WO2024070442A1 - Film, laminated film, and film production method - Google Patents

Film, laminated film, and film production method Download PDF

Info

Publication number
WO2024070442A1
WO2024070442A1 PCT/JP2023/031447 JP2023031447W WO2024070442A1 WO 2024070442 A1 WO2024070442 A1 WO 2024070442A1 JP 2023031447 W JP2023031447 W JP 2023031447W WO 2024070442 A1 WO2024070442 A1 WO 2024070442A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
film
layer
protrusions
particles
Prior art date
Application number
PCT/JP2023/031447
Other languages
French (fr)
Japanese (ja)
Inventor
一仁 宮宅
竜太 竹上
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024070442A1 publication Critical patent/WO2024070442A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs

Definitions

  • the present invention relates to a film, a laminated film, and a method for producing a film.
  • Films with excellent smoothness and slipperiness are used in a variety of applications. Films with the above properties are used, for example, as films for touch panels, films for optical components, substrates for molding, substrates for decorative films, and substrates for photosensitive layers.
  • Patent Document 1 describes the production of a biaxially oriented film by applying a coating liquid in which acrylic particles are dispersed in water to one surface of a thermoplastic resin film (resin substrate).
  • Patent Document 2 describes a method of obtaining a film by applying a coating liquid containing a solvent and resin particles to one surface of a polyester film (resin substrate).
  • the functional layer is often formed while the film is being transported. Also, the film on which the functional layer has been formed is generally wound up into a roll after the functional layer has been formed, and then unwound when the film is to be used.
  • the present invention aims to provide a film in which a functional layer is placed on one surface of a film while the film is being transported, the resulting film is wound up, and then the film is unwound, such that unevenness defects are less likely to occur on the surface of the functional layer.
  • Another object of the present invention is to provide a laminated film including a film and a functional layer, and a method for producing the film.
  • a laminated film comprising the film according to any one of [1] to [10] and a functional layer, The resin layer, the resin substrate, and the functional layer are provided in this order, The laminate film, wherein the functional layer is one selected from the group consisting of a decorative layer, a photosensitive resin layer, an inorganic layer, and a release layer.
  • Requirement 1 The value obtained by subtracting the glass transition temperature of the non-crosslinked resin particles A from the temperature Y is from -20 to 50°C.
  • Requirement 2 When the resin B is present in the form of particles in the composition, the particle diameter of the particulate resin B is smaller than the particle diameter of the non-crosslinked resin particles A.
  • a functional layer is placed on one surface of a film while the film is being transported, and the resulting film is wound up and then unwound, thereby providing a film in which unevenness defects are less likely to occur on the surface of the functional layer.
  • a laminated film including a film and a functional layer can be provided.
  • a method for producing a film can be provided.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of a film of the present invention.
  • 1 is an observation image of the surface of a biaxially oriented film produced by a method similar to that of the example.
  • 1 is an observation image of the surface of a biaxially oriented film produced by a method similar to that of the comparative example.
  • a numerical range expressed using “to” means a range including the numerical values described before and after “to” as the lower and upper limits.
  • the upper or lower limit described in a certain numerical range may be replaced with the upper or lower limit of another numerical range described in stages.
  • the upper or lower limit described in a certain numerical range may be replaced with a value shown in the examples.
  • the amount of each component in a composition means the total amount of multiple substances present in the composition when multiple substances corresponding to each component are present in the composition, unless otherwise specified.
  • the term "process” includes not only independent processes but also processes that cannot be clearly distinguished from other processes as long as the intended purpose of the process is achieved. As used herein, a combination of two or more preferred aspects is a more preferred aspect.
  • the term "longitudinal direction” refers to the longitudinal direction of a film during its production, and is synonymous with the terms “conveyance direction” and “machine direction.”
  • the "width direction” refers to a direction perpendicular to the longitudinal direction.
  • perpendicular is not limited to strictly perpendicular, but includes approximately perpendicular. "Approximately perpendicular” means that the direction intersects within a range of 90° ⁇ 5°, preferably within a range of 90° ⁇ 3°, and more preferably within a range of 90° ⁇ 1°.
  • the "major axis” refers to the longest diameter of a protrusion in the in-plane direction when the protrusion is observed on the surface of the film. More specifically, the major axis is defined as the distance between two parallel lines selected so as to have the maximum distance between them, among two parallel lines circumscribing the shape of the protrusion in the in-plane direction when the protrusion is observed.
  • the “minor diameter” refers to the longest diameter of a protrusion in the in-plane direction in a direction perpendicular to the longest diameter (major diameter) of the protrusion when the protrusion is observed on the surface of a film. More specifically, the minor diameter is defined as the distance between two parallel lines selected so as to be the shortest distance between the two parallel lines that are perpendicular to the two parallel lines that give the major diameter and circumscribe the shape of the protrusion in the in-plane direction.
  • the film of the present invention (hereinafter also simply referred to as "the film”) is a film comprising a resin substrate and a resin layer, in which the resin layer has protrusions on its surface, and the ratio of the height of the protrusions to the major axis of the protrusions is 0.70 or less.
  • the structure of the present film will be described with reference to the drawings.
  • 1 is a cross-sectional view showing an example of the configuration of the present film.
  • the film 1 of the present invention includes a resin layer 2 and a resin substrate 3, and has a first main surface 4 and a second main surface 5.
  • the second main surface 5 is one of the surfaces of the resin layer 2, and the resin layer 2 has protrusions 6 on the surface that is the second main surface 5.
  • a functional layer (not shown) can be provided on the first main surface 4.
  • the ratio of the height of the protrusions 6 to the major axis of the protrusions 6 is 0.70 or less.
  • the protrusions on the surface of the film or a part of the film including the protrusions may fall off as particles due to an impact or the like caused by contact between the surface of the film having the protrusions and another member such as a transport roll. If the particles fall off as described above, the particles may adhere to the surface of the film opposite to the side having the protrusions when the film is wound before the functional layer is formed. In this state, if a functional layer is formed on the surface of the film opposite to the side having the protrusions, the adhered particles may become foreign matter and form convex portions in the functional layer.
  • the particles that have become foreign matter in the functional layer fall off from the functional layer, they may form concave portions in the functional layer.
  • the particles may adhere to the surface of the film having the protrusions.
  • the pressure acting when winding and during storage may push the particles into the functional layer, forming a concave portion in the functional layer.
  • the particles may migrate to the surface of the functional layer.
  • the particles may adhere to the surface of the functional layer, and convex portions may be formed on the functional layer.
  • This film includes a resin substrate and a resin layer, and the resin layer has protrusions on its surface.
  • the resin layer has protrusions on its surface.
  • the ratio of the height of the protrusion to the major axis of the protrusion is 0.70 or less.
  • the protrusion is relatively flat, and the contact area between the bottom surface of the protrusion and the resin layer is considered to be large. In this case, the part constituting the protrusion is less likely to fall off as particles, and as a result, it is considered that unevenness defects are less likely to occur on the surface of the functional layer.
  • the film includes at least a resin substrate and a resin layer, and the resin layer has protrusions on its surface, and the ratio of the height of the protrusions to the major axis of the protrusions is 0.70 or less. The ratio of the height of the protrusions to the major axis of the protrusions will be described later.
  • the film also has a first major surface and a second major surface. Of the two main surfaces of the present film, the first main surface is a surface on which a functional layer, which will be described later, can be formed. That is, after the present film is produced, a functional layer is formed on the first main surface to produce a laminated film having the film and the functional layer.
  • the second main surface opposite to the first main surface is one of the surfaces of the resin layer. That is, the resin layer constitutes the outermost layer of the present film.
  • the present film is a film including a resin substrate and a resin layer, and has protrusions on the surface of the resin layer opposite to the resin substrate side.
  • the present film is not limited to having the above-mentioned configuration, so long as it has at least the above-mentioned resin substrate and resin layer and satisfies the above-mentioned ratio regarding the protrusions.
  • the present film may have another layer, such as a primer layer, provided between the resin layer and the resin substrate.
  • the resin layer is a layer formed on one surface of the resin substrate.
  • the resin layer is continuously formed on one surface of the resin substrate.
  • protrusions are formed on the surface of the resin layer opposite to the surface facing the resin substrate.
  • the resin layer may be provided directly on the surface of the resin substrate, or may be provided on the surface of the resin substrate via another layer, but it is preferable to provide the resin layer directly on the surface of the resin substrate, as this provides better adhesion.
  • the resin layer is not particularly limited as long as it is a layer member having protrusions on at least one surface, but preferably contains a binder.
  • the binder contained in the resin layer is preferably a non-polyester resin other than polyester resin.
  • the resin layer may contain additives other than the substance constituting the protrusions and the non-polyester resin.
  • the term "binder" refers to a component that contains a resin other than the substance that constitutes the protrusions.
  • the resin layer is preferably a single layer in that irregularity defects can be suppressed.
  • the resin layer is preferably a coating layer formed using a composition containing non-crosslinked resin particles A, a resin B, and a solvent.
  • coating layer refers to a layer formed by a process that includes at least a process of forming a liquid composition by coating. It is also preferable that the resin layer is a single layer and a coated layer.
  • the material constituting the protrusions is not particularly limited, and may be one type alone or a combination of two or more types. In addition, the material constituting the protrusions may be the same as or different from the binder.
  • protrusions present on the surface of the resin layer include protrusions formed by particles, which will be described later.
  • Protrusions formed by organic particles are preferred because they can suppress irregularity defects and the ratio of the height of the protrusion to the major axis of the protrusion is likely to be 0.70 or less. Details of the mechanism by which irregularity defects can be suppressed when the protrusions are formed by organic particles are not clear, but it is speculated as follows.
  • the material constituting the protrusions is less likely to fall off, and as a result, irregularity defects can be suppressed.
  • resin particles are preferred.
  • the resin constituting the resin particles for example, non-polyester resins can be mentioned, and styrene resin, urethane resin, acrylic resin, and silicone resin are preferred.
  • the organic particles preferably contain at least one selected from the group consisting of styrene resin, acrylic resin, and urethane resin, and more preferably contain at least one selected from the group consisting of styrene resin and acrylic resin, in that the ratio of the height of the protrusion to the major axis of the protrusion is likely to be 0.70 or less.
  • the protrusions preferably contain the resin that constitutes the above-mentioned resin particles.
  • the styrene resin means a resin containing structural units derived from styrene.
  • the styrene resin constituting the resin particles include homopolymers consisting of styrene, and styrene copolymers such as styrene-acrylic copolymers containing styrene-derived structural units and acrylate or methacrylate-derived structural units.
  • the styrene resin preferably contains 50 mol % or more of styrene-derived structural units relative to the total structural units.
  • the urethane resin constituting the resin particles is not limited as long as it is a polymer having a urethane bond, and known urethane resins such as reaction products of an isocyanate compound and a polyol compound can be used.
  • the term "acrylic resin” refers to a resin containing structural units derived from acrylate or methacrylate.
  • the acrylic resin preferably contains 50 mol % or more of structural units derived from acrylate or methacrylate based on the total structural units.
  • the resin particles may be crosslinked resin particles having a crosslinked structure, but are preferably non-crosslinked resin particles having no crosslinked structure.
  • the crosslinked resin particles include crosslinked urethane resin particles made of a urethane resin having a crosslinked structure.
  • the non-crosslinked resin particles include non-crosslinked styrene resin particles made of a non-crosslinked styrene resin and non-crosslinked acrylic resin particles made of a non-crosslinked acrylic resin.
  • the resin particles may be used alone or in combination of two or more kinds. That is, two or more kinds of non-crosslinked resin particles may be used in combination. Also, non-crosslinked resin particles and crosslinked resin particles may be used in combination. When non-crosslinked resin particles and crosslinked resin particles are used in combination, it is preferable that the height of the protrusions formed by the non-crosslinked resin particles is greater than the height of the protrusions formed by the crosslinked resin particles.
  • Nipol registered trademark
  • UFN1008 manufactured by Zeon Corporation
  • urethane resin particles include, for example, Art Pearl (registered trademark) C-1000T and MM110SMA (manufactured by Negami Chemical Industrial Co., Ltd.).
  • An example of a commercially available acrylic resin particle is MP1000 (manufactured by Soken Chemical & Engineering Co., Ltd.).
  • the resin layer preferably contains a non-polyester resin as a binder.
  • the non-polyester resin contained as a binder in the resin layer is not particularly limited as long as it is a resin other than a polyester resin, but examples thereof include an acrylic resin, a urethane resin, an olefin resin, a polyvinyl alcohol resin, and an acrylonitrile butadiene resin. From the viewpoint of obtaining a superior effect of the present invention, an acrylic resin, a urethane resin, or an olefin resin is preferred, and a urethane resin is more preferred.
  • the acrylic resin and olefin resin are insufficiently compatible with the polyester resin preferably used for the resin substrate, foreign matter caused by impurities such as oligomers precipitated from the polyester resin is unlikely to occur even after long-term storage.
  • urethane resins with high hydrophobicity i.e., urethane resins with SP values sufficiently different from those of polyester resins
  • unevenness defects during long-term storage can be suppressed for the same reason as for acrylic resins and olefin resins.
  • the acrylic resin, olefin resin, and urethane resin are not particularly limited, and known resins can be used.
  • the non-polyester resin contained as a binder in the resin layer is also preferably a resin having an acid group.
  • the olefin resin may be any resin containing a structural unit derived from an olefin in the main chain.
  • the olefin is not particularly limited, but is preferably an alkene having 2 to 6 carbon atoms, more preferably ethylene, propylene, or hexene, and even more preferably ethylene.
  • the olefin-derived structural units contained in the olefin resin preferably account for 50 to 99 mol %, and more preferably 60 to 98 mol %, of all the structural units in the olefin resin.
  • an acid-modified olefin resin is preferred in that it can suppress unevenness defects during long-term storage.
  • the acid-modified olefin resin include copolymers obtained by modifying the above-mentioned olefin resin with an acid-modifying component such as an unsaturated carboxylic acid or its anhydride. That is, the olefin resin is preferably an olefin resin having an acid group.
  • the acid-modified component examples include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid, and crotonic acid, as well as half esters and half amides of unsaturated dicarboxylic acids. From the viewpoint of dispersion stability of the resin, acrylic acid, methacrylic acid, maleic acid, and maleic anhydride are preferred.
  • the acid group contained in the acid-modified olefin resin includes a carboxyl group, a sulfo group, and a phosphoric acid group, which are acid groups corresponding to the above-mentioned acid-modified component, and the carboxyl group is preferred.
  • the acid group may form an acid anhydride or may be neutralized with at least one selected from an alkali metal, an organic amine, and ammonia.
  • the acid-modified olefin resin may contain only one type of structural unit having an acid group, or may contain two or more types.
  • acid-modified olefin resins include, for example, the ZAIXXEN (registered trademark) series, such as ZAIXXEN AC, A, L, NC, and N (manufactured by Sumitomo Seika Chemicals Co., Ltd.), the CHEMIPEARL (registered trademark) series, such as CHEMIPEARL S100, S120, S200, S300, S650, and SA100 (manufactured by Mitsui Chemicals, Inc.), and the HI-TECH (registered trademark) series, such as HI-TECH S3121 and S3148K (manufactured by Mitsui Chemicals, Inc.).
  • ZAIXXEN registered trademark
  • CHEMIPEARL registered trademark
  • CHEMIPEARL S100, S120, S200, S300, S650, and SA100 manufactured by Mitsui Chemicals, Inc.
  • HI-TECH registered trademark
  • HI-TECH S3121 and S3148K manufactured by Mitsui Chemicals
  • Examples of such an adhesive include the Arrowbase (registered trademark) series (manufactured by Unitika Ltd.), such as Arrowbase SE-1013, SE-1010, SB-1200, SD-1200, SD-1200, DA-1010, and DB-4010 (manufactured by Toho Chemical Industries, Ltd.), Hardlen AP-2, NZ-1004, and NZ-1005 (manufactured by Toyobo Co., Ltd.), and Sepolsion G315 and VA407 (manufactured by Sumitomo Seika Chemicals Co., Ltd.).
  • the acid-modified olefin resins described in paragraphs [0022] to [0034] of JP-A-2014-076632 can also be preferably used.
  • the acrylic resin is a resin containing a structural unit derived from a (meth)acrylate, and may be copolymerized with a vinyl monomer such as styrene.
  • the acrylic resin is not particularly limited, but preferably contains a structural unit derived from a (meth)acrylate having an alkyl group with 1 to 12 carbon atoms, and more preferably contains a structural unit derived from a (meth)acrylate having an alkyl group with 1 to 8 carbon atoms.
  • the acrylic resin preferably has an acid-modified component.
  • the acrylic resin preferably contains a structural unit derived from (meth)acrylic acid. That is, the acrylic resin is preferably an acrylic resin having an acid group.
  • the (meth)acrylic acid may form an acid anhydride, or may be neutralized with at least one selected from an alkali metal, an organic amine, and ammonia.
  • an aqueous dispersion of an acrylic resin is used to produce the resin layer, an aqueous dispersion containing an acrylic resin and a dispersant can be preferably used.
  • the amount of the (meth)acrylate-derived structural unit contained in the acrylic resin is preferably 50 to 100 mol % based on all the structural units of the acrylic resin.
  • the acid value of the acrylic resin is preferably 30 mgKOH/g or less, more preferably 20 mgKOH/g or less.
  • the lower limit of the acid value is not particularly limited and is, for example, 0 mgKOH/g, but is preferably 2 mgKOH/g or more from the viewpoint of coating as a water dispersion.
  • an acrylic resin having a solubility parameter (SP value) far from that of the polyester resin is used, the compatibility between the acrylic resin and the polyester resin becomes insufficient, and as a result, the effect of suppressing unevenness defects during long-term storage can be further improved.
  • Such an acrylic resin can be obtained by adjusting the acid value to be within the above range and by containing a structural unit derived from a (meth)acrylate having an alkyl group having 1 to 12 carbon atoms, for example.
  • the urethane resin is not limited as long as it is a polymer having a urethane bond, and known urethane resins such as reaction products of an isocyanate compound and a polyol compound can be used.
  • the aqueous dispersion preferably contains a urethane resin having an acidic group (e.g., a carboxyl group) or contains a urethane resin and a dispersant, which improves the film-forming properties of the resin layer.
  • the urethane resin can be adjusted to a desired SP value by adjusting at least one of the structure of the raw polyol compound, the hydrophobicity or hydrophilicity of the raw polyol, the structure of the raw isocyanate compound, and the hydrophobicity or hydrophilicity of the raw isocyanate compound.
  • a urethane resin adjusted to have high hydrophobicity in this way, the compatibility between the urethane resin and the polyester resin becomes insufficient, and as a result, the effect of suppressing unevenness defects during long-term storage can be further improved.
  • urethane resins urethane resins having a polyester structure (polyester-based urethane resins) are preferred because they are highly hydrophobic and can further improve the effect of suppressing unevenness defects during long-term storage.
  • urethane resins include, for example, Hydran (registered trademark) AP-40N, HW-312B, and HW-350 (all manufactured by DIC Corporation), Takelac (registered trademark) W-5030 and W-6020 (all manufactured by Mitsui Chemicals, Inc.), Adeka Bontitor (registered trademark) HUX-524 (manufactured by ADEKA Corporation), and Superflex (registered trademark) 210 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.).
  • the resin layer may contain one kind of non-polyester resin as a binder, or may contain two or more kinds of non-polyester resins.
  • the content of the binder in the resin layer is preferably from 30 to 99.8% by mass, and more preferably from 50 to 99.5% by mass, based on the total mass of the resin layer, in that irregularity defects can be further suppressed.
  • the binder contained in the resin layer is preferably crosslinked by a crosslinking agent or the like described below. That is, the resin layer is preferably a crosslinked film.
  • the resin layer is a crosslinked film, the entire resin layer may be crosslinked, or the resin layer may have a region that is not crosslinked.
  • An example of the resin layer being a crosslinked film is a method in which, when protrusions are formed using non-crosslinked resin particles by the method described below, non-crosslinked resin particles and a binder are crosslinked with a crosslinking agent to form a crosslinked film.
  • the protrusions When non-crosslinked resin particles and a binder are crosslinked with a crosslinking agent or the like, in the resulting protrusions, a chemical bond is formed between the resin particles and the binder, so that the substances constituting the protrusions are more unlikely to fall off, unevenness defects can be further suppressed, and solvent resistance is also excellent.
  • the resin layer is a crosslinked film, precipitation of oligomers is suppressed, and unevenness defects during long-term storage can be suppressed.
  • the protrusions may contain only a crosslinked resin, or may contain a crosslinked resin and a non-crosslinked resin.
  • the resin layer may contain additives other than the above-mentioned substances constituting the protrusions and the binder.
  • additives contained in the resin layer include surfactants, waxes, dispersants, antioxidants, UV absorbers, colorants, reinforcing agents, plasticizers, antistatic agents, flame retardants, rust inhibitors, and fungicides.
  • the resin layer preferably contains a surfactant, since this improves the smoothness of the areas of the second principal surface other than where the protrusions are present.
  • a surfactant By improving the smoothness of the above-mentioned areas of the second principal surface and reducing the surface roughness of the second principal surface due to factors other than the presence of the protrusions, it is possible to control the physical properties, including the ratio of the protrusion height to the major axis of the protrusions and the protrusion height, within a desired range, and to further suppress unevenness defects.
  • the surfactant is not particularly limited, and examples thereof include silicone-based surfactants, fluorine-based surfactants, and hydrocarbon-based surfactants. Hydrocarbon-based surfactants are preferred because they can suppress charging on the second principal surface.
  • the silicone surfactant is not particularly limited as long as it has a silicon-containing group as a hydrophobic group, and examples thereof include polydimethylsiloxane, polyether-modified polydimethylsiloxane, and polymethylalkylsiloxane.
  • silicone surfactants include, for example, BYK (registered trademark)-306, BYK-307, BYK-333, BYK-341, BYK-345, BYK-346, BYK-347, BYK-348, and BYK-349 (all manufactured by BYK Corporation), as well as KF-351A, KF-352A, KF-353, KF-354L, KF-355A, KF-615A, KF-945, KF-640, KF-642, KF-643, KF-6020, X-22-4515, KF-6011, KF-6012, KF-6015, and KF-6017 (all manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the fluorosurfactant is not particularly limited as long as it has a fluorine-containing group as a hydrophobic group, and examples thereof include perfluorooctanesulfonic acid and perfluorocarboxylic acid.
  • fluorine-based surfactants include, for example, Megafac (registered trademark) F-114, F-410, F-440, F-447, F-553, and F-556 (all manufactured by DIC Corporation), and Surflon (registered trademark) S-211, S-221, S-231, S-233, S-241, S-242, S-243, S-420, S-661, S-651, and S-386 (manufactured by AGC Seimi Chemical Co., Ltd.).
  • preferred fluorine-based surfactants are surfactants derived from alternative materials to compounds having a linear perfluoroalkyl group having 7 or more carbon atoms, such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS).
  • PFOA perfluorooctanoic acid
  • PFOS perfluorooctanesulfonic acid
  • hydrocarbon surfactant examples include anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants.
  • anionic surfactants include alkyl sulfates, alkyl sulfonates, alkyl benzene sulfonates, alkyl phosphates, and fatty acid salts.
  • nonionic surfactant examples include polyalkylene glycol mono- or dialkyl ethers, polyalkylene glycol mono- or dialkyl esters, and polyalkylene glycol monoalkyl esters and monoalkyl ethers.
  • Cationic surfactants include primary to tertiary alkylamine salts and quaternary ammonium compounds.
  • Amphoteric surfactants include surfactants having both anionic and cationic moieties in the molecule.
  • anionic surfactants include, for example, Rapisol (registered trademark) A-90, A-80, BW-30, B-90, and C-70 (all manufactured by NOF Corp.), NIKKOL (registered trademark) OTP-100 (all manufactured by Nikko Chemical Co., Ltd.), Kohacool (registered trademark) ON, L-40, and Phosphanol (registered trademark) 702 (all manufactured by Toho Chemical Industry Co., Ltd.), and Viewlite (registered trademark) A-5000 and SSS (all manufactured by Sanyo Chemical Industries, Ltd.).
  • Rapisol registered trademark
  • A-90, A-80, BW-30, B-90, and C-70 all manufactured by NOF Corp.
  • NIKKOL registered trademark
  • OTP-100 all manufactured by Nikko Chemical Co., Ltd.
  • Kohacool registered trademark
  • Phosphanol registered trademark
  • Viewlite registered trademark
  • A-5000 and SSS all manufactured by Sanyo Chemical Industries, Ltd.
  • nonionic surfactants examples include Naroacty (registered trademark) CL-95 and HN-100 (product names: manufactured by Sanyo Chemical Industries, Ltd.), Lysolex BW400 (product name: manufactured by Kokyu Alcohol Kogyo Co., Ltd.), EMALEX (registered trademark) ET-2020 (all manufactured by Nippon Emulsion Co., Ltd.), and Surfynol (registered trademark) 104E, 420, 440, 465, and Dynol (registered trademark) 604, 607 (all manufactured by Nissin Chemical Industry Co., Ltd.).
  • hydrocarbon surfactant at least one of an anionic surfactant and a nonionic surfactant is preferred, with anionic surfactants being more preferred, in that a coating layer with a smooth surface can be formed without impeding the dispersion of the resin.
  • anionic hydrocarbon surfactant is more preferred in terms of improving surface smoothness.
  • the anionic hydrocarbon surfactant preferably has a plurality of hydrophobic end groups in terms of further improving smoothness.
  • the hydrophobic end group may be a part of the hydrocarbon group of the hydrocarbon surfactant.
  • a hydrocarbon surfactant having a branched chain structure at its end will have a plurality of hydrophobic end groups.
  • anionic hydrocarbon surfactants having multiple hydrophobic end groups include sodium di-2-ethylhexyl sulfosuccinate (having four hydrophobic end groups), sodium di-2-ethyloctyl sulfosuccinate (having four hydrophobic end groups), and branched alkylbenzene sulfonate (having two hydrophobic end groups).
  • the surfactant may be used alone or in combination of two or more kinds.
  • the content of the surfactant is preferably 0.1 to 10% by mass, more preferably 0.1 to 5% by mass, and further preferably 0.5 to 2% by mass, based on the total mass of the resin layer, in terms of superior surface smoothness.
  • the wax is not particularly limited, and may be either natural or synthetic wax.
  • natural waxes include carnauba wax, candelilla wax, beeswax, montan wax, paraffin wax, and petroleum wax.
  • the slip agent described in [0087] of WO 2017/169844 can also be used.
  • the wax content is preferably 0 to 10% by mass based on the total mass of the resin layer.
  • the resin layer can be formed, for example, by applying a particle-containing composition onto one surface of the resin substrate as described below.
  • the thickness of the resin layer is often 0.001 to 1 ⁇ m, and is more preferably 0.01 to 1 ⁇ m, and even more preferably 0.02 to 1 ⁇ m, in that irregularity defects in the formed functional layer are suppressed when a laminate film produced using the present film is stored for a long period of time.
  • the resin layer may be formed by co-extruding the resin used to form the resin substrate and the resin used to form the resin layer. In this case, the thickness of the resin layer is often 1 to 10 ⁇ m.
  • the thickness of the resin layer is preferably from 10 to 500 nm, more preferably from 20 to 250 nm, and even more preferably from 20 to 100 nm, from the viewpoints of manufacturability of the resin layer and reduction of haze.
  • the thickness of the resin layer is measured by preparing a sample having a cross section perpendicular to the main surface of the film and using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). More specifically, the thickness of the resin layer is measured at any five points in the resin layer of the sample where no protrusions are formed, and the arithmetic average value is taken as the thickness.
  • the resin substrate is a film-like object containing a resin as a main component.
  • main component refers to the component that is contained in the largest amount (by mass) among all the components contained in the film-like object.
  • the resin contained as the main component in the resin substrate is not particularly limited, and any known resin can be used. Since the present film has a characteristic in the resin layer, unevenness defects can be suppressed regardless of the type of resin substrate.
  • the resin contained in the resin substrate include polyester resin, carbonate resin, fluororesin, polyimide resin, triacetyl cellulose resin, polyether resin, olefin resin, acrylic resin, styrene resin, vinyl chloride resin, vinyl alcohol resin, and nylon resin.
  • polyester resin, carbonate resin, fluororesin, polyimide resin, triacetyl cellulose resin, polyether resin, or olefin resin is preferred, and in terms of moldability and versatility, polyester resin is more preferred.
  • the resin substrate is preferably a resin substrate containing the above-mentioned preferred resin as a main component, that is, the resin substrate is preferably a polyester substrate, a polycarbonate substrate, a fluororesin substrate, a polyimide substrate, a triacetyl cellulose substrate, a polyether substrate, or a polyolefin substrate, and more preferably a polyester substrate.
  • the resin substrate may contain two or more kinds of resins.
  • a polyester substrate may contain one kind of polyester resin alone, or may contain two or more kinds of polyester resins.
  • the resin substrate is preferably a biaxially oriented resin substrate, more preferably a biaxially oriented polyester substrate, i.e., the present film is also preferably a biaxially oriented film.
  • Biaxial orientation means a property of having molecular orientation in two axial directions. The molecular orientation is measured using a microwave transmission type molecular orientation meter (e.g., MOA-6004, manufactured by Oji Scientific Instruments Co., Ltd.). The angle between the two axial directions is preferably within the range of 90° ⁇ 5°, more preferably within the range of 90° ⁇ 3°, and even more preferably within the range of 90° ⁇ 1°.
  • the molecular orientation changes when the film is stretched, and a biaxially oriented resin substrate can be produced by performing biaxial stretching.
  • the resin substrate is preferably substantially free of particles.
  • “Substantially free of particles” is defined as the particle content being 50 ppm by mass or less, preferably 10 ppm by mass or less, and more preferably below the detection limit, relative to the total mass of the resin substrate when the resin substrate is quantitatively analyzed for elements derived from particles by fluorescent X-ray analysis. This is because even if particles are not actively added to the resin substrate, contaminant components derived from foreign matter, raw resin, or dirt adhering to the line or equipment in the manufacturing process of the resin substrate may peel off and be mixed into the resin substrate. Examples of particles include the particles used in forming the resin layer described above.
  • the resin base material of this film is not limited to a polyester base material.
  • polyester resin is a polymer having an ester bond in the main chain, and is usually formed by polycondensation of a dicarboxylic acid compound and a diol compound, which will be described later.
  • the polyester resin is not particularly limited, and known polyester resins can be used. Examples of the polyester resin include polyethylene terephthalate (PET), polypropylene terephthalate (PPT), polybutylene terephthalate (PBT), polyethylene-2,6-naphthalate (PEN), and copolymers thereof, with PET, PEN, and copolymers thereof being preferred, and PET being more preferred.
  • the intrinsic viscosity of the polyester resin is preferably 0.50 dl/g or more and less than 0.80 dl/g, and more preferably 0.55 dl/g or more and less than 0.70 dl/g.
  • the melting point (Tm) of the polyester resin is preferably from 220 to 270°C, and more preferably from 245 to 265°C.
  • the glass transition temperature (Tg) of the polyester resin is preferably from 65 to 90°C, and more preferably from 70 to 85°C.
  • the method for producing the polyester resin is not particularly limited, and any known method can be used.
  • the polyester resin can be produced by polycondensing at least one dicarboxylic acid compound and at least one diol compound in the presence of a catalyst.
  • the catalyst used in the production of the polyester resin is not particularly limited, and any known catalyst that can be used in the synthesis of polyester resins can be used.
  • the catalyst include alkali metal compounds (e.g., potassium compounds, sodium compounds), alkaline earth metal compounds (e.g., calcium compounds, magnesium compounds), zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, germanium compounds, and phosphorus compounds.
  • titanium compounds are preferred from the standpoint of catalytic activity and cost.
  • the catalyst may be used alone or in combination of two or more.
  • At least one metal catalyst selected from potassium compounds, sodium compounds, calcium compounds, magnesium compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, and germanium compounds in combination with a phosphorus compound, and it is more preferable to use a titanium compound in combination with a phosphorus compound.
  • the titanium compound is preferably an organic chelate titanium complex, which is a titanium compound having an organic acid as a ligand.
  • organic acids include citric acid, lactic acid, trimellitic acid, and malic acid.
  • the titanium compound the titanium compounds described in paragraphs [0049] to [0053] of Japanese Patent No. 5575671 can also be used, and the contents of the above publication are incorporated herein by reference.
  • dicarboxylic acid compound examples include dicarboxylic acids such as aliphatic dicarboxylic acid compounds, alicyclic dicarboxylic acid compounds, and aromatic dicarboxylic acid compounds, as well as dicarboxylic acid esters such as methyl ester compounds and ethyl ester compounds of these dicarboxylic acids.
  • dicarboxylic acids such as aliphatic dicarboxylic acid compounds, alicyclic dicarboxylic acid compounds, and aromatic dicarboxylic acid compounds, as well as dicarboxylic acid esters such as methyl ester compounds and ethyl ester compounds of these dicarboxylic acids.
  • aromatic dicarboxylic acids or aromatic methyl dicarboxylates are preferred.
  • Examples of the aliphatic dicarboxylic acid compound include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosanedioic acid, pimelic acid, azelaic acid, methylmalonic acid, and ethylmalonic acid.
  • Examples of the alicyclic dicarboxylic acid compound include adamantanedicarboxylic acid, norbornenedicarboxylic acid, cyclohexanedicarboxylic acid, and decalindicarboxylic acid.
  • aromatic dicarboxylic acid compounds include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, 5-sodiumsulfoisophthalic acid, phenylindanedicarboxylic acid, anthracenedicarboxylic acid, phenanthrenedicarboxylic acid, and 9,9'-bis(4-carboxyphenyl)fluorene acid.
  • terephthalic acid or 2,6-naphthalenedicarboxylic acid is preferred, and terephthalic acid is more preferred.
  • a single dicarboxylic acid compound may be used, or two or more may be used in combination.
  • terephthalic acid may be used alone, or may be copolymerized with other aromatic dicarboxylic acids such as isophthalic acid or aliphatic dicarboxylic acids.
  • diol compound examples include an aliphatic diol compound, an alicyclic diol compound, and an aromatic diol compound, and an aliphatic diol compound is preferable.
  • Examples of the aliphatic diol compound include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, and neopentyl glycol, with ethylene glycol being preferred.
  • Examples of the alicyclic diol compound include cyclohexanedimethanol, spiroglycol, and isosorbide.
  • Examples of aromatic diol compounds include bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, and 9,9'-bis(4-hydroxyphenyl)fluorene. The diol compound may be used alone or in combination of two or more kinds.
  • a terminal capping agent may be used as necessary.
  • a structure derived from the terminal capping agent is introduced into the terminal of the polyester resin.
  • the terminal blocking agent is not limited, and any known terminal blocking agent can be used. Examples of the terminal blocking agent include oxazoline compounds, carbodiimide compounds, and epoxy compounds.
  • the terminal blocking agent reference can also be made to the contents described in paragraphs [0055] to [0064] of JP2014-189002A, the contents of which are incorporated herein by reference.
  • the reaction temperature is not limited and may be appropriately set depending on the raw materials.
  • the reaction temperature is preferably 260 to 300° C., more preferably 275 to 285° C.
  • the pressure is not limited and may be appropriately set depending on the raw materials.
  • the pressure is preferably 1.33 ⁇ 10 ⁇ 3 to 1.33 ⁇ 10 ⁇ 5 MPa, and more preferably 6.67 ⁇ 10 ⁇ 4 to 6.67 ⁇ 10 ⁇ 5 MPa.
  • the content of the polyester resin in the polyester base material is preferably 85% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and particularly preferably 98% by mass or more, based on the total mass of the polymer in the polyester base material.
  • the upper limit of the content of the polyester resin is not limited, and can be appropriately set within the range of 100% by mass or less based on the total mass of the polymer in the polyester base material.
  • the content of polyethylene terephthalate is preferably 90 to 100 mass% relative to the total mass of the polyester resin in the polyester base material, more preferably 95 to 100 mass%, even more preferably 98 to 100 mass%, and particularly preferably 100 mass%.
  • the resin substrate may contain components other than resin (e.g., catalysts, unreacted raw material components, particles, water, etc.).
  • the thickness of the resin substrate is preferably 300 ⁇ m or less, more preferably 100 ⁇ m or less, even more preferably 50 ⁇ m or less, and particularly preferably 40 ⁇ m or less.
  • the lower limit of the thickness is not particularly limited, but from the viewpoint of improving strength and processability, it is preferably 3 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 20 ⁇ m or more.
  • the thickness of the resin substrate is measured according to the method for measuring film thickness described below.
  • the film may further comprise layers other than the above-mentioned resin layer and resin substrate, but it is preferable that the film has a layer structure consisting of a resin layer and a resin substrate.
  • the resin layer has protrusions on its surface, and the ratio of the height of the protrusions to the major axis of the protrusions is 0.70 or less.
  • the ratio of the height of the protrusion to the major axis of the protrusion is defined as a value measured as follows. A scanning electron microscope is used to observe an area of 10,000 ⁇ m2 on the resin layer surface (second main surface), and the protrusion with the longest major axis in the area is selected.
  • the ratio of the height of the selected protrusion measured by non-contact surface shape measurement using an optical interferometer to the major axis of the selected protrusion measured by the scanning electron microscope is defined as the ratio of the height of the protrusion to the major axis of the protrusion.
  • the ratio of the height of the protrusions to the major axis of the protrusions is 0.70 or less, preferably 0.60 or less, and more preferably 0.30 or less. When in the above range, irregularity defects can be further suppressed and winding properties are also excellent.
  • the ratio of the protrusion height to the major axis of the protrusions is preferably 0.01 or more, more preferably 0.03 or more, and even more preferably 0.05 or more.
  • the ratio of the height of the protrusions to the major axis of the protrusions on the surface of the resin layer of the present film can be adjusted, for example, by the type and average particle size of the particles used in producing the resin layer, the thickness of the resin layer, and the heat treatment during and after the resin layer formation step described below. A method for producing a film that allows the above adjustment to be performed more easily will be described in detail later.
  • the ratio of the height of the protrusions to the major axis of the protrusions on the surface of the resin layer of the present film is measured according to the method described in the Examples section below. It should be noted that dust, foreign matter, and dirt adhering from the line or equipment during the manufacturing process of the resin substrate that are present on the surface of the resin layer are not included in the protrusions on the surface of the resin layer.
  • the resin layer of the present film functions as a transport surface in the present film or in a laminate film obtained by forming a functional layer on the first main surface.
  • the protrusion height on the resin layer surface of the present film is preferably 0.1 ⁇ m or more, more preferably 0.2 ⁇ m or more, even more preferably 0.25 ⁇ m or more, particularly preferably 0.3 ⁇ m or more, and most preferably 0.33 ⁇ m or more.
  • the protrusions on the resin layer surface are too large, the material constituting the protrusions is likely to fall off during transportation.
  • the protrusion height on the resin layer surface is preferably 5 ⁇ m or less, more preferably 4.0 ⁇ m or less, and even more preferably 3.5 ⁇ m or less.
  • the lower limit is preferably 0.1 ⁇ m or more, and more preferably 0.3 ⁇ m or more. That is, in terms of being able to further suppress unevenness defects and being able to provide excellent transportability, the height of the protrusions on the resin layer surface is preferably within the range defined by the above lower limit and upper limit.
  • the "protrusion height on the resin layer surface” refers to the protrusion height obtained by observing an area of 10,000 ⁇ m2 on the resin layer surface (second main surface) using a scanning electron microscope, and performing non-contact surface shape measurement using an optical interferometer on the protrusion with the longest major axis in the above area.
  • the protrusion height of the second main surface is 0.3 to 5.0 ⁇ m and the thickness of the resin layer is 10 to 500 nm (more preferably 20 to 100 nm).
  • the major axis of the protrusions on the surface of the resin layer of the present film is preferably from 0.1 to 20 ⁇ m, more preferably from 0.5 to 10 ⁇ m, and even more preferably from 1 to 8 ⁇ m.
  • the minor axis of the protrusions on the surface of the resin layer of the present film is preferably from 0.1 to 20 ⁇ m, more preferably from 0.3 to 10 ⁇ m, and even more preferably from 1 to 8 ⁇ m.
  • the ratio of the major axis of the protrusions to the minor axis of the protrusions is preferably 1.0 or more, more preferably 1.2 or more, even more preferably 1.6 or more, and particularly preferably more than 1.6.
  • the upper limit of the ratio of the major axis of the protrusions to the minor axis of the protrusions is 5.0.
  • the major axis and minor axis of the protrusions on the surface of the resin layer can be adjusted in accordance with the above-mentioned method for adjusting the ratio of the protrusion height to the major axis of the protrusions.
  • the major axis and minor axis of the protrusions on the surface of the resin layer are measured according to the method described in the Examples section below.
  • the number of protrusions On the resin layer surface of the present film, the number of protrusions is preferably 50 or more per observation area of 10,000 ⁇ m2, more preferably 80 or more, and even more preferably 200 or more.
  • the number of protrusions is preferably 20,000 or less, more preferably 15,000 or less, and even more preferably 13,000 or less.
  • the "number of protrusions" refers to the total number of protrusions found in an area of 10,000 ⁇ m2 of the resin layer surface (second main surface) observed using a scanning electron microscope. In the measurement method described later in the Examples section, protrusions having a major axis of 0.01 ⁇ m or more can be recognized as protrusions.
  • the resin layer surface has an average surface roughness Sa of preferably 1 to 15 nm, more preferably 1 to 10 nm, and even more preferably 1 to 8 nm.
  • the surface average roughness Sa of the resin layer surface can be adjusted, for example, by selecting the average particle size and content of the particles used in producing the resin layer, the thickness of the resin layer, and the types of non-polyester resin and additives (surfactants, etc.) that can be contained in the resin layer. When the resin layer is formed by in-line coating, the above adjustment can be made more easily.
  • the surface average roughness Sa of the resin layer surface is determined by measuring the surface of the resin layer side of this film using an optical interferometer (for example, Hitachi High-Tech's Vertscan 3300G Lite) under the same conditions as those used to measure the protrusion height when determining the ratio of the protrusion height to the major axis of the protrusion, and then analyzing the data using the built-in data analysis software.
  • an optical interferometer for example, Hitachi High-Tech's Vertscan 3300G Lite
  • measurements are taken five times at different measurement positions, and the average of the obtained measurements is taken as the measured surface average roughness Sa.
  • the surface free energy of the second main surface of the present film is preferably 25 to 65 mJ/m 2, more preferably 25 to 56 mJ/m 2 , even more preferably 25 to 45 mJ/m 2 , and particularly preferably 35 to 45 mJ/m 2 , in terms of improving the winding property during transport and the excellent effect of suppressing unevenness defects during long-term storage.
  • the surface free energy of the resin layer surface within the above range, it is possible to suppress impurities such as oligomers generated from the resin substrate from passing through the resin layer and precipitating on the surface of the resin layer surface.
  • the surface free energy of the resin layer surface can be adjusted, for example, by selecting the non-polyester resin and additives contained in the resin layer.
  • the surface free energy of the resin layer surface of the present film can be determined by the method described in the Examples section below.
  • the first main surface is as smooth as possible.
  • the maximum projection height Sp of the first main surface is preferably 1 to 60 nm, more preferably 1 to 50 nm, and even more preferably 1 to 30 nm.
  • the first main surface has an average surface roughness Sa of preferably 0 to 10 nm, more preferably 0 to 5 nm, and even more preferably 0 to 2 nm.
  • the maximum projection height Sp and average surface roughness Sa of the first main surface can be adjusted by, for example, selecting the type of resin and the type of additive constituting the resin substrate so as to form a smooth film without substantially including particles in the resin substrate.
  • the maximum projection height Sp and surface average roughness Sa of the first main surface of the film are obtained by measuring the first main surface under the same conditions as those for measuring the projection height when determining the ratio of the projection height to the major axis of the projection using an optical interferometer (e.g., "Vertscan 3300G Lite" manufactured by Hitachi High-Technologies Corporation), and then analyzing the results using the built-in data analysis software.
  • an optical interferometer e.g., "Vertscan 3300G Lite" manufactured by Hitachi High-Technologies Corporation
  • measurements are taken five times at different measurement positions on the first main surface, and the average values of the obtained measurements are taken as the respective measured values.
  • the surface free energy of the first main surface of the present film is preferably from 25 to 65 mJ/m 2 , and more preferably from 30 to 45 mJ/m 2 , from the viewpoint of preventing static electricity when the present film is wound up.
  • the surface free energy of the first main surface can be adjusted by selecting the type of resin forming the resin substrate and additives, etc.
  • the surface free energy of the first main surface of this film can be measured according to the method for measuring the surface free energy of the second main surface described above.
  • the thickness of the present film is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, and even more preferably 40 ⁇ m or less.
  • the lower limit of the thickness is not particularly limited, but from the viewpoint of excellent handleability, it is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and even more preferably 10 ⁇ m or more.
  • the thickness of the film is the arithmetic average of thicknesses measured at five different points in the same direction using a stylus film thickness meter.
  • the method for producing the present film may include a method having a stretching step of stretching a resin substrate and a step of forming a resin layer having protrusions.
