WO2023027033A1 - Polyester film, polyester film manufacturing method, and release film - Google Patents

Polyester film, polyester film manufacturing method, and release film Download PDF

Info

Publication number
WO2023027033A1
WO2023027033A1 PCT/JP2022/031594 JP2022031594W WO2023027033A1 WO 2023027033 A1 WO2023027033 A1 WO 2023027033A1 JP 2022031594 W JP2022031594 W JP 2022031594W WO 2023027033 A1 WO2023027033 A1 WO 2023027033A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
polyester
resin layer
polyester film
release
Prior art date
Application number
PCT/JP2022/031594
Other languages
French (fr)
Japanese (ja)
Inventor
一仁 宮宅
泰雄 江夏
悠樹 豊嶋
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to KR1020247002619A priority Critical patent/KR20240022660A/en
Priority to JP2023543907A priority patent/JPWO2023027033A1/ja
Publication of WO2023027033A1 publication Critical patent/WO2023027033A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/025Acrylic resin particles, e.g. polymethyl methacrylate or ethylene-acrylate copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0278Polyester particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • B32B2264/0214Particles made of materials belonging to B32B27/00
    • B32B2264/0292Polyurethane particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/514Oriented
    • B32B2307/518Oriented bi-axially
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/748Releasability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment

