a tenter under the following conditions to prepare a biaxially oriented film.
(Transverse stretching conditions)
Preheating temperature: 100 ° C
Stretching temperature: 120 ° C
Stretching ratio: 4.3 times Stretching speed: 50% / sec
<熱固定工程>
 上記横延伸工程を施した2軸配向フィルムに対して、テンターを用いて下記条件で加熱することにより、フィルムを熱固定する熱固定工程を行った。
(熱固定条件)
 熱固定温度T1:227℃
 熱固定時間:6秒間
<Heat fixing process>
The biaxially oriented film subjected to the above-mentioned transverse stretching step was heated under the following conditions using a tenter to perform a heat fixing step of heat-fixing the film.
(Heat fixing conditions)
Heat fixation temperature T1: 227 ° C
Heat fixing time: 6 seconds
<熱緩和工程>
 次いで、熱固定されたフィルムに対して、下記条件で加熱することにより、フィルムの緊張を緩和する熱緩和工程を行った。また、熱緩和工程において、フィルムの両端を把持するテンターの把持部材間の距離(テンター幅)を狭めることにより、熱固定工程終了時と比較してフィルム幅を縮小した。下記の熱緩和率ΔLrは、熱緩和工程の開始時におけるフィルム幅L1に対する熱緩和工程の終了時におけるフィルム幅L2から、Lr=(L1-L2)/L1×100の式により求めた。
(熱緩和条件)
 熱緩和温度T2:190℃
 熱緩和率Lr:4%
<Heat relaxation process>
Next, the heat-fixed film was heated under the following conditions to perform a heat relaxation step of relaxing the tension of the film. Further, in the heat relaxation step, the film width was reduced as compared with the end of the heat fixing step by narrowing the distance (tenter width) between the gripping members of the tenter that grips both ends of the film. The following heat relaxation rate ΔLr was obtained from the film width L2 at the end of the heat relaxation step with respect to the film width L1 at the start of the heat relaxation step by the formula Lr = (L1-L2) / L1 × 100.
(Heat relaxation conditions)
Heat relaxation temperature T2: 190 ° C
Heat relaxation rate Lr: 4%
<冷却工程、及び、拡張工程>
 熱緩和されたフィルムに対して、下記条件で冷却する冷却工程を行った。また、冷却工程において、テンター幅を広げることにより、熱緩和工程終了時と比較してフィルム幅を拡張する拡張工程を実施した。
 下記の冷却速度Vは、フィルムが延伸機100の冷却部50に搬入されてから搬出されるまでの滞在時間を冷却時間taとして、冷却部50への搬入時に測定したフィルム表面温度と冷却部50の搬出時に測定したフィルム表面温度との温度差ΔT(℃)を、冷却時間taで割ることにより求めた。
 また、下記の拡張率ΔLは、冷却工程の開始時におけるポリエステルフィルムのフィルム幅L2に対する冷却工程の終了時におけるフィルム幅L3から、ΔL=(L3-L2)/L2×100の式により求めた。
(冷却条件)
 冷却速度V:2500℃/分
 冷却時間ta:3.1秒間
(拡張条件)
 拡張率ΔL:0.6%
<Cooling process and expansion process>
A cooling step of cooling the heat-relaxed film under the following conditions was performed. Further, in the cooling step, an expansion step was carried out in which the film width was expanded as compared with the time when the heat relaxation step was completed by widening the tenter width.
The cooling rate V below is the film surface temperature and the cooling unit 50 measured at the time of loading into the cooling unit 50, with the residence time from the time the film is carried into the cooling unit 50 of the stretching machine 100 to the time it is carried out as the cooling time ta. It was obtained by dividing the temperature difference ΔT (° C.) from the film surface temperature measured at the time of carrying out by the cooling time ta.
Further, the following expansion ratio ΔL was obtained from the film width L3 at the end of the cooling step with respect to the film width L2 of the polyester film at the start of the cooling step by the formula ΔL = (L3-L2) / L2 × 100.
(Cooling conditions)
Cooling speed V: 2500 ° C / min Cooling time ta: 3.1 seconds (expansion condition)
Expansion rate ΔL: 0.6%
<巻き取り工程>
 冷却工程により冷却されたフィルムに対して、トリミング装置を用いて、フィルムの幅方向の両端から20cmの位置で搬送方向に沿って連続的にフィルムを切断して、フィルムの両端部をトリミングした。次いで、フィルムの両端から幅方向10mmまでの領域に対して、押出し加工(ナーリング)を行った後、張力40kg/mでフィルムを巻き取った。
 以上の方法により、2軸配向フィルムを作製した。得られた2軸配向フィルムの厚さは31μmであり、幅は1.5mであり、巻長は7000mであった。また、得られた2軸配向フィルムの粒子含有層の厚さは40nmであった。さらに、上述の方法で測定した結果、得られた2軸配向フィルムの粒子含有層は、平均粒子径が50nmである粒子と、平均粒子径が200nmである粒子とを含有することが確認された。
<Rolling process>
With respect to the film cooled by the cooling step, the film was continuously cut along the transport direction at a position 20 cm from both ends in the width direction of the film using a trimming device, and both ends of the film were trimmed. Next, an extrusion process (knurling) was performed on a region from both ends of the film to 10 mm in the width direction, and then the film was wound up at a tension of 40 kg / m.
A biaxially oriented film was produced by the above method. The thickness of the obtained biaxially oriented film was 31 μm, the width was 1.5 m, and the winding length was 7000 m. The thickness of the particle-containing layer of the obtained biaxially oriented film was 40 nm. Further, as a result of measurement by the above method, it was confirmed that the particle-containing layer of the obtained biaxially oriented film contained particles having an average particle diameter of 50 nm and particles having an average particle diameter of 200 nm. ..
〔実施例2〕
 粒子含有層用塗布液として、非凝集粒子を含まないこと以外は塗布液Aと同じ組成を有する塗布液Bを使用したこと以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。
[Example 2]
A biaxially oriented film was produced according to the method described in Example 1 except that the coating liquid B having the same composition as the coating liquid A was used as the coating liquid for the particle-containing layer except that it did not contain non-aggregating particles. did.
〔実施例3~11〕
 熱固定工程における熱固定温度T1、冷却工程における冷却速度V、及び、拡張工程における拡張率ΔLが後述する表1に記載の数値となるように制御したこと以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。
[Examples 3 to 11]
The method according to Example 1 except that the heat fixing temperature T1 in the heat fixing step, the cooling rate V in the cooling step, and the expansion rate ΔL in the expansion step are controlled to be the values shown in Table 1 described later. A biaxially oriented film was prepared according to the above.
〔実施例12~17〕
 凝集粒子を含有せず、非凝集粒子として表1に記載の粒子を使用し、かつ、粒子含有層の厚さを表1に記載の数値となるように調整したこと以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。
 表1に記載の粒子の詳細を以下に示す。
 450nmの非凝集粒子:スノーテックスMP-4540M、日産化学株式会社製、平均粒子径450nm、コロイダルシリカ
 200nmの非凝集粒子:スノーテックスMP-2040、日産化学株式会社製、平均粒子径200nm、コロイダルシリカ
 100nmの非凝集粒子:スノーテックスZL、日産化学株式会社製、平均粒子径100nm、コロイダルシリカ
 50nmの非凝集粒子:スノーテックスXL、日産化学株式会社製、平均粒子径50nm、コロイダルシリカ
 300nmの非凝集粒子:ジビニルベンゼン/スチレン共重合架橋粒子、平均粒子径300nm
[Examples 12 to 17]
In Example 1, except that the particles shown in Table 1 were used as non-aggregated particles without containing agglomerated particles, and the thickness of the particle-containing layer was adjusted to the values shown in Table 1. A biaxially oriented film was prepared according to the method described.
Details of the particles listed in Table 1 are shown below.
450 nm non-aggregated particles: Snowtex MP-4540M, manufactured by Nissan Chemical Co., Ltd., average particle diameter 450 nm, colloidal silica 200 nm non-aggregated particles: Snowtex MP-2040, manufactured by Nissan Chemical Co., Ltd., average particle diameter 200 nm, colloidal silica 100 nm non-aggregated particles: Snowtex ZL, manufactured by Nissan Chemical Co., Ltd., average particle diameter 100 nm, colloidal silica 50 nm non-aggregated particles: Snowtex XL, manufactured by Nissan Chemical Co., Ltd., average particle diameter 50 nm, colloidal silica 300 nm non-aggregated particles Particles: Divinylbenzene / styrene copolymer crosslinked particles, average particle size 300 nm