  • the stretching carried out in the stretching step may be uniaxial or biaxial, but is preferably biaxial, i.e., the resulting film is preferably a biaxially oriented film.
  • the method for producing the film of the present invention may be, for example, the following form. forming a layer on at least one surface of a resin substrate using a composition containing non-crosslinked resin particles A, a resin B, and a solvent; and stretching the resin substrate on which the layer is formed while heating it at a temperature Y.
  • the method satisfies requirements 1 and 2 described below.
  • the present film can be obtained. That is, the present film can be obtained, which includes at least a resin substrate and a resin layer, the resin layer has protrusions on its surface, and the ratio of the height of the protrusions to the major axis of the protrusions is 0.70 or less. In other words, according to the above-mentioned manufacturing method, the ratio of the height of the protrusions to the major axis of the protrusions on the surface of the resin layer of the present film can be easily adjusted to 0.70 or less.
  • the stretching step is a biaxial stretching step
  • the present film which is a biaxially oriented film
  • the method for producing the present film is not limited to the embodiment below. Note that the preferred embodiment of the steps in the above manufacturing method is the same as the preferred embodiment below.
  • the method for producing the film of the present invention may include a method having a biaxial stretching step of biaxially stretching an unstretched resin substrate, and a step of forming a resin layer having protrusions.
  • the biaxial stretching may be simultaneous biaxial stretching in which longitudinal stretching and transverse stretching are performed simultaneously, or sequential biaxial stretching in which longitudinal stretching and transverse stretching are performed in two or more stages.
  • Examples of the order of sequential biaxial stretching include longitudinal stretching and transverse stretching, longitudinal stretching, transverse stretching and longitudinal stretching, longitudinal stretching, longitudinal stretching and transverse stretching, and transverse stretching and longitudinal stretching, with longitudinal stretching and transverse stretching being preferred.
  • the following describes the first embodiment as an example of the manufacturing method for this film.
  • the first embodiment of the method for producing the film includes: A step of stretching an unstretched resin substrate to obtain a uniaxially stretched resin substrate (hereinafter also referred to as a "longitudinal stretching step”); A step of forming a layer on at least one surface of the uniaxially stretched resin substrate using a composition containing non-crosslinked resin particles A, a resin B, and a solvent (hereinafter also referred to as a "layer forming step”); The method includes a step of stretching the uniaxially stretched resin substrate on which the above-mentioned layer is formed while heating it at a temperature Y (hereinafter, also referred to as a "transverse stretching step”), and satisfies the following requirements 1 and 2.
  • Requirement 1 The value obtained by subtracting the glass transition temperature of the non-crosslinked resin particles A from the temperature Y is -20 to 50°C.
  • Requirement 2 When resin B is present in the composition in the form of particles, the particle diameter of the particulate resin B is smaller than the particle diameter of the non-crosslinked resin particles A.
  • the present film which is a biaxially oriented film, can be obtained. That is, the present film includes at least a biaxially oriented resin substrate and a resin layer, the resin layer has protrusions on its surface, and the ratio of the height of the protrusions to the major axis of the protrusions is 0.70 or less.
  • the ratio of the height of the protrusions to the major axis of the protrusions on the surface of the resin layer of the present film can be easily adjusted to 0.70 or less.
  • the resin substrate to be subjected to the longitudinal stretching step is preferably an unstretched resin substrate.
  • the resin substrate used in the longitudinal stretching step is as described above in the section "Resin Substrate", including preferred embodiments.
  • the unstretched resin substrate can be prepared, for example, by an extrusion molding step described later.
  • the longitudinal stretching can be carried out, for example, by conveying an unstretched resin substrate in the longitudinal direction while applying tension between two or more pairs of stretching rolls disposed in the conveying direction.
  • the stretching ratio in the longitudinal stretching step is appropriately set depending on the application, but is preferably 2.0 to 5.0 times, more preferably 2.5 to 4.0 times, and even more preferably 2.8 to 4.0 times.
  • the stretching speed in the longitudinal stretching step is preferably 800 to 1500%/sec, more preferably 1000 to 1400%/sec, and even more preferably 1200 to 1400%/sec.
  • the "stretching speed” refers to a value obtained by dividing the length ⁇ d of the resin substrate in the conveying direction stretched in one second in the longitudinal stretching step by the length d0 of the resin substrate in the conveying direction before stretching, expressed as a percentage.
  • the heating temperature in the longitudinal stretching step can be appropriately set depending on the type of resin constituting the resin substrate. For example, in the case of a polyester substrate, the heating temperature is preferably 70 to 120°C, more preferably 80 to 110°C, and even more preferably 85 to 100°C.
  • the "temperature” in each step of the manufacturing method according to the present embodiment means the surface temperature of the film-like member measured using a non-contact thermometer (e.g., a radiation thermometer).
  • the surface temperature of the film-like member is determined by measuring the temperature of the center of the film-like member in the width direction five times and calculating the average of the obtained measurement values.
  • a layer is formed on the surface of the uniaxially stretched resin substrate obtained in the longitudinal stretching process using a composition containing non-crosslinked resin particles A, resin B, and a solvent (hereinafter also referred to as "composition A1").
  • composition A1 a composition containing non-crosslinked resin particles A, resin B, and a solvent
  • the above-mentioned requirement 2 is satisfied for the non-crosslinked resin particles A and the resin B. That is, when the resin B is present in particulate form in the composition A1, the particle size of the particulate resin B is smaller than the particle size of the non-crosslinked resin particles A.
  • the particle diameter of the resin B is Db ⁇ m and the particle diameter of the non-crosslinked resin particles A is Da, so that the relationship of the following formula (1) is satisfied.
  • Formula (1) 7 ⁇ Db ⁇ Da It is also preferable that Da and Db satisfy the relationship of the following formula (2).
  • Formula (2) Da ⁇ 50 ⁇ Db It is also preferable that Da and Db simultaneously satisfy the relationships of formula (1) and formula (2).
  • the ratio of the height of the protrusions to the major axis of the protrusions on the surface of the resin layer of the present film is easily adjusted within the above range on the surface of the layer formed in the present embodiment.
  • the composition A1 contains a plurality of types of non-crosslinked resin particles A and resin B
  • each combination of non-crosslinked resin particles A and resin B satisfies at least one of the above formula (1) and formula (2).
  • the layer formed in the layer forming step is the same as the layer described in detail above in the section ⁇ Resin layer>, except that it is specified as a resin layer including protrusions formed by organic particles.
  • the layer forming step may, for example, be a method in which a coating film is formed on the surface of a longitudinally stretched uniaxially stretched resin substrate using the composition A1, and then dried as necessary.
  • the composition A1 can be prepared, for example, by mixing the non-crosslinked resin particles A, the resin B, a solvent, and additives that are added as necessary.
  • the non-crosslinked resin particles A are preferably selected from the non-crosslinked resin particles described above in the section "Resin Layer.”
  • the non-crosslinked resin particles A preferably have a glass transition temperature of 70 to 140° C.
  • Resin B is preferably selected from the non-polyester resins contained as binders described in the section "Resin Layer" above.
  • Resin B is preferably a resin having an acid group.
  • Resin B preferably has a glass transition temperature of -50 to 105°C.
  • the glass transition temperatures of the non-crosslinked resin particles A and the resin B can be determined by differential scanning calorimetry, and a detailed measurement method will be described in the Examples section below.
  • the glass transition temperatures listed as catalog values of the commercially available products may be used.
  • the average particle size of the non-crosslinked resin particles A contained in the composition A1 is not particularly limited, but is preferably from 1 nm to 3 ⁇ m, and more preferably from 10 nm to 2 ⁇ m, in terms of better transportability and suppression of transfer marks.
  • the average particle size of the non-crosslinked resin particles A if there is a catalog value of the manufacturer, etc., this can be used.
  • the non-crosslinked resin particles A contained in the composition A1 may be used alone or in combination of two or more kinds.
  • the layer to be formed preferably contains at least one type of non-crosslinked resin particles A having an average particle diameter within the above range, and it is more preferable that all of the two or more types of non-crosslinked resin particles A having different particle diameters are non-crosslinked resin particles A having average particle diameters within the above range.
  • the shape of the non-crosslinked resin particles A is not particularly limited, and examples include rice grain-like, spherical, cubic, spindle-like, scaly, aggregated, and irregular shapes. "Aggregated” refers to a state in which primary particles are aggregated.
  • the content of non-crosslinked resin particles A in composition A1 is preferably 0.1 to 30% by mass, more preferably 1 to 25% by mass, and even more preferably 1 to 20% by mass, based on the total mass of the components (solid content) other than the solvent in composition A1, from the viewpoints of transportability and coatability.
  • the solvent includes, for example, water and ethanol.
  • Composition A1 may contain one type of solvent alone, or may contain two or more types of solvents.
  • the content of the solvent is preferably from 80 to 99.5% by mass, and more preferably from 90 to 99.0% by mass, based on the total mass of the composition A1. That is, in the composition A1, the total content of the solid contents is preferably from 0.5 to 20 mass %, and more preferably from 1 to 10 mass %, based on the total mass of the composition A1.
  • the materials constituting the non-crosslinked resin particles A contained in the composition A1, the resin B (binder) and the additives, including their preferred embodiments, are as described in detail above in the section ⁇ Resin Layer>.
  • Composition A1 may contain a crosslinking agent, and preferably composition A1 contains a crosslinking agent.
  • the crosslinking agent is not particularly limited, and any known crosslinking agent can be used.
  • Examples of the crosslinking agent include melamine compounds, oxazoline compounds, epoxy compounds, isocyanate compounds, and carbodiimide compounds, with oxazoline compounds or carbodiimide compounds being preferred.
  • Commercially available products include, for example, Carbodilite V-02-L2 (manufactured by Nisshinbo Co., Ltd.) and Epocross K-2020E (manufactured by Nippon Shokubai Co., Ltd.).
  • the crosslinking agents described in [0082] to [0084] of WO 2017/169844 A can also be preferably used.
  • the carbodiimide compounds reference can be made to the descriptions in [0038] to [0040] of JP 2017-087421 A.
  • the crosslinking agents described in [0074] to [0075] of WO 2018/034294 can also be preferably used.
  • the content of the crosslinking agent is preferably 0 to 50% by mass based on the total mass of the solid content of the composition A1.
  • composition A1 is not particularly limited, and any known method can be used. Examples of application methods include spray coating, slit coating, roll coating, blade coating, spin coating, bar coating, and dip coating.
  • the layer forming step it is preferable to apply an in-line coating method in which the composition A1 is applied to one surface of the uniaxially stretched resin substrate while conveying the uniaxially stretched resin substrate.
  • the in-line coating method By applying the in-line coating method, the heating time of the resin substrate in the manufacturing process is shortened, and no heat history is applied, so that the occurrence of distortion in the manufactured film and laminated film can be suppressed.
  • the longitudinal stretching step is followed by the layer forming step, followed by the transverse stretching step, whereby the uniaxially stretched resin substrate and the formed layer are simultaneously transversely stretched, thereby improving the adhesion between the resin substrate and the formed resin layer.
  • Transverse stretching process> when a transverse stretching step is performed in which the uniaxially stretched resin substrate having the above-mentioned layer is stretched in the width direction (hereinafter also referred to as “transverse stretching”), the uniaxially stretched resin substrate is heated at a specific temperature Y.
  • the temperature Y at that time satisfies the above-mentioned requirement 1 between the glass transition temperature of the non-crosslinked resin particles A contained in the composition A1. That is, the value obtained by subtracting the glass transition temperature of the non-crosslinked resin particles A from the temperature Y is ⁇ 20 to 50° C.
  • the non-crosslinked resin particles A are easily deformed in the transverse stretching direction during transverse stretching, and the ratio of the height of the protrusions to the major axis of the protrusions on the surface of the resin layer formed in this embodiment is easily adjusted to the above-mentioned range.
  • the uniaxially stretched resin substrate is preferably continuously heated at a temperature Y while being transversely stretched in the transverse stretching step.
  • the temperature Y refers to the surface temperature of the uniaxially stretched resin substrate.
  • the transverse stretching step it is preferable to preheat the uniaxially stretched resin substrate before transverse stretching.
  • the preheating temperature in the transverse stretching step can be appropriately set depending on the type of resin constituting the resin substrate.
  • the preheating temperature is preferably 80 to 120°C, more preferably 90 to 110°C.
  • the stretching ratio in the width direction of the uniaxially stretched resin substrate in the transverse stretching step is not particularly limited, but is preferably larger than the stretching ratio in the longitudinal stretching step.
  • the stretching ratio in the transverse stretching step is preferably 3.0 to 6.0 times, more preferably 3.5 to 5.0 times, and even more preferably 3.5 to 4.5 times.
  • the transverse stretching ratio is calculated from the ratio (L1/L0) of the resin substrate width L1 at the time of discharge from the stretching section to the resin substrate width L0 at the time of entry into the stretching section.
  • the stretching speed in the transverse stretching step is preferably from 8 to 45%/sec, more preferably from 10 to 30%/sec, and even more preferably from 15 to 20%/sec.
  • the manufacturing method according to the present embodiment may include other steps in addition to the longitudinal stretching step, the layer forming step, and the transverse stretching step.
  • the manufacturing method according to the present embodiment may include at least one step selected from the group consisting of an extrusion molding step of extruding a molten resin containing a raw material resin into a film shape to form an unstretched resin substrate, a heat setting step of heating and heat setting the biaxially stretched resin substrate, a heat relaxation step of heating the resin substrate heat-set by the heat setting step at a temperature lower than that of the heat setting step to heat relax the resin substrate heat-relaxed by the heat relaxation step, a cooling step of cooling the resin substrate heat-relaxed by the heat relaxation step, and an expansion step of expanding the heat-relaxed resin substrate in the width direction during the cooling step.
  • Each step will be described below.
  • the extrusion molding process is a process in which a molten resin containing a raw material resin is extruded into a film shape by an extrusion molding method to form an unstretched resin substrate.
  • the raw material resin is the same as the resin described in the above ⁇ Resin substrate> section, and a polyester resin is preferable.
  • the extrusion molding method is a method in which a molten raw material resin is extruded using an extruder, for example, to mold the raw material resin into a desired shape.
  • the melt extruded from the extrusion die is cooled to be formed into a film.
  • the melt is brought into contact with a casting roll, and cooled and solidified on the casting roll, whereby the melt can be formed into a film.
  • air preferably cold air
  • the manufacturing method according to the present embodiment it is preferable to carry out a heat setting step as a heat treatment for the resin substrate that has been transversely stretched in the transverse stretching step.
  • the biaxially oriented resin substrate obtained in the transverse stretching step can be heat set by heating. By crystallizing the resin through heat setting, shrinkage of the resin substrate can be suppressed.
  • the surface temperature (heat setting temperature) of the resin substrate in the heat setting step is not particularly limited and can be appropriately selected depending on the type of resin, but is preferably less than 240° C., more preferably 235° C. or less, and even more preferably 230° C. or less.
  • the lower limit is not particularly limited, but is preferably 190° C.
  • the heating time in the heat setting step is preferably from 5 to 50 seconds, more preferably from 5 to 30 seconds, and even more preferably from 5 to 10 seconds.
  • the resin substrate heat-fixed in the heat setting step is preferably heat-relaxed by heating at a temperature lower than that in the heat setting step, which can relax residual distortion of the resin substrate.
  • the surface temperature of the resin substrate in the heat relaxation step (heat relaxation temperature) is preferably at least 5° C. lower than the heat setting temperature, more preferably at least 15° C. lower, even more preferably at least 25° C. lower, and particularly preferably at least 30° C. lower. That is, the heat relaxation temperature is preferably 235° C. or lower, more preferably 225° C. or lower, even more preferably 210° C. or lower, and particularly preferably 200° C. or lower.
  • the lower limit of the heat relaxation temperature is preferably 100° C. or higher, more preferably 110° C. or higher, and even more preferably 120° C. or higher.
  • the manufacturing method according to the present embodiment preferably includes a cooling step of cooling the thermally relaxed resin substrate.
  • the cooling rate of the resin substrate in the cooling step is not particularly limited, but in order to reduce thermal shrinkage and impart dimensional stability, the cooling rate of the resin substrate in the cooling step is preferably more than 500° C./min and less than 4000° C./min, more preferably 700 to 3000° C./min, and particularly preferably 1000 to 2500° C./min.
  • the cooling step includes a step of expanding the thermally relaxed resin substrate in the width direction.
  • the expansion rate in the width direction of the resin substrate due to the expansion step i.e., the ratio of the resin substrate width at the end of the cooling step to the resin substrate width before the start of the cooling step, is preferably 0% or more, more preferably 0.001% or more, and even more preferably 0.01% or more.
  • the upper limit of the expansion rate is not particularly limited, but is preferably 1.3% or less, more preferably 1.2% or less, and even more preferably 1.0% or less.
  • the production method according to this embodiment may include a winding step of winding up the biaxially oriented resin substrate obtained through the above steps to obtain a roll-shaped biaxially oriented resin substrate.
  • the conveying speed of the resin substrate in each step other than the longitudinal stretching step in the production method according to the present embodiment is not particularly limited, but is preferably 50 to 200 m/min, more preferably 80 to 150 m/min, in terms of productivity and quality.
  • the method for producing this film is not particularly limited as long as it is a method for producing a film that includes a resin layer and a resin substrate, in which the resin layer has protrusions on its surface, and in which the ratio of the height of the protrusions to the major axis of the protrusions is 0.70 or less, and may be a production method other than that of the first embodiment described above.
  • the film may be produced by co-extruding a molten resin containing the raw resin for forming the unstretched resin substrate and a particle-containing molten resin containing particles and a resin (preferably a non-polyester resin) for forming the resin layer to form a laminate in which the unstretched resin substrate and the resin layer are laminated, and then stretching the laminate (preferably biaxially stretching).
  • the laminated film of the present invention is a laminated film comprising the present film and a functional layer, and comprises, in this order, a resin layer including protrusions, a resin substrate, and a functional layer. That is, the functional layer is provided on a surface (first main surface) of the present film opposite to the resin layer side of the resin substrate. While the present film is being transported, a functional layer is placed on one surface of the present film, and the resulting film is then wound up and then unwound, and therefore unevenness defects are unlikely to occur on the surface of the functional layer, so that the laminated film of the present invention is unlikely to have unevenness defects in the functional layer.
  • the type of the functional layer is not particularly limited, and examples thereof include a decorative layer, a photosensitive resin layer, a magnetic layer, a peeling layer, an adhesive layer, a conductive layer, a refractive index adjustment layer, a hard coat layer, and a visibility layer.
  • a preferred example is one selected from the group consisting of a decorative layer, a photosensitive resin layer, and a peeling layer.
  • the laminated film is for optical use. Examples of functional layers used in the optical laminated film include a decorative layer, a photosensitive resin layer, an adhesive layer, a refractive index adjustment layer, a hard coat layer, and a visibility layer.
  • the laminated film include a decorative film in which the functional layer is a decorative layer, a photosensitive transfer film in which the functional layer is a photosensitive resin layer and is used as a support for a dry film resist, a release film in which the functional layer is a release layer (e.g., a protective film for a dry film resist, a release film for producing a ceramic green sheet, a release film for producing a semiconductor process, a release film for a process), an adhesive film in which the functional layer is an adhesive layer (e.g., an adhesive film for producing a semiconductor process), a film for a transparent conductive substrate in which the functional layer is a transparent conductive layer, a transfer film in which the functional layer is an inorganic layer (e.g., a hard coat film in which the inorganic layer is a hard coat layer, a base film in which the inorganic layer is a magnetic layer or a ceramic green sheet), a photosensitive transfer film for forming an etching resist film in which the functional layer is a release film
  • the method for laminating the functional layer on the surface of the present film there are no particular limitations on the method for laminating the functional layer on the surface of the present film, but it is preferable to form the functional layer by applying a coating liquid containing the material that constitutes the functional layer to the surface (first main surface) of the present film, and from the viewpoint of superior productivity, it is more preferable to apply a coating liquid for the functional layer to the surface of the present film while transporting the present film, and then form the functional layer by heating the coating film.
  • the laminated film may have layers other than the present film and the functional layer.
  • An example of a layer other than the present film and the functional layer is a base layer containing a binder resin, which is provided for the purpose of improving adhesion between the present film and the functional layer.
  • the decorative layer When a decorative layer is laminated on the present film as a functional layer, the decorative layer preferably contains a colorant and a binder.
  • the decorative layer is preferably a colored photosensitive resin layer.
  • a photosensitive resin layer formed from the photosensitive resin composition described in WO 2017/208849 is preferable.
  • the colored photosensitive resin layer is preferably a layer having a pigment as a colorant, and more preferably a layer having, for example, a pigment, a binder polymer, a polyfunctional acrylate, and a photopolymerization initiator.
  • Preferred examples of the pigment include inorganic pigments (including pigments containing metal particles such as silver) and organic pigments.
  • a decorative film (laminate film) obtained by laminating the present film and a decorative layer can suppress unevenness defects, and therefore can be preferably applied to fields where suppression of color unevenness is required.
  • a photosensitive resin layer When a photosensitive resin layer is laminated on the present film as a functional layer, a photosensitive resin layer containing a photosensitive resin is provided, and a decorative layer, a refractive index adjustment layer, and/or a visibility layer may be further laminated thereon.
  • the photosensitive resin layer is not particularly limited, but is preferably a negative type.
  • the binder polymer, ethylenically unsaturated compound, or photopolymerization initiator described in International Publication No. 2018/105313 is preferably used.
  • the photosensitive resin layer is more preferably a layer having an alkali-soluble acrylic resin having a cyclic structure, a polyfunctional acrylate, and an oxime-based photopolymerization initiator or a bisimidazole-type photopolymerization initiator.
  • the photosensitive resin layer is a dry film resist for forming an electrode protective film for a touch panel
  • a refractive index adjustment layer is laminated separately from the photosensitive resin layer.
  • a preferred form of the refractive index adjustment layer is the second curable transparent resin layer described in JP 2014-108541 A.
  • the refractive index of the refractive index adjustment layer is preferably 1.6 or more, and the refractive index adjustment layer preferably contains metal oxide particles with a high refractive index, such as titanium oxide and zirconium oxide.
  • the photosensitive resin layer is a dry film resist for forming an etching resist used to form fine patterns of 50 ⁇ m or less
  • a visibility layer is laminated separately from the photosensitive resin layer. The presence of the visibility layer allows the pattern latent image to be visible in the process of checking it.
  • the release layer contains at least a resin as a release agent.
  • the resin contained in the release layer is not particularly limited, and examples thereof include silicone resin, fluororesin, alkyd resin, acrylic resin, various waxes, and aliphatic olefin.
  • silicone resin is preferred from the viewpoint of releasability of the ceramic green sheet. It is also preferred that the release layer is a cured layer obtained by curing the components contained in the release layer.
  • a release film or protective film (laminate film) formed by laminating this film with a release layer can suppress unevenness defects, and is therefore preferably applicable to release films for the production of ceramic green sheets and release films for the production of semiconductors, which have recently required stricter levels of smoothness.
  • a known adhesive can be used for the adhesive layer.
  • adhesives include rubber-based adhesives, acrylic-based adhesives, silicone-based adhesives, urethane-based adhesives, vinyl alkyl ether-based adhesives, polyvinylpyrrolidone-based adhesives, polyacrylamide-based adhesives, and cellulose-based adhesives.
  • Acrylic-based adhesives are preferred because of their excellent optical transparency and adhesive properties.
  • the magnetic layer When a magnetic layer is laminated on the film as a functional layer, the magnetic layer preferably contains ferromagnetic particles and a binder.
  • Preferred examples of the ferromagnetic particles include ferromagnetic particles containing one or more metals selected from the group consisting of iron, cobalt, nickel, aluminum, yttrium, and calcium.
  • the hard coat layer may be an inorganic layer made of an inorganic material, an organic layer made of an organic material, or a hybrid layer containing an inorganic material and an organic material. It is also preferable that the hard coat layer is a cured layer.
  • the film can be used in a variety of applications.
  • Examples of the laminate film using the present film include the laminate film described above.
  • the laminate film described above can be used for each purpose by a commonly used method.
  • the laminated film is a release film, it is preferably used as a release film (carrier film) for producing a ceramic green sheet.
  • the ceramic green sheet produced using the release film can be suitably used for producing a ceramic capacitor, which is required to have a multi-layered internal electrode due to miniaturization and large capacity.
  • a release film having the present film may be used as a protective film for a dry film resist, a release film for process manufacturing such as for semiconductor processing, and the like.
  • the method for producing a ceramic green sheet using the release film is not particularly limited and can be carried out by a known method.
  • the method for producing a ceramic green sheet includes a method of applying a prepared ceramic slurry to the release layer surface of the release film and drying and removing the solvent contained in the ceramic slurry.
  • the method of applying the ceramic slurry is not particularly limited, and for example, a known method can be applied, such as a method in which a ceramic slurry in which ceramic powder and a binder are dispersed in a solvent is applied by a reverse roll method, and the solvent is removed by heating and drying.
  • the binder is not particularly limited, and examples thereof include polyvinyl butyral.
  • the solvent is also not particularly limited, and examples thereof include ethanol and toluene.
  • Example 1 Extrusion molding process> Pellets of polyethylene terephthalate were produced using a titanium compound (citric acid chelate titanium complex, VERTEC AC-420, Johnson Matthey) described in Japanese Patent No. 5575671 as a polymerization catalyst. The obtained pellets were dried until the moisture content was 50 ppm or less, and then charged into the hopper of a twin-screw kneading extruder described in Japanese Patent No. 6049648, and then melted and extruded at 280 ° C. The melt was passed through a filter (hole diameter 3 ⁇ m) and then extruded from a die onto a cooling drum at 25 ° C. to obtain an unstretched resin substrate made of polyethylene terephthalate.
  • a filter hole diameter 3 ⁇ m
  • the extruded melt was brought into close contact with the cooling drum by an electrostatic application method.
  • the polyethylene terephthalate constituting the unstretched resin substrate had a melting point (Tm) of 258°C and a glass transition temperature (Tg) of 80°C.
  • the unstretched resin substrate was subjected to a longitudinal stretching process by the following method.
  • the preheated unstretched resin substrate was stretched in the longitudinal direction at a stretch ratio of 3.4 and a stretching speed of 1300%/sec while maintaining the surface temperature at 90° C., to obtain a uniaxially stretched resin substrate.
  • composition A-1 (corresponding to composition A1) was applied to one side of a longitudinally stretched uniaxially stretched resin substrate (polyester substrate) using a bar coater, and the formed coating film was dried with hot air at 100° C. to form a layer on one side of the uniaxially stretched resin substrate.
  • the coating amount of composition A-1 was adjusted so that a resin layer having a thickness described below would be formed in the finally produced biaxially oriented film.
  • composition A-1 Composition A-1 was prepared by mixing the components shown below.
  • the prepared composition A-1 was filtered using a filter with a pore size of 6 ⁇ m (F20, manufactured by Mahle Filter Systems Co., Ltd.) and subjected to membrane degassing (2x6 Radial Flow Superphobic, manufactured by Polypore Co., Ltd.), and the obtained composition A-1 was applied to one surface of a uniaxially stretched resin substrate.
  • Resin 1 (urethane resin, Takelac (registered trademark) W-605, manufactured by Mitsui Chemicals, Inc.) solid content concentration 25% by mass aqueous dispersion: 157 parts by mass Anionic hydrocarbon surfactant (Lapisol (registered trademark) A-90, di-2-ethylhexyl sodium sulfosuccinate, manufactured by NOF Corporation) solid content concentration 1% by mass aqueous dilution: 56 parts by mass Particle 1 (non-crosslinked styrene resin particles (styrene copolymer), Nipol (registered trademark) UFN1008, manufactured by Zeon Corporation, average particle size 1.9 ⁇ m) solid content concentration 10% by mass aqueous dispersion: 8 parts by mass Water: 779 parts by mass
  • the obtained biaxially oriented film was subjected to a heat setting process using a tenter at 227°C for 6 seconds.
  • the film was subjected to a heat relaxation process at 190°C under conditions such that the heat relaxation rate Lr was 4%.
  • the distance between the tenter gripping members gripping both ends of the film was narrowed to reduce the film width compared to the end of the heat setting process.
  • the film was cooled at a cooling rate of 1500° C./min.
  • the film width was expanded so that the expansion rate ⁇ L was 0.6%.
  • an expansion step was carried out in which the tenter width was expanded to expand the film width compared to the end of the heat relaxation step.
  • the cooling rate described below was calculated by dividing the temperature difference ⁇ T (°C) between the film surface temperature measured when the film was carried into the cooling section and the film surface temperature measured when the film was carried out of the cooling section by the cooling time ta, where ta is the residence time of the film from when it was carried into the cooling section of the stretching machine to when it was carried out.
  • the obtained biaxially oriented film was continuously cut along the conveying direction at positions 20 cm from both ends in the width direction of the film to trim both ends of the film.
  • the film was subjected to extrusion processing (knurling) in the region up to 10 mm in the width direction from both ends, and then the film was wound up under a tension of 40 kg/m.
  • the thickness of the obtained biaxially oriented film was 31 ⁇ m
  • the thickness of the resin layer was 60 nm
  • the width was 1.5 m
  • the roll length was 7000 m. Protrusions having the shapes shown in Table 1 were formed on the surface of the resin layer.
  • compositions A-2 to A-5 instead of the composition A-1 used in the layer formation step, compositions A-2 to A-5, the components of which were changed as shown in the table below, were used, and the stretching temperature (temperature Y) in the transverse stretching step was changed as shown in the table below, but the same procedure as in Example 1 was used to obtain a biaxially oriented film.
  • the amounts of the components of compositions A-2 to A-5 were adjusted so that the solid content concentration was the same as that of each component of composition A-1. Details of the protrusions on the surface of the resin layer are shown in the table below.
  • Resin 2 urethane resin, Hydran (registered trademark) AP-40N, manufactured by DIC Corporation
  • Resin 3 urethane resin, Superflex (registered trademark) 210, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • Resin 4 esteer resin, Vylonal (registered trademark) MD-1480, manufactured by Toyobo Co., Ltd., acid value 3 KOHmg/g
  • Example 6 A biaxially oriented film was obtained in the same manner as in Example 1, except that the composition A-6 below was used instead of the composition A-1 used in the layer formation step. Details of the protrusions on the resin layer surface are shown in the table below.
  • Composition A-6) Composition A-6 was prepared by mixing the components shown below. The prepared composition A-6 was subjected to filtration and membrane degassing in the same manner as composition A-1, and then the obtained composition A-6 was applied to the surface of a uniaxially stretched resin substrate.
  • Resin 1 (urethane resin, Takelac (registered trademark) W-605, manufactured by Mitsui Chemicals, Inc.) solid content concentration 25% by mass aqueous dispersion: 157 parts by mass Anionic hydrocarbon surfactant (Rapisol (registered trademark) A-90, manufactured by NOF Corporation) solid content concentration 1% by mass aqueous dilution: 36 parts by mass Particle 1 (non-crosslinked styrene resin particles, Nipol (registered trademark) UFN1008, manufactured by Zeon Corporation) solid content concentration 20% by mass aqueous dispersion: 11.2 parts by mass Crosslinker 1 (carbodiimide compound, Carbodilite V-02-L2, manufactured by Nisshinbo Chemical Inc.) solid content 25% by mass aqueous solution: 32.2 parts by mass Water: 622 parts by mass
  • compositions A-7 to A-19 were used, the components of which were changed as shown in the table below, and the stretching temperature (temperature Y) in the transverse stretching step was changed as shown in the table below, but the same procedure as in Example 6 was used to obtain a biaxially oriented film. Note that the amount of each component in compositions A-7 to A-19 was adjusted so that each component had the same solid content concentration as composition A-6. Details of the protrusions on the resin layer surface are shown in the table below.
  • Resin 8 aqueous dispersion of acid-modified olefin resin particles, ZAIKXEN (registered trademark) NC, manufactured by Sumitomo Seika Chemicals Co., Ltd.
  • Particles 2 non-crosslinked polymethyl methacrylate (PMMA) resin particles, MP1000, manufactured by Soken Chemical & Engineering Co., Ltd., average particle size 0.4 ⁇ m
  • Particles 3 non-crosslinked styrene/acrylic copolymer resin particles, MP5000, manufactured by Soken Chemical & Engineering Co., Ltd., average particle size 0.4 ⁇ m
  • Particles 4 non-crosslinked
  • Example 20 A biaxially oriented film was obtained in the same manner as in Example 1, except that the composition A-20 was used instead of the composition A-1 used in the layer formation step. Details of the protrusions on the resin layer surface are shown in the table below.
  • Composition A-20 Composition A-20 was prepared by mixing the components shown below. The prepared composition A-19 was subjected to filtration and membrane degassing in the same manner as composition A-1, and the obtained composition A-20 was applied to the surface of a uniaxially stretched resin substrate.
  • Example 21 A biaxially oriented film was obtained in the same manner as in Example 1, except that the composition A-21 below was used instead of the composition A-1 used in the layer formation step. Details of the protrusions on the resin layer surface are shown in the table below.
  • Composition A-21 Composition A-21 was prepared by mixing the components shown below. The prepared composition A-21 was subjected to filtration and membrane degassing in the same manner as composition A-1, and then the obtained composition A-21 was applied to the surface of a uniaxially stretched resin substrate.
  • Resin 3 (urethane resin, Superflex (registered trademark) 210, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) 35% solids concentration aqueous dispersion: 115 parts by mass Anionic hydrocarbon surfactant (Rapisol (registered trademark) A-90, manufactured by NOF Corporation) 1% solids concentration aqueous dilution: 36 parts by mass Particle 1 (non-crosslinked styrene resin particles, Nipol (registered trademark) UFN1008, manufactured by Zeon Corporation) 20% solids concentration aqueous dispersion: 11.2 parts by mass Particle 2 (PMMA resin particles, MP1000, manufactured by Soken Chemical & Engineering Co., Ltd.) 5% solids concentration aqueous dispersion: 179.2 parts by mass Crosslinker 2 (oxazoline compound, Epocross (registered trademark) WS-700, manufactured by Nippon Shokubai Co., Ltd.) 25% solids concentration aqueous solution: 32.2
  • Example 22 A biaxially oriented film was obtained in the same manner as in Example 1, except that the composition A-22 was used instead of the composition A-1 used in the layer formation step. Details of the protrusions on the resin layer surface are shown in the table below. (Composition A-22) Composition A-22 was prepared by mixing the components shown below. The prepared composition A-22 was subjected to filtration and membrane degassing in the same manner as composition A-1, and then the obtained composition A-22 was applied to the surface of a uniaxially stretched resin substrate.
  • Resin 6 urethane resin, Elastron (registered trademark) H3DF, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • Example 23 A biaxially oriented film was obtained in the same manner as in Example 22, except that composition A-23, the components of which were changed as shown in the table below, was used instead of composition A-22 used in the layer formation step. The amount of each component in composition A-23 was adjusted so that the solid content concentration of each component was the same as that of composition A-22. Details of the protrusions on the resin layer surface are shown in the table below.
  • composition C-1 Particles 4 (non-crosslinked styrene/acrylic copolymer resin particles, methyl methacrylate/styrene copolymer resin particles having a mass ratio of 70/30) in water dispersion with a solid content of 0.4% by mass: 157 parts by mass.
  • Aqueous solution of nonionic surfactant (Naroacty CL95, manufactured by Sanyo Chemical Industries, Ltd.) with a solid content of 1% by mass: 70 parts by mass (Composition C-2).
  • Particles 6 non-crosslinked acrylic resin particles, methyl methacrylate/ethyl acrylate/acrylic acid copolymer resin particles in a mass ratio of 78/20/2, average particle diameter 0.12 ⁇ m
  • Comparative Example 3 A biaxially oriented film was obtained in the same manner as in Example 1, except that the composition C-3 shown below was used instead of the composition A-1 used in the layer forming step. In the biaxially oriented film obtained in Comparative Example 3, a continuous resin layer was formed on the surface of the resin substrate, but no protrusions were formed. When an attempt was made to wind up the biaxially oriented film obtained in Comparative Example 3, a winding shift occurred and it was not possible to wind it up properly, so an evaluation of forming a subsequent functional layer was not performed.
  • Comparative Example 4 A biaxially oriented film was obtained in the same manner as in Example 1, except that the composition C-4 below was used instead of the composition A-1 used in the layer formation step, and the stretching temperature (temperature Y) in the transverse stretching step was changed as shown in the table below. Details of the protrusions on the resin layer surface are shown in the table below.
  • composition C-4 Resin 7 (acrylic resin, methyl methacrylate / stearyl methacrylate / hydroxyethyl methacrylate / methacrylic acid copolymer in a mass ratio of 47 / 26 / 20 / 7) solid content concentration 20 mass% water dispersion: 165 parts by mass Fluorosurfactant (Surflon (registered trademark) S-211, manufactured by AGC Seimi Chemical Co., Ltd.) solid content concentration 1 mass% water dilution: 30 parts by mass Particle 7 (crosslinked acrylic particles, manufactured by Nippon Shokubai Co., Ltd., product name MX100W) solid content concentration 10 mass% water dispersion: 23.7 parts by mass Crosslinker 2 (oxazoline compound, Epocross (registered trademark) WS-700, manufactured by Nippon Shokubai Co., Ltd.) solid content concentration 25 mass% aqueous solution: 56.8 parts by mass Water: 750 parts by mass
  • Fig. 2 shows an image of the resin layer surface of a biaxially oriented film produced by a method similar to that of Example 1
  • Fig. 3 shows an image of the resin layer surface of a biaxially oriented film produced by a method similar to that of Comparative Example 4, observed by SEM.
  • the protrusions present on the resin layer surface of the biaxially oriented film produced by a method similar to the Examples are observed to have a small ratio of the height of the protrusion to the long diameter of the protrusion, as described below.
  • the protrusions present on the resin layer surface of the biaxially oriented film produced by a method similar to the Comparative Example have a clear outline, a shape close to a sphere, and a large ratio of the height of the protrusion to the long diameter of the protrusion, as described below.
  • the thickness of the resin layer was measured by the following procedure. First, the obtained film was cut with a microtome to expose a cross section along the thickness direction of the film. The exposed film cross section was subjected to a milling treatment with Ar ions to smooth the film cross section, and then Pt was vapor-deposited on the film cross section to obtain a sample for observation. The observation sample was observed with a SEM ("S-4800" manufactured by Hitachi High-Technologies Corporation), and the thickness of the resin layer in the film cross section was measured by the method described above.
  • SEM S-4800 manufactured by Hitachi High-Technologies Corporation
  • the glass transition temperatures (Tg) of the particles and resins used in the examples and comparative examples were measured using a differential scanning calorimeter according to the following procedure. Specifically, a differential scanning calorimeter (TA Instruments DSC2500) was used, and 5 mg of powder sample was placed in the sealed pan of the differential scanning calorimeter, and measurements were performed in the range of -50 to 300°C at a heating rate of 5°C/min. The temperature modulation conditions were ⁇ 0.5°C/min and a period of 60 seconds. The Tg was determined by using the measurement results during the second heating cycle, and the peak value in the curve obtained by first-order differentiation of the reversing heat flow was adopted as the Tg. In addition, when the particles or resin used in the examples and comparative examples were dispersions or solutions, the powder obtained by drying at a high temperature in the range of 100 to 300°C and lower than the thermal decomposition temperature of the resin was used as the powder sample.
  • the mark portion was measured under the following measurement conditions using an optical interferometer (Vertscan 3300G Lite, manufactured by Hitachi High-Tech Corporation) to confirm the distribution of the protrusions.
  • the distribution was compared with the results of observation using the SEM to identify the protrusions observed using the SEM.
  • the cross section of the protrusions was observed by two-dimensional analysis, and the height of the protrusions was measured. From the measured major axis and height of the projections, the ratio of the height of the projections to the identified major axis of the projections was calculated.
  • Measurement mode WAVE mode Objective lens: 50x Measurement area: 186 ⁇ m x 155 ⁇ m
  • the major axis of the protrusions and the height corresponding to the protrusions were measured in 10 different observation areas on the resin layer surface of the sample, and the ratio of the height of the protrusions to the major axis of the protrusions was calculated.
  • the arithmetic average value of the ratios obtained for each observation area was adopted as the ratio of the height of the protrusions to the major axis of the protrusions, and is shown in the table as "Ratio A".
  • the major axis and minor axis of the projections obtained for each observation area, and the arithmetic mean values of the heights corresponding to the projections were adopted as the projection height, major axis, and minor axis, respectively.
  • the ratio of the major axis of the projection to the minor axis of the projection was calculated from the major axis of the projection and the minor axis of the projection obtained.
  • the surface free energy of the surface of the film on the resin layer side was measured by the following method. Using a contact angle meter (DROPMASTER-501, manufactured by Kyowa Interface Science Co., Ltd.), droplets were dropped onto the resin layer surface of the produced film at 25° C., and the contact angle was measured 1 second after the droplets attached to the surface. 2 ⁇ L of purified water, 1 ⁇ L of methylene iodide, and 1 ⁇ L of ethylene glycol were used as droplets, and the surface free energy (unit: mJ/m 2 ) was calculated from each measured contact angle by the Kitazaki-Hata method.
  • the "surface free energy” obtained by the above method is the sum of the polar component and the hydrogen bond component of the surface free energy.
  • the laminated films shown below were produced and evaluated. That is, while the films obtained in each of the Examples and Comparative Examples were transported, a functional layer was placed on one surface of the film, and the obtained film (laminated film) was wound up, and then when it was unwound, the surface of the functional layer was evaluated for irregularity defects.
  • the rubber hardness of the contact roll measured using a type A durometer was 60 degrees.
  • the roll of the released film thus taken up was visually observed, and the winding properties at high speed were evaluated based on the observation results and on the following evaluation criteria.
  • B A small amount of winding misalignment occurred, but was within the acceptable level.
  • C Winding deviation occurred.
  • the release film was unwound from the release film roll that had been subjected to the high-speed winding evaluation.
  • the unwound release film was visually inspected for the release layer surface under a three-wavelength fluorescent lamp, and the presence or absence of irregularity defects was confirmed by observing the reflected light of the fluorescent lamp.
  • a transfer film for decoration was produced by the following procedure.
  • the thermoplastic (non-photosensitive) resin layer coating liquid described in [0106] of WO 2017/208849 was applied to the surface opposite to the resin layer side of the film produced in Example 22, and dried at 80 ° C. to form a thermoplastic (non-photosensitive) resin layer.
  • the underlayer coating liquid described in [0189] of WO 2021/261412 was applied and dried at 120 ° C. to form a underlayer.
  • the photosensitive resin layer forming composition described in [0202] of WO 2021/261412 was applied and dried at 90 ° C. to form a photosensitive resin layer (decorative layer).
  • the thickness of the underlayer was 1.6 ⁇ m, and the thickness of the photosensitive resin layer was 2.0 ⁇ m.
  • the decorative transfer film was produced while the film was being transported.
  • the resulting decorative transfer film was wound up under the same conditions as the release film, and the surface of the unwound decorative transfer film (the surface of the decorative layer opposite the support) was evaluated in the same manner as the release layer (irregularity defects (Evaluation 1)). As a result, no irregularity defects were found in the decorative layer.
  • a decorative pattern was formed using the obtained transfer film for decoration by referring to the description of paragraph [0109] of WO 2017/208849, a pattern with a good shape could be formed.
  • a mixture was prepared by mixing 100 parts by mass of barium titanate powder (BaTiO 3 ; Sakai Chemical Industry Co., Ltd., product name "BT-03"), 8 parts by mass of polyvinyl butyral resin (Sekisui Chemical Co., Ltd., product name "S-LEC (registered trademark) B ⁇ K BM-2") as a binder, 4 parts by mass of dioctyl phthalate (Kanto Chemical Co., Ltd., dioctyl phthalate, deer grade 1) as a plasticizer, and 135 parts by mass of a mixture of toluene and ethanol (mass ratio 6:4).
  • Zirconia beads were added to the mixture and dispersed in the barium titanate powder mixture by a ball mill to prepare a dispersion. The zirconia beads were removed from the obtained dispersion to prepare a ceramic slurry.
  • the resulting film with ceramic green sheet was wound up under the same conditions as the release film, and the ceramic green sheet of the unwound film with ceramic green sheet was then evaluated in the same way as the release layer (irregularity defects (evaluation 1)). As a result, no irregularity defects were found in the ceramic green sheet.