Definitions

  • the present invention relates to a polyester film, a method for producing a polyester film, and a release film.
  • Biaxially oriented polyester films are used in a wide range of applications in terms of workability, mechanical properties, electrical properties, dimensional stability, transparency, and chemical resistance.
  • a release film obtained by laminating a release layer on the surface of a biaxially oriented polyester film is used to produce a ceramic green sheet for manufacturing a laminated ceramic capacitor.
  • Patent Document 1 a polyester film containing substantially no inorganic particles is used as a base material, a release coating layer is provided on one surface of the base material, and particles are provided on the other surface.
  • a release film for producing a ceramic green sheet is disclosed, which has a specific easy-to-slip coating layer containing
  • the present inventors have further studied the release film used in the production of the ceramic green sheet with reference to the technique described in Patent Document 1, and found that not only the release surface of the release film but also the surface opposite to the release surface It has been found that the properties of the conveying surface, which is, may also affect the performance of the ceramic sheet. More specifically, in the polyester film used for the production of the release film, the surface opposite to the surface on which the release layer is formed is used for the purpose of improving windability and suppressing wrinkles during high-speed transportation of the polyester film and / or release film. By providing a layer containing particles on the surface of the substrate, a conveying surface having a projection shape is often formed.
  • the present inventors have found that when a polyester film or a release film having such a transport surface is transported at high speed, the release surface of the release film may become uneven.
  • a release film having such an uneven shape on the release surface is used in the production of a ceramic green sheet, fine recesses or protrusions are generated in the ceramic green sheet. It has been found that there is room for further improvement in the production of
  • a micro recessed part and a convex part are generically called an "unevenness
  • the present invention provides a polyester film and a polyester that can produce a ceramic green sheet in which the occurrence of uneven defects is suppressed when a release film obtained using a polyester film is used for producing a ceramic green sheet.
  • An object of the present invention is to provide a film manufacturing method.
  • Another object of the present invention is to provide a release film.
  • [1] It comprises a resin layer and a polyester base material, and has a first principal surface and a second principal surface, the second principal surface being one of the surfaces of the resin layer, and the resin layer comprising: A polyester film having protrusions on the surface that is the second main surface and used for producing a release film by forming a release layer on the first main surface, the polyester film satisfying requirement A described later. Polyester the film. [2] The polyester film of [1], wherein the projections are formed of organic particles. [3] The polyester film of [1] or [2], wherein the release film is a release film for producing a ceramic green sheet.
  • step 1 of preparing a uniaxially oriented film by longitudinally stretching an unstretched polyester film having a polyester substrate wherein step 1 of preparing a uniaxially oriented film by longitudinally stretching an unstretched polyester film having a polyester substrate.
  • a method for producing a polyester film wherein X is the lowest temperature among the temperature of the endothermic peak and the temperature of the baseline shift appearing in the curve showing the change in the amount of heat obtained by measuring the organic particles with a differential scanning calorimeter;
  • a method for producing a polyester film wherein X is lower than Y, where Y is the surface temperature of the uniaxially oriented film.
  • Requirement 1 The glass transition temperature of the organic particles is 40° C. or lower.
  • Requirement 2 The melting point of the organic particles is 110° C. or less.
  • a release film comprising the polyester film according to any one of [1] to [9] and a release layer.
  • a release film obtained using a polyester film when used for manufacturing a ceramic green sheet, a ceramic green sheet in which the occurrence of irregularities is suppressed can be manufactured, and a method for manufacturing a polyester film. can provide Moreover, according to this invention, a peeling film can be provided.
  • a numerical range represented by "to” means a range including the numerical values before and after “to” as lower and upper limits.
  • the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described stepwise.
  • the upper limit or lower limit described in a certain numerical range may be replaced with the values shown in the examples.
  • the amount of each component in the composition means the total amount of the multiple substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition. do.
  • the term "step” includes not only independent steps, but also if the intended purpose of the step is achieved even if it cannot be clearly distinguished from other steps. be In this specification, a combination of two or more preferred aspects is a more preferred aspect.
  • the term “longitudinal direction” means the longitudinal direction of the polyester film during the production of the polyester film, and is synonymous with the “conveyance direction” and the “machine direction.”
  • width direction means a direction perpendicular to the longitudinal direction.
  • perpendicular is not limited to strictly perpendicular, but includes substantially perpendicular.
  • substantially orthogonal means intersecting within the range of 90° ⁇ 5°, preferably intersecting within the range of 90° ⁇ 3°, more preferably intersecting within the range of 90° ⁇ 1°.
  • the term “major axis” means the longest diameter of the projections in the in-plane direction when the projections present on the surface (second main surface) of the polyester film or release film are observed.
  • FIG. 3 is a cross-sectional view showing an example of the structure of this film.
  • the polyester film 1 of the present invention includes a resin layer 2 and a polyester base material 3, and has a first main surface 4 and a second main surface 5, the second main surface 5 being the surface of the resin layer 2.
  • the resin layer 2 is a polyester film which has projections 6 on the surface which is the second main surface 5 and which is used to form a release layer on the first main surface 4 to produce a release film.
  • this film satisfies the following requirement A.
  • Requirement A Observing a region with an area of 10000 ⁇ m 2 on the second main surface using a scanning electron microscope, and selecting a protrusion with the longest major axis in the above region, the selected selected measured using a scanning electron microscope
  • the ratio A of the height of the selected protrusions measured by non-contact surface profilometry using an optical interferometer to the major diameter of the selected protrusions is 0.7 or less.
  • the release film obtained using this film in the production of a ceramic green sheet, a ceramic green sheet in which the occurrence of unevenness defects is suppressed can be obtained.
  • the present film having the above structure Although the details of the reason why the effect of suppressing the occurrence of uneven defects in the ceramic green sheet (hereinafter also referred to as "the effect of the present invention") can be obtained by the present film having the above structure are not clear, the present invention The inventors generally presume as follows. As described above, in the case of producing a release film using a polyester film having a layer containing particles on the surface opposite to the surface forming the release layer, the polyester film and/or the release film are transported under high-speed transport conditions. It is considered that the particles tend to drop off on the conveying surface due to the impact caused by the contact with the conveying roll.
  • the present film is characterized in that the projections present on the second main surface, which is the conveying surface of the release film, are projections having a ratio of height to length within a predetermined range.
  • the structure of this film will be described below.
  • the film has at least a resin layer and a polyester base material.
  • the first main surface is a surface for forming a release layer, which will be described later. That is, after manufacturing the polyester film, a release film having the polyester film and the release layer is produced by laminating the release layer on the first main surface.
  • the second main surface opposite to the first main surface is one surface of the resin layer. That is, the resin layer constitutes the outermost layer of the polyester film.
  • the present film has at least the above resin layer and polyester base material, and is not limited to those having the above configuration as long as the above requirement A is satisfied.
  • the film may have a primer layer or the like between the resin layer and the polyester base material.
  • a resin layer is formed on one side of the polyester substrate.
  • the surface of the resin layer opposite to the surface facing the polyester base constitutes the second main surface.
  • protrusions are formed on the surface of the resin layer, which is the second main surface.
  • the resin layer may be provided directly on the surface of the polyester base material, or may be provided on the surface of the polyester base material via another layer. is preferred.
  • the resin layer is not particularly limited as long as it is a layered member having projections on at least one surface, but it preferably contains a binder.
  • a binder contained in the resin layer, non-polyester resins other than polyester resins are preferable.
  • the resin layer may contain additives other than the substance constituting the projections and the non-polyester resin.
  • the term "binder" means a component containing a resin other than the substance that constitutes the protrusions.
  • the substance constituting the projections is not particularly limited, and may be of one type alone or in combination of two or more types. Also, the substance constituting the projections may be the same as or different from the binder.
  • the protrusions present on the surface of the resin layer include, for example, protrusions formed by particles described later, and the effect of the present invention is more excellent, and the polyester film that satisfies the requirement A can be more easily produced. , protrusions formed by organic particles are preferred.
  • the details of the mechanism by which the effect of the present invention is further improved when the projections are formed of organic particles are not clear, when the film contacts the object to be contacted on the second main surface, the deformation of the projections causes Since the force received by the projections is absorbed, even during high-speed transportation, the substances that make up the projections are less likely to fall off from the conveying surface, suppressing the transfer of contaminants to the peeling surface, and eliminating uneven defects in the ceramic green sheet.
  • Resin particles are preferable as the organic particles.
  • resins constituting resin particles include styrene resins, urethane resins, acrylic resins, polyester resins, and silicone resins.
  • the organic particles preferably contain at least one selected from the group consisting of styrene resins, acrylic resins, and urethane resins, in that a polyester film that satisfies Requirement A can be more easily produced. And it is more preferable to include at least one selected from the group consisting of urethane resins.
  • a styrene resin means a resin containing structural units derived from styrene.
  • the styrene resin constituting the resin particles include a homopolymer consisting of styrene only, and a styrene copolymer such as a styrene-acrylic copolymer containing a structural unit derived from styrene and a structural unit derived from acrylate or methacrylate. be done.
  • the urethane resin constituting the resin particles is not limited as long as it is a polymer having a urethane bond, and known urethane resins such as reaction products of isocyanate compounds and polyol compounds can be used.
  • acrylic resin means a resin containing structural units derived from acrylate or methacrylate.
  • the resin particles may be crosslinked particles having a crosslinked structure or non-crosslinked particles having no crosslinked structure.
  • the crosslinked particles include crosslinked urethane resin particles composed of a urethane resin having a crosslinked structure.
  • Non-crosslinked particles include, for example, non-crosslinked styrene resin particles composed of non-crosslinked styrene resin.
  • the temperature X is preferably 120° C. or lower, more preferably 115° C. or lower, and even more preferably 110° C. or lower.
  • the lower limit is not particularly limited, it is, for example, -40°C or higher in that the effect of suppressing blocking of the polyester film is more excellent.
  • the temperature X of the organic particles is measured using a differential scanning calorimeter (for example, "DSC-60aPlus” manufactured by Shimadzu Corporation). Specifically, the organic particles are placed in a closed pan of a differential scanning calorimeter, measured at a heating rate of 5 ° C./min in the range of -40 to 120 ° C., and a curve showing the endothermic heat of the obtained organic particles (DSC curve ) and the temperature at which the baseline shifts (shift temperature), the temperature X is the lowest temperature.
  • a differential scanning calorimeter for example, "DSC-60aPlus” manufactured by Shimadzu Corporation.
  • the temperature of the baseline shift is the point of intersection of a straight line obtained by extending the baseline on the low temperature side to the high temperature side in the DSC curve and a tangent line drawn at the point where the gradient of the curve portion that changes stepwise becomes maximum. Calculated as temperature.
  • Examples of commercially available styrene resin particles include Nipol (registered trademark) UFN1008 (manufactured by Nippon Zeon Co., Ltd.).
  • Examples of commercial products of urethane resin particles include Artpearl (registered trademark) C-1000T and MM110SMA (manufactured by Negami Kogyo Co., Ltd.).
  • the resin layer contains a non-polyester resin as a binder, because the effect of suppressing unevenness defects during long-term storage is excellent.
  • the non-polyester resin contained as a binder in the resin layer is not particularly limited as long as it is a resin other than a polyester resin.
  • acrylic resin, urethane resin, or olefin resin is preferable, and urethane resin is more preferable, because the effect of is more excellent.
  • acrylic resins and olefin resins and polyester resins do not have sufficient compatibility with each other, so it is speculated that foreign matter due to impurities such as oligomers that precipitate from the polyester resin will not occur even after long-term storage. ing.
  • urethane resins highly hydrophobic urethane resins (that is, urethane resins whose SP value is sufficiently different from that of polyester resins) also suffer from uneven defects during long-term storage for the same reason as acrylic resins and olefin resins. can be suppressed.
  • the acrylic resin, olefin resin, and urethane resin are not particularly limited, and known resins can be used.
  • the olefin resin may be any resin containing a structural unit derived from an olefin in its main chain.
  • the olefin is not particularly limited, but is preferably an alkene having 2 to 6 carbon atoms, more preferably ethylene, propylene or hexene, and still more preferably ethylene.
  • the olefin-derived structural units contained in the olefin resin are preferably 50 to 99 mol %, more preferably 60 to 98 mol %, based on all the structural units of the olefin resin.
  • an acid-modified olefin resin is preferable because it can prevent electrification when the release layer is applied.
  • Acid-modified olefin resins include, for example, copolymers obtained by modifying the above olefin resins with an acid-modifying component such as an unsaturated carboxylic acid or an anhydride thereof.
  • acid-modified components include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid, and crotonic acid, and half esters and half amides of unsaturated dicarboxylic acids.
  • acrylic acid, methacrylic acid, maleic acid, or maleic anhydride is preferable from the viewpoint of the dispersion stability of the resin.
  • Examples of the acidic group contained in the acid-modified olefin resin include a carboxyl group, a sulfo group, and a phosphoric acid group, which are acidic groups corresponding to the acid-modified components described above, and a carboxyl group is preferred.
  • the acidic group may form an acid anhydride, or may be neutralized with at least one selected from alkali metals, organic amines and ammonia.
  • the acid-modified olefin resin may contain only one type of structural unit having an acidic group, or may contain two or more types.
  • Acid-modified olefin resins include, for example, Zaixen (registered trademark) series such as Zaixen AC, A, L, NC, and N (manufactured by Sumitomo Seika Co., Ltd.), Chemipearl S100, S120, S200, S300, and S650. , Chemipearl (registered trademark) series such as SA100 (manufactured by Mitsui Chemicals, Inc.), and Hitech S3121, S3148K (manufactured by Toho Chemical Co., Ltd.), Arrow Base SE-1013, SE- 1010, SB-1200, SD-1200, SD-1200, DA-1010, DB-4010, etc.
  • Zaixen registered trademark
  • Zaixen AC Zaixen AC, A, L, NC, and N
  • Chemipearl S100, S120, S200, S300, and S650 Chemipearl (registered trademark) series such as SA100 (manufactured
  • the acrylic resin is a resin containing structural units derived from (meth)acrylate, and may be copolymerized with a vinyl monomer such as styrene.
  • the acrylic resin is not particularly limited, it preferably contains a structural unit derived from a (meth)acrylate having an alkyl group having 1 to 12 carbon atoms, and a (meth)acrylate having an alkyl group having 1 to 8 carbon atoms. It is more preferable to contain structural units derived from.
  • the acrylic resin preferably contains an acid-modified component in order to prevent electrification when the release layer is applied.
  • the acrylic resin preferably contains a structural unit derived from (meth)acrylic acid as an acid-modified component.
  • (Meth)acrylic acid may form an acid anhydride, or may be neutralized with at least one selected from alkali metals, organic amines and ammonia.
  • an aqueous acrylic resin dispersion is used for the production of the resin layer, an aqueous dispersion containing an acrylic resin and a dispersing agent can be preferably used.
  • the (meth)acrylate-derived structural units contained in the acrylic resin preferably account for 50 to 100 mol % of all the structural units of the acrylic resin.
  • the acid value of the acrylic resin is preferably 30 mgKOH/g or less, more preferably 20 mgKOH/g or less.
  • the lower limit of the acid value is not particularly limited, and is, for example, 0 mgKOH/g, but is preferably 2 mgKOH/g or more from the viewpoint of coating as an aqueous dispersion.
  • an acrylic resin whose solubility parameter (SP value) is different from that of the polyester resin, the compatibility between the acrylic resin and the polyester resin is insufficient, and as a result, the effect of suppressing uneven defects during long-term storage is more improved. can be improved.
  • Such an acrylic resin for example, to have an acid value within the above range, and to contain a structural unit derived from a (meth)acrylate having an alkyl group having 1 to 12 carbon atoms, so as to satisfy at least one of can be obtained by adjusting to
  • the urethane resin is not limited as long as it is a polymer having a urethane bond, and known urethane resins such as reaction products of isocyanate compounds and polyol compounds can be used.
  • the aqueous dispersion preferably contains a urethane resin having an acidic group (for example, a carboxyl group), or contains a urethane resin and a dispersant. Thereby, the film formability of the resin layer is improved.
  • the urethane resin has, for example, at least the structure of the raw material polyol compound, the hydrophobicity or hydrophilicity of the raw material polyol, the structure of the raw material isocyanate compound, and the hydrophobicity or hydrophilicity of the raw material isocyanate compound.
  • the desired SP value can be obtained.
  • urethane resins urethane resins having a polyester structure (polyester-based urethane resins) are preferred because they are highly hydrophobic and can further improve the effect of suppressing uneven defects during long-term storage.
  • urethane resins include, for example, Hydran (registered trademark) AP-40N, HW-312B, and HW-350 (manufactured by DIC Corporation), Takelac (registered trademark) W-5030, and W- 6020 (manufactured by Mitsui Chemicals, Inc.), ADEKA BONTITER (registered trademark) HUX-524 (manufactured by ADEKA Corporation), and Superflex (registered trademark) 210 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.).
  • the resin layer may contain a single non-polyester resin as a binder, or may contain two or more non-polyester resins.
  • the content of the binder in the resin layer is preferably 30 to 99.8% by mass, more preferably 50 to 99.5% by mass, based on the total mass of the resin layer, in order to further suppress uneven defects in the ceramic green sheet. preferable.
  • the resin layer may contain additives other than the substance constituting the projections and the binder.
  • Additives contained in the resin layer include, for example, surfactant waxes, dispersants, antioxidants, ultraviolet absorbers, colorants, reinforcing agents, plasticizers, antistatic agents, flame retardants, rust inhibitors, and Examples include antifungal agents.
  • the resin layer preferably contains a surfactant from the viewpoint of improving the smoothness of areas other than areas where projections are present on the second main surface.
  • the smoothness of the above region of the second main surface is improved, and the surface roughness of the second main surface is reduced by factors other than the presence of protrusions, so that the ratio A of the second main surface and the protrusion height described later are included.
  • the surfactant is not particularly limited, and includes silicone-based surfactants, fluorine-based surfactants, and hydrocarbon-based surfactants.
  • a hydrocarbon-based surfactant is preferable because it can suppress charging on the second main surface.
  • the silicone-based surfactant is not particularly limited as long as it has a silicon-containing group as a hydrophobic group, and examples thereof include polydimethylsiloxane, polyether-modified polydimethylsiloxane, and polymethylalkylsiloxane.
  • silicone surfactants examples include BYK (registered trademark)-306, BYK-307, BYK-333, BYK-341, BYK-345, BYK-346, BYK-347, BYK-348, and , BYK-349 (manufactured by BYK), and KF-351A, KF-352A, KF-353, KF-354L, KF-355A, KF-615A, KF-945, KF-640, KF-642, KF-643, KF-6020, X-22-4515, KF-6011, KF-6012, KF-6015, and KF-6017 (manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the fluorosurfactant is not particularly limited as long as it has a fluorine-containing group as a hydrophobic group, and examples thereof include perfluorooctane sulfonic acid and perfluorocarboxylic acid.
  • fluorosurfactants include, for example, Megafac (registered trademark) F-114, F-410, F-440, F-447, F-553, and F-556 (manufactured by DIC Corporation).
  • the fluorine-based surfactant has a linear perfluoroalkyl group having 7 or more carbon atoms, such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS).
  • PFOA perfluorooctanoic acid
  • PFOS perfluorooctane sulfonic acid
  • Hydrocarbon surfactants include, for example, anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants.
  • Anionic surfactants include, for example, alkyl sulfates, alkyl sulfonates, alkylbenzene sulfonates, alkyl phosphates, and fatty acid salts.
  • Nonionic surfactants include, for example, polyalkylene glycol mono- or dialkyl ethers, polyalkylene glycol mono- or dialkyl esters, and polyalkylene glycol mono-alkyl esters/mono-alkyl ethers.
  • Cationic surfactants include primary to tertiary alkylamine salts and quaternary ammonium compounds.
  • Amphoteric surfactants include surfactants having both an anionic site and a cationic site in the molecule.
  • anionic surfactants include, for example, RAPISOL (registered trademark) A-90, A-80, BW-30, B-90, and C-70 (manufactured by NOF Corporation), NIKKOL (registered trademark) OTP-100 (manufactured by Nikko Chemical Co., Ltd.), Kohakul (registered trademark) ON, L-40, and Phosphanol (registered trademark) 702 (manufactured by Toho Chemical Industry Co., Ltd.) ), and Viewlite (registered trademark) A-5000 and SSS (manufactured by Sanyo Chemical Industries Co., Ltd.).
  • nonionic surfactants include, for example, Naroacty (registered trademark) CL-95 and HN-100 (trade name: manufactured by Sanyo Chemical Industries, Ltd.), Resolex BW400 (trade name: KOKYU ALCOHOL KOGYO Co., Ltd.), EMALEX (registered trademark) ET-2020 (manufactured by Nippon Emulsion Co., Ltd.), and Surfynol (registered trademark) 104E, 420, 440, 465, and Dynol (registered trademark) 604, 607 (manufactured by Nissin Chemical Industry Co., Ltd.).
  • hydrocarbon surfactant at least one of an anionic surfactant and a nonionic surfactant is preferable in that a coating layer having a smooth surface can be formed without hindering the dispersion of the resin. agents are more preferred. That is, as the surfactant, an anionic hydrocarbon-based surfactant is more preferable in terms of improving surface smoothness.
  • the anionic hydrocarbon-based surfactant preferably has a plurality of hydrophobic terminal groups in terms of further improving smoothness.
  • the hydrophobic end group may be part of the hydrocarbon group of the hydrocarbon surfactant.
  • a hydrocarbon surfactant terminated with a hydrocarbon group having a branched chain structure will have a plurality of hydrophobic end groups.
  • anionic hydrocarbon surfactants having multiple hydrophobic terminal groups include di-2-ethylhexyl sodium sulfosuccinate (having four hydrophobic terminal groups), di-2-ethyloctyl sodium sulfosuccinate ( 4 hydrophobic end groups) and branched alkyl benzene sulfonates (2 hydrophobic end groups).
  • the content of the surfactant is preferably 0.1 to 10% by mass with respect to the total mass of the resin layer, more preferably 0.1 to 5% by mass in terms of better surface smoothness, and 0.5 to 2% by mass is more preferred.
  • the wax is not particularly limited, and may be natural wax or synthetic wax. Natural waxes include carnauba wax, candelilla wax, beeswax, montan wax, paraffin wax, and petroleum wax. In addition, a slipping agent described in [0087] of International Publication No. 2017/169844 can also be used.
  • the wax content is preferably 0 to 10% by mass with respect to the total mass of the resin layer.
  • the resin layer can be formed, for example, by coating a composition containing particles on one surface of the polyester substrate as described later.
  • the thickness of the resin layer is often 1 nm to 1 ⁇ m, and is preferably 10 nm to 1 ⁇ m, more preferably 20 to 500 nm, in terms of the excellent effect of suppressing unevenness defects during long-term storage. More preferably, 20 to 200 nm is even more preferable.
  • the polyester base material and the resin used for forming the resin layer may be co-extruded. In that case, the thickness of the resin layer is often 1 to 10 ⁇ m.
  • the thickness of the resin layer is preferably from 1 to 500 nm, more preferably from 1 to 250 nm, even more preferably from 10 to 100 nm, and particularly preferably from 20 to 100 nm, from the viewpoints of production suitability of the resin layer and reduction of haze. .
  • a section having a cross section perpendicular to the main surface of the polyester film is prepared, and a scanning electron microscope (SEM: Scanning Electron Microscope) or a transmission electron microscope (TEM: Transmission Electron Microscope) is used.
  • the film thickness of the resin layer can be determined by fitting the measured reflectance spectrum with the film thickness and refractive index of the resin layer and the polyester base material.
  • a polyester substrate is a film-like body containing a polyester resin as the main polymer component.
  • the “main polymer component” means the polymer with the highest content (mass) among all the polymers contained in the film.
  • the polyester substrate is substantially free of particles. “Substantially free of particles” means that the content of particles is 50 mass with respect to the total mass of the polyester base material when the element derived from the particles is quantitatively analyzed by fluorescent X-ray analysis for the polyester base material. It is defined as ppm or less, preferably 10 mass ppm or less, more preferably detection limit or less.
  • the polyester base material may contain a single polyester resin, or may contain two or more polyester resins.
  • polyester resin is a polymer having an ester bond in its main chain.
  • a polyester resin is usually formed by polycondensing a dicarboxylic acid compound and a diol compound, which will be described later.
  • the polyester resin is not particularly limited, and known polyester resins can be used. Polyester resins include, for example, polyethylene terephthalate (PET), polyethylene-2,6-naphthalate (PEN), and copolymers thereof, with PET being preferred.
  • the intrinsic viscosity of the polyester resin is preferably 0.50 dl/g or more and less than 0.80 dl/g, more preferably 0.55 dl/g or more and less than 0.70 dl/g.
  • the melting point (Tm) of the polyester resin is preferably 220 to 270°C, more preferably 245 to 265°C.
  • the glass transition temperature (Tg) of the polyester resin is preferably 65-90°C, more preferably 70-85°C.
  • the method for producing the polyester resin is not particularly limited, and known methods can be used.
  • a polyester resin can be produced by polycondensing at least one dicarboxylic acid compound and at least one diol compound in the presence of a catalyst.
  • the catalyst used for producing the polyester resin is not particularly limited, and any known catalyst that can be used for synthesizing the polyester resin can be used.
  • catalysts include alkali metal compounds (e.g., potassium compounds, sodium compounds), alkaline earth metal compounds (e.g., calcium compounds, magnesium compounds), zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony. compounds, titanium compounds, germanium compounds, and phosphorus compounds.
  • alkali metal compounds e.g., potassium compounds, sodium compounds
  • alkaline earth metal compounds e.g., calcium compounds, magnesium compounds
  • zinc compounds e.g., lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony.
  • titanium compounds are preferable from the viewpoint of catalytic activity and cost. Only one kind of catalyst may be used, or two or more kinds thereof may be used in combination.
  • At least one metal catalyst selected from potassium compounds, sodium compounds, calcium compounds, magnesium compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, and germanium compounds; It is preferable to use a compound together, and it is more preferable to use a titanium compound and a phosphorus compound together.
  • an organic chelate titanium complex is preferred.
  • An organic chelate titanium complex is a titanium compound having an organic acid as a ligand.
  • Organic acids include, for example, citric acid, lactic acid, trimellitic acid, and malic acid.
  • titanium compounds described in [0049] to [0053] of Japanese Patent No. 5575671 can also be used, and the contents of the above publications are incorporated herein.
  • dicarboxylic acid compounds include dicarboxylic acids such as aliphatic dicarboxylic acid compounds, alicyclic dicarboxylic acid compounds, and aromatic dicarboxylic acid compounds, and dicarboxylic acids such as methyl ester compounds and ethyl ester compounds of these dicarboxylic acids. esters. Among them, aromatic dicarboxylic acid or methyl aromatic dicarboxylate is preferable.
  • aliphatic dicarboxylic acid compounds include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalonic acid, and ethylmalonic acid.
  • Alicyclic dicarboxylic acid compounds include, for example, adamantanedicarboxylic acid, norbornenedicarboxylic acid, cyclohexanedicarboxylic acid, and decalinedicarboxylic acid.
  • aromatic dicarboxylic acid compounds include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 1,8-naphthalenedicarboxylic acid. , 4,4′-diphenyldicarboxylic acid, 4,4′-diphenyletherdicarboxylic acid, 5-sodium sulfoisophthalic acid, phenylindanedicarboxylic acid, anthracenedicarboxylic acid, phenanthenedicarboxylic acid, and 9,9′-bis(4- carboxyphenyl)fluoric acid. Among them, terephthalic acid or 2,6-naphthalenedicarboxylic acid is preferable, and terephthalic acid is more preferable.
  • terephthalic acid may be used alone, or may be copolymerized with another aromatic dicarboxylic acid such as isophthalic acid or an aliphatic dicarboxylic acid.
  • diol compounds include aliphatic diol compounds, alicyclic diol compounds, and aromatic diol compounds, with aliphatic diol compounds being preferred.
  • aliphatic diol compounds examples include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, and neo Pentyl glycol may be mentioned, with ethylene glycol being preferred.
  • Alicyclic diol compounds include, for example, cyclohexanedimethanol, spiroglycol, and isosorbide.
  • aromatic diol compounds include bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, and 9,9′-bis(4-hydroxyphenyl)fluorene. Only one kind of diol compound may be used, or two or more kinds thereof may be used in combination.
  • a terminal blocker In the production of the polyester resin, if necessary, a terminal blocker may be used. By using the terminal blocking agent, a structure derived from the terminal blocking agent is introduced to the terminal of the polyester resin.
  • the terminal blocking agent is not limited, and known terminal blocking agents can be used. Examples of terminal blocking agents include oxazoline-based compounds, carbodiimide-based compounds, and epoxy-based compounds.
  • the end blocking agent the content described in [0055] to [0064] of JP-A-2014-189002 can also be referred to, and the content of the above publication is incorporated herein.
  • the reaction temperature is not limited, and may be appropriately set according to the raw materials.
  • the reaction temperature is preferably 260-300°C, more preferably 275-285°C.
  • the pressure is not limited, and may be appropriately set according to the raw material.
  • the pressure is preferably 1.33 ⁇ 10 ⁇ 3 to 1.33 ⁇ 10 ⁇ 5 MPa, more preferably 6.67 ⁇ 10 ⁇ 4 to 6.67 ⁇ 10 ⁇ 5 MPa.
  • the polyester substrate is a biaxially oriented polyester substrate.
  • "Biaxial orientation” means the property of having molecular orientation in two axial directions.
  • the molecular orientation is measured using a microwave transmission type molecular orientation meter (for example, MOA-6004, manufactured by Oji Scientific Instruments Co., Ltd.).
  • the angle formed by the two axial directions is preferably within the range of 90° ⁇ 5°, more preferably within the range of 90° ⁇ 3°, and still more preferably within the range of 90° ⁇ 1°.
  • the content of the polyester resin in the polyester base is preferably 85% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and 98% by mass, based on the total mass of the polymer in the polyester base. % or more is particularly preferred.
  • the upper limit of the content of the polyester resin is not limited, and can be appropriately set within a range of 100% by mass or less with respect to the total mass of the polymer in the polyester base material.
  • the content of polyethylene terephthalate is preferably 90 to 100% by mass, more preferably 95 to 100% by mass, based on the total mass of the polyester resin in the polyester base material. 100% by mass is more preferred, and 100% by mass is particularly preferred.
  • the polyester base material may contain components other than the polyester resin (eg, catalyst, unreacted raw material components, particles, water, etc.).
  • the thickness of the polyester base material is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 40 ⁇ m or less, in terms of controlling the peelability.
  • the lower limit of the thickness is not particularly limited, it is preferably 3 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 20 ⁇ m or more in terms of improving strength and workability.
  • the thickness of the polyester base material is measured according to the method for measuring the thickness of the polyester film, which will be described later.
  • the film may further comprise a layer other than the above resin layer and polyester base material, it preferably has a layer structure consisting of a resin layer and a polyester base material.
  • the ratio A is 0.7 or less, preferably 0.6 or less. Within the above range, the occurrence of uneven defects in the ceramic green sheet can be further suppressed.
  • the lower limit is not particularly limited, it is preferably 0.01 or more, more preferably 0.03 or more, and still more preferably 0.05 or more in terms of excellent high-speed transportability and suppression of unevenness in protrusion height.
  • the ratio A of the second main surface of the polyester film is adjusted by, for example, the type and average particle size of the particles used in the production of the resin layer, the thickness of the resin layer, and the heat treatment after the resin layer forming step described later. can.
  • a method for producing a polyester film that allows the above adjustments to be made more easily will be described later in detail.
  • the ratio A of the second main surface of the polyester film is measured according to the method described in the Examples section below.
  • the projections on the second main surface do not include dirt, foreign matter, and dirt adhered from the line or equipment during the manufacturing process of the polyester base material.
  • the resin layer of the present film functions as a conveying surface in the present film or in a release film obtained by forming a release layer on the first main surface.
  • the height of the projections on the second main surface of the present film is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, still more preferably 0.25 ⁇ m or more, and particularly 0.3 ⁇ m or more, from the viewpoint of excellent high-speed transportability. preferable.
  • the protrusions formed on the second main surface are too large, the substance forming the protrusions tends to fall off during high-speed transportation.
  • the height of the protrusions on the second main surface is preferably 5 ⁇ m or less, more preferably 4.0 ⁇ m or less, and even more preferably 3.5 ⁇ m or less. That is, the height of the projections on the second main surface is preferably within the range defined by the above lower limit and upper limit in terms of the advantages of the present invention and high-speed transportability. .
  • the term “protrusion height on the second main surface” refers to a region with an area of 10000 ⁇ m 2 on the second main surface observed using a scanning electron microscope, and the projection having the longest major axis in the above region. In contrast, it means the protrusion height obtained by non-contact profilometry using an optical interferometer.
  • the height of the protrusions on the second main surface is 0.3 to 5.0 ⁇ m, and the thickness of the resin layer is 20 to 500 nm ( more preferably 20 to 200 nm), and the height of the protrusions on the second main surface is preferably larger than the thickness of the resin layer.
  • the long diameter of the projections on the second main surface of the present film is preferably 1 to 20 ⁇ m.
  • the projection height and projection length on the second main surface can be adjusted according to the method for adjusting the ratio A described above. Also, the projection height and the projection length on the second main surface are measured according to the method described in the Examples section below.
  • the surface average roughness Sa of the second main surface is preferably 1 to 15 nm, more preferably 1 to 10 nm, and even more preferably 1 to 8 nm, in that uneven defects on the release surface of the release film can be further suppressed.
  • the surface average roughness Sa of the second main surface is, for example, the average particle diameter and content of particles used for producing the resin layer, the thickness of the resin layer, and the non-polyester resin and additives ( It can be adjusted by selecting the type of surfactant, etc.). When the resin layer is formed by in-line coating, the above adjustments can be made more easily.
  • the surface average roughness Sa of the second main surface is the surface of the polyester film on the side of the specific coating layer using an optical interferometer (for example, "Vertscan 3300G Lite” manufactured by Hitachi High-Tech Co., Ltd.). It is obtained by measuring under the same conditions as the projection height measurement conditions, and then analyzing it with the built-in data analysis software. In the measurement of the surface average roughness Sa, measurements are performed five times at different measurement positions, and the average value of the obtained measurement values is used as the measurement value of the surface average roughness Sa.
  • an optical interferometer for example, "Vertscan 3300G Lite” manufactured by Hitachi High-Tech Co., Ltd.
  • the surface free energy of the second main surface of the present film is 25 to 65 mJ/m 2 in terms of improving windability during high-speed transportation and excellent effect of suppressing uneven defects during long-term storage.
  • 25 to 45 mJ/m 2 is more preferable, and 35 to 45 mJ/m 2 is even more preferable.
  • the surface free energy of the second principal surface is within the above range, it is possible to prevent impurities such as oligomers generated from the polyester base material from passing through the resin layer and depositing on the surface of the second principal surface.
  • the release film produced using the present film is wound into a roll and stored for a long period of time, the oligomer-derived particles generated on the conveying surface (second main surface) adhere to the release surface of the release film. Therefore, it is possible to suppress the occurrence of irregularities in the ceramic green sheet formed on the release surface.
  • the surface free energy of the second principal surface can be adjusted, for example, by selecting the non-polyester resin and additives contained in the resin layer.
  • the surface free energy of the second main surface of this film is obtained according to the method described in the Examples section below.
  • the first main surface is preferably as smooth as possible.
  • the maximum protrusion height Sp of the first main surface is preferably 1 to 60 nm, more preferably 1 to 50 nm, and even more preferably 1 to 30 nm.
  • the surface average roughness Sa of the first main surface is preferably 0 to 10 nm, more preferably 0 to 5 nm, even more preferably 0 to 2 nm.
  • the maximum protrusion height Sp and the surface average roughness Sa of the first main surface are the type and addition of the polyester that constitutes the polyester base material so that the polyester base material is substantially free of particles and the film is formed smoothly. It can be adjusted by a technique such as selecting the type of agent.
  • the maximum protrusion height Sp and the surface average roughness Sa of the first main surface of the present film are measured using an optical interferometer (for example, "Vertscan 3300G Lite" manufactured by Hitachi High-Tech Co., Ltd.). is obtained by measuring under the same conditions as the measurement conditions for the protrusion height when obtaining , and then analyzing it with the built-in data analysis software. In the measurement of the maximum projection height Sp and the surface average roughness Sa, measurements are performed five times at different measurement positions on the first main surface, and the average value of the obtained measurement values is used as each measurement value.
  • the surface free energy of the first main surface of the film is preferably 25 to 65 mJ/m 2 , more preferably 30 to 45 mJ/m 2 from the viewpoint of antistatic property when winding the film.
  • the surface free energy of the first main surface can be adjusted by selecting the type of resin forming the polyester base material, additives, and the like.
  • the surface free energy of the first main surface of the film can be measured according to the method for measuring the surface free energy of the second main surface described above.
  • the thickness of the present film is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 40 ⁇ m or less, from the viewpoint of better peelability.
  • the lower limit of the thickness is not particularly limited, it is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and still more preferably 10 ⁇ m or more from the viewpoint of excellent handleability.
  • the thickness of this film is the arithmetic average value of the thicknesses measured at five points with a continuous stylus film thickness gauge.
  • Examples of a method for producing a polyester film include a method comprising a biaxial stretching step of biaxially stretching an unstretched polyester base material and a step of forming a resin layer having projections.
  • the biaxial stretching may be simultaneous biaxial stretching in which longitudinal stretching and lateral stretching are performed simultaneously, or sequential biaxial stretching in which longitudinal stretching and lateral stretching are performed in multiple stages of two or more stages.
  • the order of sequential biaxial stretching is, for example, the order of longitudinal stretching and transverse stretching, the order of longitudinal stretching, transverse stretching and longitudinal stretching, the order of longitudinal stretching, longitudinal stretching and transverse stretching, and the order of transverse stretching and longitudinal stretching. and the order of longitudinal stretching and transverse stretching is preferred.
  • Step 1 (hereinafter also referred to as “longitudinal stretching step”) for producing a uniaxially oriented film by stretching an unstretched polyester film having a polyester base material in the longitudinal direction;
  • Step 2 of forming a resin layer on the surface of the uniaxially oriented film using a composition containing organic particles (hereinafter also referred to as “resin layer forming step”);
  • a process for producing a polyester film comprising a step 3 of stretching in the width direction while heating the uniaxially oriented film having the resin layer (hereinafter also referred to as a "transverse stretching step”), Of the temperature of the endothermic peak and the temperature of the baseline shift that appear in the curve (DSC curve) showing the change in the amount of heat obtained by measuring the organic particles with a differential scanning calorimeter, the lowest temperature is X, and step 3 (transverse stretching step), wherein the temperature X is lower than the temperature Y, where Y is the surface temperature
  • composition A1 a composition containing organic particles having a temperature X measured by the above method
  • the organic particles existing on the surface of the resin layer are softened, and the organic particles easily follow the deformation of the resin layer due to lateral stretching.
  • protrusions having a low height-to-major axis ratio A are likely to be formed on the surface of the resin layer that serves as the second main surface of the polyester film.
  • a release film obtained by using a polyester film having projections with such a low ratio A on the second main surface is used in the production of ceramic green sheets to eliminate uneven defects in the ceramic green sheets. Occurrence can be further suppressed.
  • ⁇ Longitudinal stretching step (step 1)> As the unstretched polyester film having a polyester substrate to be subjected to the longitudinal stretching step (step 1), an unstretched polyester substrate is preferable.
  • the polyester base material used in the longitudinal stretching step is as already described in the above item ⁇ Polyester base material>, including preferred embodiments.
  • An unstretched polyester base material can be produced, for example, by the extrusion molding process of the second embodiment described later.
  • the longitudinal stretching can be performed, for example, by applying tension between two or more pairs of stretching rolls installed in the transport direction while transporting the unstretched polyester base material in the longitudinal direction.
  • the draw ratio in the longitudinal drawing step is appropriately set depending on the application, but is preferably 2.0 to 5.0 times, more preferably 2.5 to 4.0 times, and still more preferably 2.8 to 4.0 times.
  • the stretching speed in the longitudinal stretching step is preferably 800 to 1500%/second, more preferably 1000 to 1400%/second, even more preferably 1200 to 1400%/second.
  • the "stretching speed" is a value obtained by dividing the length ⁇ d of the polyester substrate in the transport direction stretched per second in the longitudinal stretching step by the length d0 of the polyester substrate in the transport direction before stretching.
  • the "temperature" in each step of the manufacturing method according to this embodiment means the surface temperature of the film-like member measured using a non-contact thermometer (for example, a radiation thermometer). The surface temperature of the film-like member is obtained by measuring the temperature of the central portion in the width direction of the film-like member five times and calculating the average value of the obtained measured values.
  • ⁇ Resin Layer Forming Step (Step 2)> In the resin layer forming step (step 2), a resin layer is formed on the surface of the uniaxially oriented film obtained in the longitudinal stretching step using the composition A1 containing organic particles.
  • the resin layer formed in the resin layer forming step has the same meaning as the layer described in detail in the above ⁇ Resin layer> except that it is specified as a resin layer including protrusions formed of organic particles.
  • Examples of the resin layer forming step include a method of forming a coating film on the surface of a longitudinally stretched uniaxially oriented film using the composition A1, and drying the film as necessary.
  • composition A1 can be prepared, for example, by mixing organic particles, non-polyester resin, solvent, and optional additives.
  • the average particle size of the organic particles contained in the composition A1 is not particularly limited, but is preferably 1 nm or more and 3 ⁇ m or less, more preferably 10 nm or more and 2 ⁇ m or less, in terms of better transportability and the ability to suppress transfer marks.
  • the organic particles contained in the composition A1 may be used singly, or two or more kinds of organic particles may be used.
  • the resin layer preferably contains at least one type of organic particles having an average particle size within the above range, and two or more types having different particle sizes. It is more preferable that all of the organic particles in (1) are organic particles having an average particle size within the above range.
  • the shape of the organic particles is not particularly limited, and examples thereof include rice grain-like, spherical, cubic, spindle-like, scale-like, aggregated, and irregular shapes.
  • Aggregate means a state in which primary particles are aggregated.
  • the content of the organic particles in the composition A1 is 0.1 to 30 mass with respect to the total mass of the components (solid content) other than the solvent in the composition A1 from the viewpoint of transportability and coatability of the release layer. %, more preferably 1 to 25% by mass, even more preferably 1 to 20% by mass.
  • composition A1 may contain a single solvent, or may contain two or more solvents.
  • the solvent content is preferably 80 to 99.5% by mass, more preferably 90 to 99.0% by mass, based on the total mass of composition A1. That is, in composition A1, the total solid content is preferably 0.5 to 20% by mass, more preferably 1 to 10% by mass, relative to the total mass of composition A1.
  • the organic particles, the material composing the organic particles, the non-polyester resin, and the additive contained in the composition A1 are as described in detail in the section ⁇ Resin Layer> above, including their preferred embodiments.
  • the content of each component with respect to the total mass of the solid content of composition A1 is the same as the preferred content of each component with respect to the total mass of the resin layer. Thus, it is preferable to adjust the content of each component in the coating liquid.
  • Composition A1 may contain a cross-linking agent.
  • the cross-linking agent is not particularly limited, and known ones can be used.
  • cross-linking agents include melamine-based compounds, oxazoline-based compounds, epoxy-based compounds, isocyanate-based compounds, and carbodiimide-based compounds, with oxazoline-based compounds and carbodiimide-based compounds being preferred.
  • Examples of commercially available products include Carbodilite V-02-L2 (manufactured by Nisshinbo Co., Ltd.) and Epocross K-2020E (manufactured by Nippon Shokubai Co., Ltd.).
  • cross-linking agents described in [0082] to [0084] of International Publication No. 2017/169844 can also be preferably used.
  • the descriptions in [0038] to [0040] of JP-A-2017-087421 can be referred to.
  • cross-linking agents described in [0074] to [0075] of WO 2018/034294 can also be preferably used.
  • the content of the cross-linking agent is preferably 0 to 50% by mass based on the total mass of the solid content of composition A1.
  • composition A1 is not particularly limited, and known methods can be used. Examples of coating methods include spray coating, slit coating, roll coating, blade coating, spin coating, bar coating and dip coating.
  • the resin layer forming step it is preferable to apply an in-line coating method in which the composition A1 is applied to one surface of the uniaxially oriented film while the uniaxially oriented film is conveyed.
  • the in-line coating method By applying the in-line coating method, the heating time of the polyester base material in the manufacturing process is shortened and the heat history is not applied, so that the generation of distortion in the release film can be suppressed.
  • the resin layer forming process is carried out, and then the transverse stretching process is carried out. Thereby, the adhesion between the polyester substrate and the resin layer can be improved by simultaneously laterally stretching the uniaxially oriented polyester substrate and the resin layer.
  • a uniaxially oriented film having a resin layer (in the present embodiment, also simply referred to as “uniaxially oriented film”) is stretched in the width direction (hereinafter also referred to as "transverse stretching") to biaxially stretch the film.
  • the uniaxially oriented film is heated at a specific temperature Y when performing the lateral stretching step (step 3) for forming the oriented polyester substrate.
  • the heating temperature Y at that time is not particularly limited as long as it is higher than the temperature X of the organic particles contained in the resin layer. More preferred.
  • the uniaxially oriented film is continuously heated at the temperature Y while being laterally stretched in the lateral stretching step.
  • the lateral stretching step it is preferable to preheat the uniaxially oriented film before lateral stretching.
  • the preheating temperature is preferably 80 to 120°C, more preferably 90 to 110°C.
  • the draw ratio in the width direction of the uniaxially oriented film in the transverse stretching step is not particularly limited, but is preferably larger than the draw ratio in the longitudinal stretching step.
  • the draw ratio in the transverse drawing step is preferably 3.0 to 6.0 times, more preferably 3.5 to 5.0 times, even more preferably 3.5 to 4.5 times.
  • the lateral stretching ratio is the ratio of the polyester substrate width L1 at the time of unloading from the stretching unit to the polyester substrate width L0 at the time of loading into the stretching unit (L1/L0). requested from.
  • the stretching speed in the lateral stretching step is preferably 8 to 45%/second, more preferably 10 to 30%/second, even more preferably 15 to 20%/second.
  • the manufacturing method according to the present embodiment may have other processes in addition to the longitudinal stretching process, the resin layer forming process, and the lateral stretching process.
  • the production method according to the present embodiment includes, for example, an extrusion molding step of extruding a molten resin containing a raw material polyester resin into a film to form an unstretched polyester base material, and heating a biaxially oriented polyester base material.
  • It may have at least one step selected from the group consisting of a cooling step and an expanding step of expanding the heat-relaxed polyester base material in the width direction in the cooling step.
  • a cooling step and an expanding step of expanding the heat-relaxed polyester base material in the width direction in the cooling step.
  • the production method according to the present embodiment may have a winding step of obtaining a roll-shaped biaxially oriented polyester substrate by winding the biaxially oriented polyester substrate obtained through the above steps.
  • the transport speed of the polyester base material in each step other than the longitudinal stretching step of the production method according to the present embodiment is not particularly limited, but in terms of productivity and quality, it is preferably 50 to 200 m / min, and 80 to 150 m / min. is more preferred.
  • a biaxial stretching step consisting of a longitudinal stretching step of forming a uniaxially oriented polyester base material by stretching, and a lateral stretching step of stretching the uniaxially oriented polyester base material in the width direction to form a biaxially oriented polyester base material;
  • the extrusion molding step is a step of forming an unstretched polyester base material by extruding a molten resin containing a polyester resin as a raw material into a film by an extrusion molding method.
  • the raw material polyester resin is synonymous with the polyester resin described in the item (polyester resin) above.
  • the extrusion molding method is, for example, a method of molding a raw material resin into a desired shape by extruding a melt of the raw material resin using an extruder.
  • the melt extruded from the extrusion die is cooled to form a film.
  • the melt can be formed into a film by contacting the melt with a casting roll and cooling and solidifying the melt on the casting roll. In cooling the melt, it is preferable to blow air (preferably cool air) to the melt.
  • the biaxial stretching step includes a longitudinal stretching step of longitudinally stretching an unstretched polyester substrate to form a uniaxially oriented polyester substrate, and a lateral stretching step of a uniaxially oriented polyester substrate to form a biaxially oriented polyester substrate. It has a lateral stretching process.
  • the uniaxially oriented polyester base material stretched in the lateral stretching step is not limited to a uniaxially oriented film having a resin layer, and the lateral stretching Except that the process is not limited to the aspect of heating at a specific temperature Y while laterally stretching, it is the same as the longitudinal stretching step and the lateral stretching step of the first embodiment, and is the same as each step in the first embodiment. can be implemented in
  • ⁇ Heat setting process> it is preferable to perform a heat setting step as the heat treatment for the polyester base material laterally stretched in the lateral stretching step.
  • the biaxially oriented polyester substrate obtained by the lateral stretching step can be heated and heat set.
  • the surface temperature (heat setting temperature) of the polyester base material in the heat setting step is not particularly limited, but is preferably less than 240°C, more preferably 235°C or less, and even more preferably 230°C or less.
  • the lower limit is not particularly limited, it is preferably 190°C or higher, more preferably 200°C or higher, and even more preferably 210°C or higher.
  • the heating time in the heat setting step is preferably 5 to 50 seconds, more preferably 5 to 30 seconds, even more preferably 5 to 10 seconds.
  • the thermal relaxation step it is preferable to thermally relax the polyester base material heat-set in the heat-setting step by heating at a temperature lower than that in the heat-setting step. Thermal relaxation can relieve the residual strain of the polyester substrate.
  • the surface temperature (thermal relaxation temperature) of the polyester base material in the thermal relaxation step is preferably 5°C or more lower than the heat setting temperature, more preferably 15°C or more lower, still more preferably 25°C or more lower, and 30°C. Lower temperatures are particularly preferred. That is, the thermal relaxation temperature is preferably 235°C or lower, more preferably 225°C or lower, still more preferably 210°C or lower, and particularly preferably 200°C or lower.
  • the lower limit of the thermal relaxation temperature is preferably 100°C or higher, more preferably 110°C or higher, and even more preferably 120°C or higher.
  • the production method according to the present embodiment preferably has a cooling step of cooling the thermally relaxed polyester base material.
  • the cooling rate of the polyester base material in the cooling step is not particularly limited, but it is more than 2000 ° C./min and 4000 ° C./min in that the thickness unevenness of the release layer laminated on the present film is reduced and the coatability of the release layer is more excellent. It is preferably less than 2000 to 3500°C/min, more preferably more than 2200°C/min to less than 3000°C/min, and particularly preferably 2300 to 2800°C/min.
  • the cooling rate of the polyester film in the cooling step is preferably more than 500 ° C./min and less than 4000 ° C./min, and more preferably 700 to 3000 ° C./min. Preferably, 1000-2500° C./min is particularly preferred.
  • the cooling step preferably includes a step of expanding the thermally relaxed polyester base material in the width direction.
  • the expansion rate of the polyester base material in the width direction by the expansion process that is, the ratio of the polyester base width at the end of the cooling process to the polyester base width before the start of the cooling process is preferably 0% or more, and 0.001%. 0.01% or more is more preferable.
  • the upper limit of the expansion rate is not particularly limited, it is preferably 1.3% or less, more preferably 1.2% or less, and even more preferably 1.0% or less.
  • the production method according to the present embodiment preferably includes a resin layer forming step of in-line coating with a resin layer forming composition containing particles (hereinafter also referred to as “composition A”).
  • composition A a resin layer forming composition containing particles
  • the resin layer forming step in the present embodiment includes using the composition A instead of the composition A1, applying an in-line coating method for applying the composition A to one surface of the polyester substrate, and applying the composition.
  • the resin layer forming step is the same as the resin layer forming step of the first embodiment, and can be carried out in the same manner as the resin layer forming step of the first embodiment.
  • the composition A1 of the first embodiment is preferred, including more preferred embodiments.
  • the polyester substrate to which the composition A is applied may be an unstretched polyester substrate or a uniaxially oriented polyester substrate.
  • An oriented polyester substrate is preferred. That is, it is preferable that the resin layer forming step is a coating step performed between the longitudinal stretching step and the lateral stretching step. This is because the adhesion between the polyester base material and the resin layer can be improved by simultaneously laterally stretching the uniaxially oriented polyester base material and the resin layer.
  • the manufacturing method according to this embodiment may have a winding step as in the first embodiment.
  • the transport speed of the polyester base material in each step other than the longitudinal stretching step of the production method according to the present embodiment is not particularly limited, the transverse stretching step, heat setting step, heat relaxation step, cooling step and expansion step are performed. In this case, 50 to 200 m/min is preferable, and 80 to 150 m/min is more preferable in terms of productivity and quality.
  • the method for producing this film is not particularly limited as long as it is a method for producing a polyester film that has a resin layer and a polyester base material, has a first main surface and a second main surface, and satisfies the requirement A. , manufacturing methods other than those of the above-described first and second embodiments may be used.
  • an unstretched polyester For example, by co-extruding a molten resin containing a raw material polyester resin for forming an unstretched polyester base material and a particle-containing molten resin containing particles for forming a resin layer and a non-polyester resin, an unstretched polyester
  • the present film may be produced by forming a laminate in which a substrate and a resin layer are laminated, and then biaxially stretching the laminate.
  • the film can be used to make release films. More specifically, by providing a release layer on the first main surface of the film, a release film having the film and the release layer disposed on the first main surface of the film can be produced.
  • the release layer contains at least a resin as a release agent.
  • Resins contained in the release layer are not particularly limited, and examples thereof include silicone resins, fluororesins, alkyd resins, acrylic resins, various waxes, and aliphatic olefins.
  • a silicone resin is preferable from the viewpoint of the release property of the ceramic green sheet.
  • a silicone resin means a resin having a silicone structure in its molecule.
  • silicone resins include curable silicone resins, silicone graft resins, and modified silicone resins such as alkyl-modified silicone resins, and reactive curable silicone resins are preferred.
  • reactive curable silicone resins include addition reaction silicone resins, condensation reaction silicone resins, and ultraviolet or electron beam curable silicone resins. Among them, an addition reaction type silicone resin having low-temperature curability or an ultraviolet or electron beam curing type silicone resin is preferable because the release layer can be formed at a low temperature.
  • Examples of addition reaction silicone resins include resins obtained by reacting and curing polydimethylsiloxane having a terminal or side chain introduced with a vinyl group and hydrogen siloxane using a platinum catalyst.
  • the condensation reaction silicone resin for example, a three-dimensional polydimethylsiloxane having terminal OH groups and a polydimethylsiloxane having terminal H groups are subjected to a condensation reaction using an organic tin catalyst.
  • Examples thereof include resins having a crosslinked structure.
  • Examples of UV-curing silicone resins include those that use the same radical reaction as silicone rubber cross-linking, those that introduce photo-curing by introducing unsaturated groups, those that generate strong acids by decomposing onium salts with ultraviolet rays or electron beams, and epoxy resins.
  • crosslink by cleaving the groups and those that crosslink by the addition reaction of thiol to vinyl siloxane are included. More specific examples include acrylate-modified polydimethylsiloxane and glycidoxy-modified polydimethylsiloxane.
  • the release layer may contain additives in addition to the above resins.
  • additives such as a light release additive and a heavy release additive for adjusting the release force, an adhesion improver, a curing agent (crosslinking agent), and an antistatic agent may be added.
  • the resin contained in the release layer may be used singly or in combination of two or more.
  • the content of the resin in the release layer is preferably 50 to 99% by mass, more preferably 60 to 98% by mass, based on the total mass of the release layer.
  • the rest of the release layer other than the resin may be at least one of the above additives and residues such as solvents and catalysts contained in the release layer forming coating liquid used to form the release layer.
  • the thickness of the release layer may be set according to the purpose of use, and is not particularly limited. 0.05 to 1.0 ⁇ m is more preferred.
  • the surface free energy of the surface of the release layer opposite to the polyester film side is preferably 30 mJ/ m2 or less, and is 1 to 30 mJ/m. 2 is more preferred, and 10 to 30 mJ/m 2 is even more preferred.
  • the surface free energy of the release surface of the release layer can be adjusted by the type of resin forming the release layer and additives.
  • the release surface is preferably as smooth as possible in order to smooth the functional layer such as a ceramic green sheet formed on the release layer.
  • the maximum projection height Sp of the peeled surface is preferably 1 to 60 nm, more preferably 1 to 40 nm.
  • the surface average roughness Sa of the peeled surface is preferably 0 to 10 nm, more preferably 0 to 5 nm.
  • the maximum protrusion height Sp and surface average roughness Sa of the release surface are determined, for example, by not putting particles in the release layer when providing the release layer, and by selecting the resin and additives that form the release layer. Adjustable.
  • the maximum protrusion height Sp and surface average roughness Sa of the release surface can be measured according to the above-described method for measuring the maximum protrusion height Sp and surface average roughness Sa of the first main surface of the present film.
  • the method of providing the release layer on the first main surface of the film is not particularly limited, but a coating solution for forming a release layer in which a release agent is dissolved or dispersed in a solvent is applied to the first main surface of the film, A method of removing the solvent by drying and, if necessary, heating or irradiating with light to form a cured product can be mentioned.
  • the release layer is preferably a cured product cured by light (eg, ultraviolet rays) or heat.
  • the coating method of the release layer forming coating liquid is not particularly limited, and a known method can be used. Examples of coating methods include spray coating, slit coating, roll coating, blade coating, spin coating, bar coating and dip coating.
  • the heating temperature for forming the release layer is preferably 180° C. or lower, more preferably 150° C. or lower, and even more preferably 120° C. or lower.
  • the lower limit is not particularly limited, and may be 60°C or higher.
  • the release layer-forming coating liquid contains the above resin and solvent, and if necessary, may contain at least one of the above additives and the above catalyst used for curing the resin.
  • the release layer-forming coating liquid can be prepared by mixing these components.
  • solvents include water and organic solvents such as toluene, methyl ethyl ketone, ethanol, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether.
  • the release layer-forming coating liquid may contain a single solvent, or may contain two or more solvents.
  • the content of the solvent is preferably 80 to 99.5% by mass, more preferably 90 to 99% by mass, based on the total mass of the coating liquid for forming a peeling layer. That is, in the release layer-forming coating liquid, the total content of components (solid content) other than the solvent is preferably 0.5 to 20% by mass, preferably 1 to 10%, based on the total mass of the release layer-forming coating liquid. % by mass is more preferred.
  • the first main surface of the present film is subjected to pretreatment such as anchor coating, corona treatment, and plasma treatment before providing the release layer. good too.
  • a release film having this film is preferably used as a release film (carrier film) for producing a ceramic green sheet.
  • the ceramic green sheet produced using the above release film can be suitably used for production of ceramic capacitors for which multi-layered internal electrodes are required in accordance with miniaturization and increased capacity.
  • the release film having the present film may be used as a protective film for dry film resist, a release film for process manufacturing such as a semiconductor process, and the like.
  • a method for producing a ceramic green sheet using the release film is not particularly limited, and a known method can be used.
  • a method for producing a ceramic green sheet for example, a prepared ceramic slurry is applied to the surface of the release layer of the release film, and the solvent contained in the ceramic slurry is removed by drying.
  • the method of applying the ceramic slurry is not particularly limited.
  • a known method such as applying a ceramic slurry obtained by dispersing ceramic powder and a binder in a solvent by a reverse roll method and removing the solvent by heating and drying. method can be applied.
  • the binder agent is not particularly limited, and examples thereof include polyvinyl butyral.
  • the solvent is not particularly limited, and examples thereof include ethanol and toluene.
  • Example 1 Polyethylene terephthalate pellets were produced using a titanium compound described in Japanese Patent No. 5575671 (citric acid chelate titanium complex, VERTEC AC-420, manufactured by Johnson Matthey) as a polymerization catalyst. The obtained pellets were dried to a moisture content of 50 ppm or less, put into a hopper of a twin-screw kneading extruder described in Japanese Patent No. 6049648, and then melted at 280°C and extruded. The melt was passed through a filter (pore size 3 ⁇ m) and then extruded from a die onto a cooling drum at 25° C.
  • a filter pore size 3 ⁇ m
  • the extruded melt (melt) was brought into close contact with the cooling drum by an electrostatic application method.
  • the polyethylene terephthalate constituting the unstretched film had a melting point (Tm) of 258°C and a glass transition temperature (Tg) of 80°C.
  • ⁇ Longitudinal stretching step (step 1)> The unstretched film was subjected to a longitudinal stretching step by the following method.
  • a uniaxially oriented film was produced by passing the preheated unstretched film between two pairs of rolls having different circumferential speeds and stretching it in the machine direction (conveyance direction) under the following conditions.
  • Step 2 On one side of a longitudinally stretched uniaxially oriented film (polyester base material), the following composition A-1 (resin layer forming composition) is applied with a bar coater, and the formed coating film is subjected to hot air at 100 ° C. and dried to form a resin layer on one side of the polyester substrate. In this step, the coating amount of composition A-1 was adjusted so that a resin layer having a thickness described later was formed in the finally produced biaxially oriented film.
  • composition A-1 resin layer forming composition
  • composition A-1 Composition A-1 was prepared by mixing each component shown below. The prepared composition A-1 was filtered using a filter with a pore size of 6 ⁇ m (F20, manufactured by Mahle Filter Systems Co., Ltd.), and membrane degassing (2x6 radial flow superphobic, Polypore Co., Ltd. ), the resulting composition A-1 was applied to the surface of the uniaxially oriented film.
  • a filter with a pore size of 6 ⁇ m F20, manufactured by Mahle Filter Systems Co., Ltd.
  • membrane degassing (2x6 radial flow superphobic, Polypore Co., Ltd.
  • Resin 1 (urethane resin, Takelac (registered trademark) W-605, manufactured by Mitsui Chemicals, Inc., an aqueous dispersion with a solid content concentration of 25% by mass): 157 parts by mass ⁇ Anionic hydrocarbon surfactant ( Rapisol (registered trademark) A-90, di-2-ethylhexyl sodium sulfosuccinate, manufactured by NOF Corporation, solid content concentration 1% by mass diluted with water): 56 parts by mass Particles 1 (non-crosslinked styrene resin particles (styrene Polymer), Nipol (registered trademark) UFN1008, manufactured by Nippon Zeon Co., Ltd., average particle diameter 1.9 ⁇ m, aqueous dispersion adjusted to a solid content concentration of 10% by mass): 8 parts by mass, water: 779 parts by mass A scanning calorimeter (“DSC-60aPlus”, manufactured by Shimadzu Corporation) was used to measure the temperature X of the particles 1 according to measure
  • ⁇ Lateral stretching step (step 3)> The film subjected to the longitudinal stretching step and the resin layer forming step was stretched in the width direction using a tenter under the following conditions to prepare a biaxially oriented film.
  • Thermal relaxation process was subjected to a heat relaxation step for relaxing the tension of the film by heating under the following conditions. Also, in the heat relaxation step, the film width was reduced compared to that at the end of the heat setting step by narrowing the distance (tenter width) between the gripping members of the tenter that grips both ends of the film.
  • ⁇ Cooling process and expansion process> A cooling step was performed on the thermally relaxed film under the following conditions. Further, in the cooling process, an expansion process was carried out in which the width of the tenter was expanded to expand the width of the film compared to that at the end of the thermal relaxation process. The following cooling rates were measured when the film surface temperature was measured when the film was carried into the cooling section and when the cooling section was carried out, with the cooling time ta being the time the film stayed in the cooling section after being carried into the cooling section of the stretching machine until it was taken out. It was obtained by dividing the temperature difference ⁇ T (°C) from the film surface temperature by the cooling time ta.
  • the film cooled in the cooling step was continuously cut along the conveying direction at positions 20 cm from both ends in the width direction of the film to trim both ends of the film. Then, the film was wound up with a tension of 40 kg/m after extrusion processing (knurling) was performed on a region from both ends of the film to 10 mm in the width direction.
  • a biaxially oriented film (polyester film) in which the polyester substrate and the resin layer were laminated was produced by the above method.
  • the resulting biaxially oriented film had a thickness of 31 ⁇ m, a width of 1.5 m and a winding length of 7000 m.
  • the biaxially oriented film was cut using a microtome to prepare a sample having a cross section along the thickness direction of the biaxially oriented film, and the obtained sample was etched with Ar ions and vapor-deposited with Pt.
  • the thickness of the resin layer in the cross section of the sample was measured by the above method using SEM (“S-4800” manufactured by Hitachi High-Tech Co., Ltd.), and the thickness of the resin layer was 60 nm. .
  • Example 2 Composition in Example 1, except that Resin 2 (urethane resin, Hydran (registered trademark) AP-40N, manufactured by DIC Corporation, an aqueous dispersion adjusted to a solid content concentration of 25% by mass) was used instead of Resin 1.
  • Composition A-2 was prepared according to the preparation method of Product A-1.
  • a biaxially oriented film was produced according to the method described in Example 1, except that composition A-2 was used in place of composition A-1 in the resin layer forming step.
  • the resulting biaxially oriented film had a thickness of 31 ⁇ m, a width of 1.5 m and a winding length of 7000 m.
  • the thickness of the resin layer of the biaxially oriented film was 60 nm.
  • Example 3 Example 1 except that resin 3 (urethane resin, ADEKA BONDITTER (registered trademark) HUX-524, manufactured by ADEKA Corporation, an aqueous dispersion adjusted to a solid content concentration of 25% by mass) was used instead of resin 1.
  • Composition A-3 was prepared according to the method for preparing composition A-1 in .
  • a biaxially oriented film was produced according to the method described in Example 1, except that composition A-3 was used in place of composition A-1 in the resin layer forming step.
  • the resulting biaxially oriented film had a thickness of 31 ⁇ m, a width of 1.5 m and a winding length of 7000 m. Moreover, the thickness of the resin layer of the biaxially oriented film was 60 nm.
  • Example 4 instead of Particle 1, Particle 2 (crosslinked urethane resin particles, Artpearl (registered trademark) C-1000T, manufactured by Negami Kogyo Co., Ltd., average particle diameter 3.0 ⁇ m, aqueous dispersion adjusted to a solid content concentration of 10% by mass).
  • Composition A-4 was prepared according to the method for preparing composition A-2 in Example 2, except that it was used.
  • the temperature X of the particles 2 was -13°C.
  • a biaxially oriented film was produced according to the method described in Example 1, except that composition A-4 was used in place of composition A-1 in the resin layer forming step.
  • the resulting biaxially oriented film had a thickness of 31 ⁇ m, a width of 1.5 m and a winding length of 7000 m.
  • the thickness of the resin layer of the biaxially oriented film was 60 nm.
  • Comparative Example 2 Resin 4 (copolymer obtained by polymerizing acrylic resin (methyl methacrylate, styrene, 2-ethylhexyl acrylate, 2-hydroxyethyl methacrylate and acrylic acid at a mass ratio of 59:8:26:5:2) instead of resin 1 ), solid content concentration 25% by mass) was used, and instead of particle 1, particle 4 (crosslinked acrylic resin particles, Eposter (registered trademark) MX200W, manufactured by Nippon Shokubai Co., Ltd., average particle diameter 0 Composition CA-2 was prepared according to the method for preparing composition A-1 in Example 2, except that an aqueous dispersion adjusted to .35 ⁇ m and a solid content concentration of 10% by mass was used.
  • an aqueous dispersion adjusted to .35 ⁇ m and a solid content concentration of 10% by mass was used.
  • the temperature X of the particles 4 was 105°C.
  • the composition CA-2 was used in place of the composition A-1 in the resin layer forming step, and the stretching temperature was set to 150 ° C. in the lateral stretching step
  • 2 An axially oriented film was produced.
  • the surface temperature of the film in the transverse stretching step measured by the method described above was 150° C., the same as the stretching temperature.
  • the resulting biaxially oriented film had a thickness of 31 ⁇ m, a width of 1.5 m and a winding length of 7000 m.
  • the thickness of the resin layer of the biaxially oriented film was 60 nm.
  • FIG. 1 shows an observation image (photograph) obtained by observing the second main surface of the biaxially oriented film (polyester film) produced in Example 3 by SEM
  • FIG. An observed image (photograph) obtained by observing the second main surface of the biaxially oriented film obtained by observing with an SEM is shown.
  • the projections present on the second main surface of the polyester film of the present invention have a shape extending along one direction within the surface.
  • FIG. 2 it can be observed that the projections present on the second main surface of the biaxially oriented film of Comparative Example 1 have clear outlines and nearly spherical shapes.
  • the length of the protrusion and the height corresponding to the protrusion were measured by the above method, and the ratio was calculated.
  • the arithmetic average value of the ratios obtained for each observation area was adopted as the ratio A of the second main surface of the sample.
  • the length of the protrusions obtained for each observation area and the arithmetic mean value of the height corresponding to the protrusions were adopted as the height of the protrusions on the second main surface of the sample and the length of the protrusions, respectively.
  • the surface free energy of the second main surface (the surface on which projections are present) of the biaxially oriented film was measured by the following method. Using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., DROPMASTER-501), droplets are dropped on the second main surface of the produced biaxially oriented film at 25 ° C., and the droplets are on the surface. The contact angle was measured 1 second after adhering.
  • the surface free energy (unit: mJ/m 2 ) was calculated from the measured contact angles by the method of Kitazaki and Hata.
  • the "surface free energy” obtained by the above method is the sum of the polar component and the hydrogen bond component of the surface free energy.
  • a release film was produced with reference to Example 1 of JP-A-2015-195291. . Specifically, first, referring to Production Example 1 of JP-A-2015-195291, hexamethylene diisocyanate, dimethylorganopolysiloxane, and dipentaerythritol pentaacrylate (Aronix (registered trademark) M-400, Toa Gosei Co., Ltd.) to synthesize a curable silicone compound (A1).
  • the obtained coating solution for forming a release layer was peeled off from the first main surface (surface on the side of the polyester substrate) of the above-mentioned biaxially oriented film after being left for one week so that the thickness after curing was 1 ⁇ m.
  • a layer was applied and dried at 80° C. for 1 minute. Thereafter, ultraviolet rays were irradiated (irradiation amount: 250 mJ/cm 2 ) to cure the release agent layer-forming coating liquid to form a release layer, thereby obtaining a release film having a width of 1500 mm.
  • Barium titanate powder (BaTiO 3 ; manufactured by Sakai Chemical Industry Co., Ltd., product name “BT-03”) 100 parts by mass, polyvinyl butyral resin as a binder (manufactured by Sekisui Chemical Co., Ltd., product name “S-Lec (registered trademark) B ⁇ K BM-2”) 8 parts by mass, 4 parts by mass of dioctyl phthalate as a plasticizer (manufactured by Kanto Chemical Co., Ltd., dioctyl phthalate, deer 1st class), and a mixed solution of toluene and ethanol (mass ratio 6: 4)
  • a ceramic slurry was prepared by mixing 135 parts by mass, dispersing the mixture using a ball mill in the presence of zirconia beads, and removing the beads from the resulting dispersion.
  • a release film having a width of 1500 mm was produced according to the method for producing a release film described above.
  • a winding test at high speed transport was performed by winding the produced release film under the following conditions.
  • the release film is transported at a line speed of 80 m / min and a tension of 7 kg / m, and pressed against a contact roll at a pressure of 30 kg / m, onto an ABS (acrylonitrile-butadiene-styrene) resin winding core with a diameter of 6 inches.
  • ABS acrylonitrile-butadiene-styrene
  • a release film having a longitudinal length of 6,000 m was wound into a roll.
  • the rubber hardness of the contact roll measured using a type A durometer was 60 degrees.
  • the rolled release film roll was visually observed, and from the observation results, the winding property during high-speed transport was evaluated based on the following evaluation criteria.
  • Table 1 shows the production method of the polyester film implemented in each example and each comparative example, the measurement results of the produced polyester film, and each evaluation result.
  • the "Ratio A” column shows the ratio A (protrusion height/protrusion ratio) obtained for the second main surface of each polyester film
  • the "Surface E” column shows the second main surface of each polyester film. It shows the surface free energy of the main surface.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