〔実施例18〕
 実施例1で実施した押出成形工程に代えて、共押出成形により、実施例1の押出成形工程で製造された溶融体と、下記樹脂Hの溶融体とを、25℃の冷却ドラムに共押出ししすることにより、ポリエチレンテレフタレートと粒子含有層とからなる未延伸フィルムを作製したこと以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。
 平均粒子径300nmのジビニルベンゼン/スチレン共重合架橋粒子を混合した以外は実施例1におけるポリエチレンテレフタレートのペレットの製造方法に従って、非凝集粒子を含有する樹脂Hのペレットを製造した。得られたペレットを、含水率が50ppm以下になるまで乾燥させた後、直径30mmの1軸混練押出し機のホッパーに投入し、次いで、280℃で溶融することにより、樹脂Hの溶融体を製造した。
 得られた2軸配向フィルムの厚さは31μmであり、粒子含有層の厚さは2μmであった。
[Example 18]
Instead of the extrusion molding step carried out in Example 1, the melt produced in the extrusion molding step of Example 1 and the melt of the following resin H are co-extruded into a cooling drum at 25 ° C. by co-extrusion molding. By doing so, a biaxially oriented film was produced according to the method described in Example 1, except that an unstretched film composed of polyethylene terephthalate and a particle-containing layer was produced.
Resin H pellets containing non-aggregated particles were produced according to the method for producing polyethylene terephthalate pellets in Example 1 except that divinylbenzene / styrene copolymer crosslinked particles having an average particle diameter of 300 nm were mixed. The obtained pellets are dried to a water content of 50 ppm or less, charged into a hopper of a uniaxial kneading extruder having a diameter of 30 mm, and then melted at 280 ° C. to produce a melt of resin H. did.
The thickness of the obtained biaxially oriented film was 31 μm, and the thickness of the particle-containing layer was 2 μm.
〔実施例19~21〕
 製造される2軸配向ポリエステルフィルムの厚さが表1に記載の数値となるように、押出成形工程において、ポリエチレンテレフタレートからなる未延伸フィルムの厚さを調整したこと以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。
 なお、実施例20では、粒子含有層用塗布液として、上記塗布液Fを使用した。
[Examples 19 to 21]
Described in Example 1 except that the thickness of the unstretched film made of polyethylene terephthalate was adjusted in the extrusion molding step so that the thickness of the produced biaxially oriented polyester film becomes the numerical value shown in Table 1. A biaxially oriented film was prepared according to the above method.
In Example 20, the coating liquid F was used as the coating liquid for the particle-containing layer.
〔実施例22〕
 熱固定工程において、熱固定温度T1が表1に記載の数値となるように制御したこと以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。
[Example 22]
A biaxially oriented film was produced according to the method described in Example 1 except that the heat fixing temperature T1 was controlled to be the numerical value shown in Table 1 in the heat fixing step.
〔比較例1~5〕
 熱固定工程における熱固定温度T1、冷却工程における冷却速度V、及び、拡張工程における拡張率ΔLが後述する表1に記載の数値となるように制御したこと、並びに、比較例1~4において、粒子含有層用塗布液として上記塗布液Bを使用したこと以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。
[Comparative Examples 1 to 5]
The heat fixing temperature T1 in the heat fixing step, the cooling rate V in the cooling step, and the expansion rate ΔL in the expansion step were controlled to be the values shown in Table 1 described later, and in Comparative Examples 1 to 4. A biaxially oriented film was produced according to the method described in Example 1 except that the coating liquid B was used as the coating liquid for the particle-containing layer.
〔物性測定〕
 実施例1~25及び比較例1~6の各2軸配向フィルムについて、以下の物性を測定した。測定結果を表1に示す。
 また、実施例2~25及び比較例1~6の各2軸配向フィルムについて、上述の測定方法に従って、粒子含有層の厚さと、粒子含有層に含まれる粒子の平均粒子径を測定した。これらの測定結果も表1に示す。
[Measurement of physical properties]
The following physical properties were measured for each of the biaxially oriented films of Examples 1 to 25 and Comparative Examples 1 to 6. The measurement results are shown in Table 1.
Further, for each of the biaxially oriented films of Examples 2 to 25 and Comparative Examples 1 to 6, the thickness of the particle-containing layer and the average particle diameter of the particles contained in the particle-containing layer were measured according to the above-mentioned measuring method. The results of these measurements are also shown in Table 1.
<密度>
 2軸配向フィルムの密度(g/cm)を、電子比重計(製品名「SD-200L」、アルファーミラージュ社製)を用いて、測定した。
<Density>
The density (g / cm 3 ) of the biaxially oriented film was measured using an electronic hydrometer (product name "SD-200L", manufactured by Alpha Mirage Co., Ltd.).
<筋状欠陥領域(90℃、120℃)>
 加熱搬送装置を用いて、2軸配向フィルムを搬送速度30m/分、搬送方向の張力100N/mで搬送しながら90℃又は120℃で20秒間加熱処理した。加熱処理における加熱温度は、フィルムの表面温度を指す。加熱処理における加熱時間は、フィルムの表面温度が目的とする温度(90℃又は120℃)に達した時点から起算した。加熱処理後の2軸配向フィルムを黒色の平板上に置き、次いで、室内の天井に設置された蛍光灯〔三菱電機株式会社製のルピカエース(色温度:5000K、平均演色評価数(Ra):84)〕の光が反射するように視点を変えながら2軸配向フィルムを斜めから目視で観察した。1m×1mの領域を目視により観察し、2軸配向フィルムの表面において蛍光灯の反射像がうねっている領域を筋状欠陥領域とした。次いで、観察される筋状欠陥領域の面積の合計の2軸配向フィルムの観察領域の全面積に対する比率(面積比)を既述の方法(上記「筋状欠陥領域」の項目参照)で算出した。
<Streak defect region (90 ° C, 120 ° C)>
The biaxially oriented film was heat-treated at 90 ° C. or 120 ° C. for 20 seconds while being conveyed at a transfer speed of 30 m / min and a tension of 100 N / m in the transfer direction using a heat transfer device. The heating temperature in the heat treatment refers to the surface temperature of the film. The heating time in the heat treatment was calculated from the time when the surface temperature of the film reached the target temperature (90 ° C. or 120 ° C.). The heat-treated biaxially oriented film was placed on a black flat plate, and then a fluorescent lamp installed on the ceiling of the room [Lupica Ace manufactured by Mitsubishi Electric Corporation (color temperature: 5000K, average color rendering index (Ra): 84). )] The biaxially oriented film was visually observed from an angle while changing the viewpoint so that the light was reflected. A region of 1 m × 1 m was visually observed, and a region where the reflected image of the fluorescent lamp was undulating on the surface of the biaxially oriented film was defined as a streak defect region. Next, the ratio (area ratio) of the total area of the observed streaky defect regions to the total area of the observation region of the biaxially oriented film was calculated by the method described above (see the item of "streaky defect region" above). ..
<膨張率(90℃、120℃)>
 2軸配向フィルムの90℃及び120℃における幅方向の膨張率を、熱機械分析装置(TMA-60、株式会社島津製作所製)を用いて、既述の方法(上記「膨張率」の項目参照)に従って測定した。
<Expansion rate (90 ° C, 120 ° C)>
The expansion coefficient of the biaxially oriented film in the width direction at 90 ° C. and 120 ° C. was determined by using a thermomechanical analyzer (TMA-60, manufactured by Shimadzu Corporation) as described above (see the item "Expansion rate" above). ).
<最大山高さRp>
 2軸配向フィルムの表面の最大山高さRpは、製造された2軸配向フィルムを切り出してテストピースを作製し、得られたテストピースの表面を、既述の微細形状測定装置を用いて既述の条件にて測定し、その後、内蔵されている解析ソフトにて粒子解析(複数レベル)を実施することにより、求めた。
 最大山高さRpの測定は、スライスレベルを10nmの等間隔に設定して、測定位置を変更しながら各スライスレベルの平均直径と密度を5回測定し、これらの平均値を算出して、最大山高さRpの測定値とした。テストピースは、視野測定のX方向がポリエステルフィルムの幅方向になるように試料台に固定した。
<Maximum mountain height Rp>
For the maximum peak height Rp of the surface of the biaxially oriented film, the manufactured biaxially oriented film is cut out to prepare a test piece, and the surface of the obtained test piece is described above using the above-mentioned fine shape measuring device. The measurement was performed under the above conditions, and then particle analysis (multiple levels) was performed using the built-in analysis software.