Landscapes

  • Laminated Bodies (AREA)

Abstract

The present invention addresses the problem of providing a film in which, when a functional layer is disposed on one surface of the film while conveying the film, and the resultant film is wound and then subsequently fed out, an unevenness defect is unlikely to occur on a surface of the functional layer. A film according to the present invention comprises a resin substrate and a resin layer, wherein the resin layer has protrusions on a surface thereof, and the ratio of the height of the protrusions to the long diameter of the protrusions is not more than 0.70.

Description

フィルム、積層フィルム、フィルムの製造方法Film, laminated film, and film manufacturing method
 本発明は、フィルム、積層フィルム、及び、フィルムの製造方法に関する。 The present invention relates to a film, a laminated film, and a method for producing a film.
 優れた平滑性及び滑り性を有するフィルムは、種々の用途に使用されている。上記特性を具備するフィルムは、例えば、タッチパネル用のフィルム、光学部材用のフィルム、成形用の基材、加飾フィルムの基材、及び、感光性層の基材等の用途に用いられている。 Films with excellent smoothness and slipperiness are used in a variety of applications. Films with the above properties are used, for example, as films for touch panels, films for optical components, substrates for molding, substrates for decorative films, and substrates for photosensitive layers.
 上記特性を具備するフィルムは、フィルムの少なくとも一方の表面に粒子に由来する突起を設けて作製される場合が多い。
 例えば、特許文献1では、熱可塑性樹脂フィルム(樹脂基材)の一方の表面に、水にアクリル粒子分散させた塗液を塗布し、2軸配向フィルムを作製したことが記載されている。
 また、特許文献2では、ポリエステルフィルム(樹脂基材)の一方の表面に、溶媒と樹脂粒子とを含む塗布液を塗布し、フィルムを得たことが記載されている。
Films having the above properties are often produced by providing particle-derived protrusions on at least one surface of the film.
For example, Patent Document 1 describes the production of a biaxially oriented film by applying a coating liquid in which acrylic particles are dispersed in water to one surface of a thermoplastic resin film (resin substrate).
Furthermore, Patent Document 2 describes a method of obtaining a film by applying a coating liquid containing a solvent and resin particles to one surface of a polyester film (resin substrate).
特開2005-015539号公報JP 2005-015539 A 特開2014-223784号公報JP 2014-223784 A
 一方、上記のようなフィルムに対して特定の機能を発現するための層(機能層)を設ける際には、フィルムを搬送しながら機能層を形成する場合が多い。また、機能層を形成したフィルムは、機能層の形成後にはロール状に巻き取っておき、フィルムの使用時に巻き出して使用することが一般的である。 On the other hand, when providing a layer (functional layer) for realizing a specific function to such a film, the functional layer is often formed while the film is being transported. Also, the film on which the functional layer has been formed is generally wound up into a roll after the functional layer has been formed, and then unwound when the film is to be used.
 本発明者らは、特許文献1及び特許文献2に記載のフィルムに対して、搬送しながら機能層を形成し、得られたフィルムを巻き取った後、フィルムを巻き出した際に、機能層の表面に凹凸欠陥が発生する場合があることを知見した。上記のような凹凸欠陥が機能層表面に発生すると、機能層の機能、及び、機能層を用いて形成されるもの等に影響を及ぼすため、その発生の抑制が望まれていた。 The inventors have found that when a functional layer is formed on the film described in Patent Documents 1 and 2 while it is being transported, and the resulting film is wound up, uneven defects may occur on the surface of the functional layer when the film is unwound. If uneven defects such as those described above occur on the surface of the functional layer, they will affect the function of the functional layer and things formed using the functional layer, and so it has been desirable to prevent their occurrence.
 そこで、本発明は、フィルムを搬送しながら、フィルムの一方の表面上に機能層を配置して、得られたフィルムを巻き取り、その後巻き出した際に、凹凸欠陥が機能層の表面に発生しにくいフィルムの提供を課題とする。
 また、本発明は、フィルムと、機能層とを備える積層フィルムの提供も課題とする。更に、本発明は、フィルムの製造方法の提供も課題とする。
Therefore, the present invention aims to provide a film in which a functional layer is placed on one surface of a film while the film is being transported, the resulting film is wound up, and then the film is unwound, such that unevenness defects are less likely to occur on the surface of the functional layer.
Another object of the present invention is to provide a laminated film including a film and a functional layer, and a method for producing the film.
 本発明者は、上記課題を解決すべく鋭意検討した結果、本発明を完成させるに至った。すなわち、以下の構成により上記課題が解決されることを見出した。 The inventors conducted extensive research to solve the above problems, and as a result, completed the present invention. In other words, they discovered that the above problems can be solved by the following configuration.
 〔1〕 樹脂基材と、樹脂層とを含むフィルムであって、
 上記樹脂層がその表面に突起を有し、
 上記突起の長径に対する上記突起の高さの比が、0.70以下である、フィルム。
 〔2〕 上記突起が、非ポリエステル樹脂を含む、〔1〕に記載のフィルム。
 〔3〕 上記突起が、アクリル樹脂及びスチレン樹脂の少なくとも一方を含む、〔1〕又は〔2〕に記載のフィルム。
 〔4〕 上記樹脂層が、単層の塗布層である、〔1〕~〔3〕のいずれか一つに記載のフィルム。
 〔5〕 上記樹脂層が、アクリル樹脂、ウレタン樹脂、及び、オレフィン樹脂からなる群より選択される少なくとも1種のバインダーを含む、〔1〕~〔4〕のいずれか一つに記載のフィルム。
 〔6〕 上記バインダーが、酸基を有する樹脂を含む、〔5〕に記載のフィルム。
 〔7〕 上記樹脂層が、架橋膜である、〔1〕~〔6〕のいずれか一つに記載のフィルム。
 〔8〕 上記樹脂層の厚みが、0.01~1μmである、〔1〕~〔7〕のいずれか一つに記載のフィルム。
 〔9〕 上記突起が、上記樹脂層の表面における10000μmの領域において50個以上存在する、〔1〕~〔8〕のいずれか一つに記載のフィルム。
 〔10〕 上記突起の短径に対する上記突起の長径の比が、1.60超である、〔1〕~〔9〕のいずれか一つに記載のフィルム。
 〔11〕 〔1〕~〔10〕のいずれか1つに記載のフィルムと、機能層とを備える積層フィルムであって、
 上記樹脂層と、上記樹脂基材と、上記機能層とをこの順に備え、
 上記機能層が、加飾層、感光性樹脂層、無機層、及び、剥離層からなる群より選択される1種である、積層フィルム。
 〔12〕 樹脂基材の少なくとも一方の面に、非架橋樹脂粒子Aと、樹脂Bと、溶媒とを含む組成物を用いて層を形成する工程と、
 上記層を形成した上記脂基材を温度Yにて加熱しながら延伸する工程とを有し、以下の要件1及び要件2を満たす、フィルムの製造方法。
 要件1:温度Yから、上記非架橋樹脂粒子Aのガラス転移温度を減算した値が-20~50℃である。
 要件2:上記組成物中において、上記樹脂Bが粒子状に存在する場合、粒子状の上記樹脂Bの粒径が上記非架橋樹脂粒子Aの粒径よりも小さい。
 〔13〕 上記樹脂基材が、未延伸樹脂基材を延伸して得られる1軸配向樹脂基材である、〔12〕に記載のフィルムの製造方法。
 〔14〕 上記樹脂Bが酸基を有する樹脂であり、上記組成物が更に架橋剤を含む、〔12〕又は〔13〕に記載のフィルムの製造方法。
 〔15〕 上記非架橋樹脂粒子Aのガラス転移温度が、70~140℃である、〔12〕~〔14〕のいずれか1つに記載のフィルムの製造方法。
 〔16〕 上記樹脂Bのガラス転移温度が-50~105℃である、〔12〕~〔15〕のいずれか一つに記載のフィルムの製造方法。
 〔17〕 上記組成物中において、上記樹脂Bが粒子状に存在する場合、上記樹脂Bの粒径をDbμm、上記非架橋樹脂粒子Aの粒径をDaとしたとき、式(1)の関係を満たす、〔12〕~〔16〕のいずれか一つに記載のフィルムの製造方法。
 式(1)  7×Db<Da
[1] A film including a resin substrate and a resin layer,
the resin layer has protrusions on its surface,
A film, wherein the ratio of the height of the protrusions to the major axis of the protrusions is 0.70 or less.
[2] The film according to [1], wherein the protrusions contain a non-polyester resin.
[3] The film according to [1] or [2], wherein the protrusions contain at least one of an acrylic resin and a styrene resin.
[4] The film according to any one of [1] to [3], wherein the resin layer is a single coating layer.
[5] The film according to any one of [1] to [4], wherein the resin layer contains at least one binder selected from the group consisting of acrylic resins, urethane resins, and olefin resins.
[6] The film according to [5], wherein the binder contains a resin having an acid group.
[7] The film according to any one of [1] to [6], wherein the resin layer is a crosslinked film.
[8] The film according to any one of [1] to [7], wherein the resin layer has a thickness of 0.01 to 1 μm.
[9] The film according to any one of [1] to [8], wherein the protrusions are present in an area of 10,000 μm2 on the surface of the resin layer, and the number of the protrusions is 50 or more.
[10] The film according to any one of [1] to [9], wherein the ratio of the major axis of the protrusions to the minor axis of the protrusions is greater than 1.60.
[11] A laminated film comprising the film according to any one of [1] to [10] and a functional layer,
The resin layer, the resin substrate, and the functional layer are provided in this order,
The laminate film, wherein the functional layer is one selected from the group consisting of a decorative layer, a photosensitive resin layer, an inorganic layer, and a release layer.
[12] A step of forming a layer on at least one surface of a resin substrate using a composition containing non-crosslinked resin particles A, a resin B, and a solvent;
and stretching the resin base material on which the layer is formed while heating it at a temperature Y, wherein the method for producing a film satisfies the following requirements 1 and 2.
Requirement 1: The value obtained by subtracting the glass transition temperature of the non-crosslinked resin particles A from the temperature Y is from -20 to 50°C.
Requirement 2: When the resin B is present in the form of particles in the composition, the particle diameter of the particulate resin B is smaller than the particle diameter of the non-crosslinked resin particles A.
[13] The method for producing a film according to [12], wherein the resin substrate is a uniaxially oriented resin substrate obtained by stretching an unstretched resin substrate.
[14] The method for producing a film according to [12] or [13], wherein the resin B is a resin having an acid group, and the composition further contains a crosslinking agent.
[15] The method for producing a film according to any one of [12] to [14], wherein the non-crosslinked resin particles A have a glass transition temperature of 70 to 140° C.
[16] The method for producing a film according to any one of [12] to [15], wherein the glass transition temperature of the resin B is −50 to 105° C.
[17] The method for producing a film according to any one of [12] to [16], wherein, in the composition, when the resin B is present in a particulate form, the particle diameter of the resin B is Db μm and the particle diameter of the non-crosslinked resin particles A is Da, the relationship of formula (1) is satisfied.
Formula (1) 7 × Db < Da
 本発明によれば、フィルムを搬送しながら、フィルムの一方の表面上に機能層を配置して、得られたフィルムを巻き取り、その後巻き出した際に、凹凸欠陥が機能層の表面に発生しにくいフィルムを提供できる。
 また、本発明によれば、フィルムと、機能層とを備える積層フィルムも提供できる。更に、本発明によれば、フィルムの製造方法も提供できる。
According to the present invention, a functional layer is placed on one surface of a film while the film is being transported, and the resulting film is wound up and then unwound, thereby providing a film in which unevenness defects are less likely to occur on the surface of the functional layer.
According to the present invention, a laminated film including a film and a functional layer can be provided. Furthermore, according to the present invention, a method for producing a film can be provided.
本発明のフィルムの構成の一例を示す断面図である。FIG. 1 is a cross-sectional view showing an example of the configuration of a film of the present invention. 実施例に類似の方法で作製された2軸配向フィルムの表面の観察像である。1 is an observation image of the surface of a biaxially oriented film produced by a method similar to that of the example. 比較例に類似の方法で作製された2軸配向フィルムの表面の観察像である。1 is an observation image of the surface of a biaxially oriented film produced by a method similar to that of the comparative example.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされる場合があるが、本発明はそのような実施態様に制限されない。
The present invention will be described in detail below.
The following description of the configuration may be based on a representative embodiment of the present invention, but the present invention is not limited to such an embodiment.
 以下、本明細書における各記載の意味を表す。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。本明細書に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本明細書において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
 本明細書において、「工程」との用語には、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
 本明細書において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
The following describes the meaning of each description in this specification.
In this specification, a numerical range expressed using "to" means a range including the numerical values described before and after "to" as the lower and upper limits. In the numerical ranges described in stages in this specification, the upper or lower limit described in a certain numerical range may be replaced with the upper or lower limit of another numerical range described in stages. In addition, in the numerical ranges described in this specification, the upper or lower limit described in a certain numerical range may be replaced with a value shown in the examples.
In this specification, the amount of each component in a composition means the total amount of multiple substances present in the composition when multiple substances corresponding to each component are present in the composition, unless otherwise specified.
In this specification, the term "process" includes not only independent processes but also processes that cannot be clearly distinguished from other processes as long as the intended purpose of the process is achieved.
As used herein, a combination of two or more preferred aspects is a more preferred aspect.
 本明細書において、「長手方向」とは、フィルムの製造時におけるフィルムの長尺方向を意味し、「搬送方向」及び「機械方向」と同義である。
 本明細書において、「幅方向」とは、長手方向に直交する方向を意味する。本明細書において、「直交」は、厳密な直交に限られず、略直交を含む。「略直交」とは、90°±5°の範囲内で交わることを意味し、90°±3°の範囲内で交わることが好ましく、90°±1°の範囲内で交わることがより好ましい。
 本明細書において、「長径」とは、フィルムの表面に存在する突起を観察した際、その突起の面内方向における最も長い径を意味する。より具体的には、突起を観察した際、面内方向の突起の形状に外接する2本の平行線のうち、平行間距離が最大となるように選択される2本の平行線間の距離を長径とする。
 本明細書において、「短径」とは、フィルムの表面に存在する突起を観察した際、その突起の面内方向における最も長い径(長径)と直交する方向において、突起の面内方向における最も長い径を意味する。より具体的には、上記長径を与える2本の平行線に直交し、かつ、面内方向の突起の形状に外接する2本の平行線のうち、平行線間距離が最小となるように選ばれる2本の平行線間の距離を短径とする。
In this specification, the term "longitudinal direction" refers to the longitudinal direction of a film during its production, and is synonymous with the terms "conveyance direction" and "machine direction."
In this specification, the "width direction" refers to a direction perpendicular to the longitudinal direction. In this specification, "perpendicular" is not limited to strictly perpendicular, but includes approximately perpendicular. "Approximately perpendicular" means that the direction intersects within a range of 90°±5°, preferably within a range of 90°±3°, and more preferably within a range of 90°±1°.
In this specification, the "major axis" refers to the longest diameter of a protrusion in the in-plane direction when the protrusion is observed on the surface of the film. More specifically, the major axis is defined as the distance between two parallel lines selected so as to have the maximum distance between them, among two parallel lines circumscribing the shape of the protrusion in the in-plane direction when the protrusion is observed.
In this specification, the "minor diameter" refers to the longest diameter of a protrusion in the in-plane direction in a direction perpendicular to the longest diameter (major diameter) of the protrusion when the protrusion is observed on the surface of a film. More specifically, the minor diameter is defined as the distance between two parallel lines selected so as to be the shortest distance between the two parallel lines that are perpendicular to the two parallel lines that give the major diameter and circumscribe the shape of the protrusion in the in-plane direction.
[フィルム]
 本発明のフィルム(以下、単に「本フィルム」ともいう。)は、樹脂基材と、樹脂層とを含むフィルムであって、樹脂層がその表面に突起を有し、突起の長径に対する突起の高さの比が、0.70以下である。
 本フィルムの構成を、図面を参照しながら説明する。
 図1は、本フィルムの構成の一例を示す断面図である。本発明のフィルム1は、樹脂層2と、樹脂基材3とを備え、第1主面4及び第2主面5を有する。第2主面5は、樹脂層2の表面の一方であり、樹脂層2は第2主面5である表面に突起6を有する。第1主面4には、図示しない機能層を設けることができる。なお、突起6の長径に対する突起6の高さの比が、0.70以下である。
[film]
The film of the present invention (hereinafter also simply referred to as "the film") is a film comprising a resin substrate and a resin layer, in which the resin layer has protrusions on its surface, and the ratio of the height of the protrusions to the major axis of the protrusions is 0.70 or less.
The structure of the present film will be described with reference to the drawings.
1 is a cross-sectional view showing an example of the configuration of the present film. The film 1 of the present invention includes a resin layer 2 and a resin substrate 3, and has a first main surface 4 and a second main surface 5. The second main surface 5 is one of the surfaces of the resin layer 2, and the resin layer 2 has protrusions 6 on the surface that is the second main surface 5. A functional layer (not shown) can be provided on the first main surface 4. The ratio of the height of the protrusions 6 to the major axis of the protrusions 6 is 0.70 or less.
 本フィルムを搬送しながら、フィルムの一方の表面上に機能層を配置して、得られたフィルムを巻き取り、その後巻き出した際に、凹凸欠陥が機能層の表面に発生しにくい機序の詳細は必ずしも明らかではないが、本発明者らは以下のように推測している。
 フィルムを搬送する場合、フィルムは、搬送ロール等の他の部材と接触する。フィルムの搬送性の点で、フィルムの表面に突起を設ける場合、フィルムの突起を有する側の表面と、搬送ロール等の他の部材と接触による衝撃等によって、フィルムの表面の突起又は突起を含むフィルムの一部が、粒子として脱落することが考えられる。
 上記のように粒子が脱落すると、機能層を形成する前のフィルムを巻き取った際等に、フィルムの突起を有する側とは反対側の表面に粒子が付着した状態となり得る。このような状態で、フィルムの突起を有する側とは反対側の表面に機能層を形成すると、付着した粒子が異物となって機能層に凸部を形成し得る。また、機能層中で異物となった上記粒子が、機能層から脱落すると、機能層に凹部を形成し得る。
 また、上記のように粒子が脱落すると、フィルムの突起を有する側の表面に粒子が付着した状態ともなり得る。このような状態で、機能層を形成して得られたフィルムを巻き取ると、機能層の表面に粒子が移行し、フィルムを巻き出した際には、機能層の表面に粒子が付着した状態となり、機能層に凸部を形成し得る。また、巻き取った際及び保管時に作用する圧力により、粒子が機能層に押し込まれ、機能層に凹部を形成し得る。
 一方、上述したような粒子が発生しやすい状態で、機能層を形成して得られたフィルムを巻き取ると、機能層の表面に粒子が移行し得る。このような状態でフィルムを巻き出した際には、機能層の表面に粒子が付着した状態となり、機能層に凸部を形成し得る。
While the film is being transported, a functional layer is placed on one surface of the film, and the resulting film is then wound up and unwound. The details of the mechanism by which unevenness defects are less likely to occur on the surface of the functional layer when the film is then unwound are not entirely clear, but the inventors speculate as follows.
When a film is transported, the film comes into contact with other members such as a transport roll, etc. From the viewpoint of transportability of the film, when protrusions are provided on the surface of the film, it is conceivable that the protrusions on the surface of the film or a part of the film including the protrusions may fall off as particles due to an impact or the like caused by contact between the surface of the film having the protrusions and another member such as a transport roll.
If the particles fall off as described above, the particles may adhere to the surface of the film opposite to the side having the protrusions when the film is wound before the functional layer is formed. In this state, if a functional layer is formed on the surface of the film opposite to the side having the protrusions, the adhered particles may become foreign matter and form convex portions in the functional layer. Furthermore, if the particles that have become foreign matter in the functional layer fall off from the functional layer, they may form concave portions in the functional layer.
In addition, when the particles fall off as described above, the particles may adhere to the surface of the film having the protrusions. In this state, when the film obtained by forming the functional layer is wound up, the particles migrate to the surface of the functional layer, and when the film is unwound, the particles adhere to the surface of the functional layer, and the functional layer may form a convex portion. In addition, the pressure acting when winding and during storage may push the particles into the functional layer, forming a concave portion in the functional layer.
On the other hand, when the film obtained by forming the functional layer is wound in a state where the particles are likely to be generated as described above, the particles may migrate to the surface of the functional layer. When the film is unwound in such a state, the particles may adhere to the surface of the functional layer, and convex portions may be formed on the functional layer.
 本フィルムは、樹脂基材と、樹脂層とを含み、樹脂層がその表面に突起を有している。上記構成により、特許文献1及び特許文献2のように突起を構成する部分が樹脂基材に付着しているのみではなく、樹脂層によっても突起を構成する部分が保持され、突起を構成する部分が粒子として脱落しにくくなると考えられる。
 加えて、本フィルムでは、突起の長径に対する突起の高さの比が、0.70以下である。上記構成である場合、突起が比較的扁平状であり、突起の底面と樹脂層との接触面積が大きくなると考えられる。そうすると、より突起を構成する部分が粒子として脱落しにくくなり、結果として、凹凸欠陥が機能層の表面に発生しにくくなると考えられる。
This film includes a resin substrate and a resin layer, and the resin layer has protrusions on its surface. With the above-mentioned configuration, not only are the parts constituting the protrusions attached to the resin substrate as in Patent Documents 1 and 2, but the parts constituting the protrusions are also held by the resin layer, and it is considered that the parts constituting the protrusions are less likely to fall off as particles.
In addition, in this film, the ratio of the height of the protrusion to the major axis of the protrusion is 0.70 or less. In the above-mentioned configuration, the protrusion is relatively flat, and the contact area between the bottom surface of the protrusion and the resin layer is considered to be large. In this case, the part constituting the protrusion is less likely to fall off as particles, and as a result, it is considered that unevenness defects are less likely to occur on the surface of the functional layer.
 なお、以下、本フィルムを搬送しながら、フィルムの一方の表面上に機能層を配置して、得られたフィルムを巻き取り、その後巻き出した際に、凹凸欠陥が機能層の表面に発生しにくいことを、「凹凸欠陥が抑制される」ともいう。 In the following, when a functional layer is placed on one surface of the film while the film is being transported, and the resulting film is then wound up and unwound, unevenness defects are unlikely to occur on the surface of the functional layer, which is also referred to as "unevenness defects are suppressed."
〔構成〕
 以下、本フィルムの構成について説明する。
 本フィルムは、樹脂基材と、樹脂層とを少なくとも含み、樹脂層は、その表面に突起を有していて、突起の長径に対する突起の高さの比が、0.70以下である。突起の長径に対する突起の高さの比に関しては、後段で説明する。
 また、本フィルムは第1主面及び第2主面を有する。
 本フィルムが有する2つの主面のうち、第1主面は、後述する機能層を形成できる面である。すなわち、本フィルムの製造後、第1主面に機能層を形成することにより、フィルムと機能層とを有する積層フィルムが作製される。
 樹脂基材が有する2つの主面のうち、第1主面とは反対側の第2主面は、樹脂層の表面の一方である。すなわち、樹脂層は、本フィルムの最外層を構成している。換言すれば、本フィルムは、樹脂基材と、樹脂層とを含むフィルムであって、樹脂層の樹脂基材側とは反対側の表面に突起を有する。
〔composition〕
The structure of this film will now be described.
The film includes at least a resin substrate and a resin layer, and the resin layer has protrusions on its surface, and the ratio of the height of the protrusions to the major axis of the protrusions is 0.70 or less. The ratio of the height of the protrusions to the major axis of the protrusions will be described later.
The film also has a first major surface and a second major surface.
Of the two main surfaces of the present film, the first main surface is a surface on which a functional layer, which will be described later, can be formed. That is, after the present film is produced, a functional layer is formed on the first main surface to produce a laminated film having the film and the functional layer.
Of the two main surfaces of the resin substrate, the second main surface opposite to the first main surface is one of the surfaces of the resin layer. That is, the resin layer constitutes the outermost layer of the present film. In other words, the present film is a film including a resin substrate and a resin layer, and has protrusions on the surface of the resin layer opposite to the resin substrate side.
 本フィルムは、上記樹脂基材及び樹脂層を少なくとも有しており、上記突起に関する比を満たす限り、上記の構成を有するものに制限されない。
 例えば、本フィルムは、樹脂層と樹脂基材との間に、プライマー層等の他の層が設けられていてもよい。
The present film is not limited to having the above-mentioned configuration, so long as it has at least the above-mentioned resin substrate and resin layer and satisfies the above-mentioned ratio regarding the protrusions.
For example, the present film may have another layer, such as a primer layer, provided between the resin layer and the resin substrate.
 以下、本フィルムが備える各層について詳細に説明する。 The layers of this film are explained in detail below.
<樹脂層>
 樹脂層は、樹脂基材の一方の面側に形成される層である。樹脂層は、樹脂基材の一方の面に連続的に形成されている。また、樹脂層の樹脂基材に対向する面とは反対側の表面には、突起が形成されている。
 本フィルムは、上記樹脂層を有することで、フィルム及び積層フィルムの搬送性を向上しつつ、凹凸欠陥が抑制される。
<Resin Layer>
The resin layer is a layer formed on one surface of the resin substrate. The resin layer is continuously formed on one surface of the resin substrate. In addition, protrusions are formed on the surface of the resin layer opposite to the surface facing the resin substrate.
By virtue of having the above-mentioned resin layer, the present film improves the transportability of the film and the laminated film, while suppressing unevenness defects.
 樹脂層は、樹脂基材の表面に直接設けてもよく、他の層を介して樹脂基材の表面に設けてもよいが、密着性がより優れる点で、樹脂基材の表面に直接設けることが好ましい。 The resin layer may be provided directly on the surface of the resin substrate, or may be provided on the surface of the resin substrate via another layer, but it is preferable to provide the resin layer directly on the surface of the resin substrate, as this provides better adhesion.
 樹脂層としては、少なくとも一方の表面に突起を有する層状部材であれば特に制限されないが、バインダーを含むことが好ましい。樹脂層に含まれるバインダーとしては、ポリエステル樹脂以外の非ポリエステル樹脂が好ましい。また、樹脂層は、突起を構成する物質及び非ポリエステル樹脂以外の添加剤を含んでいてもよい。
 なお、本明細書において「バインダー」は、突起を構成する物質以外の樹脂を含む成分を意味する。
 また、樹脂層は、凹凸欠陥が抑制できる点で、単層であることが好ましい。また、樹脂層は、後段で説明するように、非架橋樹脂粒子Aと、樹脂Bと、溶媒とを含む組成物を用いて形成される塗布層であることが好ましい。「塗布層」とは、少なくとも液状の組成物を塗布処理によって形成する処理を有する工程によって形成された層を意図する。
 また、樹脂層は、単層であって、かつ、塗布層であることも好ましい。
The resin layer is not particularly limited as long as it is a layer member having protrusions on at least one surface, but preferably contains a binder. The binder contained in the resin layer is preferably a non-polyester resin other than polyester resin. In addition, the resin layer may contain additives other than the substance constituting the protrusions and the non-polyester resin.
In this specification, the term "binder" refers to a component that contains a resin other than the substance that constitutes the protrusions.
In addition, the resin layer is preferably a single layer in that irregularity defects can be suppressed. In addition, as described later, the resin layer is preferably a coating layer formed using a composition containing non-crosslinked resin particles A, a resin B, and a solvent. The term "coating layer" refers to a layer formed by a process that includes at least a process of forming a liquid composition by coating.
It is also preferable that the resin layer is a single layer and a coated layer.
(突起)
 突起を構成する物質は特に制限されず、1種単独であってもよく、2種以上の組み合わせであってもよい。また、突起を構成する物質は、上記バインダーと同じであってもよく、異なっていてもよい。
(protrusion)
The material constituting the protrusions is not particularly limited, and may be one type alone or a combination of two or more types. In addition, the material constituting the protrusions may be the same as or different from the binder.
 樹脂層の表面に存在する突起としては、例えば、後述する粒子により形成される突起が挙げられ、凹凸欠陥が抑制できる点、及び、突起の長径に対する突起の高さの比が0.70以下となりやすい点で、有機粒子により形成される突起が好ましい。なお、突起が有機粒子により形成される場合に、凹凸欠陥がより抑制できるメカニズムの詳細については明らかではないが、以下のように推測される。すなわち、本フィルムが第2主面において被接触物と接触する際、突起の変形により突起が受ける力が吸収されるため、結果として、突起を構成する物質の脱落がより生じにくくなり、結果として凹凸欠陥が抑制できると推測される。
 有機粒子としては、樹脂粒子が好ましい。樹脂粒子を構成する樹脂としては、例えば、非ポリエステル樹脂が挙げられ、スチレン樹脂、ウレタン樹脂、アクリル樹脂、及び、シリコーン樹脂が好ましい。中でも、突起の長径に対する突起の高さの比が0.70以下となりやすい点で、有機粒子は、スチレン樹脂、アクリル樹脂、及び、ウレタン樹脂からなる群より選択される少なくとも1つを含むことが好ましく、スチレン樹脂、及び、アクリル樹脂からなる群より選択される少なくとも1つを含むことがより好ましい。
 つまり、突起は、上述した樹脂粒子を構成する樹脂を含むことが好ましい。
Examples of the protrusions present on the surface of the resin layer include protrusions formed by particles, which will be described later. Protrusions formed by organic particles are preferred because they can suppress irregularity defects and the ratio of the height of the protrusion to the major axis of the protrusion is likely to be 0.70 or less. Details of the mechanism by which irregularity defects can be suppressed when the protrusions are formed by organic particles are not clear, but it is speculated as follows. That is, when the present film comes into contact with a contacted object on the second main surface, the force received by the protrusions is absorbed by the deformation of the protrusions, and as a result, it is speculated that the material constituting the protrusions is less likely to fall off, and as a result, irregularity defects can be suppressed.
As the organic particles, resin particles are preferred. As the resin constituting the resin particles, for example, non-polyester resins can be mentioned, and styrene resin, urethane resin, acrylic resin, and silicone resin are preferred. Among them, the organic particles preferably contain at least one selected from the group consisting of styrene resin, acrylic resin, and urethane resin, and more preferably contain at least one selected from the group consisting of styrene resin and acrylic resin, in that the ratio of the height of the protrusion to the major axis of the protrusion is likely to be 0.70 or less.
In other words, the protrusions preferably contain the resin that constitutes the above-mentioned resin particles.
 本明細書において、スチレン樹脂とは、スチレン由来の構成単位を含む樹脂を意味する。
 樹脂粒子を構成するスチレン樹脂としては、スチレンのみからなる単独重合体、並びに、スチレン由来の構成単位とアクリレート又はメタクリレート由来の構成単位とを含むスチレン-アクリル共重合体等のスチレン共重合体が挙げられる。スチレン樹脂は、全構成単位に対して、スチレン由来の構成単位を50モル%以上含むことが好ましい。
 樹脂粒子を構成するウレタン樹脂としては、ウレタン結合を有する重合体であれば制限されず、イソシアネート化合物とポリオール化合物との反応生成物等の公知のウレタン樹脂を利用できる。
 また、本明細書において、アクリル樹脂とは、アクリレート又はメタクリレート由来の構成単位を含む樹脂を意味する。アクリル樹脂は、全構成単位に対して、アクリレート又はメタクリレート由来の構成単位を50モル%以上含むことが好ましい。
In this specification, the styrene resin means a resin containing structural units derived from styrene.
Examples of the styrene resin constituting the resin particles include homopolymers consisting of styrene, and styrene copolymers such as styrene-acrylic copolymers containing styrene-derived structural units and acrylate or methacrylate-derived structural units. The styrene resin preferably contains 50 mol % or more of styrene-derived structural units relative to the total structural units.
The urethane resin constituting the resin particles is not limited as long as it is a polymer having a urethane bond, and known urethane resins such as reaction products of an isocyanate compound and a polyol compound can be used.
In the present specification, the term "acrylic resin" refers to a resin containing structural units derived from acrylate or methacrylate. The acrylic resin preferably contains 50 mol % or more of structural units derived from acrylate or methacrylate based on the total structural units.
 樹脂粒子は、架橋構造を有する架橋樹脂粒子であってもよいが、架橋構造を有さない非架橋樹脂粒子であることが好ましい。架橋樹脂粒子としては、例えば、架橋構造を有するウレタン樹脂で構成される架橋ウレタン樹脂粒子が挙げられる。非架橋樹脂粒子としては、例えば、非架橋のスチレン樹脂で構成される非架橋スチレン樹脂粒子、非架橋のアクリル樹脂で構成される非架橋アクリル樹脂粒子が挙げられる。
 樹脂粒子は、1種を単独で用いてもよく、2種以上を併用してもよい。すなわち、非架橋樹脂粒子を2種以上併用してもよい。また、非架橋樹脂粒子と架橋樹脂粒子とを併用してもよい。非架橋樹脂粒子と架橋樹脂粒子とを併用する場合、非架橋樹脂粒子より形成された突起高さは、架橋樹脂粒子により形成された突起高さよりも大きい方が好ましい。
The resin particles may be crosslinked resin particles having a crosslinked structure, but are preferably non-crosslinked resin particles having no crosslinked structure. Examples of the crosslinked resin particles include crosslinked urethane resin particles made of a urethane resin having a crosslinked structure. Examples of the non-crosslinked resin particles include non-crosslinked styrene resin particles made of a non-crosslinked styrene resin and non-crosslinked acrylic resin particles made of a non-crosslinked acrylic resin.
The resin particles may be used alone or in combination of two or more kinds. That is, two or more kinds of non-crosslinked resin particles may be used in combination. Also, non-crosslinked resin particles and crosslinked resin particles may be used in combination. When non-crosslinked resin particles and crosslinked resin particles are used in combination, it is preferable that the height of the protrusions formed by the non-crosslinked resin particles is greater than the height of the protrusions formed by the crosslinked resin particles.
 スチレン樹脂粒子の市販品としては、例えば、Nipol(登録商標)UFN1008(日本ゼオン株式会社製)が挙げられる。
 ウレタン樹脂粒子の市販品としては、例えば、アートパール(登録商標)C-1000T、及び、MM110SMA(根上工業株式会社製)が挙げられる。
 アクリル樹脂粒子の市販品としては、例えば、MP1000(綜研化学株式会社製)が挙げられる。
An example of a commercially available styrene resin particle is Nipol (registered trademark) UFN1008 (manufactured by Zeon Corporation).
Commercially available urethane resin particles include, for example, Art Pearl (registered trademark) C-1000T and MM110SMA (manufactured by Negami Chemical Industrial Co., Ltd.).
An example of a commercially available acrylic resin particle is MP1000 (manufactured by Soken Chemical & Engineering Co., Ltd.).
(バインダー)
 長期保管した際の凹凸欠陥を抑制する効果が優れる点で、樹脂層は、バインダーとして非ポリエステル樹脂を含むことが好ましい。
 樹脂層にバインダーとして含まれる非ポリエステル樹脂としては、ポリエステル樹脂以外の樹脂であれば特に制限されないが、アクリル樹脂、ウレタン樹脂、オレフィン樹脂、ポリビニルアルコール樹脂、及び、アクリロニトリルブタジエン樹脂が挙げられ、本発明の効果がより優れる点から、アクリル樹脂、ウレタン樹脂、又は、オレフィン樹脂が好ましく、ウレタン樹脂がより好ましい。
 ここで、アクリル樹脂及びオレフィン樹脂と樹脂基材に好ましく用いられるポリエステル樹脂とは、互いの相溶性が不十分であるので、長期保管しても、ポリエステル樹脂から析出するオリゴマー等の不純物に起因する異物が生じにくくなると推察している。また、ウレタン樹脂のうち、疎水性の高いウレタン樹脂(すなわち、ポリエステル樹脂とSP値が十分に離れたウレタン樹脂)についても、アクリル樹脂及びオレフィン樹脂と同様の理由によって、長期保管した際の凹凸欠陥を抑制できると考えている。
 アクリル樹脂、オレフィン樹脂及びウレタン樹脂としては、特に制限されず、公知の樹脂を利用できる。
 樹脂層にバインダーとして含まれる非ポリエステル樹脂は、酸基を有する樹脂であることも好ましい。
(binder)
In terms of being highly effective in suppressing unevenness defects during long-term storage, the resin layer preferably contains a non-polyester resin as a binder.
The non-polyester resin contained as a binder in the resin layer is not particularly limited as long as it is a resin other than a polyester resin, but examples thereof include an acrylic resin, a urethane resin, an olefin resin, a polyvinyl alcohol resin, and an acrylonitrile butadiene resin. From the viewpoint of obtaining a superior effect of the present invention, an acrylic resin, a urethane resin, or an olefin resin is preferred, and a urethane resin is more preferred.
Here, it is presumed that since the acrylic resin and olefin resin are insufficiently compatible with the polyester resin preferably used for the resin substrate, foreign matter caused by impurities such as oligomers precipitated from the polyester resin is unlikely to occur even after long-term storage. In addition, it is presumed that for urethane resins with high hydrophobicity (i.e., urethane resins with SP values sufficiently different from those of polyester resins), unevenness defects during long-term storage can be suppressed for the same reason as for acrylic resins and olefin resins.
The acrylic resin, olefin resin, and urethane resin are not particularly limited, and known resins can be used.
The non-polyester resin contained as a binder in the resin layer is also preferably a resin having an acid group.
 オレフィン樹脂は、主鎖にオレフィンに由来する構成単位を含む樹脂であればよい。オレフィンとしては、特に制限されないが、炭素数2~6のアルケンが好ましく、エチレン、プロピレン、又は、ヘキセンがより好ましく、エチレンが更に好ましい。
 オレフィン樹脂が有するオレフィンに由来する構成単位は、オレフィン樹脂の全ての構成単位に対して、50~99モル%が好ましく、60~98モル%がより好ましい。
The olefin resin may be any resin containing a structural unit derived from an olefin in the main chain. The olefin is not particularly limited, but is preferably an alkene having 2 to 6 carbon atoms, more preferably ethylene, propylene, or hexene, and even more preferably ethylene.
The olefin-derived structural units contained in the olefin resin preferably account for 50 to 99 mol %, and more preferably 60 to 98 mol %, of all the structural units in the olefin resin.
 オレフィン樹脂としては、長期保管した際の凹凸欠陥を抑制できる点で、酸変性オレフィン樹脂が好ましい。酸変性オレフィン樹脂としては、例えば、上記オレフィン樹脂を、不飽和カルボン酸又はその無水物等の酸変性成分で変性した共重合体が挙げられる。すなわち、オレフィン樹脂は、酸基を有するオレフィン樹脂が好ましい。
 酸変性成分としては、例えば、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、フマル酸、及び、クロトン酸、並びに、不飽和ジカルボン酸のハーフエステル、及び、ハーフアミドが挙げられ、樹脂の分散安定性の面から、アクリル酸、メタクリル酸、マレイン酸、又は、無水マレイン酸が好ましい。
As the olefin resin, an acid-modified olefin resin is preferred in that it can suppress unevenness defects during long-term storage. Examples of the acid-modified olefin resin include copolymers obtained by modifying the above-mentioned olefin resin with an acid-modifying component such as an unsaturated carboxylic acid or its anhydride. That is, the olefin resin is preferably an olefin resin having an acid group.
Examples of the acid-modified component include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid, and crotonic acid, as well as half esters and half amides of unsaturated dicarboxylic acids. From the viewpoint of dispersion stability of the resin, acrylic acid, methacrylic acid, maleic acid, and maleic anhydride are preferred.
 酸変性オレフィン樹脂に含まれる酸基としては、上記の酸変性成分に対応する酸基である、カルボキシル基、スルホ基、及び、リン酸基が挙げられ、カルボキシル基が好ましい。酸基は、酸無水物を形成していていもよいし、アルカリ金属、有機アミン及びアンモニアから選択される少なくとも1つで中和されていてもよい。
 酸変性オレフィン樹脂は、酸基を有する構成単位を1種のみ含んでいてもよく、2種以上含んでいてもよい。
The acid group contained in the acid-modified olefin resin includes a carboxyl group, a sulfo group, and a phosphoric acid group, which are acid groups corresponding to the above-mentioned acid-modified component, and the carboxyl group is preferred. The acid group may form an acid anhydride or may be neutralized with at least one selected from an alkali metal, an organic amine, and ammonia.
The acid-modified olefin resin may contain only one type of structural unit having an acid group, or may contain two or more types.
 酸変性オレフィン樹脂の市販品としては、例えば、ザイクセンAC、A、L、NC、N等のザイクセン(登録商標)シリーズ(住友精化(株)製)、ケミパールS100、S120、S200、S300、S650、SA100等のケミパール(登録商標)シリーズ(三井化学(株)製)、及び、ハイテックS3121、S3148K等のハイテック(登録商標)シリーズ(東邦化学(株)製)、アローベースSE-1013、SE-1010、SB-1200、SD-1200、SD-1200、DA-1010、DB-4010等のアローベース(登録商標)シリーズ(ユニチカ(株)製)、ハードレンAP-2、NZ-1004、NZ-1005(東洋紡(株)製)、セポルジョンG315、VA407(住友精化(株)製)が挙げられる。
 また、特開2014-076632号公報の[0022]~[0034]に記載の酸変性オレフィン樹脂も好ましく用いることができる。
Commercially available acid-modified olefin resins include, for example, the ZAIXXEN (registered trademark) series, such as ZAIXXEN AC, A, L, NC, and N (manufactured by Sumitomo Seika Chemicals Co., Ltd.), the CHEMIPEARL (registered trademark) series, such as CHEMIPEARL S100, S120, S200, S300, S650, and SA100 (manufactured by Mitsui Chemicals, Inc.), and the HI-TECH (registered trademark) series, such as HI-TECH S3121 and S3148K (manufactured by Mitsui Chemicals, Inc.). Examples of such an adhesive include the Arrowbase (registered trademark) series (manufactured by Unitika Ltd.), such as Arrowbase SE-1013, SE-1010, SB-1200, SD-1200, SD-1200, DA-1010, and DB-4010 (manufactured by Toho Chemical Industries, Ltd.), Hardlen AP-2, NZ-1004, and NZ-1005 (manufactured by Toyobo Co., Ltd.), and Sepolsion G315 and VA407 (manufactured by Sumitomo Seika Chemicals Co., Ltd.).
In addition, the acid-modified olefin resins described in paragraphs [0022] to [0034] of JP-A-2014-076632 can also be preferably used.