The purpose of the present invention is to provide a polyester film which enables manufacturing a ceramic green sheet that suppresses the occurrence of unevenness defects in the case of using a release film obtained using the polyester film to manufacture the ceramic green sheet; and to provide a manufacturing method of the polyester film. A further purpose of the present invention is to provide a release film. This polyester film is provided with a resin layer and a polyester substrate, has a first main surface and a second main surface, and the second main surface is one side of the resin layer; the resin layer has protrusions on the surface that is the second main surface, and is used to manufacture the release film by forming a release layer is on the first main surface, wherein the polyester film satisfies condition A. Condition A: when observing the second main surface using a scanning electron microscope, and selecting the protrusion with the longest longitudinal radius, the ratio A of the height of the protrusion to the long diameter of the protrusion is less than or equal to 0.7.

Description

ポリエステルフィルム、ポリエステルフィルムの製造方法、剥離フィルムPOLYESTER FILM, POLYESTER FILM MANUFACTURING METHOD, RELEASE FILM
 本発明は、ポリエステルフィルム、ポリエステルフィルムの製造方法、及び、剥離フィルムに関する。 The present invention relates to a polyester film, a method for producing a polyester film, and a release film.
 2軸配向ポリエステルフィルムは、加工性、機械的性質、電気的性質、寸法安定性、透明性、及び、耐薬品性等の点から幅広い用途に使用されている。例えば、2軸配向ポリエステルフィルムの表面に剥離層を積層してなる剥離フィルムが、積層セラミックコンデンサー製造用のセラミックグリーンシートの作製に使用されている。  Biaxially oriented polyester films are used in a wide range of applications in terms of workability, mechanical properties, electrical properties, dimensional stability, transparency, and chemical resistance. For example, a release film obtained by laminating a release layer on the surface of a biaxially oriented polyester film is used to produce a ceramic green sheet for manufacturing a laminated ceramic capacitor.
 例えば、特許文献1には、無機粒子を実質的に含有していないポリエステルフィルムを基材とし、基材の一方の表面上に離型塗布層を有し、かつ、もう一方の表面上に粒子を含有する特定の易滑塗布層を有する、セラミックグリーンシート製造用離型フィルムが開示されている。 For example, in Patent Document 1, a polyester film containing substantially no inorganic particles is used as a base material, a release coating layer is provided on one surface of the base material, and particles are provided on the other surface. A release film for producing a ceramic green sheet is disclosed, which has a specific easy-to-slip coating layer containing
国際公開第2019/039264号WO2019/039264
 近年のセラミックコンデンサーの大容量化及び小型化に伴い、セラミックグリーンシートに対しては、より一層の薄膜化が求められている。その一方、セラミックグリーンシートの薄膜化が進めば進むほど、剥離フィルムの表面形状がセラミックグリーンシートの性能に及ぼす影響が大きくなると考えられる。例えば、剥離フィルムの剥離面に凹凸形状が存在すると、その凹凸形状がセラミックグリーンシートに転写されてセラミックグリーンシートの厚さが変動し、セラミックコンデンサー製品の性能が低下する可能性がある。 With the recent increase in capacity and miniaturization of ceramic capacitors, there is a demand for even thinner ceramic green sheets. On the other hand, it is considered that the more the thickness of the ceramic green sheet is reduced, the greater the influence of the surface shape of the release film on the performance of the ceramic green sheet. For example, if the release surface of the release film has an uneven shape, the uneven shape may be transferred to the ceramic green sheet, causing the thickness of the ceramic green sheet to fluctuate and possibly deteriorating the performance of the ceramic capacitor product.
 本発明者らは、特許文献1に記載された技術を参考にして、セラミックグリーンシートの製造に用いる剥離フィルムについて更に検討したところ、剥離フィルムの剥離面のみならず、剥離面の反対側の表面である搬送面の性状もセラミックシートの性能に影響を及ぼす可能性があることを知見した。より具体的には、剥離フィルムの製造に用いるポリエステルフィルムにおいて、ポリエステルフィルム及び/又は剥離フィルムの高速搬送時の巻き取り性向上及びシワ抑制等を目的として、剥離層を形成する表面とは反対側の表面に粒子を含有する層を設けることにより、突起形状を有する搬送面を形成することが多い。このような搬送面を有するポリエステルフィルム又は剥離フィルムを高速搬送した場合、剥離フィルムの剥離面に凹凸形状が形成されることがあることを、本発明者らは知見した。剥離面にこのような凹凸形状を有する剥離フィルムをセラミックグリーンシートの製造に用いた場合、セラミックグリーンシートに微小な凹部又は凸部が生じるため、粒子を含有する層を有するポリエステルフィルムを用いる剥離フィルムの製造において更なる改善の余地があることが見出された。
 なお、以下において、微小な凹部及び凸部を「凹凸欠陥」と総称する。
The present inventors have further studied the release film used in the production of the ceramic green sheet with reference to the technique described in Patent Document 1, and found that not only the release surface of the release film but also the surface opposite to the release surface It has been found that the properties of the conveying surface, which is, may also affect the performance of the ceramic sheet. More specifically, in the polyester film used for the production of the release film, the surface opposite to the surface on which the release layer is formed is used for the purpose of improving windability and suppressing wrinkles during high-speed transportation of the polyester film and / or release film. By providing a layer containing particles on the surface of the substrate, a conveying surface having a projection shape is often formed. The present inventors have found that when a polyester film or a release film having such a transport surface is transported at high speed, the release surface of the release film may become uneven. When a release film having such an uneven shape on the release surface is used in the production of a ceramic green sheet, fine recesses or protrusions are generated in the ceramic green sheet. It has been found that there is room for further improvement in the production of
In addition, below, a micro recessed part and a convex part are generically called an "unevenness|corrugation defect."
 本発明は、上記実情に鑑みて、ポリエステルフィルムを用いて得られた剥離フィルムをセラミックグリーンシートの製造に用いた場合、凹凸欠陥の発生が抑制されたセラミックグリーンシートを製造できる、ポリエステルフィルム及びポリエステルフィルムの製造方法を提供することを課題とする。
 また、本発明は、剥離フィルムを提供することも課題とする。
In view of the above-mentioned circumstances, the present invention provides a polyester film and a polyester that can produce a ceramic green sheet in which the occurrence of uneven defects is suppressed when a release film obtained using a polyester film is used for producing a ceramic green sheet. An object of the present invention is to provide a film manufacturing method.
Another object of the present invention is to provide a release film.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、以下の構成により上記課題が解決できることを見出した。 As a result of intensive studies aimed at solving the above problems, the inventors found that the above problems can be solved with the following configuration.
〔1〕樹脂層と、ポリエステル基材と、を備え、第1主面及び第2主面を有し、上記第2主面が、上記樹脂層の表面の一方であり、上記樹脂層は、上記第2主面である表面に突起を有し、上記第1主面に剥離層を形成して剥離フィルムを製造するために用いられる、ポリエステルフィルムであって、後述する要件Aを満たす、ポリエステルフィルム。
〔2〕上記突起が有機粒子により形成される、〔1〕に記載のポリエステルフィルム。
〔3〕上記剥離フィルムが、セラミックグリーンシート製造用の剥離フィルムである、〔1〕又は〔2〕に記載のポリエステルフィルム。
〔4〕上記有機粒子が、スチレン樹脂及びウレタン樹脂からなる群より選択される少なくとも1つを含む、〔2〕に記載のポリエステルフィルム。
〔5〕上記第2主面の表面自由エネルギーが25~45mJ/mである、〔1〕~〔4〕のいずれかに記載のポリエステルフィルム。
〔6〕上記樹脂層が、アクリル樹脂、ウレタン樹脂及びオレフィン樹脂からなる群より選択される少なくとも1つのバインダーを含む、〔1〕~〔5〕のいずれかに記載のポリエステルフィルム。
〔7〕走査型電子顕微鏡を用いて上記第2主面の面積10000μmの領域を観察し、上記領域において長径が最長である突起に対して、光学干渉計を用いる非接触表面形状測定を行って得られる突起高さが、0.3μm以上である、〔1〕~〔6〕のいずれかに記載のポリエステルフィルム。
〔8〕上記ポリエステルフィルムの厚さが40μm以下である、〔1〕~〔7〕のいずれかに記載のポリエステルフィルム。
〔9〕上記樹脂層の厚さが1~500nmである、〔1〕~〔8〕のいずれかに記載のポリエステルフィルム。
〔10〕〔1〕~〔9〕のいずれかに記載のポリエステルフィルムの製造方法であって、ポリエステル基材を有する未延伸ポリエステルフィルムを長手方向に延伸して1軸配向フィルムを作製する工程1と、上記1軸配向フィルムの表面に有機粒子を含む組成物を用いて樹脂層を形成する工程2と、上記樹脂層を有する上記1軸配向フィルムを加熱しながら幅方向に延伸する工程3と、を有し、示差走査熱量計により上記有機粒子を測定して得られる熱量変化を示す曲線において出現する吸熱ピークの温度及びベースラインシフトの温度のうち、最も低い温度をXとし、上記工程3における上記1軸配向フィルムの表面温度をYとした場合、上記Xが上記Yよりも低い、ポリエステルフィルムの製造方法。
〔11〕上記有機粒子が下記要件1及び要件2の少なくとも一方を満たす、〔10〕に記載のポリエステルフィルムの製造方法。要件1:上記有機粒子のガラス転移温度が40℃以下である。要件2:上記有機粒子の融点が110℃以下である。
〔12〕〔1〕~〔9〕のいずれかに記載のポリエステルフィルムと、剥離層とを備える、剥離フィルム。
[1] It comprises a resin layer and a polyester base material, and has a first principal surface and a second principal surface, the second principal surface being one of the surfaces of the resin layer, and the resin layer comprising: A polyester film having protrusions on the surface that is the second main surface and used for producing a release film by forming a release layer on the first main surface, the polyester film satisfying requirement A described later. Polyester the film.
[2] The polyester film of [1], wherein the projections are formed of organic particles.
[3] The polyester film of [1] or [2], wherein the release film is a release film for producing a ceramic green sheet.
[4] The polyester film of [2], wherein the organic particles contain at least one selected from the group consisting of styrene resins and urethane resins.
[5] The polyester film according to any one of [1] to [4], wherein the second main surface has a surface free energy of 25 to 45 mJ/m 2 .
[6] The polyester film according to any one of [1] to [5], wherein the resin layer contains at least one binder selected from the group consisting of acrylic resins, urethane resins and olefin resins.
[7] Using a scanning electron microscope, an area of 10000 μm 2 on the second main surface is observed, and non-contact surface profile measurement is performed using an optical interferometer on the protrusion having the longest major axis in the area. The polyester film according to any one of [1] to [6], wherein the projection height obtained by the process is 0.3 μm or more.
[8] The polyester film according to any one of [1] to [7], wherein the polyester film has a thickness of 40 μm or less.
[9] The polyester film according to any one of [1] to [8], wherein the resin layer has a thickness of 1 to 500 nm.
[10] The method for producing a polyester film according to any one of [1] to [9], wherein step 1 of preparing a uniaxially oriented film by longitudinally stretching an unstretched polyester film having a polyester substrate. A step 2 of forming a resin layer on the surface of the uniaxially oriented film using a composition containing organic particles, and a step 3 of stretching in the width direction while heating the uniaxially oriented film having the resin layer. , wherein X is the lowest temperature among the temperature of the endothermic peak and the temperature of the baseline shift appearing in the curve showing the change in the amount of heat obtained by measuring the organic particles with a differential scanning calorimeter; A method for producing a polyester film, wherein X is lower than Y, where Y is the surface temperature of the uniaxially oriented film.
[11] The method for producing a polyester film according to [10], wherein the organic particles satisfy at least one of requirements 1 and 2 below. Requirement 1: The glass transition temperature of the organic particles is 40° C. or lower. Requirement 2: The melting point of the organic particles is 110° C. or less.
[12] A release film comprising the polyester film according to any one of [1] to [9] and a release layer.
 本発明によれば、ポリエステルフィルムを用いて得られた剥離フィルムをセラミックグリーンシートの製造に用いた場合、凹凸欠陥の発生が抑制されたセラミックグリーンシートを製造できる、ポリエステルフィルム及びポリエステルフィルムの製造方法を提供できる。また、本発明によれば、剥離フィルムを提供できる。 According to the present invention, when a release film obtained using a polyester film is used for manufacturing a ceramic green sheet, a ceramic green sheet in which the occurrence of irregularities is suppressed can be manufactured, and a method for manufacturing a polyester film. can provide Moreover, according to this invention, a peeling film can be provided.
実施例で作製された本発明のポリエステルフィルムの表面の観察画像である。It is an observation image of the surface of the polyester film of the present invention produced in Examples. 比較例で作製された2軸配向フィルムの表面の観察画像である。It is an observation image of the surface of the biaxially oriented film produced in the comparative example. 本発明のポリエステルフィルムの構成の一例を示す断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows an example of a structure of the polyester film of this invention.
 以下、本発明の実施形態について詳細に説明する。なお、本発明は、以下の実施形態に何ら制限されず、本発明の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, embodiments of the present invention will be described in detail. It should be noted that the present invention is not limited to the following embodiments, and can be implemented with appropriate modifications within the scope of the purpose of the present invention.
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。本明細書に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
 本明細書において、「工程」との用語には、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
 本明細書において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
In this specification, a numerical range represented by "to" means a range including the numerical values before and after "to" as lower and upper limits. In the numerical ranges described stepwise in this specification, the upper limit or lower limit described in a certain numerical range may be replaced with the upper limit or lower limit of another numerical range described stepwise. Moreover, in the numerical ranges described in this specification, the upper limit or lower limit described in a certain numerical range may be replaced with the values shown in the examples.
As used herein, the amount of each component in the composition means the total amount of the multiple substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition. do.
In this specification, the term "step" includes not only independent steps, but also if the intended purpose of the step is achieved even if it cannot be clearly distinguished from other steps. be
In this specification, a combination of two or more preferred aspects is a more preferred aspect.
 本明細書において、「長手方向」とは、ポリエステルフィルムの製造時におけるポリエステルフィルムの長尺方向を意味し、「搬送方向」及び「機械方向」と同義である。
 本明細書において、「幅方向」とは、長手方向に直交する方向を意味する。本明細書において、「直交」は、厳密な直交に限られず、略直交を含む。「略直交」とは、90°±5°の範囲内で交わることを意味し、90°±3°の範囲内で交わることが好ましく、90°±1°の範囲内で交わることがより好ましい。
 本明細書において、「長径」とは、ポリエステルフィルム又は剥離フィルムの表面(第2主面)に存在する突起を観察した際、その突起の面内方向における最も長い径を意味する。
As used herein, the term "longitudinal direction" means the longitudinal direction of the polyester film during the production of the polyester film, and is synonymous with the "conveyance direction" and the "machine direction."
As used herein, "width direction" means a direction perpendicular to the longitudinal direction. In this specification, "perpendicular" is not limited to strictly perpendicular, but includes substantially perpendicular. The term “substantially orthogonal” means intersecting within the range of 90°±5°, preferably intersecting within the range of 90°±3°, more preferably intersecting within the range of 90°±1°. .
As used herein, the term "major axis" means the longest diameter of the projections in the in-plane direction when the projections present on the surface (second main surface) of the polyester film or release film are observed.
[ポリエステルフィルム]
 本発明のポリエステルフィルム(以下、「本フィルム」とも記載する。)の構成を、図面を参照しながら説明する。
 図3は、本フィルムの構成の一例を示す断面図である。本発明のポリエステルフィルム1は、樹脂層2と、ポリエステル基材3と、を備え、第1主面4及び第2主面5を有し、第2主面5が、樹脂層2の表面の一方であり、樹脂層2は第2主面5である表面に突起6を有し、第1主面4に剥離層を形成して剥離フィルムを製造するために用いられる、ポリエステルフィルムである。また、本フィルムは、下記要件Aを満たす。
 要件A:走査型電子顕微鏡を用いて第2主面の面積10000μmの領域を観察し、上記領域において長径が最長である突起を選択した場合、走査型電子顕微鏡を用いて測定される選択された突起の長径に対する、光学干渉計を用いる非接触表面形状測定により測定される選択された突起の高さの比率Aが、0.7以下である。
 本明細書において、ポリエステルフィルムが有する対向する2つの主面のうち、剥離層を形成する側の主面を「第1主面」といい、樹脂層のポリエステル基材とは反対側の表面によって構成された主面を「第2主面」という。
[Polyester film]
The structure of the polyester film of the present invention (hereinafter also referred to as "this film") will be described with reference to the drawings.
FIG. 3 is a cross-sectional view showing an example of the structure of this film. The polyester film 1 of the present invention includes a resin layer 2 and a polyester base material 3, and has a first main surface 4 and a second main surface 5, the second main surface 5 being the surface of the resin layer 2. On the other hand, the resin layer 2 is a polyester film which has projections 6 on the surface which is the second main surface 5 and which is used to form a release layer on the first main surface 4 to produce a release film. Moreover, this film satisfies the following requirement A.
Requirement A: Observing a region with an area of 10000 μm 2 on the second main surface using a scanning electron microscope, and selecting a protrusion with the longest major axis in the above region, the selected selected measured using a scanning electron microscope The ratio A of the height of the selected protrusions measured by non-contact surface profilometry using an optical interferometer to the major diameter of the selected protrusions is 0.7 or less.
In this specification, of the two opposing main surfaces of the polyester film, the main surface on which the release layer is formed is referred to as the "first main surface", and the surface opposite to the polyester substrate of the resin layer The configured principal surface is referred to as a "second principal surface".
 本フィルムを用いて得られた剥離フィルムをセラミックグリーンシートの製造に用いることにより、凹凸欠陥の発生が抑制されたセラミックグリーンシートが得られる。本フィルムが上記構成を有することにより、上記のセラミックグリーンシートにおける凹凸欠陥の発生を抑制する効果(以下、「本発明の効果」ともいう。)が得られる理由の詳細は明らかではないが、本発明者らは概ね以下のように推定している。
 上述のとおり、剥離層を形成する表面とは反対側の表面に粒子を含有する層を設けてなるポリエステルフィルムを用いて剥離フィルムを製造する場合において、ポリエステルフィルム及び/又は剥離フィルムを高速搬送条件で搬送すると、搬送ロールとの接触による衝撃等によって、搬送面において粒子が脱落しやすくなると考えられる。その後、例えば、剥離フィルムをロール状に巻き取って又は重ねて保管する際に、搬送面と剥離面とが接触し、搬送面から脱落して剥離面に移行する粒子が出現する。このような粒子によって、セラミックグリーンシートを形成する剥離フィルムの剥離面に微小な凹凸形状が形成され、その凹凸形状がセラミックグリーンシートに転写され、結果として、セラミックグリーンシートに凹凸欠陥を生じさせるものと推測される。
 この問題に対して、本フィルムは、剥離フィルムの搬送面となる第2主面において存在する突起が、長径に対する高さの比率が所定の範囲内にある突起であることを特徴としている。高速搬送時においても、搬送面における突起を構成する物質の脱落が生じにくくなり、剥離面への夾雑物としての移行を抑制できたものと推測される。その結果、セラミックグリーンシートの凹凸欠陥の発生を抑制できたと考えられる。
By using the release film obtained using this film in the production of a ceramic green sheet, a ceramic green sheet in which the occurrence of unevenness defects is suppressed can be obtained. Although the details of the reason why the effect of suppressing the occurrence of uneven defects in the ceramic green sheet (hereinafter also referred to as "the effect of the present invention") can be obtained by the present film having the above structure are not clear, the present invention The inventors generally presume as follows.
As described above, in the case of producing a release film using a polyester film having a layer containing particles on the surface opposite to the surface forming the release layer, the polyester film and/or the release film are transported under high-speed transport conditions. It is considered that the particles tend to drop off on the conveying surface due to the impact caused by the contact with the conveying roll. Thereafter, for example, when the release film is wound into a roll or stacked and stored, the conveying surface and the peeling surface come into contact with each other, and particles drop off from the conveying surface and migrate to the peeling surface. Such particles form fine irregularities on the peeling surface of the release film forming the ceramic green sheet, and the irregularities are transferred to the ceramic green sheet, resulting in uneven defects in the ceramic green sheet. It is speculated that
To address this problem, the present film is characterized in that the projections present on the second main surface, which is the conveying surface of the release film, are projections having a ratio of height to length within a predetermined range. It is presumed that, even during high-speed transportation, the substances constituting the protrusions on the transportation surface are less likely to come off, thereby suppressing the transfer of contaminants to the peeling surface. As a result, it is thought that the generation of unevenness defects in the ceramic green sheets could be suppressed.
〔構成〕
 以下、本フィルムの構成を説明する。
 本フィルムは、樹脂層と、ポリエステル基材とを少なくとも有する。
 ポリエステルフィルムが有する2つの主面のうち、第1主面は、後述する剥離層を形成するための面である。すなわち、ポリエステルフィルムの製造後、第1主面に剥離層を積層することにより、ポリエステルフィルムと剥離層とを有する剥離フィルムが作製される。
 ポリエステルフィルムが有する2つの主面のうち、第1主面とは反対側の第2主面は、樹脂層の表面の一方である。すなわち、樹脂層は、ポリエステルフィルムの最外層を構成している。
〔composition〕
The structure of this film will be described below.
The film has at least a resin layer and a polyester base material.
Of the two main surfaces of the polyester film, the first main surface is a surface for forming a release layer, which will be described later. That is, after manufacturing the polyester film, a release film having the polyester film and the release layer is produced by laminating the release layer on the first main surface.
Of the two main surfaces of the polyester film, the second main surface opposite to the first main surface is one surface of the resin layer. That is, the resin layer constitutes the outermost layer of the polyester film.
 本フィルムは、上記の樹脂層及びポリエステル基材を少なくとも有しており、上記要件Aを満たす限り、上記の構成を有するものに制限されない。
 例えば、本フィルムは、樹脂層とポリエステル基材との間にプライマー層等を設けてもよい。
The present film has at least the above resin layer and polyester base material, and is not limited to those having the above configuration as long as the above requirement A is satisfied.
For example, the film may have a primer layer or the like between the resin layer and the polyester base material.
 以下、本フィルムが備える各層について詳しく説明する。 Below, each layer of this film will be described in detail.
<樹脂層>
 樹脂層は、ポリエステル基材の一方の面側に形成される。また、樹脂層のポリエステル基材に対向する面とは反対側の表面は、第2主面を構成する。また、第2主面である樹脂層の表面には突起が形成されている。
 本フィルムは、上記樹脂層を有することで、ポリエステルフィルム及び剥離フィルムの搬送性を向上できる。より具体的には、高速搬送においても、優れた巻き品質を有し、キズ及び欠陥の発生を抑制し、搬送シワを低減できる。
<Resin layer>
A resin layer is formed on one side of the polyester substrate. The surface of the resin layer opposite to the surface facing the polyester base constitutes the second main surface. Moreover, protrusions are formed on the surface of the resin layer, which is the second main surface.
By having the resin layer, the present film can improve the transportability of the polyester film and the release film. More specifically, even during high-speed transport, the film has excellent winding quality, suppresses the occurrence of scratches and defects, and reduces transport wrinkles.
 樹脂層は、ポリエステル基材の表面に直接設けてもよく、他の層を介してポリエステル基材の表面に設けてもよいが、密着性がより優れる点で、ポリエステル基材の表面に直接設けることが好ましい。 The resin layer may be provided directly on the surface of the polyester base material, or may be provided on the surface of the polyester base material via another layer. is preferred.
 樹脂層としては、少なくとも一方の表面に突起を有する層状部材であれば特に制限されないが、バインダーを含むことが好ましい。樹脂層に含まれるバインダーとしては、ポリエステル樹脂以外の非ポリエステル樹脂が好ましい。また、樹脂層は、突起を構成する物質及び非ポリエステル樹脂以外の添加剤を含んでいてもよい。
 なお、本明細書において「バインダー」は、突起を構成する物質以外の樹脂を含む成分を意味する。
The resin layer is not particularly limited as long as it is a layered member having projections on at least one surface, but it preferably contains a binder. As the binder contained in the resin layer, non-polyester resins other than polyester resins are preferable. Moreover, the resin layer may contain additives other than the substance constituting the projections and the non-polyester resin.
In this specification, the term "binder" means a component containing a resin other than the substance that constitutes the protrusions.
(突起)
 突起を構成する物質は特に制限されず、1種単独であってもよく、2種以上の組み合わせであってもよい。また、突起を構成する物質は、上記バインダーと同じであってもよく、異なっていてもよい。
(protrude)
The substance constituting the projections is not particularly limited, and may be of one type alone or in combination of two or more types. Also, the substance constituting the projections may be the same as or different from the binder.
 樹脂層の表面に存在する突起としては、例えば、後述する粒子により形成される突起が挙げられ、本発明の効果がより優れる点、および、要件Aを満たすポリエステルフィルムをより容易に製造できる点から、有機粒子により形成される突起が好ましい。なお、突起が有機粒子により形成される場合に本発明の効果がより向上するメカニズムの詳細については明らかではないが、本フィルムが第2主面において被接触物と接触する際、突起の変形により突起が受ける力が吸収されるため、高速搬送時においても、搬送面における突起を構成する物質の脱落が生じにくくなり、剥離面への夾雑物としての移行を抑制でき、セラミックグリーンシートの凹凸欠陥の発生を抑制できたものと推測される。
 有機粒子としては、樹脂粒子が好ましい。樹脂粒子を構成する樹脂としては、例えば、スチレン樹脂、ウレタン樹脂、アクリル樹脂、ポリエステル樹脂、及び、シリコーン樹脂が挙げられる。中でも、要件Aを満たすポリエステルフィルムをより容易に製造できる点で、有機粒子は、スチレン樹脂、アクリル樹脂、及び、ウレタン樹脂からなる群より選択される少なくとも1つを含むことが好ましく、スチレン樹脂、及び、ウレタン樹脂からなる群より選択される少なくとも1つを含むことがより好ましい。
The protrusions present on the surface of the resin layer include, for example, protrusions formed by particles described later, and the effect of the present invention is more excellent, and the polyester film that satisfies the requirement A can be more easily produced. , protrusions formed by organic particles are preferred. Although the details of the mechanism by which the effect of the present invention is further improved when the projections are formed of organic particles are not clear, when the film contacts the object to be contacted on the second main surface, the deformation of the projections causes Since the force received by the projections is absorbed, even during high-speed transportation, the substances that make up the projections are less likely to fall off from the conveying surface, suppressing the transfer of contaminants to the peeling surface, and eliminating uneven defects in the ceramic green sheet. It is presumed that the occurrence of
Resin particles are preferable as the organic particles. Examples of resins constituting resin particles include styrene resins, urethane resins, acrylic resins, polyester resins, and silicone resins. Among them, the organic particles preferably contain at least one selected from the group consisting of styrene resins, acrylic resins, and urethane resins, in that a polyester film that satisfies Requirement A can be more easily produced. And it is more preferable to include at least one selected from the group consisting of urethane resins.
 本明細書において、スチレン樹脂とは、スチレン由来の構成単位を含む樹脂を意味する。
 樹脂粒子を構成するスチレン樹脂としては、スチレンのみからなる単独重合体、並びに、スチレン由来の構成単位とアクリレート又はメタクリレート由来の構成単位とを含むスチレン-アクリル共重合体等のスチレン共重合体が挙げられる。
 樹脂粒子を構成するウレタン樹脂としては、ウレタン結合を有する重合体であれば制限されず、イソシアネート化合物とポリオール化合物との反応生成物等の公知のウレタン樹脂を利用できる。
 また、本明細書において、アクリル樹脂とは、アクリレート又はメタクリレート由来の構成単位を含む樹脂を意味する。
As used herein, a styrene resin means a resin containing structural units derived from styrene.
Examples of the styrene resin constituting the resin particles include a homopolymer consisting of styrene only, and a styrene copolymer such as a styrene-acrylic copolymer containing a structural unit derived from styrene and a structural unit derived from acrylate or methacrylate. be done.
The urethane resin constituting the resin particles is not limited as long as it is a polymer having a urethane bond, and known urethane resins such as reaction products of isocyanate compounds and polyol compounds can be used.
Moreover, in this specification, acrylic resin means a resin containing structural units derived from acrylate or methacrylate.
 樹脂粒子は、架橋構造を有する架橋粒子であってもよく、架橋構造を有さない非架橋粒子であってもよい。架橋粒子としては、例えば、架橋構造を有するウレタン樹脂で構成される架橋ウレタン樹脂粒子が挙げられる。非架橋粒子としては、例えば、非架橋のスチレン樹脂で構成される非架橋スチレン樹脂粒子が挙げられる。 The resin particles may be crosslinked particles having a crosslinked structure or non-crosslinked particles having no crosslinked structure. Examples of the crosslinked particles include crosslinked urethane resin particles composed of a urethane resin having a crosslinked structure. Non-crosslinked particles include, for example, non-crosslinked styrene resin particles composed of non-crosslinked styrene resin.
 有機粒子について、示差走査熱量計により有機粒子を測定して得られる熱量変化を示す曲線(DSC曲線)において出現する吸熱ピークの温度及びベースラインシフトの温度のうち、最も低い温度をXとした場合に、温度Xが120℃以下であることが好ましく、115℃以下がより好ましく、110℃以下が更に好ましい。下限は特に制限されないが、ポリエステルフィルムのブロッキングを抑制する効果がより優れる点で、例えば、-40℃以上である。 Regarding organic particles, when the lowest temperature among the temperature of the endothermic peak and the temperature of the baseline shift appearing in the curve (DSC curve) showing the change in the amount of heat obtained by measuring the organic particles with a differential scanning calorimeter is X Furthermore, the temperature X is preferably 120° C. or lower, more preferably 115° C. or lower, and even more preferably 110° C. or lower. Although the lower limit is not particularly limited, it is, for example, -40°C or higher in that the effect of suppressing blocking of the polyester film is more excellent.
 有機粒子の温度Xは、示差走査熱量計(例えば、島津製作所社製「DSC-60aPlus」)を用いて測定される。具体的には、有機粒子を示差走査熱量計の密閉パンに入れ、昇温速度5℃/minで-40~120℃の範囲で測定し、得られる有機粒子の吸発熱を示す曲線(DSC曲線)に出現する吸熱ピークの温度(吸熱ピーク温度)及びベースラインがシフトする温度(シフト温度)のうち、最も低い温度が温度Xである。
 ここで、ベースラインシフトの温度は、DSC曲線において、低温側のベースラインを高温側に延長した直線と、階段状に変化する曲線部分の勾配が最大になる点で引いた接線との交点の温度として求める。
The temperature X of the organic particles is measured using a differential scanning calorimeter (for example, "DSC-60aPlus" manufactured by Shimadzu Corporation). Specifically, the organic particles are placed in a closed pan of a differential scanning calorimeter, measured at a heating rate of 5 ° C./min in the range of -40 to 120 ° C., and a curve showing the endothermic heat of the obtained organic particles (DSC curve ) and the temperature at which the baseline shifts (shift temperature), the temperature X is the lowest temperature.
Here, the temperature of the baseline shift is the point of intersection of a straight line obtained by extending the baseline on the low temperature side to the high temperature side in the DSC curve and a tangent line drawn at the point where the gradient of the curve portion that changes stepwise becomes maximum. Calculated as temperature.
 スチレン樹脂粒子の市販品としては、例えば、Nipol(登録商標)UFN1008(日本ゼオン株式会社製)が挙げられる。
 ウレタン樹脂粒子の市販品としては、例えば、アートパール(登録商標)C-1000T、及び、MM110SMA(根上工業株式会社製)が挙げられる。
Examples of commercially available styrene resin particles include Nipol (registered trademark) UFN1008 (manufactured by Nippon Zeon Co., Ltd.).
Examples of commercial products of urethane resin particles include Artpearl (registered trademark) C-1000T and MM110SMA (manufactured by Negami Kogyo Co., Ltd.).
(バインダー)
 長期保管した際の凹凸欠陥を抑制する効果が優れる点で、樹脂層は、バインダーとして非ポリエステル樹脂を含むことが好ましい。
 樹脂層にバインダーとして含まれる非ポリエステル樹脂としては、ポリエステル樹脂以外の樹脂であれば特に制限されないが、アクリル樹脂、ウレタン樹脂、オレフィン樹脂、ポリビニルアルコール樹脂、及び、アクリロニトリルブタジエン樹脂が挙げられ、本発明の効果がより優れる点から、アクリル樹脂、ウレタン樹脂、又は、オレフィン樹脂が好ましく、ウレタン樹脂がより好ましい。
 ここで、アクリル樹脂及びオレフィン樹脂とポリエステル樹脂とは、互いの相溶性が不十分であるので、長期保管しても、ポリエステル樹脂から析出するオリゴマー等の不純物に起因する異物が生じにくくなると推察している。また、ウレタン樹脂のうち、疎水性の高いウレタン樹脂(すなわち、ポリエステル樹脂とSP値が十分に離れたウレタン樹脂)についても、アクリル樹脂及びオレフィン樹脂と同様の理由によって、長期保管した際の凹凸欠陥を抑制できると考えている。
 アクリル樹脂、オレフィン樹脂及びウレタン樹脂としては、特に制限されず、公知の樹脂を利用できる。
(binder)
It is preferable that the resin layer contains a non-polyester resin as a binder, because the effect of suppressing unevenness defects during long-term storage is excellent.
The non-polyester resin contained as a binder in the resin layer is not particularly limited as long as it is a resin other than a polyester resin. acrylic resin, urethane resin, or olefin resin is preferable, and urethane resin is more preferable, because the effect of is more excellent.
Here, acrylic resins and olefin resins and polyester resins do not have sufficient compatibility with each other, so it is speculated that foreign matter due to impurities such as oligomers that precipitate from the polyester resin will not occur even after long-term storage. ing. Among urethane resins, highly hydrophobic urethane resins (that is, urethane resins whose SP value is sufficiently different from that of polyester resins) also suffer from uneven defects during long-term storage for the same reason as acrylic resins and olefin resins. can be suppressed.
The acrylic resin, olefin resin, and urethane resin are not particularly limited, and known resins can be used.
 オレフィン樹脂は、主鎖にオレフィンに由来する構成単位を含む樹脂であればよい。オレフィンとしては、特に制限されないが、炭素数2~6のアルケンが好ましく、エチレン、プロピレン、又は、ヘキセンがより好ましく、エチレンが更に好ましい。
 オレフィン樹脂が有するオレフィンに由来する構成単位は、オレフィン樹脂の全ての構成単位に対して、50~99モル%が好ましく、60~98モル%がより好ましい。
The olefin resin may be any resin containing a structural unit derived from an olefin in its main chain. The olefin is not particularly limited, but is preferably an alkene having 2 to 6 carbon atoms, more preferably ethylene, propylene or hexene, and still more preferably ethylene.
The olefin-derived structural units contained in the olefin resin are preferably 50 to 99 mol %, more preferably 60 to 98 mol %, based on all the structural units of the olefin resin.
 オレフィン樹脂としては、剥離層を塗布する際の帯電を防止できる点で、酸変性オレフィン樹脂が好ましい。酸変性オレフィン樹脂としては、例えば、上記オレフィン樹脂を、不飽和カルボン酸又はその無水物等の酸変性成分で変性した共重合体が挙げられる。
 酸変性成分としては、例えば、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、フマル酸、及び、クロトン酸、並びに、不飽和ジカルボン酸のハーフエステル、及び、ハーフアミドが挙げられ、樹脂の分散安定性の面から、アクリル酸、メタクリル酸、マレイン酸、又は、無水マレイン酸が好ましい。
As the olefin resin, an acid-modified olefin resin is preferable because it can prevent electrification when the release layer is applied. Acid-modified olefin resins include, for example, copolymers obtained by modifying the above olefin resins with an acid-modifying component such as an unsaturated carboxylic acid or an anhydride thereof.
Examples of acid-modified components include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid, and crotonic acid, and half esters and half amides of unsaturated dicarboxylic acids. Among them, acrylic acid, methacrylic acid, maleic acid, or maleic anhydride is preferable from the viewpoint of the dispersion stability of the resin.
 酸変性オレフィン樹脂に含まれる酸性基としては、上記の酸変性成分に対応する酸性基である、カルボキシル基、スルホ基、及び、リン酸基が挙げられ、カルボキシル基が好ましい。酸性基は、酸無水物を形成していていもよいし、アルカリ金属、有機アミン及びアンモニアから選択される少なくとも1つで中和されていてもよい。
 酸変性オレフィン樹脂は、酸性基を有する構成単位を1種のみ含んでいてもよく、2種以上含んでいてもよい。
Examples of the acidic group contained in the acid-modified olefin resin include a carboxyl group, a sulfo group, and a phosphoric acid group, which are acidic groups corresponding to the acid-modified components described above, and a carboxyl group is preferred. The acidic group may form an acid anhydride, or may be neutralized with at least one selected from alkali metals, organic amines and ammonia.
The acid-modified olefin resin may contain only one type of structural unit having an acidic group, or may contain two or more types.
 酸変性オレフィン樹脂の市販品としては、例えば、ザイクセンAC、A、L、NC、N等のザイクセン(登録商標)シリーズ(住友精化(株)製)、ケミパールS100、S120、S200、S300、S650、SA100等のケミパール(登録商標)シリーズ(三井化学(株)製)、及び、ハイテックS3121、S3148K等のハイテック(登録商標)シリーズ(東邦化学(株)製)、アローベースSE-1013、SE-1010、SB-1200、SD-1200、SD-1200、DA-1010、DB-4010等のアローベース(登録商標)シリーズ(ユニチカ(株)製)、ハードレンAP-2、NZ-1004、NZ-1005(東洋紡(株)製)、セポルジョンG315、VA407(住友精化(株)製)が挙げられる。
 また、特開2014-076632号公報の[0022]~[0034]に記載の酸変性オレフィン樹脂も好ましく用いることができる。
Commercially available acid-modified olefin resins include, for example, Zaixen (registered trademark) series such as Zaixen AC, A, L, NC, and N (manufactured by Sumitomo Seika Co., Ltd.), Chemipearl S100, S120, S200, S300, and S650. , Chemipearl (registered trademark) series such as SA100 (manufactured by Mitsui Chemicals, Inc.), and Hitech S3121, S3148K (manufactured by Toho Chemical Co., Ltd.), Arrow Base SE-1013, SE- 1010, SB-1200, SD-1200, SD-1200, DA-1010, DB-4010, etc. Arrowbase (registered trademark) series (manufactured by Unitika Ltd.), Hardren AP-2, NZ-1004, NZ-1005 (manufactured by Toyobo Co., Ltd.), Sepulsion G315, and VA407 (manufactured by Sumitomo Seika Co., Ltd.).
Acid-modified olefin resins described in [0022] to [0034] of JP-A-2014-076632 can also be preferably used.
 アクリル樹脂は、(メタ)アクリレートに由来する構成単位を含む樹脂であり、スチレン等のビニル単量体を共重合していていもよい。アクリル樹脂としては、特に制限されないが、炭素数1~12のアルキル基を有する(メタ)アクリレートに由来する構成単位を含むことが好ましく、炭素数1~8のアルキル基を有する(メタ)アクリレートに由来する構成単位を含むことがより好ましい。
 剥離層を塗布する際の帯電を防止できる点で、アクリル樹脂は、酸変性成分を有することが好ましい。アクリル樹脂は、酸変性成分として、(メタ)アクリル酸に由来する構成単位を含むことが好ましい。(メタ)アクリル酸は、酸無水物を形成していていもよいし、アルカリ金属、有機アミン及びアンモニアから選択される少なくとも1つで中和されていてもよい。
 樹脂層の製造にアクリル樹脂の水分散体を用いる場合には、アクリル樹脂と分散剤とを含む水分散体を好ましく用いることができる。
 アクリル樹脂が有する(メタ)アクリレートに由来する構成単位は、アクリル樹脂の全ての構成単位に対して、50~100モル%が好ましい。
 アクリル樹脂の酸価は、30mgKOH/g以下が好ましく、20mgKOH/g以下がより好ましい。酸価の下限は、特に制限されず、例えば、0mgKOH/gであるが、水分散体として塗布する点からは、2mgKOH/g以上が好ましい。
 ポリエステル樹脂との溶解度パラメータ(SP値)が離れたアクリル樹脂を用いた場合、アクリル樹脂とポリエステル樹脂との相溶性が不十分となり、結果として、長期保管した際の凹凸欠陥を抑制する効果をより向上することができる。このようなアクリル樹脂は、例えば、酸価を上記範囲にすること、及び、炭素数1~12のアルキル基を有する(メタ)アクリレートに由来する構成単位を含ませること、の少なくとも一方を満たすように調節して得ることができる。
The acrylic resin is a resin containing structural units derived from (meth)acrylate, and may be copolymerized with a vinyl monomer such as styrene. Although the acrylic resin is not particularly limited, it preferably contains a structural unit derived from a (meth)acrylate having an alkyl group having 1 to 12 carbon atoms, and a (meth)acrylate having an alkyl group having 1 to 8 carbon atoms. It is more preferable to contain structural units derived from.
The acrylic resin preferably contains an acid-modified component in order to prevent electrification when the release layer is applied. The acrylic resin preferably contains a structural unit derived from (meth)acrylic acid as an acid-modified component. (Meth)acrylic acid may form an acid anhydride, or may be neutralized with at least one selected from alkali metals, organic amines and ammonia.
When an aqueous acrylic resin dispersion is used for the production of the resin layer, an aqueous dispersion containing an acrylic resin and a dispersing agent can be preferably used.
The (meth)acrylate-derived structural units contained in the acrylic resin preferably account for 50 to 100 mol % of all the structural units of the acrylic resin.
The acid value of the acrylic resin is preferably 30 mgKOH/g or less, more preferably 20 mgKOH/g or less. The lower limit of the acid value is not particularly limited, and is, for example, 0 mgKOH/g, but is preferably 2 mgKOH/g or more from the viewpoint of coating as an aqueous dispersion.
When using an acrylic resin whose solubility parameter (SP value) is different from that of the polyester resin, the compatibility between the acrylic resin and the polyester resin is insufficient, and as a result, the effect of suppressing uneven defects during long-term storage is more improved. can be improved. Such an acrylic resin, for example, to have an acid value within the above range, and to contain a structural unit derived from a (meth)acrylate having an alkyl group having 1 to 12 carbon atoms, so as to satisfy at least one of can be obtained by adjusting to
 ウレタン樹脂としては、ウレタン結合を有する重合体であれば制限されず、イソシアネート化合物とポリオール化合物との反応生成物等の公知のウレタン樹脂を利用できる。
 樹脂層の製造にウレタン樹脂を含む水分散体を用いる場合、水分散体は、酸性基(例えばカルボキシ基)を有するウレタン樹脂を含むこと、又は、ウレタン樹脂と分散剤とを含むことが好ましい。これにより、樹脂層の製膜性が良好になる。
 ウレタン樹脂は、例えば、原料となるポリオール化合物の構造、原料となるポリオールの疎水性又は親水性、原料となるイソシアネート化合物の構造、及び、原料となるイソシアネート化合物の疎水性又は親水性のうち、少なくとも1つを調節することで、所望のSP値とすることができる。このようにして、疎水性が高くなるように調節されたウレタン樹脂を用いることで、ウレタン樹脂とポリエステル樹脂との相溶性が不十分となり、結果として、長期保管した際の凹凸欠陥を抑制する効果をより向上することができる。
 ウレタン樹脂の中でも、疎水性が高く、長期保管した際の凹凸欠陥を抑制する効果をより向上できる点から、ポリエステル構造を有するウレタン樹脂(ポリエステル系ウレタン樹脂)が好ましい。
The urethane resin is not limited as long as it is a polymer having a urethane bond, and known urethane resins such as reaction products of isocyanate compounds and polyol compounds can be used.
When an aqueous dispersion containing a urethane resin is used to produce the resin layer, the aqueous dispersion preferably contains a urethane resin having an acidic group (for example, a carboxyl group), or contains a urethane resin and a dispersant. Thereby, the film formability of the resin layer is improved.
The urethane resin has, for example, at least the structure of the raw material polyol compound, the hydrophobicity or hydrophilicity of the raw material polyol, the structure of the raw material isocyanate compound, and the hydrophobicity or hydrophilicity of the raw material isocyanate compound. By adjusting one, the desired SP value can be obtained. In this way, by using a urethane resin adjusted to be highly hydrophobic, the compatibility between the urethane resin and the polyester resin becomes insufficient, and as a result, the effect of suppressing uneven defects during long-term storage. can be further improved.
Among urethane resins, urethane resins having a polyester structure (polyester-based urethane resins) are preferred because they are highly hydrophobic and can further improve the effect of suppressing uneven defects during long-term storage.