To measure the maximum mountain height Rp, set the slice levels at equal intervals of 10 nm, measure the average diameter and density of each slice level 5 times while changing the measurement position, calculate the average value, and calculate the maximum. The measured value of the mountain height Rp was used. The test piece was fixed to the sample table so that the X direction of the visual field measurement was the width direction of the polyester film.
[評価]
 実施例1~22及び比較例1~5の各2軸配向フィルムに対して、以下の評価を行った。評価結果を表1に示す。
[evaluation]
The following evaluations were performed on each of the biaxially oriented films of Examples 1 to 22 and Comparative Examples 1 to 5. The evaluation results are shown in Table 1.
〔厚みムラ〕
 各実施例及び比較例で製造された2軸配向フィルムを搬送しながら、スリット状ノズルを用いて下記処方Aからなる下地層用塗布液を2軸配向フィルムの表面に塗布した後、90℃の温度条件下で塗布膜を乾燥することにより、下地層を形成した。次に、下地層が形成された2軸配向フィルムを搬送しながら、下記処方Bからなる黒色層用塗布液を下地層上に塗布した後、90℃の温度条件下で塗布膜を乾燥することにより黒色層を形成した。下地層及び黒色層を形成する際の2軸配向フィルムの搬送速度は、70m/分であった。
 下地層及び黒色層を設けた2軸配向フィルムをライトテーブルに置き、2軸配向フィルムから1m離れた位置で黒色層の色ムラを目視で観察した。
 下地層の形成時、及び、黒色層の形成時の乾燥温度条件をいずれも120℃に変更したこと以外は上記の方法に従って、下地層及び黒色層を設けた2軸配向フィルムを形成し、目視での観察を行った。
 塗布膜の乾燥温度条件を90℃又は120℃として製造されたそれぞれの2軸配向フィルムの観察結果に基づいて、以下の基準に従って2軸配向フィルムの厚みムラを評価した。
[Thickness unevenness]
While transporting the biaxially oriented film produced in each Example and Comparative Example, a coating liquid for a base layer composed of the following formulation A was applied to the surface of the biaxially oriented film using a slit-shaped nozzle, and then the temperature was 90 ° C. An underlayer was formed by drying the coating film under temperature conditions. Next, while transporting the biaxially oriented film on which the base layer is formed, a coating liquid for a black layer consisting of the following formulation B is applied onto the base layer, and then the coating film is dried under a temperature condition of 90 ° C. Formed a black layer. The transport speed of the biaxially oriented film when forming the base layer and the black layer was 70 m / min.
A biaxially oriented film provided with a base layer and a black layer was placed on a light table, and color unevenness of the black layer was visually observed at a position 1 m away from the biaxially oriented film.
A biaxially oriented film provided with the underlayer and the black layer was formed according to the above method except that the drying temperature conditions at the time of forming the underlayer and the formation of the black layer were both changed to 120 ° C., and visually observed. The observation was made at.
Based on the observation results of each biaxially oriented film produced with the drying temperature condition of the coating film set to 90 ° C. or 120 ° C., the thickness unevenness of the biaxially oriented film was evaluated according to the following criteria.
(処方A:下地層用塗布液)
・PVA205(ポリビニルアルコール、株式会社クラレ製、鹸化度88%、重合度550):32.2質量部
・ポリビニルピロリドン(アイエスピー・ジャパン株式会社製、K-30):14.9部
・蒸留水:524質量部
・メタノール:429質量部
(Prescription A: Coating liquid for base layer)
-PVA205 (polyvinyl alcohol, manufactured by Kuraray Co., Ltd., saponification degree 88%, polymerization degree 550): 32.2 parts by mass-polyvinylpyrrolidone (manufactured by ISP Japan Co., Ltd., K-30): 14.9 parts-distilled water : 524 parts by mass, methanol: 429 parts by mass
(処方B:黒色層用塗布液)
・特許第5320652号公報の段落0036~段落0042の記載に従って作製した樹脂被覆カーボンブラック:13.1質量部
・分散剤:国際公開2017/208849号明細書の段落[0103]に記載の分散剤1 0.65質量部
・ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合体物、重量平均分子量3.7万):6.72質量部
・プロピレングリコールモノメチルエーテルアセテート:79.53質量部
(Prescription B: Coating liquid for black layer)
Resin-coated carbon black produced in accordance with paragraphs 0036 to 0042 of Japanese Patent No. 5320652: 13.1 parts by mass ・ Dispersant: Dispersant 1 according to paragraph [0103] of International Publication No. 2017/208849. 0.65 parts by mass ・ Polymer (benzyl methacrylate / methacrylic acid = 72/28 molar ratio random copolymer, weight average molecular weight 37,000): 672 parts by mass ・ Propropylene glycol monomethyl ether acetate: 79.53 Mass part
(評価基準)
 A:乾燥温度条件が90℃及び120℃のいずれの場合においても、黒色層の色ムラが確認されない。
 B:乾燥温度条件が90℃又は120℃のいずれかの場合において、黒色層の色ムラがわずかに確認された。
 C:乾燥温度条件が120℃の場合にのみ、黒色層の色ムラが確認された。
 D:乾燥温度条件が90℃及び120℃のいずれの場合においても、黒色層の色ムラがはっきりと確認された。
(Evaluation criteria)
A: No color unevenness of the black layer is confirmed in any of the drying temperature conditions of 90 ° C. and 120 ° C.
B: When the drying temperature condition was either 90 ° C. or 120 ° C., color unevenness of the black layer was slightly confirmed.
C: Color unevenness of the black layer was confirmed only when the drying temperature condition was 120 ° C.
D: Color unevenness of the black layer was clearly confirmed in both cases of the drying temperature condition of 90 ° C. and 120 ° C.
〔転写故障〕
 上記厚みムラの評価において作製した下地層及び黒色層を有する2軸配向フィルムの幅が45cmになるように両端部をトリミングした。次いで、トリミングされた2軸配向フィルムを、張力11.5kg/mでコンタクトローラを押しあてながら、径3インチ(1インチ=2.54cm)のABS(アクリロニトリル-ブタジエン-スチレン)樹脂製巻き芯に巻きつけた。巻きつけた2軸配向フィルムの長手方向の長さは100mであった。
 得られた試験体を、25℃、50%RHの条件下で30日間静置した。30日間経過後、上記巻き芯に巻きつけられた2軸配向フィルムにおける黒色層の表面を蛍光灯〔三菱電機株式会社製のルピカエース(色温度:5000K、平均演色評価数(Ra):84)〕の下で観察した。蛍光灯の反射光によってフィルム表面の凹凸を目視で観察し、以下の基準に従って、転写故障を評価した。
[Transfer failure]
Both ends were trimmed so that the width of the biaxially oriented film having the base layer and the black layer prepared in the evaluation of the thickness unevenness was 45 cm. Next, the trimmed biaxially oriented film was applied to an ABS (acrylonitrile-butadiene-styrene) resin winding core having a diameter of 3 inches (1 inch = 2.54 cm) while pressing a contact roller with a tension of 11.5 kg / m. Wrapped around. The length of the wound biaxially oriented film in the longitudinal direction was 100 m.
The obtained test piece was allowed to stand for 30 days under the conditions of 25 ° C. and 50% RH. After 30 days, the surface of the black layer in the biaxially oriented film wound around the winding core was exposed to a fluorescent lamp [Lupica Ace manufactured by Mitsubishi Electric Corporation (color temperature: 5000K, average color rendering index (Ra): 84)]. Observed under. The unevenness of the film surface was visually observed by the reflected light of the fluorescent lamp, and the transfer failure was evaluated according to the following criteria.
(評価基準)
 A:表面の凹凸が一切見られず、極めて良好な状態である。
 B:若干の表面凹凸が視認できるが、非常に軽微な凹凸である。
 C:軽微な表面凹凸が視認できる。
(Evaluation criteria)
A: No surface irregularities are seen, and the condition is extremely good.
B: Some surface irregularities are visible, but they are very slight irregularities.
C: Minor surface irregularities can be visually recognized.
 表1に、各実施例及び比較例の評価結果をそれぞれ示す。
 表1中、「粒子含有層」の「形成方法」欄は、各実施例及び比較例において、粒子含有層形成工程として下記の方法で粒子含有層を形成したことを意味する。
 A:縦延伸工程の後、横延伸工程よりも前に、1軸配向フィルム上に塗布液を塗布することにより形成(インラインコーティング法)。
 B:共押出成形により、未延伸フィルムと同時に形成。
Table 1 shows the evaluation results of each Example and Comparative Example.
