WO2022131008A1 - Polyester film, dry film resist, and method for producing polyester film - Google Patents

Polyester film, dry film resist, and method for producing polyester film Download PDF

Info

Publication number
WO2022131008A1
WO2022131008A1 PCT/JP2021/044298 JP2021044298W WO2022131008A1 WO 2022131008 A1 WO2022131008 A1 WO 2022131008A1 JP 2021044298 W JP2021044298 W JP 2021044298W WO 2022131008 A1 WO2022131008 A1 WO 2022131008A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester film
film
polyester
main surface
particles
Prior art date
Application number
PCT/JP2021/044298
Other languages
French (fr)
Japanese (ja)
Inventor
一仁 宮宅
悠樹 豊嶋
泰雄 江夏
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202180084865.9A priority Critical patent/CN116601567A/en
Priority to JP2022569853A priority patent/JPWO2022131008A1/ja
Publication of WO2022131008A1 publication Critical patent/WO2022131008A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/09Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers
    • G03F7/11Photosensitive materials characterised by structural details, e.g. supports, auxiliary layers having cover layers or intermediate layers, e.g. subbing layers

Definitions

  • the present invention relates to a polyester film, a dry film resist, and a method for producing a polyester film.
  • Polyester films are used in a wide range of applications from the viewpoints of processability, mechanical properties, electrical properties, dimensional stability, transparency, chemical resistance, etc.
  • dry film resist supports and protective films. It is used as.
  • the dry film resist has, for example, a structure in which a photosensitive resin layer (photoresist layer) is laminated on a support, and then a protective film is further laminated.
  • dry film resists have been used in the field of touch panels for etching in the wiring forming process, for forming a protective film for protecting wiring portions such as copper, ITO (indium tin oxide) and silver nanoparticles, and for interlayer insulating films. It is used for various purposes.
  • Patent Document 1 describes a laminated polyester film in which a polyester film is used as a support and a resist layer is provided on one side of the support, and the haze of the laminated film is 1.0% or less, and the resist layer side of the laminated film is provided.
  • a polyester film for ultrafine wire photoresist in which the surface on the opposite side has a predetermined surface intrinsic resistance and abrasion resistance index, and the number of scratches on the surface is less than a predetermined value.
  • the present invention is excellent in scratch resistance, and by using it in the production of a dry film resist, the pattern linearity is formed even when a high-definition resist pattern is formed using the dry film. It is an object of the present invention to provide a polyester film capable of forming an excellent resist pattern. Another object of the present invention is to provide a method for producing a dry film resist and a polyester film.
  • a polyester substrate containing substantially no particles and a particle-containing layer containing particles and a resin arranged on at least one surface of the polyester substrate are provided, and the first main surface and the second main surface are provided.
  • the second main surface is a surface of the particle-containing layer opposite to the polyester base material side, and the maximum cross-sectional height SRt of the second main surface is 20.
  • the polyester film according to [1] which is a polyester film for producing a dry film resist.
  • the polyester film according to [2] wherein the surface free energy of the second main surface is 50 mJ / m 2 or less.
  • the acrylic resin is a copolymer having a structural unit derived from styrene and a structural unit derived from (meth) acrylate.
  • the acrylic resin has a structural unit derived from (meth) acrylate having an unsubstituted alkyl group having 1 to 4 carbon atoms in the ester moiety and an unsubstituted alkyl group having 5 to 10 carbon atoms in the ester moiety (meth).
  • the polyester film according to [4] or [5] which has a structural unit derived from acrylate.
  • the surface average roughness SRa of the first main surface is 0 to 5.0 nm, and the surface average roughness SRa of the second main surface is 1.0 to 5.0 nm, [1] to [13]. ]
  • the polyester film described in any of. [15] The polyester film according to any one of [1] to [14], wherein the surface free energy of the first main surface is 50 to 70 mJ / m 2 . [16] A dry film resist comprising the polyester film according to any one of [1] to [15] and a photosensitive resin layer provided on the first main surface of the polyester film.
  • a resist pattern excellent in scratch prevention and excellent in pattern linearity even when a high-definition resist pattern is formed by using the dry film resist in the production of a dry film resist can provide an optical polyester film capable of forming. Further, according to the present invention, it is possible to provide a method for producing a dry film resist and a polyester film.
  • the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
  • the amount of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. ..
  • process is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. .. In the present disclosure, a combination of two or more preferred embodiments is a more preferred embodiment.
  • the description of a mere “polyester film” includes both a polyester base material alone and a laminate of a polyester base material and a particle-containing layer.
  • the "longitudinal direction” means the elongated direction of the polyester film at the time of manufacturing the polyester film, and is synonymous with the "transport direction” and the “mechanical direction”.
  • the "width direction” means a direction orthogonal to the longitudinal direction.
  • “orthogonal” is not limited to strict orthogonality, but includes substantially orthogonality.
  • Approximately orthogonal means intersecting at 90 ° ⁇ 5 °, preferably at 90 ° ⁇ 3 °, and more preferably at 90 ° ⁇ 1 °.
  • the "film width” means the distance between both ends of the polyester film in the width direction.
  • (meth) acrylate represents at least one of acrylate and methacrylate
  • (meth) acrylic acid represents at least one of acrylic acid and methacrylic acid
  • (meth) acrylic represents acrylic and methacrylic. Represents at least one.
  • exposure includes not only exposure using light but also drawing using particle beams such as an electron beam and an ion beam, unless otherwise specified.
  • the light used for exposure include emission line spectra of mercury lamps, far ultraviolet rays typified by excima lasers, extreme ultraviolet rays (EUV light), X-rays, and active rays (active energy rays) such as electron beams. ..
  • the polyester film according to the present disclosure (hereinafter, also referred to as “the film”) is a polyester base material containing substantially no particles, and particles and a resin arranged on at least one surface of the polyester base material.
  • An optical polyester film comprising a particle-containing layer containing the particles (hereinafter, also referred to as a “specific layer”) and having a first main surface and a second main surface. Further, in this film, the second main surface is the surface opposite to the polyester base material side of the specific layer, the maximum cross-sectional height SRt of the second main surface is 20 to 150 nm, and the thickness of the specific layer is It is 1 to 200 nm.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of this film.
  • the polyester film 1 includes a polyester base material 2 and a specific layer 3 having a specific thickness arranged on at least one surface of the polyester base material 2, and has a first main surface 1a and a second main surface 1b. Have.
  • the specific layer 3 contains particles (not shown), while the polyester substrate 2 contains substantially no particles.
  • the two surfaces of the polyester film 1 are referred to as a first main surface 1a and a second main surface 1b.
  • the second main surface 1b is the surface of the specific layer 3 opposite to the surface facing the polyester base material 2. That is, the specific layer 3 is the outermost layer of the polyester film 1.
  • the second main surface 1b has the above-mentioned specific maximum cross-sectional height SRt.
  • this film is excellent in scratch prevention, and even when used for forming a finer resist pattern, polyester can produce a dry film resist having excellent pattern linearity of the resist pattern. It has the effect of being able to provide a film (hereinafter, at least one of these effects is also referred to as “the effect of the present invention”). The reason why this film exerts the above-mentioned effect of the present invention is not clear, but it is presumed as follows.
  • the polyester film for DFR production often contains particles for the purpose of improving the scratch prevention property during DFR production.
  • a photosensitive resin layer is formed on the surface of a polyester film containing particles to produce a DFR, and the obtained DFR is used to form a fine resist pattern.
  • the particles contained in the polyester film and / or the transfer marks formed by the particles transferring the uneven structure formed on the surface of the polyester film to the photosensitive resin layer scatter the irradiation light at the time of pattern exposure. Therefore, it is presumed that the pattern linearity may decrease.
  • this film by adopting a polyester base material that substantially contains no particles as the base material constituting the polyester film, the scattering of the pattern exposure by the particles is suppressed and the photosensitive material laminated on the polyester film is photosensitive. It is presumed that the scattering of the pattern exposure can be suppressed by reducing the transfer marks formed on the sex resin layer. Further, on the surface (second main surface) of the film on the side where the photosensitive resin layer is not laminated, a particle-containing layer having a thin thickness and having a maximum cross-sectional height SRt suppressed to a specific value or less is formed. Therefore, it is possible to suppress the scattering of the pattern exposure on the surface of the particle-containing layer.