 アクリル樹脂は、(メタ)アクリレートに由来する構成単位を含む樹脂であり、スチレン等のビニル単量体を共重合していていもよい。アクリル樹脂としては、特に制限されないが、炭素数1~12のアルキル基を有する(メタ)アクリレートに由来する構成単位を含むことが好ましく、炭素数1~8のアルキル基を有する(メタ)アクリレートに由来する構成単位を含むことがより好ましい。
 長期保管した際の凹凸欠陥を抑制できる点で、アクリル樹脂は、酸変性成分を有することが好ましい。また、アクリル樹脂は、(メタ)アクリル酸に由来する構成単位を含むことが好ましい。すなわち、アクリル樹脂は、酸基を有するアクリル樹脂が好ましい。
 (メタ)アクリル酸は、酸無水物を形成していていもよいし、アルカリ金属、有機アミン及びアンモニアから選択される少なくとも1つで中和されていてもよい。
 樹脂層の製造にアクリル樹脂の水分散体を用いる場合には、アクリル樹脂と分散剤とを含む水分散体を好ましく用いることができる。
 アクリル樹脂が有する(メタ)アクリレートに由来する構成単位は、アクリル樹脂の全ての構成単位に対して、50~100モル%が好ましい。
 アクリル樹脂の酸価は、30mgKOH/g以下が好ましく、20mgKOH/g以下がより好ましい。酸価の下限は、特に制限されず、例えば、0mgKOH/gであるが、水分散体として塗布する点からは、2mgKOH/g以上が好ましい。
 ポリエステル樹脂との溶解度パラメータ(SP値)が離れたアクリル樹脂を用いた場合、アクリル樹脂とポリエステル樹脂との相溶性が不十分となり、結果として、長期保管した際の凹凸欠陥を抑制する効果をより向上することができる。このようなアクリル樹脂は、例えば、酸価を上記範囲にすること、及び、炭素数1~12のアルキル基を有する(メタ)アクリレートに由来する構成単位を含ませること、の少なくとも一方を満たすように調節して得ることができる。
The acrylic resin is a resin containing a structural unit derived from a (meth)acrylate, and may be copolymerized with a vinyl monomer such as styrene. The acrylic resin is not particularly limited, but preferably contains a structural unit derived from a (meth)acrylate having an alkyl group with 1 to 12 carbon atoms, and more preferably contains a structural unit derived from a (meth)acrylate having an alkyl group with 1 to 8 carbon atoms.
In terms of suppressing unevenness defects during long-term storage, the acrylic resin preferably has an acid-modified component. The acrylic resin preferably contains a structural unit derived from (meth)acrylic acid. That is, the acrylic resin is preferably an acrylic resin having an acid group.
The (meth)acrylic acid may form an acid anhydride, or may be neutralized with at least one selected from an alkali metal, an organic amine, and ammonia.
When an aqueous dispersion of an acrylic resin is used to produce the resin layer, an aqueous dispersion containing an acrylic resin and a dispersant can be preferably used.
The amount of the (meth)acrylate-derived structural unit contained in the acrylic resin is preferably 50 to 100 mol % based on all the structural units of the acrylic resin.
The acid value of the acrylic resin is preferably 30 mgKOH/g or less, more preferably 20 mgKOH/g or less. The lower limit of the acid value is not particularly limited and is, for example, 0 mgKOH/g, but is preferably 2 mgKOH/g or more from the viewpoint of coating as a water dispersion.
When an acrylic resin having a solubility parameter (SP value) far from that of the polyester resin is used, the compatibility between the acrylic resin and the polyester resin becomes insufficient, and as a result, the effect of suppressing unevenness defects during long-term storage can be further improved. Such an acrylic resin can be obtained by adjusting the acid value to be within the above range and by containing a structural unit derived from a (meth)acrylate having an alkyl group having 1 to 12 carbon atoms, for example.
 ウレタン樹脂としては、ウレタン結合を有する重合体であれば制限されず、イソシアネート化合物とポリオール化合物との反応生成物等の公知のウレタン樹脂を利用できる。
 樹脂層の製造にウレタン樹脂を含む水分散体を用いる場合、水分散体は、酸性基(例えばカルボキシ基)を有するウレタン樹脂を含むこと、又は、ウレタン樹脂と分散剤とを含むことが好ましい。これにより、樹脂層の製膜性が良好になる。
 ウレタン樹脂は、例えば、原料となるポリオール化合物の構造、原料となるポリオールの疎水性又は親水性、原料となるイソシアネート化合物の構造、及び、原料となるイソシアネート化合物の疎水性又は親水性のうち、少なくとも1つを調節することで、所望のSP値とすることができる。このようにして、疎水性が高くなるように調節されたウレタン樹脂を用いることで、ウレタン樹脂とポリエステル樹脂との相溶性が不十分となり、結果として、長期保管した際の凹凸欠陥を抑制する効果をより向上することができる。
 ウレタン樹脂の中でも、疎水性が高く、長期保管した際の凹凸欠陥を抑制する効果をより向上できる点から、ポリエステル構造を有するウレタン樹脂(ポリエステル系ウレタン樹脂)が好ましい。
The urethane resin is not limited as long as it is a polymer having a urethane bond, and known urethane resins such as reaction products of an isocyanate compound and a polyol compound can be used.
When an aqueous dispersion containing a urethane resin is used to produce a resin layer, the aqueous dispersion preferably contains a urethane resin having an acidic group (e.g., a carboxyl group) or contains a urethane resin and a dispersant, which improves the film-forming properties of the resin layer.
The urethane resin can be adjusted to a desired SP value by adjusting at least one of the structure of the raw polyol compound, the hydrophobicity or hydrophilicity of the raw polyol, the structure of the raw isocyanate compound, and the hydrophobicity or hydrophilicity of the raw isocyanate compound. By using a urethane resin adjusted to have high hydrophobicity in this way, the compatibility between the urethane resin and the polyester resin becomes insufficient, and as a result, the effect of suppressing unevenness defects during long-term storage can be further improved.
Among urethane resins, urethane resins having a polyester structure (polyester-based urethane resins) are preferred because they are highly hydrophobic and can further improve the effect of suppressing unevenness defects during long-term storage.
 ウレタン樹脂の市販品としては、例えば、ハイドラン(登録商標)AP-40N、HW-312B、及び、HW―350(以上、DIC株式会社製)、タケラック(登録商標)W-5030、及び、W-6020(以上、三井化学株式会社製)、アデカボンタイター(登録商標)HUX-524(ADEKA株式会社製)、スーパーフレックス(登録商標)210(第一工業製薬株式会社製)が挙げられる。 Commercially available urethane resins include, for example, Hydran (registered trademark) AP-40N, HW-312B, and HW-350 (all manufactured by DIC Corporation), Takelac (registered trademark) W-5030 and W-6020 (all manufactured by Mitsui Chemicals, Inc.), Adeka Bontitor (registered trademark) HUX-524 (manufactured by ADEKA Corporation), and Superflex (registered trademark) 210 (manufactured by Daiichi Kogyo Seiyaku Co., Ltd.).
 樹脂層は、バインダーとして1種単独の非ポリエステル樹脂を含んでいてもよく、2種以上の非ポリエステル樹脂を含んでいてもよい。
 樹脂層におけるバインダーの含有量は、凹凸欠陥がより抑制できる点で、樹脂層の全質量に対して、30~99.8質量%が好ましく、50~99.5質量%がより好ましい。
The resin layer may contain one kind of non-polyester resin as a binder, or may contain two or more kinds of non-polyester resins.
The content of the binder in the resin layer is preferably from 30 to 99.8% by mass, and more preferably from 50 to 99.5% by mass, based on the total mass of the resin layer, in that irregularity defects can be further suppressed.
 また、樹脂層が含むバインダーは、後述する架橋剤等によって架橋されていることが好ましい。すなわち、樹脂層は、架橋膜であることが好ましい。樹脂層が架橋膜である場合、樹脂層全てが架橋されていてもよく、樹脂層が架橋されていない領域有していてもよい。
 樹脂層が架橋膜である例としては、後述する方法で非架橋樹脂粒子を用いて突起を形成する場合において、非架橋樹脂粒子とバインダーとを架橋剤によって架橋して架橋膜とする方法が挙げられる。非架橋樹脂粒子とバインダーとが架橋剤等によって架橋される場合、結果として構成される突起において、樹脂粒子とバインダーとの化学結合が形成されるため、突起を構成する物質の脱落が更に生じにくくなり、凹凸欠陥が更に抑制でき、耐溶剤性にも優れる。また、樹脂層が架橋膜である場合、オリゴマーの析出が抑制され、長期保管した際の凹凸欠陥を抑制できる。非架橋樹脂粒子とバインダーとが架橋剤等によって架橋されている場合、突起は、架橋樹脂のみを含んでいてもよく、架橋樹脂と非架橋樹脂とを含んでいてもよい。
In addition, the binder contained in the resin layer is preferably crosslinked by a crosslinking agent or the like described below. That is, the resin layer is preferably a crosslinked film. When the resin layer is a crosslinked film, the entire resin layer may be crosslinked, or the resin layer may have a region that is not crosslinked.
An example of the resin layer being a crosslinked film is a method in which, when protrusions are formed using non-crosslinked resin particles by the method described below, non-crosslinked resin particles and a binder are crosslinked with a crosslinking agent to form a crosslinked film. When non-crosslinked resin particles and a binder are crosslinked with a crosslinking agent or the like, in the resulting protrusions, a chemical bond is formed between the resin particles and the binder, so that the substances constituting the protrusions are more unlikely to fall off, unevenness defects can be further suppressed, and solvent resistance is also excellent. In addition, when the resin layer is a crosslinked film, precipitation of oligomers is suppressed, and unevenness defects during long-term storage can be suppressed. When non-crosslinked resin particles and a binder are crosslinked with a crosslinking agent or the like, the protrusions may contain only a crosslinked resin, or may contain a crosslinked resin and a non-crosslinked resin.
(添加剤)
 樹脂層は、上記の突起を構成する物質及びバインダー以外の添加剤を含んでいてもよい。
 樹脂層に含まれる添加剤としては、例えば、界面活性剤、ワックス、分散剤、酸化防止剤、紫外線吸収剤、着色剤、強化剤、可塑剤、帯電防止剤、難燃剤、防錆剤、及び、防黴剤が挙げられる。
(Additive)
The resin layer may contain additives other than the above-mentioned substances constituting the protrusions and the binder.
Examples of additives contained in the resin layer include surfactants, waxes, dispersants, antioxidants, UV absorbers, colorants, reinforcing agents, plasticizers, antistatic agents, flame retardants, rust inhibitors, and fungicides.
 樹脂層は、第2主面において、突起が存在する箇所以外の領域の平滑性が向上する点で、界面活性剤を含むことが好ましい。第2主面の上記領域の平滑性が向上し、突起の存在以外の要因では第2主面の表面粗さが小さくなることにより、突起の長径に対する突起の高さの比及び突起高さを含む物性を所望の範囲に制御し、凹凸欠陥がより抑制できる。 The resin layer preferably contains a surfactant, since this improves the smoothness of the areas of the second principal surface other than where the protrusions are present. By improving the smoothness of the above-mentioned areas of the second principal surface and reducing the surface roughness of the second principal surface due to factors other than the presence of the protrusions, it is possible to control the physical properties, including the ratio of the protrusion height to the major axis of the protrusions and the protrusion height, within a desired range, and to further suppress unevenness defects.
 界面活性剤としては、特に制限されず、シリコーン系界面活性剤、フッ素系界面活性剤、及び、炭化水素系界面活性剤が挙げられる。第2主面における帯電を抑制できる点から、炭化水素系界面活性剤が好ましい。 The surfactant is not particularly limited, and examples thereof include silicone-based surfactants, fluorine-based surfactants, and hydrocarbon-based surfactants. Hydrocarbon-based surfactants are preferred because they can suppress charging on the second principal surface.
 シリコーン系界面活性剤としては、疎水基としてケイ素含有基を有する界面活性剤であれば特に制限されず、例えば、ポリジメチルシロキサン、ポリエーテル変性ポリジメチルシロキサン、及び、ポリメチルアルキルシロキサンが挙げられる。
 シリコーン系界面活性剤の市販品としては、例えば、BYK(登録商標)-306、BYK-307、BYK-333、BYK-341、BYK-345、BYK-346、BYK-347、BYK-348、及び、BYK-349(以上、BYK社製)、並びに、KF-351A、KF-352A、KF-353、KF-354L、KF-355A、KF-615A、KF-945、KF-640、KF-642、KF-643、KF-6020、X-22-4515、KF-6011、KF-6012、KF-6015、及び、KF-6017(以上、信越化学株式会社製)が挙げられる。
The silicone surfactant is not particularly limited as long as it has a silicon-containing group as a hydrophobic group, and examples thereof include polydimethylsiloxane, polyether-modified polydimethylsiloxane, and polymethylalkylsiloxane.
Commercially available silicone surfactants include, for example, BYK (registered trademark)-306, BYK-307, BYK-333, BYK-341, BYK-345, BYK-346, BYK-347, BYK-348, and BYK-349 (all manufactured by BYK Corporation), as well as KF-351A, KF-352A, KF-353, KF-354L, KF-355A, KF-615A, KF-945, KF-640, KF-642, KF-643, KF-6020, X-22-4515, KF-6011, KF-6012, KF-6015, and KF-6017 (all manufactured by Shin-Etsu Chemical Co., Ltd.).
 フッ素系界面活性剤としては、疎水基としてフッ素含有基を有する界面活性剤であれば特に制限されず、例えば、パーフルオロオクタンスルホン酸、及び、パーフルオロカルボン酸が挙げられる。
 フッ素系界面活性剤の市販品としては、例えば、メガファック(登録商標)F-114、F-410、F-440、F-447、F-553、及び、F-556(以上、DIC社製)、並びに、サーフロン(登録商標)S-211、S-221、S-231、S-233、S-241、S-242、S-243、S-420、S-661、S-651、及び、S-386(AGCセイミケミカル社製)が挙げられる。
 また、フッ素系界面活性剤としては、環境適性向上の点から、パーフルオロオクタン酸(PFOA)及びパーフルオロオクタンスルホン酸(PFOS)等の炭素数が7以上の直鎖状パーフルオロアルキル基を有する化合物の代替材料に由来する界面活性剤が好ましい。
The fluorosurfactant is not particularly limited as long as it has a fluorine-containing group as a hydrophobic group, and examples thereof include perfluorooctanesulfonic acid and perfluorocarboxylic acid.
Commercially available fluorine-based surfactants include, for example, Megafac (registered trademark) F-114, F-410, F-440, F-447, F-553, and F-556 (all manufactured by DIC Corporation), and Surflon (registered trademark) S-211, S-221, S-231, S-233, S-241, S-242, S-243, S-420, S-661, S-651, and S-386 (manufactured by AGC Seimi Chemical Co., Ltd.).
Furthermore, from the viewpoint of improving environmental compatibility, preferred fluorine-based surfactants are surfactants derived from alternative materials to compounds having a linear perfluoroalkyl group having 7 or more carbon atoms, such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS).
 炭化水素系界面活性剤としては、例えば、アニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、及び、両性界面活性剤が挙げられる。
 アニオン性界面活性剤としては、例えば、アルキル硫酸塩、アルキルスルホン酸塩、アルキルベンゼンスルホン酸塩、アルキルリン酸塩、及び、脂肪酸塩が挙げられる。
 ノニオン性界面活性剤としては、例えば、ポリアルキレングリコールモノ又はジアルキルエーテル、ポリアルキレングリコールモノ又はジアルキルエステル、及び、ポリアルキレングリコールモノアルキルエステル・モノアルキルエーテルが挙げられる。
 カチオン性界面活性剤としては、第1級~第3級アルキルアミン塩、及び、第4級アンモニウム化合物が挙げられる。
 両性界面活性剤としては、分子内にアニオン性部位とカチオン性部位の両者を有する界面活性剤が挙げられる。
Examples of the hydrocarbon surfactant include anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants.
Examples of anionic surfactants include alkyl sulfates, alkyl sulfonates, alkyl benzene sulfonates, alkyl phosphates, and fatty acid salts.
Examples of the nonionic surfactant include polyalkylene glycol mono- or dialkyl ethers, polyalkylene glycol mono- or dialkyl esters, and polyalkylene glycol monoalkyl esters and monoalkyl ethers.
Cationic surfactants include primary to tertiary alkylamine salts and quaternary ammonium compounds.
Amphoteric surfactants include surfactants having both anionic and cationic moieties in the molecule.
 アニオン性界面活性剤の市販品としては、例えば、ラピゾール(登録商標)A-90、A-80、BW-30、B-90、及び、C-70(以上、日油(株)製)、NIKKOL(登録商標)OTP-100(以上、日光ケミカル(株)製)、コハクール(登録商標)ON、L-40、及び、フォスファノール(登録商標)702(以上、東邦化学工業(株)製)、並びに、ビューライト(登録商標)A-5000、及び、SSS(以上、三洋化成工業(株)製)が挙げられる。
 ノニオン性界面活性剤の市販品としては、例えば、ナロアクティー(登録商標)CL-95、及び、HN-100(商品名:三洋化成工業(株)製)、リソレックスBW400(商品名:高級アルコール工業(株)製)、EMALEX(登録商標)ET-2020(以上、日本エマルジョン(株)製)、並びに、サーフィノール(登録商標)104E、420、440、465、及び、ダイノール(登録商標)604、607(以上、日信化学工業(株)製)が挙げられる。
Commercially available anionic surfactants include, for example, Rapisol (registered trademark) A-90, A-80, BW-30, B-90, and C-70 (all manufactured by NOF Corp.), NIKKOL (registered trademark) OTP-100 (all manufactured by Nikko Chemical Co., Ltd.), Kohacool (registered trademark) ON, L-40, and Phosphanol (registered trademark) 702 (all manufactured by Toho Chemical Industry Co., Ltd.), and Viewlite (registered trademark) A-5000 and SSS (all manufactured by Sanyo Chemical Industries, Ltd.).
Examples of commercially available nonionic surfactants include Naroacty (registered trademark) CL-95 and HN-100 (product names: manufactured by Sanyo Chemical Industries, Ltd.), Lysolex BW400 (product name: manufactured by Kokyu Alcohol Kogyo Co., Ltd.), EMALEX (registered trademark) ET-2020 (all manufactured by Nippon Emulsion Co., Ltd.), and Surfynol (registered trademark) 104E, 420, 440, 465, and Dynol (registered trademark) 604, 607 (all manufactured by Nissin Chemical Industry Co., Ltd.).
 炭化水素系界面活性剤としては、樹脂の分散を阻害することなく表面が平滑な塗布層を形成できる点で、アニオン性界面活性剤及びノニオン性界面活性剤の少なくとも一方が好ましく、アニオン性界面活性剤がより好ましい。即ち、界面活性剤としては、表面平滑性の向上の点で、アニオン性の炭化水素系界面活性剤がより好ましい。 As the hydrocarbon surfactant, at least one of an anionic surfactant and a nonionic surfactant is preferred, with anionic surfactants being more preferred, in that a coating layer with a smooth surface can be formed without impeding the dispersion of the resin. In other words, as the surfactant, an anionic hydrocarbon surfactant is more preferred in terms of improving surface smoothness.
 アニオン性の炭化水素系界面活性剤は、平滑性がより向上する点で、複数個の疎水性末端基を有することが好ましい。疎水性末端基は、炭化水素系界面活性剤が有する炭化水素基の一部であってよい。例えば、分岐鎖構造を有する炭化水素基を末端に有する炭化水素系界面活性剤は、複数個の疎水性末端基を有することになる。
 複数個の疎水性末端基を有するアニオン性の炭化水素系界面活性剤としては、スルホコハク酸ジ-2-エチルヘキシルナトリウム(疎水性末端基を4つ有する)、スルホコハク酸ジ-2-エチルオクチルナトリウム(疎水性末端基を4つ有する)、及び、分岐鎖型アルキルベンゼンスルホン酸塩(疎水性末端基を2つ有する)が挙げられる。
The anionic hydrocarbon surfactant preferably has a plurality of hydrophobic end groups in terms of further improving smoothness. The hydrophobic end group may be a part of the hydrocarbon group of the hydrocarbon surfactant. For example, a hydrocarbon surfactant having a branched chain structure at its end will have a plurality of hydrophobic end groups.
Examples of anionic hydrocarbon surfactants having multiple hydrophobic end groups include sodium di-2-ethylhexyl sulfosuccinate (having four hydrophobic end groups), sodium di-2-ethyloctyl sulfosuccinate (having four hydrophobic end groups), and branched alkylbenzene sulfonate (having two hydrophobic end groups).
 界面活性剤は1種用いてもよいし、2種以上併用してもよい。
 界面活性剤の含有量は、樹脂層の全質量に対して、0.1~10質量%が好ましく、表面平滑性により優れる点で、0.1~5質量%がより好ましく、0.5~2質量%が更に好ましい。
The surfactant may be used alone or in combination of two or more kinds.
The content of the surfactant is preferably 0.1 to 10% by mass, more preferably 0.1 to 5% by mass, and further preferably 0.5 to 2% by mass, based on the total mass of the resin layer, in terms of superior surface smoothness.
 ワックスとしては、特に制限されず、天然ワックスも合成ワックスでもよい。天然ワックスとしては、カルナバワックス、キャンデリラワックス、ミツロウ、モンタンワックス、パラフィンワックス、及び、石油ワックスが挙げられる。その他、国際公開第2017/169844号明細書の[0087]の記載の滑り剤も使用できる。
 ワックスの含有量は、樹脂層の全質量に対して、0~10質量%が好ましい。
The wax is not particularly limited, and may be either natural or synthetic wax. Examples of natural waxes include carnauba wax, candelilla wax, beeswax, montan wax, paraffin wax, and petroleum wax. In addition, the slip agent described in [0087] of WO 2017/169844 can also be used.
The wax content is preferably 0 to 10% by mass based on the total mass of the resin layer.
(厚さ)
 樹脂層は、例えば、後述するように粒子を含む組成物を樹脂基材の一方の表面上に塗布して形成できる。その場合、樹脂層の厚さは、0.001~1μmになることが多く、本フィルムを用いて作製した積層フィルムを長期保管した際に、形成した機能層の凹凸欠陥が抑制される点で、0.01~1μmがより好ましく、0.02~1μmが更に好ましい。
 また、樹脂層は、樹脂基材の形成に用いる樹脂と、樹脂層の形成に用いる樹脂とを共押し出しすることで形成してもよい。その場合には、樹脂層の厚さは1~10μmになることが多い。
 樹脂層の厚さは、樹脂層の製造適性、及び、ヘイズ低減の点から、10~500nmが好ましく、20~250nmがより好ましく、20~100nmが更に好ましい。
 樹脂層の厚さは、フィルムの主面に対して垂直な断面を有するサンプルを作製し、走査型電子顕微鏡(SEM:Scanning Electron Microscope)又は透過型電子顕微鏡(TEM:Transmission Electron Microscope)を用いて測定される。より具体的には、樹脂層の厚さは、上記サンプルの樹脂層において、突起が形成されていない部分の任意の5か所の厚さを測長し、その算術平均値とする。
(thickness)
The resin layer can be formed, for example, by applying a particle-containing composition onto one surface of the resin substrate as described below. In this case, the thickness of the resin layer is often 0.001 to 1 μm, and is more preferably 0.01 to 1 μm, and even more preferably 0.02 to 1 μm, in that irregularity defects in the formed functional layer are suppressed when a laminate film produced using the present film is stored for a long period of time.
The resin layer may be formed by co-extruding the resin used to form the resin substrate and the resin used to form the resin layer. In this case, the thickness of the resin layer is often 1 to 10 μm.
The thickness of the resin layer is preferably from 10 to 500 nm, more preferably from 20 to 250 nm, and even more preferably from 20 to 100 nm, from the viewpoints of manufacturability of the resin layer and reduction of haze.
The thickness of the resin layer is measured by preparing a sample having a cross section perpendicular to the main surface of the film and using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). More specifically, the thickness of the resin layer is measured at any five points in the resin layer of the sample where no protrusions are formed, and the arithmetic average value is taken as the thickness.
 樹脂層の形成方法については、後述する「樹脂層形成工程」において詳しく説明する。 The method for forming the resin layer will be explained in detail in the "Resin layer formation process" below.
<樹脂基材>
 樹脂基材は、主たる成分として樹脂を含むフィルム状の物体である。ここで、「主たる成分」とは、フィルム状の物体に含まれる全ての成分のうち、最も含有量(質量)が多い成分を意味する。
<Resin substrate>
The resin substrate is a film-like object containing a resin as a main component. Here, the term "main component" refers to the component that is contained in the largest amount (by mass) among all the components contained in the film-like object.
 樹脂基材に主たる成分として含まれる樹脂は、特に制限されず、公知のものを使用することができる。本フィルムは樹脂層に特徴を有するため、樹脂基材の種類によらず、凹凸欠陥が抑制できる。
 樹脂基材に含まれる樹脂としては、例えば、ポリエステル樹脂、カーボネート樹脂、フッ素樹脂、ポリイミド樹脂、トリアセチルセルロース樹脂、ポリエーテル樹脂、オレフィン樹脂、アクリル樹脂、スチレン樹脂、塩化ビニル樹脂、ビニルアルコール樹脂、及び、ナイロン樹脂等が挙げられる。耐熱性及び透明性の点で、ポリエステル樹脂、カーボネート樹脂、フッ素樹脂、ポリイミド樹脂、トリアセチルセルロース樹脂、ポリエーテル樹脂、又は、オレフィン樹脂が好ましく、成形性及び汎用性の点で、ポリエステル樹脂がより好ましい。
 樹脂基材は、上記好ましい樹脂を主たる成分として含む樹脂基材が好ましい。すなわち、樹脂基材は、ポリエステル基材、ポリカーボネート基材、フッ素樹脂基材、ポリイミド基材、トリアセチルセルロース基材、ポリエーテル基材、又は、ポリオレフィン基材が好ましく、ポリエステル基材がより好ましい。
 樹脂基材は、2種以上の樹脂を含んでいてもよい。例えば、ポリエステル基材は、1種単独のポリエステル樹脂を含んでいてもよく、2種以上のポリエステル樹脂を含んでいてもよい。
The resin contained as the main component in the resin substrate is not particularly limited, and any known resin can be used. Since the present film has a characteristic in the resin layer, unevenness defects can be suppressed regardless of the type of resin substrate.
Examples of the resin contained in the resin substrate include polyester resin, carbonate resin, fluororesin, polyimide resin, triacetyl cellulose resin, polyether resin, olefin resin, acrylic resin, styrene resin, vinyl chloride resin, vinyl alcohol resin, and nylon resin. In terms of heat resistance and transparency, polyester resin, carbonate resin, fluororesin, polyimide resin, triacetyl cellulose resin, polyether resin, or olefin resin is preferred, and in terms of moldability and versatility, polyester resin is more preferred.
The resin substrate is preferably a resin substrate containing the above-mentioned preferred resin as a main component, that is, the resin substrate is preferably a polyester substrate, a polycarbonate substrate, a fluororesin substrate, a polyimide substrate, a triacetyl cellulose substrate, a polyether substrate, or a polyolefin substrate, and more preferably a polyester substrate.
The resin substrate may contain two or more kinds of resins. For example, a polyester substrate may contain one kind of polyester resin alone, or may contain two or more kinds of polyester resins.
 樹脂基材は、2軸配向樹脂基材が好ましく、2軸配向ポリエステル基材がより好ましい。すなわち、本フィルムは、2軸配向フィルムであることも好ましい。
 「2軸配向」とは、2軸方向に分子配向性を有する性質を意味する。分子配向性は、マイクロ波透過型分子配向計(例えば、MOA-6004、株式会社王子計測機器社製)を用いて測定する。二軸方向のなす角は、90°±5°の範囲内が好ましく、90°±3°の範囲内がより好ましく、90°±1°の範囲内が更に好ましい。
 分子配向性は、延伸を行うことにより変化し、2軸延伸を行うことにより2軸配向樹脂基材を製造できる。
The resin substrate is preferably a biaxially oriented resin substrate, more preferably a biaxially oriented polyester substrate, i.e., the present film is also preferably a biaxially oriented film.
"Biaxial orientation" means a property of having molecular orientation in two axial directions. The molecular orientation is measured using a microwave transmission type molecular orientation meter (e.g., MOA-6004, manufactured by Oji Scientific Instruments Co., Ltd.). The angle between the two axial directions is preferably within the range of 90°±5°, more preferably within the range of 90°±3°, and even more preferably within the range of 90°±1°.
The molecular orientation changes when the film is stretched, and a biaxially oriented resin substrate can be produced by performing biaxial stretching.
 樹脂基材は、粒子を実質的に含まないことが好ましい。「粒子を実質的に含まない」とは、樹脂基材について、蛍光X線分析で粒子に由来する元素を定量分析した際に、粒子の含有量が樹脂基材の全質量に対して50質量ppm以下であることで定義され、好ましくは10質量ppm以下であり、より好ましくは検出限界以下である。これは積極的に粒子を樹脂基材中に添加させなくても、外来異物由来のコンタミ成分、原料樹脂、又は、樹脂基材の製造工程におけるライン若しくは装置に付着した汚れが剥離して、樹脂基材中に混入する場合があるためである。粒子としては、例えば、上述の樹脂層の形成に用いられる粒子が挙げられる。 The resin substrate is preferably substantially free of particles. "Substantially free of particles" is defined as the particle content being 50 ppm by mass or less, preferably 10 ppm by mass or less, and more preferably below the detection limit, relative to the total mass of the resin substrate when the resin substrate is quantitatively analyzed for elements derived from particles by fluorescent X-ray analysis. This is because even if particles are not actively added to the resin substrate, contaminant components derived from foreign matter, raw resin, or dirt adhering to the line or equipment in the manufacturing process of the resin substrate may peel off and be mixed into the resin substrate. Examples of particles include the particles used in forming the resin layer described above.
 以下、主に、ポリエステル基材に含まれるポリエステル樹脂、及び、ポリエステル基材について説明するが、上述したように、本フィルムの樹脂基材は、ポリエステル基材に限定されない。 The following mainly describes the polyester resin contained in the polyester base material and the polyester base material, but as mentioned above, the resin base material of this film is not limited to a polyester base material.
(ポリエステル樹脂)
 ポリエステル樹脂は、主鎖にエステル結合を有する重合体である。ポリエステル樹脂は、通常、後述するジカルボン酸化合物とジオール化合物とを重縮合させることにより形成される。
 ポリエステル樹脂としては特に制限されず、公知のポリエステル樹脂を利用できる。ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート(PET)、ポリプロピレンテレフタレート(PPT)、ポリブチレンテレフタレート(PBT)、ポリエチレン-2,6-ナフタレート(PEN)、及び、それらの共重合体が挙げられ、PET、PEN、及び、それらの共重合体が好ましく、PETがより好ましい。
(Polyester resin)
The polyester resin is a polymer having an ester bond in the main chain, and is usually formed by polycondensation of a dicarboxylic acid compound and a diol compound, which will be described later.
The polyester resin is not particularly limited, and known polyester resins can be used. Examples of the polyester resin include polyethylene terephthalate (PET), polypropylene terephthalate (PPT), polybutylene terephthalate (PBT), polyethylene-2,6-naphthalate (PEN), and copolymers thereof, with PET, PEN, and copolymers thereof being preferred, and PET being more preferred.
 ポリエステル樹脂の固有粘度は、0.50dl/g以上0.80dl/g未満が好ましく、0.55dl/g以上0.70dl/g未満がより好ましい。
 ポリエステル樹脂の融点(Tm)は、220~270℃が好ましく、245~265℃がより好ましい。
 ポリエステル樹脂のガラス転移温度(Tg)は、65~90℃が好ましく、70~85℃がより好ましい。
The intrinsic viscosity of the polyester resin is preferably 0.50 dl/g or more and less than 0.80 dl/g, and more preferably 0.55 dl/g or more and less than 0.70 dl/g.
The melting point (Tm) of the polyester resin is preferably from 220 to 270°C, and more preferably from 245 to 265°C.
The glass transition temperature (Tg) of the polyester resin is preferably from 65 to 90°C, and more preferably from 70 to 85°C.
 ポリエステル樹脂の製造方法は特に制限されず、公知の方法を利用できる。例えば、触媒存在下で、少なくとも1種のジカルボン酸化合物と、少なくとも1種のジオール化合物とを重縮合させることによりポリエステル樹脂を製造できる。 The method for producing the polyester resin is not particularly limited, and any known method can be used. For example, the polyester resin can be produced by polycondensing at least one dicarboxylic acid compound and at least one diol compound in the presence of a catalyst.
-触媒-
 ポリエステル樹脂の製造に使用する触媒は、特に制限されず、ポリエステル樹脂の合成に使用可能な公知の触媒を利用できる。
 触媒としては、例えば、アルカリ金属化合物(例えば、カリウム化合物、ナトリウム化合物)、アルカリ土類金属化合物(例えば、カルシウム化合物、マグネシウム化合物)、亜鉛化合物、鉛化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、ゲルマニウム化合物、及び、リン化合物が挙げられる。中でも、触媒活性及びコストの点から、チタン化合物が好ましい。
 触媒は、1種のみ用いてもよく、2種以上を併用してもよい。カリウム化合物、ナトリウム化合物、カルシウム化合物、マグネシウム化合物、亜鉛化合物、鉛化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、及び、ゲルマニウム化合物から選択される少なくとも1種の金属触媒と、リン化合物とを併用することが好ましく、チタン化合物とリン化合物を併用することがより好ましい。
-catalyst-
The catalyst used in the production of the polyester resin is not particularly limited, and any known catalyst that can be used in the synthesis of polyester resins can be used.
Examples of the catalyst include alkali metal compounds (e.g., potassium compounds, sodium compounds), alkaline earth metal compounds (e.g., calcium compounds, magnesium compounds), zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, germanium compounds, and phosphorus compounds. Among these, titanium compounds are preferred from the standpoint of catalytic activity and cost.
The catalyst may be used alone or in combination of two or more. It is preferable to use at least one metal catalyst selected from potassium compounds, sodium compounds, calcium compounds, magnesium compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, and germanium compounds in combination with a phosphorus compound, and it is more preferable to use a titanium compound in combination with a phosphorus compound.
 チタン化合物としては、有機キレートチタン錯体が好ましい。有機キレートチタン錯体は、配位子として有機酸を有するチタン化合物である。
 有機酸としては、例えば、クエン酸、乳酸、トリメリット酸、及び、リンゴ酸が挙げられる。
 チタン化合物としては、特許第5575671号公報の[0049]~[0053]に記載されたチタン化合物も利用でき、上記公報の記載内容は、本明細書に組み込まれる。
The titanium compound is preferably an organic chelate titanium complex, which is a titanium compound having an organic acid as a ligand.
Examples of organic acids include citric acid, lactic acid, trimellitic acid, and malic acid.
As the titanium compound, the titanium compounds described in paragraphs [0049] to [0053] of Japanese Patent No. 5575671 can also be used, and the contents of the above publication are incorporated herein by reference.
-ジカルボン酸化合物-
 ジカルボン酸化合物としては、例えば、脂肪族ジカルボン酸化合物、脂環式ジカルボン酸化合物、及び、芳香族ジカルボン酸化合物等のジカルボン酸、並びに、それらジカルボン酸のメチルエステル化合物及びエチルエステル化合物等のジカルボン酸エステルが挙げられる。中でも、芳香族ジカルボン酸、又は、芳香族ジカルボン酸メチルが好ましい。
-Dicarboxylic acid compound-
Examples of the dicarboxylic acid compound include dicarboxylic acids such as aliphatic dicarboxylic acid compounds, alicyclic dicarboxylic acid compounds, and aromatic dicarboxylic acid compounds, as well as dicarboxylic acid esters such as methyl ester compounds and ethyl ester compounds of these dicarboxylic acids. Among these, aromatic dicarboxylic acids or aromatic methyl dicarboxylates are preferred.
 脂肪族ジカルボン酸化合物としては、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸、及び、エチルマロン酸が挙げられる。
 脂環式ジカルボン酸化合物としては、例えば、アダマンタンジカルボン酸、ノルボルネンジカルボン酸、シクロヘキサンジカルボン酸、及び、デカリンジカルボン酸が挙げられる。
Examples of the aliphatic dicarboxylic acid compound include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosanedioic acid, pimelic acid, azelaic acid, methylmalonic acid, and ethylmalonic acid.
Examples of the alicyclic dicarboxylic acid compound include adamantanedicarboxylic acid, norbornenedicarboxylic acid, cyclohexanedicarboxylic acid, and decalindicarboxylic acid.
 芳香族ジカルボン酸化合物としては、例えば、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、フェニルインダンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸、及び、9,9’-ビス(4-カルボキシフェニル)フルオレン酸が挙げられる。
 中でも、テレフタル酸又は2,6-ナフタレンジカルボン酸が好ましく、テレフタル酸がより好ましい。
Examples of aromatic dicarboxylic acid compounds include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 4,4'-diphenyldicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, 5-sodiumsulfoisophthalic acid, phenylindanedicarboxylic acid, anthracenedicarboxylic acid, phenanthrenedicarboxylic acid, and 9,9'-bis(4-carboxyphenyl)fluorene acid.
Among these, terephthalic acid or 2,6-naphthalenedicarboxylic acid is preferred, and terephthalic acid is more preferred.
 ジカルボン酸化合物は1種のみ用いてもよく、2種以上を併用してもよい。ジカルボン酸化合物として、テレフタル酸を使用する場合、テレフタル酸単独で用いてもよく、イソフタル酸等の他の芳香族ジカルボン酸又は脂肪族ジカルボン酸と共重合してもよい。 A single dicarboxylic acid compound may be used, or two or more may be used in combination. When terephthalic acid is used as the dicarboxylic acid compound, terephthalic acid may be used alone, or may be copolymerized with other aromatic dicarboxylic acids such as isophthalic acid or aliphatic dicarboxylic acids.
-ジオール化合物-
 ジオール化合物としては、例えば、脂肪族ジオール化合物、脂環式ジオール化合物、及び、芳香族ジオール化合物が挙げられ、脂肪族ジオール化合物が好ましい。
-Diol compound-
Examples of the diol compound include an aliphatic diol compound, an alicyclic diol compound, and an aromatic diol compound, and an aliphatic diol compound is preferable.
 脂肪族ジオール化合物としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール、及び、ネオペンチルグリコールが挙げられ、エチレングリコールが好ましい。
 脂環式ジオール化合物としては、例えば、シクロヘキサンジメタノール、スピログリコール、及び、イソソルビドが挙げられる。
 芳香族ジオール化合物としては、例えば、ビスフェノールA、1,3-ベンゼンジメタノール,1,4-ベンゼンジメタノール、及び、9,9’-ビス(4-ヒドロキシフェニル)フルオレンが挙げられる。
 ジオール化合物は、1種のみ用いてもよく、2種以上を併用してもよい。
Examples of the aliphatic diol compound include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, and neopentyl glycol, with ethylene glycol being preferred.
Examples of the alicyclic diol compound include cyclohexanedimethanol, spiroglycol, and isosorbide.
Examples of aromatic diol compounds include bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, and 9,9'-bis(4-hydroxyphenyl)fluorene.
The diol compound may be used alone or in combination of two or more kinds.
-末端封止剤-
 ポリエステル樹脂の製造においては、必要に応じて、末端封止剤を用いてもよい。末端封止剤を用いることで、ポリエステル樹脂の末端に末端封止剤に由来する構造が導入される。
 末端封止剤としては、制限されず、公知の末端封止剤を利用できる。末端封止剤としては、例えば、オキサゾリン系化合物、カルボジイミド系化合物、及び、エポキシ系化合物が挙げられる。
 末端封止剤としては、特開2014-189002号公報の[0055]~[0064]に記載の内容も参照でき、上記公報の内容は、本明細書に組み込まれる。
-End-capping agent-
In the production of the polyester resin, a terminal capping agent may be used as necessary. By using the terminal capping agent, a structure derived from the terminal capping agent is introduced into the terminal of the polyester resin.
The terminal blocking agent is not limited, and any known terminal blocking agent can be used. Examples of the terminal blocking agent include oxazoline compounds, carbodiimide compounds, and epoxy compounds.
For the terminal blocking agent, reference can also be made to the contents described in paragraphs [0055] to [0064] of JP2014-189002A, the contents of which are incorporated herein by reference.
-製造条件-
 反応温度は、制限されず、原材料に応じて適宜設定すればよい。反応温度は、260~300℃が好ましく、275~285℃がより好ましい。
 圧力は、制限されず、原材料に応じて適宜設定すればよい。圧力は、1.33×10-3~1.33×10-5MPaが好ましく、6.67×10-4~6.67×10-5MPaがより好ましい。
- Manufacturing conditions -
The reaction temperature is not limited and may be appropriately set depending on the raw materials. The reaction temperature is preferably 260 to 300° C., more preferably 275 to 285° C.
The pressure is not limited and may be appropriately set depending on the raw materials. The pressure is preferably 1.33×10 −3 to 1.33×10 −5 MPa, and more preferably 6.67×10 −4 to 6.67×10 −5 MPa.
 ポリエステル樹脂の合成方法としては、特許第5575671号公報の[0033]~[0070]に記載された方法も利用でき、上記公報の内容は、本明細書に組み込まれる。 The method described in paragraphs [0033] to [0070] of Japanese Patent No. 5575671 can also be used to synthesize polyester resin, and the contents of the above publication are incorporated herein by reference.
 ポリエステル基材におけるポリエステル樹脂の含有量は、ポリエステル基材中の重合体の全質量に対して、85質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましく、98質量%以上が特に好ましい。
 ポリエステル樹脂の含有量の上限は、制限されず、ポリエステル基材中の重合体の全質量に対して、100質量%以下の範囲で適宜設定できる。
The content of the polyester resin in the polyester base material is preferably 85% by mass or more, more preferably 90% by mass or more, still more preferably 95% by mass or more, and particularly preferably 98% by mass or more, based on the total mass of the polymer in the polyester base material.
The upper limit of the content of the polyester resin is not limited, and can be appropriately set within the range of 100% by mass or less based on the total mass of the polymer in the polyester base material.
 ポリエステル基材がポリエチレンテレフタレートを含む場合、ポリエチレンテレフタレートの含有量は、ポリエステル基材中のポリエステル樹脂の全質量に対して、90~100質量%が好ましく、95~100質量%がより好ましく、98~100質量%が更に好ましく、100質量%が特に好ましい。 When the polyester base material contains polyethylene terephthalate, the content of polyethylene terephthalate is preferably 90 to 100 mass% relative to the total mass of the polyester resin in the polyester base material, more preferably 95 to 100 mass%, even more preferably 98 to 100 mass%, and particularly preferably 100 mass%.
 樹脂基材は、樹脂以外の成分(例えば、触媒、未反応の原料成分、粒子、及び、水等)を含んでいてもよい。 The resin substrate may contain components other than resin (e.g., catalysts, unreacted raw material components, particles, water, etc.).
 樹脂基材の厚さは、300μm以下が好ましく、100μm以下がより好ましく、50μm以下が更に好ましく、40μm以下が特に好ましい。厚さの下限は特に制限されないが、強度が向上し、加工性が向上する点で、3μm以上が好ましく、10μm以上がより好ましく、20μm以上が更に好ましい。
 樹脂基材の厚さは、後述するフィルムの厚さの測定方法に従って、測定される。
The thickness of the resin substrate is preferably 300 μm or less, more preferably 100 μm or less, even more preferably 50 μm or less, and particularly preferably 40 μm or less. The lower limit of the thickness is not particularly limited, but from the viewpoint of improving strength and processability, it is preferably 3 μm or more, more preferably 10 μm or more, and even more preferably 20 μm or more.
The thickness of the resin substrate is measured according to the method for measuring film thickness described below.
 本フィルムは、上記の樹脂層及び樹脂基材以外の層を更に備えていてもよいが、樹脂層及び樹脂基材からなる層構成を有することが好ましい。 The film may further comprise layers other than the above-mentioned resin layer and resin substrate, but it is preferable that the film has a layer structure consisting of a resin layer and a resin substrate.
〔物性等〕
 次に、本フィルムの物性等について説明する。
[Physical properties, etc.]
Next, the physical properties of the present film will be described.
<樹脂層の物性>
(突起の長径に対する突起の高さの比)
 本フィルムにおいては、樹脂層がその表面に突起を有し、突起の長径に対する突起の高さの比が、0.70以下である。
 突起の長径に対する突起の高さの比は、以下のように測定した値で定義される。
 走査型電子顕微鏡を用いて樹脂層表面(第2主面)の面積10000μmの領域を観察し、上記領域において長径が最長である突起を選択する。走査型電子顕微鏡を用いて測定される選択された突起の長径に対する、光学干渉計を用いる非接触表面形状測定により測定される選択された突起の高さの比を、突起の長径に対する突起の高さの比とする。
<Physical properties of resin layer>
(Ratio of protrusion height to major axis of protrusion)
In the present film, the resin layer has protrusions on its surface, and the ratio of the height of the protrusions to the major axis of the protrusions is 0.70 or less.
The ratio of the height of the protrusion to the major axis of the protrusion is defined as a value measured as follows.
A scanning electron microscope is used to observe an area of 10,000 μm2 on the resin layer surface (second main surface), and the protrusion with the longest major axis in the area is selected. The ratio of the height of the selected protrusion measured by non-contact surface shape measurement using an optical interferometer to the major axis of the selected protrusion measured by the scanning electron microscope is defined as the ratio of the height of the protrusion to the major axis of the protrusion.
 突起の長径に対する突起の高さの比は、0.70以下であり、0.60以下が好ましく、0.30以下がより好ましい。上記範囲であると、凹凸欠陥がより抑制でき、巻取り性にも優れる。
 下限は特に制限されないが、搬送性が優れる点、及び、突起高さのバラツキを抑制できる点で、突起の長径に対する突起の高さの比は、0.01以上が好ましく、0.03以上がより好ましく、0.05以上が更に好ましい。
The ratio of the height of the protrusions to the major axis of the protrusions is 0.70 or less, preferably 0.60 or less, and more preferably 0.30 or less. When in the above range, irregularity defects can be further suppressed and winding properties are also excellent.
Although there is no particular lower limit, in terms of excellent transportability and suppression of variation in protrusion height, the ratio of the protrusion height to the major axis of the protrusions is preferably 0.01 or more, more preferably 0.03 or more, and even more preferably 0.05 or more.
 本フィルムの樹脂層の表面における突起の長径に対する突起の高さの比は、例えば、樹脂層の製造に用いる粒子の種類及び平均粒子径、樹脂層の厚さ、並びに、後述する樹脂層形成工程時及び樹脂層形成工程後の加熱処理等により、調整できる。上記の調整をより容易に行うことができるフィルムの製造方法については、後段で詳しく説明する。