 ウレタン樹脂の市販品としては、例えば、ハイドラン(登録商標)AP-40N、HW-312B、及び、HW―350(以上、DIC株式会社製)、タケラック(登録商標)W-5030、及び、W-6020(以上、三井化学株式会社製)、アデカボンタイター(登録商標)HUX-524(ADEKA株式会社製)、スーパーフレックス(登録商標)210(第一工業製薬株式会社製)が挙げられる。 Commercially available urethane resins include, for example, Hydran (registered trademark) AP-40N, HW-312B, and HW-350 (manufactured by DIC Corporation), Takelac (registered trademark) W-5030, and W- 6020 (manufactured by Mitsui Chemicals, Inc.), ADEKA BONTITER (registered trademark) HUX-524 (manufactured by ADEKA Corporation), and Superflex (registered trademark) 210 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.).
 樹脂層は、バインダーとして1種単独の非ポリエステル樹脂を含んでいてもよく、2種以上の非ポリエステル樹脂を含んでいてもよい。
 樹脂層におけるバインダーの含有量は、セラミックグリーンシートの凹凸欠陥をより抑制する点から、樹脂層の全質量に対して、30~99.8質量%が好ましく、50~99.5質量%がより好ましい。
The resin layer may contain a single non-polyester resin as a binder, or may contain two or more non-polyester resins.
The content of the binder in the resin layer is preferably 30 to 99.8% by mass, more preferably 50 to 99.5% by mass, based on the total mass of the resin layer, in order to further suppress uneven defects in the ceramic green sheet. preferable.
(添加剤)
 樹脂層は、上記の突起を構成する物質及びバインダー以外の添加剤を含んでいてもよい。
 樹脂層に含まれる添加剤としては、例えば、界面活性剤ワックス、分散剤、酸化防止剤、紫外線吸収剤、着色剤、強化剤、可塑剤、帯電防止剤、難燃剤、防錆剤、及び、防黴剤が挙げられる。
(Additive)
The resin layer may contain additives other than the substance constituting the projections and the binder.
Additives contained in the resin layer include, for example, surfactant waxes, dispersants, antioxidants, ultraviolet absorbers, colorants, reinforcing agents, plasticizers, antistatic agents, flame retardants, rust inhibitors, and Examples include antifungal agents.
 樹脂層は、第2主面において、突起が存在する箇所以外の領域の平滑性が向上する点で、界面活性剤を含むことが好ましい。第2主面の上記領域の平滑性が向上し、突起の存在以外の要因では第2主面の表面粗さが小さくなることにより、後述する第2主面の比率A及び突起高さを含む物性を所望の範囲に制御し、本発明の効果を向上させることができる。 The resin layer preferably contains a surfactant from the viewpoint of improving the smoothness of areas other than areas where projections are present on the second main surface. The smoothness of the above region of the second main surface is improved, and the surface roughness of the second main surface is reduced by factors other than the presence of protrusions, so that the ratio A of the second main surface and the protrusion height described later are included. By controlling the physical properties within the desired range, the effects of the present invention can be improved.
 界面活性剤としては、特に制限されず、シリコーン系界面活性剤、フッ素系界面活性剤、及び、炭化水素系界面活性剤が挙げられる。第2主面における帯電を抑制できる点から、炭化水素系界面活性剤が好ましい。 The surfactant is not particularly limited, and includes silicone-based surfactants, fluorine-based surfactants, and hydrocarbon-based surfactants. A hydrocarbon-based surfactant is preferable because it can suppress charging on the second main surface.
 シリコーン系界面活性剤としては、疎水基としてケイ素含有基を有する界面活性剤であれば特に制限されず、例えば、ポリジメチルシロキサン、ポリエーテル変性ポリジメチルシロキサン、及び、ポリメチルアルキルシロキサンが挙げられる。
 シリコーン系界面活性剤の市販品としては、例えば、BYK(登録商標)-306、BYK-307、BYK-333、BYK-341、BYK-345、BYK-346、BYK-347、BYK-348、及び、BYK-349(以上、BYK社製)、並びに、KF-351A、KF-352A、KF-353、KF-354L、KF-355A、KF-615A、KF-945、KF-640、KF-642、KF-643、KF-6020、X-22-4515、KF-6011、KF-6012、KF-6015、及び、KF-6017(以上、信越化学株式会社製)が挙げられる。
The silicone-based surfactant is not particularly limited as long as it has a silicon-containing group as a hydrophobic group, and examples thereof include polydimethylsiloxane, polyether-modified polydimethylsiloxane, and polymethylalkylsiloxane.
Examples of commercially available silicone surfactants include BYK (registered trademark)-306, BYK-307, BYK-333, BYK-341, BYK-345, BYK-346, BYK-347, BYK-348, and , BYK-349 (manufactured by BYK), and KF-351A, KF-352A, KF-353, KF-354L, KF-355A, KF-615A, KF-945, KF-640, KF-642, KF-643, KF-6020, X-22-4515, KF-6011, KF-6012, KF-6015, and KF-6017 (manufactured by Shin-Etsu Chemical Co., Ltd.).
 フッ素系界面活性剤としては、疎水基としてフッ素含有基を有する界面活性剤であれば特に制限されず、例えば、パーフルオロオクタンスルホン酸、及び、パーフルオロカルボン酸が挙げられる。
 フッ素系界面活性剤の市販品としては、例えば、メガファック(登録商標)F-114、F-410、F-440、F-447、F-553、及び、F-556(以上、DIC社製)、並びに、サーフロン(登録商標)S-211、S-221、S-231、S-233、S-241、S-242、S-243、S-420、S-661、S-651、及び、S-386(AGCセイミケミカル社製)が挙げられる。
 また、フッ素系界面活性剤としては、環境適性向上の点から、パーフルオロオクタン酸(PFOA)及びパーフルオロオクタンスルホン酸(PFOS)等の炭素数が7以上の直鎖状パーフルオロアルキル基を有する化合物の代替材料に由来する界面活性剤が好ましい。
The fluorosurfactant is not particularly limited as long as it has a fluorine-containing group as a hydrophobic group, and examples thereof include perfluorooctane sulfonic acid and perfluorocarboxylic acid.
Commercially available fluorosurfactants include, for example, Megafac (registered trademark) F-114, F-410, F-440, F-447, F-553, and F-556 (manufactured by DIC Corporation). ), and Surflon (registered trademark) S-211, S-221, S-231, S-233, S-241, S-242, S-243, S-420, S-661, S-651, and , and S-386 (manufactured by AGC Seimi Chemical Co., Ltd.).
In addition, from the viewpoint of improving environmental suitability, the fluorine-based surfactant has a linear perfluoroalkyl group having 7 or more carbon atoms, such as perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS). Surfactants derived from substitute materials for compounds are preferred.
 炭化水素系界面活性剤としては、例えば、アニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、及び、両性界面活性剤が挙げられる。
 アニオン性界面活性剤としては、例えば、アルキル硫酸塩、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルリン酸塩、及び、脂肪酸塩が挙げられる。
 ノニオン性界面活性剤としては、例えば、ポリアルキレングリコールモノ又はジアルキルエーテル、ポリアルキレングリコールモノ又はジアルキルエステル、及び、ポリアルキレングリコールモノアルキルエステル・モノアルキルエーテルが挙げられる。
 カチオン性界面活性剤としては、第1級~第3級アルキルアミン塩、及び、第4級アンモニウム化合物が挙げられる。
 両性界面活性剤としては、分子内にアニオン性部位とカチオン性部位の両者を有する界面活性剤が挙げられる。
Hydrocarbon surfactants include, for example, anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants.
Anionic surfactants include, for example, alkyl sulfates, alkyl sulfonates, alkylbenzene sulfonates, alkyl phosphates, and fatty acid salts.
Nonionic surfactants include, for example, polyalkylene glycol mono- or dialkyl ethers, polyalkylene glycol mono- or dialkyl esters, and polyalkylene glycol mono-alkyl esters/mono-alkyl ethers.
Cationic surfactants include primary to tertiary alkylamine salts and quaternary ammonium compounds.
Amphoteric surfactants include surfactants having both an anionic site and a cationic site in the molecule.
 アニオン性界面活性剤の市販品としては、例えば、ラピゾール(登録商標)A-90、A-80、BW-30、B-90、及び、C-70(以上、日油(株)製)、NIKKOL(登録商標)OTP-100(以上、日光ケミカル(株)製)、コハクール(登録商標)ON、L-40、及び、フォスファノール(登録商標)702(以上、東邦化学工業(株)製)、並びに、ビューライト(登録商標)A-5000、及び、SSS(以上、三洋化成工業(株)製)が挙げられる。
 ノニオン性界面活性剤の市販品としては、例えば、ナロアクティー(登録商標)CL-95、及び、HN-100(商品名:三洋化成工業(株)製)、リソレックスBW400(商品名:高級アルコール工業(株)製)、EMALEX(登録商標)ET-2020(以上、日本エマルジョン(株)製)、並びに、サーフィノール(登録商標)104E、420、440、465、及び、ダイノール(登録商標)604、607(以上、日信化学工業(株)製)が挙げられる。
Commercially available anionic surfactants include, for example, RAPISOL (registered trademark) A-90, A-80, BW-30, B-90, and C-70 (manufactured by NOF Corporation), NIKKOL (registered trademark) OTP-100 (manufactured by Nikko Chemical Co., Ltd.), Kohakul (registered trademark) ON, L-40, and Phosphanol (registered trademark) 702 (manufactured by Toho Chemical Industry Co., Ltd.) ), and Viewlite (registered trademark) A-5000 and SSS (manufactured by Sanyo Chemical Industries Co., Ltd.).
Commercially available nonionic surfactants include, for example, Naroacty (registered trademark) CL-95 and HN-100 (trade name: manufactured by Sanyo Chemical Industries, Ltd.), Resolex BW400 (trade name: KOKYU ALCOHOL KOGYO Co., Ltd.), EMALEX (registered trademark) ET-2020 (manufactured by Nippon Emulsion Co., Ltd.), and Surfynol (registered trademark) 104E, 420, 440, 465, and Dynol (registered trademark) 604, 607 (manufactured by Nissin Chemical Industry Co., Ltd.).
 炭化水素系界面活性剤としては、樹脂の分散を阻害することなく表面が平滑な塗布層を形成できる点で、アニオン性界面活性剤及びノニオン性界面活性剤の少なくとも一方が好ましく、アニオン性界面活性剤がより好ましい。即ち、界面活性剤としては、表面平滑性の向上の点で、アニオン性の炭化水素系界面活性剤がより好ましい。 As the hydrocarbon surfactant, at least one of an anionic surfactant and a nonionic surfactant is preferable in that a coating layer having a smooth surface can be formed without hindering the dispersion of the resin. agents are more preferred. That is, as the surfactant, an anionic hydrocarbon-based surfactant is more preferable in terms of improving surface smoothness.
 アニオン性の炭化水素系界面活性剤は、平滑性がより向上する点で、複数個の疎水性末端基を有することが好ましい。疎水性末端基は、炭化水素系界面活性剤が有する炭化水素基の一部であってよい。例えば、分岐鎖構造を有する炭化水素基を末端に有する炭化水素系界面活性剤は、複数個の疎水性末端基を有することになる。
 複数個の疎水性末端基を有するアニオン性の炭化水素系界面活性剤としては、スルホコハク酸ジ-2-エチルヘキシルナトリウム(疎水性末端基を4つ有する)、スルホコハク酸ジ-2-エチルオクチルナトリウム(疎水性末端基を4つ有する)、及び、分岐鎖型アルキルベンゼンスルホン酸塩(疎水性末端基を2つ有する)が挙げられる。
The anionic hydrocarbon-based surfactant preferably has a plurality of hydrophobic terminal groups in terms of further improving smoothness. The hydrophobic end group may be part of the hydrocarbon group of the hydrocarbon surfactant. For example, a hydrocarbon surfactant terminated with a hydrocarbon group having a branched chain structure will have a plurality of hydrophobic end groups.
Examples of anionic hydrocarbon surfactants having multiple hydrophobic terminal groups include di-2-ethylhexyl sodium sulfosuccinate (having four hydrophobic terminal groups), di-2-ethyloctyl sodium sulfosuccinate ( 4 hydrophobic end groups) and branched alkyl benzene sulfonates (2 hydrophobic end groups).
 界面活性剤は1種用いてもよいし、2種以上併用してもよい。
 界面活性剤の含有量は、樹脂層の全質量に対して、0.1~10質量%が好ましく、表面平滑性により優れる点で、0.1~5質量%がより好ましく、0.5~2質量%が更に好ましい。
One type of surfactant may be used, or two or more types may be used in combination.
The content of the surfactant is preferably 0.1 to 10% by mass with respect to the total mass of the resin layer, more preferably 0.1 to 5% by mass in terms of better surface smoothness, and 0.5 to 2% by mass is more preferred.
 ワックスとしては、特に制限されず、天然ワックスも合成ワックスでもよい。天然ワックスとしては、カルナバワックス、キャンデリラワックス、ミツロウ、モンタンワックス、パラフィンワックス、及び、石油ワックスが挙げられる。その他、国際公開第2017/169844号明細書の[0087]の記載の滑り剤も使用できる。
 ワックスの含有量は、樹脂層の全質量に対して、0~10質量%が好ましい。
The wax is not particularly limited, and may be natural wax or synthetic wax. Natural waxes include carnauba wax, candelilla wax, beeswax, montan wax, paraffin wax, and petroleum wax. In addition, a slipping agent described in [0087] of International Publication No. 2017/169844 can also be used.
The wax content is preferably 0 to 10% by mass with respect to the total mass of the resin layer.
(厚さ)
 樹脂層は、例えば、後述するように粒子を含む組成物をポリエステル基材の一方の表面上に塗布して形成できる。その場合、樹脂層の厚さは1nm~1μmになることが多く、長期保管した際の凹凸欠陥を抑制する効果が優れる点で、10nm~1μmであることが好ましく、20~500nmであることがより好ましく、20~200nmが更に好ましい。
 また、後述するようにポリエステル基材と樹脂層の形成に用いる樹脂とを共押し出しすることで形成してもよい。その場合には、樹脂層の厚さは1~10μmになることが多い。
 また、樹脂層の厚さは、樹脂層の製造適性、及び、ヘイズ低減の点からは、1~500nmが好ましく、1~250nmがより好ましく、10~100nmが更に好ましく、20~100nmが特に好ましい。
 樹脂層の厚さは、ポリエステルフィルムの主面に対して垂直な断面を有する切片を作製し、走査型電子顕微鏡(SEM:Scanning Electron Microscope)又は透過型電子顕微鏡(TEM:Transmission Electron Microscope)を用いて測定される、上記切片の5か所の厚さの算術平均値とする。
 樹脂層が柔らかく、安定して断面切片を作製することが難しい場合には、屈折率計を用いて測定してもよい。具体的には、測定される反射率スペクトルを樹脂層及びポリエステル基材の膜厚及び屈折率とフィッテングすることにより、樹脂層の膜厚を求めることができる。
(thickness)
The resin layer can be formed, for example, by coating a composition containing particles on one surface of the polyester substrate as described later. In that case, the thickness of the resin layer is often 1 nm to 1 μm, and is preferably 10 nm to 1 μm, more preferably 20 to 500 nm, in terms of the excellent effect of suppressing unevenness defects during long-term storage. More preferably, 20 to 200 nm is even more preferable.
Alternatively, as described later, the polyester base material and the resin used for forming the resin layer may be co-extruded. In that case, the thickness of the resin layer is often 1 to 10 μm.
The thickness of the resin layer is preferably from 1 to 500 nm, more preferably from 1 to 250 nm, even more preferably from 10 to 100 nm, and particularly preferably from 20 to 100 nm, from the viewpoints of production suitability of the resin layer and reduction of haze. .
For the thickness of the resin layer, a section having a cross section perpendicular to the main surface of the polyester film is prepared, and a scanning electron microscope (SEM: Scanning Electron Microscope) or a transmission electron microscope (TEM: Transmission Electron Microscope) is used. shall be the arithmetic mean of the five thicknesses of the section, measured at
If the resin layer is soft and it is difficult to stably produce a cross section, the measurement may be performed using a refractometer. Specifically, the film thickness of the resin layer can be determined by fitting the measured reflectance spectrum with the film thickness and refractive index of the resin layer and the polyester base material.
 樹脂層の形成方法については、後述する「樹脂層形成工程」において詳しく説明する。 The method of forming the resin layer will be described in detail in the "resin layer forming process" described later.
<ポリエステル基材>
 ポリエステル基材は、主たる重合体成分としてポリエステル樹脂を含むフィルム状の物体である。ここで、「主たる重合体成分」とは、フィルムに含まれる全ての重合体のうち最も含有量(質量)が多い重合体を意味する。
 ポリエステル基材は、粒子を実質的に含まないことが好ましい。「粒子を実質的に含まない」とは、ポリエステル基材について、蛍光X線分析で粒子に由来する元素を定量分析した際に、粒子の含有量がポリエステル基材の全質量に対して50質量ppm以下であることで定義され、好ましくは10質量ppm以下であり、より好ましくは検出限界以下である。これは積極的に粒子をポリエステル基材中に添加させなくても、外来異物由来のコンタミ成分、原料樹脂、又は、ポリエステル基材の製造工程におけるラインもしくは装置に付着した汚れが剥離して、ポリエステル基材中に混入する場合があるためである。粒子としては、例えば、上述の樹脂層の形成に用いられる粒子が挙げられる。
 ポリエステル基材は、1種単独のポリエステル樹脂を含んでいてもよく、2種以上のポリエステル樹脂を含んでいてもよい。
<Polyester base material>
A polyester substrate is a film-like body containing a polyester resin as the main polymer component. Here, the "main polymer component" means the polymer with the highest content (mass) among all the polymers contained in the film.
Preferably, the polyester substrate is substantially free of particles. "Substantially free of particles" means that the content of particles is 50 mass with respect to the total mass of the polyester base material when the element derived from the particles is quantitatively analyzed by fluorescent X-ray analysis for the polyester base material. It is defined as ppm or less, preferably 10 mass ppm or less, more preferably detection limit or less. This is because even if the particles are not actively added to the polyester base material, contaminants derived from foreign substances, raw material resins, or stains attached to the lines or equipment in the manufacturing process of the polyester base material are peeled off, This is because they may be mixed into the base material. Examples of the particles include particles used for forming the resin layer described above.
The polyester base material may contain a single polyester resin, or may contain two or more polyester resins.
(ポリエステル樹脂)
 ポリエステル樹脂は、主鎖にエステル結合を有する重合体である。ポリエステル樹脂は、通常、後述するジカルボン酸化合物とジオール化合物とを重縮合させることにより形成される。
 ポリエステル樹脂としては特に制限されず、公知のポリエステル樹脂を利用できる。ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレン-2,6-ナフタレート(PEN)、及び、それらの共重合体が挙げられ、PETが好ましい。
(polyester resin)
A polyester resin is a polymer having an ester bond in its main chain. A polyester resin is usually formed by polycondensing a dicarboxylic acid compound and a diol compound, which will be described later.
The polyester resin is not particularly limited, and known polyester resins can be used. Polyester resins include, for example, polyethylene terephthalate (PET), polyethylene-2,6-naphthalate (PEN), and copolymers thereof, with PET being preferred.
 ポリエステル樹脂の固有粘度は、0.50dl/g以上0.80dl/g未満が好ましく、0.55dl/g以上0.70dl/g未満がより好ましい。
 ポリエステル樹脂の融点(Tm)は、220~270℃が好ましく、245~265℃がより好ましい。
 ポリエステル樹脂のガラス転移温度(Tg)は、65~90℃が好ましく、70~85℃がより好ましい。
The intrinsic viscosity of the polyester resin is preferably 0.50 dl/g or more and less than 0.80 dl/g, more preferably 0.55 dl/g or more and less than 0.70 dl/g.
The melting point (Tm) of the polyester resin is preferably 220 to 270°C, more preferably 245 to 265°C.
The glass transition temperature (Tg) of the polyester resin is preferably 65-90°C, more preferably 70-85°C.
 ポリエステル樹脂の製造方法は特に制限されず、公知の方法を利用できる。例えば、触媒存在下で、少なくとも1種のジカルボン酸化合物と、少なくとも1種のジオール化合物とを重縮合させることによりポリエステル樹脂を製造できる。 The method for producing the polyester resin is not particularly limited, and known methods can be used. For example, a polyester resin can be produced by polycondensing at least one dicarboxylic acid compound and at least one diol compound in the presence of a catalyst.
-触媒-
 ポリエステル樹脂の製造に使用する触媒は、特に制限されず、ポリエステル樹脂の合成に使用可能な公知の触媒を利用できる。
 触媒としては、例えば、アルカリ金属化合物(例えば、カリウム化合物、ナトリウム化合物)、アルカリ土類金属化合物(例えば、カルシウム化合物、マグネシウム化合物)、亜鉛化合物、鉛化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、ゲルマニウム化合物、及び、リン化合物が挙げられる。中でも、触媒活性及びコストの点から、チタン化合物が好ましい。
 触媒は、1種のみ用いてもよく、2種以上を併用してもよい。カリウム化合物、ナトリウム化合物、カルシウム化合物、マグネシウム化合物、亜鉛化合物、鉛化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、及び、ゲルマニウム化合物から選択される少なくとも1種の金属触媒と、リン化合物とを併用することが好ましく、チタン化合物とリン化合物を併用することがより好ましい。
-catalyst-
The catalyst used for producing the polyester resin is not particularly limited, and any known catalyst that can be used for synthesizing the polyester resin can be used.
Examples of catalysts include alkali metal compounds (e.g., potassium compounds, sodium compounds), alkaline earth metal compounds (e.g., calcium compounds, magnesium compounds), zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony. compounds, titanium compounds, germanium compounds, and phosphorus compounds. Among them, titanium compounds are preferable from the viewpoint of catalytic activity and cost.
Only one kind of catalyst may be used, or two or more kinds thereof may be used in combination. at least one metal catalyst selected from potassium compounds, sodium compounds, calcium compounds, magnesium compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, and germanium compounds; It is preferable to use a compound together, and it is more preferable to use a titanium compound and a phosphorus compound together.
 チタン化合物としては、有機キレートチタン錯体が好ましい。有機キレートチタン錯体は、配位子として有機酸を有するチタン化合物である。
 有機酸としては、例えば、クエン酸、乳酸、トリメリット酸、及び、リンゴ酸が挙げられる。
 チタン化合物としては、特許第5575671号公報の[0049]~[0053]に記載されたチタン化合物も利用でき、上記公報の記載内容は、本明細書に組み込まれる。
As the titanium compound, an organic chelate titanium complex is preferred. An organic chelate titanium complex is a titanium compound having an organic acid as a ligand.
Organic acids include, for example, citric acid, lactic acid, trimellitic acid, and malic acid.
As the titanium compound, titanium compounds described in [0049] to [0053] of Japanese Patent No. 5575671 can also be used, and the contents of the above publications are incorporated herein.
-ジカルボン酸化合物-
 ジカルボン酸化合物としては、例えば、脂肪族ジカルボン酸化合物、脂環式ジカルボン酸化合物、及び、芳香族ジカルボン酸化合物等のジカルボン酸、並びに、それらジカルボン酸のメチルエステル化合物及びエチルエステル化合物等のジカルボン酸エステルが挙げられる。中でも、芳香族ジカルボン酸、又は、芳香族ジカルボン酸メチルが好ましい。
-Dicarboxylic acid compound-
Examples of dicarboxylic acid compounds include dicarboxylic acids such as aliphatic dicarboxylic acid compounds, alicyclic dicarboxylic acid compounds, and aromatic dicarboxylic acid compounds, and dicarboxylic acids such as methyl ester compounds and ethyl ester compounds of these dicarboxylic acids. esters. Among them, aromatic dicarboxylic acid or methyl aromatic dicarboxylate is preferable.
 脂肪族ジカルボン酸化合物としては、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸、及び、エチルマロン酸が挙げられる。
 脂環式ジカルボン酸化合物としては、例えば、アダマンタンジカルボン酸、ノルボルネンジカルボン酸、シクロヘキサンジカルボン酸、及び、デカリンジカルボン酸が挙げられる。
Examples of aliphatic dicarboxylic acid compounds include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalonic acid, and ethylmalonic acid.
Alicyclic dicarboxylic acid compounds include, for example, adamantanedicarboxylic acid, norbornenedicarboxylic acid, cyclohexanedicarboxylic acid, and decalinedicarboxylic acid.
 芳香族ジカルボン酸化合物としては、例えば、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、フェニルインダンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸、及び、9,9’-ビス(4-カルボキシフェニル)フルオレン酸が挙げられる。
 中でも、テレフタル酸又は2,6-ナフタレンジカルボン酸が好ましく、テレフタル酸がより好ましい。
Examples of aromatic dicarboxylic acid compounds include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 1,8-naphthalenedicarboxylic acid. , 4,4′-diphenyldicarboxylic acid, 4,4′-diphenyletherdicarboxylic acid, 5-sodium sulfoisophthalic acid, phenylindanedicarboxylic acid, anthracenedicarboxylic acid, phenanthenedicarboxylic acid, and 9,9′-bis(4- carboxyphenyl)fluoric acid.
Among them, terephthalic acid or 2,6-naphthalenedicarboxylic acid is preferable, and terephthalic acid is more preferable.
 ジカルボン酸化合物は1種のみ用いてもよく、2種以上を併用してもよい。ジカルボン酸化合物として、テレフタル酸を使用する場合、テレフタル酸単独で用いてもよく、イソフタル酸等の他の芳香族ジカルボン酸又は脂肪族ジカルボン酸と共重合してもよい。 Only one type of dicarboxylic acid compound may be used, or two or more types may be used in combination. When terephthalic acid is used as the dicarboxylic acid compound, terephthalic acid may be used alone, or may be copolymerized with another aromatic dicarboxylic acid such as isophthalic acid or an aliphatic dicarboxylic acid.
-ジオール化合物-
 ジオール化合物としては、例えば、脂肪族ジオール化合物、脂環式ジオール化合物、及び、芳香族ジオール化合物が挙げられ、脂肪族ジオール化合物が好ましい。
-Diol compound-
Examples of diol compounds include aliphatic diol compounds, alicyclic diol compounds, and aromatic diol compounds, with aliphatic diol compounds being preferred.
 脂肪族ジオール化合物としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール、及び、ネオペンチルグリコールが挙げられ、エチレングリコールが好ましい。
 脂環式ジオール化合物としては、例えば、シクロヘキサンジメタノール、スピログリコール、及び、イソソルビドが挙げられる。
 芳香族ジオール化合物としては、例えば、ビスフェノールA、1,3-ベンゼンジメタノール,1,4-ベンゼンジメタノール、及び、9,9’-ビス(4-ヒドロキシフェニル)フルオレンが挙げられる。
 ジオール化合物は、1種のみ用いてもよく、2種以上を併用してもよい。
Examples of aliphatic diol compounds include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, and neo Pentyl glycol may be mentioned, with ethylene glycol being preferred.
Alicyclic diol compounds include, for example, cyclohexanedimethanol, spiroglycol, and isosorbide.
Examples of aromatic diol compounds include bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, and 9,9′-bis(4-hydroxyphenyl)fluorene.
Only one kind of diol compound may be used, or two or more kinds thereof may be used in combination.
-末端封止剤-
 ポリエステル樹脂の製造においては、必要に応じて、末端封止剤を用いてもよい。末端封止剤を用いることで、ポリエステル樹脂の末端に末端封止剤に由来する構造が導入される。
 末端封止剤としては、制限されず、公知の末端封止剤を利用できる。末端封止剤としては、例えば、オキサゾリン系化合物、カルボジイミド系化合物、及び、エポキシ系化合物が挙げられる。
 末端封止剤としては、特開2014-189002号公報の[0055]~[0064]に記載の内容も参照でき、上記公報の内容は、本明細書に組み込まれる。
-Terminal blocking agent-
In the production of the polyester resin, if necessary, a terminal blocker may be used. By using the terminal blocking agent, a structure derived from the terminal blocking agent is introduced to the terminal of the polyester resin.
The terminal blocking agent is not limited, and known terminal blocking agents can be used. Examples of terminal blocking agents include oxazoline-based compounds, carbodiimide-based compounds, and epoxy-based compounds.
As the end blocking agent, the content described in [0055] to [0064] of JP-A-2014-189002 can also be referred to, and the content of the above publication is incorporated herein.
-製造条件-
 反応温度は、制限されず、原材料に応じて適宜設定すればよい。反応温度は、260~300℃が好ましく、275~285℃がより好ましい。
 圧力は、制限されず、原材料に応じて適宜設定すればよい。圧力は、1.33×10-3~1.33×10-5MPaが好ましく、6.67×10-4~6.67×10-5MPaがより好ましい。
-Manufacturing conditions-
The reaction temperature is not limited, and may be appropriately set according to the raw materials. The reaction temperature is preferably 260-300°C, more preferably 275-285°C.
The pressure is not limited, and may be appropriately set according to the raw material. The pressure is preferably 1.33×10 −3 to 1.33×10 −5 MPa, more preferably 6.67×10 −4 to 6.67×10 −5 MPa.
 ポリエステル樹脂の合成方法としては、特許第5575671号公報の[0033]~[0070]に記載された方法も利用でき、上記公報の内容は、本明細書に組み込まれる。 As a method for synthesizing the polyester resin, the method described in [0033] to [0070] of Japanese Patent No. 5575671 can also be used, and the contents of the above publication are incorporated herein.
 ポリエステル基材は、2軸配向ポリエステル基材であることが好ましい。
 「2軸配向」とは、2軸方向に分子配向性を有する性質を意味する。分子配向性は、マイクロ波透過型分子配向計(例えば、MOA-6004、株式会社王子計測機器社製)を用いて測定する。二軸方向のなす角は、90°±5°の範囲内が好ましく、90°±3°の範囲内がより好ましく、90°±1°の範囲内が更に好ましい。
Preferably, the polyester substrate is a biaxially oriented polyester substrate.
"Biaxial orientation" means the property of having molecular orientation in two axial directions. The molecular orientation is measured using a microwave transmission type molecular orientation meter (for example, MOA-6004, manufactured by Oji Scientific Instruments Co., Ltd.). The angle formed by the two axial directions is preferably within the range of 90°±5°, more preferably within the range of 90°±3°, and still more preferably within the range of 90°±1°.
 ポリエステル基材におけるポリエステル樹脂の含有量は、ポリエステル基材中の重合体の全質量に対して、85質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましく、98質量%以上が特に好ましい。
 ポリエステル樹脂の含有量の上限は、制限されず、ポリエステル基材中の重合体の全質量に対して、100質量%以下の範囲で適宜設定できる。
The content of the polyester resin in the polyester base is preferably 85% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and 98% by mass, based on the total mass of the polymer in the polyester base. % or more is particularly preferred.
The upper limit of the content of the polyester resin is not limited, and can be appropriately set within a range of 100% by mass or less with respect to the total mass of the polymer in the polyester base material.
 ポリエステル基材がポリエチレンテレフタレートを含む場合、ポリエチレンテレフタレートの含有量は、ポリエステル基材中のポリエステル樹脂の全質量に対して、90~100質量%が好ましく、95~100質量%がより好ましく、98~100質量%が更に好ましく、100質量%が特に好ましい。 When the polyester base material contains polyethylene terephthalate, the content of polyethylene terephthalate is preferably 90 to 100% by mass, more preferably 95 to 100% by mass, based on the total mass of the polyester resin in the polyester base material. 100% by mass is more preferred, and 100% by mass is particularly preferred.
 ポリエステル基材は、ポリエステル樹脂以外の成分(例えば、触媒、未反応の原料成分、粒子、及び、水等)を含んでいてもよい。 The polyester base material may contain components other than the polyester resin (eg, catalyst, unreacted raw material components, particles, water, etc.).
 ポリエステル基材の厚さは、剥離性を制御できる点で、100μm以下が好ましく、50μm以下がより好ましく、40μm以下が更に好ましい。厚さの下限は特に制限されないが、強度が向上し、加工性が向上する点で、3μm以上が好ましく、10μm以上がより好ましく、20μm以上が更に好ましい。
 ポリエステル基材の厚さは、後述するポリエステルフィルムの厚さの測定方法に従って、測定される。
The thickness of the polyester base material is preferably 100 μm or less, more preferably 50 μm or less, and even more preferably 40 μm or less, in terms of controlling the peelability. Although the lower limit of the thickness is not particularly limited, it is preferably 3 μm or more, more preferably 10 μm or more, and even more preferably 20 μm or more in terms of improving strength and workability.
The thickness of the polyester base material is measured according to the method for measuring the thickness of the polyester film, which will be described later.
 本フィルムは、上記の樹脂層及びポリエステル基材以外の層を更に備えていてもよいが、樹脂層及びポリエステル基材からなる層構成を有することが好ましい。 Although the film may further comprise a layer other than the above resin layer and polyester base material, it preferably has a layer structure consisting of a resin layer and a polyester base material.
〔物性等〕
 次に、本フィルムの物性等について説明する。
[Physical properties, etc.]
Next, the physical properties and the like of this film will be described.
<第2主面の物性>
(比率A)
 本フィルムは、走査型電子顕微鏡を用いて第2主面の面積10000μmの領域を観察し、上記領域において長径が最長である突起を選択した場合、走査型電子顕微鏡を用いて測定される選択された突起の長径に対する、光学干渉計を用いる非接触表面形状測定により測定される選択された突起の高さの比率Aが0.7以下であるとの要件Aを満たす。
 要件Aを満たす本フィルムを用いて剥離フィルムを製造することにより、得られた剥離フィルムを用いて製造されるセラミックグリーンシートにおける凹凸欠陥の発生を抑制できる。
<Physical properties of the second main surface>
(ratio A)
For this film, a region with an area of 10000 μm 2 on the second main surface is observed using a scanning electron microscope, and when a projection with the longest major axis is selected in the above region, the selected satisfies the requirement A that the ratio A of the height of the selected protrusions measured by non-contact surface profilometry using an optical interferometer to the major diameter of the selected protrusions is 0.7 or less.
By producing a release film using this film that satisfies Requirement A, it is possible to suppress the occurrence of uneven defects in a ceramic green sheet produced using the obtained release film.
 比率Aは、0.7以下であり、0.6以下が好ましい。上記範囲であると、セラミックグリーンシートにおける凹凸欠陥の発生をより一層抑制できる。
 下限は特に制限されないが、高速搬送性が優れる点、及び、突起高さのバラツキを抑制できる点で、0.01以上が好ましく、0.03以上がより好ましく、0.05以上が更に好ましい。
The ratio A is 0.7 or less, preferably 0.6 or less. Within the above range, the occurrence of uneven defects in the ceramic green sheet can be further suppressed.
Although the lower limit is not particularly limited, it is preferably 0.01 or more, more preferably 0.03 or more, and still more preferably 0.05 or more in terms of excellent high-speed transportability and suppression of unevenness in protrusion height.
 ポリエステルフィルムの第2主面の比率Aは、例えば、樹脂層の製造に用いる粒子の種類及び平均粒子径、樹脂層の厚さ、並びに、後述する樹脂層形成工程後の加熱処理等により、調整できる。上記の調整をより容易に行うことができるポリエステルフィルムの製造方法については、後で詳しく説明する。
 ポリエステルフィルムの第2主面の比率Aは、後述の実施例欄に記載の方法に従って測定される。
 なお、ポリエステルフィルムの表面に存在するゴミ、外来異物、及び、ポリエステル基材の製造工程においてライン又は装置から付着した汚れ等は、第2主面における突起には含まれない。
The ratio A of the second main surface of the polyester film is adjusted by, for example, the type and average particle size of the particles used in the production of the resin layer, the thickness of the resin layer, and the heat treatment after the resin layer forming step described later. can. A method for producing a polyester film that allows the above adjustments to be made more easily will be described later in detail.
The ratio A of the second main surface of the polyester film is measured according to the method described in the Examples section below.
The projections on the second main surface do not include dirt, foreign matter, and dirt adhered from the line or equipment during the manufacturing process of the polyester base material.
(第2主面の突起高さ、突起長径)
 本フィルムの樹脂層は、本フィルムにおいて、又は、第1主面上に剥離層を形成して得られる剥離フィルムにおいて、搬送面として機能する。高速搬送性が優れる点で、本フィルムの第2主面の突起高さは、0.1μm以上が好ましく、0.2μm以上がより好ましく、0.25μm以上が更に好ましく、0.3μm以上が特に好ましい。
 一方、第2主面に形成する突起が大き過ぎると、高速搬送時における突起を構成する物質が脱落しやすくなる。また、剥離フィルムのロール保管時等において、剥離層に転写痕が形成されてしまう場合もある。それらの点で、第2主面の突起高さは、5μm以下が好ましく、4.0μm以下がより好ましく、3.5μm以下が更に好ましい。
 すなわち、本発明の効果がより優れる点、及び、高速搬送性が優れる点で、第2主面の突起の高さは、上記の下限値及び上限値で規定される範囲内であることが好ましい。
 なお、本明細書において「第2主面の突起高さ」とは、走査型電子顕微鏡を用いて第2主面の面積10000μmの領域を観察し、上記領域において長径が最長である突起に対して、光学干渉計を用いる非接触表面形状測定を行って得られる突起高さを意味する。
(Protrusion height on the second principal surface, protrusion length)
The resin layer of the present film functions as a conveying surface in the present film or in a release film obtained by forming a release layer on the first main surface. The height of the projections on the second main surface of the present film is preferably 0.1 μm or more, more preferably 0.2 μm or more, still more preferably 0.25 μm or more, and particularly 0.3 μm or more, from the viewpoint of excellent high-speed transportability. preferable.
On the other hand, if the protrusions formed on the second main surface are too large, the substance forming the protrusions tends to fall off during high-speed transportation. Further, when the release film is stored in a roll, etc., a transfer trace may be formed on the release layer. From these points, the height of the protrusions on the second main surface is preferably 5 μm or less, more preferably 4.0 μm or less, and even more preferably 3.5 μm or less.
That is, the height of the projections on the second main surface is preferably within the range defined by the above lower limit and upper limit in terms of the advantages of the present invention and high-speed transportability. .
In this specification, the term “protrusion height on the second main surface” refers to a region with an area of 10000 μm 2 on the second main surface observed using a scanning electron microscope, and the projection having the longest major axis in the above region. In contrast, it means the protrusion height obtained by non-contact profilometry using an optical interferometer.
 また、高速搬送性が優れる点、及び、凹凸欠陥の抑制がより優れる点で、第2主面の突起高さが0.3~5.0μmであり、樹脂層の厚さが20~500nm(より好ましくは20~200nm)であり、かつ、第2主面の突起高さが樹脂層の厚さよりも大きいことが好ましい。 In addition, in terms of excellent high-speed transportability and excellent suppression of uneven defects, the height of the protrusions on the second main surface is 0.3 to 5.0 μm, and the thickness of the resin layer is 20 to 500 nm ( more preferably 20 to 200 nm), and the height of the protrusions on the second main surface is preferably larger than the thickness of the resin layer.
 また、本フィルムの第2主面の突起の長径は、1~20μmが好ましい。
 第2主面の突起高さ及び突起長径は、上記の比率Aの調整方法に準じて、調整できる。
 また、第2主面の突起高さ及び突起長径は、後述の実施例欄に記載の方法に従って測定される。
Moreover, the long diameter of the projections on the second main surface of the present film is preferably 1 to 20 μm.
The projection height and projection length on the second main surface can be adjusted according to the method for adjusting the ratio A described above.
Also, the projection height and the projection length on the second main surface are measured according to the method described in the Examples section below.
(第2主面の面平均粗さSa)
 剥離フィルムの剥離面における凹凸欠陥をより抑制できる点で、第2主面の面平均粗さSaは、1~15nmが好ましく、1~10nmがより好ましく、1~8nmが更に好ましい。
 第2主面の面平均粗さSaは、例えば、樹脂層の製造に用いる粒子の平均粒子径及び含有量、樹脂層の厚さ、並びに、樹脂層に含まれ得る非ポリエステル樹脂及び添加剤(界面活性剤等)の種類を選択することにより、調整できる。インラインコーティングにて樹脂層を形成する場合には、上記の調整をより容易に行うことができる。
(Average Surface Roughness Sa of Second Principal Surface)
The surface average roughness Sa of the second main surface is preferably 1 to 15 nm, more preferably 1 to 10 nm, and even more preferably 1 to 8 nm, in that uneven defects on the release surface of the release film can be further suppressed.
The surface average roughness Sa of the second main surface is, for example, the average particle diameter and content of particles used for producing the resin layer, the thickness of the resin layer, and the non-polyester resin and additives ( It can be adjusted by selecting the type of surfactant, etc.). When the resin layer is formed by in-line coating, the above adjustments can be made more easily.
 第2主面の面平均粗さSaは、ポリエステルフィルムの特定塗布層側の表面を、光学干渉計(例えば、株式会社日立ハイテク製「Vertscan 3300G Lite」等)を用いて比率Aを求める際の突起高さの測定条件と同じ条件で測定し、その後、内蔵されているデータ解析ソフトにて解析することにより、求められる。面平均粗さSaの測定では、測定位置を変えて5回測定し、得られる測定値の平均値を面平均粗さSaの測定値とする。 The surface average roughness Sa of the second main surface is the surface of the polyester film on the side of the specific coating layer using an optical interferometer (for example, "Vertscan 3300G Lite" manufactured by Hitachi High-Tech Co., Ltd.). It is obtained by measuring under the same conditions as the projection height measurement conditions, and then analyzing it with the built-in data analysis software. In the measurement of the surface average roughness Sa, measurements are performed five times at different measurement positions, and the average value of the obtained measurement values is used as the measurement value of the surface average roughness Sa.
(第2主面の表面自由エネルギー)
 本フィルムの第2主面の表面自由エネルギーは、高速搬送時の巻き取り性が向上する点、及び、長期保管した際の凹凸欠陥を抑制する効果が優れる点で、25~65mJ/mが好ましく、25~45mJ/mがより好ましく、35~45mJ/mが更に好ましい。第2主面の表面自由エネルギーが上記範囲にあることにより、ポリエステル基材から発生したオリゴマー等の不純物が樹脂層を通過して第2主面の表面に析出することを抑制できる。これにより、本フィルムを用いて製造された剥離フィルムをロール状に巻き取って長期保存した際に、搬送面(第2主面)に生じたオリゴマー由来の粒子が剥離フィルムの剥離面に付着して、剥離面に形成するセラミックグリーンシートの凹凸欠陥の原因になることを抑制できる。
 第2主面の表面自由エネルギーは、例えば、樹脂層に含まれる非ポリエステル樹脂及び添加剤等を選択することにより、調節できる。
 本フィルムの第2主面の表面自由エネルギーは、後述の実施例欄に記載の方法に従って求められる。
(Surface free energy of second main surface)
The surface free energy of the second main surface of the present film is 25 to 65 mJ/m 2 in terms of improving windability during high-speed transportation and excellent effect of suppressing uneven defects during long-term storage. Preferably, 25 to 45 mJ/m 2 is more preferable, and 35 to 45 mJ/m 2 is even more preferable. When the surface free energy of the second principal surface is within the above range, it is possible to prevent impurities such as oligomers generated from the polyester base material from passing through the resin layer and depositing on the surface of the second principal surface. As a result, when the release film produced using the present film is wound into a roll and stored for a long period of time, the oligomer-derived particles generated on the conveying surface (second main surface) adhere to the release surface of the release film. Therefore, it is possible to suppress the occurrence of irregularities in the ceramic green sheet formed on the release surface.
The surface free energy of the second principal surface can be adjusted, for example, by selecting the non-polyester resin and additives contained in the resin layer.
The surface free energy of the second main surface of this film is obtained according to the method described in the Examples section below.
<第1主面の物性>
(第1主面の最大突起高さSp、面平均粗さSa)
 剥離層を平滑にする点で、第1主面はできるだけ平滑であることが好ましい。具体的には、第1主面の最大突起高さSpは、1~60nmが好ましく、1~50nmがより好ましく、1~30nmが更に好ましい。
 第1主面の面平均粗さSaは、0~10nmが好ましく、0~5nmがより好ましく、0~2nmが更に好ましい。
<Physical properties of the first main surface>
(Maximum protrusion height Sp of first main surface, surface average roughness Sa)
From the viewpoint of smoothing the release layer, the first main surface is preferably as smooth as possible. Specifically, the maximum protrusion height Sp of the first main surface is preferably 1 to 60 nm, more preferably 1 to 50 nm, and even more preferably 1 to 30 nm.
The surface average roughness Sa of the first main surface is preferably 0 to 10 nm, more preferably 0 to 5 nm, even more preferably 0 to 2 nm.
 第1主面の最大突起高さSp及び面平均粗さSaは、ポリエステル基材に実質的に粒子を入れず、かつ、平滑に製膜するようにポリエステル基材を構成するポリエステルの種類及び添加剤の種類を選択する等の手法により調整できる。
 本フィルムの第1主面の最大突起高さSp及び面平均粗さSaは、第1主面を、光学干渉計(例えば、株式会社日立ハイテク製「Vertscan 3300G Lite」等)を用いて比率Aを求める際の突起高さの測定条件と同じ条件で測定し、その後、内蔵されているデータ解析ソフトにて解析することにより、求められる。最大突起高さSp及び面平均粗さSaの測定では、第1主面において測定位置を変えて5回測定し、得られる測定値の平均値を各測定値とする。
The maximum protrusion height Sp and the surface average roughness Sa of the first main surface are the type and addition of the polyester that constitutes the polyester base material so that the polyester base material is substantially free of particles and the film is formed smoothly. It can be adjusted by a technique such as selecting the type of agent.
The maximum protrusion height Sp and the surface average roughness Sa of the first main surface of the present film are measured using an optical interferometer (for example, "Vertscan 3300G Lite" manufactured by Hitachi High-Tech Co., Ltd.). is obtained by measuring under the same conditions as the measurement conditions for the protrusion height when obtaining , and then analyzing it with the built-in data analysis software. In the measurement of the maximum projection height Sp and the surface average roughness Sa, measurements are performed five times at different measurement positions on the first main surface, and the average value of the obtained measurement values is used as each measurement value.
(第1主面の表面自由エネルギー)
 本フィルムの第1主面の表面自由エネルギーは、本フィルムを巻き取る際の帯電防止の点で、25~65mJ/mが好ましく、30~45mJ/mがより好ましい。
 第1主面の表面自由エネルギーは、ポリエステル基材を形成する樹脂の種類及び添加剤等を選択することにより調整できる。
(Surface free energy of first main surface)
The surface free energy of the first main surface of the film is preferably 25 to 65 mJ/m 2 , more preferably 30 to 45 mJ/m 2 from the viewpoint of antistatic property when winding the film.
The surface free energy of the first main surface can be adjusted by selecting the type of resin forming the polyester base material, additives, and the like.
 本フィルムの第1主面の表面自由エネルギーは、上記の第2主面の表面自由エネルギーの測定方法に従って測定できる。 The surface free energy of the first main surface of the film can be measured according to the method for measuring the surface free energy of the second main surface described above.
<厚さ>