  • a resist pattern having high definition and excellent pattern linearity can be formed by suppressing scattering during pattern exposure by the above-mentioned characteristic structure of this film.
  • the maximum cross-sectional height SRt of the particle-containing layer is equal to or higher than a specific value, the slipperiness is lowered and the films are easily adhered to each other to suppress the generation of scratches and the particle-containing layer. Since the maximum cross-sectional height SRt of S Be done.
  • a characteristic that a resist pattern having excellent pattern linearity can be formed. Is simply described as "excellent in pattern linearity".
  • the present film has the above polyester base material and the above specific layer, and the specific embodiment thereof is particularly limited as long as the maximum cross-sectional height SRt of the second main surface is specified in the above range.
  • it may have an embodiment other than the configuration shown in FIG.
  • the first main surface 1a of the polyester film 1 is a surface opposite to the specific layer 3 side of the polyester base material 2, but is opposite to the specific layer side of the polyester base material 2.
  • another layer may be arranged in which one surface is the first main surface. Examples of such other layers include an adhesion layer, a peeling layer, an antistatic layer, and an oligomer precipitation prevention layer. Further, in the configuration shown in FIG.
  • the specific layer 3 is arranged on only one side of the polyester base material 2, but may be arranged on both sides. Further, in the configuration shown in FIG. 1, the specific layer 3 is arranged in contact with the surface of the polyester base material 2, but an intermediate layer such as a primer layer may be provided between the specific layer and the polyester base material. ..
  • the thickness of the other layers is preferably 1 nm to 1 ⁇ m, more preferably 30 to 500 nm.
  • the polyester base material is a film-like object containing polyester as a main polymer component.
  • the "main polymer component” means the polymer having the highest content (mass) among all the polymers contained in the film.
  • the polyester base material may contain one kind of polyester alone or may contain two or more kinds of polyesters.
  • Polyester is a polymer having an ester bond in the main chain. Polyester is usually formed by polycondensing a dicarboxylic acid compound and a diol compound, which will be described later.
  • the polyester is not particularly limited, and known polyesters can be used. Examples of the polyester include polyethylene terephthalate (PET), polyethylene-2,6-naphthalate (PEN), and copolymers thereof, and PET is preferable.
  • the intrinsic viscosity of the polyester is preferably 0.50 dl / g or more and less than 0.80 dl / g, and more preferably 0.55 dl / g or more and less than 0.70 dl / g.
  • the melting point (Tm) of the polyester is preferably 220 to 270 ° C, more preferably 245 to 265 ° C.
  • the glass transition temperature (Tg) of polyester is preferably 65 to 90 ° C, more preferably 70 to 85 ° C.
  • polyester can be produced by polycondensing at least one dicarboxylic acid compound and at least one diol compound in the presence of a catalyst.
  • the catalyst used for producing the polyester is not particularly limited, and a known catalyst that can be used for synthesizing the polyester can be used.
  • the catalyst include alkali metal compounds (for example, potassium compounds and sodium compounds), alkaline earth metal compounds (for example, calcium compounds and magnesium compounds), zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, and antimony.
  • alkali metal compounds for example, potassium compounds and sodium compounds
  • alkaline earth metal compounds for example, calcium compounds and magnesium compounds
  • zinc compounds for example, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, and antimony.
  • examples include compounds, titanium compounds, germanium compounds, and phosphorus compounds. Of these, titanium compounds are preferable from the viewpoint of catalytic activity and cost. Only one kind of catalyst may be used, or two or more kinds of catalysts may be used in combination.
  • At least one metal catalyst selected from potassium compounds, sodium compounds, calcium compounds, magnesium compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, and germanium compounds, and phosphorus compounds. It is preferable to use in combination with, and it is more preferable to use a titanium compound and a phosphorus compound in combination.
  • the titanium compound an organic chelated titanium complex is preferable.
  • the organic chelated titanium complex is a titanium compound having an organic acid as a ligand.
  • the organic acid include citric acid, lactic acid, trimellitic acid, and malic acid.
  • the titanium compound the titanium compound described in paragraphs 0049 to 0053 of Japanese Patent No. 5575671 can also be used, and the contents of the above publication are incorporated in the present specification.
  • dicarboxylic acid compound examples include dicarboxylic acids such as aliphatic dicarboxylic acid compounds, alicyclic dicarboxylic acid compounds, and aromatic dicarboxylic acid compounds, and dicarboxylic acids such as methyl ester compounds and ethyl ester compounds of the dicarboxylic acids. Esther can be mentioned. Of these, aromatic dicarboxylic acid or methyl aromatic dicarboxylic acid is preferable.
  • Examples of the aliphatic dicarboxylic acid compound include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecandic acid, dimer acid, eicosandionic acid, pimelic acid, azelaic acid, and methylmalonic acid. And ethylmalonic acid.
  • Examples of the alicyclic dicarboxylic acid compound include adamantandicarboxylic acid, norbornnedicarboxylic acid, cyclohexanedicarboxylic acid, and decalindicarboxylic acid.
  • aromatic dicarboxylic acid compound examples include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 1,8-naphthalenedicarboxylic acid. , 4,4'-diphenyldicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, 5-sodium sulfoisophthalic acid, phenylindandicarboxylic acid, anthracendicarboxylic acid, phenanthrangecarboxylic acid, and 9,9'-bis (4-carboxy).
  • Examples include phenyl) fluorenic acid and their methyl ester forms. Of these, terephthalic acid, methyl terephthalate, 2,6-naphthalenedicarboxylic acid, or methyl 2,6-naphthalenedicarboxylic acid is preferable, and terephthalic acid or methyl terephthalate is more preferable.
  • terephthalic acid may be used alone, or may be copolymerized with another aromatic dicarboxylic acid such as isophthalic acid or an aliphatic dicarboxylic acid.
  • diol compound examples include an aliphatic diol compound, an alicyclic diol compound, and an aromatic diol compound, and an aliphatic diol compound is preferable.
  • Examples of the aliphatic diol compound include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, and neo. Examples include pentyl glycol, preferably ethylene glycol. Examples of the alicyclic diol compound include cyclohexanedimethanol, spiroglycol, and isosorbide. Examples of the aromatic diol compound include bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, and 9,9'-bis (4-hydroxyphenyl) fluorene. Only one kind of diol compound may be used, or two or more kinds may be used in combination.
  • an end-capping agent may be used if necessary.
  • the end sealant By using the end sealant, a structure derived from the end sealant is introduced into the end of the polyester.
  • the terminal encapsulant a known end encapsulant can be used without limitation. Examples of the terminal encapsulant include oxazoline compounds, carbodiimide compounds, and epoxy compounds.
  • the terminal encapsulant the contents described in paragraphs 0055 to 0064 of JP-A-2014-189002 can also be referred to, and the contents of the above-mentioned publication are incorporated in the present specification.
  • the reaction temperature is not limited and may be appropriately set according to the raw material.
  • the reaction temperature is preferably 260 to 300 ° C, more preferably 275 to 285 ° C.
  • the pressure is not limited and may be appropriately set according to the raw material.
  • the pressure is preferably 1.33 ⁇ 10 -3 to 1.33 ⁇ 10 -5 MPa, more preferably 6.67 ⁇ 10 -4 to 6.67 ⁇ 10 -5 MPa.
  • the polyester content in the polyester base material is preferably 85% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, still more preferably 98% by mass, based on the total mass of the polymer in the polyester base material.
  • the above is particularly preferable.
  • the upper limit of the polyester content is not limited and can be appropriately set within a range of 100% by mass or less with respect to the total mass of the polymer in the polyester substrate.
  • the content of polyethylene terephthalate is preferably 90 to 100% by mass, more preferably 95 to 100% by mass, and 98 to 100% by mass, based on the total mass of the polyester in the polyester substrate. 100% by mass is more preferable, and 100% by mass is particularly preferable.
  • the polyester substrate may contain components other than polyester (eg, catalyst, unreacted raw material components, particles, water, etc.). From the viewpoint of excellent pattern linearity, the polyester base material contains substantially no particles. Examples of the particles include particles contained in a specific layer described later. In addition, “substantially free of particles” means that the content of particles is 50 with respect to the total mass of the polyester substrate when the elements derived from the particles are quantitatively analyzed by fluorescent X-ray analysis. It is defined as having a mass of ppm or less, preferably 10% by mass or less, and more preferably not more than the detection limit.
  • the polyester is polyester. This is because it may be mixed in the base material.