 本フィルムの樹脂層の表面における突起の長径に対する突起の高さの比は、後述の実施例欄に記載の方法に従って測定される。
 なお、フィルムの表面に存在するゴミ、外来異物、及び、樹脂基材の製造工程においてライン又は装置から付着した汚れ等は、樹脂層の表面における突起には含まれない。
The ratio of the height of the protrusions to the major axis of the protrusions on the surface of the resin layer of the present film can be adjusted, for example, by the type and average particle size of the particles used in producing the resin layer, the thickness of the resin layer, and the heat treatment during and after the resin layer formation step described below. A method for producing a film that allows the above adjustment to be performed more easily will be described in detail later.
The ratio of the height of the protrusions to the major axis of the protrusions on the surface of the resin layer of the present film is measured according to the method described in the Examples section below.
It should be noted that dust, foreign matter, and dirt adhering from the line or equipment during the manufacturing process of the resin substrate that are present on the surface of the resin layer are not included in the protrusions on the surface of the resin layer.
(樹脂層表面の突起高さ、突起長径、突起短径)
 本フィルムの樹脂層は、本フィルムにおいて、又は、第1主面上に機能層を形成して得られる積層フィルムにおいて、搬送面として機能する。搬送性が優れる点で、本フィルムの樹脂層表面の突起高さは、0.1μm以上が好ましく、0.2μm以上がより好ましく、0.25μm以上が更に好ましく、0.3μm以上が特に好ましく、0.33μm以上が最も好ましい。
 一方、樹脂層表面の突起が大き過ぎると、搬送時において突起を構成する物質が脱落しやすくなる。また、積層フィルムのロール保管時等において、機能層に転写痕が形成されてしまう場合もある。それらの点で、樹脂層表面の突起高さは、5μm以下が好ましく、4.0μm以下がより好ましく、3.5μm以下が更に好ましい。下限は、巻取り性の点で、0.1μm以上が好ましく、0.3μm以上がより好ましい。
 すなわち、凹凸欠陥がより抑制できる点、及び、搬送性が優れる点で、樹脂層表面の突起の高さは、上記の下限値及び上限値で規定される範囲内であることが好ましい。
 なお、本明細書において「樹脂層表面の突起高さ」とは、走査型電子顕微鏡を用いて樹脂層表面(第2主面)の面積10000μmの領域を観察し、上記領域において長径が最長である突起に対して、光学干渉計を用いる非接触表面形状測定を行って得られる突起高さを意味する。
(Protrusion height, major diameter, minor diameter of protrusion on resin layer surface)
The resin layer of the present film functions as a transport surface in the present film or in a laminate film obtained by forming a functional layer on the first main surface. In terms of excellent transportability, the protrusion height on the resin layer surface of the present film is preferably 0.1 μm or more, more preferably 0.2 μm or more, even more preferably 0.25 μm or more, particularly preferably 0.3 μm or more, and most preferably 0.33 μm or more.
On the other hand, if the protrusions on the resin layer surface are too large, the material constituting the protrusions is likely to fall off during transportation. In addition, during storage of the laminated film in a roll, transfer marks may be formed on the functional layer. In these respects, the protrusion height on the resin layer surface is preferably 5 μm or less, more preferably 4.0 μm or less, and even more preferably 3.5 μm or less. In terms of winding properties, the lower limit is preferably 0.1 μm or more, and more preferably 0.3 μm or more.
That is, in terms of being able to further suppress unevenness defects and being able to provide excellent transportability, the height of the protrusions on the resin layer surface is preferably within the range defined by the above lower limit and upper limit.
In this specification, the "protrusion height on the resin layer surface" refers to the protrusion height obtained by observing an area of 10,000 μm2 on the resin layer surface (second main surface) using a scanning electron microscope, and performing non-contact surface shape measurement using an optical interferometer on the protrusion with the longest major axis in the above area.
 また、搬送性に優れる点、及び、凹凸欠陥がより抑制できる点で、第2主面の突起高さが0.3~5.0μmであり、かつ、樹脂層の厚さが10~500nm(より好ましくは20~100nm)であることが好ましい。 In addition, in terms of excellent transportability and the ability to further suppress unevenness defects, it is preferable that the protrusion height of the second main surface is 0.3 to 5.0 μm and the thickness of the resin layer is 10 to 500 nm (more preferably 20 to 100 nm).
 本フィルムの樹脂層表面の突起の長径は、0.1~20μmが好ましく、0.5~10μmがより好ましく、1~8μmが更に好ましい。
 本フィルムの樹脂層表面の突起の短径は、0.1~20μmが好ましく、0.3~10μmがより好ましく、1~8μmが更に好ましい。
 また、突起の短径に対する突起の長径の比は、1.0以上が好ましく、1.2以上がより好ましく、1.6以上が更に好ましく、1.6超が特に好ましい。突起の短径に対する突起の長径の比の上限としては、5.0が挙げられる。
 樹脂層表面の突起長径及び突起短径は、上述した突起の長径に対する突起の高さの比の調整方法に準じて、調整できる。
 また、樹脂層表面の突起長径及び突起短径は、後述の実施例欄に記載の方法に従って測定される。
The major axis of the protrusions on the surface of the resin layer of the present film is preferably from 0.1 to 20 μm, more preferably from 0.5 to 10 μm, and even more preferably from 1 to 8 μm.
The minor axis of the protrusions on the surface of the resin layer of the present film is preferably from 0.1 to 20 μm, more preferably from 0.3 to 10 μm, and even more preferably from 1 to 8 μm.
The ratio of the major axis of the protrusions to the minor axis of the protrusions is preferably 1.0 or more, more preferably 1.2 or more, even more preferably 1.6 or more, and particularly preferably more than 1.6. The upper limit of the ratio of the major axis of the protrusions to the minor axis of the protrusions is 5.0.
The major axis and minor axis of the protrusions on the surface of the resin layer can be adjusted in accordance with the above-mentioned method for adjusting the ratio of the protrusion height to the major axis of the protrusions.
The major axis and minor axis of the protrusions on the surface of the resin layer are measured according to the method described in the Examples section below.
(突起の個数)
 本フィルムの樹脂層表面において、突起の個数は、観察面積10000μmにおいて50個以上存在することが好ましく、80個以上存在することがより好ましく、200個以上存在することが更に好ましい。突起の個数は、20000個以下が好ましく、15000個以下がより好ましく、13000個以下が更に好ましい。
 本明細書において、「突起の個数」とは、走査型電子顕微鏡を用いて樹脂層表面(第2主面)の面積10000μmの領域を観察し、観察領域内において突起と認められるものの合計個数を意味する。
 ここで、後述の実施例欄の測定方法では、長径が0.01μm以上のものを突起として認識することができる。
(Number of protrusions)
On the resin layer surface of the present film, the number of protrusions is preferably 50 or more per observation area of 10,000 μm2, more preferably 80 or more, and even more preferably 200 or more. The number of protrusions is preferably 20,000 or less, more preferably 15,000 or less, and even more preferably 13,000 or less.
In this specification, the "number of protrusions" refers to the total number of protrusions found in an area of 10,000 μm2 of the resin layer surface (second main surface) observed using a scanning electron microscope.
In the measurement method described later in the Examples section, protrusions having a major axis of 0.01 μm or more can be recognized as protrusions.
(樹脂層表面の面平均粗さSa)
 凹凸欠陥をより抑制できる点で、樹脂層表面の面平均粗さSaは、1~15nmが好ましく、1~10nmがより好ましく、1~8nmが更に好ましい。
 樹脂層表面の面平均粗さSaは、例えば、樹脂層の製造に用いる粒子の平均粒子径及び含有量、樹脂層の厚さ、並びに、樹脂層に含まれ得る非ポリエステル樹脂及び添加剤(界面活性剤等)の種類を選択することにより、調整できる。インラインコーティングにて樹脂層を形成する場合には、上記の調整をより容易に行うことができる。
(Average surface roughness Sa of resin layer surface)
In terms of being able to further suppress unevenness defects, the resin layer surface has an average surface roughness Sa of preferably 1 to 15 nm, more preferably 1 to 10 nm, and even more preferably 1 to 8 nm.
The surface average roughness Sa of the resin layer surface can be adjusted, for example, by selecting the average particle size and content of the particles used in producing the resin layer, the thickness of the resin layer, and the types of non-polyester resin and additives (surfactants, etc.) that can be contained in the resin layer. When the resin layer is formed by in-line coating, the above adjustment can be made more easily.
 樹脂層表面の面平均粗さSaは、本フィルムの樹脂層側の表面を、光学干渉計(例えば、株式会社日立ハイテク製「Vertscan 3300G Lite」等)を用いて突起の長径に対する突起の高さの比を求める際の突起高さの測定条件と同じ条件で測定し、その後、内蔵されているデータ解析ソフトにて解析することにより、求められる。面平均粗さSaの測定では、測定位置を変えて5回測定し、得られる測定値の平均値を面平均粗さSaの測定値とする。 The surface average roughness Sa of the resin layer surface is determined by measuring the surface of the resin layer side of this film using an optical interferometer (for example, Hitachi High-Tech's Vertscan 3300G Lite) under the same conditions as those used to measure the protrusion height when determining the ratio of the protrusion height to the major axis of the protrusion, and then analyzing the data using the built-in data analysis software. When measuring the surface average roughness Sa, measurements are taken five times at different measurement positions, and the average of the obtained measurements is taken as the measured surface average roughness Sa.
(樹脂層表面の表面自由エネルギー)
 本フィルムの第2主面の表面自由エネルギーは、搬送時の巻き取り性が向上する点、及び、長期保管した際の凹凸欠陥を抑制する効果が優れる点で、25~65mJ/mが好ましく、25~56mJ/mがより好ましく、25~45mJ/mが更に好ましく、35~45mJ/mが特に好ましい。樹脂層表面の表面自由エネルギーが上記範囲にあることにより、樹脂基材から発生したオリゴマー等の不純物が樹脂層を通過して樹脂層表面の表面に析出することを抑制できる。これにより、本フィルムを用いて製造された積層フィルムをロール状に巻き取って長期保存した際に、搬送面(第2主面)に生じたオリゴマー等の不純物由来の粒子が積層フィルムの機能層面に付着して、凹凸欠陥の原因になることを抑制できる。
 樹脂層表面の表面自由エネルギーは、例えば、樹脂層に含まれる非ポリエステル樹脂及び添加剤等を選択することにより、調節できる。
 本フィルムの樹脂層表面の表面自由エネルギーは、後述の実施例欄に記載の方法に従って求められる。
(Surface Free Energy of Resin Layer Surface)
The surface free energy of the second main surface of the present film is preferably 25 to 65 mJ/m 2, more preferably 25 to 56 mJ/m 2 , even more preferably 25 to 45 mJ/m 2 , and particularly preferably 35 to 45 mJ/m 2 , in terms of improving the winding property during transport and the excellent effect of suppressing unevenness defects during long-term storage. By having the surface free energy of the resin layer surface within the above range, it is possible to suppress impurities such as oligomers generated from the resin substrate from passing through the resin layer and precipitating on the surface of the resin layer surface. As a result, when a laminate film manufactured using the present film is wound into a roll and stored for a long period of time, it is possible to suppress particles derived from impurities such as oligomers generated on the transport surface (second main surface) from adhering to the functional layer surface of the laminate film and causing unevenness defects.
The surface free energy of the resin layer surface can be adjusted, for example, by selecting the non-polyester resin and additives contained in the resin layer.
The surface free energy of the resin layer surface of the present film can be determined by the method described in the Examples section below.
<第1主面の物性>
(第1主面の最大突起高さSp、面平均粗さSa)
 機能層を平滑にする点で、第1主面はできるだけ平滑であることが好ましい。具体的には、第1主面の最大突起高さSpは、1~60nmが好ましく、1~50nmがより好ましく、1~30nmが更に好ましい。
 第1主面の面平均粗さSaは、0~10nmが好ましく、0~5nmがより好ましく、0~2nmが更に好ましい。
<Physical Properties of First Principal Surface>
(Maximum protrusion height Sp, average surface roughness Sa of the first main surface)
In order to make the functional layer smooth, it is preferable that the first main surface is as smooth as possible. Specifically, the maximum projection height Sp of the first main surface is preferably 1 to 60 nm, more preferably 1 to 50 nm, and even more preferably 1 to 30 nm.
The first main surface has an average surface roughness Sa of preferably 0 to 10 nm, more preferably 0 to 5 nm, and even more preferably 0 to 2 nm.
 第1主面の最大突起高さSp及び面平均粗さSaは、樹脂基材に実質的に粒子を入れず、かつ、平滑に製膜するように樹脂基材を構成する樹脂の種類及び添加剤の種類を選択する等の手法により調整できる。
 本フィルムの第1主面の最大突起高さSp及び面平均粗さSaは、第1主面を、光学干渉計(例えば、株式会社日立ハイテク製「Vertscan 3300G Lite」等)を用いて突起の長径に対する突起の高さの比を求める際の突起高さの測定条件と同じ条件で測定し、その後、内蔵されているデータ解析ソフトにて解析することにより、求められる。最大突起高さSp及び面平均粗さSaの測定では、第1主面において測定位置を変えて5回測定し、得られる測定値の平均値を各測定値とする。
The maximum projection height Sp and average surface roughness Sa of the first main surface can be adjusted by, for example, selecting the type of resin and the type of additive constituting the resin substrate so as to form a smooth film without substantially including particles in the resin substrate.
The maximum projection height Sp and surface average roughness Sa of the first main surface of the film are obtained by measuring the first main surface under the same conditions as those for measuring the projection height when determining the ratio of the projection height to the major axis of the projection using an optical interferometer (e.g., "Vertscan 3300G Lite" manufactured by Hitachi High-Technologies Corporation), and then analyzing the results using the built-in data analysis software. In measuring the maximum projection height Sp and surface average roughness Sa, measurements are taken five times at different measurement positions on the first main surface, and the average values of the obtained measurements are taken as the respective measured values.
(第1主面の表面自由エネルギー)
 本フィルムの第1主面の表面自由エネルギーは、本フィルムを巻き取る際の帯電防止の点で、25~65mJ/mが好ましく、30~45mJ/mがより好ましい。
 第1主面の表面自由エネルギーは、樹脂基材を形成する樹脂の種類及び添加剤等を選択することにより調整できる。
(Surface Free Energy of First Principal Surface)
The surface free energy of the first main surface of the present film is preferably from 25 to 65 mJ/m 2 , and more preferably from 30 to 45 mJ/m 2 , from the viewpoint of preventing static electricity when the present film is wound up.
The surface free energy of the first main surface can be adjusted by selecting the type of resin forming the resin substrate and additives, etc.
 本フィルムの第1主面の表面自由エネルギーは、上記の第2主面の表面自由エネルギーの測定方法に従って測定できる。 The surface free energy of the first main surface of this film can be measured according to the method for measuring the surface free energy of the second main surface described above.
<厚さ>
 本フィルムの厚さは、100μm以下が好ましく、50μm以下がより好ましく、40μm以下が更に好ましい。厚さの下限は特に制限されないが、ハンドリング性に優れる点で、3μm以上が好ましく、5μm以上がより好ましく、10μm以上が更に好ましい。
 本フィルムの厚さは、触針式膜厚計により測定される5か所の厚さの算術平均値とする。なお、上記測定においては、異なる5か所において同一の方向に測定する。
<Thickness>
The thickness of the present film is preferably 100 μm or less, more preferably 50 μm or less, and even more preferably 40 μm or less. The lower limit of the thickness is not particularly limited, but from the viewpoint of excellent handleability, it is preferably 3 μm or more, more preferably 5 μm or more, and even more preferably 10 μm or more.
The thickness of the film is the arithmetic average of thicknesses measured at five different points in the same direction using a stylus film thickness meter.
[フィルムの製造方法]
 本フィルムの製造方法としては、樹脂基材を延伸する延伸工程と、突起を有する樹脂層を形成する工程とを有する方法が挙げられる。
 上記延伸工程で実施される延伸は、1軸延伸であってもよく、2軸延伸であってもよいが、2軸延伸が好ましい。すなわち、得られるフィルムは、2軸配向フィルムが好ましい。
 本発明のフィルムの製造方法としては、例えば、以下の形態が挙げられる。
 樹脂基材の少なくとも一方の面に、非架橋樹脂粒子Aと、樹脂Bと、溶媒とを含む組成物を用いて層を形成する工程と、
 上記層を形成した樹脂基材を温度Yにて加熱しながら延伸する工程とを有し、後述する要件1及び要件2を満たす。
 上記製造方法によれば、本フィルムが得られる。すなわち、樹脂基材と、樹脂層とを少なくとも含み、樹脂層は、その表面に突起を有していて、突起の長径に対する突起の高さの比が、0.70以下である本フィルムが得られる。換言すれば、上記製造方法によれば、本フィルムの樹脂層表面における突起の長径に対する突起の高さの比を0.70以下に調整しやすい。
[Film manufacturing method]
The method for producing the present film may include a method having a stretching step of stretching a resin substrate and a step of forming a resin layer having protrusions.
The stretching carried out in the stretching step may be uniaxial or biaxial, but is preferably biaxial, i.e., the resulting film is preferably a biaxially oriented film.
The method for producing the film of the present invention may be, for example, the following form.
forming a layer on at least one surface of a resin substrate using a composition containing non-crosslinked resin particles A, a resin B, and a solvent;
and stretching the resin substrate on which the layer is formed while heating it at a temperature Y. The method satisfies requirements 1 and 2 described below.
According to the above-mentioned manufacturing method, the present film can be obtained. That is, the present film can be obtained, which includes at least a resin substrate and a resin layer, the resin layer has protrusions on its surface, and the ratio of the height of the protrusions to the major axis of the protrusions is 0.70 or less. In other words, according to the above-mentioned manufacturing method, the ratio of the height of the protrusions to the major axis of the protrusions on the surface of the resin layer of the present film can be easily adjusted to 0.70 or less.
 以下、代表的に、上記延伸工程が2軸延伸工程であり、2軸配向フィルムである本フィルムが得られる本フィルムの製造方法について説明する。すなわち、樹脂基材が延伸樹脂基材である態様について説明するが、本フィルムの製造方法は、下記態様に制限されない。なお、上記製造方法における工程の好ましい態様は、下記態様の好ましい態様と同様である。 Below, a representative method for producing the present film will be described in which the stretching step is a biaxial stretching step, and the present film, which is a biaxially oriented film, is obtained. That is, an embodiment in which the resin substrate is a stretched resin substrate will be described, but the method for producing the present film is not limited to the embodiment below. Note that the preferred embodiment of the steps in the above manufacturing method is the same as the preferred embodiment below.
[2軸配向フィルムの製造方法]
 本発明のフィルムの製造方法としては、未延伸樹脂基材を2軸延伸する2軸延伸工程と、突起を有する樹脂層を形成する工程とを有する方法が挙げられる。
[Method of manufacturing biaxially oriented film]
The method for producing the film of the present invention may include a method having a biaxial stretching step of biaxially stretching an unstretched resin substrate, and a step of forming a resin layer having protrusions.
 2軸延伸は、縦延伸及び横延伸を同時に行う同時2軸延伸であってもよく、縦延伸及び横延伸を2段階以上の多段階に分けて行う逐次2軸延伸であってもよい。逐次2軸延伸の順序としては、例えば、縦延伸及び横延伸の順、縦延伸、横延伸及び縦延伸の順、縦延伸、縦延伸及び横延伸の順、並びに、横延伸及び縦延伸の順が挙げられ、縦延伸及び横延伸の順が好ましい。 The biaxial stretching may be simultaneous biaxial stretching in which longitudinal stretching and transverse stretching are performed simultaneously, or sequential biaxial stretching in which longitudinal stretching and transverse stretching are performed in two or more stages. Examples of the order of sequential biaxial stretching include longitudinal stretching and transverse stretching, longitudinal stretching, transverse stretching and longitudinal stretching, longitudinal stretching, longitudinal stretching and transverse stretching, and transverse stretching and longitudinal stretching, with longitudinal stretching and transverse stretching being preferred.
 以下、本フィルムの製造方法の例として、第1実施形態について説明する。 The following describes the first embodiment as an example of the manufacturing method for this film.
〔第1実施形態〕
 本フィルムの製造方法の第1実施形態は、
 未延伸樹脂基材を延伸して1軸延伸樹脂基材を得る工程(以下、「縦延伸工程」ともいう。)と、
 上記1軸延伸樹脂基材の少なくとも一方の面に、非架橋樹脂粒子Aと、樹脂Bと、溶媒とを含む組成物を用いて層を形成する工程(以下、「層形成工程」ともいう。)と、
 上記層を形成した1軸延伸樹脂基材を温度Yにて加熱しながら延伸する工程(以下、「横延伸工程」ともいう。)とを有し、以下の要件1及び要件2を満たす。
 要件1:温度Yから、非架橋樹脂粒子Aのガラス転移温度を減算した値が-20~50℃である。
 要件2:組成物中において、樹脂Bが粒子状に存在する場合、粒子状の樹脂Bの粒径が非架橋樹脂粒子Aの粒径よりも小さい。
 上記製造方法によれば、2軸配向フィルムである本フィルムが得られる。すなわち、2軸配向樹脂基材と、樹脂層とを少なくとも含み、樹脂層は、その表面に突起を有していて、突起の長径に対する突起の高さの比が、0.70以下である本フィルムが得られる。換言すれば、上記製造方法によれば、本フィルムの樹脂層表面における突起の長径に対する突起の高さの比を0.70以下に調整しやすい。
 以下、各工程について詳細に説明する。
First Embodiment
The first embodiment of the method for producing the film includes:
A step of stretching an unstretched resin substrate to obtain a uniaxially stretched resin substrate (hereinafter also referred to as a "longitudinal stretching step");
A step of forming a layer on at least one surface of the uniaxially stretched resin substrate using a composition containing non-crosslinked resin particles A, a resin B, and a solvent (hereinafter also referred to as a "layer forming step");
The method includes a step of stretching the uniaxially stretched resin substrate on which the above-mentioned layer is formed while heating it at a temperature Y (hereinafter, also referred to as a "transverse stretching step"), and satisfies the following requirements 1 and 2.
Requirement 1: The value obtained by subtracting the glass transition temperature of the non-crosslinked resin particles A from the temperature Y is -20 to 50°C.
Requirement 2: When resin B is present in the composition in the form of particles, the particle diameter of the particulate resin B is smaller than the particle diameter of the non-crosslinked resin particles A.
According to the above-mentioned manufacturing method, the present film, which is a biaxially oriented film, can be obtained. That is, the present film includes at least a biaxially oriented resin substrate and a resin layer, the resin layer has protrusions on its surface, and the ratio of the height of the protrusions to the major axis of the protrusions is 0.70 or less. In other words, according to the above-mentioned manufacturing method, the ratio of the height of the protrusions to the major axis of the protrusions on the surface of the resin layer of the present film can be easily adjusted to 0.70 or less.
Each step will be described in detail below.
<縦延伸工程>
 縦延伸工程に供する樹脂基材としては、未延伸の樹脂基材が好ましい。
 縦延伸工程に用いる樹脂基材については、好ましい態様も含めて、上記<樹脂基材>の項目において既に説明した通りである。未延伸の樹脂基材は、例えば、後述する押出成形工程により作製できる。
<Longitudinal Stretching Process>
The resin substrate to be subjected to the longitudinal stretching step is preferably an unstretched resin substrate.
The resin substrate used in the longitudinal stretching step is as described above in the section "Resin Substrate", including preferred embodiments. The unstretched resin substrate can be prepared, for example, by an extrusion molding step described later.
 縦延伸は、例えば、未延伸の樹脂基材を長手方向に搬送しながら、搬送方向に設置した2対以上の延伸ロール間で緊張を与えることによって行うことができる。
 縦延伸工程における延伸倍率は、用途によって適宜設定されるが、2.0~5.0倍が好ましく、2.5~4.0倍がより好ましく、2.8~4.0倍が更に好ましい。
 縦延伸工程における延伸速度は、800~1500%/秒が好ましく、1000~1400%/秒がより好ましく、1200~1400%/秒が更に好ましい。ここで、「延伸速度」とは、縦延伸工程において1秒間に延伸された樹脂基材の搬送方向の長さΔdを、延伸前の樹脂基材の搬送方向の長さd0で除した値を、百分率で表した値である。
 縦延伸工程においては、未延伸の樹脂基材を加熱することが好ましい。加熱により縦延伸が容易になるためである。縦延伸工程における加熱温度は、樹脂基材を構成する樹脂の種類によって適宜設定できるが、例えばポリエステル基材の場合、70~120℃が好ましく、80~110℃がより好ましく、85~100℃が更に好ましい。
 ここで、本実施形態に係る製造方法の各工程における「温度」は、非接触式温度計(例えば、放射温度計)を用いて測定されるフィルム状部材の表面温度を意味する。フィルム状部材の表面温度は、フィルム状部材の幅方向中央部の温度を5回計測し、得られた計測値の平均値を算出することにより求められる。
The longitudinal stretching can be carried out, for example, by conveying an unstretched resin substrate in the longitudinal direction while applying tension between two or more pairs of stretching rolls disposed in the conveying direction.
The stretching ratio in the longitudinal stretching step is appropriately set depending on the application, but is preferably 2.0 to 5.0 times, more preferably 2.5 to 4.0 times, and even more preferably 2.8 to 4.0 times.
The stretching speed in the longitudinal stretching step is preferably 800 to 1500%/sec, more preferably 1000 to 1400%/sec, and even more preferably 1200 to 1400%/sec. Here, the "stretching speed" refers to a value obtained by dividing the length Δd of the resin substrate in the conveying direction stretched in one second in the longitudinal stretching step by the length d0 of the resin substrate in the conveying direction before stretching, expressed as a percentage.
In the longitudinal stretching step, it is preferable to heat the unstretched resin substrate. This is because the longitudinal stretching becomes easier by heating. The heating temperature in the longitudinal stretching step can be appropriately set depending on the type of resin constituting the resin substrate. For example, in the case of a polyester substrate, the heating temperature is preferably 70 to 120°C, more preferably 80 to 110°C, and even more preferably 85 to 100°C.
Here, the "temperature" in each step of the manufacturing method according to the present embodiment means the surface temperature of the film-like member measured using a non-contact thermometer (e.g., a radiation thermometer). The surface temperature of the film-like member is determined by measuring the temperature of the center of the film-like member in the width direction five times and calculating the average of the obtained measurement values.
<層形成工程>
 層形成工程では、縦延伸工程で得られた1軸延伸樹脂基材の表面に、非架橋樹脂粒子Aと、樹脂Bと、溶媒とを含む組成物(以下、「組成物A1」ともいう。)を用いて層を形成する。
 この際、組成物A1に含まれる樹脂Bが粒子状に存在する場合、非架橋樹脂粒子A及び樹脂Bについて、上述した要件2を満たす。すなわち、組成物A1中において、樹脂Bが粒子状に存在する場合、粒子状の樹脂Bの粒径が非架橋樹脂粒子Aの粒径よりも小さい。上記要件2を満たすことで、本実施形態で形成される層の表面において、本フィルムの樹脂層表面における突起の長径に対する突起の高さの比を上記範囲に調整しやすい。
 また、樹脂Bが粒子状に存在する場合、樹脂Bの粒径をDbμm、非架橋樹脂粒子Aの粒径をDaとしたとき、下記式(1)の関係を満たすことも好ましい。
 式(1)  7×Db<Da
 また、Da及びDbに関して、下記式(2)の関係を満たすことも好ましい。
 式(2)  Da<50×Db
 Da及びDbに関して、式(1)及び式(2)の関係を同時に満たすことも好ましい。上記式(1)及び式(2)の少なくとも一方を満たす場合、本実施形態で形成される層の表面において、本フィルムの樹脂層表面における突起の長径に対する突起の高さの比を上記範囲により調整しやすい。
 なお、組成物A1が、非架橋樹脂粒子A及び樹脂Bが複数種類含む場合、それぞれの非架橋樹脂粒子Aと樹脂Bとの組み合わせにおいて、上記式(1)及び式(2)の少なくとも一方を満たすことが好ましい。
<Layer Forming Step>
In the layer formation process, a layer is formed on the surface of the uniaxially stretched resin substrate obtained in the longitudinal stretching process using a composition containing non-crosslinked resin particles A, resin B, and a solvent (hereinafter also referred to as "composition A1").
In this case, when the resin B contained in the composition A1 is present in particulate form, the above-mentioned requirement 2 is satisfied for the non-crosslinked resin particles A and the resin B. That is, when the resin B is present in particulate form in the composition A1, the particle size of the particulate resin B is smaller than the particle size of the non-crosslinked resin particles A. By satisfying the above requirement 2, it is easy to adjust the ratio of the height of the protrusions to the major axis of the protrusions on the surface of the resin layer of the present film to the above range on the surface of the layer formed in this embodiment.
When the resin B is present in a particulate form, it is also preferable that the particle diameter of the resin B is Db μm and the particle diameter of the non-crosslinked resin particles A is Da, so that the relationship of the following formula (1) is satisfied.
Formula (1) 7 × Db < Da
It is also preferable that Da and Db satisfy the relationship of the following formula (2).
Formula (2) Da<50×Db
It is also preferable that Da and Db simultaneously satisfy the relationships of formula (1) and formula (2). When at least one of formula (1) and formula (2) is satisfied, the ratio of the height of the protrusions to the major axis of the protrusions on the surface of the resin layer of the present film is easily adjusted within the above range on the surface of the layer formed in the present embodiment.
In addition, when the composition A1 contains a plurality of types of non-crosslinked resin particles A and resin B, it is preferable that each combination of non-crosslinked resin particles A and resin B satisfies at least one of the above formula (1) and formula (2).
 層形成工程により形成される層については、有機粒子により形成される突起を含む樹脂層に特定されていること以外、上記<樹脂層>の項目において詳しく説明した層と同義である。
 層形成工程としては、例えば、組成物A1を用いて、縦延伸された1軸延伸樹脂基材の表面に塗布膜を形成し、必要に応じて乾燥する方法が挙げられる。
The layer formed in the layer forming step is the same as the layer described in detail above in the section <Resin layer>, except that it is specified as a resin layer including protrusions formed by organic particles.
The layer forming step may, for example, be a method in which a coating film is formed on the surface of a longitudinally stretched uniaxially stretched resin substrate using the composition A1, and then dried as necessary.
 まず、組成物A1を用いて層を形成する方法について、説明する。
 組成物A1は、例えば、非架橋樹脂粒子A、樹脂B、溶媒、及び、必要に応じて添加される添加剤を混合することにより調製できる。
 非架橋樹脂粒子Aは、上記<樹脂層>の項目において説明した非架橋樹脂粒子から選択されることが好ましい。なかでも、非架橋樹脂粒子Aのガラス転移温度が、70~140℃であることが好ましい。
 樹脂Bは、上記<樹脂層>の項目において説明したバインダーとして含まれる非ポリエステル樹脂から選択されることが好ましい。なかでも、樹脂Bは、酸基を有する樹脂であることが好ましい。また、樹脂Bのガラス転移温度が、-50~105℃であることが好ましい。
 非架橋樹脂粒子A及び樹脂Bのガラス転移温度は、示差走査熱量測定で求めることができ、詳細な測定方法については、後段の実施例の部分で説明する。なお、非架橋樹脂粒子A及び樹脂Bとして市販品を使用する場合、市販品のカタログ値として記載されているガラス転移温度を用いてもよい。
First, a method for forming a layer using composition A1 will be described.
The composition A1 can be prepared, for example, by mixing the non-crosslinked resin particles A, the resin B, a solvent, and additives that are added as necessary.
The non-crosslinked resin particles A are preferably selected from the non-crosslinked resin particles described above in the section "Resin Layer." In particular, the non-crosslinked resin particles A preferably have a glass transition temperature of 70 to 140° C.
Resin B is preferably selected from the non-polyester resins contained as binders described in the section "Resin Layer" above. In particular, Resin B is preferably a resin having an acid group. Resin B preferably has a glass transition temperature of -50 to 105°C.
The glass transition temperatures of the non-crosslinked resin particles A and the resin B can be determined by differential scanning calorimetry, and a detailed measurement method will be described in the Examples section below. When commercially available products are used as the non-crosslinked resin particles A and the resin B, the glass transition temperatures listed as catalog values of the commercially available products may be used.
 組成物A1に含まれる非架橋樹脂粒子Aの平均粒子径は、特に制限されないが、搬送性がより優れる点及び転写痕が抑制できる点で、1nm以上3μm以下が好ましく、10nm以上2μm以下がより好ましい。
 非架橋樹脂粒子Aの平均粒子径は、製造メーカー等のカタログ値がある場合はそれを採用できる。
The average particle size of the non-crosslinked resin particles A contained in the composition A1 is not particularly limited, but is preferably from 1 nm to 3 μm, and more preferably from 10 nm to 2 μm, in terms of better transportability and suppression of transfer marks.
For the average particle size of the non-crosslinked resin particles A, if there is a catalog value of the manufacturer, etc., this can be used.
 組成物A1に含まれる非架橋樹脂粒子Aは、1種単独で用いてもよく、2種以上の非架橋樹脂粒子Aを用いてもよい。
 組成物A1が、粒子径の異なる2種以上の非架橋樹脂粒子Aを含む場合、形成される層は、平均粒子径が上記範囲内にある非架橋樹脂粒子Aを少なくとも1種含むことが好ましく、粒子径の異なる2種以上の非架橋樹脂粒子Aがいずれも平均粒子径が上記範囲内にある非架橋樹脂粒子Aであることがより好ましい。
The non-crosslinked resin particles A contained in the composition A1 may be used alone or in combination of two or more kinds.
When composition A1 contains two or more types of non-crosslinked resin particles A having different particle diameters, the layer to be formed preferably contains at least one type of non-crosslinked resin particles A having an average particle diameter within the above range, and it is more preferable that all of the two or more types of non-crosslinked resin particles A having different particle diameters are non-crosslinked resin particles A having average particle diameters within the above range.
 非架橋樹脂粒子Aの形状は、特に制限されず、例えば、米粒状、球形状、立方体状、紡錘形状、鱗片状、凝集状、及び、不定形状が挙げられる。凝集状とは、1次粒子が凝集した状態を意味する。 The shape of the non-crosslinked resin particles A is not particularly limited, and examples include rice grain-like, spherical, cubic, spindle-like, scaly, aggregated, and irregular shapes. "Aggregated" refers to a state in which primary particles are aggregated.
 組成物A1における非架橋樹脂粒子Aの含有量は、搬送性、及び、塗布性の点から、組成物A1の溶媒以外の成分(固形分)の全質量に対して、0.1~30質量%が好ましく、1~25質量%がより好ましく、1~20質量%が更に好ましい。 The content of non-crosslinked resin particles A in composition A1 is preferably 0.1 to 30% by mass, more preferably 1 to 25% by mass, and even more preferably 1 to 20% by mass, based on the total mass of the components (solid content) other than the solvent in composition A1, from the viewpoints of transportability and coatability.
 溶媒としては、例えば、水、エタノールが挙げられる。
 組成物A1は、1種単独の溶媒を含んでいてもよく、2種以上の溶媒を含んでいてもよい。
 溶媒の含有量は、組成物A1の全質量に対して、80~99.5質量%が好ましく、90~99.0質量%がより好ましい。
 即ち、組成物A1において、固形分の合計含有量は、組成物A1の全質量に対して、0.5~20質量%が好ましく、1~10質量%がより好ましい。
The solvent includes, for example, water and ethanol.
Composition A1 may contain one type of solvent alone, or may contain two or more types of solvents.
The content of the solvent is preferably from 80 to 99.5% by mass, and more preferably from 90 to 99.0% by mass, based on the total mass of the composition A1.
That is, in the composition A1, the total content of the solid contents is preferably from 0.5 to 20 mass %, and more preferably from 1 to 10 mass %, based on the total mass of the composition A1.
 組成物A1に含まれる非架橋樹脂粒子Aを構成する材料、樹脂B(バインダー)及び添加剤については、それらの好ましい態様も含めて、上記<樹脂層>の項目において詳しく説明した通りである。
 組成物A1における溶媒及び非架橋樹脂粒子A以外の各成分については、組成物A1の固形分の全質量に対する各成分の含有量が、上記の樹脂層の全質量に対する各成分の好ましい含有量と同じになるように、塗布液における各成分の含有量を調整することが好ましい。
The materials constituting the non-crosslinked resin particles A contained in the composition A1, the resin B (binder) and the additives, including their preferred embodiments, are as described in detail above in the section <Resin Layer>.
With respect to each component other than the solvent and the non-crosslinked resin particles A in composition A1, it is preferable to adjust the content of each component in the coating liquid so that the content of each component relative to the total mass of the solid content of composition A1 is the same as the preferred content of each component relative to the total mass of the resin layer described above.
 組成物A1は架橋剤を含んでいてもよく、組成物A1は架橋剤を含んでいることが好ましい。
 架橋剤としては、特に制限されず、公知のものを使用できる。
 架橋剤としては、例えば、メラミン系化合物、オキサゾリン系化合物、エポキシ系化合物、イソシアネート系化合物、及び、カルボジイミド系化合物が挙げられ、オキサゾリン系化合物又はカルボジイミド系化合物が好ましい。市販品としては、例えば、カルボジライトV-02-L2(日清紡株式会社製)及びエポクロスK-2020E(日本触媒(株)製)が挙げられる。エポキシ系化合物、イソシアネート系化合物、及び、メラミン系化合物の詳細については、特開2015-163457号公報の[0081]~[0083]の記載を参照することができる。国際公開第2017/169844号明細書の[0082]~[0084]の記載の架橋剤も好ましく使用できる。カルボジイミド化合物としては、特開2017-087421号公報の[0038]~[0040]の記載を参照できる。
 オキサゾリン系化合物、カルボジイミド系化合物、及び、イソシアネート系化合物については、国際公開第2018/034294号明細書の[0074]~[0075]の記載の架橋剤も好ましく使用できる。
 架橋剤の含有量は、組成物A1の固形分の全質量に対して0~50質量%が好ましい。
Composition A1 may contain a crosslinking agent, and preferably composition A1 contains a crosslinking agent.
The crosslinking agent is not particularly limited, and any known crosslinking agent can be used.
Examples of the crosslinking agent include melamine compounds, oxazoline compounds, epoxy compounds, isocyanate compounds, and carbodiimide compounds, with oxazoline compounds or carbodiimide compounds being preferred. Commercially available products include, for example, Carbodilite V-02-L2 (manufactured by Nisshinbo Co., Ltd.) and Epocross K-2020E (manufactured by Nippon Shokubai Co., Ltd.). For details of the epoxy compounds, isocyanate compounds, and melamine compounds, reference can be made to the descriptions in [0081] to [0083] of JP 2015-163457 A. The crosslinking agents described in [0082] to [0084] of WO 2017/169844 A can also be preferably used. For the carbodiimide compounds, reference can be made to the descriptions in [0038] to [0040] of JP 2017-087421 A.
For oxazoline-based compounds, carbodiimide-based compounds, and isocyanate-based compounds, the crosslinking agents described in [0074] to [0075] of WO 2018/034294 can also be preferably used.
The content of the crosslinking agent is preferably 0 to 50% by mass based on the total mass of the solid content of the composition A1.
 組成物A1の塗布方法は特に制限されず、公知の方法を利用できる。塗布方法としては、例えば、スプレーコート法、スリットコート法、ロールコート法、ブレードコート法、スピンコート法、バーコート法及びディップコート法が挙げられる。 The method for applying composition A1 is not particularly limited, and any known method can be used. Examples of application methods include spray coating, slit coating, roll coating, blade coating, spin coating, bar coating, and dip coating.
 層形成工程においては、1軸延伸樹脂基材を搬送しながら1軸延伸樹脂基材の一方に表面に組成物A1を塗布するインラインコーティング法を適用することが好ましい。インラインコーティング法を適用することにより、製造工程における樹脂基材の加熱時間が短くなり、熱履歴がかからないため、製造されるフィルム、及び、積層フィルムにおける歪みの発生を抑制できる。
 また、本実施形態では、縦延伸工程の後、層形成工程を実施し、次いで横延伸工程を行う。これにより、1軸延伸された樹脂基材と形成された層とを同時に横延伸し、樹脂基材及び形成される樹脂層の密着性を向上できる。
In the layer forming step, it is preferable to apply an in-line coating method in which the composition A1 is applied to one surface of the uniaxially stretched resin substrate while conveying the uniaxially stretched resin substrate. By applying the in-line coating method, the heating time of the resin substrate in the manufacturing process is shortened, and no heat history is applied, so that the occurrence of distortion in the manufactured film and laminated film can be suppressed.
In the present embodiment, the longitudinal stretching step is followed by the layer forming step, followed by the transverse stretching step, whereby the uniaxially stretched resin substrate and the formed layer are simultaneously transversely stretched, thereby improving the adhesion between the resin substrate and the formed resin layer.
<横延伸工程>
 本実施形態では、上記層を有する1軸延伸樹脂基材を幅方向に延伸(以下、「横延伸」ともいう。)する横延伸工程を行う際、1軸延伸樹脂基材を特定の温度Yで加熱しながら行う。
 その際の温度Yは、組成物A1に含まれる非架橋樹脂粒子Aのガラス転移温度との間で、上述した要件1を満たす。すなわち、温度Yから、非架橋樹脂粒子Aのガラス転移温度を減算した値が-20~50℃である。上記要件1を満たすことで、非架橋樹脂粒子Aが横延伸時に横延伸方向に変形しやすく、本実施形態で形成される樹脂層表面において、突起の長径に対する突起の高さの比を上記範囲に調整しやすい。
 また、1軸延伸樹脂基材は、横延伸工程により横延伸されている間、温度Yで加熱され続けていることが好ましい。なお、温度Yとは、1軸延伸樹脂基材の表面温度を指す。
<Transverse stretching process>
In this embodiment, when a transverse stretching step is performed in which the uniaxially stretched resin substrate having the above-mentioned layer is stretched in the width direction (hereinafter also referred to as “transverse stretching”), the uniaxially stretched resin substrate is heated at a specific temperature Y.
The temperature Y at that time satisfies the above-mentioned requirement 1 between the glass transition temperature of the non-crosslinked resin particles A contained in the composition A1. That is, the value obtained by subtracting the glass transition temperature of the non-crosslinked resin particles A from the temperature Y is −20 to 50° C. By satisfying the requirement 1, the non-crosslinked resin particles A are easily deformed in the transverse stretching direction during transverse stretching, and the ratio of the height of the protrusions to the major axis of the protrusions on the surface of the resin layer formed in this embodiment is easily adjusted to the above-mentioned range.
In addition, the uniaxially stretched resin substrate is preferably continuously heated at a temperature Y while being transversely stretched in the transverse stretching step. The temperature Y refers to the surface temperature of the uniaxially stretched resin substrate.
 横延伸工程においては、横延伸前に、1軸延伸樹脂基材を予熱することが好ましい。予熱により1軸延伸樹脂基材の温度を上げることで、1軸延伸樹脂基材を容易に横延伸できる。横延伸工程における余熱温度は、樹脂基材を構成する樹脂の種類によって適宜設定できるが、例えばポリエステル基材の場合、80~120℃が好ましく、90~110℃がより好ましい。