 本フィルムの厚さは、剥離性がより優れる点で、100μm以下が好ましく、50μm以下がより好ましく、40μm以下が更に好ましい。厚さの下限は特に制限されないが、ハンドリング性に優れる点で、3μm以上が好ましく、5μm以上がより好ましく、10μm以上が更に好ましい。
 本フィルムの厚さは、連続式触針式膜厚計により測定される5か所の厚さの算術平均値とする。
<Thickness>
The thickness of the present film is preferably 100 μm or less, more preferably 50 μm or less, and even more preferably 40 μm or less, from the viewpoint of better peelability. Although the lower limit of the thickness is not particularly limited, it is preferably 3 μm or more, more preferably 5 μm or more, and still more preferably 10 μm or more from the viewpoint of excellent handleability.
The thickness of this film is the arithmetic average value of the thicknesses measured at five points with a continuous stylus film thickness gauge.
[ポリエステルフィルムの製造方法]
 ポリエステルフィルムの製造方法としては、未延伸ポリエステル基材を2軸延伸する2軸延伸工程と、突起を有する樹脂層を形成する工程と、を有する方法が挙げられる。
[Method for producing polyester film]
Examples of a method for producing a polyester film include a method comprising a biaxial stretching step of biaxially stretching an unstretched polyester base material and a step of forming a resin layer having projections.
 2軸延伸は、縦延伸及び横延伸を同時に行う同時2軸延伸であってもよく、縦延伸及び横延伸を2段階以上の多段階に分けて行う逐次2軸延伸であってもよい。逐次2軸延伸の順序としては、例えば、縦延伸及び横延伸の順、縦延伸、横延伸及び縦延伸の順、縦延伸、縦延伸及び横延伸の順、並びに、横延伸及び縦延伸の順が挙げられ、縦延伸及び横延伸の順が好ましい。 The biaxial stretching may be simultaneous biaxial stretching in which longitudinal stretching and lateral stretching are performed simultaneously, or sequential biaxial stretching in which longitudinal stretching and lateral stretching are performed in multiple stages of two or more stages. The order of sequential biaxial stretching is, for example, the order of longitudinal stretching and transverse stretching, the order of longitudinal stretching, transverse stretching and longitudinal stretching, the order of longitudinal stretching, longitudinal stretching and transverse stretching, and the order of transverse stretching and longitudinal stretching. and the order of longitudinal stretching and transverse stretching is preferred.
〔第1実施形態〕
 本フィルムの製造方法の第1実施形態としては、
 ポリエステル基材を有する未延伸ポリエステルフィルムを長手方向に延伸して1軸配向フィルムを製造する工程1(以下、「縦延伸工程」ともいう。)と、
 1軸配向フィルムの表面に有機粒子を含む組成物を用いて樹脂層を形成する工程2(以下、「樹脂層形成工程」ともいう。)と、
 上記樹脂層を有する1軸配向フィルムを加熱しながら幅方向に延伸する工程3(以下、「横延伸工程」ともいう。)と、を有するポリエステルフィルムの製造方法であって、
 示差走査熱量計により有機粒子を測定して得られる熱量変化を示す曲線(DSC曲線)において出現する吸熱ピークの温度及びベースラインシフトの温度のうち、最も低い温度をXとし、工程3(横延伸工程)における1軸配向フィルムの表面温度をYとした場合、温度Xが温度Yよりも低い、製造方法が挙げられる。
[First embodiment]
As a first embodiment of the method for producing this film,
Step 1 (hereinafter also referred to as “longitudinal stretching step”) for producing a uniaxially oriented film by stretching an unstretched polyester film having a polyester base material in the longitudinal direction;
Step 2 of forming a resin layer on the surface of the uniaxially oriented film using a composition containing organic particles (hereinafter also referred to as "resin layer forming step");
A process for producing a polyester film comprising a step 3 of stretching in the width direction while heating the uniaxially oriented film having the resin layer (hereinafter also referred to as a "transverse stretching step"),
Of the temperature of the endothermic peak and the temperature of the baseline shift that appear in the curve (DSC curve) showing the change in the amount of heat obtained by measuring the organic particles with a differential scanning calorimeter, the lowest temperature is X, and step 3 (transverse stretching step), wherein the temperature X is lower than the temperature Y, where Y is the surface temperature of the uniaxially oriented film.
 上記の方法で測定される温度Xを有する有機粒子を含む組成物(以下、「組成物A1」ともいう。)を用いて樹脂層を1軸配向フィルム上に形成した後、横延伸工程において、樹脂層を有する1軸配向フィルムを温度Xよりも高い温度Yで加熱することにより、樹脂層の表面に存在する有機粒子が軟化して、横延伸による樹脂層の変形に有機粒子が追従しやすくなる。その結果、ポリエステルフィルムの第2主面となる樹脂層の表面に、長径に対する高さの比率Aが低い突起が形成されやすくなる。
 既に説明しているように、このような比率Aが低い突起を第2主面に有するポリエステルフィルムを用いて得られる剥離フィルムは、セラミックグリーンシートの製造に用いることによりセラミックグリーンシートの凹凸欠陥の発生をより抑制できる。
After forming a resin layer on a uniaxially oriented film using a composition containing organic particles having a temperature X measured by the above method (hereinafter also referred to as "composition A1"), in the lateral stretching step, By heating the uniaxially oriented film having the resin layer at a temperature Y higher than the temperature X, the organic particles existing on the surface of the resin layer are softened, and the organic particles easily follow the deformation of the resin layer due to lateral stretching. Become. As a result, protrusions having a low height-to-major axis ratio A are likely to be formed on the surface of the resin layer that serves as the second main surface of the polyester film.
As already explained, a release film obtained by using a polyester film having projections with such a low ratio A on the second main surface is used in the production of ceramic green sheets to eliminate uneven defects in the ceramic green sheets. Occurrence can be further suppressed.
 以下、本実施形態に係る製造方法について、詳しく説明する。 The manufacturing method according to this embodiment will be described in detail below.
<縦延伸工程(工程1)>
 縦延伸工程(工程1)に供するポリエステル基材を有する未延伸ポリエステルフィルムとしては、未延伸のポリエステル基材が好ましい。
 縦延伸工程に用いるポリエステル基材については、好ましい態様も含めて、上記<ポリエステル基材>の項目において既に説明したとおりである。未延伸のポリエステル基材は、例えば、後述する第2実施形態の押出成形工程により作製できる。
<Longitudinal stretching step (step 1)>
As the unstretched polyester film having a polyester substrate to be subjected to the longitudinal stretching step (step 1), an unstretched polyester substrate is preferable.
The polyester base material used in the longitudinal stretching step is as already described in the above item <Polyester base material>, including preferred embodiments. An unstretched polyester base material can be produced, for example, by the extrusion molding process of the second embodiment described later.
 縦延伸は、例えば、未延伸ポリエステル基材を長手方向に搬送しながら、搬送方向に設置した2対以上の延伸ロール間で緊張を与えることによって行うことができる。
 縦延伸工程における延伸倍率は、用途によって適宜設定されるが、2.0~5.0倍が好ましく、2.5~4.0倍がより好ましく、2.8~4.0倍が更に好ましい。
 縦延伸工程における延伸速度は、800~1500%/秒が好ましく、1000~1400%/秒がより好ましく、1200~1400%/秒が更に好ましい。ここで、「延伸速度」とは、縦延伸工程において1秒間に延伸されたポリエステル基材の搬送方向の長さΔdを、延伸前のポリエステル基材の搬送方向の長さd0で除した値を、百分率で表した値である。
 縦延伸工程においては、未延伸ポリエステル基材を加熱することが好ましい。加熱により縦延伸が容易になるためである。縦延伸工程における加熱温度は、70~120℃が好ましく、80~110℃がより好ましく、85~100℃が更に好ましい。
 ここで、本実施形態に係る製造方法の各工程における「温度」は、非接触式温度計(例えば、放射温度計)を用いて測定されるフィルム状部材の表面温度を意味する。フィルム状部材の表面温度は、フィルム状部材の幅方向中央部の温度を5回計測し、得られた計測値の平均値を算出することにより求められる。
The longitudinal stretching can be performed, for example, by applying tension between two or more pairs of stretching rolls installed in the transport direction while transporting the unstretched polyester base material in the longitudinal direction.
The draw ratio in the longitudinal drawing step is appropriately set depending on the application, but is preferably 2.0 to 5.0 times, more preferably 2.5 to 4.0 times, and still more preferably 2.8 to 4.0 times. .
The stretching speed in the longitudinal stretching step is preferably 800 to 1500%/second, more preferably 1000 to 1400%/second, even more preferably 1200 to 1400%/second. Here, the "stretching speed" is a value obtained by dividing the length Δd of the polyester substrate in the transport direction stretched per second in the longitudinal stretching step by the length d0 of the polyester substrate in the transport direction before stretching. , is the value expressed as a percentage.
In the longitudinal stretching step, it is preferable to heat the unstretched polyester base material. This is because longitudinal stretching is facilitated by heating. The heating temperature in the longitudinal stretching step is preferably 70 to 120°C, more preferably 80 to 110°C, even more preferably 85 to 100°C.
Here, the "temperature" in each step of the manufacturing method according to this embodiment means the surface temperature of the film-like member measured using a non-contact thermometer (for example, a radiation thermometer). The surface temperature of the film-like member is obtained by measuring the temperature of the central portion in the width direction of the film-like member five times and calculating the average value of the obtained measured values.
<樹脂層形成工程(工程2)>
 樹脂層形成工程(工程2)では、縦延伸工程で得られた1軸配向フィルムの表面に、有機粒子を含む組成物A1を用いて樹脂層を形成する。
 樹脂層形成工程により形成される樹脂層については、有機粒子により形成される突起を含む樹脂層に特定されていること以外、上記<樹脂層>の項目において詳しく説明した層と同義である。
 樹脂層形成工程としては、例えば、組成物A1を用いて縦延伸された1軸配向フィルムの表面に塗布膜を形成し、必要に応じて乾燥する方法が挙げられる。
<Resin Layer Forming Step (Step 2)>
In the resin layer forming step (step 2), a resin layer is formed on the surface of the uniaxially oriented film obtained in the longitudinal stretching step using the composition A1 containing organic particles.
The resin layer formed in the resin layer forming step has the same meaning as the layer described in detail in the above <Resin layer> except that it is specified as a resin layer including protrusions formed of organic particles.
Examples of the resin layer forming step include a method of forming a coating film on the surface of a longitudinally stretched uniaxially oriented film using the composition A1, and drying the film as necessary.
 まず、組成物A1を用いて樹脂層を形成する方法について、説明する。
 組成物A1は、例えば、有機粒子、非ポリエステル樹脂、溶剤、並びに、必要に応じて添加される添加剤を混合することにより調製できる。
First, a method for forming a resin layer using composition A1 will be described.
Composition A1 can be prepared, for example, by mixing organic particles, non-polyester resin, solvent, and optional additives.
 組成物A1に含まれる有機粒子の平均粒子径は、特に制限されないが、搬送性がより優れる点及び転写痕が抑制できる点で、1nm以上3μm以下が好ましく、10nm以上2μm以下がより好ましい。 The average particle size of the organic particles contained in the composition A1 is not particularly limited, but is preferably 1 nm or more and 3 μm or less, more preferably 10 nm or more and 2 μm or less, in terms of better transportability and the ability to suppress transfer marks.
 組成物A1に含まれる有機粒子は、1種単独で用いてもよく、2種以上の有機粒子を用いてもよい。
 組成物A1が、粒子径の異なる2種以上の有機粒子を含む場合、樹脂層は、平均粒子径が上記範囲内にある有機粒子を少なくとも1種含むことが好ましく、粒子径の異なる2種以上の有機粒子がいずれも平均粒子径が上記範囲内にある有機粒子であることがより好ましい。
The organic particles contained in the composition A1 may be used singly, or two or more kinds of organic particles may be used.
When the composition A1 contains two or more types of organic particles having different particle sizes, the resin layer preferably contains at least one type of organic particles having an average particle size within the above range, and two or more types having different particle sizes. It is more preferable that all of the organic particles in (1) are organic particles having an average particle size within the above range.
 有機粒子の形状は、特に制限されず、例えば、米粒状、球形状、立方体状、紡錘形状、鱗片状、凝集状、及び、不定形状が挙げられる。凝集状とは、1次粒子が凝集した状態を意味する。 The shape of the organic particles is not particularly limited, and examples thereof include rice grain-like, spherical, cubic, spindle-like, scale-like, aggregated, and irregular shapes. Aggregate means a state in which primary particles are aggregated.
 組成物A1における有機粒子の含有量は、搬送性、及び、剥離層の塗布性の点から、組成物A1の溶剤以外の成分(固形分)の全質量に対して、0.1~30質量%が好ましく、1~25質量%がより好ましく、1~20質量%が更に好ましい。 The content of the organic particles in the composition A1 is 0.1 to 30 mass with respect to the total mass of the components (solid content) other than the solvent in the composition A1 from the viewpoint of transportability and coatability of the release layer. %, more preferably 1 to 25% by mass, even more preferably 1 to 20% by mass.
 溶剤としては、例えば、水、エタノールが挙げられる。
 組成物A1は、1種単独の溶剤を含んでいてもよく、2種以上の溶剤を含んでいてもよい。
 溶剤の含有量は、組成物A1の全質量に対して、80~99.5質量%が好ましく、90~99.0質量%がより好ましい。
 即ち、組成物A1において、固形分の合計含有量は、組成物A1の全質量に対して、0.5~20質量%が好ましく、1~10質量%がより好ましい。
Examples of solvents include water and ethanol.
Composition A1 may contain a single solvent, or may contain two or more solvents.
The solvent content is preferably 80 to 99.5% by mass, more preferably 90 to 99.0% by mass, based on the total mass of composition A1.
That is, in composition A1, the total solid content is preferably 0.5 to 20% by mass, more preferably 1 to 10% by mass, relative to the total mass of composition A1.
 組成物A1に含まれる有機粒子、有機粒子を構成する材料、非ポリエステル樹脂及び添加剤については、それらの好ましい態様も含めて、上記<樹脂層>の項目において詳しく説明したとおりである。
 組成物A1における溶剤及び有機粒子以外の各成分については、組成物A1の固形分の全質量に対する各成分の含有量が、上記の樹脂層の全質量に対する各成分の好ましい含有量と同じになるように、塗布液における各成分の含有量を調整することが好ましい。
The organic particles, the material composing the organic particles, the non-polyester resin, and the additive contained in the composition A1 are as described in detail in the section <Resin Layer> above, including their preferred embodiments.
For each component other than the solvent and the organic particles in composition A1, the content of each component with respect to the total mass of the solid content of composition A1 is the same as the preferred content of each component with respect to the total mass of the resin layer. Thus, it is preferable to adjust the content of each component in the coating liquid.
 組成物A1は架橋剤を含んでいてもよい。
 架橋剤としては、特に制限されず、公知のものを使用できる。
 架橋剤としては、例えば、メラミン系化合物、オキサゾリン系化合物、エポキシ系化合物、イソシアネート系化合物、及び、カルボジイミド系化合物が挙げられ、オキサゾリン系化合物又はカルボジイミド系化合物が好ましい。市販品としては、例えば、カルボジライトV-02-L2(日清紡株式会社製)及びエポクロスK-2020E(日本触媒(株)製)が挙げられる。エポキシ系化合物、イソシアネート系化合物、及び、メラミン系化合物の詳細については、特開2015-163457号公報の[0081]~[0083]の記載を参照することができる。国際公開第2017/169844号明細書の[0082]~[0084]の記載の架橋剤も好ましく使用できる。カルボジイミド化合物としては、特開2017-087421号公報の[0038]~[0040]の記載を参照できる。
 オキサゾリン系化合物、カルボジイミド系化合物、及び、イソシアネート系化合物については、国際公開第2018/034294号明細書の[0074]~[0075]の記載の架橋剤も好ましく使用できる。
 架橋剤の含有量は、組成物A1の固形分の全質量に対して0~50質量%が好ましい。
Composition A1 may contain a cross-linking agent.
The cross-linking agent is not particularly limited, and known ones can be used.
Examples of cross-linking agents include melamine-based compounds, oxazoline-based compounds, epoxy-based compounds, isocyanate-based compounds, and carbodiimide-based compounds, with oxazoline-based compounds and carbodiimide-based compounds being preferred. Examples of commercially available products include Carbodilite V-02-L2 (manufactured by Nisshinbo Co., Ltd.) and Epocross K-2020E (manufactured by Nippon Shokubai Co., Ltd.). For details of the epoxy-based compound, the isocyanate-based compound, and the melamine-based compound, reference can be made to [0081] to [0083] of JP-A-2015-163457. The cross-linking agents described in [0082] to [0084] of International Publication No. 2017/169844 can also be preferably used. As for the carbodiimide compound, the descriptions in [0038] to [0040] of JP-A-2017-087421 can be referred to.
For oxazoline-based compounds, carbodiimide-based compounds, and isocyanate-based compounds, cross-linking agents described in [0074] to [0075] of WO 2018/034294 can also be preferably used.
The content of the cross-linking agent is preferably 0 to 50% by mass based on the total mass of the solid content of composition A1.
 組成物A1の塗布方法は特に制限されず、公知の方法を利用できる。塗布方法としては、例えば、スプレーコート法、スリットコート法、ロールコート法、ブレードコート法、スピンコート法、バーコート法及びディップコート法が挙げられる。 The method of applying composition A1 is not particularly limited, and known methods can be used. Examples of coating methods include spray coating, slit coating, roll coating, blade coating, spin coating, bar coating and dip coating.
 樹脂層形成工程においては、1軸配向フィルムを搬送しながら1軸配向フィルムの一方に表面に組成物A1を塗布するインラインコーティング法を適用することが好ましい。インラインコーティング法を適用することにより、製造工程におけるポリエステル基材の加熱時間が短くなり、熱履歴がかからないため、剥離フィルムにおける歪みの発生を抑制できる。
 また、本実施形態では、縦延伸工程の後、樹脂層形成工程を実施し、次いで横延伸工程を行う。これにより、1軸配向されたポリエステル基材と樹脂層とを同時に横延伸することにより、ポリエステル基材及び樹脂層の密着性を向上できる。
In the resin layer forming step, it is preferable to apply an in-line coating method in which the composition A1 is applied to one surface of the uniaxially oriented film while the uniaxially oriented film is conveyed. By applying the in-line coating method, the heating time of the polyester base material in the manufacturing process is shortened and the heat history is not applied, so that the generation of distortion in the release film can be suppressed.
Moreover, in this embodiment, after the longitudinal stretching process, the resin layer forming process is carried out, and then the transverse stretching process is carried out. Thereby, the adhesion between the polyester substrate and the resin layer can be improved by simultaneously laterally stretching the uniaxially oriented polyester substrate and the resin layer.
<横延伸工程(工程3)>
 本実施形態では、樹脂層を有する1軸配向フィルム(本実施形態において、単に「1軸配向フィルム」ともいう。)を幅方向に延伸(以下、「横延伸」ともいう。)して2軸配向ポリエステル基材を形成する横延伸工程(工程3)を行う際、1軸配向フィルムを特定の温度Yで加熱しながら行う。
 その際の加熱温度Yは、樹脂層に含まれる有機粒子の温度Xよりも高い温度であれば特に制限されないが、100~140℃が好ましく、110~135℃がより好ましく、115~130℃が更に好ましい。
 また、1軸配向フィルムは、横延伸工程により横延伸されている間、温度Yで加熱され続けていることが好ましい。
<Lateral stretching step (step 3)>
In the present embodiment, a uniaxially oriented film having a resin layer (in the present embodiment, also simply referred to as "uniaxially oriented film") is stretched in the width direction (hereinafter also referred to as "transverse stretching") to biaxially stretch the film. The uniaxially oriented film is heated at a specific temperature Y when performing the lateral stretching step (step 3) for forming the oriented polyester substrate.
The heating temperature Y at that time is not particularly limited as long as it is higher than the temperature X of the organic particles contained in the resin layer. More preferred.
Moreover, it is preferable that the uniaxially oriented film is continuously heated at the temperature Y while being laterally stretched in the lateral stretching step.
 横延伸工程においては、横延伸前に、1軸配向フィルムを予熱することが好ましい。予熱によりポリエステル基材の温度を上げることで、1軸配向フィルムを容易に横延伸できる。予熱温度は、80~120℃が好ましく、90~110℃がより好ましい。
 横延伸工程における1軸配向フィルムの幅方向の延伸倍率(横延伸倍率)は特に制限されないが、上記縦延伸工程における延伸倍率より大きいことが好ましい。横延伸工程における延伸倍率は、3.0~6.0倍が好ましく、3.5~5.0倍がより好ましく、3.5~4.5倍が更に好ましい。
 横延伸工程を延伸機の延伸部において実施する場合、横延伸倍率は、延伸部の搬入時のポリエステル基材幅L0に対する延伸部からの搬出時のポリエステル基材幅L1の比率(L1/L0)から求められる。
 横延伸工程における延伸速度は、8~45%/秒が好ましく、10~30%/秒がより好ましく、15~20%/秒が更に好ましい。
In the lateral stretching step, it is preferable to preheat the uniaxially oriented film before lateral stretching. By raising the temperature of the polyester base material by preheating, the uniaxially oriented film can be easily laterally stretched. The preheating temperature is preferably 80 to 120°C, more preferably 90 to 110°C.
The draw ratio in the width direction of the uniaxially oriented film in the transverse stretching step (lateral draw ratio) is not particularly limited, but is preferably larger than the draw ratio in the longitudinal stretching step. The draw ratio in the transverse drawing step is preferably 3.0 to 6.0 times, more preferably 3.5 to 5.0 times, even more preferably 3.5 to 4.5 times.
When the lateral stretching step is carried out in the stretching section of the stretching machine, the lateral stretching ratio is the ratio of the polyester substrate width L1 at the time of unloading from the stretching unit to the polyester substrate width L0 at the time of loading into the stretching unit (L1/L0). requested from.
The stretching speed in the lateral stretching step is preferably 8 to 45%/second, more preferably 10 to 30%/second, even more preferably 15 to 20%/second.
 本実施形態に係る製造方法は、上記縦延伸工程、上記樹脂層形成工程、及び、上記横延伸工程以外に、他の工程を有していてもよい。
 本実施形態に係る製造方法は、例えば、原料ポリエステル樹脂を含む溶融樹脂をフィルム状に押し出して、未延伸ポリエステル基材を形成する押出成形工程、2軸配向されたポリエステル基材を加熱して熱固定する熱固定工程、熱固定工程により熱固定されたポリエステル基材を熱固定工程よりも低い温度で加熱して熱緩和する熱緩和工程、熱緩和工程により熱緩和されたポリエステル基材を冷却する冷却工程、及び、冷却工程において、熱緩和されたポリエステル基材を幅方向に拡張する拡張工程からなる群より選択される少なくとも1つの工程を有していてもよい。
 押出成形工程、熱固定工程、熱緩和工程、冷却工程、及び、拡張工程の各工程については、後述する第2実施形態において詳しく説明する。
The manufacturing method according to the present embodiment may have other processes in addition to the longitudinal stretching process, the resin layer forming process, and the lateral stretching process.
The production method according to the present embodiment includes, for example, an extrusion molding step of extruding a molten resin containing a raw material polyester resin into a film to form an unstretched polyester base material, and heating a biaxially oriented polyester base material. A heat setting step of fixing, a heat relaxation step of heating the polyester base material heat-set by the heat setting step at a temperature lower than that of the heat setting step for thermal relaxation, and a heat relaxation step of cooling the polyester base material heat-relaxed. It may have at least one step selected from the group consisting of a cooling step and an expanding step of expanding the heat-relaxed polyester base material in the width direction in the cooling step.
Each step of the extrusion molding step, the heat setting step, the heat relaxation step, the cooling step, and the expansion step will be described in detail in a second embodiment described later.
 本実施形態に係る製造方法は、上記の工程を経て得られた2軸配向ポリエステル基材を巻き取ることにより、ロール状の2軸配向ポリエステル基材を得る巻き取り工程を有していてもよい。
 本実施形態に係る製造方法の縦延伸工程以外の各工程におけるポリエステル基材の搬送速度は、特に制限されないが、生産性及び品質の点で、50~200m/分が好ましく、80~150m/分がより好ましい。
The production method according to the present embodiment may have a winding step of obtaining a roll-shaped biaxially oriented polyester substrate by winding the biaxially oriented polyester substrate obtained through the above steps. .
The transport speed of the polyester base material in each step other than the longitudinal stretching step of the production method according to the present embodiment is not particularly limited, but in terms of productivity and quality, it is preferably 50 to 200 m / min, and 80 to 150 m / min. is more preferred.
〔第2実施形態〕
 本フィルムの製造方法の第2実施形態として、原料ポリエステル樹脂を含む溶融樹脂をフィルム状に押し出して、未延伸ポリエステル基材を形成する押出成形工程と、未延伸ポリエステル基材を搬送方向に延伸して1軸配向ポリエステル基材を形成する縦延伸工程、及び、1軸配向ポリエステル基材を幅方向に延伸して2軸配向ポリエステル基材を形成する横延伸工程からなる2軸延伸工程と、2軸配向ポリエステル基材を加熱して熱固定する熱固定工程と、熱固定工程により熱固定されたポリエステル基材を熱固定工程よりも低い温度で加熱して熱緩和する熱緩和工程と、熱緩和工程により熱緩和されたポリエステル基材を冷却する冷却工程と、冷却工程において、熱緩和されたポリエステル基材を幅方向に拡張する拡張工程と、粒子を含む樹脂層形成用組成物を用いてインラインコーティング法によりポリエステル基材の一方の面に樹脂層を設ける樹脂層形成工程と、を有する方法が挙げられる。
[Second embodiment]
As a second embodiment of the method for producing the present film, an extrusion molding step of extruding a molten resin containing a raw material polyester resin into a film to form an unstretched polyester base material, and stretching the unstretched polyester base material in the conveying direction. a biaxial stretching step consisting of a longitudinal stretching step of forming a uniaxially oriented polyester base material by stretching, and a lateral stretching step of stretching the uniaxially oriented polyester base material in the width direction to form a biaxially oriented polyester base material; A heat setting step of heating and heat setting the axially oriented polyester base material, a heat relaxation step of heating and thermally relaxing the polyester base material heat set by the heat setting step at a temperature lower than that of the heat setting step, and heat relaxation. A cooling step of cooling the polyester base material thermally relaxed by the step, an expansion step of expanding the thermally relaxed polyester base material in the width direction in the cooling step, and an in-line using a resin layer-forming composition containing particles and a resin layer forming step of providing a resin layer on one surface of the polyester substrate by a coating method.
<押出成形工程>
 押出成形工程は、押出成形法により原料のポリエステル樹脂を含む溶融樹脂をフィルム状に押し出して、未延伸ポリエステル基材を形成する工程である。原料のポリエステル樹脂については、上記の(ポリエステル樹脂)の項目において説明したポリエステル樹脂と同義である。
<Extrusion molding process>
The extrusion molding step is a step of forming an unstretched polyester base material by extruding a molten resin containing a polyester resin as a raw material into a film by an extrusion molding method. The raw material polyester resin is synonymous with the polyester resin described in the item (polyester resin) above.
 押出成形法は、例えば押出機を用いて原料樹脂の溶融体を押し出すことによって、原料樹脂を所望の形状に成形する方法である。
 押出ダイから押し出された溶融体は、冷却されることによってフィルム状に成形される。例えば、溶融体をキャスティングロールに接触させ、キャスティングロール上で溶融体を冷却及び固化することで、溶融体をフィルム状に成形できる。溶融体の冷却においては、更に、溶融体に風(好ましくは冷風)を当てることが好ましい。
The extrusion molding method is, for example, a method of molding a raw material resin into a desired shape by extruding a melt of the raw material resin using an extruder.
The melt extruded from the extrusion die is cooled to form a film. For example, the melt can be formed into a film by contacting the melt with a casting roll and cooling and solidifying the melt on the casting roll. In cooling the melt, it is preferable to blow air (preferably cool air) to the melt.
<2軸延伸工程>
 2軸延伸工程は、未延伸ポリエステル基材を縦延伸して1軸配向ポリエステル基材を形成する縦延伸工程、及び、1軸配向ポリエステル基材を横延伸して2軸配向ポリエステル基材を形成する横延伸工程を有する。
 本実施形態に係る製造方法における縦延伸工程及び横延伸工程は、横延伸工程で延伸する1軸配向ポリエステル基材が、樹脂層を有する1軸配向フィルムに限定されていないこと、及び、横延伸工程が横延伸しながら特定の温度Yで加熱する態様に限定されていないこと以外は、第1実施形態が有する縦延伸工程及び横延伸工程と同じであり、第1実施形態における各工程と同様に実施できる。
<Biaxial stretching process>
The biaxial stretching step includes a longitudinal stretching step of longitudinally stretching an unstretched polyester substrate to form a uniaxially oriented polyester substrate, and a lateral stretching step of a uniaxially oriented polyester substrate to form a biaxially oriented polyester substrate. It has a lateral stretching process.
In the longitudinal stretching step and the lateral stretching step in the production method according to the present embodiment, the uniaxially oriented polyester base material stretched in the lateral stretching step is not limited to a uniaxially oriented film having a resin layer, and the lateral stretching Except that the process is not limited to the aspect of heating at a specific temperature Y while laterally stretching, it is the same as the longitudinal stretching step and the lateral stretching step of the first embodiment, and is the same as each step in the first embodiment. can be implemented in
<熱固定工程>
 本実施形態に係る製造方法では、横延伸工程により横延伸されたポリエステル基材に対する加熱処理として、熱固定工程を行うことが好ましい。
 熱固定工程においては、横延伸工程により得られた2軸配向ポリエステル基材を加熱して、熱固定することができる。熱固定によってポリエステル樹脂を結晶化させることにより、ポリエステル基材の収縮を抑えることができる。
 熱固定工程におけるポリエステル基材の表面温度(熱固定温度)は、特に制限されないが、240℃未満が好ましく、235℃以下がより好ましく、230℃以下が更に好ましい。下限は特に制限されないが、190℃以上が好ましく、200℃以上がより好ましく、210℃以上が更に好ましい。
 熱固定工程における加熱時間は、5~50秒間が好ましく、5~30秒間がより好ましく、5~10秒間が更に好ましい。
<Heat setting process>
In the manufacturing method according to the present embodiment, it is preferable to perform a heat setting step as the heat treatment for the polyester base material laterally stretched in the lateral stretching step.
In the heat setting step, the biaxially oriented polyester substrate obtained by the lateral stretching step can be heated and heat set. By crystallizing the polyester resin by heat setting, shrinkage of the polyester base material can be suppressed.
The surface temperature (heat setting temperature) of the polyester base material in the heat setting step is not particularly limited, but is preferably less than 240°C, more preferably 235°C or less, and even more preferably 230°C or less. Although the lower limit is not particularly limited, it is preferably 190°C or higher, more preferably 200°C or higher, and even more preferably 210°C or higher.
The heating time in the heat setting step is preferably 5 to 50 seconds, more preferably 5 to 30 seconds, even more preferably 5 to 10 seconds.
<熱緩和工程>
 熱緩和工程においては、熱固定工程により熱固定されたポリエステル基材を、熱固定工程よりも低い温度で加熱することで熱緩和することが好ましい。熱緩和によってポリエステル基材の残留歪みを緩和できる。
 熱緩和工程におけるポリエステル基材の表面温度(熱緩和温度)は、熱固定温度より、5℃以上低い温度が好ましく、15℃以上低い温度がより好ましく、25℃以上低い温度が更に好ましく、30℃以上低い温度が特に好ましい。即ち、熱緩和温度は、235℃以下が好ましく、225℃以下がより好ましく、210℃以下が更に好ましく、200℃以下が特に好ましい。
 熱緩和温度の下限は、100℃以上が好ましく、110℃以上がより好ましく、120℃以上が更に好ましい。
<Thermal relaxation process>
In the thermal relaxation step, it is preferable to thermally relax the polyester base material heat-set in the heat-setting step by heating at a temperature lower than that in the heat-setting step. Thermal relaxation can relieve the residual strain of the polyester substrate.
The surface temperature (thermal relaxation temperature) of the polyester base material in the thermal relaxation step is preferably 5°C or more lower than the heat setting temperature, more preferably 15°C or more lower, still more preferably 25°C or more lower, and 30°C. Lower temperatures are particularly preferred. That is, the thermal relaxation temperature is preferably 235°C or lower, more preferably 225°C or lower, still more preferably 210°C or lower, and particularly preferably 200°C or lower.
The lower limit of the thermal relaxation temperature is preferably 100°C or higher, more preferably 110°C or higher, and even more preferably 120°C or higher.
<冷却工程>
 本実施形態に係る製造方法は、熱緩和されたポリエステル基材を冷却する冷却工程を有することが好ましい。
 冷却工程におけるポリエステル基材の冷却速度は、特に制限されないが、本フィルムに積層される剥離層の厚みムラが低減し、剥離層の塗布性がより優れる点で、2000℃/分超4000℃/分未満が好ましく、2000~3500℃/分がより好ましく、2200℃/分超3000℃/分未満が更に好ましく、2300~2800℃/分が特に好ましい。また、熱収縮を小さくして寸法安定性を付与するには、冷却工程におけるポリエステルフィルムの冷却速度は、500℃/分超4000℃/分未満が好ましく、700~3000℃/分が更によりより好ましく、1000~2500℃/分が特に好ましい。
<Cooling process>
The production method according to the present embodiment preferably has a cooling step of cooling the thermally relaxed polyester base material.
The cooling rate of the polyester base material in the cooling step is not particularly limited, but it is more than 2000 ° C./min and 4000 ° C./min in that the thickness unevenness of the release layer laminated on the present film is reduced and the coatability of the release layer is more excellent. It is preferably less than 2000 to 3500°C/min, more preferably more than 2200°C/min to less than 3000°C/min, and particularly preferably 2300 to 2800°C/min. In addition, in order to reduce heat shrinkage and impart dimensional stability, the cooling rate of the polyester film in the cooling step is preferably more than 500 ° C./min and less than 4000 ° C./min, and more preferably 700 to 3000 ° C./min. Preferably, 1000-2500° C./min is particularly preferred.
<拡張工程>
 上記冷却工程において、熱緩和されたポリエステル基材を幅方向に拡張する工程を有することも好ましい。
 拡張工程によるポリエステル基材の幅方向の拡張率、即ち、冷却工程の開始前におけるポリエステル基材幅に対する冷却工程の終了時におけるポリエステル基材幅の比率は、0%以上が好ましく、0.001%以上がより好ましく、0.01%以上が更に好ましい。
 拡張率の上限は特に制限されないが、1.3%以下が好ましく、1.2%以下がより好ましく、1.0%以下が更に好ましい。
<Expansion process>
The cooling step preferably includes a step of expanding the thermally relaxed polyester base material in the width direction.
The expansion rate of the polyester base material in the width direction by the expansion process, that is, the ratio of the polyester base width at the end of the cooling process to the polyester base width before the start of the cooling process is preferably 0% or more, and 0.001%. 0.01% or more is more preferable.
Although the upper limit of the expansion rate is not particularly limited, it is preferably 1.3% or less, more preferably 1.2% or less, and even more preferably 1.0% or less.
<樹脂層形成工程>
 本実施形態に係る製造方法では、粒子を含む樹脂層形成用組成物(以下、「組成物A」ともいう。)を用いてインラインコーティングする樹脂層形成工程を有することが好ましい。
 本実施形態における樹脂層形成工程は、組成物A1に代えて組成物Aを用いること、ポリエステル基材の一方の表面に組成物Aを塗布するインラインコーティング法を適用すること、及び、組成物を塗布する対象が1軸配向フィルムに限定されていないこと以外は、第1実施形態の樹脂層形成工程と同じであり、第1実施形態の樹脂層形成工程と同様に実施できる。
 本実施形態における樹脂層形成工程において使用する組成物Aとしては、より好ましい態様も含めて、第1実施形態の組成物A1が好ましい。
<Resin layer forming step>
The production method according to the present embodiment preferably includes a resin layer forming step of in-line coating with a resin layer forming composition containing particles (hereinafter also referred to as “composition A”).
The resin layer forming step in the present embodiment includes using the composition A instead of the composition A1, applying an in-line coating method for applying the composition A to one surface of the polyester substrate, and applying the composition. Except that the object to be coated is not limited to a uniaxially oriented film, the resin layer forming step is the same as the resin layer forming step of the first embodiment, and can be carried out in the same manner as the resin layer forming step of the first embodiment.
As the composition A used in the resin layer forming step of the present embodiment, the composition A1 of the first embodiment is preferred, including more preferred embodiments.
 本実施形態の樹脂層形成工程において、組成物Aを塗布するポリエステル基材は、未延伸のポリエステル基材であってもよく、1軸配向されたポリエステル基材であってもよいが、1軸配向されたポリエステル基材であることが好ましい。即ち、樹脂層形成工程が、縦延伸工程と横延伸工程との間に実施される塗布工程であることが好ましい。1軸配向されたポリエステル基材と樹脂層とを同時に横延伸することにより、ポリエステル基材及び樹脂層の密着性を向上できるためである。 In the resin layer forming step of the present embodiment, the polyester substrate to which the composition A is applied may be an unstretched polyester substrate or a uniaxially oriented polyester substrate. An oriented polyester substrate is preferred. That is, it is preferable that the resin layer forming step is a coating step performed between the longitudinal stretching step and the lateral stretching step. This is because the adhesion between the polyester base material and the resin layer can be improved by simultaneously laterally stretching the uniaxially oriented polyester base material and the resin layer.
 本実施形態に係る製造方法は、第1実施形態と同様に巻き取り工程を有していてもよい。
 また、本実施形態に係る製造方法の縦延伸工程以外の各工程におけるポリエステル基材の搬送速度は、特に制限されないが、横延伸工程、熱固定工程、熱緩和工程、冷却工程及び拡張工程を行う場合、生産性及び品質の点で、50~200m/分が好ましく、80~150m/分がより好ましい。
The manufacturing method according to this embodiment may have a winding step as in the first embodiment.
In addition, although the transport speed of the polyester base material in each step other than the longitudinal stretching step of the production method according to the present embodiment is not particularly limited, the transverse stretching step, heat setting step, heat relaxation step, cooling step and expansion step are performed. In this case, 50 to 200 m/min is preferable, and 80 to 150 m/min is more preferable in terms of productivity and quality.
 本フィルムの製造方法は、樹脂層とポリエステル基材とを備え、第1主面及び第2主面を有し、かつ、要件Aを満たすポリエステルフィルムを製造する方法であれば、特に制限されず、上記の第1実施形態及び第2実施形態以外の製造方法であってもよい。 The method for producing this film is not particularly limited as long as it is a method for producing a polyester film that has a resin layer and a polyester base material, has a first main surface and a second main surface, and satisfies the requirement A. , manufacturing methods other than those of the above-described first and second embodiments may be used.
 例えば、未延伸ポリエステル基材を形成するための原料ポリエステル樹脂を含む溶融樹脂と、樹脂層を形成するための粒子及び非ポリエステル樹脂を含む粒子含有溶融樹脂とを共押し出しすることにより、未延伸ポリエステル基材と樹脂層とが積層された積層体を形成した後、積層体を2軸延伸することにより、本フィルムを製造してもよい。 For example, by co-extruding a molten resin containing a raw material polyester resin for forming an unstretched polyester base material and a particle-containing molten resin containing particles for forming a resin layer and a non-polyester resin, an unstretched polyester The present film may be produced by forming a laminate in which a substrate and a resin layer are laminated, and then biaxially stretching the laminate.
 本フィルムの製造方法については、国際公開第2020/241692号明細書の[0113]~[0169]の記載内容を参酌でき、この内容は本願明細書に組み込まれる。
 また、上記で具体的に説明した本フィルムの製造方法において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
Regarding the production method of this film, the contents described in [0113] to [0169] of International Publication No. 2020/241692 can be referred to, and the contents thereof are incorporated herein.
In addition, in the method for producing the present film specifically described above, a combination of two or more preferred aspects is a more preferred aspect.
[剥離フィルム]
 本フィルムは、剥離フィルムの製造に使用できる。より具体的には、本フィルムの第1主面上に剥離層を設けることにより、本フィルムと、本フィルムの第1主面に配置された剥離層と、を有する剥離フィルムが製造できる。
[Release film]
The film can be used to make release films. More specifically, by providing a release layer on the first main surface of the film, a release film having the film and the release layer disposed on the first main surface of the film can be produced.
 剥離層は、剥離剤としての樹脂を少なくとも含む。剥離層に含まれる樹脂は特に制限されず、例えば、シリコーン樹脂、フッ素樹脂、アルキド樹脂、アクリル樹脂、各種ワックス、及び、脂肪族オレフィンが挙げられる。剥離フィルムが、後述するセラミックグリーンシート製造用の剥離フィルムである場合、セラミックグリーンシートの剥離性の点から、シリコーン樹脂が好ましい。 The release layer contains at least a resin as a release agent. Resins contained in the release layer are not particularly limited, and examples thereof include silicone resins, fluororesins, alkyd resins, acrylic resins, various waxes, and aliphatic olefins. When the release film is a release film for producing a ceramic green sheet, which will be described later, a silicone resin is preferable from the viewpoint of the release property of the ceramic green sheet.
 シリコーン樹脂とは、分子内にシリコーン構造を有する樹脂を意味する。シリコーン樹脂としては、硬化型シリコーン樹脂、シリコーングラフト樹脂、及び、アルキル変性等の変性シリコーン樹脂が挙げられ、反応性の硬化型シリコーン樹脂が好ましい。
 反応性の硬化型シリコーン樹脂としては、付加反応系のシリコーン樹脂、縮合反応系のシリコーン樹脂、及び、紫外線又は電子線硬化系のシリコーン樹脂が挙げられる。中でも、剥離層を低温で形成できることから、低温硬化性を有する付加反応系のシリコーン樹脂、又は、紫外線もしくは電子線硬化系のシリコーン樹脂が好ましい。
A silicone resin means a resin having a silicone structure in its molecule. Examples of silicone resins include curable silicone resins, silicone graft resins, and modified silicone resins such as alkyl-modified silicone resins, and reactive curable silicone resins are preferred.
Examples of reactive curable silicone resins include addition reaction silicone resins, condensation reaction silicone resins, and ultraviolet or electron beam curable silicone resins. Among them, an addition reaction type silicone resin having low-temperature curability or an ultraviolet or electron beam curing type silicone resin is preferable because the release layer can be formed at a low temperature.
 付加反応系のシリコーン樹脂としては、例えば、末端又は側鎖にビニル基を導入したポリジメチルシロキサンとハイドロジエンシロキサンとを、白金触媒を用いて反応させて硬化させることにより得られる樹脂が挙げられる。
 縮合反応系のシリコーン樹脂としては、例えば、末端にOH基を有するポリジメチルシロキサンと、末端にH基を有するポリジメチルシロキサンを、有機錫触媒を用いて縮合反応させることにより形成される、3次元架橋構造を有する樹脂が挙げられる。
 紫外線硬化系のシリコーン樹脂としては、シリコーンゴム架橋と同じラジカル反応を利用するもの、不飽和基を導入して光硬化させるもの、紫外線又は電子線でオニウム塩を分解して強酸を生成し、エポキシ基を開裂させて架橋させるもの、及び、ビニルシロキサンへのチオールの付加反応で架橋するものが挙げられる。より具体的には、アクリレート変性されたポリジメチルシロキサン、及び、グリシドキシ変性されたポリジメチルシロキサンが挙げられる。
Examples of addition reaction silicone resins include resins obtained by reacting and curing polydimethylsiloxane having a terminal or side chain introduced with a vinyl group and hydrogen siloxane using a platinum catalyst.
As the condensation reaction silicone resin, for example, a three-dimensional polydimethylsiloxane having terminal OH groups and a polydimethylsiloxane having terminal H groups are subjected to a condensation reaction using an organic tin catalyst. Examples thereof include resins having a crosslinked structure.
Examples of UV-curing silicone resins include those that use the same radical reaction as silicone rubber cross-linking, those that introduce photo-curing by introducing unsaturated groups, those that generate strong acids by decomposing onium salts with ultraviolet rays or electron beams, and epoxy resins. Those that crosslink by cleaving the groups and those that crosslink by the addition reaction of thiol to vinyl siloxane are included. More specific examples include acrylate-modified polydimethylsiloxane and glycidoxy-modified polydimethylsiloxane.
 剥離層は、上記樹脂以外に添加剤を含んでいてもよい。添加剤としては、剥離力を調整するための軽剥離添加剤及び重剥離添加剤、密着向上剤、硬化剤(架橋剤)、並びに、帯電防止剤等の添加剤等を添加してもよい。
 剥離層に含まれる樹脂は、1種単独で用いてもよいし、2種以上を用いてもよい。
 剥離層における上記樹脂の含有量は、剥離層の全質量に対して、50~99質量%が好ましく、60~98質量%がより好ましい。剥離層における樹脂以外の残部は、上記の添加剤、並びに、剥離層の形成に使用した剥離層形成用塗布液に含まれる溶剤及び触媒等の残渣物の少なくとも一方であってよい。
The release layer may contain additives in addition to the above resins. As additives, additives such as a light release additive and a heavy release additive for adjusting the release force, an adhesion improver, a curing agent (crosslinking agent), and an antistatic agent may be added.
The resin contained in the release layer may be used singly or in combination of two or more.