  • the thickness of the polyester base material is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, still more preferably 35 ⁇ m or less, in terms of improving transferability.
  • the lower limit of the thickness is not particularly limited, but 1 ⁇ m or more is preferable, 4 ⁇ m or more is more preferable, and 10 ⁇ m or more is further preferable, from the viewpoint of improving the strength and the workability.
  • the thickness of the polyester base material is measured according to the method for measuring the thickness of the polyester film described later.
  • the specific layer is a layer containing particles and a resin, and is formed on at least one surface of the polyester base material. Further, the surface of the specific layer opposite to the surface facing the polyester base material constitutes the second main surface.
  • the specific layer may be provided directly on the surface of the polyester base material or may be provided on the surface of the polyester base material via another layer, but is provided directly on the surface of the polyester base material in terms of better adhesion. Is preferable. That is, it is preferable that the surface of the specific layer on the first main surface side is in contact with the polyester base material.
  • the specific layer is not particularly limited as long as it contains particles and a resin, has a thickness of 1 to 200 nm, and has a specific maximum cross-sectional height SRt on the second main surface.
  • the specific layer may contain additives other than particles and resin.
  • the particles contained in the specific layer are not particularly limited as long as the maximum cross-sectional height SRt of the second main surface is included in the above range and the thickness of the specific layer is included in the above range.
  • Examples of the average particle size of the particles include 1 to 250 nm.
  • the average particle size of the particles is preferably 150 nm or less, more preferably 130 nm or less, still more preferably 100 nm or less, in that the effect of the present invention is more excellent.
  • the lower limit value is preferably 10 nm or more, more preferably 30 nm or more, in that the effect of the present invention is more excellent.
  • it is preferable that the average particle size of the particles contained in the specific layer is larger than the thickness of the specific layer.
  • the particles contained in the specific layer one type of particles may be used alone, or two or more types of particles may be used.
  • the specific layer preferably contains at least one kind of particles having an average particle size within the above range, and two or more kinds having different particle sizes. It is more preferable that all the particles have an average particle size within the above range.
  • the average particle size of the particles contained in the specific layer is determined by the following method using a scanning electron microscope (SEM). That is, the second main surface of the polyester film is observed at a magnification of 20000 times using SEM. Observation is performed on 10 arbitrarily selected visual fields, and the area of each particle is measured using image software for particles that can be identified as protrusions in each visual field (particles that are visible as protrusions protruding from the base surface). Then, the diameter of a circle having the same area (diameter equivalent to the area circle) is calculated. The arithmetic mean value of the obtained area circle equivalent diameter is defined as the average particle size of the particles.
  • SEM scanning electron microscope
  • the particle size (secondary particle size) of the secondary particles in the agglomerated state shall be measured.
  • Examples of the particles contained in the specific layer include organic particles and inorganic particles. Among them, inorganic particles are preferable from the viewpoint of further improving film winding quality, haze, and durability (for example, thermal stability).
  • As the organic particles resin particles are preferable.
  • Examples of the resin constituting the resin particles include acrylic resin such as polymethyl methacrylate resin (PMMA), polyester resin, silicone resin, and styrene-acrylic resin.
  • the resin particles preferably have a crosslinked structure. Examples of the resin particles having a crosslinked structure include divinylbenzene crosslinked particles.
  • the inorganic particles include silica particles (silicon dioxide particles, colloidal silica), titania particles (titanium oxide particles), calcium carbonate, barium sulfate, and alumina particles (aluminum oxide particles).
  • silica particles are preferable from the viewpoint of further improving haze and durability.
  • the shape of the particles is not particularly limited, and examples thereof include rice granules, spheres, cubes, spindles, scales, aggregates, and indefinite shapes.
  • the aggregated state means a state in which the primary particles are aggregated.
  • the shape of the aggregated particles is not limited, but a spherical shape or an indefinite shape is preferable.
  • the particles may be particles having a hollow structure (hollow particles) or particles having no hollow structure (solid particles), but are excellent in pattern linearity (transparency). In that respect, solid particles are preferred.
  • the hollow structure means a structure consisting of an inner cavity and an outer shell surrounding the cavity. Solid particles have less change in refractive index and can suppress light scattering.
  • fumed silica particles are preferable.
  • examples of commercially available products include Aerosil series manufactured by Nippon Aerosil Co., Ltd.
  • Colloidal silica particles are preferable as the non-aggregating particles having no hollow structure.
  • Examples of commercially available products include the Snowtex series manufactured by Nissan Chemical Industries, Ltd.
  • the content of the particles in the specific layer is preferably 0.1 to 30% by mass, more preferably 1 to 25% by mass, based on the total mass of the specific layer, from the viewpoint of transportability and coatability of the release layer. 1 to 15% by mass is more preferable, and 1 to 5% by mass is particularly preferable.
  • the content of the particles is preferably 0.0001 to 0.01% by mass, more preferably 0.0005 to 0.005% by mass, based on the total mass of the polyester film.
  • the content of particles having an average particle diameter of more than 250 nm is small in that the effect of the present invention is more excellent.
  • examples of such particles include particles having an average particle diameter of more than 250 nm, secondary particles formed by aggregating the particles, and foreign substances such as dust inevitably mixed.
  • the resin contained in the specific layer is not particularly limited, and examples thereof include acrylic resin, urethane resin, polyester and polyolefin.
  • the specific layer is preferably formed by applying an aqueous dispersion of resin particles.
  • the resin is preferably an acid-modified resin.
  • the acid-modified resin include an acrylic resin having a structural unit derived from (meth) acrylic acid, which will be described later, and a polyolefin having a carboxyl group.
  • the acrylic resin is preferable in that the surface free energy of the specific layer is set in a desired range and the scratch prevention property is further improved.
  • the acrylic resin means a polymer having a structural unit derived from (meth) acrylate as a main component.
  • "having a structural unit derived from a certain monomer as a main component” means that the structural unit is 50 mol% or more with respect to all the structural units of the polymer.
  • the acrylic resin is not particularly limited as long as it has a structural unit derived from (meth) acrylate, and may be a copolymer of one kind (meth) acrylate, or two or more kinds (meth). It may be a copolymer of acrylate.
  • the acrylic resin preferably contains a structural unit derived from a (meth) acrylate having an alkyl group at the ester moiety (alkyl (meth) acrylate).
  • the alkyl group in the alkyl (meth) acrylate may further have a substituent.
  • the substituent include an aryl group, a hydroxy group and an alkoxy group, and a phenyl group, a hydroxy group or an alkoxy group having 1 to 3 carbon atoms is preferable.
  • the number of carbon atoms of the alkyl group (more preferably unsubstituted alkyl group) which may have a substituent in the alkyl (meth) acrylate is preferably 1 to 15, more preferably 1 to 10.
  • a structural unit derived from a (meth) acrylate having an unsubstituted alkyl group having 1 to 4 carbon atoms at an ester moiety and an unsubstituted moiety having 5 to 10 carbon atoms are preferable.
  • alkyl (meth) acrylate examples include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, and i-.
  • alkyl (meth) acrylate examples include butyl (meth) acrylate, t-butyl (meth) acrylate, cyclohexyl (meth) acrylate, lauryl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
  • the acrylic resin is a copolymer of at least one (meth) acrylate and at least one vinyl monomer other than (meth) acrylate (for example, (meth) acrylamide, (meth) acrylic acid, styrene, etc.). You may. Among them, acrylic resin, which is a copolymer having a structural unit derived from styrene and a structural unit derived from (meth) acrylate, is preferable because it is excellent in suppressing scratches on the film.
  • the acrylic resin preferably has an acid denaturing component.
  • the acrylic resin preferably contains a structural unit derived from (meth) acrylic acid as an acid-modifying component.
  • the (meth) acrylic acid may form an acid anhydride or may be neutralized with at least one selected from alkali metals, organic amines and ammonia.
  • the content of the structural unit derived from (meth) acrylate is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass or more, based on all the structural units of the acrylic resin. ..
  • the upper limit of the content of the structural unit derived from (meth) acrylate is not particularly limited, and may be 100% by mass with respect to all the structural units of the acrylic resin.
  • the content thereof is preferably 0 to 30% by mass, preferably 0.1 to 30% by mass, based on all the structural units of the acrylic resin. It is more preferably 10% by mass.