In Table 1, the "forming method" column of the "particle-containing layer" means that the particle-containing layer was formed by the following method as the particle-containing layer forming step in each Example and Comparative Example.
A: Formed by applying a coating liquid on a uniaxially oriented film after the longitudinal stretching step and before the transverse stretching step (in-line coating method).
B: Formed at the same time as the unstretched film by coextrusion molding.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1より、冷却工程におけるポリエステルフィルムの冷却速度Vが2200~3500℃/分の範囲内であり、かつ、上記の条件1を満たす実施例1~22は、比較例1~5に比べて、積層される機能層の厚みムラを抑制できることが確認された。
 また、表1より、特定の加熱処理を行った後、ポリエステルフィルムに観察される筋状欠陥領域の面積が観察領域の全面積に対して40%以下である実施例1~22は、比較例1~5に比べて、積層される機能層の厚みムラを抑制できることが確認された。
From Table 1, Examples 1 to 22 in which the cooling rate V of the polyester film in the cooling step is in the range of 2200 to 3500 ° C./min and satisfy the above condition 1 are compared with Comparative Examples 1 to 5. It was confirmed that uneven thickness of the functional layers to be laminated can be suppressed.
Further, from Table 1, Examples 1 to 22 in which the area of the streak defect region observed on the polyester film is 40% or less of the total area of the observation region after the specific heat treatment is performed are Comparative Examples. It was confirmed that the thickness unevenness of the functional layers to be laminated can be suppressed as compared with 1 to 5.
 なかでも、実施例1~5及び9~11の比較より、式(1)で算出されるAと式(2)で算出されるBとの積である値Cの絶対値が、0.1~0.7である場合、積層される機能層の厚みムラをより抑制できることが確認され、上記の値Cが0.1~0.5である場合、積層される機能層の厚みムラを更に抑制できることが確認された。 Above all, from the comparison of Examples 1 to 5 and 9 to 11, the absolute value of the value C, which is the product of A calculated by the formula (1) and B calculated by the formula (2), is 0.1. When it is ~ 0.7, it is confirmed that the thickness unevenness of the laminated functional layers can be further suppressed, and when the above value C is 0.1 to 0.5, the thickness unevenness of the laminated functional layers is further suppressed. It was confirmed that it could be suppressed.
 また、実施例1及び6~8の比較より、冷却工程における冷却速度Vが、2200~3000℃である場合、積層される機能層の厚みムラをより抑制でき、2300~2600℃/分である場合、積層される機能層の厚みムラを更に抑制できることが確認された。 Further, from the comparison of Examples 1 and 6 to 8, when the cooling rate V in the cooling step is 2200 to 3000 ° C., the thickness unevenness of the functional layers to be laminated can be further suppressed, and it is 2300 to 2600 ° C./min. In this case, it was confirmed that the thickness unevenness of the functional layers to be laminated can be further suppressed.
 また、実施例1及び12~17の比較より、粒子含有層の表面の最大山高さRpが0.2μm以下である場合、転写故障をより抑制できることが確認された。
 また、実施例12及び実施例18の比較により、粒子含有層が含む粒子が樹脂粒子である場合、転写故障をより抑制できることが確認された。
 また、実施例1及び12~17の比較より、平均粒子径が0.4μm以下の粒子を有する場合、転写故障をより抑制できることが確認された。
Further, from the comparison of Examples 1 and 12 to 17, it was confirmed that the transfer failure can be further suppressed when the maximum mountain height Rp of the surface of the particle-containing layer is 0.2 μm or less.
Further, by comparison between Examples 12 and 18, it was confirmed that when the particles contained in the particle-containing layer are resin particles, transfer failure can be further suppressed.
Further, from the comparison of Examples 1 and 12 to 17, it was confirmed that the transfer failure can be further suppressed when the particles have an average particle diameter of 0.4 μm or less.
〔実施例23〕
 実施例1で作製した2軸配向フィルムを支持体として用いて、以下の手順にて、加飾用転写フィルムを作製した。
 実施例1で作製した2軸配向フィルムの粒子含有層とは反対側の表面に、国際公開2017/208849号明細書の[0106]に記載の熱可塑性(非感光性)樹脂層塗布液を塗布し、80℃で乾燥させて熱可塑性(非感光性)樹脂層を形成した。続いて、上述した処方Aからなる下地層用塗布液を塗布し、120℃で乾燥することで下地層を形成した。その上に下記処方Cからなる感光性樹脂層形成用組成物を塗布し、90℃で乾燥することで感光性樹脂層を形成した。下地層の厚さは1.6μm、感光性樹脂層の厚さは2.0μmであった。最後に感光性樹脂層の表面に保護フィルムとして、厚さ12μmのポリプロピレンフィルムを圧着して加飾用転写フィルムを作製した。
 得られた加飾用転写フィルムは、色ムラなく、転写故障もなく、良好な特性を有していた。また、得られた加飾用転写フィルムを用いて、国際公開2017/208849号明細書の[0109]の記載を参考に加飾パターンを形成したところ、良好なパターンを形成できた。
[Example 23]
Using the biaxially oriented film prepared in Example 1 as a support, a transfer film for decoration was prepared by the following procedure.
The thermoplastic (non-photosensitive) resin layer coating liquid described in [0106] of International Publication No. 2017/208849 is applied to the surface of the biaxially oriented film produced in Example 1 on the side opposite to the particle-containing layer. Then, it was dried at 80 ° C. to form a thermoplastic (non-photosensitive) resin layer. Subsequently, a coating liquid for a base layer made of the above-mentioned formulation A was applied and dried at 120 ° C. to form a base layer. A composition for forming a photosensitive resin layer comprising the following formulation C was applied thereto and dried at 90 ° C. to form a photosensitive resin layer. The thickness of the base layer was 1.6 μm, and the thickness of the photosensitive resin layer was 2.0 μm. Finally, a polypropylene film having a thickness of 12 μm was pressure-bonded to the surface of the photosensitive resin layer as a protective film to prepare a transfer film for decoration.
The obtained decorative transfer film had good characteristics without color unevenness and transfer failure. Further, when the decorative transfer film was used to form a decorative pattern with reference to the description in [0109] of International Publication No. 2017/208849, a good pattern could be formed.
<処方C:感光性樹脂層形成用組成物>
・既述の黒色顔料分散液 180.9部
・A-NOD-N(新中村化学工業(株)、2官能、分子量226)3.29部
・A-DCP(新中村化学工業(株)、2官能、分子量304)9.9部
・8UX-015A(大成ファインケミカル(株)、15官能)6.59部
・A-DPH(新中村化学工業(株)、6官能、分子量578)2.20部  
・バインダー(ベンジルメタクリレート/メタクリル酸の共重合体、70/30質量%、重量平均分子量(Mw)=5000、固形分量=40.5質量%)141.2部
・重合開始剤OXE-02(BASF社、IRGACURE OXE 02、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム))6.75部
・プロピレングリコールモノメチルエーテルアセテート 250部
・メチルエチルケトン 404.2部
<Prescription C: Composition for forming a photosensitive resin layer>
・ 180.9 parts of the above-mentioned black pigment dispersion ・ A-NOD-N (Shin Nakamura Chemical Industry Co., Ltd., bifunctional, molecular weight 226) 3.29 parts ・ A-DCP (Shin Nakamura Chemical Industry Co., Ltd., Bifunctional, molecular weight 304) 9.9 parts, 8UX-015A (Taisei Fine Chemical Co., Ltd., 15 functionals) 6.59 parts, A-DPH (Shin Nakamura Chemical Industry Co., Ltd., 6 functionals, molecular weight 578) 2.20 Department
・ Binder (polymer of benzyl methacrylate / methacrylic acid, 70/30% by mass, weight average molecular weight (Mw) = 5000, solid content = 40.5% by mass) 141.2 parts ・ Polymerization initiator OXE-02 (BASF) IRGACURE OXE 02, Etanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl]-, 1- (0-acetyloxime)) 6.75 parts, propylene glycol 250 parts of monomethyl ether acetate, 404.2 parts of methyl ethyl ketone
〔実施例24〕
 実施例21で作製した2軸配向フィルムを支持体として用いて、以下の手順にて、タッチパネル保護膜形成用のドライフィルムを作製した。
 実施例21で作製した2軸配向フィルムの粒子含有層とは反対側の表面に、下記処方Dからなる第2透明転写層形成用塗布液を塗布し、90℃で乾燥して第2透明転写層を形成した。次いで、下記処方Eからなる第1透明転写層形成用塗布液を、第2透明転写層の上に塗布した後、70℃で乾燥させて第1透明転写層を形成した。第2透明転写層の厚さは5.0μm、第1透明転写層の厚さは約80nmであった。最後に、第1透明転写層の表面に、保護フィルムとして、厚み16μmのポリエチレンテレフタレートフィルムを圧着し、タッチパネル保護膜形成用の転写フィルムを作製した。