 横延伸工程における1軸延伸樹脂基材の幅方向の延伸倍率(横延伸倍率)は特に制限されないが、上記縦延伸工程における延伸倍率より大きいことが好ましい。横延伸工程における延伸倍率は、3.0~6.0倍が好ましく、3.5~5.0倍がより好ましく、3.5~4.5倍が更に好ましい。
 横延伸工程を延伸機の延伸部において実施する場合、横延伸倍率は、延伸部の搬入時の樹脂基材幅L0に対する延伸部からの搬出時の樹脂基材幅L1の比率(L1/L0)から求められる。
 横延伸工程における延伸速度は、8~45%/秒が好ましく、10~30%/秒がより好ましく、15~20%/秒が更に好ましい。
In the transverse stretching step, it is preferable to preheat the uniaxially stretched resin substrate before transverse stretching. By increasing the temperature of the uniaxially stretched resin substrate by preheating, the uniaxially stretched resin substrate can be easily transversely stretched. The preheating temperature in the transverse stretching step can be appropriately set depending on the type of resin constituting the resin substrate. For example, in the case of a polyester substrate, the preheating temperature is preferably 80 to 120°C, more preferably 90 to 110°C.
The stretching ratio in the width direction of the uniaxially stretched resin substrate in the transverse stretching step (transverse stretching ratio) is not particularly limited, but is preferably larger than the stretching ratio in the longitudinal stretching step. The stretching ratio in the transverse stretching step is preferably 3.0 to 6.0 times, more preferably 3.5 to 5.0 times, and even more preferably 3.5 to 4.5 times.
When the transverse stretching step is carried out in a stretching section of a stretching machine, the transverse stretching ratio is calculated from the ratio (L1/L0) of the resin substrate width L1 at the time of discharge from the stretching section to the resin substrate width L0 at the time of entry into the stretching section.
The stretching speed in the transverse stretching step is preferably from 8 to 45%/sec, more preferably from 10 to 30%/sec, and even more preferably from 15 to 20%/sec.
 本実施形態に係る製造方法は、上記縦延伸工程、上記層形成工程、及び、上記横延伸工程以外に、他の工程を有していてもよい。
 本実施形態に係る製造方法は、例えば、原料樹脂を含む溶融樹脂をフィルム状に押し出して、未延伸樹脂基材を形成する押出成形工程、2軸延伸された樹脂基材を加熱して熱固定する熱固定工程、熱固定工程により熱固定された樹脂基材を熱固定工程よりも低い温度で加熱して熱緩和する熱緩和工程、熱緩和工程により熱緩和された樹脂基材を冷却する冷却工程、及び、冷却工程において、熱緩和された樹脂基材を幅方向に拡張する拡張工程からなる群より選択される少なくとも1つの工程を有していてもよい。
 以下、各工程について説明する。
The manufacturing method according to the present embodiment may include other steps in addition to the longitudinal stretching step, the layer forming step, and the transverse stretching step.
The manufacturing method according to the present embodiment may include at least one step selected from the group consisting of an extrusion molding step of extruding a molten resin containing a raw material resin into a film shape to form an unstretched resin substrate, a heat setting step of heating and heat setting the biaxially stretched resin substrate, a heat relaxation step of heating the resin substrate heat-set by the heat setting step at a temperature lower than that of the heat setting step to heat relax the resin substrate heat-relaxed by the heat relaxation step, a cooling step of cooling the resin substrate heat-relaxed by the heat relaxation step, and an expansion step of expanding the heat-relaxed resin substrate in the width direction during the cooling step.
Each step will be described below.
<押出成形工程>
 押出成形工程は、押出成形法により原料樹脂を含む溶融樹脂をフィルム状に押し出して、未延伸樹脂基材を形成する工程である。原料樹脂については、上記の<樹脂基材>の項目において説明した樹脂と同義であり、ポリエステル樹脂が好ましい。
<Extrusion molding process>
The extrusion molding process is a process in which a molten resin containing a raw material resin is extruded into a film shape by an extrusion molding method to form an unstretched resin substrate. The raw material resin is the same as the resin described in the above <Resin substrate> section, and a polyester resin is preferable.
 押出成形法は、例えば押出機を用いて原料樹脂の溶融体を押し出すことによって、原料樹脂を所望の形状に成形する方法である。
 押出ダイから押し出された溶融体は、冷却されることによってフィルム状に成形される。例えば、溶融体をキャスティングロールに接触させ、キャスティングロール上で溶融体を冷却及び固化することで、溶融体をフィルム状に成形できる。溶融体の冷却においては、更に、溶融体に風(好ましくは冷風)を当てることが好ましい。
The extrusion molding method is a method in which a molten raw material resin is extruded using an extruder, for example, to mold the raw material resin into a desired shape.
The melt extruded from the extrusion die is cooled to be formed into a film. For example, the melt is brought into contact with a casting roll, and cooled and solidified on the casting roll, whereby the melt can be formed into a film. In cooling the melt, it is preferable to further blow air (preferably cold air) on the melt.
<熱固定工程>
 本実施形態に係る製造方法では、横延伸工程により横延伸された樹脂基材に対する加熱処理として、熱固定工程を行うことが好ましい。
 熱固定工程においては、横延伸工程により得られた2軸配向樹脂基材を加熱して、熱固定することができる。熱固定によって樹脂を結晶化させることにより、樹脂基材の収縮を抑えることができる。
 熱固定工程における樹脂基材の表面温度(熱固定温度)は、特に制限されず、樹脂の種類によって適宜選択できるが、240℃未満が好ましく、235℃以下がより好ましく、230℃以下が更に好ましい。下限は特に制限されないが、190℃以上が好ましく、200℃以上がより好ましく、210℃以上が更に好ましい。樹脂基材がポリエステル基材の場合、上記温度範囲であることが好ましい。
 熱固定工程における加熱時間は、5~50秒間が好ましく、5~30秒間がより好ましく、5~10秒間が更に好ましい。
<Heat setting process>
In the manufacturing method according to the present embodiment, it is preferable to carry out a heat setting step as a heat treatment for the resin substrate that has been transversely stretched in the transverse stretching step.
In the heat setting step, the biaxially oriented resin substrate obtained in the transverse stretching step can be heat set by heating. By crystallizing the resin through heat setting, shrinkage of the resin substrate can be suppressed.
The surface temperature (heat setting temperature) of the resin substrate in the heat setting step is not particularly limited and can be appropriately selected depending on the type of resin, but is preferably less than 240° C., more preferably 235° C. or less, and even more preferably 230° C. or less. The lower limit is not particularly limited, but is preferably 190° C. or more, more preferably 200° C. or more, and even more preferably 210° C. or more. When the resin substrate is a polyester substrate, the above temperature range is preferable.
The heating time in the heat setting step is preferably from 5 to 50 seconds, more preferably from 5 to 30 seconds, and even more preferably from 5 to 10 seconds.
<熱緩和工程>
 熱緩和工程においては、熱固定工程により熱固定された樹脂基材を、熱固定工程よりも低い温度で加熱することで熱緩和することが好ましい。熱緩和によって樹脂基材の残留歪みを緩和できる。
 熱緩和工程における樹脂基材の表面温度(熱緩和温度)は、熱固定温度より、5℃以上低い温度が好ましく、15℃以上低い温度がより好ましく、25℃以上低い温度が更に好ましく、30℃以上低い温度が特に好ましい。すなわち、熱緩和温度は、235℃以下が好ましく、225℃以下がより好ましく、210℃以下が更に好ましく、200℃以下が特に好ましい。
 熱緩和温度の下限は、100℃以上が好ましく、110℃以上がより好ましく、120℃以上が更に好ましい。
<Heat relaxation step>
In the heat relaxation step, the resin substrate heat-fixed in the heat setting step is preferably heat-relaxed by heating at a temperature lower than that in the heat setting step, which can relax residual distortion of the resin substrate.
The surface temperature of the resin substrate in the heat relaxation step (heat relaxation temperature) is preferably at least 5° C. lower than the heat setting temperature, more preferably at least 15° C. lower, even more preferably at least 25° C. lower, and particularly preferably at least 30° C. lower. That is, the heat relaxation temperature is preferably 235° C. or lower, more preferably 225° C. or lower, even more preferably 210° C. or lower, and particularly preferably 200° C. or lower.
The lower limit of the heat relaxation temperature is preferably 100° C. or higher, more preferably 110° C. or higher, and even more preferably 120° C. or higher.
<冷却工程>
 本実施形態に係る製造方法は、熱緩和された樹脂基材を冷却する冷却工程を有することが好ましい。
 冷却工程における樹脂基材の冷却速度は、特に制限されないが、熱収縮を小さくして寸法安定性を付与するには、冷却工程における樹脂基材の冷却速度は、500℃/分超4000℃/分未満が好ましく、700~3000℃/分が更によりより好ましく、1000~2500℃/分が特に好ましい。
<Cooling process>
The manufacturing method according to the present embodiment preferably includes a cooling step of cooling the thermally relaxed resin substrate.
The cooling rate of the resin substrate in the cooling step is not particularly limited, but in order to reduce thermal shrinkage and impart dimensional stability, the cooling rate of the resin substrate in the cooling step is preferably more than 500° C./min and less than 4000° C./min, more preferably 700 to 3000° C./min, and particularly preferably 1000 to 2500° C./min.
<拡張工程>
 上記冷却工程において、熱緩和された樹脂基材を幅方向に拡張する工程を有することも好ましい。
 拡張工程による樹脂基材の幅方向の拡張率、即ち、冷却工程の開始前における樹脂基材幅に対する冷却工程の終了時における樹脂基材幅の比率は、0%以上が好ましく、0.001%以上がより好ましく、0.01%以上が更に好ましい。
 拡張率の上限は特に制限されないが、1.3%以下が好ましく、1.2%以下がより好ましく、1.0%以下が更に好ましい。
<Expansion process>
It is also preferable that the cooling step includes a step of expanding the thermally relaxed resin substrate in the width direction.
The expansion rate in the width direction of the resin substrate due to the expansion step, i.e., the ratio of the resin substrate width at the end of the cooling step to the resin substrate width before the start of the cooling step, is preferably 0% or more, more preferably 0.001% or more, and even more preferably 0.01% or more.
The upper limit of the expansion rate is not particularly limited, but is preferably 1.3% or less, more preferably 1.2% or less, and even more preferably 1.0% or less.
 本実施形態に係る製造方法は、上記の工程を経て得られた2軸配向樹脂基材を巻き取り、ロール状の2軸配向樹脂基材を得る巻き取り工程を有していてもよい。
 本実施形態に係る製造方法の縦延伸工程以外の各工程における樹脂基材の搬送速度は、特に制限されないが、生産性及び品質の点で、50~200m/分が好ましく、80~150m/分がより好ましい。
The production method according to this embodiment may include a winding step of winding up the biaxially oriented resin substrate obtained through the above steps to obtain a roll-shaped biaxially oriented resin substrate.
The conveying speed of the resin substrate in each step other than the longitudinal stretching step in the production method according to the present embodiment is not particularly limited, but is preferably 50 to 200 m/min, more preferably 80 to 150 m/min, in terms of productivity and quality.
 本フィルムの製造方法は、樹脂層と樹脂基材とを備え、樹脂層がその表面に突起を有し、突起の長径に対する突起の高さの比が0.70以下であるフィルムを製造する方法であれば特に制限されず、上記の第1実施形態以外の製造方法であってもよい。 The method for producing this film is not particularly limited as long as it is a method for producing a film that includes a resin layer and a resin substrate, in which the resin layer has protrusions on its surface, and in which the ratio of the height of the protrusions to the major axis of the protrusions is 0.70 or less, and may be a production method other than that of the first embodiment described above.
 例えば、未延伸樹脂基材を形成するための原料樹脂を含む溶融樹脂と、樹脂層を形成するための粒子及び樹脂(好ましくは非ポリエステル樹脂)を含む粒子含有溶融樹脂とを共押し出しすることにより、未延伸樹脂基材と樹脂層とが積層された積層体を形成した後、積層体を延伸(好ましくは2軸延伸)することにより、本フィルムを製造してもよい。 For example, the film may be produced by co-extruding a molten resin containing the raw resin for forming the unstretched resin substrate and a particle-containing molten resin containing particles and a resin (preferably a non-polyester resin) for forming the resin layer to form a laminate in which the unstretched resin substrate and the resin layer are laminated, and then stretching the laminate (preferably biaxially stretching).
 本フィルムの製造方法については、国際公開第2020/241692号明細書の[0113]~[0169]の記載内容を参酌でき、この内容は本願明細書に組み込まれる。
 また、上記で具体的に説明した本フィルムの製造方法において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
For the manufacturing method of this film, the contents of [0113] to [0169] in the specification of International Publication No. 2020/241692 can be referred to, and the contents are incorporated into the specification of this application.
In the present film manufacturing method specifically described above, a combination of two or more preferred embodiments is a more preferred embodiment.
[積層フィルム]
 本発明の積層フィルムは、上記本フィルムと、機能層とを備える積層フィルムであって、突起を含む樹脂層と、樹脂基材と、機能層とをこの順に備える。すなわち、機能層は、本フィルムの樹脂基材の樹脂層側とは反対側の表面(第1主面)に設けられる。
 本フィルムを搬送しながら、本フィルムの一方の表面上に機能層を配置して、得られたフィルムを巻き取り、その後巻き出した際に、凹凸欠陥が機能層の表面に発生しにくいため、本発明の積層フィルムは、機能層に凹凸欠陥が生じにくい。
 機能層の種類は特に制限されず、例えば、加飾層、感光性樹脂層、磁気層、剥離層、粘着層、導電層、屈折率調整層、ハードコート層、及び、視認性層が挙げられ、加飾層、感光性樹脂層、及び、剥離層からなる群より選択される1種が好ましく挙げられる。また、積層フィルムが光学用であることも好ましい。光学用の積層フィルムに用いられる機能層としては、加飾層、感光性樹脂層、粘着層、屈折率調整層、ハードコート層、及び、視認性層が挙げられる。
 積層フィルムのより具体的な例としては、機能層が加飾層である加飾フィルム、機能層が感光性樹脂層であり、ドライフィルムレジストの支持体として用いられる感光性転写フィルム、機能層が剥離層である剥離フィルム(例えば、ドライフィルムレジストの保護フィルム、セラミックグリーンシート製造用剥離フィルム、半導体工程製造用剥離フィルム、プロセス用の剥離フィルム)、機能層が粘着層である粘着フィルム(例えば、半導体工程製造用粘着フィルム)、機能層が透明導電層である透明導電性基板用フィルム、機能層が無機層である転写フィルム(例えば、無機層がハードコート層であるハードコートフィルム、無機層が磁気層またはセラミックグリーンシートである基材フィルム)、機能層が感光性樹脂層及び視認性層であるエッチングレジスト膜形成用感光性転写フィルム、並びに、機能層が感光性樹脂層及び屈折率調整層であるタッチパネル用保護膜形成用感光性転写フィルムが挙げられる。
[Laminated film]
The laminated film of the present invention is a laminated film comprising the present film and a functional layer, and comprises, in this order, a resin layer including protrusions, a resin substrate, and a functional layer. That is, the functional layer is provided on a surface (first main surface) of the present film opposite to the resin layer side of the resin substrate.
While the present film is being transported, a functional layer is placed on one surface of the present film, and the resulting film is then wound up and then unwound, and therefore unevenness defects are unlikely to occur on the surface of the functional layer, so that the laminated film of the present invention is unlikely to have unevenness defects in the functional layer.
The type of the functional layer is not particularly limited, and examples thereof include a decorative layer, a photosensitive resin layer, a magnetic layer, a peeling layer, an adhesive layer, a conductive layer, a refractive index adjustment layer, a hard coat layer, and a visibility layer. A preferred example is one selected from the group consisting of a decorative layer, a photosensitive resin layer, and a peeling layer. It is also preferred that the laminated film is for optical use. Examples of functional layers used in the optical laminated film include a decorative layer, a photosensitive resin layer, an adhesive layer, a refractive index adjustment layer, a hard coat layer, and a visibility layer.
More specific examples of the laminated film include a decorative film in which the functional layer is a decorative layer, a photosensitive transfer film in which the functional layer is a photosensitive resin layer and is used as a support for a dry film resist, a release film in which the functional layer is a release layer (e.g., a protective film for a dry film resist, a release film for producing a ceramic green sheet, a release film for producing a semiconductor process, a release film for a process), an adhesive film in which the functional layer is an adhesive layer (e.g., an adhesive film for producing a semiconductor process), a film for a transparent conductive substrate in which the functional layer is a transparent conductive layer, a transfer film in which the functional layer is an inorganic layer (e.g., a hard coat film in which the inorganic layer is a hard coat layer, a base film in which the inorganic layer is a magnetic layer or a ceramic green sheet), a photosensitive transfer film for forming an etching resist film in which the functional layer is a photosensitive resin layer and a visibility layer, and a photosensitive transfer film for forming a protective film for a touch panel in which the functional layer is a photosensitive resin layer and a refractive index adjustment layer.
 本フィルムの表面に機能層を積層する方法は特に制限されないが、機能層を構成する材料を含む塗布液を本フィルムの表面(第1主面)に塗布して機能層を形成することが好ましく、生産性がより優れる点で、本フィルムを搬送しながら、機能層用塗布液を本フィルムの表面に塗布した後、塗膜を加熱することにより機能層を形成することがより好ましい。 There are no particular limitations on the method for laminating the functional layer on the surface of the present film, but it is preferable to form the functional layer by applying a coating liquid containing the material that constitutes the functional layer to the surface (first main surface) of the present film, and from the viewpoint of superior productivity, it is more preferable to apply a coating liquid for the functional layer to the surface of the present film while transporting the present film, and then form the functional layer by heating the coating film.
 積層フィルムは、本フィルム及び機能層以外の層を有してもよい。本フィルム及び機能層以外の層としては、例えば、本フィルムと機能層との密着性を向上する目的で設けられる、バインダー樹脂を含む下地層が挙げられる。 The laminated film may have layers other than the present film and the functional layer. An example of a layer other than the present film and the functional layer is a base layer containing a binder resin, which is provided for the purpose of improving adhesion between the present film and the functional layer.
 本フィルムに機能層として加飾層を積層する場合、加飾層は、着色剤とバインダーとを含むことが好ましい。加飾層が、加飾パターンを形成する用途に用いられる場合には、加飾層は、着色した感光性樹脂層であることが好ましい。着色した感光性樹脂層としては、国際公開第2017/208849号明細書に記載の感光性樹脂組成物から形成される感光性樹脂層が好ましい。着色した感光性樹脂層は、着色剤として顔料を有する層であることが好ましく、例えば、顔料と、バインダーポリマーと、多官能アクリレートと、光重合開始剤とを有する層であることがより好ましい。
 顔料としては、無機顔料(銀等の金属粒子を含む顔料等も含む)、及び、有機顔料等が好ましく挙げられる。本フィルムと加飾層とを積層した加飾フィルム(積層フィルム)は、凹凸欠陥が抑制できるため、色ムラ抑制が求められる分野に好ましく適用できる。
When a decorative layer is laminated on the present film as a functional layer, the decorative layer preferably contains a colorant and a binder. When the decorative layer is used for forming a decorative pattern, the decorative layer is preferably a colored photosensitive resin layer. As the colored photosensitive resin layer, a photosensitive resin layer formed from the photosensitive resin composition described in WO 2017/208849 is preferable. The colored photosensitive resin layer is preferably a layer having a pigment as a colorant, and more preferably a layer having, for example, a pigment, a binder polymer, a polyfunctional acrylate, and a photopolymerization initiator.
Preferred examples of the pigment include inorganic pigments (including pigments containing metal particles such as silver) and organic pigments. A decorative film (laminate film) obtained by laminating the present film and a decorative layer can suppress unevenness defects, and therefore can be preferably applied to fields where suppression of color unevenness is required.
 本フィルムに機能層として感光性樹脂層を積層する場合、感光性樹脂を含む感光性樹脂層が設けられ、加飾層、屈折率調整層、及び/又は、視認性層が更に積層されていてもよい。
 感光性樹脂層としては、特に制限されないが、ネガ型であることが好ましい。具体的には、国際公開第2018/105313号明細書に記載のバインダーポリマー、エチレン性不飽和化合物、又は、光重合開始剤が好ましい形態として挙げられる。感光性樹脂層は、環状構造を有するアルカリ可溶性のアクリル樹脂と、多官能アクリレートと、オキシム系光重合開始剤あるいはビスイミダゾール型光重合開始剤とを有する層であることがより好ましい。
When a photosensitive resin layer is laminated on the present film as a functional layer, a photosensitive resin layer containing a photosensitive resin is provided, and a decorative layer, a refractive index adjustment layer, and/or a visibility layer may be further laminated thereon.
The photosensitive resin layer is not particularly limited, but is preferably a negative type. Specifically, the binder polymer, ethylenically unsaturated compound, or photopolymerization initiator described in International Publication No. 2018/105313 is preferably used. The photosensitive resin layer is more preferably a layer having an alkali-soluble acrylic resin having a cyclic structure, a polyfunctional acrylate, and an oxime-based photopolymerization initiator or a bisimidazole-type photopolymerization initiator.
 感光性樹脂層が、タッチパネル用電極保護膜を形成するためのドライフィルムレジストの場合には、感光性樹脂層とは別に屈折率調整層が積層されていることが好ましい。屈折率調整層の好ましい形態としては、特開2014-108541公報に記載の第2の硬化性透明樹脂層が挙げられる。屈折率調整層の屈折率は、1.6以上が好ましく、また、屈折率調整層は、酸化チタン及び酸化ジルコニウム等の屈折率の高い金属酸化粒子を有することが好ましい。 When the photosensitive resin layer is a dry film resist for forming an electrode protective film for a touch panel, it is preferable that a refractive index adjustment layer is laminated separately from the photosensitive resin layer. A preferred form of the refractive index adjustment layer is the second curable transparent resin layer described in JP 2014-108541 A. The refractive index of the refractive index adjustment layer is preferably 1.6 or more, and the refractive index adjustment layer preferably contains metal oxide particles with a high refractive index, such as titanium oxide and zirconium oxide.
 感光性樹脂層が、50μm以下の微細パターンの形成に用いるエッチングレジストを形成するためのドライフィルムレジストの場合には、感光性樹脂層とは別に視認性層が積層されていることが好ましい。視認性層があることで、パターン潜像を確認する工程において視認することができる。 If the photosensitive resin layer is a dry film resist for forming an etching resist used to form fine patterns of 50 μm or less, it is preferable that a visibility layer is laminated separately from the photosensitive resin layer. The presence of the visibility layer allows the pattern latent image to be visible in the process of checking it.
 本フィルムに機能層として剥離層を積層する場合、剥離層は、剥離剤としての樹脂を少なくとも含む。
 剥離層に含まれる樹脂は特に制限されず、例えば、シリコーン樹脂、フッ素樹脂、アルキド樹脂、アクリル樹脂、各種ワックス、及び、脂肪族オレフィンが挙げられる。剥離フィルムが、後述するセラミックグリーンシート製造用の剥離フィルムである場合、セラミックグリーンシートの剥離性の点から、シリコーン樹脂が好ましい。剥離層は、剥離層に含まれる成分を硬化してなる硬化層であることも好ましい。
 本フィルムと剥離層とを積層した剥離フィルム又は保護フィルム(積層フィルム)は、凹凸欠陥が抑制できるため、特に近年厳しい平滑性レベルが要求される、セラミックグリーンシート製造用の剥離フィルム、及び、半導体製造用の剥離フィルム等に好ましく適用できる。
When a release layer is laminated as a functional layer on the present film, the release layer contains at least a resin as a release agent.
The resin contained in the release layer is not particularly limited, and examples thereof include silicone resin, fluororesin, alkyd resin, acrylic resin, various waxes, and aliphatic olefin. When the release film is a release film for producing a ceramic green sheet as described below, silicone resin is preferred from the viewpoint of releasability of the ceramic green sheet. It is also preferred that the release layer is a cured layer obtained by curing the components contained in the release layer.
A release film or protective film (laminate film) formed by laminating this film with a release layer can suppress unevenness defects, and is therefore preferably applicable to release films for the production of ceramic green sheets and release films for the production of semiconductors, which have recently required stricter levels of smoothness.
 本フィルムに機能層として粘着層を積層する場合、粘着層は、公知の粘着剤を用いることができる。粘着剤としては、例えば、ゴム系粘着剤、アクリル系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ビニルアルキルエーテル系粘着剤、ポリビニルピロリドン系粘着剤、ポリアクリルアミド系粘着剤、セルロース系粘着剤等が挙げられ、光学的透明性及び粘着特性に優れることから、アクリル系粘着剤が好ましく挙げられる。 When an adhesive layer is laminated on this film as a functional layer, a known adhesive can be used for the adhesive layer. Examples of adhesives include rubber-based adhesives, acrylic-based adhesives, silicone-based adhesives, urethane-based adhesives, vinyl alkyl ether-based adhesives, polyvinylpyrrolidone-based adhesives, polyacrylamide-based adhesives, and cellulose-based adhesives. Acrylic-based adhesives are preferred because of their excellent optical transparency and adhesive properties.
 本フィルムに機能層として磁気層を積層する場合、磁気層は、強磁性微粒子とバインダーとを含むことが好ましい。強磁性微粒子としては、鉄、コバルト、ニッケル、アルミ、イットリウム、及び、カルシウムからなる群より選択される1種以上の金属を含む強磁性微粒子が好ましく挙げられる。 When a magnetic layer is laminated on the film as a functional layer, the magnetic layer preferably contains ferromagnetic particles and a binder. Preferred examples of the ferromagnetic particles include ferromagnetic particles containing one or more metals selected from the group consisting of iron, cobalt, nickel, aluminum, yttrium, and calcium.
 本フィルムに機能層としてハードコート層を積層する場合、ハードコート層は、公知のハードコート層を適用できる。ハードコート層は、無機物からなる無機層であってもよく、有機物からなる有機層であってもよく、無機物と有機物とが含まれるハイブリッド層であってもよい。ハードコート層は、硬化層であることも好ましい。 When a hard coat layer is laminated on the present film as a functional layer, a known hard coat layer can be used. The hard coat layer may be an inorganic layer made of an inorganic material, an organic layer made of an organic material, or a hybrid layer containing an inorganic material and an organic material. It is also preferable that the hard coat layer is a cured layer.
[用途]
 本フィルムは、種々の用途に適用できる。
 本フィルムを用いる積層フィルムとしては、上述した積層フィルムが挙げられる。上述した積層フィルムは、通常用いられる方法で、それぞれの用途に用いることができる。
 例えば、積層フィルムが剥離フィルムである場合、セラミックグリーンシート製造用の剥離フィルム(キャリアフィルム)として用いることが好ましい。上記の剥離フィルムを用いて製造されるセラミックグリーンシートは、小型化及び大容量化に伴って内部電極の多層化が求められているセラミックコンデンサーの製造に好適に用いることができる。
 また、本フィルムを有する剥離フィルムは、上述したように、ドライフィルムレジストの保護フィルム、半導体工程用等のプロセス製造用剥離フィルム等に用いてもよい。
[Application]
The film can be used in a variety of applications.
Examples of the laminate film using the present film include the laminate film described above. The laminate film described above can be used for each purpose by a commonly used method.
For example, when the laminated film is a release film, it is preferably used as a release film (carrier film) for producing a ceramic green sheet. The ceramic green sheet produced using the release film can be suitably used for producing a ceramic capacitor, which is required to have a multi-layered internal electrode due to miniaturization and large capacity.
Furthermore, as described above, a release film having the present film may be used as a protective film for a dry film resist, a release film for process manufacturing such as for semiconductor processing, and the like.
 上記剥離フィルムを使用してセラミックグリーンシートを製造する方法は、特に制限されず、公知の方法で実施できる。セラミックグリーンシートの製造方法としては、例えば、準備したセラミックスラリーを、上記剥離フィルムの剥離層表面に塗布し、セラミックスラリーに含まれる溶媒を乾燥除去する方法が挙げられる。
 セラミックスラリーの塗布方法は、特に制限されず、例えば、セラミック粉体及びバインダー剤を溶媒に分散させてなるセラミックスラリーを、リバースロール法により塗布し、加熱乾燥により溶媒を除去する方法等の公知の方法が適用できる。バインダー剤としては、特に限定されず、例えば、ポリビニルブチラールが挙げられる。また、溶媒としても特に限定されず、例えば、エタノール及びトルエンが挙げられる。
The method for producing a ceramic green sheet using the release film is not particularly limited and can be carried out by a known method. For example, the method for producing a ceramic green sheet includes a method of applying a prepared ceramic slurry to the release layer surface of the release film and drying and removing the solvent contained in the ceramic slurry.
The method of applying the ceramic slurry is not particularly limited, and for example, a known method can be applied, such as a method in which a ceramic slurry in which ceramic powder and a binder are dispersed in a solvent is applied by a reverse roll method, and the solvent is removed by heating and drying. The binder is not particularly limited, and examples thereof include polyvinyl butyral. The solvent is also not particularly limited, and examples thereof include ethanol and toluene.
 以下に実施例に基づいて本発明を更に詳細に説明する。
 以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更できる。従って、本発明の範囲は以下に示す実施例により限定的に解釈されるべきではない。
The present invention will be described in further detail below with reference to examples.
The materials, amounts, ratios, processing contents, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be interpreted as being limited by the following examples.
[フィルムの作製]
 まず、各実施例に用いたフィルムの作製手順について説明する。
 各フィルムの物性等、及び、フィルムの作製に用いる材料の物性等の測定方法は、後段でまとめて説明する。
[Film Preparation]
First, the procedure for producing the films used in the examples will be described.
The physical properties of each film and the methods for measuring the physical properties of the materials used in producing the films will be described later.
〔実施例1〕
<押出成形工程>
 重合触媒として特許第5575671号公報に記載のチタン化合物(クエン酸キレートチタン錯体、VERTEC AC-420、ジョンソン・マッセイ社製)を用いて、ポリエチレンテレフタレートのペレットを製造した。得られたペレットを、含水率が50ppm以下になるまで乾燥させた後、特許第6049648号公報に記載の二軸混練押出し機のホッパーに投入し、次いで、280℃で溶融して押出した。溶融体(メルト)を、濾過器(孔径3μm)に通した後、ダイから25℃の冷却ドラムに押し出すことにより、ポリエチレンテレフタレートからなる未延伸樹脂基材を得た。なお、押し出された溶融体(メルト)は、静電印加法により冷却ドラムに密着させた。
 未延伸樹脂基材を構成するポリエチレンテレフタレートの融点(Tm)は258℃であり、ガラス転移温度(Tg)は80℃であった。
Example 1
<Extrusion molding process>
Pellets of polyethylene terephthalate were produced using a titanium compound (citric acid chelate titanium complex, VERTEC AC-420, Johnson Matthey) described in Japanese Patent No. 5575671 as a polymerization catalyst. The obtained pellets were dried until the moisture content was 50 ppm or less, and then charged into the hopper of a twin-screw kneading extruder described in Japanese Patent No. 6049648, and then melted and extruded at 280 ° C. The melt was passed through a filter (hole diameter 3 μm) and then extruded from a die onto a cooling drum at 25 ° C. to obtain an unstretched resin substrate made of polyethylene terephthalate. The extruded melt was brought into close contact with the cooling drum by an electrostatic application method.
The polyethylene terephthalate constituting the unstretched resin substrate had a melting point (Tm) of 258°C and a glass transition temperature (Tg) of 80°C.
<縦延伸工程>
 上記未延伸樹脂基材に対し、以下の方法により縦延伸工程を施した。
 予熱された未延伸樹脂基材を、表面温度が90℃となるようにしながら、延伸倍率3.4倍、延伸速度1300%/秒の条件で縦延伸を施し、1軸延伸樹脂基材を得た。
<Longitudinal Stretching Process>
The unstretched resin substrate was subjected to a longitudinal stretching process by the following method.
The preheated unstretched resin substrate was stretched in the longitudinal direction at a stretch ratio of 3.4 and a stretching speed of 1300%/sec while maintaining the surface temperature at 90° C., to obtain a uniaxially stretched resin substrate.
<層形成工程>
 縦延伸された1軸延伸樹脂基材(ポリエステル基材)の片面に、下記の組成物A-1(組成物A1に該当)をバーコーターで塗布し、形成された塗布膜を100℃の熱風にて乾燥させて、1軸延伸樹脂基材の片面に層を形成した。この工程において、最終的に製造される2軸配向フィルムにおいて後述する厚さの樹脂層が成膜されるように、組成物A-1の塗布量を調整した。
<Layer Forming Step>
The following composition A-1 (corresponding to composition A1) was applied to one side of a longitudinally stretched uniaxially stretched resin substrate (polyester substrate) using a bar coater, and the formed coating film was dried with hot air at 100° C. to form a layer on one side of the uniaxially stretched resin substrate. In this process, the coating amount of composition A-1 was adjusted so that a resin layer having a thickness described below would be formed in the finally produced biaxially oriented film.
(組成物A-1)
 下記に示す各成分を混合することにより、組成物A-1を調製した。調製された組成物A-1に対して、孔径が6μmであるフィルター(F20、株式会社マーレフィルターシステムズ製)を用いたろ過処理、及び、膜脱気(2x6ラジアルフロースーパーフォビック、ポリポア株式会社製)を実施した後、得られた組成物A-1を、1軸延伸樹脂基材の片面の表面に塗布した。
・樹脂1(ウレタン樹脂、タケラック(登録商標)W-605、三井化学株式会社製)の固形分濃度25質量%水分散液 :157質量部
・アニオン性炭化水素系界面活性剤(ラピゾール(登録商標)A-90、スルホコハク酸ジ-2-エチルヘキシルナトリウム、日油株式会社製)の固形分濃度1質量%水希釈液:56質量部
・粒子1(非架橋スチレン樹脂粒子(スチレン共重合体)、Nipol(登録商標)UFN1008、日本ゼオン株式会社製、平均粒子径1.9μm)の固形分濃度10質量%水分散液:8質量部
・水:779質量部
(Composition A-1)
Composition A-1 was prepared by mixing the components shown below. The prepared composition A-1 was filtered using a filter with a pore size of 6 μm (F20, manufactured by Mahle Filter Systems Co., Ltd.) and subjected to membrane degassing (2x6 Radial Flow Superphobic, manufactured by Polypore Co., Ltd.), and the obtained composition A-1 was applied to one surface of a uniaxially stretched resin substrate.
Resin 1 (urethane resin, Takelac (registered trademark) W-605, manufactured by Mitsui Chemicals, Inc.) solid content concentration 25% by mass aqueous dispersion: 157 parts by mass Anionic hydrocarbon surfactant (Lapisol (registered trademark) A-90, di-2-ethylhexyl sodium sulfosuccinate, manufactured by NOF Corporation) solid content concentration 1% by mass aqueous dilution: 56 parts by mass Particle 1 (non-crosslinked styrene resin particles (styrene copolymer), Nipol (registered trademark) UFN1008, manufactured by Zeon Corporation, average particle size 1.9 μm) solid content concentration 10% by mass aqueous dispersion: 8 parts by mass Water: 779 parts by mass
<横延伸工程>
 縦延伸工程及び層形成工程を行った樹脂基材に対し、表面温度(温度Y)が120℃となるようにしながら、延伸倍率4.2倍、延伸速度50%/秒の条件で横延伸を施し、2軸配向フィルムを得た。
<Transverse stretching process>
The resin substrate that had been subjected to the longitudinal stretching step and the layer forming step was subjected to transverse stretching under conditions of a stretch ratio of 4.2 times and a stretching speed of 50%/sec while maintaining a surface temperature (temperature Y) of 120°C, thereby obtaining a biaxially oriented film.
 得られた2軸配向フィルムに対し、テンターを用いて、227℃、6秒間の条件で、熱固定工程を行った。熱固定工程後、190℃、熱緩和率Lrが4%となる条件で、熱緩和工程を施した。熱緩和工程において、フィルムの両端を把持するテンターの把持部材間の距離(テンター幅)を狭めることにより、熱固定工程終了時と比較してフィルム幅を縮小した。下記の熱緩和率Lrは、熱緩和工程の開始時におけるフィルム幅L1に対する熱緩和工程の終了時におけるフィルム幅L2から、Lr=(L1-L2)/L1×100の式により求めた。 The obtained biaxially oriented film was subjected to a heat setting process using a tenter at 227°C for 6 seconds. After the heat setting process, the film was subjected to a heat relaxation process at 190°C under conditions such that the heat relaxation rate Lr was 4%. In the heat relaxation process, the distance between the tenter gripping members gripping both ends of the film (tenter width) was narrowed to reduce the film width compared to the end of the heat setting process. The heat relaxation rate Lr below was calculated from the film width L2 at the end of the heat relaxation process relative to the film width L1 at the start of the heat relaxation process, using the formula Lr = (L1 - L2) / L1 x 100.
 その後、冷却速度1500℃/分の条件で冷却した。冷却工程では、拡張率ΔLが0.6%となるようフィルム幅を拡張した。冷却工程においては、テンター幅を広げることにより、熱緩和工程終了時と比較してフィルム幅を拡張する拡張工程を実施した。
 下記の冷却速度は、フィルムが延伸機の冷却部に搬入されてから搬出されるまでの滞在時間を冷却時間taとして、冷却部への搬入時に測定したフィルム表面温度と冷却部の搬出時に測定したフィルム表面温度との温度差ΔT(℃)を、冷却時間taで割ることにより求めた。
 また、下記の拡張率ΔLは、冷却工程の開始時におけるフィルム幅L2に対する冷却工程の終了時におけるフィルム幅L3から、ΔL=(L3-L2)/L2×100の式により求めた。
Thereafter, the film was cooled at a cooling rate of 1500° C./min. In the cooling step, the film width was expanded so that the expansion rate ΔL was 0.6%. In the cooling step, an expansion step was carried out in which the tenter width was expanded to expand the film width compared to the end of the heat relaxation step.
The cooling rate described below was calculated by dividing the temperature difference ΔT (°C) between the film surface temperature measured when the film was carried into the cooling section and the film surface temperature measured when the film was carried out of the cooling section by the cooling time ta, where ta is the residence time of the film from when it was carried into the cooling section of the stretching machine to when it was carried out.
The expansion rate ΔL was calculated from the film width L3 at the end of the cooling step relative to the film width L2 at the start of the cooling step by the formula ΔL=(L3-L2)/L2×100.
 得られた2軸配向フィルムに対して、フィルムの幅方向の両端から20cmの位置で搬送方向に沿って連続的にフィルムを切断して、フィルムの両端部をトリミングした。次いで、フィルムの両端から幅方向10mmまでの領域に対して、押出し加工(ナーリング)を行った後、張力40kg/mでフィルムを巻き取った。
 得られた2軸配向フィルムの厚さは31μmであり、樹脂層の厚さは60nmであり、幅は1.5mであり、巻長は7000mであった。樹脂層表面には、表1に記載された形状の突起が形成されていた。
The obtained biaxially oriented film was continuously cut along the conveying direction at positions 20 cm from both ends in the width direction of the film to trim both ends of the film. Next, the film was subjected to extrusion processing (knurling) in the region up to 10 mm in the width direction from both ends, and then the film was wound up under a tension of 40 kg/m.
The thickness of the obtained biaxially oriented film was 31 μm, the thickness of the resin layer was 60 nm, the width was 1.5 m, and the roll length was 7000 m. Protrusions having the shapes shown in Table 1 were formed on the surface of the resin layer.
〔実施例2~5〕
 層形成工程に用いた組成物A-1の代わりに、後段の表に示す通りに成分を変更した組成物A-2~A-5を用い、横延伸工程における延伸温度(温度Y)を後段の表に示す通りに変更した以外は、実施例1と同様にして2軸配向フィルムを得た。なお、組成物A-2~A-5の各成分については、組成物A-1の各成分とそれぞれ同じ固形分濃度となるように、各成分の配合量を調整した。樹脂層表面の突起の詳細については、後段の表に示す。
 なお、表中の表記は以下の通りである。
・樹脂2(ウレタン樹脂、ハイドラン(登録商標)AP-40N、DIC株式会社製)
・樹脂3(ウレタン樹脂、スーパーフレックス(登録商標)210、第一工業製薬株式会社製)
・樹脂4(エステル樹脂、バイロナール(登録商標)MD-1480、東洋紡株式会社製、酸価3KOHmg/g)
[Examples 2 to 5]
Instead of the composition A-1 used in the layer formation step, compositions A-2 to A-5, the components of which were changed as shown in the table below, were used, and the stretching temperature (temperature Y) in the transverse stretching step was changed as shown in the table below, but the same procedure as in Example 1 was used to obtain a biaxially oriented film. The amounts of the components of compositions A-2 to A-5 were adjusted so that the solid content concentration was the same as that of each component of composition A-1. Details of the protrusions on the surface of the resin layer are shown in the table below.
The notations in the table are as follows:
Resin 2 (urethane resin, Hydran (registered trademark) AP-40N, manufactured by DIC Corporation)
Resin 3 (urethane resin, Superflex (registered trademark) 210, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.)
Resin 4 (ester resin, Vylonal (registered trademark) MD-1480, manufactured by Toyobo Co., Ltd., acid value 3 KOHmg/g)
〔実施例6〕
 層形成工程に用いた組成物A-1の代わりに、以下の組成物A-6を用いた以外は、実施例1と同様にして2軸配向フィルムを得た。樹脂層表面の突起の詳細については、後段の表に示す。
(組成物A-6)
 下記に示す各成分を混合することにより、組成物A-6を調製した。調製された組成物A-6に対して、組成物A-1と同様にろ過処理、及び、膜脱気を実施した後、得られた組成物A-6を、1軸延伸樹脂基材の表面に塗布した。
・樹脂1(ウレタン樹脂、タケラック(登録商標)W-605、三井化学株式会社製)の固形分濃度25質量%水分散液 :157質量部
・アニオン性炭化水素系界面活性剤(ラピゾール(登録商標)A-90、日油株式会社製)の固形分濃度1質量%水希釈液:36質量部
・粒子1(非架橋スチレン樹脂粒子、Nipol(登録商標)UFN1008、日本ゼオン株式会社製)の固形分濃度20質量%水分散液:11.2質量部
・架橋剤1(カルボジイミド化合物、カルボジライトV-02-L2、日清紡ケミカル株式会社製)の固形分25質量%水溶液:32.2質量部
・水:622質量部
Example 6
A biaxially oriented film was obtained in the same manner as in Example 1, except that the composition A-6 below was used instead of the composition A-1 used in the layer formation step. Details of the protrusions on the resin layer surface are shown in the table below.
(Composition A-6)
Composition A-6 was prepared by mixing the components shown below. The prepared composition A-6 was subjected to filtration and membrane degassing in the same manner as composition A-1, and then the obtained composition A-6 was applied to the surface of a uniaxially stretched resin substrate.
Resin 1 (urethane resin, Takelac (registered trademark) W-605, manufactured by Mitsui Chemicals, Inc.) solid content concentration 25% by mass aqueous dispersion: 157 parts by mass Anionic hydrocarbon surfactant (Rapisol (registered trademark) A-90, manufactured by NOF Corporation) solid content concentration 1% by mass aqueous dilution: 36 parts by mass Particle 1 (non-crosslinked styrene resin particles, Nipol (registered trademark) UFN1008, manufactured by Zeon Corporation) solid content concentration 20% by mass aqueous dispersion: 11.2 parts by mass Crosslinker 1 (carbodiimide compound, Carbodilite V-02-L2, manufactured by Nisshinbo Chemical Inc.) solid content 25% by mass aqueous solution: 32.2 parts by mass Water: 622 parts by mass
〔実施例7~19〕