  • the acrylic resin has a structural unit having an acid-modifying group
  • the content thereof is preferably 0.1 to 10% by mass with respect to all the structural units of the acrylic resin, and is derived from (meth) acrylic acid. It is more preferable that the constituent unit to be formed is 1 to 10% by mass.
  • the acid value of the acrylic resin is preferably 30 mgKOH / g or less, more preferably 20 mgKOH / g or less.
  • the lower limit of the acid value is not particularly limited and is, for example, 0 mgKOH / g, but 2 mgKOH / g or more is preferable from the viewpoint of application as an aqueous dispersion.
  • the acid value is the mass [mg] of potassium hydroxide required to neutralize 1 g of the sample, and the unit is described as mgKOH / g in the present specification.
  • the acid value can be calculated, for example, from the average content of acid groups in the compound.
  • the method for producing the acrylic resin is not particularly limited, and the acrylic resin can be prepared by polymerizing one or more kinds of (meth) acrylates with a monomer other than any (meth) acrylate by a known method.
  • the specific layer may contain one kind of resin alone or may contain two or more kinds of resins.
  • the resin to be used in combination include different types of acrylic resin, urethane resin, polyolefin and polyester.
  • the resin contained in the specific layer preferably has a crosslinked structure in that it is more excellent in durability.
  • a resin having a crosslinked structure can be formed by cross-linking the resin with a cross-linking agent described later.
  • the resin content is preferably 30 to 99.8% by mass, more preferably 50 to 99.5% by mass, based on the total mass of the specific layer, from the viewpoint of adjusting the maximum cross-sectional height SRt to a desired range. ..
  • the specific layer may contain additives other than the above particles and resin.
  • the additive contained in the specific layer include surfactants, waxes, cross-linking agents, antioxidants, ultraviolet absorbers, colorants, strengthening agents, plasticizers, antistatic agents, flame retardants, and rust preventives. Examples thereof include defoaming agents, foaming agents, lubricants, thickeners, and antifungal agents.
  • the specific layer preferably has a surfactant on the second main surface in that the smoothness of the region other than the portion where the protrusions formed by the particles are present is improved.
  • the surfactant is not particularly limited, and examples thereof include a silicone-based surfactant, a fluorine-based surfactant, and a hydrocarbon-based surfactant, and the hydrocarbon-based surfactant is easy to adjust the surface free energy. Activators are preferred.
  • the silicone-based surfactant is not particularly limited as long as it is a surfactant having a silicon-containing group as a hydrophobic group, and examples thereof include polydimethylsiloxane, polyether-modified polydimethylsiloxane, and polymethylalkylsiloxane.
  • silicone-based surfactants include, for example, BYK®-306, BYK-307, BYK-333, BYK-341, BYK-345, BYK-346, BYK-347, BYK-348, and , BYK-349 (all manufactured by BYK), and KF-351A, KF-352A, KF-353, KF-354L, KF-355A, KF-615A, KF-945, KF-640, KF-642, Examples thereof include KF-643, KF-6020, X-22-4515, KF-6011, KF-6012, KF-6015, and KF-6017 (all manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the fluorine-based surfactant is not particularly limited as long as it is a surfactant having a fluorine-containing group as a hydrophobic group, and examples thereof include perfluorooctanesulfonic acid and perfluorocarboxylic acid.
  • Commercially available products of fluorine-based surfactants include, for example, Megafuck (registered trademark) F-114, F-410, F-440, F-447, F-553, and F-556 (all manufactured by DIC Corporation).
  • PFOA perfluorooctanoic acid
  • PFOS perfluorooctanesulfonic acid
  • hydrocarbon-based surfactant examples include anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants.
  • anionic surfactant examples include alkyl sulfates, alkylbenzene sulfonates, alkyl phosphates, and fatty acid salts.
  • nonionic surfactant examples include polyalkylene glycol mono or dialkyl ether, polyalkylene glycol mono or dialkyl ester, and polyalkylene glycol monoalkyl ester / monoalkyl ether.
  • the cationic surfactant include primary to tertiary alkylamine salts, quaternary ammonium compounds and the like.
  • amphoteric surfactant examples include a surfactant having both an anionic moiety and a cationic moiety in the molecule.
  • anionic surfactants include, for example, Rapisol® A-90, A-80, BW-30, B-90, and C-70 (all manufactured by NOF CORPORATION).
  • NIKKOL registered trademark
  • OTP-100 above, manufactured by Nikko Chemical Industries, Ltd.
  • Kohakul registered trademark
  • Phosphanol registered trademark
  • Viewlight registered trademark
  • SSS all manufactured by Sanyo Chemical Industries, Ltd.
  • nonionic surfactants include, for example, Naroacty (registered trademark) CL-95, HN-100 (trade name: manufactured by Sanyo Kasei Kogyo Co., Ltd.), and Lisolex BW400 (trade name: higher alcohol industry).
  • EMALEX® ET-2020 all manufactured by Nippon Emulsion Co., Ltd.
  • Surfinol® 104E, 420, 440, 465, and Dynol® 604, 607 aboveve, manufactured by Nisshin Kagaku Kogyo Co., Ltd.
  • anionic surfactants and / or nonionic surfactants are preferable and anionic surfactants are preferable because they can form a particle-containing layer having a smooth surface without inhibiting the dispersion of the resin.
  • Surfactants are more preferred. That is, as the surfactant, an anionic hydrocarbon-based surfactant is more preferable in terms of improving the surface smoothness.
  • the anionic hydrocarbon-based surfactant preferably has a plurality of hydrophobic end groups in terms of further improving smoothness.
  • the hydrophobic end group may be a part of the hydrocarbon group contained in the hydrocarbon-based surfactant.
  • a hydrocarbon-based surfactant having a hydrocarbon group having a branched chain structure at the end will have a plurality of hydrophobic end groups.
  • anionic hydrocarbon-based surfactants having a plurality of hydrophobic end groups include di-2-ethylhexyl sulfosuccinate (having four hydrophobic end groups) and di-2-ethyloctyl sulfosuccinate (sodium sulfosuccinate). (Has four hydrophobic end groups) and branched chain alkylbenzene sulfonate (has two hydrophobic end groups).
  • the content of the surfactant is preferably 0.1 to 10% by mass with respect to the total mass of the specific layer, and is 0.1 to 0.1 to 10 in that it is excellent in antistatic property at the time of forming the release layer and surface smoothness. It is more preferably 5% by mass, and even more preferably 0.5 to 2% by mass.
  • the specific layer preferably further contains wax because the surface free energy can be easily adjusted.
  • the wax is not particularly limited and may be either a natural wax or a synthetic wax.
  • the natural wax include carnauba wax, candelilla wax, beeswax, montan wax, paraffin wax, and petroleum wax.
  • the slip agent described in paragraph 0087 of International Publication No. 2017/169844 can also be used.
  • Examples of commercially available wax products include Celozol (registered trademark) series (manufactured by Chukyo Yushi Co., Ltd.).
  • the wax content is preferably 0 to 10% by mass with respect to the total mass of the specific layer.
  • the resin contained in the specific layer preferably has a crosslinked structure formed by using a crosslinking agent.
  • the cross-linking agent is not particularly limited, and known ones can be used.
  • Examples of the cross-linking agent include melamine compounds, oxazoline compounds, epoxy compounds, isocyanate compounds, and carbodiimide compounds, and oxazoline compounds and carbodiimide compounds are particularly preferable.
  • Examples of commercially available products include Carbodilite (registered trademark) V-02-L2 (manufactured by Nisshinbo Co., Ltd.) and Epocross (registered trademark) K-2020E (manufactured by Nippon Shokubai Co., Ltd.).
  • the description in paragraphs 0083 to 0083 of JP2015-163457 can be referred to.
  • the cross-linking agent described in paragraphs 882-0084 of WO 2017/169844 can also be preferably used.
  • the carbodiimide compound the description in paragraphs 0038 to 0040 of JP-A-2017-087421 can be referred to.
  • the oxazoline compound, the carbodiimide compound and the isocyanate compound the cross-linking agent described in paragraphs 0074 to 0075 of International Publication No. 2018/034294 can also be preferably used.
  • the content of the cross-linking agent is preferably 0 to 50% by mass with respect to the total mass of the specific layer.
  • the specific layer preferably has a low content of the cationic organic compound in that it aggregates with the resin and / or the particles and the coatability at the time of forming the specific layer does not deteriorate.