 得られた転写フィルムは、厚みムラに起因する屈折率変化が認められず、転写故障もなく、良好な特性を有していた。得られた転写フィルムに対して、国際公開2018/186428号明細書の[0122]~[0128]を参考にコンタクトホールを形成したところ、良好なパターンを形成できた。
[Example 24]
Using the biaxially oriented film prepared in Example 21 as a support, a dry film for forming a touch panel protective film was prepared by the following procedure.
A coating liquid for forming a second transparent transfer layer having the following formulation D was applied to the surface of the biaxially oriented film produced in Example 21 on the opposite side of the particle-containing layer, dried at 90 ° C., and the second transparent transfer was performed. Formed a layer. Next, a coating liquid for forming a first transparent transfer layer consisting of the following formulation E was applied onto the second transparent transfer layer and then dried at 70 ° C. to form the first transparent transfer layer. The thickness of the second transparent transfer layer was 5.0 μm, and the thickness of the first transparent transfer layer was about 80 nm. Finally, a polyethylene terephthalate film having a thickness of 16 μm was pressure-bonded to the surface of the first transparent transfer layer as a protective film to prepare a transfer film for forming a touch panel protective film.
The obtained transfer film had no change in the refractive index due to uneven thickness, no transfer failure, and had good characteristics. When contact holes were formed in the obtained transfer film with reference to [0122] to [0128] of International Publication No. 2018/186428, a good pattern could be formed.
<処方D:第2透明転写層形成用塗布液>
・アロニックスTO-2349(東亜合成(株)、カルボン酸含有モノマー)0.93部
・A-DCP(新中村化学工業(株)、2官能、分子量304)5.6部
・8UX-015A(大成ファインケミカル(株)、ウレタンアクリレート)2.80部
・バインダー(シクロヘキシルメタクリレート/メタクリル酸メチル/メタクリル酸/メタクリル酸のグリシジルメタクリレート付加物の共重合体、51.5/2/26.5/20%、重量平均分子量(Mw)=29000、酸価=95mgKOH) 15.59部
・重合開始剤IRGACURE OXE-02(BASF社)0.11部
・重合開始剤IRGACURE 907(BASF社、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン)0.21部
・N-フェニルグリシン 0.03部
・ブロックイソシアネート(旭化成ケミカルズ(株)、デュラネートWT32-B75P) 3.63部
・ベンゾイミダゾール 0.09部
・界面活性剤(DIC(株)、メガファックF-551)0.02部
・1-メトキシ-2-プロピルアセテート 31.08部
・メチルエチルケトン 40.0部
<Prescription D: Coating liquid for forming the second transparent transfer layer>
・ Aronix TO-2349 (Toa Synthetic Co., Ltd., carboxylic acid-containing monomer) 0.93 parts ・ A-DCP (Shin-Nakamura Chemical Industry Co., Ltd., bifunctional, molecular weight 304) 5.6 parts ・ 8UX-015A (Taisei) Fine Chemical Co., Ltd., Urethane acrylate) 2.80 parts, binder (polymer of cyclohexylmethacrylate / methyl methacrylate / methacrylate / glycidyl methacrylate adduct of methacrylic acid, 51.5 / 2 / 26.5 / 20%, Weight average molecular weight (Mw) = 29000, acid value = 95 mgKOH) 15.59 parts-Polymer initiator IRGACURE OXE-02 (BASF) 0.11 parts-Polymer initiator IRGACURE 907 (BASF, 2-methyl-1- (4-Methylthiophenyl) -2-morpholinopropane-1-one) 0.21 part ・ N-phenylglycine 0.03 part ・ Blocked isocyanate (Asahi Kasei Chemicals Co., Ltd., Duranate WT32-B75P) 3.63 parts ・Benzoimidazole 0.09 part ・ Initiator (DIC Co., Ltd., Megafuck F-551) 0.02 part ・ 1-methoxy-2-propyl acetate 31.08 part ・ Methyl ethyl ketone 40.0 part
<処方E:第1透明転写層形成用塗布液>
・ナノユースOZ-S30M(ZrO粒子メタノール分散液、日産化学工業(株)、不揮発分30.5%)4.34部
・アンモニア水(25%)7.82部
・モノイソプロパノールアミン 0.02部
・バインダー(アリルメタクリレート/メタクリル酸共重合体、40/60mol%、重量平均分子量(Mw)=38000) 0.24部
・アロニックスTO-2349(東亜合成(株))0.03部
・ベンゾトリアゾール 0.03部
・界面活性剤(DIC(株)、メガファックF-444)0.01部
・イオン交換水 21.5部
・メタノール 66.0部
<Prescription E: Coating liquid for forming the first transparent transfer layer>
・ Nanouse OZ-S30M (ZrO 2 particle methanol dispersion, Nissan Chemical Industry Co., Ltd., non-volatile content 30.5%) 4.34 parts ・ Ammonia water (25%) 7.82 parts ・ Monoisopropanolamine 0.02 parts・ Binder (allyl methacrylate / methacrylic acid copolymer, 40/60 mol%, weight average molecular weight (Mw) = 38000) 0.24 part ・ Aronix TO-2349 (Toa Synthetic Co., Ltd.) 0.03 part ・ Bentotriazole 0 .03 parts ・ Surfactant (DIC Co., Ltd., Megafuck F-444) 0.01 parts ・ Ion exchanged water 21.5 parts ・ Methanol 66.0 parts
〔実施例25〕
 実施例21で作製した2軸配向フィルムを支持体として用いて、以下の手順にて、エッチングレジスト形成用のドライフィルムを作製した。
 実施例21で作製した2軸配向フィルムの粒子含有層とは反対側の表面に、下記処方Fからなる熱可塑性樹脂層形成用塗布液を塗布し、80℃で乾燥して熱可塑性樹脂層を形成した。次いで、下記処方Gからなる水溶性樹脂層形成用塗布液を、熱可塑性樹脂層の上に塗布した後、80℃で乾燥させて水溶性樹脂層を形成した。更に、下記処方Hからなる感光性樹脂層形成用塗布液を、水溶性樹脂層の上に塗布した後、80℃で乾燥させて感光性樹脂層を形成した。熱可塑性樹脂層の厚さは2μm、水溶性樹脂層の厚さは1μm、感光性樹脂層の厚さは2μmであった。最後に、感光性樹脂層の表面に、保護フィルムとして、厚み16μmのポリエチレンテレフタレートフィルムを圧着し、エッチングレジスト形成用の転写フィルムを作製した。
 得られた転写フィルムに対して、国際公開2019/151534号明細書の[0429]~[0430]を参考に露光し、視認性を確認したところ、ラインアンドスペースパターンをはっきりと視認できた。
[Example 25]
Using the biaxially oriented film prepared in Example 21 as a support, a dry film for forming an etching resist was prepared by the following procedure.
A coating liquid for forming a thermoplastic resin layer consisting of the following formulation F was applied to the surface of the biaxially oriented film produced in Example 21 on the opposite side of the particle-containing layer, and dried at 80 ° C. to form a thermoplastic resin layer. Formed. Next, a coating liquid for forming a water-soluble resin layer consisting of the following formulation G was applied onto the thermoplastic resin layer and then dried at 80 ° C. to form a water-soluble resin layer. Further, a coating liquid for forming a photosensitive resin layer consisting of the following formulation H was applied onto the water-soluble resin layer and then dried at 80 ° C. to form a photosensitive resin layer. The thickness of the thermoplastic resin layer was 2 μm, the thickness of the water-soluble resin layer was 1 μm, and the thickness of the photosensitive resin layer was 2 μm. Finally, a polyethylene terephthalate film having a thickness of 16 μm was pressure-bonded to the surface of the photosensitive resin layer as a protective film to prepare a transfer film for forming an etching resist.
When the obtained transfer film was exposed with reference to [0429] to [0430] of International Publication No. 2019/151534 and the visibility was confirmed, the line and space pattern was clearly visible.
<処方F:熱可塑性樹脂層形成用塗布液>
・ベンジルメタクリレート/メタクリル酸/アクリル酸の重合体(75/10/15質量%、分子量3万、固形分濃度30%)22.7部
・3,6-ビス(ジフェニルアミノ)フルオラン 0.12部
・特開2013-047765号公報の段落0227に記載のA-1、オキシムスルホネート型光酸発生剤 0.2部
・トリシクロデカンジメタノールジアクリレート 3.32部
・8UX-015A(大成ファインケミカル(株)、15官能)1.66部
・アロニックスTO-2349(東亜合成(株))0.55部
・界面活性剤(DIC(株)、メガファックF-552)0.02部
<Prescription F: Coating liquid for forming a thermoplastic resin layer>
・ Polymer of benzyl methacrylate / methacrylic acid / acrylic acid (75/10/15 mass%, molecular weight 30,000, solid content concentration 30%) 22.7 parts ・ 3,6-bis (diphenylamino) fluorane 0.12 parts A-1, oxime sulfonate type photoacid generator 0.2 part, tricyclodecanedimethanol diacrylate 3.32 part, 8UX-015A (Taisei Fine Chemical Co., Ltd.) described in paragraph 0227 of JP2013-047765A. ), 15 functional parts) 1.66 parts ・ Aronix TO-2349 (Toa Synthetic Co., Ltd.) 0.55 parts ・ Surfactant (DIC Corporation, Megafuck F-552) 0.02 parts
<処方G:水溶性樹脂層形成用塗布液>