 層形成工程に用いた組成物A-6の代わりに、後段の表に示す通りに成分を変更した組成物A-7~A-19を用い、横延伸工程における延伸温度(温度Y)後段の表に示す通りに変更した以外は、実施例6と同様にして2軸配向フィルムを得た。なお、組成物A-7~A-19の各成分については、組成物A-6と各成分が同じ固形分濃度となるように、各成分の配合量を調整した。樹脂層表面の突起の詳細については、後段の表に示す。
 なお、表中の表記は以下の通りである。
・樹脂5(メタクリル酸メチル/スチレン/2-エチルヘキシルアクリレート/2-ヒドロキシエチルメタクリレート/アクリル酸=59:8:26:5:2(質量比)の共重合体、Tg34℃、酸価10mmol/g)
・樹脂8(酸変性オレフィン樹脂の粒子の水分散液、ザイクセン(登録商標)NC、住友精化株式会社製)
・粒子2(非架橋ポリメタクリル酸メチル(PMMA)樹脂粒子、MP1000、綜研化学株式会社製、平均粒子径0.4μm)
・粒子3(非架橋スチレン/アクリル共重合体樹脂粒子、MP5000、綜研化学株式会社製、平均粒子径0.4μm)
・粒子4(非架橋スチレン/アクリル共重合体樹脂粒子、メチルメタクリレート/スチレンの質量比70/30共重合体樹脂粒子、平均粒子径0.37μm)
・粒子5(非架橋アクリル樹脂粒子、メチルメタクリレート/エチルアクリレート、アクリル酸の質量比78/20/2共重合体樹脂粒子、平均粒子径0.35μm)
・架橋剤2(オキサゾリン化合物、エポクロス(登録商標)WS-700、株式会社日本触媒製)
[Examples 7 to 19]
Instead of the composition A-6 used in the layer formation step, compositions A-7 to A-19 were used, the components of which were changed as shown in the table below, and the stretching temperature (temperature Y) in the transverse stretching step was changed as shown in the table below, but the same procedure as in Example 6 was used to obtain a biaxially oriented film. Note that the amount of each component in compositions A-7 to A-19 was adjusted so that each component had the same solid content concentration as composition A-6. Details of the protrusions on the resin layer surface are shown in the table below.
The notations in the table are as follows:
Resin 5 (copolymer of methyl methacrylate/styrene/2-ethylhexyl acrylate/2-hydroxyethyl methacrylate/acrylic acid = 59:8:26:5:2 (mass ratio), Tg 34°C, acid value 10 mmol/g)
Resin 8 (aqueous dispersion of acid-modified olefin resin particles, ZAIKXEN (registered trademark) NC, manufactured by Sumitomo Seika Chemicals Co., Ltd.)
Particles 2 (non-crosslinked polymethyl methacrylate (PMMA) resin particles, MP1000, manufactured by Soken Chemical & Engineering Co., Ltd., average particle size 0.4 μm)
Particles 3 (non-crosslinked styrene/acrylic copolymer resin particles, MP5000, manufactured by Soken Chemical & Engineering Co., Ltd., average particle size 0.4 μm)
Particles 4 (non-crosslinked styrene/acrylic copolymer resin particles, methyl methacrylate/styrene mass ratio 70/30 copolymer resin particles, average particle size 0.37 μm)
Particles 5 (non-crosslinked acrylic resin particles, methyl methacrylate/ethyl acrylate/acrylic acid copolymer resin particles having a mass ratio of 78/20/2, average particle diameter 0.35 μm)
Crosslinking agent 2 (oxazoline compound, EPOCROS (registered trademark) WS-700, manufactured by Nippon Shokubai Co., Ltd.)
〔実施例20〕
 層形成工程に用いた組成物A-1の代わりに、以下の組成物A-20を用いた以外は、実施例1と同様にして2軸配向フィルムを得た。樹脂層表面の突起の詳細については、後段の表に示す。
(組成物A-20)
 下記に示す各成分を混合することにより、組成物A-20を調製した。調製された組成物A-19に対して、組成物A-1と同様にろ過処理、及び、膜脱気を実施した後、得られた組成物A-20を、1軸延伸樹脂基材の表面に塗布した。
・樹脂3(ウレタン樹脂、スーパーフレックス(登録商標)210、第一工業製薬株式会社製)の固形分濃度35質量%水分散液:58質量部
・樹脂5(メタクリル酸メチル/スチレン/2-エチルヘキシルアクリレート/2-ヒドロキシエチルメタクリレート/アクリル酸=59:8:26:5:2(質量比)の共重合体)の固形分濃度19質量%水分散液:105.8質量部
・アニオン性炭化水素系界面活性剤(ラピゾール(登録商標)A-90、日油株式会社製)の固形分濃度1質量%水希釈液:12質量部
・粒子1(非架橋スチレン樹脂粒子、Nipol(登録商標)UFN1008、日本ゼオン株式会社製)の固形分濃度20質量%水分散液:11.2質量部
・架橋剤2(オキサゾリン化合物、エポクロス(登録商標)WS-700、株式会社日本触媒製)の固形分濃度25質量%水溶液:32.2質量部
・水:567質量部
Example 20
A biaxially oriented film was obtained in the same manner as in Example 1, except that the composition A-20 was used instead of the composition A-1 used in the layer formation step. Details of the protrusions on the resin layer surface are shown in the table below.
(Composition A-20)
Composition A-20 was prepared by mixing the components shown below. The prepared composition A-19 was subjected to filtration and membrane degassing in the same manner as composition A-1, and the obtained composition A-20 was applied to the surface of a uniaxially stretched resin substrate.
Resin 3 (urethane resin, Superflex (registered trademark) 210, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) solid content concentration 35% by mass aqueous dispersion: 58 parts by mass Resin 5 (copolymer of methyl methacrylate / styrene / 2-ethylhexyl acrylate / 2-hydroxyethyl methacrylate / acrylic acid = 59: 8: 26: 5: 2 (mass ratio)) solid content concentration 19% by mass aqueous dispersion: 105.8 parts by mass Anionic hydrocarbon surfactant (Lapisol (registered trademark) A-90, manufactured by NOF Corporation) solid content concentration 1% by mass water dilution: 12 parts by mass Particle 1 (non-crosslinked styrene resin particle, Nipol (registered trademark) UFN1008, manufactured by Zeon Corporation) solid content concentration 20% by mass aqueous dispersion: 11.2 parts by mass Crosslinker 2 (oxazoline compound, Epocross (registered trademark) WS-700, manufactured by Nippon Shokubai Co., Ltd.) solid content concentration 25% by mass aqueous solution: 32.2 parts by mass Water: 567 parts by mass
〔実施例21〕
 層形成工程に用いた組成物A-1の代わりに、以下の組成物A-21を用いた以外は、実施例1と同様にして2軸配向フィルムを得た。樹脂層表面の突起の詳細については、後段の表に示す。
(組成物A-21)
 下記に示す各成分を混合することにより、組成物A-21を調製した。調製された組成物A-21に対して、組成物A-1と同様にろ過処理、及び、膜脱気を実施した後、得られた組成物A-21を、1軸延伸樹脂基材の表面に塗布した。
・樹脂3(ウレタン樹脂、スーパーフレックス(登録商標)210、第一工業製薬株式会社製)の固形分濃度35質量%水分散液:115質量部
・アニオン性炭化水素系界面活性剤(ラピゾール(登録商標)A-90、日油株式会社製)の固形分濃度1質量%水希釈液:36質量部
・粒子1(非架橋スチレン樹脂粒子、Nipol(登録商標)UFN1008、日本ゼオン株式会社製)の固形分濃度20質量%水分散液:11.2質量部
・粒子2(PMMA樹脂粒子、MP1000、綜研化学株式会社製)の固形分濃度5質量%水分散液:179.2質量部
・架橋剤2(オキサゾリン化合物、エポクロス(登録商標)WS-700、株式会社日本触媒製)の固形分濃度25質量%水溶液:32.2質量部
・水:622質量部
Example 21
A biaxially oriented film was obtained in the same manner as in Example 1, except that the composition A-21 below was used instead of the composition A-1 used in the layer formation step. Details of the protrusions on the resin layer surface are shown in the table below.
(Composition A-21)
Composition A-21 was prepared by mixing the components shown below. The prepared composition A-21 was subjected to filtration and membrane degassing in the same manner as composition A-1, and then the obtained composition A-21 was applied to the surface of a uniaxially stretched resin substrate.
Resin 3 (urethane resin, Superflex (registered trademark) 210, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) 35% solids concentration aqueous dispersion: 115 parts by mass Anionic hydrocarbon surfactant (Rapisol (registered trademark) A-90, manufactured by NOF Corporation) 1% solids concentration aqueous dilution: 36 parts by mass Particle 1 (non-crosslinked styrene resin particles, Nipol (registered trademark) UFN1008, manufactured by Zeon Corporation) 20% solids concentration aqueous dispersion: 11.2 parts by mass Particle 2 (PMMA resin particles, MP1000, manufactured by Soken Chemical & Engineering Co., Ltd.) 5% solids concentration aqueous dispersion: 179.2 parts by mass Crosslinker 2 (oxazoline compound, Epocross (registered trademark) WS-700, manufactured by Nippon Shokubai Co., Ltd.) 25% solids concentration aqueous solution: 32.2 parts by mass Water: 622 parts by mass
〔実施例22〕
 層形成工程に用いた組成物A-1の代わりに、以下の組成物A-22を用いた以外は、実施例1と同様にして2軸配向フィルムを得た。樹脂層表面の突起の詳細については、後段の表に示す。
(組成物A-22)
 下記に示す各成分を混合することにより、組成物A-22を調製した。調製された組成物A-22に対して、組成物A-1と同様にろ過処理、及び、膜脱気を実施した後、得られた組成物A-22を、1軸延伸樹脂基材の表面に塗布した。
・樹脂6(ウレタン樹脂、エラストロン(登録商標)H3DF、第一工業製薬株式会社製)の固形分濃度28質量%水溶液:72質量部
・樹脂5(メタクリル酸メチル/スチレン/2-エチルヘキシルアクリレート/2-ヒドロキシエチルメタクリレート/アクリル酸=59:8:26:5:2(質量比)の共重合体)の固形分濃度19質量%水分散液:105.8質量部
・アニオン性炭化水素系界面活性剤(ラピゾール(登録商標)A-90、日油株式会社製)の固形分濃度1質量%水希釈液:12質量部
・粒子1(非架橋スチレン樹脂粒子、Nipol(登録商標)UFN1008、日本ゼオン株式会社製)の固形分濃度20質量%水分散液:11.2質量部
・粒子2(PMMA樹脂粒子、MP1000、綜研化学株式会社製)の固形分濃度5質量%水分散液:134.4質量部
・架橋剤3(ブロックイソシアネート化合物、デュラネート(登録商標)WM44-L70、旭化成株式会社製)の固形分70質量%ジプロピレングリコールジメチルエーテル溶液):11.5質量部
・水:597質量部
 なお、樹脂6に含まれる固形分は、水に溶解しており、粒子としては存在していなかった。
Example 22
A biaxially oriented film was obtained in the same manner as in Example 1, except that the composition A-22 was used instead of the composition A-1 used in the layer formation step. Details of the protrusions on the resin layer surface are shown in the table below.
(Composition A-22)
Composition A-22 was prepared by mixing the components shown below. The prepared composition A-22 was subjected to filtration and membrane degassing in the same manner as composition A-1, and then the obtained composition A-22 was applied to the surface of a uniaxially stretched resin substrate.
Resin 6 (urethane resin, Elastron (registered trademark) H3DF, manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) with a solid content of 28% by mass in aqueous solution: 72 parts by mass Resin 5 (copolymer of methyl methacrylate / styrene / 2-ethylhexyl acrylate / 2-hydroxyethyl methacrylate / acrylic acid = 59: 8: 26: 5: 2 (mass ratio)) with a solid content of 19% by mass in aqueous dispersion: 105.8 parts by mass Anionic hydrocarbon surfactant (Rapisol (registered trademark) A-90, manufactured by NOF Corporation) with a solid content of 1% by mass in water dilution: 12 Parts by weight Particle 1 (non-crosslinked styrene resin particles, Nipol (registered trademark) UFN1008, manufactured by Zeon Corporation) 20% by weight aqueous dispersion: 11.2 parts by weight Particle 2 (PMMA resin particles, MP1000, manufactured by Soken Chemical & Engineering Co., Ltd.) 5% by weight aqueous dispersion: 134.4 parts by weight Crosslinker 3 (blocked isocyanate compound, Duranate (registered trademark) WM44-L70, manufactured by Asahi Kasei Corporation) 70% by weight dipropylene glycol dimethyl ether solution: 11.5 parts by weight Water: 597 parts by weight The solid content contained in Resin 6 was dissolved in water and did not exist as particles.
〔実施例23〕
 層形成工程に用いた組成物A-22の代わりに、後段の表に示す通りに成分を変更した組成物A-23を用いた以外は、実施例22と同様にして2軸配向フィルムを得た。なお、組成物A-23の各成分については、組成物A-22と各成分が同じ固形分濃度となるように、各成分の配合量を調整した。樹脂層表面の突起の詳細については、後段の表に示す。
Example 23
A biaxially oriented film was obtained in the same manner as in Example 22, except that composition A-23, the components of which were changed as shown in the table below, was used instead of composition A-22 used in the layer formation step. The amount of each component in composition A-23 was adjusted so that the solid content concentration of each component was the same as that of composition A-22. Details of the protrusions on the resin layer surface are shown in the table below.
〔比較例1及び2〕
 層形成工程に用いた組成物A-1の代わりに、以下の組成物C-1又はC-2を用い、横延伸工程における延伸温度(温度Y)後段の表に示す通りに変更した以外は、実施例1と同様にして2軸配向フィルムを得た。なお、組成物C-1及びC-2の塗布は、塗布量が6g/mとなるように調整した。
 比較例1及び2で得られた2軸配向フィルムでは、樹脂基材の表面に、粒子4又は粒子6に由来する突起が形成されていたが、連続する樹脂層は有していなかった。2軸配向フィルム表面の突起の詳細については、後段の表に示す。
(組成物C-1)
・粒子4(非架橋スチレン/アクリル共重合体樹脂粒子、メチルメタクリレート/スチレンの質量比70/30共重合体樹脂粒子)の固形分濃度0.4質量%水分散液:157質量部
・ノニオン性界面活性剤(ナロアクティーCL95、三洋化成工業株式会社製)の固形分1質量%水溶液:70質量部
(組成物C-2)
・粒子6(非架橋アクリル樹脂粒子、メチルメタクリレート/エチルアクリレート、アクリル酸の質量比78/20/2共重合体樹脂粒子、平均粒子径0.12μm)の固形分濃度0.4質量%に調整した水分散液:157質量部
[Comparative Examples 1 and 2]
Except for using the following composition C-1 or C-2 instead of the composition A-1 used in the layer formation step, and changing the stretching temperature (temperature Y) in the transverse stretching step as shown in the table below, a biaxially oriented film was obtained in the same manner as in Example 1. The coating amount of compositions C-1 and C-2 was adjusted to 6 g/ m2 .
In the biaxially oriented films obtained in Comparative Examples 1 and 2, protrusions derived from particles 4 or 6 were formed on the surface of the resin substrate, but no continuous resin layer was formed. Details of the protrusions on the surface of the biaxially oriented film are shown in the table below.
(Composition C-1)
Particles 4 (non-crosslinked styrene/acrylic copolymer resin particles, methyl methacrylate/styrene copolymer resin particles having a mass ratio of 70/30) in water dispersion with a solid content of 0.4% by mass: 157 parts by mass. Aqueous solution of nonionic surfactant (Naroacty CL95, manufactured by Sanyo Chemical Industries, Ltd.) with a solid content of 1% by mass: 70 parts by mass (Composition C-2).
Particles 6 (non-crosslinked acrylic resin particles, methyl methacrylate/ethyl acrylate/acrylic acid copolymer resin particles in a mass ratio of 78/20/2, average particle diameter 0.12 μm) in water dispersion adjusted to a solid content concentration of 0.4 mass %: 157 parts by mass
〔比較例3〕
 層形成工程に用いた組成物A-1の代わりに、以下の組成物C-3を用いた以外は、実施例1と同様にして2軸配向フィルムを得た。
 比較例3で得られた2軸配向フィルムでは、樹脂基材の表面に、連続する樹脂層が形成されたが、突起は形成されていなかった。なお、比較例3で得た2軸配向フィルムを巻き取ろうとしたところ、巻きズレが発生し、うまく巻き取ることができなかったため、後段の機能層を形成する評価は実施しなかった。
(組成物C-3)
・樹脂1(ウレタン樹脂、タケラック(登録商標)W-605、三井化学株式会社製)の固形分濃度25質量%水分散液 :81質量部
・樹脂5(メタクリル酸メチル/スチレン/2-エチルヘキシルアクリレート/2-ヒドロキシエチルメタクリレート/アクリル酸=59:8:26:5:2(質量比)の共重合体)の固形分濃度19質量%水分散液:105.8質量部
・アニオン性炭化水素系界面活性剤(ラピゾール(登録商標)A-90、日油株式会社製)の固形分濃度1質量%水希釈液:12質量部
・架橋剤2(オキサゾリン化合物、エポクロス(登録商標)WS-700、株式会社日本触媒製)の固形分濃度25質量%水溶液:32.2質量部
・水:622質量部
Comparative Example 3
A biaxially oriented film was obtained in the same manner as in Example 1, except that the composition C-3 shown below was used instead of the composition A-1 used in the layer forming step.
In the biaxially oriented film obtained in Comparative Example 3, a continuous resin layer was formed on the surface of the resin substrate, but no protrusions were formed. When an attempt was made to wind up the biaxially oriented film obtained in Comparative Example 3, a winding shift occurred and it was not possible to wind it up properly, so an evaluation of forming a subsequent functional layer was not performed.
(Composition C-3)
Resin 1 (urethane resin, Takelac (registered trademark) W-605, manufactured by Mitsui Chemicals, Inc.) solid content concentration 25% by mass aqueous dispersion: 81 parts by mass Resin 5 (copolymer of methyl methacrylate / styrene / 2-ethylhexyl acrylate / 2-hydroxyethyl methacrylate / acrylic acid = 59: 8: 26: 5: 2 (mass ratio)) solid content concentration 19% by mass aqueous dispersion: 105.8 parts by mass Anionic hydrocarbon surfactant (Rapisol (registered trademark) A-90, manufactured by NOF Corporation) solid content concentration 1% by mass water dilution: 12 parts by mass Crosslinker 2 (oxazoline compound, Epocross (registered trademark) WS-700, manufactured by Nippon Shokubai Co., Ltd.) solid content concentration 25% by mass aqueous solution: 32.2 parts by mass Water: 622 parts by mass
〔比較例4〕
 層形成工程に用いた組成物A-1の代わりに、以下の組成物C-4を用い、横延伸工程における延伸温度(温度Y)後段の表に示す通りに変更した以外は、実施例1と同様にして2軸配向フィルムを得た。樹脂層表面の突起の詳細については、後段の表に示す。
(組成物C-4)
・樹脂7(アクリル樹脂、メチルメタクリレート/ステアリルメタクリレート/ヒドロキシエチルメタクリレート/メタクリル酸の質量比47/26/20/7共重合体)の固形分濃度20質量%水分散液:165質量部
・フッ素系界面活性剤(サーフロン(登録商標)S-211、AGCセイミケミカル株式会社製)の固形分濃度1質量%水希釈液:30質量部
・粒子7(架橋アクリル粒子、日本触媒株式会社製、商品名MX100W)の固形分濃度10質量%水分散液:23.7質量部
・架橋剤2(オキサゾリン化合物、エポクロス(登録商標)WS-700、株式会社日本触媒製)の固形分濃度25質量%水溶液:56.8質量部
・水:750質量部
Comparative Example 4
A biaxially oriented film was obtained in the same manner as in Example 1, except that the composition C-4 below was used instead of the composition A-1 used in the layer formation step, and the stretching temperature (temperature Y) in the transverse stretching step was changed as shown in the table below. Details of the protrusions on the resin layer surface are shown in the table below.
(Composition C-4)
Resin 7 (acrylic resin, methyl methacrylate / stearyl methacrylate / hydroxyethyl methacrylate / methacrylic acid copolymer in a mass ratio of 47 / 26 / 20 / 7) solid content concentration 20 mass% water dispersion: 165 parts by mass Fluorosurfactant (Surflon (registered trademark) S-211, manufactured by AGC Seimi Chemical Co., Ltd.) solid content concentration 1 mass% water dilution: 30 parts by mass Particle 7 (crosslinked acrylic particles, manufactured by Nippon Shokubai Co., Ltd., product name MX100W) solid content concentration 10 mass% water dispersion: 23.7 parts by mass Crosslinker 2 (oxazoline compound, Epocross (registered trademark) WS-700, manufactured by Nippon Shokubai Co., Ltd.) solid content concentration 25 mass% aqueous solution: 56.8 parts by mass Water: 750 parts by mass
 図2に、実施例に類似する方法で作製された2軸配向フィルムの樹脂層表面をSEMにより観察した像を示す。また、図3に、比較例4に類似する方法で作製された2軸配向フィルムの樹脂層表面をSEMにより観察した像を示す。
 図2に示すように、実施例に類似する方法で作製された2軸配向フィルムの樹脂層表面に存在する突起は、後述するように突起の長径に対する突起の高さの比率が小さいことが観察される。一方、図3からは、比較例に類似する方法で作製された2軸配向フィルムの樹脂層表面に存在する突起は、その輪郭が明確であり、球形に近い形状を有し、後述するように突起の長径に対する突起の高さの比率が大きいことが観察される。
Fig. 2 shows an image of the resin layer surface of a biaxially oriented film produced by a method similar to that of Example 1, and Fig. 3 shows an image of the resin layer surface of a biaxially oriented film produced by a method similar to that of Comparative Example 4, observed by SEM.
As shown in Figure 2, the protrusions present on the resin layer surface of the biaxially oriented film produced by a method similar to the Examples are observed to have a small ratio of the height of the protrusion to the long diameter of the protrusion, as described below. On the other hand, from Figure 3, it is observed that the protrusions present on the resin layer surface of the biaxially oriented film produced by a method similar to the Comparative Example have a clear outline, a shape close to a sphere, and a large ratio of the height of the protrusion to the long diameter of the protrusion, as described below.
[物性等の測定方法]
〔樹脂層の厚さ〕
 樹脂層の厚さは、以下の手順で測定した。
 まず、得られたフィルムをミクロトームにより切削し、フィルムの厚さ方向に沿った断面を露出させた。露出させたフィルム断面に対し、Arイオンによるミリング処理を行い、フィルム断面を平滑化したあと、フィルム断面に対してPtを蒸着して、観察用サンプルを得た。観察用サンプルをSEM(株式会社日立ハイテク製「S-4800」)で観察し、フィルム断面における樹脂層の厚さを、上述した方法で測定した。
[Methods for measuring physical properties, etc.]
[Thickness of resin layer]
The thickness of the resin layer was measured by the following procedure.
First, the obtained film was cut with a microtome to expose a cross section along the thickness direction of the film. The exposed film cross section was subjected to a milling treatment with Ar ions to smooth the film cross section, and then Pt was vapor-deposited on the film cross section to obtain a sample for observation. The observation sample was observed with a SEM ("S-4800" manufactured by Hitachi High-Technologies Corporation), and the thickness of the resin layer in the film cross section was measured by the method described above.
〔フィルムの厚さ〕
 上述した方法により、連続式触針式膜厚計により測定した。
[Film thickness]
The thickness was measured by the continuous stylus film thickness meter according to the method described above.
〔ガラス転移温度〕
 実施例及び比較例に用いた粒子及び樹脂のガラス転移温度(Tg)は、以下の手順で示差走査熱量計を用いて測定した。
 具体的には、示差走査熱量計(ティー・エイ・インスツルメント社製DSC2500)を用い、粉末試料5mgを示差走査熱量計の密閉パンに入れ、昇温速度5℃/minで、-50~300℃の範囲で測定を行った。温度変調条件は、±0.5℃/min、周期60秒とした。Tgは、2サイクル目の昇温時の測定結果を使用し、リバーシングヒートフローを1次微分した曲線におけるピーク値をTgとして採用した。なお、実施例及び比較例に用いた粒子又は樹脂が分散液又は溶液の場合には、100~300℃の範囲、かつ、樹脂の熱分解温度より低い高い温度で乾燥して得られる粉末を、上記粉末試料として用いた。
〔Glass-transition temperature〕
The glass transition temperatures (Tg) of the particles and resins used in the examples and comparative examples were measured using a differential scanning calorimeter according to the following procedure.
Specifically, a differential scanning calorimeter (TA Instruments DSC2500) was used, and 5 mg of powder sample was placed in the sealed pan of the differential scanning calorimeter, and measurements were performed in the range of -50 to 300°C at a heating rate of 5°C/min. The temperature modulation conditions were ±0.5°C/min and a period of 60 seconds. The Tg was determined by using the measurement results during the second heating cycle, and the peak value in the curve obtained by first-order differentiation of the reversing heat flow was adopted as the Tg. In addition, when the particles or resin used in the examples and comparative examples were dispersions or solutions, the powder obtained by drying at a high temperature in the range of 100 to 300°C and lower than the thermal decomposition temperature of the resin was used as the powder sample.
〔突起高さ、突起長径及び突起短径〕
 フィルムの樹脂層表面に対して、フェルトペンでマーキングを行った後、白金蒸着を行い、観察用のサンプルを得た。サンプルの表面の鉛直方向から、SEM(「S4700」、株式会社日立ハイテク製)を用いて、樹脂層表面のマークの近くを低倍率で撮像した。100μm×100μmの観察領域(測定視野)に存在する突起の中で長径が最長である突起を選択し、倍率を上げて撮像して、その突起の長径(面内方向の最大径)及び短径を測定した。
 次いで、光学干渉計(Vertscan 3300G Lite、株式会社日立ハイテク製)を用いて、マーク部を下記測定条件で測定し突起の分布を確認した。その分布とSEMでの観察結果を照合し、SEMで観察した突起を特定した。突起を特定した後、2次元解析にて突起断面を観察し、突起の高さを測定した。
 測定された突起の長径及び高さから、特定された突起の長径に対する突起の高さの比率を算出した。
(測定条件)
・測定モード:WAVEモード
・対物レンズ:50倍
・測定面積:186μm×155μm
[Protrusion height, protrusion long diameter and protrusion short diameter]
The resin layer surface of the film was marked with a felt pen, and then platinum was vapor-deposited to obtain a sample for observation. From the vertical direction of the surface of the sample, an SEM ("S4700", manufactured by Hitachi High-Tech Corporation) was used to image the vicinity of the mark on the resin layer surface at low magnification. Among the protrusions present in the observation area (measurement field of view) of 100 μm × 100 μm, the protrusion with the longest major axis was selected, and the image was taken at an increased magnification to measure the major axis (maximum diameter in the in-plane direction) and minor axis of the protrusion.
Next, the mark portion was measured under the following measurement conditions using an optical interferometer (Vertscan 3300G Lite, manufactured by Hitachi High-Tech Corporation) to confirm the distribution of the protrusions. The distribution was compared with the results of observation using the SEM to identify the protrusions observed using the SEM. After identifying the protrusions, the cross section of the protrusions was observed by two-dimensional analysis, and the height of the protrusions was measured.
From the measured major axis and height of the projections, the ratio of the height of the projections to the identified major axis of the projections was calculated.
(Measurement condition)
Measurement mode: WAVE mode Objective lens: 50x Measurement area: 186μm x 155μm
 上記方法で、サンプルの樹脂層表面の異なる10か所の観察領域において、突起の長径、及び、その突起に対応した高さをそれぞれ測定し、突起の長径に対する突起の高さの比を算出した。各観察領域について求めた比率の算術平均値を突起の長径に対する突起の高さの比として採用し、表に「比率A」として記載した。
 また、各観察領域について求めた突起の長径及び短径、並びに、その突起に対応した高さの算術平均値を突起高さ、突起長径、及び、突起短径としてそれぞれ採用した。突起の短径に対する突起の長径の比(突起長径/突起短径の比)は、それぞれ求めた突起長径及び突起短径から算出した。
Using the above method, the major axis of the protrusions and the height corresponding to the protrusions were measured in 10 different observation areas on the resin layer surface of the sample, and the ratio of the height of the protrusions to the major axis of the protrusions was calculated. The arithmetic average value of the ratios obtained for each observation area was adopted as the ratio of the height of the protrusions to the major axis of the protrusions, and is shown in the table as "Ratio A".
The major axis and minor axis of the projections obtained for each observation area, and the arithmetic mean values of the heights corresponding to the projections were adopted as the projection height, major axis, and minor axis, respectively. The ratio of the major axis of the projection to the minor axis of the projection (ratio of major axis of the projection/minor axis of the projection) was calculated from the major axis of the projection and the minor axis of the projection obtained.
〔突起の個数〕
 上記突起高さ、突起長径及び突起短径を測定する際に作製したサンプルにおいて、SEM(「S4700」、株式会社日立ハイテク製)を用いて、樹脂層表面のマーク付近を観察した。観察は、上述した面積の観察領域(測定視野)にて行い、存在する突起の個数を数えた。突起の個数を樹脂層表面の異なる10か所の観察領域において数え、算術平均値を算出して突起の個数とした。
[Number of protrusions]
In the sample prepared when measuring the above-mentioned protrusion height, protrusion major axis, and protrusion minor axis, the vicinity of the mark on the resin layer surface was observed using a SEM ("S4700", manufactured by Hitachi High-Tech Corporation). The observation was performed in the observation region (measurement field) of the above-mentioned area, and the number of existing protrusions was counted. The number of protrusions was counted in 10 different observation regions on the resin layer surface, and the arithmetic average value was calculated to obtain the number of protrusions.
〔表面自由エネルギー〕
 フィルムの樹脂層側の表面(第2主面)の表面自由エネルギーは、下記の方法で測定した。
 接触角計(協和界面化学株式会社製、DROPMASTER-501)を用いて、25℃の条件にて、製造されたフィルムの樹脂層表面に液滴を滴下し、液滴が表面に付着してから1秒後の接触角を測定した。液滴として精製水2μL、ヨウ化メチレン1μL及びエチレングリコール1μLを使用し、測定されたそれぞれの接触角から、北崎・畑の方法により表面自由エネルギー(単位:mJ/m)を算出した。
 なお、上記の方法で得られた「表面自由エネルギー」は、表面自由エネルギーの極性成分及び水素結合成分の合計である。
[Surface free energy]
The surface free energy of the surface of the film on the resin layer side (second main surface) was measured by the following method.
Using a contact angle meter (DROPMASTER-501, manufactured by Kyowa Interface Science Co., Ltd.), droplets were dropped onto the resin layer surface of the produced film at 25° C., and the contact angle was measured 1 second after the droplets attached to the surface. 2 μL of purified water, 1 μL of methylene iodide, and 1 μL of ethylene glycol were used as droplets, and the surface free energy (unit: mJ/m 2 ) was calculated from each measured contact angle by the Kitazaki-Hata method.
The "surface free energy" obtained by the above method is the sum of the polar component and the hydrogen bond component of the surface free energy.
[評価]
 以下に示す積層フィルムを作製し、評価を行った。すなわち、各実施例及び比較例で得られたフィルムを搬送しながら、フィルムの一方の表面上に機能層を配置して、得られたフィルム(積層フィルム)を巻き取り、その後巻き出した際に、機能層の表面における凹凸欠陥の評価を行った。
〔剥離フィルムの作製及び評価〕
<剥離層形成用塗布液の調製>
 特開2015-195291号公報の製造例1を参考に、ヘキサメチレンジイソシアネートと、ジメチルオルガノポリシロキサンと、ジペンタエリスリトールペンタアクリレート(アロニックス(登録商標)M-400、東亜合成株式会社製)とを反応させ、硬化型シリコーン化合物(A1)を合成した。次に、硬化型シリコーン化合物(A1)100質量部と、光重合開始剤(B1)として、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]-フェニル}-2-メチル-プロパン-1-オン(IGM Resins B.V.社製,製品名「Omnirad127」)5質量部とを、イソプロピルアルコール及びメチルエチルケトンの混合溶剤(質量比3:1)にて固形分濃度20質量%に希釈し、剥離層形成用塗布液を得た。
[evaluation]
The laminated films shown below were produced and evaluated. That is, while the films obtained in each of the Examples and Comparative Examples were transported, a functional layer was placed on one surface of the film, and the obtained film (laminated film) was wound up, and then when it was unwound, the surface of the functional layer was evaluated for irregularity defects.
[Preparation and Evaluation of Release Film]
<Preparation of Coating Solution for Forming Release Layer>
With reference to Production Example 1 of JP 2015-195291 A, hexamethylene diisocyanate, dimethylorganopolysiloxane, and dipentaerythritol pentaacrylate (Aronix (registered trademark) M-400, manufactured by Toa Gosei Co., Ltd.) were reacted to synthesize a curable silicone compound (A1). Next, 100 parts by mass of the curable silicone compound (A1) and 5 parts by mass of 2-hydroxy-1-{4-[4-(2-hydroxy-2-methyl-propionyl)-benzyl]-phenyl}-2-methyl-propan-1-one (manufactured by IGM Resins B.V., product name "Omnirad 127") as a photopolymerization initiator (B1) were diluted to a solid content concentration of 20% by mass with a mixed solvent of isopropyl alcohol and methyl ethyl ketone (mass ratio 3:1) to obtain a coating liquid for forming a release layer.
<剥離フィルムの作製>
 各実施例及び比較例で作製したフィルムロールを温度25℃、湿度50%RHの環境下で1週間放置した。放置した後のフィルムロールを巻き出し、上記手順で調液した剥離層形成組成物を、フィルムの樹脂層がある面とは反対側の面に搬送しながら塗布し、80℃で1分間乾燥させた。剥離層の厚さは、硬化後の厚さが1μmとなるように塗布量を調整した。その後、紫外線を照射(照射量:250mJ/cm)し、剥離剤層形成用塗布液を硬化させて剥離層を形成し、剥離フィルム(積層フィルム)を得た。
 得られた剥離フィルムに関して、下記に示す評価を行った。
<Preparation of Release Film>
The film rolls prepared in each Example and Comparative Example were left for one week under an environment of 25°C temperature and 50% RH. The film rolls were unwound after the standing, and the release layer forming composition prepared in the above procedure was applied to the surface opposite to the surface of the film having the resin layer while being conveyed, and dried at 80°C for one minute. The coating amount was adjusted so that the thickness of the release layer after curing was 1 μm. Thereafter, ultraviolet light was irradiated (irradiation amount: 250 mJ/cm 2 ) to cure the release agent layer forming coating liquid to form a release layer, and a release film (laminated film) was obtained.
The obtained release film was evaluated as follows.
(巻き取り性)
 得られた剥離フィルムを、ライン速度100m/min、張力7kg/mで搬送し、コンタクトロールを用いて押圧30kg/mで押しあてながら、直径6インチ(1インチ=2.54cm)のABS(アクリロニトリル-ブタジエン-スチレン)樹脂製巻き芯に巻きつけ、長手方向の長さ7000mの剥離フィルムをロール状に巻き取った。タイプAデュロメータを用いて計測したコンタクトロールのゴム硬度は60度であった。
 巻き取られた剥離フィルムのロールを目視により観察し、観察結果から、下記の評価基準に基づいて高速搬送での巻き取り性を評価した。
(巻き取り性評価基準)
 A:巻きズレが全く見られなかった。
 B:巻きズレが少し発生したが許容レベルであった。
 C:巻きズレが発生した。
(Winding ability)
The obtained release film was transported at a line speed of 100 m/min and tension of 7 kg/m, and was wound around a 6-inch (1 inch = 2.54 cm) diameter ABS (acrylonitrile-butadiene-styrene) resin core while being pressed with a contact roll at a pressure of 30 kg/m, and a release film having a longitudinal length of 7000 m was wound into a roll. The rubber hardness of the contact roll measured using a type A durometer was 60 degrees.
The roll of the released film thus taken up was visually observed, and the winding properties at high speed were evaluated based on the observation results and on the following evaluation criteria.
(Windability Evaluation Criteria)
A: No misalignment was observed at all.
B: A small amount of winding misalignment occurred, but was within the acceptable level.
C: Winding deviation occurred.
(耐溶剤性)
 得られた剥離フィルムの樹脂層表面に対し、メチルエチルケトン及びトルエンの混合溶液(質量比1:1)を含ませたウエスを用いて、荷重1000g/cmで縦5回、横5回擦った。その後、樹脂層の表面を目視で観察し、樹脂層の溶解状態に基づいて、耐溶剤性を評価した。評価基準は以下の通りである。
 A:樹脂層が全く溶解していない。
 B:樹脂層が一部溶解した。
 C:樹脂層が完全に溶解した。
(Solvent resistance)
The surface of the resin layer of the obtained release film was rubbed 5 times vertically and 5 times horizontally with a load of 1000 g/ cm2 using a cloth soaked in a mixed solution of methyl ethyl ketone and toluene (mass ratio 1:1). Thereafter, the surface of the resin layer was visually observed, and the solvent resistance was evaluated based on the dissolution state of the resin layer. The evaluation criteria are as follows.
A: The resin layer was not dissolved at all.
B: The resin layer was partially dissolved.
C: The resin layer was completely dissolved.
(凹凸欠陥(評価1))
 高速搬送での巻き取り評価を行った剥離フィルムロールから剥離フィルムを巻き出した。巻き出した剥離フィルムについて、3波長蛍光灯の下、剥離層表面を目視で検査し、蛍光灯の反射光を観察して凹凸欠陥の有無を確認した。
(凹凸欠陥評価基準)
 A:剥離層表面に凹凸欠陥が確認されなかった
 B:剥離層表面に凹凸欠陥が確認された
(Unevenness defects (rating 1))
The release film was unwound from the release film roll that had been subjected to the high-speed winding evaluation. The unwound release film was visually inspected for the release layer surface under a three-wavelength fluorescent lamp, and the presence or absence of irregularity defects was confirmed by observing the reflected light of the fluorescent lamp.
(Assessment criteria for unevenness defects)
A: No irregularity defects were found on the surface of the release layer. B: Irregularity defects were found on the surface of the release layer.
(凹凸欠陥(評価2))
 剥離フィルムの作製工程において、放置した期間を3カ月間に変更したフィルムロールを用いたこと以外は、凹凸欠陥(評価1)と同様にして剥離フィルムの凹凸欠陥を評価した。
(凹凸欠陥評価基準)
 A:剥離層表面に凹凸欠陥が確認できなかった
 B:剥離層表面に1~5個の凹凸欠陥が確認された
 C:剥離層表面に6個以上の凹凸欠陥が確認された
(Unevenness Defects (Evaluation 2))
The release film was evaluated for unevenness defects in the same manner as in the unevenness defects (evaluation 1), except that a film roll was used in which the period of leaving in the release film production process was changed to 3 months.
(Assessment criteria for unevenness defects)
A: No irregularity defects were found on the release layer surface. B: 1 to 5 irregularity defects were found on the release layer surface. C: 6 or more irregularity defects were found on the release layer surface.
 上記剥離フィルムにおける評価結果を、表1に示す。
 なお、上述したように、比較例3では、上記評価を実施しなかったため、評価欄は「-」としている。
The evaluation results for the above release films are shown in Table 1.
As described above, the above evaluation was not performed in Comparative Example 3, and therefore the evaluation column is marked with "-".
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、フィルムが樹脂層を含み、樹脂層表面の突起の長径に対する突起の高さの比(比率A)が0.70以下である場合、機能層の凹凸欠陥が抑制できることが確認された。
 一方、樹脂層を含まない比較例1及び2、樹脂層表面の突起の長径に対する突起の高さの比が0.70超である比較例4では、機能層の凹凸欠陥が抑制できなかった。
 実施例1~4及び9と、実施例5との比較から、樹脂層が、アクリル樹脂、ウレタン樹脂、及び、オレフィン樹脂からなる群より選択される少なくとも1種のバインダーを含む場合、長期間保管した場合の凹凸欠陥がより抑制されることが確認された。
 実施例6~22と、実施例1~5との比較から、樹脂層の形成に用いた組成物に架橋剤を含む、すなわち、樹脂層が架橋膜である場合、樹脂層の耐溶剤性に優れることが確認された。
From the results in Table 1, it was confirmed that when the film contains a resin layer and the ratio of the height of the protrusions to the major axis of the protrusions on the surface of the resin layer (ratio A) is 0.70 or less, unevenness defects in the functional layer can be suppressed.
On the other hand, in Comparative Examples 1 and 2 which did not include a resin layer, and in Comparative Example 4 in which the ratio of the height of the protrusions to the major axis of the protrusions on the resin layer surface was more than 0.70, unevenness defects in the functional layer could not be suppressed.
From a comparison of Examples 1 to 4 and 9 with Example 5, it was confirmed that when the resin layer contains at least one binder selected from the group consisting of acrylic resin, urethane resin, and olefin resin, unevenness defects during long-term storage are further suppressed.
From a comparison of Examples 6 to 22 with Examples 1 to 5, it was confirmed that when the composition used to form the resin layer contains a crosslinking agent, that is, when the resin layer is a crosslinked film, the resin layer has excellent solvent resistance.
〔加飾フィルムの作製及び評価〕
 実施例22で作製したフィルムを支持体として用いて、以下の手順にて、加飾用転写フィルム(加飾フィルム)を作製した。
 実施例22で作製したフィルムの樹脂層側とは反対側の表面に、国際公開2017/208849号明細書の[0106]に記載の熱可塑性(非感光性)樹脂層塗布液を塗布し、80℃で乾燥させて熱可塑性(非感光性)樹脂層を形成した。続いて、国際公開2021/261412号明細書の[0189]に記載の下地層用塗布液を塗布し、120℃で乾燥することで下地層を形成した。その上に、国際公開2021/261412号明細書の[0202]に記載の感光性樹脂層形成用組成物を塗布し、90℃で乾燥することで感光性樹脂層(加飾層)を形成した。下地層の厚さは1.6μm、感光性樹脂層の厚さは2.0μmであった。
 上記加飾用転写フィルムの作製は、フィルムを搬送しながら実施した。
[Preparation and evaluation of decorative film]
Using the film produced in Example 22 as a support, a transfer film for decoration (decorative film) was produced by the following procedure.
The thermoplastic (non-photosensitive) resin layer coating liquid described in [0106] of WO 2017/208849 was applied to the surface opposite to the resin layer side of the film produced in Example 22, and dried at 80 ° C. to form a thermoplastic (non-photosensitive) resin layer. Next, the underlayer coating liquid described in [0189] of WO 2021/261412 was applied and dried at 120 ° C. to form a underlayer. On top of that, the photosensitive resin layer forming composition described in [0202] of WO 2021/261412 was applied and dried at 90 ° C. to form a photosensitive resin layer (decorative layer). The thickness of the underlayer was 1.6 μm, and the thickness of the photosensitive resin layer was 2.0 μm.
The decorative transfer film was produced while the film was being transported.
 得られた加飾用転写フィルムを剥離フィルムと同様の条件で巻き取ったあと、巻き出した加飾用転写フィルムの表面(加飾層の支持体とは反対側の表面)について、剥離層と同様の評価(凹凸欠陥(評価1))を行った。結果として、加飾層に凹凸欠陥は確認されなかった。
 また、得られた加飾用転写フィルムを用いて、国際公開2017/208849号明細書の[0109]の記載を参考に加飾パターンを形成したところ、良好な形状のパターンを形成できた。
The resulting decorative transfer film was wound up under the same conditions as the release film, and the surface of the unwound decorative transfer film (the surface of the decorative layer opposite the support) was evaluated in the same manner as the release layer (irregularity defects (Evaluation 1)). As a result, no irregularity defects were found in the decorative layer.
In addition, when a decorative pattern was formed using the obtained transfer film for decoration by referring to the description of paragraph [0109] of WO 2017/208849, a pattern with a good shape could be formed.
〔機能材料フィルムの作製及び評価〕
 実施例22で作製したフィルムの樹脂層とは反対側の表面に、下記のセラミックスラリーを厚みが1μmとなるように塗布し、80℃で1分間乾燥し、セラミックグリーンシートつきフィルム(機能材料フィルム)を作製した。
 上記セラミックグリーンシートつきフィルムの作製は、フィルムを搬送しながら実施した。
(セラミックスラリーの調製)
 チタン酸バリウム粉末(BaTiO;堺化学工業株式会社製,製品名「BT-03」)100質量部、バインダーとしてのポリビニルブチラール樹脂(積水化学工業株式会社製,製品名「エスレック(登録商標)B・K BM-2」)8質量部、可塑剤としてのフタル酸ジオクチル(関東化学株式会社製,フタル酸ジオクチル、鹿1級)4質量部、並びに、トルエン及びエタノールの混合液(質量比6:4)135質量部を混合して混合液とした。上記混合液に、ジルコニアビーズを入れ、ボールミルによりチタン酸バリウム粉末混合液中に分散させて分散液とした。得られた分散液からジルコニアビーズを除去し、セラミックスラリーを調製した。
[Preparation and evaluation of functional material films]
The following ceramic slurry was applied to a thickness of 1 μm on the surface opposite the resin layer of the film produced in Example 22, and dried at 80° C. for 1 minute to produce a film with a ceramic green sheet (functional material film).
The above-mentioned film with the ceramic green sheet was produced while the film was being transported.
(Preparation of ceramic slurry)
A mixture was prepared by mixing 100 parts by mass of barium titanate powder (BaTiO 3 ; Sakai Chemical Industry Co., Ltd., product name "BT-03"), 8 parts by mass of polyvinyl butyral resin (Sekisui Chemical Co., Ltd., product name "S-LEC (registered trademark) B·K BM-2") as a binder, 4 parts by mass of dioctyl phthalate (Kanto Chemical Co., Ltd., dioctyl phthalate, deer grade 1) as a plasticizer, and 135 parts by mass of a mixture of toluene and ethanol (mass ratio 6:4). Zirconia beads were added to the mixture and dispersed in the barium titanate powder mixture by a ball mill to prepare a dispersion. The zirconia beads were removed from the obtained dispersion to prepare a ceramic slurry.
 得られたセラミックグリーンシートつきフィルムを剥離フィルムと同様の条件で巻き取ったあと、巻き出したセラミックグリーンシートつきフィルムのセラミックグリーンシートについて、剥離層と同様の評価(凹凸欠陥(評価1))を行った。結果として、セラミックグリーンシートに凹凸欠陥は確認されなかった。 The resulting film with ceramic green sheet was wound up under the same conditions as the release film, and the ceramic green sheet of the unwound film with ceramic green sheet was then evaluated in the same way as the release layer (irregularity defects (evaluation 1)). As a result, no irregularity defects were found in the ceramic green sheet.