  • the thickness of the specific layer is 1 to 200 nm, and 10 to 100 nm is preferable, and 20 to 100 nm is more preferable, in terms of the superior effect of the present invention, the manufacturing suitability of the specific layer, and the reduction of haze.
  • the thickness of the specific layer is measured by preparing a section having a cross section perpendicular to the main surface of the polyester film and using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The arithmetic average value of the thicknesses of the five sections of the above section is used. If the specific layer is soft and it is difficult to stably prepare a cross-sectional section, measurement may be performed using a spectrophotometer.
  • a unit capable of measuring absolute reflectance is installed in a spectrophotometer to measure the absolute reflectance spectrum (specific layer surface) at an incident angle of 5 degrees.
  • the film thickness of the specific layer can be obtained by fitting the reflectance spectrum, the refractive index of the specific layer and the polyester substrate, and the spectrum calculated using the film thickness of the specific layer as parameters.
  • the surface free energy of the second main surface of this film is preferably 60 mJ / m 2 or less, more preferably 50 mJ / m 2 or less, further preferably 25 to 50 mJ / m 2 , and particularly preferably 30 to 50 mJ / m 2 . Since the surface free energy of the second main surface is within the above range, even if the maximum cross-sectional height SRt of the second main surface is within the above range, the films do not adhere too much to each other and are excellent in scratch prevention. A polyester film can be obtained in which the surface of the film is not easily scratched without foreign matter such as dust adhering to it.
  • the surface free energy of the second main surface (specific layer surface) can be adjusted, for example, by selecting the types of particles, resins and additives contained in the specific layer and their contents.
  • the surface free energy of the second main surface of the polyester film can be measured by the method described later.
  • the surface free energy of the first main surface is preferably 40 to 80 mJ / m 2 , and more preferably 50 to 70 mJ / m 2 . Further, it is preferable that the difference between the surface free energy of the first main surface and the surface free energy of the second main surface is wide because the film is less likely to be charged.
  • the difference between the surface free energy of the first main surface and the surface free energy of the second main surface is preferably 1 to 35 mJ / m 2 , and more preferably 10 to 30 mJ / m 2 .
  • the surface free energy of the first main surface can be adjusted by the type of resin and additive forming the layer having the first main surface.
  • the types of polyester and additives forming the polyester base material and Depending on their content, the surface free energy of the first main surface can be adjusted.
  • the surface free energy of the first main surface can be adjusted by the type of the non-polyester resin and the additive contained in the non-polyester resin layer and the content thereof.
  • the specific layer is provided on both sides of the polyester base material, the surface of the first main surface is free depending on the types of resins and additives contained in the specific layer on the side forming the first main surface and their contents. You can adjust the energy.
  • the maximum cross-sectional height SRt of the second main surface is 20 to 150 nm.
  • the maximum cross-sectional height SRt of the second main surface is within the above range, a polyester film having an excellent balance between scratch prevention and pattern linearity can be obtained.
  • the maximum cross-sectional height SRt of the second main surface is preferably 20 to 100 nm, more preferably 20 to 40 nm.
  • the surface average roughness SRa of the second main surface is preferably 0.5 to 10.0 nm, more preferably 1.0 to 8.0 nm, in that the suppression stability of transfer marks is more excellent. It is preferable, and more preferably 1.0 to 5.0 nm.
  • the maximum cross-sectional height SRt and surface average roughness SRa of the second main surface (specific layer surface) are adjusted by, for example, the average particle size and content of the particles contained in the specific layer, and the thickness of the specific layer. Can be done. When a specific layer is formed by in-line coating, the above adjustment can be performed more easily.
  • the maximum cross-sectional height SRt and the surface average roughness SRa of the second main surface of the polyester film can be measured by the method described later.
  • the first main surface is preferably as smooth as possible in terms of smoothing a layer such as a photosensitive resin layer laminated during DFR production.
  • the maximum cross-sectional height SRt of the first main surface is preferably 1 to 60 nm, more preferably 5 to 40 nm.
  • the surface average roughness SRa of the first main surface is preferably 0 to 10.0 nm, more preferably 0 to 5.0 nm.
  • the polyester base material is provided with a specific layer on only one side so that particles are not substantially contained in the polyester base material and the film is formed smoothly. It can be adjusted by a method such as selecting the type of polyester and the type of additive constituting the above.
  • a method such as selecting the type of polyester and the type of additive constituting the above.
  • the maximum cross-sectional height SRt and the surface average roughness SRa of the first main surface can be measured according to the above-mentioned measuring methods of the maximum cross-sectional height SRt and the surface average roughness SRa of the second main surface.
  • the density D (unit: piece / ⁇ m 2 , also referred to as “particle density D”) of the particles constituting the protrusions on the second main surface is 1 to 1 in that the effect of the present invention is more excellent. It is preferably 10 pieces / ⁇ m 2 , and more preferably 1 to 5 pieces / ⁇ m 2 .
  • the particle density D can be adjusted by, for example, the average particle size and content of the particles contained in the specific layer, and the thickness of the specific layer, similarly to the maximum cross-sectional height SRt and the surface average roughness SRa. ..
  • the above adjustment can be performed more easily.
  • the particle density D of the particles constituting the protrusions on the second main surface of the polyester film can be measured by the method described later.
  • the product of the maximum cross-sectional height SRt of the second main surface and the particle density D In this film, the particle density D (unit: piece / ⁇ m 2 ) of the second main surface and the maximum cross-sectional height SRt (unit: unit:) of the second main surface are described in that the effect of the present invention is more excellent.
  • the product (D ⁇ SRt) with (nm) is preferably 1000 or less, more preferably 600 or less, and even more preferably 130 or less.
  • the lower limit is not particularly limited, but 1 or more is preferable, 20 or more is more preferable, and 50 or more is further preferable, in that the scratch prevention property is more excellent.
  • This film is a biaxially oriented polyester film.
  • "biaxial orientation” means a property having molecular orientation in the biaxial direction.
  • the molecular orientation is measured using a microwave transmission type molecular orientation meter (for example, MOA-6004, manufactured by Oji Measuring Instruments Co., Ltd.).
  • the angle formed in the biaxial direction is preferably 90 ° ⁇ 5 °, more preferably 90 ° ⁇ 3 °, and even more preferably 90 ° ⁇ 1 °.
  • This film preferably has molecular orientation in the longitudinal direction and the width direction.
  • the expansion rate of the polyester film in the width direction at 90 ° C. is preferably ⁇ 0.15 to 0.15%, preferably ⁇ 0.10 to 0.10%, based on the film width at 30 ° C. Is more preferable, 0 to 0.10% is further preferable, and 0 to 0.05% is particularly preferable.
  • the coefficient of expansion in the width direction at 90 ° C. is measured by the following method using a thermomechanical analyzer.
  • a thermomechanical analyzer for example, TMA-60, manufactured by Shimadzu Corporation
  • a tensile load of 0.1 g is applied to a sample having a width of 4 mm and a length (distance between chucks) of 20 mm.
  • the value of the length of the sample at each temperature (° C.) by raising the temperature of the above sample from a temperature of 20 ° C.
  • the expansion coefficient in the width direction at 90 ° C. is obtained using the following formula.
  • the coefficient of expansion in the width direction is an arithmetic mean value of the coefficient of expansion obtained using five samples.
  • the expansion rate in the width direction of the polyester film can be adjusted, for example, by appropriately setting the draw ratio in the manufacturing process of the biaxially oriented film, the heat treatment temperature, and the film width during cooling.
  • the density of the polyester film is preferably 1.39 to 1.41 g / cm 3 , more preferably 1.395 to 1.405 g / cm 3 , and even more preferably 1.398 to 1.400 g / cm 3 .
  • the density of the polyester film can be measured using an electronic hydrometer (product name "SD-200L", manufactured by Alpha Mirage Co., Ltd.).
  • the thickness of the polyester film is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, still more preferably 35 ⁇ m or less, in terms of improving transferability.
  • the lower limit of the thickness is not particularly limited, but 1 ⁇ m or more is preferable, 5 ⁇ m or more is more preferable, and 10 ⁇ m or more is further preferable, from the viewpoint of excellent handleability.
  • the thickness of the polyester film shall be the arithmetic mean value of the thicknesses at five points measured by the continuous stylus type film thickness meter.
  • the variation in the thickness of the polyester film is preferably 7% or less, more preferably 5% or less of the average thickness of the polyester film in that the surface smoothness of the first main surface forming the release layer is more excellent.