・ポリビニルアルコール(クラレポバール4-88LA、(株)クラレ製)3.22部
・ポリビニルピロリドン(日本触媒(株)製、K-30)1.49部
・界面活性剤(メガファックF-444、DIC(株)製)0.0035部
・メタノール(三菱ガス化学(株)製)57.1部
・イオン交換水 38.12部 
<Prescription G: Coating liquid for forming a water-soluble resin layer>

-Polyvinyl alcohol (Kuraray Poval 4-88LA, manufactured by Kuraray Co., Ltd.) 3.22 parts-Polyvinylpyrrolidone (manufactured by Nippon Catalyst Co., Ltd., K-30) 1.49 parts-Surfactant (Megafuck F-444, DIC Co., Ltd.) 0.0035 parts, methanol (Mitsubishi Gas Chemical Co., Ltd.) 57.1 parts, ion-exchanged water 38.12 parts
<処方H:感光性樹脂層形成用塗布液>
・スチレン/メタクリル酸/メタクリル酸メチルの重合体(52/29/19質量%、分子量6万、固形分濃度30%)25.2部
・ロイコクリスタルバイオレット 0.06部
・光重合開始剤(2-(2-クロロフェニル)-4,5-ジフェニルイミダゾール二量体)1.03部
・4,4‘-ビス(ジエチルアミノ)ベンゾフェノン 0.04部
・(N-フェニルカルバモイルメチル-N-カルボキシメチルアニリン 0.02部
・エトキシ化ビスフェノールAジメタクリレートNKエステルBPE-500(新中村化学工業(株)製)5.61部
・アロニックスM-270(東亞合成(株)製)0.58部
・フェノチアジン 0.04部
・4-ヒドロキシメチル-4―メチル-1-フェニル-3-ピラゾリドン 0.002部
・界面活性剤(DIC(株)、メガファックF-552)0.048部
・プロピレングリコールモノメチルエーテルアセテート 19.7部
・メチルエチルケトン 43.8部
<Prescription H: Coating liquid for forming a photosensitive resin layer>
・ Polymer of styrene / methacrylic acid / methyl methacrylate (52/29/19 mass%, molecular weight 60,000, solid content concentration 30%) 25.2 parts ・ Leuco crystal violet 0.06 parts ・ Photopolymerization initiator (2) -(2-Chlorophenyl) -4,5-diphenylimidazole dimer) 1.03 parts · 4,4'-bis (diethylamino) benzophenone 0.04 parts · (N-phenylcarbamoylmethyl-N-carboxymethylaniline 0) .02 parts ・ ethoxylated bisphenol A dimethacrylate NK ester BPE-500 (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) 5.61 parts ・ Aronix M-270 (manufactured by Toa Synthetic Co., Ltd.) 0.58 parts ・ Phenothiazine 0. 04 parts ・ 4-Hydroxymethyl-4-methyl-1-phenyl-3-pyrazolidone 0.002 parts ・ Initiator (DIC Co., Ltd., Megafuck F-552) 0.048 parts ・ Propropylene glycol monomethyl ether acetate 19 .7 parts ・ Methyl ethyl ketone 43.8 parts
〔実施例26〕
 実施例1で作製した2軸配向フィルムを支持体として用いて、以下の手順にて、セラミックグリーンシート製造用の剥離フィルムを作製した。
 実施例1で作製した2軸配向フィルムの粒子含有層とは反対側の表面に、下記処方Jからなる剥離層形成用塗布液を塗布し、120℃で乾燥して剥離層を形成した。剥離層の厚さは0.1μmであった。次いで、下記処方Kからなるセラミックスラリーを、乾燥後の厚みが0.5μmになるように剥離層の上に塗布した後、90℃で乾燥させた。スラリー面と粒子含有層面とを重ね合わせ、10分間、1kg/cmの荷重をかけた後、剥離フィルムを剥離し、セラミックグリーンシートを得た。
 得られたセラミックグリーンシートは、厚みムラも転写故障もなく、良好な特性を有していた。
[Example 26]
Using the biaxially oriented film produced in Example 1 as a support, a release film for producing a ceramic green sheet was produced by the following procedure.
A coating liquid for forming a release layer consisting of the following formulation J was applied to the surface of the biaxially oriented film produced in Example 1 on the opposite side of the particle-containing layer, and dried at 120 ° C. to form a release layer. The thickness of the release layer was 0.1 μm. Next, a ceramic slurry consisting of the following formulation K was applied onto the release layer so that the thickness after drying was 0.5 μm, and then dried at 90 ° C. The slurry surface and the particle-containing layer surface were overlapped with each other, and a load of 1 kg / cm 2 was applied for 10 minutes, and then the release film was peeled off to obtain a ceramic green sheet.
The obtained ceramic green sheet had good characteristics without uneven thickness or transfer failure.
<処方J:剥離層形成用塗布液>
・シリコーン樹脂(東レダウコーニング(株)製、SRX-345、付加反応型のシリコーン)10部
・白金触媒(東レダウコーニング(株)製、SRX-212)0.1部
・トルエン/メチルエチルケトン混合溶媒 490部
<Prescription J: Coating liquid for forming a release layer>
・ Silicone resin (manufactured by Tohredo Dow Corning Co., Ltd., SRX-345, addition reaction type silicone) 10 parts ・ Platinum catalyst (manufactured by Tohredo Dow Corning Co., Ltd., SRX-212) 0.1 parts ・ Toluene / methyl ethyl ketone mixed solvent 490 copies
<処方K:セラミックスラリー>
・ポリビニルブチラール(積水化学工業(株)製、エスレックBH-3)5部
・チタン酸バリウム(富士チタン工業(株)製、HPBT)50部
・トルエン/エタノール混合溶媒 45部
<Prescription K: Ceramic Rally>
・ Polyvinyl butyral (manufactured by Sekisui Chemical Co., Ltd., Eslek BH-3) 5 parts ・ Barium titanate (manufactured by Fuji Titanium Industry Co., Ltd., HPBT) 50 parts ・ Toluene / ethanol mixed solvent 45 parts
 2a~2l:把持部材
 10:予熱部
 20:延伸部
 30:熱固定部
 40:熱緩和部
 50:冷却部
 60a、60b:環状レール
 100:延伸機
 200:フィルム
 P、Q:把持解除点
 MD:搬送方向(長手方向)
 TD:幅方向
 L0、L1、L2、L3:フィルム幅
2a-2l: Grip member 10: Preheating part 20: Stretching part 30: Heat fixing part 40: Heat relaxation part 50: Cooling part 60a, 60b: Circular rail 100: Stretching machine 200: Film P, Q: Gripping release point MD: Transport direction (longitudinal direction)
TD: Width direction L0, L1, L2, L3: Film width