Claims (17)

  1.  樹脂基材と、樹脂層とを含むフィルムであって、
     前記樹脂層がその表面に突起を有し、
     前記突起の長径に対する前記突起の高さの比が、0.70以下である、フィルム。
    A film including a resin substrate and a resin layer,
    the resin layer has protrusions on its surface,
    A film, wherein the ratio of the height of the protrusions to the major axis of the protrusions is 0.70 or less.
  2.  前記突起が、非ポリエステル樹脂を含む、請求項1に記載のフィルム。 The film of claim 1, wherein the protrusions include a non-polyester resin.
  3.  前記突起が、アクリル樹脂及びスチレン樹脂の少なくとも一方を含む、請求項1に記載のフィルム。 The film of claim 1, wherein the protrusions include at least one of an acrylic resin and a styrene resin.
  4.  前記樹脂層が、単層の塗布層である、請求項1に記載のフィルム。 The film according to claim 1, wherein the resin layer is a single coating layer.
  5.  前記樹脂層が、アクリル樹脂、ウレタン樹脂、及び、オレフィン樹脂からなる群より選択される少なくとも1種のバインダーを含む、請求項1に記載のフィルム。 The film according to claim 1, wherein the resin layer contains at least one binder selected from the group consisting of acrylic resins, urethane resins, and olefin resins.
  6.  前記バインダーが、酸基を有する樹脂を含む、請求項5に記載のフィルム。 The film according to claim 5, wherein the binder comprises a resin having an acid group.
  7.  前記樹脂層が、架橋膜である、請求項1に記載のフィルム。 The film according to claim 1, wherein the resin layer is a crosslinked film.
  8.  前記樹脂層の厚みが、0.01~1μmである、請求項1に記載のフィルム。 The film according to claim 1, wherein the resin layer has a thickness of 0.01 to 1 μm.
  9.  前記突起が、前記樹脂層の表面における10000μmの領域において50個以上存在する、請求項1に記載のフィルム。 The film according to claim 1 , wherein the number of the protrusions is 50 or more per 10,000 μm 2 area on the surface of the resin layer.
  10.  前記突起の短径に対する前記突起の長径の比が、1.60超である、請求項1に記載のフィルム。 The film of claim 1, wherein the ratio of the major axis of the protrusions to the minor axis of the protrusions is greater than 1.60.
  11.  請求項1~10のいずれか1項に記載のフィルムと、機能層とを備える積層フィルムであって、
     前記樹脂層と、前記樹脂基材と、前記機能層とをこの順に備え、
     前記機能層が、加飾層、感光性樹脂層、無機層、及び、剥離層からなる群より選択される1種である、積層フィルム。
    A laminated film comprising the film according to any one of claims 1 to 10 and a functional layer,
    The resin layer, the resin substrate, and the functional layer are provided in this order,
    The functional layer is one selected from the group consisting of a decorative layer, a photosensitive resin layer, an inorganic layer, and a release layer.
  12.  樹脂基材の少なくとも一方の面に、非架橋樹脂粒子Aと、樹脂Bと、溶媒とを含む組成物を用いて層を形成する工程と、
     前記層を形成した前記樹脂基材を温度Yにて加熱しながら延伸する工程とを有し、以下の要件1及び要件2を満たす、フィルムの製造方法。
     要件1:温度Yから、前記非架橋樹脂粒子Aのガラス転移温度を減算した値が-20~50℃である。
     要件2:前記組成物中において、前記樹脂Bが粒子状に存在する場合、粒子状の前記樹脂Bの粒径が前記非架橋樹脂粒子Aの粒径よりも小さい。
    forming a layer on at least one surface of a resin substrate using a composition containing non-crosslinked resin particles A, a resin B, and a solvent;
    and stretching the resin substrate on which the layer is formed while heating it at a temperature Y, wherein the following requirement 1 and requirement 2 are satisfied.
    Requirement 1: The value obtained by subtracting the glass transition temperature of the non-crosslinked resin particles A from the temperature Y is -20 to 50°C.
    Requirement 2: When the resin B is present in the form of particles in the composition, the particle diameter of the particulate resin B is smaller than the particle diameter of the non-crosslinked resin particles A.
  13.  前記樹脂基材が、未延伸樹脂基材を延伸して得られる1軸延伸樹脂基材である、請求項12に記載のフィルムの製造方法。 The method for producing a film according to claim 12, wherein the resin substrate is a uniaxially stretched resin substrate obtained by stretching an unstretched resin substrate.
  14.  前記樹脂Bが酸基を有する樹脂であり、前記組成物が更に架橋剤を含む、請求項12又は13に記載のフィルムの製造方法。 The method for producing a film according to claim 12 or 13, wherein the resin B is a resin having an acid group, and the composition further contains a crosslinking agent.
  15.  前記非架橋樹脂粒子Aのガラス転移温度が、70~140℃である、請求項12又は13に記載のフィルムの製造方法。 The method for producing a film according to claim 12 or 13, wherein the glass transition temperature of the non-crosslinked resin particles A is 70 to 140°C.
  16.  前記樹脂Bのガラス転移温度が-50~105℃である、請求項12又は13に記載のフィルムの製造方法。 The method for producing a film according to claim 12 or 13, wherein the glass transition temperature of resin B is -50 to 105°C.
  17.  前記組成物中において、前記樹脂Bが粒子状に存在する場合、前記樹脂Bの粒径をDbμm、前記非架橋樹脂粒子Aの粒径をDaとしたとき、式(1)の関係を満たす、請求項12又は13に記載のフィルムの製造方法。
     式(1)  7×Db<Da
    The method for producing a film according to claim 12 or 13, wherein, in the composition, when the resin B is present in a particulate form, the particle diameter of the resin B is Db μm and the particle diameter of the non-crosslinked resin particles A is Da, the relationship of formula (1) is satisfied.
    Formula (1) 7 × Db < Da
PCT/JP2023/031447 2022-09-26 2023-08-30 Film, laminated film, and film production method WO2024070442A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022152825 2022-09-26
JP2022-152825 2022-09-26

Publications (1)

Publication Number Publication Date
WO2024070442A1 true WO2024070442A1 (en) 2024-04-04

Family

ID=90477199

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031447 WO2024070442A1 (en) 2022-09-26 2023-08-30 Film, laminated film, and film production method

Country Status (1)

Country Link
WO (1) WO2024070442A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001084564A (en) * 1999-09-13 2001-03-30 Toray Ind Inc Polyester film for high capacity magnetic recording disk and high capacity magnetic recording disk
JP2004014063A (en) * 2002-06-10 2004-01-15 Toray Ind Inc Polyester film for magnetic recording medium and magnetic recording tape
JP2005015539A (en) * 2003-06-24 2005-01-20 Toray Ind Inc Coated film
JP2011013402A (en) * 2009-07-01 2011-01-20 Toyobo Co Ltd Base film for lens sheet
WO2014084008A1 (en) * 2012-11-27 2014-06-05 東レフィルム加工株式会社 Hard coat film and transparent conducting film
WO2022004249A1 (en) * 2020-07-02 2022-01-06 東洋紡株式会社 Multilayered polyester film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001084564A (en) * 1999-09-13 2001-03-30 Toray Ind Inc Polyester film for high capacity magnetic recording disk and high capacity magnetic recording disk
JP2004014063A (en) * 2002-06-10 2004-01-15 Toray Ind Inc Polyester film for magnetic recording medium and magnetic recording tape
JP2005015539A (en) * 2003-06-24 2005-01-20 Toray Ind Inc Coated film
JP2011013402A (en) * 2009-07-01 2011-01-20 Toyobo Co Ltd Base film for lens sheet
WO2014084008A1 (en) * 2012-11-27 2014-06-05 東レフィルム加工株式会社 Hard coat film and transparent conducting film
WO2022004249A1 (en) * 2020-07-02 2022-01-06 東洋紡株式会社 Multilayered polyester film

Similar Documents

Publication Publication Date Title
KR101276992B1 (en) Polyester multilayer film and transfer foil
JP2022025703A (en) Laminated film
WO2022131008A1 (en) Polyester film, dry film resist, and method for producing polyester film
JP7428798B2 (en) Polyester film manufacturing method, polyester film, laminated film
JP2008302547A (en) Protective polyester film for photosensitive adhesive resin
JP2005336395A (en) Release film
JP2016210066A (en) Laminated polyester film
WO2024070442A1 (en) Film, laminated film, and film production method
JP2005335261A (en) Mold releasing film
WO2024070623A1 (en) Film, layered film, and method for producing film
WO2023027033A1 (en) Polyester film, polyester film manufacturing method, and release film
JP7513718B2 (en) Polyester film, release film, and method for producing polyester film
WO2023281972A1 (en) Release film and method for producing release film
WO2023026800A1 (en) Release film, method for manufacturing release film, and ceramic capacitor
WO2022019113A1 (en) Polyester film, release film, and method for producing polyester film
TW202319243A (en) Polyester film and release film
JP2023007424A (en) Polyester film and release film
JP2021059031A (en) Film for dry film resist substrate
JP2023165302A (en) Release film for the production of ceramic green sheets and method for producing the same, and laminate
WO2020241692A1 (en) Biaxially oriented polyester film
KR20230141469A (en) Release film, method of producing release film and laminate
JP2023152690A (en) Release film, method for producing release film, and laminate
KR20230141468A (en) Release film, method of producing release film and laminate
JP7005898B2 (en) Laminated film
JP2023012427A (en) release film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23871682

Country of ref document: EP

Kind code of ref document: A1