  • the lower limit of the thickness variation is not particularly limited, and may be 0% or more of the average thickness of the polyester film. The thickness variation can be measured by the method described later.
  • the present production method As a method for producing this film (hereinafter, also referred to as “the present production method”), for example, a specific layer formation for forming a specific layer containing particles and a resin on a polyester base material containing substantially no particles is used. Examples include methods having steps. As the specific layer forming step, a step of in-line coating the polyester base material with a particle-containing layer forming composition containing particles and a resin to form a specific layer is preferable. Further, as the present production method, there is a method having a biaxial stretching step of biaxially stretching an unstretched polyester film having a polyester base material substantially containing no particles.
  • the biaxial stretching may be simultaneous biaxial stretching in which longitudinal stretching and transverse stretching are performed at the same time, or sequential biaxial stretching in which longitudinal stretching and transverse stretching are divided into two or more stages.
  • sequential biaxial stretching include longitudinal stretching ⁇ transverse stretching, longitudinal stretching ⁇ transverse stretching ⁇ longitudinal stretching, longitudinal stretching ⁇ longitudinal stretching ⁇ transverse stretching, and transverse stretching ⁇ longitudinal stretching, and longitudinal stretching ⁇ transverse stretching. Is preferable.
  • the manufacturing method includes, for example, an extrusion molding step of extruding a molten resin containing a raw material polyester into a film to form an unstretched polyester film having a polyester base material substantially free of particles, and an unstretched polyester film.
  • a biaxial stretching step consisting of a longitudinal stretching step of stretching in the transport direction to form a uniaxially oriented polyester film and a transverse stretching step of stretching the uniaxially oriented polyester film in the width direction to form a biaxially oriented polyester film.
  • a heat fixing step of heating and heat-fixing a biaxially oriented polyester film a heat mitigation step of heating a polyester film heat-fixed by a heat fixing step at a temperature lower than that of the heat fixing step to relieve heat, and heat.
  • the extrusion molding step is a step of extruding a molten resin containing polyester as a raw material into a film by an extrusion molding method to form an unstretched polyester film containing substantially no particles.
  • the raw material polyester has the same meaning as the polyester described in the above item (polyester).
  • the extrusion molding method is a method of molding a raw material resin into a desired shape by extruding a melt of the raw material resin from an extrusion die using a known extruder.
  • the melt may be extruded in a single layer or in multiple layers.
  • the melt extruded from the extrusion die is cooled to form a film.
  • the melt can be formed into a film by bringing the melt into contact with a casting roll and cooling and solidifying the melt on the casting roll.
  • the temperature of the casting roll is preferably more than (Tg-10) ° C and not more than (Tg + 30) ° C.
  • Tg means the glass transition temperature of the polyester constituting the film.
  • the temperature of the polyester film and each member in the present manufacturing method can be measured by using a non-contact thermometer (for example, a radiation thermometer).
  • the cooled molded body is stripped from the cooling member such as a casting roll by using a stripping member such as a stripping roll.
  • the biaxial stretching step is a longitudinal stretching step of stretching the unstretched polyester film in the transport direction (hereinafter, also referred to as “longitudinal stretching”) to form a uniaxially oriented polyester film, and a longitudinal stretching step of forming the uniaxially oriented polyester film in the width direction. It has a transverse stretching step of forming a biaxially oriented polyester film by stretching (hereinafter, also referred to as “lateral stretching”).
  • the preheating temperature of the unstretched polyester film is preferably (Tg-30) to (Tg + 40) ° C., specifically 60 to 100 ° C.
  • the stretched roll described below may have a function of preheating the film.
  • the longitudinal stretching can be performed, for example, by applying tension between two or more pairs of stretching rolls installed in the transporting direction while transporting the unstretched polyester film in the longitudinal direction.
  • the transport speed (peripheral speed) of the film by the pair of stretch rolls A provided on the upstream side in the transport direction and the pair of stretch rolls B provided on the downstream side in the transport direction is the film by the stretch roll A.
  • the transfer speed of the film is not particularly limited as long as it is slower than the transfer rate of the film by the stretch roll B.
  • the transport speed of the film by the stretch roll A is preferably 5 to 60 m / min.
  • the transport speed of the film by the stretch roll B is preferably 40 to 160 m / min.
  • the draw ratio in the longitudinal stretching step is appropriately set depending on the application, and is preferably 2.0 to 5.0 times.
  • the stretching speed in the longitudinal stretching step is preferably 800 to 1500% / sec.
  • the "stretching speed" is a percentage obtained by dividing the length ⁇ d in the transport direction of the polyester film stretched in 1 second in the longitudinal stretching step by the length d0 in the transport direction of the polyester film before stretching. It is a value represented by.
  • the heating temperature in the longitudinal stretching step is preferably (Tg-20) to (Tg + 50) ° C., specifically 70 to 120 ° C.
  • the transverse stretching step is a step of transversely stretching a uniaxially oriented polyester film.
  • the preheating temperature is preferably (Tg-10) to (Tg + 60) ° C, specifically 80 to 120 ° C.
  • the stretching ratio (transverse stretching ratio) in the width direction of the uniaxially oriented polyester film in the transverse stretching step is not particularly limited, but is preferably larger than the stretching ratio in the longitudinal stretching step, and more preferably 3.0 to 6.0 times. ..
  • the area magnification expressed by the product of the stretching ratio in the longitudinal stretching step and the stretching ratio in the transverse stretching step has a good molecular orientation in the film width direction, and the molecular orientation is difficult to be relaxed when subjected to heat treatment. It is preferably 12.8 to 15.5 times because it is easy to maintain the state.
  • the heating temperature in the transverse stretching step is preferably (Tg-10) to (Tg + 80) ° C., specifically 100 to 140 ° C.
  • the stretching speed in the transverse stretching step is preferably 8 to 45% / sec.
  • ⁇ Heat fixing process> it is preferable to perform a heat fixing step and a heat relaxation step as a heat treatment for the polyester film laterally stretched by the transverse stretching step.
  • a heat fixing step and a heat relaxation step By heating and heat-fixing the biaxially oriented polyester film obtained in the transverse stretching step, the polyester can be crystallized and the shrinkage of the polyester film can be suppressed.
  • the surface temperature (heat fixing temperature) of the polyester film in the heat fixing step is not particularly limited, but is preferably 190 to 240 ° C.
  • the heating time in the heat fixing step is preferably 5 to 50 seconds.
  • ⁇ Heat relaxation process> It is preferable to perform a step of heat-relaxing the polyester film heat-fixed by the heat-fixing step by heating it at a temperature lower than that of the heat-fixing step. Residual strain of the polyester film can be alleviated by heat relaxation.
  • the surface temperature (heat relaxation temperature) of the polyester film in the heat relaxation step is preferably 5 ° C. or higher lower than the heat fixation temperature, and specifically, the heat relaxation temperature is preferably 100 to 235 ° C.
  • the production method preferably includes a cooling step of cooling the heat-relaxed polyester film.
  • the method for cooling the polyester film in the cooling step include a method of blowing air (preferably cold air) on the film and a method of bringing the film into contact with a temperature-adjustable member (for example, a temperature control roll).
  • the cooling rate of the polyester film in the cooling step is not particularly limited, but is preferably more than 2000 ° C./min and less than 4000 ° C./min in that the thickness unevenness of the release layer laminated on the biaxially oriented film is reduced.
  • the above-mentioned heat fixing step, heat relaxation step and cooling step in this manufacturing method are continuously carried out in this order. This is because the load (heat history) due to repeated heating and cooling of the polyester film can be reduced, the strain inherent in the film can be reduced, and the occurrence of streak defects can be suppressed.
  • the expansion ratio of the polyester film in the width direction by the expansion step that is, the ratio of the film width at the end of the cooling step to the film width before the start of the cooling step is preferably 0 to 1.3%.
  • composition A a particle-containing layer forming composition containing particles and a resin
  • the specific layer formed on at least one surface of the polyester base material by the specific layer forming step has the same meaning as the layer described in detail in the above item ⁇ Specific layer>.
  • the formation of the specific layer may be carried out at any stage of the present production method, for example, a coating film is formed on the surface of one or both of unstretched or stretched polyester substrates, and dried as necessary. The method can be mentioned.
  • the composition A can be prepared by mixing the particles and resin contained in the specific layer, additives added as necessary, and a solvent.