Claims (21)

  1.  ポリエステルを含有する溶融樹脂をフィルム状に押し出して、ポリエステル基材を少なくとも含む未延伸ポリエステルフィルムを形成する押出成形工程と、
     前記未延伸ポリエステルフィルムを搬送方向に延伸して1軸配向ポリエステルフィルムを形成する縦延伸工程と、
     前記1軸配向ポリエステルフィルムを幅方向に延伸して2軸配向ポリエステルフィルムを形成する横延伸工程と、
     前記2軸配向ポリエステルフィルムを加熱して熱固定する熱固定工程と、
     前記熱固定工程により熱固定されたポリエステルフィルムを前記熱固定工程よりも低い温度で加熱して熱緩和する熱緩和工程と、
     前記熱緩和工程により熱緩和されたポリエステルフィルムを冷却する冷却工程と、
     前記冷却工程において、前記熱緩和されたポリエステルフィルムを幅方向に拡張する拡張工程と、を有する、
     ポリエステル基材と、前記ポリエステル基材の少なくとも一方の表面上にある粒子を含有する粒子含有層と、を有するポリエステルフィルムの製造方法であって、
     前記冷却工程における前記ポリエステルフィルムの冷却速度Vが、2200~3500℃/分であり、かつ、
     下記条件1を満たす、ポリエステルフィルムの製造方法。
     条件1:前記ポリエステルの融点をTm(℃)、前記熱固定工程における熱固定温度をT1(℃)、前記横延伸工程における前記1軸配向ポリエステルフィルムの延伸倍率をa、前記拡張工程における前記熱緩和されたポリエステルフィルムの幅方向の拡張率の百分率をb(%)としたとき、下記式(1)で算出されるAと下記式(2)で算出されるBとの積である値Cが、-4.0~4.0である。ただし、前記A及びBのいずれか一方のみが0である場合は除く。
      A=Tm-T1-30   (1)
      B=a/5-b   (2)
    An extrusion molding step of extruding a molten resin containing polyester into a film to form an unstretched polyester film containing at least a polyester base material.
    A longitudinal stretching step of stretching the unstretched polyester film in the transport direction to form a uniaxially oriented polyester film.
    A transverse stretching step of stretching the uniaxially oriented polyester film in the width direction to form a biaxially oriented polyester film.
    The heat fixing step of heating and heat-fixing the biaxially oriented polyester film,
    A heat relaxation step of heating the polyester film heat-fixed by the heat fixing step at a temperature lower than that of the heat fixing step to relieve heat.
    A cooling step of cooling the polyester film heat-relaxed by the heat-relaxation step, and a cooling step of cooling the polyester film.
    The cooling step comprises an expansion step of expanding the heat-relaxed polyester film in the width direction.
    A method for producing a polyester film comprising a polyester base material and a particle-containing layer containing particles on at least one surface of the polyester base material.
    The cooling rate V of the polyester film in the cooling step is 2200 to 3500 ° C./min, and
    A method for producing a polyester film that satisfies the following condition 1.
    Condition 1: The melting point of the polyester is Tm (° C.), the heat fixing temperature in the heat fixing step is T1 (° C.), the draw ratio of the uniaxially oriented polyester film in the transverse stretching step is a, and the heat in the expansion step. When the percentage of the expansion rate in the width direction of the relaxed polyester film is b (%), the value C which is the product of A calculated by the following formula (1) and B calculated by the following formula (2). However, it is -4.0 to 4.0. However, this excludes cases where only one of A and B is 0.
    A = Tm-T1-30 (1)
    B = a / 5-b (2)
  2.  前記A、前記B、及び、前記冷却速度Vから下記式(3)により算出される値Dが、1~10000である、請求項1に記載の製造方法。
      D=(A×B)×V   (3)
    The manufacturing method according to claim 1, wherein the value D calculated from the A, the B, and the cooling rate V by the following formula (3) is 1 to 10000.
    D = (A x B) 2 x V (3)
  3.  前記ポリエステルフィルムの厚さが50μm未満である、請求項1又は2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the thickness of the polyester film is less than 50 μm.
  4.  前記縦延伸工程と前記横延伸工程との間に、前記粒子を含有する塗布液を用いて前記粒子含有層を形成する工程を更に有するか、又は、
     前記押出成形工程において、前記粒子及びバインダーを含有する第2の溶融体を前記溶融樹脂と同時に押し出すことにより、前記粒子含有層を形成する工程を更に有する、請求項1~3のいずれか1項に記載の製造方法。
    Between the longitudinal stretching step and the transverse stretching step, there is further a step of forming the particle-containing layer using a coating liquid containing the particles, or
    One of claims 1 to 3, further comprising a step of forming the particle-containing layer by extruding a second melt containing the particles and a binder at the same time as the molten resin in the extrusion molding step. The manufacturing method described in.
  5.  前記熱緩和工程における前記ポリエステルフィルムの表面温度T2が、210℃以下である、請求項1~4のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the surface temperature T2 of the polyester film in the heat relaxation step is 210 ° C. or lower.
  6.  前記冷却工程による前記ポリエステルフィルムの冷却速度Vが、2200~3000℃/分である、請求項1~5のいずれか1項に記載の製造方法。 The production method according to any one of claims 1 to 5, wherein the cooling rate V of the polyester film in the cooling step is 2200 to 3000 ° C./min.
  7.  前記bが、0%を超え1.2%以下である、請求項1~6のいずれか1項に記載の製造方法。 The manufacturing method according to any one of claims 1 to 6, wherein b is more than 0% and 1.2% or less.
  8.  ポリエステル基材と、
     前記ポリエステル基材の少なくとも一方の表面上にある、粒子を含有する粒子含有層と、
     を有するポリエステルフィルムであって、
     前記ポリエステルフィルムの厚さが50μm未満であり、
     前記ポリエステルフィルムに対して、搬送速度30m/分、及び、搬送方向の張力100N/mの条件で搬送しながら、フィルム表面の温度が90℃となる条件にて20秒間加熱処理を行った後、前記ポリエステルフィルムに観察される筋状欠陥領域の面積の合計が、観察領域の全面積に対して40%以下である、ポリエステルフィルム。
    With polyester base material,
    A particle-containing layer containing particles on at least one surface of the polyester substrate.
    Is a polyester film with
    The thickness of the polyester film is less than 50 μm, and the thickness is less than 50 μm.
    The polyester film was heat-treated for 20 seconds under the condition that the temperature of the film surface was 90 ° C. while transporting the polyester film under the conditions of a transport speed of 30 m / min and a tension of 100 N / m in the transport direction. A polyester film in which the total area of streaky defect regions observed in the polyester film is 40% or less of the total area of the observation region.
  9.  前記ポリエステルフィルムの90℃における幅方向の膨張率が、前記ポリエステルフィルムの30℃における幅方向の寸法に対して、-0.15~0.15%である、請求項8に記載のポリエステルフィルム。 The polyester film according to claim 8, wherein the expansion rate in the width direction of the polyester film at 90 ° C. is −0.15 to 0.15% with respect to the dimension in the width direction of the polyester film at 30 ° C.
  10.  前記ポリエステルフィルムの密度が、1.39~1.41g/cmである、請求項8又は9に記載のポリエステルフィルム。 The polyester film according to claim 8 or 9, wherein the polyester film has a density of 1.39 to 1.41 g / cm 3.
  11.  前記ポリエステル基材の厚さが、3~40μmであり、
     前記粒子含有層の厚さが、0.001~2.5μmである、請求項8~10のいずれか1項に記載のポリエステルフィルム。
    The thickness of the polyester base material is 3 to 40 μm, and the thickness is 3 to 40 μm.
    The polyester film according to any one of claims 8 to 10, wherein the particle-containing layer has a thickness of 0.001 to 2.5 μm.
  12.  前記粒子含有層が、平均粒子径が10nm以上1μm未満である粒子Pを含有する、請求項8~11のいずれか1項に記載のポリエステルフィルム。 The polyester film according to any one of claims 8 to 11, wherein the particle-containing layer contains particles P having an average particle diameter of 10 nm or more and less than 1 μm.
  13.  前記粒子Pの平均粒子径が、前記粒子含有層の厚さよりも大きい、請求項12に記載のポリエステルフィルム。 The polyester film according to claim 12, wherein the average particle diameter of the particles P is larger than the thickness of the particle-containing layer.
  14.  前記粒子含有層が、平均粒子径が10~100nmである粒子P1を含有する、請求項8~13のいずれか1項に記載のポリエステルフィルム。 The polyester film according to any one of claims 8 to 13, wherein the particle-containing layer contains particles P1 having an average particle diameter of 10 to 100 nm.
  15.  前記粒子含有層が、平均粒子径が100nm超400nm以下である粒子P2を含有する、請求項8~14のいずれか1項に記載のポリエステルフィルム。 The polyester film according to any one of claims 8 to 14, wherein the particle-containing layer contains particles P2 having an average particle diameter of more than 100 nm and 400 nm or less.
  16.  前記粒子含有層が含む粒子が樹脂粒子であるか、又は、
     前記粒子含有層が含む粒子が無機粒子であり、かつ、前記ポリエステルフィルムの少なくとも一方の表面の最大山高さRpが5~200nmである、
     請求項8~15のいずれか1項に記載のポリエステルフィルム。
    The particles contained in the particle-containing layer are resin particles or
    The particles contained in the particle-containing layer are inorganic particles, and the maximum mountain height Rp of at least one surface of the polyester film is 5 to 200 nm.
    The polyester film according to any one of claims 8 to 15.
  17.  前記ポリエステル基材が粒子を実質的に含有しない、請求項8~16のいずれか1項に記載のポリエステルフィルム。 The polyester film according to any one of claims 8 to 16, wherein the polyester base material does not substantially contain particles.
  18.  請求項1~7のいずれか1項に記載の製造方法により製造されたポリエステルフィルム、又は、請求項8~17のいずれか1項に記載のポリエステルフィルムであって、ポリエステル基材の一方の表面上のみに粒子含有層を有するポリエステルフィルムと、
     前記ポリエステル基材の前記粒子含有層とは反対側の表面上にあり、加飾層、感光性樹脂層、及び、剥離層からなる群より選択される機能層と、
     を有する、積層フィルム。
    The polyester film produced by the production method according to any one of claims 1 to 7, or the polyester film according to any one of claims 8 to 17, wherein one surface of the polyester base material is used. A polyester film having a particle-containing layer only on the top,
    A functional layer selected from the group consisting of a decorative layer, a photosensitive resin layer, and a peeling layer, which is on the surface of the polyester substrate opposite to the particle-containing layer.
    Has a laminated film.
  19.  前記機能層が加飾層であり、前記積層フィルムが加飾フィルムである、請求項18に記載の積層フィルム。 The laminated film according to claim 18, wherein the functional layer is a decorative layer and the laminated film is a decorative film.
  20.  前記機能層が感光性樹脂層であり、前記積層フィルムが感光性転写フィルムである、請求項18に記載の積層フィルム。 The laminated film according to claim 18, wherein the functional layer is a photosensitive resin layer and the laminated film is a photosensitive transfer film.
  21.  前記機能層が剥離層であり、前記積層フィルムがセラミックグリーンシート製造用剥離フィルムである、請求項18に記載の積層フィルム。 The laminated film according to claim 18, wherein the functional layer is a release layer, and the laminated film is a release film for manufacturing a ceramic green sheet.
PCT/JP2021/023294 2020-06-24 2021-06-21 Method for producing polyester film, polyester film, laminated film WO2021261412A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180044770.4A CN115943032A (en) 2020-06-24 2021-06-21 Method for producing polyester film, and laminated film
KR1020227044060A KR20230011388A (en) 2020-06-24 2021-06-21 Manufacturing method of polyester film, polyester film, laminated film
JP2022531954A JP7428798B2 (en) 2020-06-24 2021-06-21 Polyester film manufacturing method, polyester film, laminated film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020108592 2020-06-24
JP2020-108592 2020-06-24