The content of the resin in the release layer is preferably 50 to 99% by mass, more preferably 60 to 98% by mass, based on the total mass of the release layer. The rest of the release layer other than the resin may be at least one of the above additives and residues such as solvents and catalysts contained in the release layer forming coating liquid used to form the release layer.
 剥離層の厚さは、その使用目的に応じて設定すればよく、特に制限されないが、剥離性能及び剥離層表面の平滑性がバランス良く優れる点で、0.005~2.0μmが好ましく、0.05~1.0μmがより好ましい。 The thickness of the release layer may be set according to the purpose of use, and is not particularly limited. 0.05 to 1.0 μm is more preferred.
<剥離面の表面自由エネルギー>
 剥離フィルムを巻き取る際の帯電防止の点で、剥離層のポリエステルフィルム側とは反対側の表面(剥離面ともいう)の表面自由エネルギーは、30mJ/m以下が好ましく、1~30mJ/mがより好ましく、10~30mJ/mが更に好ましい。
 剥離層の剥離面の表面自由エネルギーは、剥離層を形成する樹脂の種類及び添加剤により調整できる。
<Surface free energy of peeled surface>
In terms of antistatic properties when winding the release film, the surface free energy of the surface of the release layer opposite to the polyester film side (also referred to as the release surface) is preferably 30 mJ/ m2 or less, and is 1 to 30 mJ/m. 2 is more preferred, and 10 to 30 mJ/m 2 is even more preferred.
The surface free energy of the release surface of the release layer can be adjusted by the type of resin forming the release layer and additives.
<剥離面の最大突起高さSp、面平均粗さSa>
 剥離層に形成するセラミックグリーンシート等の機能層を平滑にする点で、剥離面はできるだけ平滑であることが好ましい。具体的には、剥離面の最大突起高さSpは、1~60nmが好ましく、1~40nmがより好ましい。
 また、剥離面の面平均粗さSaは、0~10nmが好ましく、0~5nmがより好ましい。
 剥離面の最大突起高さSp及び面平均粗さSaは、例えば、剥離層を設ける際に剥離層に粒子を入れないこと、並びに、剥離層を形成する樹脂及び添加剤を選択することにより、調整できる。
 剥離面の最大突起高さSp及び面平均粗さSaは、上記の本フィルムの第1主面の最大突起高さSp及び面平均粗さSaの測定方法に従って測定できる。
<Maximum projection height Sp of peeled surface, surface average roughness Sa>
The release surface is preferably as smooth as possible in order to smooth the functional layer such as a ceramic green sheet formed on the release layer. Specifically, the maximum projection height Sp of the peeled surface is preferably 1 to 60 nm, more preferably 1 to 40 nm.
The surface average roughness Sa of the peeled surface is preferably 0 to 10 nm, more preferably 0 to 5 nm.
The maximum protrusion height Sp and surface average roughness Sa of the release surface are determined, for example, by not putting particles in the release layer when providing the release layer, and by selecting the resin and additives that form the release layer. Adjustable.
The maximum protrusion height Sp and surface average roughness Sa of the release surface can be measured according to the above-described method for measuring the maximum protrusion height Sp and surface average roughness Sa of the first main surface of the present film.
 本フィルムの第1主面に剥離層を設ける方法は、特に制限されないが、剥離剤を溶剤に溶解又は分散させてなる剥離層形成用塗布液を、本フィルムの第1主面に塗布し、乾燥により溶剤を除去し、必要に応じて加熱又は光を照射して硬化物を形成する方法が挙げられる。
 剥離層は、光(例えば紫外線)又は熱によって硬化した硬化物であることが好ましい。
The method of providing the release layer on the first main surface of the film is not particularly limited, but a coating solution for forming a release layer in which a release agent is dissolved or dispersed in a solvent is applied to the first main surface of the film, A method of removing the solvent by drying and, if necessary, heating or irradiating with light to form a cured product can be mentioned.
The release layer is preferably a cured product cured by light (eg, ultraviolet rays) or heat.
 剥離層形成用塗布液の塗布方法は特に制限されず、公知の方法を利用できる。塗布方法としては、例えば、スプレーコート法、スリットコート法、ロールコート法、ブレードコート法、スピンコート法、バーコート法及びディップコート法が挙げられる。
 剥離層の形成における加熱温度は、180℃以下が好ましく、150℃以下がより好ましく、120℃以下が更に好ましい。下限は特に制限されず、60℃以上であってよい。
The coating method of the release layer forming coating liquid is not particularly limited, and a known method can be used. Examples of coating methods include spray coating, slit coating, roll coating, blade coating, spin coating, bar coating and dip coating.
The heating temperature for forming the release layer is preferably 180° C. or lower, more preferably 150° C. or lower, and even more preferably 120° C. or lower. The lower limit is not particularly limited, and may be 60°C or higher.
 剥離層形成用塗布液は、上記の樹脂及び溶剤を含有し、必要に応じて、上記の添加剤及び樹脂の硬化に使用される上記の触媒の少なくとも一方を含有してもよい。剥離層形成用塗布液は、これらの成分を混合することにより調製できる。
 溶剤としては、例えば、水、並びに、トルエン、メチルエチルケトン、エタノール、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル及びプロピレングリコールモノエチルエーテル等の有機溶剤が挙げられる。
The release layer-forming coating liquid contains the above resin and solvent, and if necessary, may contain at least one of the above additives and the above catalyst used for curing the resin. The release layer-forming coating liquid can be prepared by mixing these components.
Examples of solvents include water and organic solvents such as toluene, methyl ethyl ketone, ethanol, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether.
 剥離層形成用塗布液は、1種単独の溶剤を含有していてもよく、2種以上の溶剤を含有していてもよい。
 溶剤の含有量は、剥離層形成用塗布液の全質量に対して、80~99.5質量%が好ましく、90~99質量%がより好ましい。
 即ち、剥離層形成用塗布液において、溶剤以外の成分(固形分)の合計含有量は、剥離層形成用塗布液の全質量に対して、0.5~20質量%が好ましく、1~10質量%がより好ましい。
The release layer-forming coating liquid may contain a single solvent, or may contain two or more solvents.
The content of the solvent is preferably 80 to 99.5% by mass, more preferably 90 to 99% by mass, based on the total mass of the coating liquid for forming a peeling layer.
That is, in the release layer-forming coating liquid, the total content of components (solid content) other than the solvent is preferably 0.5 to 20% by mass, preferably 1 to 10%, based on the total mass of the release layer-forming coating liquid. % by mass is more preferred.
 また、本フィルムと剥離層との密着性を向上させるために、剥離層を設ける前に、本フィルムの第1主面に、アンカーコート、コロナ処理、及び、プラズマ処理等の前処理を施してもよい。 In order to improve the adhesion between the present film and the release layer, the first main surface of the present film is subjected to pretreatment such as anchor coating, corona treatment, and plasma treatment before providing the release layer. good too.
〔用途〕
 本フィルムを有する剥離フィルムは、セラミックグリーンシート製造用の剥離フィルム(キャリアフィルム)として用いることが好ましい。上記の剥離フィルムを用いて製造されるセラミックグリーンシートは、小型化及び大容量化に伴って内部電極の多層化が求められているセラミックコンデンサーの製造に好適に用いることができる。
 また、本フィルムを有する剥離フィルムは、ドライフィルムレジストの保護フィルム、半導体工程用等のプロセス製造用剥離フィルム等に用いてもよい。
[Use]
A release film having this film is preferably used as a release film (carrier film) for producing a ceramic green sheet. The ceramic green sheet produced using the above release film can be suitably used for production of ceramic capacitors for which multi-layered internal electrodes are required in accordance with miniaturization and increased capacity.
Moreover, the release film having the present film may be used as a protective film for dry film resist, a release film for process manufacturing such as a semiconductor process, and the like.
 上記剥離フィルムを使用してセラミックグリーンシートを製造する方法は、特に制限されず、公知の方法で実施できる。セラミックグリーンシートの製造方法としては、例えば、準備したセラミックスラリーを、上記剥離フィルムの剥離層表面に塗布し、セラミックスラリーに含まれる溶媒を乾燥除去する方法が挙げられる。
 セラミックスラリーの塗布方法は、特に制限されず、例えば、セラミック粉体及びバインダー剤を溶媒に分散させてなるセラミックスラリーを、リバースロール法により塗布し、加熱乾燥により溶媒を除去する方法等の公知の方法が適用できる。バインダー剤としては、特に限定されず、例えば、ポリビニルブチラールが挙げられる。また、溶媒としても特に限定されず、例えば、エタノール及びトルエンが挙げられる。
A method for producing a ceramic green sheet using the release film is not particularly limited, and a known method can be used. As a method for producing a ceramic green sheet, for example, a prepared ceramic slurry is applied to the surface of the release layer of the release film, and the solvent contained in the ceramic slurry is removed by drying.
The method of applying the ceramic slurry is not particularly limited. For example, a known method such as applying a ceramic slurry obtained by dispersing ceramic powder and a binder in a solvent by a reverse roll method and removing the solvent by heating and drying. method can be applied. The binder agent is not particularly limited, and examples thereof include polyvinyl butyral. Also, the solvent is not particularly limited, and examples thereof include ethanol and toluene.
 以下に実施例を挙げて本開示を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順は、本開示の趣旨を逸脱しない限り、適宜、変更することができる。従って、本開示の範囲は以下に示す具体例に制限されない。なお、特に断りのない限り、「部」及び「%」は質量基準である。 The present disclosure will be described more specifically below with examples. Materials, usage amounts, proportions, processing details, and processing procedures shown in the following examples can be changed as appropriate without departing from the scope of the present disclosure. Accordingly, the scope of the present disclosure is not limited to the specific examples provided below. "Parts" and "%" are based on mass unless otherwise specified.
〔実施例1〕
<押出成形工程>
 重合触媒として特許第5575671号公報に記載のチタン化合物(クエン酸キレートチタン錯体、VERTEC AC-420、ジョンソン・マッセイ社製)を用いて、ポリエチレンテレフタレートのペレットを製造した。得られたペレットを、含水率が50ppm以下になるまで乾燥させた後、特許第6049648号公報に記載の二軸混練押出し機のホッパーに投入し、次いで、280℃で溶融して押出した。溶融体(メルト)を、濾過器(孔径3μm)に通した後、ダイから25℃の冷却ドラムに押し出すことにより、ポリエチレンテレフタレートからなる未延伸フィルムを得た。なお、押し出された溶融体(メルト)は、静電印加法により冷却ドラムに密着させた。
 未延伸フィルムを構成するポリエチレンテレフタレートの融点(Tm)は258℃であり、ガラス転移温度(Tg)は80℃であった。
[Example 1]
<Extrusion molding process>
Polyethylene terephthalate pellets were produced using a titanium compound described in Japanese Patent No. 5575671 (citric acid chelate titanium complex, VERTEC AC-420, manufactured by Johnson Matthey) as a polymerization catalyst. The obtained pellets were dried to a moisture content of 50 ppm or less, put into a hopper of a twin-screw kneading extruder described in Japanese Patent No. 6049648, and then melted at 280°C and extruded. The melt was passed through a filter (pore size 3 μm) and then extruded from a die onto a cooling drum at 25° C. to obtain an unstretched film made of polyethylene terephthalate. The extruded melt (melt) was brought into close contact with the cooling drum by an electrostatic application method.
The polyethylene terephthalate constituting the unstretched film had a melting point (Tm) of 258°C and a glass transition temperature (Tg) of 80°C.
<縦延伸工程(工程1)>
 上記未延伸フィルムに対し、以下の方法により縦延伸工程を施した。
 予熱された未延伸フィルムを、下記の条件にて、周速の異なる2対のロールの間に通過させて縦方向(搬送方向)に延伸することにより、1軸配向フィルムを作製した。
(縦延伸条件)
 予熱温度:75℃
 延伸温度:90℃
 延伸倍率:3.4倍
 延伸速度:1300%/秒
<Longitudinal stretching step (step 1)>
The unstretched film was subjected to a longitudinal stretching step by the following method.
A uniaxially oriented film was produced by passing the preheated unstretched film between two pairs of rolls having different circumferential speeds and stretching it in the machine direction (conveyance direction) under the following conditions.
(Longitudinal stretching conditions)
Preheating temperature: 75°C
Stretching temperature: 90°C
Stretch ratio: 3.4 times Stretching speed: 1300%/sec
<樹脂層形成工程(工程2)>
 縦延伸された1軸配向フィルム(ポリエステル基材)の片面に、下記の組成物A-1(樹脂層形成用組成物)をバーコーターで塗布し、形成された塗布膜を100℃の熱風にて乾燥させて、ポリエステル基材の片面に樹脂層を形成した。この工程において、最終的に製造される2軸配向フィルムにおいて後述する厚さの樹脂層が成膜されるように、組成物A-1の塗布量を調整した。
<Resin Layer Forming Step (Step 2)>
On one side of a longitudinally stretched uniaxially oriented film (polyester base material), the following composition A-1 (resin layer forming composition) is applied with a bar coater, and the formed coating film is subjected to hot air at 100 ° C. and dried to form a resin layer on one side of the polyester substrate. In this step, the coating amount of composition A-1 was adjusted so that a resin layer having a thickness described later was formed in the finally produced biaxially oriented film.
(組成物A-1)
 下記に示す各成分を混合することにより、組成物A-1を調製した。調製された組成物A-1に対して、孔径が6μmであるフィルター(F20、株式会社マーレフィルターシステムズ製)を用いたろ過処理、及び、膜脱気(2x6ラジアルフロースーパーフォビック、ポリポア株式会社製)を実施した後、得られた組成物A-1を、1軸配向フィルムの表面に塗布した。
・樹脂1(ウレタン樹脂、タケラック(登録商標)W-605、三井化学株式会社製、固形分濃度を25質量%に調整した水分散液):157質量部
・アニオン性炭化水素系界面活性剤(ラピゾール(登録商標)A-90、スルホコハク酸ジ-2-エチルヘキシルナトリウム、日油株式会社製、固形分濃度1質量%水希釈液):56質量部
・粒子1(非架橋スチレン樹脂粒子(スチレン共重合体)、Nipol(登録商標)UFN1008、日本ゼオン株式会社製、平均粒子径1.9μm、固形分濃度10質量%に調整した水分散液):8質量部
・水:779質量部
 なお、示差走査熱量計(「DSC-60aPlus」、株式会社島津製作所製)を用いて上述の方法により粒子1の温度Xを測定した結果、粒子1の温度Xは100℃であった。
(Composition A-1)
Composition A-1 was prepared by mixing each component shown below. The prepared composition A-1 was filtered using a filter with a pore size of 6 μm (F20, manufactured by Mahle Filter Systems Co., Ltd.), and membrane degassing (2x6 radial flow superphobic, Polypore Co., Ltd. ), the resulting composition A-1 was applied to the surface of the uniaxially oriented film.
・ Resin 1 (urethane resin, Takelac (registered trademark) W-605, manufactured by Mitsui Chemicals, Inc., an aqueous dispersion with a solid content concentration of 25% by mass): 157 parts by mass ・Anionic hydrocarbon surfactant ( Rapisol (registered trademark) A-90, di-2-ethylhexyl sodium sulfosuccinate, manufactured by NOF Corporation, solid content concentration 1% by mass diluted with water): 56 parts by mass Particles 1 (non-crosslinked styrene resin particles (styrene Polymer), Nipol (registered trademark) UFN1008, manufactured by Nippon Zeon Co., Ltd., average particle diameter 1.9 μm, aqueous dispersion adjusted to a solid content concentration of 10% by mass): 8 parts by mass, water: 779 parts by mass A scanning calorimeter (“DSC-60aPlus”, manufactured by Shimadzu Corporation) was used to measure the temperature X of the particles 1 according to the method described above, and the temperature X of the particles 1 was 100°C.
<横延伸工程(工程3)>
 縦延伸工程及び樹脂層形成工程を行ったフィルムに対し、テンターを用いて下記の条件にて幅方向に延伸し、2軸配向フィルムを作製した。なお、上述の方法により測定した横延伸工程におけるフィルムの表面温度(温度Y)は、下記の延伸温度と同じであった。
(横延伸条件)
 予熱温度:100℃
 延伸温度:120℃
 延伸倍率:4.2倍
 延伸速度:50%/秒
<Lateral stretching step (step 3)>
The film subjected to the longitudinal stretching step and the resin layer forming step was stretched in the width direction using a tenter under the following conditions to prepare a biaxially oriented film. The surface temperature (temperature Y) of the film in the lateral stretching step measured by the method described above was the same as the stretching temperature below.
(Lateral stretching conditions)
Preheating temperature: 100°C
Stretching temperature: 120°C
Stretch ratio: 4.2 times Stretching speed: 50%/sec
<熱固定工程>
 上記横延伸工程を施した2軸配向フィルムに対して、テンターを用いて下記条件で加熱することにより、フィルムを熱固定する熱固定工程を行った。
(熱固定条件)
 熱固定温度:227℃
 熱固定時間:6秒間
<Heat setting process>
The biaxially oriented film subjected to the lateral stretching step was subjected to a heat setting step of heat setting the film by heating under the following conditions using a tenter.
(Heat fixation conditions)
Heat setting temperature: 227°C
Heat fixation time: 6 seconds
<熱緩和工程>
 次いで、熱固定されたフィルムに対して、下記条件で加熱することにより、フィルムの緊張を緩和する熱緩和工程を行った。また、熱緩和工程において、フィルムの両端を把持するテンターの把持部材間の距離(テンター幅)を狭めることにより、熱固定工程終了時と比較してフィルム幅を縮小した。下記の熱緩和率Lrは、熱緩和工程の開始時におけるフィルム幅L1に対する熱緩和工程の終了時におけるフィルム幅L2から、Lr=(L1-L2)/L1×100の式により求めた。
(熱緩和条件)
 熱緩和温度:190℃
 熱緩和率Lr:4%
<Thermal relaxation process>
Then, the heat-set film was subjected to a heat relaxation step for relaxing the tension of the film by heating under the following conditions. Also, in the heat relaxation step, the film width was reduced compared to that at the end of the heat setting step by narrowing the distance (tenter width) between the gripping members of the tenter that grips both ends of the film. The following thermal relaxation rate Lr was obtained from the film width L2 at the end of the thermal relaxation process with respect to the film width L1 at the start of the thermal relaxation process by the formula Lr=(L1−L2)/L1×100.
(Thermal relaxation conditions)
Thermal relaxation temperature: 190°C
Thermal relaxation rate Lr: 4%
<冷却工程、及び、拡張工程>
 熱緩和されたフィルムに対して、下記条件で冷却する冷却工程を行った。また、冷却工程において、テンター幅を広げることにより、熱緩和工程終了時と比較してフィルム幅を拡張する拡張工程を実施した。
 下記の冷却速度は、フィルムが延伸機の冷却部に搬入されてから搬出されるまでの滞在時間を冷却時間taとして、冷却部への搬入時に測定したフィルム表面温度と冷却部の搬出時に測定したフィルム表面温度との温度差ΔT(℃)を、冷却時間taで割ることにより求めた。
 また、下記の拡張率ΔLは、冷却工程の開始時におけるポリエステルフィルムのフィルム幅L2に対する冷却工程の終了時におけるフィルム幅L3から、ΔL=(L3-L2)/L2×100の式により求めた。
(冷却条件)
 冷却速度:2500℃/分
(拡張条件)
 拡張率ΔL:0.6%
<Cooling process and expansion process>
A cooling step was performed on the thermally relaxed film under the following conditions. Further, in the cooling process, an expansion process was carried out in which the width of the tenter was expanded to expand the width of the film compared to that at the end of the thermal relaxation process.
The following cooling rates were measured when the film surface temperature was measured when the film was carried into the cooling section and when the cooling section was carried out, with the cooling time ta being the time the film stayed in the cooling section after being carried into the cooling section of the stretching machine until it was taken out. It was obtained by dividing the temperature difference ΔT (°C) from the film surface temperature by the cooling time ta.
Further, the following expansion rate ΔL was obtained from the film width L3 at the end of the cooling process with respect to the film width L2 of the polyester film at the start of the cooling process, by the formula ΔL = (L3 - L2) / L2 × 100.
(Cooling condition)
Cooling rate: 2500°C/min (extended condition)
Expansion rate ΔL: 0.6%
<巻き取り工程>
 冷却工程により冷却されたフィルムに対して、トリミング装置を用いて、フィルムの幅方向の両端から20cmの位置で搬送方向に沿って連続的にフィルムを切断して、フィルムの両端部をトリミングした。次いで、フィルムの両端から幅方向10mmまでの領域に対して、押出し加工(ナーリング)を行った後、張力40kg/mでフィルムを巻き取った。
 以上の方法により、ポリエステル基材及び樹脂層が積層された2軸配向フィルム(ポリエステルフィルム)を作製した。得られた2軸配向フィルムの厚さは31μmであり、幅は1.5mであり、巻長は7000mであった。
 また、ミクロトームを用いて2軸配向フィルムを切削して2軸配向フィルムの厚さ方向に沿った断面を有するサンプルを作製し、得られたサンプルにArイオンでのエッチング処理及びPtでの蒸着処理を施した後、サンプルの断面における樹脂層の厚さを、SEM(株式会社日立ハイテク製「S-4800」)を用いて上述の方法で測定したところ、樹脂層の厚さは60nmであった。
<Winding process>
Using a trimming device, the film cooled in the cooling step was continuously cut along the conveying direction at positions 20 cm from both ends in the width direction of the film to trim both ends of the film. Then, the film was wound up with a tension of 40 kg/m after extrusion processing (knurling) was performed on a region from both ends of the film to 10 mm in the width direction.
A biaxially oriented film (polyester film) in which the polyester substrate and the resin layer were laminated was produced by the above method. The resulting biaxially oriented film had a thickness of 31 μm, a width of 1.5 m and a winding length of 7000 m.
In addition, the biaxially oriented film was cut using a microtome to prepare a sample having a cross section along the thickness direction of the biaxially oriented film, and the obtained sample was etched with Ar ions and vapor-deposited with Pt. After applying, the thickness of the resin layer in the cross section of the sample was measured by the above method using SEM (“S-4800” manufactured by Hitachi High-Tech Co., Ltd.), and the thickness of the resin layer was 60 nm. .
〔実施例2〕
 樹脂1に代えて樹脂2(ウレタン樹脂、ハイドラン(登録商標)AP-40N、DIC株式会社製、固形分濃度25質量%に調整した水分散液)を用いたこと以外は、実施例1における組成物A-1の調製方法に従って、組成物A-2を調製した。
 樹脂層形成工程において、組成物A-1に代えて組成物A-2を用いたこと以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。得られた2軸配向フィルムの厚さは31μmであり、幅は1.5mであり、巻長は7000mであった。また、2軸配向フィルムの樹脂層の厚さは60nmであった。
[Example 2]
Composition in Example 1, except that Resin 2 (urethane resin, Hydran (registered trademark) AP-40N, manufactured by DIC Corporation, an aqueous dispersion adjusted to a solid content concentration of 25% by mass) was used instead of Resin 1. Composition A-2 was prepared according to the preparation method of Product A-1.
A biaxially oriented film was produced according to the method described in Example 1, except that composition A-2 was used in place of composition A-1 in the resin layer forming step. The resulting biaxially oriented film had a thickness of 31 μm, a width of 1.5 m and a winding length of 7000 m. The thickness of the resin layer of the biaxially oriented film was 60 nm.
〔実施例3〕
 樹脂1に代えて樹脂3(ウレタン樹脂、アデカボンタイター(登録商標)HUX-524、ADEKA株式会社製、固形分濃度25質量%に調整した水分散液)を用いたこと以外は、実施例1における組成物A-1の調製方法に従って、組成物A-3を調製した。
 樹脂層形成工程において、組成物A-1に代えて組成物A-3を用いたこと以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。得られた2軸配向フィルムの厚さは31μmであり、幅は1.5mであり、巻長は7000mであった。また、2軸配向フィルムの樹脂層の厚さは60nmであった。
[Example 3]
Example 1 except that resin 3 (urethane resin, ADEKA BONDITTER (registered trademark) HUX-524, manufactured by ADEKA Corporation, an aqueous dispersion adjusted to a solid content concentration of 25% by mass) was used instead of resin 1. Composition A-3 was prepared according to the method for preparing composition A-1 in .
A biaxially oriented film was produced according to the method described in Example 1, except that composition A-3 was used in place of composition A-1 in the resin layer forming step. The resulting biaxially oriented film had a thickness of 31 μm, a width of 1.5 m and a winding length of 7000 m. Moreover, the thickness of the resin layer of the biaxially oriented film was 60 nm.
〔実施例4〕
 粒子1に代えて粒子2(架橋ウレタン樹脂粒子、アートパール(登録商標)C-1000T、根上工業株式会社製、平均粒子径3.0μm、固形分濃度10質量%に調整した水分散液)を用いたこと以外は、実施例2における組成物A-2の調製方法に従って、組成物A-4を調製した。実施例1と同様に測定した結果、粒子2の温度Xは-13℃であった。
 樹脂層形成工程において、組成物A-1に代えて組成物A-4を用いたこと以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。得られた2軸配向フィルムの厚さは31μmであり、幅は1.5mであり、巻長は7000mであった。また、2軸配向フィルムの樹脂層の厚さは60nmであった。
[Example 4]
Instead of Particle 1, Particle 2 (crosslinked urethane resin particles, Artpearl (registered trademark) C-1000T, manufactured by Negami Kogyo Co., Ltd., average particle diameter 3.0 μm, aqueous dispersion adjusted to a solid content concentration of 10% by mass). Composition A-4 was prepared according to the method for preparing composition A-2 in Example 2, except that it was used. As a result of measuring in the same manner as in Example 1, the temperature X of the particles 2 was -13°C.
A biaxially oriented film was produced according to the method described in Example 1, except that composition A-4 was used in place of composition A-1 in the resin layer forming step. The resulting biaxially oriented film had a thickness of 31 μm, a width of 1.5 m and a winding length of 7000 m. Moreover, the thickness of the resin layer of the biaxially oriented film was 60 nm.
〔比較例1〕
 粒子1に代えて粒子3(非架橋ポリメタクリル酸メチル(PMMA)樹脂粒子、テクポリマー(登録商標)MB-4、積水化成品工業株式会社製、平均粒子径4.0μm、固形分濃度10質量%に調整した水分散液)を用いたこと以外は、実施例2における組成物A-2の調製方法に従って、組成物CA-1を調製した。実施例1と同様に測定した結果、粒子3の温度Xは102℃であった。
 樹脂層形成工程において、組成物A-1に代えて組成物CA-1を用いたこと以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。得られた2軸配向フィルムの厚さは31μmであり、幅は1.5mであり、巻長は7000mであった。また、2軸配向フィルムの樹脂層の厚さは60nmであった。
[Comparative Example 1]
Particle 3 instead of particle 1 (non-crosslinked polymethyl methacrylate (PMMA) resin particles, Techpolymer (registered trademark) MB-4, manufactured by Sekisui Plastics Co., Ltd., average particle size 4.0 μm, solid content concentration 10 mass %) was prepared according to the method for preparing composition A-2 in Example 2, except that composition CA-1 was prepared. As a result of measuring in the same manner as in Example 1, the temperature X of the particles 3 was 102°C.
A biaxially oriented film was produced according to the method described in Example 1, except that composition CA-1 was used instead of composition A-1 in the resin layer forming step. The resulting biaxially oriented film had a thickness of 31 μm, a width of 1.5 m and a winding length of 7000 m. Moreover, the thickness of the resin layer of the biaxially oriented film was 60 nm.
〔比較例2〕
 樹脂1に代えて樹脂4(アクリル樹脂(メタクリル酸メチル、スチレン、2-エチルヘキシルアクリレート、2-ヒドロキシエチルメタクリレート及びアクリル酸を質量比59:8:26:5:2で重合させてなる共重合体)の水分散液、固形分濃度25質量%)を用いたこと、並びに、粒子1に代えて粒子4(架橋アクリル樹脂粒子、エポスター(登録商標)MX200W、日本触媒株式会社製、平均粒子径0.35μm、固形分濃度10質量%に調整した水分散液)を用いたこと以外は、実施例2における組成物A-1の調製方法に従って、組成物CA-2を調製した。実施例1と同様に測定した結果、粒子4の温度Xは105℃であった。
 樹脂層形成工程において組成物A-1に代えて組成物CA-2を用いたこと、及び、横延伸工程において延伸温度を150℃としたこと以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。なお、上述の方法により測定した横延伸工程におけるフィルムの表面温度は、延伸温度と同じ150℃であった。得られた2軸配向フィルムの厚さは31μmであり、幅は1.5mであり、巻長は7000mであった。また、2軸配向フィルムの樹脂層の厚さは60nmであった。
[Comparative Example 2]
Resin 4 (copolymer obtained by polymerizing acrylic resin (methyl methacrylate, styrene, 2-ethylhexyl acrylate, 2-hydroxyethyl methacrylate and acrylic acid at a mass ratio of 59:8:26:5:2) instead of resin 1 ), solid content concentration 25% by mass) was used, and instead of particle 1, particle 4 (crosslinked acrylic resin particles, Eposter (registered trademark) MX200W, manufactured by Nippon Shokubai Co., Ltd., average particle diameter 0 Composition CA-2 was prepared according to the method for preparing composition A-1 in Example 2, except that an aqueous dispersion adjusted to .35 μm and a solid content concentration of 10% by mass was used. As a result of measuring in the same manner as in Example 1, the temperature X of the particles 4 was 105°C.
In accordance with the method described in Example 1, except that the composition CA-2 was used in place of the composition A-1 in the resin layer forming step, and the stretching temperature was set to 150 ° C. in the lateral stretching step, 2 An axially oriented film was produced. The surface temperature of the film in the transverse stretching step measured by the method described above was 150° C., the same as the stretching temperature. The resulting biaxially oriented film had a thickness of 31 μm, a width of 1.5 m and a winding length of 7000 m. Moreover, the thickness of the resin layer of the biaxially oriented film was 60 nm.
 図1に、実施例3で作製された2軸配向フィルム(ポリエステルフィルム)の第2主面をSEMにより観察して得られた観察画像(写真)を示し、図2に、比較例1で作製された2軸配向フィルムの第2主面をSEMにより観察して得られた観察画像(写真)を示す。
 図1に示すように、本発明のポリエステルフィルムの第2主面に存在する突起は、面内の1方向に沿って延びた形状を有する。一方、図2からは、比較例1の2軸配向フィルムの第2主面に存在する突起は、その輪郭が明確であり、球形に近い形状を有することが観察できる。
FIG. 1 shows an observation image (photograph) obtained by observing the second main surface of the biaxially oriented film (polyester film) produced in Example 3 by SEM, and FIG. An observed image (photograph) obtained by observing the second main surface of the biaxially oriented film obtained by observing with an SEM is shown.
As shown in FIG. 1, the projections present on the second main surface of the polyester film of the present invention have a shape extending along one direction within the surface. On the other hand, from FIG. 2, it can be observed that the projections present on the second main surface of the biaxially oriented film of Comparative Example 1 have clear outlines and nearly spherical shapes.
〔2軸配向フィルムの物性測定〕
 各実施例及び各比較例で作製された2軸配向フィルムについて、以下の物性を測定した。
[Measurement of physical properties of biaxially oriented film]
The following physical properties were measured for the biaxially oriented films produced in each example and each comparative example.
<比率A、突起高さ、突起長径>
 2軸配向フィルムのサンプルの第2主面に対して、フェルトペンでマーキングを行った後、白金蒸着を行った。サンプルを水平面に対して15°傾けた状態で、SEM(「S4700」、株式会社日立ハイテク製)を用いて第2主面のマークの近くを低倍率で撮像した。100μm×100μmの観察領域(測定視野)に存在する突起の中で長径が最長である突起を選択し、倍率を上げて撮像して、その突起の長径(面内方向の最大径)を測定した。
 次いで、光学干渉計(Vertscan 3300G Lite、株式会社日立ハイテク製)を用いて、マーク部を下記測定条件で測定し突起の分布を確認した。その分布とSEMでの観察結果を照合し、SEMで観察した突起を特定した。突起特定後、2次元解析にて突起断面を観察し、突起の高さを測定した。
 測定された突起の長径及び高さから、特定された突起の長径に対する突起の高さの比率を算出した。
(測定条件)
・測定モード:WAVEモード
・対物レンズ:50倍
・測定面積:186μm×155μm
<Ratio A, protrusion height, protrusion length>
After marking with a felt pen on the second main surface of the sample of the biaxially oriented film, platinum deposition was performed. With the sample tilted at 15° with respect to the horizontal plane, an SEM ("S4700", manufactured by Hitachi High-Tech Co., Ltd.) was used to image the vicinity of the mark on the second main surface at low magnification. Among the protrusions present in the observation area (measurement field) of 100 μm × 100 μm, the protrusion with the longest major axis was selected, and the image was taken at an increased magnification, and the major axis (maximum diameter in the in-plane direction) of the protrusion was measured. .
Then, using an optical interferometer (Vertscan 3300G Lite, manufactured by Hitachi High-Tech Co., Ltd.), the mark portion was measured under the following measurement conditions to confirm the distribution of protrusions. The distribution was collated with the observation result by SEM, and the protrusion observed by SEM was specified. After specifying the protrusion, the cross section of the protrusion was observed by two-dimensional analysis, and the height of the protrusion was measured.
From the measured long diameter and height of the projection, the ratio of the height of the projection to the long diameter of the specified projection was calculated.
(Measurement condition)
・Measurement mode: WAVE mode ・Objective lens: 50x ・Measurement area: 186 μm×155 μm
 上記サンプルの第2主面の異なる10か所の観察領域において、上記の方法で突起の長径、及び、その突起に対応した高さをそれぞれ測定し、比率を算出した。各観察領域について求めた比率の算術平均値を、上記サンプルの第2主面の比率Aとして採用した。また、各観察領域について求めた突起の長径、及び、その突起に対応した高さの算術平均値を上記サンプルの第2主面の突起高さ、及び、突起長径としてそれぞれ採用した。 In 10 different observation areas on the second main surface of the sample, the length of the protrusion and the height corresponding to the protrusion were measured by the above method, and the ratio was calculated. The arithmetic average value of the ratios obtained for each observation area was adopted as the ratio A of the second main surface of the sample. Further, the length of the protrusions obtained for each observation area and the arithmetic mean value of the height corresponding to the protrusions were adopted as the height of the protrusions on the second main surface of the sample and the length of the protrusions, respectively.
<表面自由エネルギー>
 2軸配向フィルムが有する第2主面(突起が存在する表面)の表面自由エネルギーを、下記の方法で測定した。
 接触角計(協和界面化学株式会社製、DROPMASTER-501)を用いて、25℃の条件にて、製造された2軸配向フィルムの第2主面に液滴を滴下し、液滴が表面に付着してから1秒後の接触角を測定した。液滴として精製水2μL、ヨウ化メチレン1μL及びエチレングリコール1μLを使用し、測定されたそれぞれの接触角から、北崎・畑の方法により表面自由エネルギー(単位:mJ/m)を算出した。
 なお、上記の方法で得られた「表面自由エネルギー」は、表面自由エネルギーの極性成分及び水素結合成分の合計である。
<Surface free energy>
The surface free energy of the second main surface (the surface on which projections are present) of the biaxially oriented film was measured by the following method.
Using a contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., DROPMASTER-501), droplets are dropped on the second main surface of the produced biaxially oriented film at 25 ° C., and the droplets are on the surface. The contact angle was measured 1 second after adhering. Using 2 μL of purified water, 1 μL of methylene iodide and 1 μL of ethylene glycol as droplets, the surface free energy (unit: mJ/m 2 ) was calculated from the measured contact angles by the method of Kitazaki and Hata.
The "surface free energy" obtained by the above method is the sum of the polar component and the hydrogen bond component of the surface free energy.
[評価]
 各実施例及び各比較例で作製された2軸配向フィルムについて、以下の評価を行った。
[evaluation]
The biaxially oriented films produced in each example and each comparative example were evaluated as follows.
<剥離フィルムの作製>
 巻き取られた2軸配向フィルムのフィルムロールを、温度25℃、湿度50%RHの環境下で1週間放置した後、特開2015-195291号公報の実施例1を参考に剥離フィルムを作製した。
 具体的には、まず、特開2015-195291号公報の製造例1を参考に、ヘキサメチレンジイソシアネートと、ジメチルオルガノポリシロキサンと、ジペンタエリスリトールペンタアクリレート(アロニックス(登録商標)M-400、東亜合成株式会社製)とを反応させ、硬化型シリコーン化合物(A1)を合成した。次に、硬化型シリコーン化合物(A1)100質量部と、光重合開始剤(B1)として、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン(IGM Resins B.V.社製,製品名「Omnirad127」)5質量部とを、イソプロピルアルコール及びメチルエチルケトンの混合溶剤(質量比3:1)にて固形分濃度20質量%に希釈し、剥離層形成用塗布液を得た。
 得られた剥離層形成用塗布液を、上述した、1週間放置後の2軸配向フィルムの第1主面(ポリエステル基材側の表面)に、硬化後の厚さが1μmとなるように剥離層を塗布し、80℃で1分間乾燥させた。その後、紫外線を照射(照射量:250mJ/cm)し、剥離剤層形成用塗布液を硬化させて剥離層を形成し、幅1500mmの剥離フィルムを得た。
<Preparation of release film>
After leaving the film roll of the wound biaxially oriented film in an environment of temperature 25° C. and humidity 50% RH for 1 week, a release film was produced with reference to Example 1 of JP-A-2015-195291. .
Specifically, first, referring to Production Example 1 of JP-A-2015-195291, hexamethylene diisocyanate, dimethylorganopolysiloxane, and dipentaerythritol pentaacrylate (Aronix (registered trademark) M-400, Toa Gosei Co., Ltd.) to synthesize a curable silicone compound (A1). Next, 100 parts by mass of a curable silicone compound (A1) and 2-hydroxy-1-{4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl] as a photopolymerization initiator (B1). -Phenyl}-2-methyl-propan-1-one (manufactured by IGM Resins B.V., product name "Omnirad 127") and 5 parts by mass, in a mixed solvent of isopropyl alcohol and methyl ethyl ketone (mass ratio 3: 1) to obtain a release layer-forming coating liquid.
The obtained coating solution for forming a release layer was peeled off from the first main surface (surface on the side of the polyester substrate) of the above-mentioned biaxially oriented film after being left for one week so that the thickness after curing was 1 μm. A layer was applied and dried at 80° C. for 1 minute. Thereafter, ultraviolet rays were irradiated (irradiation amount: 250 mJ/cm 2 ) to cure the release agent layer-forming coating liquid to form a release layer, thereby obtaining a release film having a width of 1500 mm.
<セラミックスラリーの調製>
 チタン酸バリウム粉末(BaTiO;堺化学工業株式会社製,製品名「BT-03」)100質量部、バインダーとしてのポリビニルブチラール樹脂(積水化学工業株式会社製,製品名「エスレック(登録商標)B・K BM-2」)8質量部、可塑剤としてのフタル酸ジオクチル(関東化学株式会社製,フタル酸ジオクチル、鹿1級)4質量部、並びに、トルエン及びエタノールの混合液(質量比6:4)135質量部を混合し、ジルコニアビーズの存在下でボールミルを用いて混合液を分散させ、得られた分散液からビーズを除去することにより、セラミックスラリーを調製した。
<Preparation of ceramic slurry>
Barium titanate powder (BaTiO 3 ; manufactured by Sakai Chemical Industry Co., Ltd., product name “BT-03”) 100 parts by mass, polyvinyl butyral resin as a binder (manufactured by Sekisui Chemical Co., Ltd., product name “S-Lec (registered trademark) B・K BM-2”) 8 parts by mass, 4 parts by mass of dioctyl phthalate as a plasticizer (manufactured by Kanto Chemical Co., Ltd., dioctyl phthalate, deer 1st class), and a mixed solution of toluene and ethanol (mass ratio 6: 4) A ceramic slurry was prepared by mixing 135 parts by mass, dispersing the mixture using a ball mill in the presence of zirconia beads, and removing the beads from the resulting dispersion.
〔凹凸欠陥(評価1)〕
 後述する高速搬送での巻き取り性評価に記載の方法で上記剥離フィルムをロール状に巻き取った。次いで、上記セラミックスラリーを、ロール状の剥離フィルムから巻き出した剥離フィルムの剥離層の表面に、ダイコーターを用いて、乾燥後の膜厚が1μmになるように、幅250mm及び長さ10mにわたって塗工した。その後、得られた塗膜を乾燥機にて80℃で1分間乾燥させた。セラミックグリーンシートと剥離フィルムとの積層フィルムについて、剥離フィルム側から蛍光灯を照らして、成形したすべてのセラミックグリーンシート面を目視で検査し、以下の判断基準により凹凸欠陥の評価を実施した。
[Uneven defect (evaluation 1)]
The above release film was wound into a roll by the method described in the evaluation of winding properties during high-speed transport, which will be described later. Next, the above ceramic slurry was applied to the surface of the release layer of the release film unwound from the roll release film using a die coater so that the film thickness after drying was 1 μm, over a width of 250 mm and a length of 10 m. coated. After that, the obtained coating film was dried at 80° C. for 1 minute in a dryer. The laminated film of the ceramic green sheet and the release film was illuminated with a fluorescent lamp from the release film side, and the surfaces of all the molded ceramic green sheets were visually inspected, and unevenness defects were evaluated according to the following criteria.
(凹凸欠陥評価基準)
 A:セラミックグリーンシートに凹凸欠陥が確認できなかった
 B:セラミックグリーンシートに1~5個の凹凸欠陥が確認された
 C:セラミックグリーンシートに6個以上の凹凸欠陥が確認された
(Convex defect evaluation criteria)
A: No irregularity defects were observed on the ceramic green sheet B: 1 to 5 irregularity defects were observed on the ceramic green sheet C: 6 or more irregularity defects were observed on the ceramic green sheet
〔凹凸欠陥(評価2)〕
 剥離フィルムの作製工程において、放置した時間を1週間から3カ月間に変更して作製された剥離フィルムを用いたこと以外は、凹凸欠陥(評価1)と同様にして作製した積層フィルムを用いて、凹凸欠陥(評価1)と同様の評価を行った。
[Uneven defect (evaluation 2)]
In the production process of the release film, using a laminated film produced in the same manner as for the uneven defect (evaluation 1), except that a release film produced by changing the time left to stand from 1 week to 3 months was used. , the same evaluation as for the uneven defect (evaluation 1) was performed.
〔高速搬送での巻き取り性〕
 上記の剥離フィルムの作製方法に従って、幅1500mmの剥離フィルムを作製した。作製された剥離フィルムを、下記条件にて巻き取ることにより、高速搬送での巻き取りテストを行った。
 上記剥離フィルムを、ライン速度80m/min、張力7kg/mで搬送し、コンタクトロールを用いて押圧30kg/mで押しあてながら、直径6インチのABS(アクリロニトリル-ブタジエン-スチレン)樹脂製巻き芯に巻きつけることにより、長手方向の長さ6,000mの剥離フィルムをロール状に巻き取った。タイプAデュロメータを用いて計測されたコンタクトロールのゴム硬度は60度であった。
 巻き取られた剥離フィルムのロールを目視により観察し、観察結果から、下記の評価基準に基づいて高速搬送での巻き取り性を評価した。
[Winding performance in high-speed transport]
A release film having a width of 1500 mm was produced according to the method for producing a release film described above. A winding test at high speed transport was performed by winding the produced release film under the following conditions.
The release film is transported at a line speed of 80 m / min and a tension of 7 kg / m, and pressed against a contact roll at a pressure of 30 kg / m, onto an ABS (acrylonitrile-butadiene-styrene) resin winding core with a diameter of 6 inches. By winding, a release film having a longitudinal length of 6,000 m was wound into a roll. The rubber hardness of the contact roll measured using a type A durometer was 60 degrees.
The rolled release film roll was visually observed, and from the observation results, the winding property during high-speed transport was evaluated based on the following evaluation criteria.
(巻き取り性評価基準)
 A:巻きズレが全く見られなかった。
 B:巻きズレが発生した。
(Windability evaluation criteria)
A: No winding misalignment was observed.
B: Winding misalignment occurred.
 表1に、各実施例及び各比較例において実施したポリエステルフィルムの製造方法、製造されたポリエステルフィルムの測定結果、及び、各評価結果をそれぞれ示す。
 表1中、「比率A」欄は、各ポリエステルフィルムの第2主面について求めた比率A(突起の高さ/突起の比率)を示し、「表面E」欄は、各ポリエステルフィルムの第2主面の表面自由エネルギーを示す。
Table 1 shows the production method of the polyester film implemented in each example and each comparative example, the measurement results of the produced polyester film, and each evaluation result.
In Table 1, the "Ratio A" column shows the ratio A (protrusion height/protrusion ratio) obtained for the second main surface of each polyester film, and the "Surface E" column shows the second main surface of each polyester film. It shows the surface free energy of the main surface.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、本発明に係る実施例1~4のポリエステルフィルム(2軸配向ポリエステルフィルム)を用いて作製した剥離フィルムを、セラミックグリーンシートの製造に用いた場合、比較例1及び2に比べて、凹凸欠陥の発生を抑制できることが確認された。 As shown in Table 1, when the release films produced using the polyester films (biaxially oriented polyester films) of Examples 1 to 4 according to the present invention were used to produce ceramic green sheets, Comparative Examples 1 and 2 It was confirmed that the occurrence of unevenness defects can be suppressed compared to
 ポリエステルフィルムの第2主面の表面自由エネルギーが45mJ/m以下であると、長期保管したポリエステルフィルムを用いて作製した剥離フィルムをセラミックグリーンシートの製造に用いた場合であっても、凹凸欠陥の発生を抑制できることが確認された(実施例1~4の対比)。 When the surface free energy of the second main surface of the polyester film is 45 mJ / m 2 or less, even when a release film produced using a polyester film stored for a long time is used to produce a ceramic green sheet, uneven defects It was confirmed that the occurrence of can be suppressed (comparison with Examples 1 to 4).
 ポリエステルフィルムの比率Aが0.03以上であると、ポリエステルフィルムを用いて作製した剥離フィルムの高速搬送での巻き取り性が優れることが確認された(実施例1~4の対比)。
 また、ポリエステルフィルムの第2主面の突起高さが0.3μm以上であると、ポリエステルフィルムを用いて作製した剥離フィルムの高速搬送での巻き取り性が優れることが確認された(実施例1~4の対比)。
It was confirmed that when the ratio A of the polyester film was 0.03 or more, the release film produced using the polyester film had excellent windability during high-speed transport (comparison with Examples 1 to 4).
In addition, it was confirmed that when the protrusion height on the second main surface of the polyester film was 0.3 μm or more, the release film produced using the polyester film had excellent windability during high-speed transport (Example 1 4).
1  ポリエステルフィルム
2  樹脂層
3  ポリエステル基材
4  第1主面
5  第2主面
6  突起
1 polyester film 2 resin layer 3 polyester base material 4 first main surface 5 second main surface 6 projection