  • the solvent include water, ethanol, toluene, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether. Of these, water is preferable from the viewpoint of environment, safety and economy.
  • the composition A may contain one kind of solvent alone, or may contain two or more kinds of solvents.
  • the content of the solvent is preferably 80 to 99% by mass, more preferably 90 to 98% by mass, based on the total mass of the composition A. That is, in the composition A, the total content of the components (solid content) other than the solvent is preferably 0.5 to 20% by mass, more preferably 1 to 10% by mass, based on the total mass of the composition A.
  • the particles, resins and additives contained in the composition A are as described in detail in the above item ⁇ Specific layer>.
  • the catalog values of those commercially available products may be used as the average particle size of the particles.
  • the content of each component with respect to the total mass of the solid content of the composition A is the same as the preferable content of each component with respect to the total mass of the specific layer described above. It is preferable to adjust the content of each component in the coating liquid.
  • the method of applying the composition A is not particularly limited, and a known method can be used.
  • the coating method include a spray coating method, a slit coating method, a roll coating method, a blade coating method, a spin coating method, a bar coating method and a dip coating method.
  • the polyester base material to which the composition A is applied may be an unstretched polyester base material or a uniaxially oriented polyester base material, but may be a uniaxially oriented polyester group. It is preferably a material. That is, it is preferable to perform the specific layer forming step by the in-line coating method between the longitudinal stretching step and the transverse stretching step. This is because the adhesion between the polyester base material and the specific layer can be improved by simultaneously laterally stretching the uniaxially oriented polyester base material and the specific layer.
  • the present manufacturing method may include a winding step of obtaining a roll-shaped biaxially oriented polyester film by winding the biaxially oriented polyester film obtained through the above steps. Further, the present manufacturing method further includes a trimming step of continuously cutting the polyester film along the transport direction and cutting off at least one end in the width direction of the polyester film before carrying out the winding step. You may.
  • the transport speed of the polyester film in each step other than the longitudinal stretching step of this production method is not particularly limited, but is preferably 50 to 200 m / min in terms of productivity and quality. Further, the tension applied to the polyester film in the transport direction after the cooling step is applied until the polyester film is taken up in the above winding step is preferably 3 to 30 N / m.
  • this film Since this film is excellent in transparency and smoothness, it is suitably used as an optical polyester film. Above all, this film is preferably used as a polyester film for producing a dry film resist because it has excellent scratch resistance and pattern linearity. A dry film resist produced using this film can form a resist pattern having excellent pattern linearity even when a high-definition resist pattern is formed, and thus can be suitably used for forming a resist pattern. .. A dry film resist manufactured using this film and a method for manufacturing a dry film resist using this film will be described later.
  • this film Since this film has excellent transparency and smoothness, it is suitably used for optical applications other than dry film resist production. More specifically, protective films for various uses such as dry film resists, support films for various uses such as decorative sheets and decorative sheets, molding films such as decorative layers and resin sheets, optical display films, conductive films, etc. Suitable for use as a separator for release films for various applications such as ceramic sheet production, films for semiconductor manufacturing processes, films for polarizing plate manufacturing processes, films for magnetic tapes, and adhesive films for labels, medical use, office supplies, etc. Can be done.
  • the DFR of the present invention has the present film as a temporary support and a photosensitive resin layer provided on the first main surface of the present film, and is used as a photosensitive transfer member.
  • the DFR may have an intermediate layer between the present film and the photosensitive resin layer.
  • the intermediate layer means all the layers between the temporary support and the photosensitive resin layer.
  • the DFR of the present invention has the present film as a temporary support.
  • the temporary support means a support that can be peeled off. This film is as described above.
  • the photosensitive resin layer a known photosensitive resin layer can be used, but a negative photosensitive resin layer is preferable because the laminating property at high speed is more excellent. Specifically, it is preferable to have a monomer polymerizable compound having a double bond, a polymer (preferably a polymer having an acid group), and a photopolymerization initiator.
  • a photosensitive resin layer for example, the photosensitive resin layer described in JP-A-2016-224162 may be used.
  • a photosensitive resin layer containing a binder polymer, an ethylenically unsaturated compound and a photopolymerization initiator described in International Publication No. 2018/10513 is also mentioned as a preferable form.
  • More preferable forms include a photosensitive resin layer having an alkali-soluble acrylic resin having a cyclic structure, a polyfunctional acrylate, and an oxime-based photopolymerization initiator or a bisimidazole-type photopolymerization initiator.
  • the DFR preferably has a protective film on the surface of the photosensitive resin layer opposite to the temporary support side. It is also preferable to use this film as a protective film.
  • the method for producing the DFR of the present invention is not particularly limited, and the DFR of the present invention can be produced by a known production method.
  • a method for producing DFR for example, a step of mixing the above-mentioned constituent components of each layer and a solvent to prepare a composition for forming each layer such as a thermoplastic resin composition, and on the first main surface of this film. After applying the above composition to form a coating layer, the steps of drying the coating layer to form each layer are performed in order according to the desired layer structure, whereby the film, the intermediate layer, and the intermediate layer are formed. Examples thereof include a method of producing a DFR having a photosensitive resin layer in this order.
  • the DFR of the present invention has an excellent effect that a resist pattern having excellent pattern linearity can be formed even when it is used for forming a high-definition resist pattern. Therefore, the DFR of the present invention is preferably used for manufacturing a resist pattern and circuit wiring.
  • the term "film” includes both a polyester base material alone and an embodiment having a polyester base material and a particle-containing layer, and an unstretched film, a uniaxially oriented film, and the like. And all of the biaxially oriented films shall be included. Further, in each step of this embodiment, a non-contact thermometer (AD-5616 (product name), manufactured by A & D, emissivity 0.95) is used to measure the temperature of the central portion in the width direction of the film five times. Then, the arithmetic mean value of the obtained measured values was used as the measured value of the surface temperature of the film.
  • AD-5616 product name
  • Example 1 ⁇ Extrusion molding process> Titanium compounds (citrate chelate titanium complex, VERTEC AC-420, manufactured by Johnson Matthey), magnesium compounds (magnesium acetate tetrahydrate), and phosphorus compounds (phosphoric acid) described in Japanese Patent No. 5575671 as polymerization catalysts. Pellets of polyethylene terephthalate were produced using (trimethyl). The contents of magnesium, phosphorus, and titanium contained in the pellets were 82 mass ppm, 73 mass ppm, and 9 mass ppm, respectively, with respect to the total mass of the pellets.
  • the obtained pellets were dried to a water content of 50 ppm or less, charged into a hopper of a uniaxial kneading extruder having a diameter of 30 mm, and then melted and extruded at 280 ° C.
  • the melt was passed through a filter (pore diameter 2 ⁇ m) and then extruded from the die into a cooling drum at 25 ° C. to obtain an unstretched film made of polyethylene terephthalate and containing no particles.
  • the extruded melt was brought into close contact with the cooling drum by the electrostatic application method.
  • the melting point (Tm) of polyethylene terephthalate constituting the unstretched film was 258 ° C., and the glass transition temperature (Tg) was 80 ° C.
  • composition 1 composition for forming a particle-containing layer
  • a vertically stretched uniaxially oriented film polyyester base material
  • a bar coater a bar coater
  • the formed coating film is coated with hot air at 100 ° C. It was dried to form a particle-containing layer (specific layer).
  • the coating amount of the composition 1 was adjusted so that the thickness of the formed particle-containing layer was 40 nm.
  • composition 1 was prepared by mixing each of the components shown below. Filtration treatment of the prepared composition 1 using a filter having a pore size of 6 ⁇ m (F20, manufactured by Mahle Filter Systems Corp.) and membrane degassing (2x6 radial flow superphobic, manufactured by Polypore Co., Ltd.). After that, the obtained composition 1 was applied to the surface of the uniaxially oriented film. A copolymer obtained by polymerizing an acrylic resin (resin A1) (methyl methacrylate, styrene, 2-ethylhexyl acrylate, 2-hydroxyethyl methacrylate and acrylic acid (containing in a mass ratio of 59: 8: 26: 5: 2)).
  • resin A1 methyl methacrylate, styrene, 2-ethylhexyl acrylate, 2-hydroxyethyl methacrylate and acrylic acid (containing in a mass ratio of 59: 8: 26: 5: 2)
  • Heat relaxation process> the heat-fixed film was heated under the following conditions to perform a heat relaxation step of relaxing the tension of the film. Further, in the heat relaxation step, the film width was reduced as compared with the end of the heat fixing step by narrowing the distance (tenter width) between the gripping members of the tenter that grips both ends of the film.