Publications (1)

Publication Number Publication Date
WO2021261412A1 true WO2021261412A1 (en) 2021-12-30

Family

ID=79281373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023294 WO2021261412A1 (en) 2020-06-24 2021-06-21 Method for producing polyester film, polyester film, laminated film

Country Status (5)

Country Link
JP (1) JP7428798B2 (en)
KR (1) KR20230011388A (en)
CN (1) CN115943032A (en)
TW (1) TW202216863A (en)
WO (1) WO2021261412A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210332201A1 (en) * 2020-04-24 2021-10-28 Nan Ya Plastics Corporation Biaxially-stretched polyester film and method for producing the same
WO2024004832A1 (en) * 2022-06-27 2024-01-04 東洋紡株式会社 Layered poly(ethylene terephthalate) film, release film, and method for producing layered poly(ethylene terephthalate) film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263853A (en) * 2004-03-16 2005-09-29 Mitsubishi Polyester Film Copp High transparency optical laminated polyester film
WO2005110718A1 (en) * 2004-05-14 2005-11-24 Teijin Dupont Films Japan Limited Oriented polyester film
JP2014111357A (en) * 2012-11-01 2014-06-19 Fujifilm Corp Substrate with decorative material or transparent protective layer, method for manufacturing the same, touch panel and mobile equipment
JP2014189002A (en) * 2013-03-28 2014-10-06 Fujifilm Corp Polyester film and method for manufacturing the same
JP2018062120A (en) * 2016-10-13 2018-04-19 三菱ケミカル株式会社 Biaxially oriented polyester film for optical use
WO2018159424A1 (en) * 2017-02-28 2018-09-07 富士フイルム株式会社 Thermoplastic resin film and method for producing thermoplastic resin film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4285089B2 (en) 2003-06-02 2009-06-24 東レ株式会社 Polyester film for photoresist

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005263853A (en) * 2004-03-16 2005-09-29 Mitsubishi Polyester Film Copp High transparency optical laminated polyester film
WO2005110718A1 (en) * 2004-05-14 2005-11-24 Teijin Dupont Films Japan Limited Oriented polyester film
JP2014111357A (en) * 2012-11-01 2014-06-19 Fujifilm Corp Substrate with decorative material or transparent protective layer, method for manufacturing the same, touch panel and mobile equipment
JP2014189002A (en) * 2013-03-28 2014-10-06 Fujifilm Corp Polyester film and method for manufacturing the same
JP2018062120A (en) * 2016-10-13 2018-04-19 三菱ケミカル株式会社 Biaxially oriented polyester film for optical use
WO2018159424A1 (en) * 2017-02-28 2018-09-07 富士フイルム株式会社 Thermoplastic resin film and method for producing thermoplastic resin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210332201A1 (en) * 2020-04-24 2021-10-28 Nan Ya Plastics Corporation Biaxially-stretched polyester film and method for producing the same
WO2024004832A1 (en) * 2022-06-27 2024-01-04 東洋紡株式会社 Layered poly(ethylene terephthalate) film, release film, and method for producing layered poly(ethylene terephthalate) film

Also Published As

Publication number Publication date
TW202216863A (en) 2022-05-01
KR20230011388A (en) 2023-01-20
JPWO2021261412A1 (en) 2021-12-30
CN115943032A (en) 2023-04-07
JP7428798B2 (en) 2024-02-06

Similar Documents

Publication Publication Date Title
EP0888217B1 (en) Multilayer polyester film
WO2021261412A1 (en) Method for producing polyester film, polyester film, laminated film
KR101260718B1 (en) Process for production of biaxially oriented polyester film
EP0888216B1 (en) Multilayer polyester film with a low coefficient of friction
EP0886576A1 (en) A method for making multilayer polyester film
EP0892720B1 (en) Method for making a multilayer polyester film having a low coefficient of friction
WO2022131008A1 (en) Polyester film, dry film resist, and method for producing polyester film
CN102869503A (en) Textured film and process for manufacture thereof
JP2007185898A (en) Biaxially oriented polyester film and its manufacturing process
WO2022138069A1 (en) Corrected thickness measurement device, corrected thickness measurement method, film manufacturing method, and polyester film
WO2022138065A1 (en) Apparatus for measuring correction thickness, method for measuring correction thickness, method for manufacturing film, and polyester film
WO2022138066A1 (en) Corrected thickness measuring device, corrected thickness measuring method, method for manufacturing film, and polyester film
JP7513718B2 (en) Polyester film, release film, and method for producing polyester film
WO2020241692A1 (en) Biaxially oriented polyester film
WO2022019113A1 (en) Polyester film, release film, and method for producing polyester film
WO2023027033A1 (en) Polyester film, polyester film manufacturing method, and release film
JP2011178002A (en) Double-sided mold release film
WO2024070442A1 (en) Film, laminated film, and film production method
WO2021220717A1 (en) Method for producing polyester film, and polyester film
WO2024070623A1 (en) Film, layered film, and method for producing film
WO2023281972A1 (en) Release film and method for producing release film
WO2023026800A1 (en) Release film, method for manufacturing release film, and ceramic capacitor
CN115536886A (en) Polyester film and release film
JP2023165302A (en) Release film for the production of ceramic green sheets and method for producing the same, and laminate
CN117642271A (en) Method for producing biaxially oriented polyester film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828107

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531954

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227044060

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828107

Country of ref document: EP

Kind code of ref document: A1