Claims (11)

  1.  樹脂層と、ポリエステル基材と、を備え、
     第1主面及び第2主面を有し、
     前記第2主面が、前記樹脂層の表面の一方であり、
     前記樹脂層は、前記第2主面である表面に突起を有し、
     前記第1主面に剥離層を形成して剥離フィルムを製造するために用いられる、ポリエステルフィルムであって、
     下記要件Aを満たす、ポリエステルフィルム。
     要件A:走査型電子顕微鏡を用いて前記第2主面の面積10000μmの領域を観察し、前記領域において長径が最長である突起を選択した場合、走査型電子顕微鏡を用いて測定される前記選択された突起の長径に対する、光学干渉計を用いる非接触表面形状測定により測定される前記選択された突起の高さの比率Aが、0.7以下である。
    comprising a resin layer and a polyester base material,
    having a first principal surface and a second principal surface;
    The second main surface is one surface of the resin layer,
    The resin layer has protrusions on the surface that is the second main surface,
    A polyester film used for producing a release film by forming a release layer on the first main surface,
    A polyester film that satisfies the following requirement A.
    Requirement A: When observing a region with an area of 10000 μm 2 on the second main surface using a scanning electron microscope and selecting a protrusion with the longest major axis in the region, the above measured using a scanning electron microscope A ratio A of the height of the selected protrusions measured by non-contact surface profilometry using an optical interferometer to the major axis of the selected protrusions is 0.7 or less.
  2.  前記突起が有機粒子により形成される、請求項1に記載のポリエステルフィルム。 The polyester film according to claim 1, wherein the protrusions are formed of organic particles.
  3.  前記剥離フィルムが、セラミックグリーンシート製造用の剥離フィルムである、請求項1に記載のポリエステルフィルム。 The polyester film according to claim 1, wherein the release film is a release film for manufacturing a ceramic green sheet.
  4.  前記有機粒子が、スチレン樹脂及びウレタン樹脂からなる群より選択される少なくとも1つを含む、請求項2に記載のポリエステルフィルム。 The polyester film according to claim 2, wherein the organic particles contain at least one selected from the group consisting of styrene resins and urethane resins.
  5.  前記第2主面の表面自由エネルギーが25~45mJ/mである、請求項1に記載のポリエステルフィルム。 2. The polyester film according to claim 1, wherein the second principal surface has a surface free energy of 25 to 45 mJ/m 2 .
  6.  前記樹脂層が、アクリル樹脂、ウレタン樹脂及びオレフィン樹脂からなる群より選択される少なくとも1つのバインダーを含む、請求項1に記載のポリエステルフィルム。 The polyester film according to claim 1, wherein the resin layer contains at least one binder selected from the group consisting of acrylic resins, urethane resins and olefin resins.
  7.  走査型電子顕微鏡を用いて前記第2主面の面積10000μmの領域を観察し、前記領域において長径が最長である突起に対して、光学干渉計を用いる非接触表面形状測定を行って得られる突起高さが、0.3μm以上である、請求項1に記載のポリエステルフィルム。 A region with an area of 10,000 μm 2 on the second main surface is observed using a scanning electron microscope, and the projection having the longest major axis in the region is obtained by performing non-contact surface profile measurement using an optical interferometer. 2. The polyester film according to claim 1, wherein the projection height is 0.3 [mu]m or more.
  8.  前記ポリエステルフィルムの厚さが40μm以下である、請求項1に記載のポリエステルフィルム。 The polyester film according to claim 1, wherein the polyester film has a thickness of 40 µm or less.
  9.  前記樹脂層の厚さが1~500nmである、請求項1に記載のポリエステルフィルム。 The polyester film according to claim 1, wherein the resin layer has a thickness of 1 to 500 nm.
  10.  請求項1~9のいずれか1項に記載のポリエステルフィルムの製造方法であって、
     ポリエステル基材を有する未延伸ポリエステルフィルムを長手方向に延伸して1軸配向フィルムを作製する工程1と、
     前記1軸配向フィルムの表面に有機粒子を含む組成物を用いて樹脂層を形成する工程2と、
     前記樹脂層を有する前記1軸配向フィルムを加熱しながら幅方向に延伸する工程3と、を有し、
     示差走査熱量計により前記有機粒子を測定して得られる熱量変化を示す曲線において出現する吸熱ピークの温度及びベースラインシフトの温度のうち、最も低い温度をXとし、前記工程3における前記1軸配向フィルムの表面温度をYとした場合、前記Xが前記Yよりも低い、ポリエステルフィルムの製造方法。
    A method for producing a polyester film according to any one of claims 1 to 9,
    Step 1 of longitudinally stretching an unstretched polyester film having a polyester substrate to prepare a uniaxially oriented film;
    Step 2 of forming a resin layer on the surface of the uniaxially oriented film using a composition containing organic particles;
    and a step 3 of stretching in the width direction while heating the uniaxially oriented film having the resin layer,
    Of the temperature of the endothermic peak and the temperature of the baseline shift appearing in the curve showing the change in the amount of heat obtained by measuring the organic particles with a differential scanning calorimeter, the lowest temperature is defined as X, and the uniaxial orientation in the step 3 is defined as X. A method for producing a polyester film, wherein X is lower than Y, where Y is the surface temperature of the film.
  11.  請求項1~9のいずれか1項に記載のポリエステルフィルムと、
     剥離層とを備える、剥離フィルム。
    The polyester film according to any one of claims 1 to 9,
    A release film, comprising a release layer.
PCT/JP2022/031594 2021-08-26 2022-08-22 Polyester film, polyester film manufacturing method, and release film WO2023027033A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247002619A KR20240022660A (en) 2021-08-26 2022-08-22 Polyester film, manufacturing method of polyester film, release film
JP2023543907A JPWO2023027033A1 (en) 2021-08-26 2022-08-22

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-138381 2021-08-26
JP2021138381 2021-08-26
JP2022117700 2022-07-25
JP2022-117700 2022-07-25

Publications (1)

Publication Number Publication Date
WO2023027033A1 true WO2023027033A1 (en) 2023-03-02

Family

ID=85323209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031594 WO2023027033A1 (en) 2021-08-26 2022-08-22 Polyester film, polyester film manufacturing method, and release film

Country Status (3)

Country Link
JP (1) JPWO2023027033A1 (en)
KR (1) KR20240022660A (en)
WO (1) WO2023027033A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058164A1 (en) * 2011-10-19 2013-04-25 三菱樹脂株式会社 Polyester film
WO2014061410A1 (en) * 2012-10-19 2014-04-24 東レ株式会社 Biaxially oriented polyester film for mold release
WO2019077737A1 (en) * 2017-10-20 2019-04-25 パナック株式会社 Laminate and laminate bundle
JP2019084803A (en) * 2017-11-10 2019-06-06 東洋紡株式会社 Release film
WO2019123990A1 (en) * 2017-12-20 2019-06-27 東レ株式会社 Biaxially oriented thermoplastic resin film

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202000848PA (en) 2017-08-24 2020-03-30 Toyo Boseki Release film for production of ceramic green sheet

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013058164A1 (en) * 2011-10-19 2013-04-25 三菱樹脂株式会社 Polyester film
WO2014061410A1 (en) * 2012-10-19 2014-04-24 東レ株式会社 Biaxially oriented polyester film for mold release
WO2019077737A1 (en) * 2017-10-20 2019-04-25 パナック株式会社 Laminate and laminate bundle
JP2019084803A (en) * 2017-11-10 2019-06-06 東洋紡株式会社 Release film
WO2019123990A1 (en) * 2017-12-20 2019-06-27 東レ株式会社 Biaxially oriented thermoplastic resin film

Also Published As

Publication number Publication date
JPWO2023027033A1 (en) 2023-03-02
KR20240022660A (en) 2024-02-20

Similar Documents

Publication Publication Date Title
TWI360477B (en) Hard-coated film and optical functional film
JP2024124443A (en) Polyester film, release film, and method for producing polyester film
JP7428798B2 (en) Polyester film manufacturing method, polyester film, laminated film
JP7494630B2 (en) Laminated Film
CN116601567A (en) Polyester film, dry film resist, and method for producing polyester film
WO2023281972A1 (en) Release film and method for producing release film
JP2023007424A (en) Polyester film and release film
JP6706885B2 (en) Laminated polyester film
JP2023012427A (en) release film
WO2023027033A1 (en) Polyester film, polyester film manufacturing method, and release film
WO2023026800A1 (en) Release film, method for manufacturing release film, and ceramic capacitor
WO2024070442A1 (en) Film, laminated film, and film production method
WO2024070623A1 (en) Film, layered film, and method for producing film
TW202319243A (en) Polyester film and release film
WO2020241692A1 (en) Biaxially oriented polyester film
JP2023165302A (en) Release film for the production of ceramic green sheets and method for producing the same, and laminate
JP2023073192A (en) Polyester film, release film, method for producing polyester film, and ceramic capacitor
WO2024181063A1 (en) Release film and method for producing battery
JP6826307B2 (en) Laminated film
KR20230141469A (en) Release film, method of producing release film and laminate
KR20230141468A (en) Release film, method of producing release film and laminate
JP2023152690A (en) Release film, method for producing release film, and laminate
JP6852770B2 (en) Laminated polyester film
JP2017217832A (en) Laminated film
JP2023153690A (en) Release film, method for producing release film, and laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22861321

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247002619

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247002619

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2023543907

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22861321

Country of ref document: EP

Kind code of ref document: A1