  • the heat-relaxed film was subjected to a cooling step of cooling under the following conditions. Further, in the cooling step, an expansion step was carried out in which the film width was expanded as compared with the time when the heat relaxation step was completed by widening the tenter width.
  • the following cooling rates are the film surface temperature measured at the time of carrying into the cooling unit 50 and the cooling unit 50, with the residence time from the time the film is carried into the cooling unit 50 of the stretching machine 100 to being carried out as the cooling time ta. It was obtained by dividing the temperature difference ⁇ T (° C.) from the film surface temperature measured at the time of carrying out by the cooling time ta.
  • Examples 2 to 16 In the particle-containing layer forming step, the compositions 2 to 16 having the compositions shown in Table 1 described later were used instead of the composition 1 used as the particle-containing layer forming composition in Example 1, respectively.
  • a biaxially oriented film was prepared according to the method described in Example 1 except that the coating amount of each composition was adjusted so that the thickness of the particle-containing layer became the numerical value shown in Table 2 described later.
  • compositions C1 and C2 having the compositions shown in Table 1 described later were used instead of the composition 1 used as the particle-containing layer forming composition in Example 1, respectively.
  • a biaxially oriented film was prepared according to the method described in Example 1 except that the thickness of the particle-containing layer was adjusted to the values shown in Table 2 described later.
  • Example 3 Described in Example 1 except that when the polyethylene terephthalate pellets were prepared in the extrusion molding step according to Example 1, alumina particles having an average particle diameter of 50 nm were added in an amount of 0.5% by mass with respect to the entire resin pellets. A biaxially oriented film was prepared according to the above method.
  • cross-linking agents 1 to 3 in the “cross-linking agent” column indicate the following components, respectively.
  • the notation “amount (%)” indicates the content (unit: mass%) of each component with respect to the total mass of the solid content of the particle-containing layer forming composition.
  • Particle Particle 1 Colloidal silica ("Snowtex XL” manufactured by Nissan Chemical Industries, Ltd., average particle diameter 50 nm)
  • Particle 2 Colloidal silica ("Snowtex YL” manufactured by Nissan Chemical Industries, Ltd., average particle diameter 50-80 nm)
  • Particle 3 Colloidal silica ("Snowtex ZL” manufactured by Nissan Chemical Industries, Ltd., average particle diameter 70-100 nm)
  • Particle 4 Aggregated silica (Aerosil OX50, manufactured by Nippon Aerosil Co., Ltd., average particle size 200 nm, average primary particle size 40 nm)
  • Particle 5 Porous silica (average particle size 1.8 ⁇ m)
  • the particles 1 to 5 are particles that do not have a hollow structure.
  • Resin A1 Acrylic resin (methyl methacrylate, styrene, 2-ethylhexyl acrylate, 2-hydroxyethyl methacrylate and acrylic acid emulsified and polymerized at a mass ratio of 59: 8: 26: 5: 2, a copolymer and an aqueous dispersion.
  • Resin A3 Acrylic resin (aqueous dispersion obtained by polymerizing methyl methacrylate, 2-hydroxyethyl methacrylate and methacrylic acid at a mass ratio of 28:48:24 to neutralize a copolymer)
  • Resin C Acid-modified polyolefin ("Zyxen (registered trademark) N" manufactured by Sumitomo Seika Chemical Co., Ltd., aqueous dispersion)
  • Resin D Urethane resin (aqueous dispersion of polyurethane resin synthesized by the following method) In a four-necked flask equipped with a stirrer, Dimroth condenser, nitrogen introduction tube, silica gel drying tube, and thermometer, 43.75 parts of 4,4-dicyclohexylmethanediiscetone, 12.85 parts of dimethylolbutanoic acid, number average.
  • W-1 Anionic hydrocarbon-based surfactant (“Rapisol® A-90” manufactured by NOF CORPORATION)
  • W-2 Nonionic surfactant ("Naroacty (registered trademark) CL95” manufactured by Sanyo Chemical Industries, Ltd., polyoxyalkylene alkyl ether, solid content 100% by mass)
  • W-3 Fluorosurfactant (“Surflon (registered trademark) S-211” manufactured by AGC Seimi Chemical Co., Ltd.)
  • Wax 1 Carnauba wax ("Cerozol (registered trademark) 524" manufactured by Chukyo Yushi Co., Ltd.)
  • Crosslinking agent 1 Carbodiimide crosslinking agent ("Carbodilite (registered trademark) V-02-L2" manufactured by Nisshinbo Chemical Co., Ltd.)
  • Cross-linking agent 2 Melamine cross-linking agent (hexamethoxymethylol melamine)
  • Crosslinking agent 3 Oxazoline crosslinking agent ("Epocross WS-700" manufactured by Nippon Shokubai Co., Ltd.)
  • the maximum cross-sectional height SRt and the surface average roughness SRa of the second main surface of the biaxially oriented film were measured by the following methods.
  • the surface of the manufactured biaxially oriented film on the particle-containing layer side was measured using an optical interferometer (Vertscan 3300G Lite, manufactured by Hitachi High-Tech Co., Ltd.) under the following conditions, and then the built-in data analysis software ( By analysis with VS-Measure5), the maximum cross-sectional height SRt of the second main surface of the biaxially oriented film (the notation in the optical interferometer is “St”) and the surface average roughness SRa (in the optical interferometer).
  • the maximum cross-sectional height SRt and the surface average roughness SRa of the first main surface of the biaxially oriented film were measured by the same method as above.
  • the maximum cross-sectional height SRt of the first main surface was 18 nm
  • the maximum cross-sectional height SRa of the first main surface was 1 nm.
  • the surface free energy of the second main surface of the biaxially oriented film was measured by the following method. Using a contact angle meter (DROPMASTER-501 manufactured by Kyowa Interface Chemistry Co., Ltd.), droplets are dropped on the surface of the manufactured biaxially oriented film on the particle-containing layer side under the condition of 25 ° C., and the droplets are surfaced. The contact angle was measured 1 second after adhering to the surface. Using 2 ⁇ L of purified water, 1 ⁇ L of methylene iodide and 1 ⁇ L of ethylene glycol as droplets, the surface free energy was calculated by the method of Kitazaki and Hata from each measured contact angle. The measured surface free energy of the second main surface is shown in Table 2. As a result of measuring the surface free energy of the first main surface of the biaxially oriented film by the same method as above, the surface free energy of the first main surface was 59.7 mJ / m 2 in all the examples. ..
  • ⁇ Average particle size, particle density D> The average particle size and the particle density D of the particles contained in the particle-containing layer were measured by the following methods. Using a scanning electron microscope (SEM, manufactured by Hitachi High-Tech, S4700), the surface of the biaxially oriented film on the particle-containing layer side was observed at a magnification of 20000 times to obtain an observation image of 10 fields. For particles that can be identified as protrusions from the obtained image data, the area of each particle is measured using image software and converted into the diameter of a circle having the same area (diameter equivalent to the area circle). After obtaining the diameter, the arithmetic average value of the particles was calculated.
  • SEM scanning electron microscope
  • the value obtained by dividing the number of particles that can be identified from the image data of each visual field by the visual field area was calculated as the particle density D (unit: individual / ⁇ m 2 ).
  • the particle density D unit: individual / ⁇ m 2 .
  • ⁇ Thickness variation> A sample having a length of 10 m in the longitudinal direction was taken from the produced biaxially oriented film. The thickness of this sample was measured over 10 m along the longitudinal direction using a continuous stylus type film thickness meter (TOF-6R001, manufactured by Yamabun Co., Ltd.). This measurement was performed at 5 locations with different positions in the width direction. From the obtained measured values, a value ((maximum thickness-minimum thickness) / average thickness) obtained by dividing the difference between the maximum value and the minimum value by the arithmetic mean value of all the measured values was calculated as the thickness variation. As a result, the thickness variation of the biaxially directed film produced in each Example and each Comparative Example was 4.5%.
  • thermoplastic resin layer having the following formulation F On the first main surface, which is the surface opposite to the particle-containing layer, with respect to the biaxially oriented film subjected to the above cooling step in each Example and each Comparative Example.
  • the coating liquid was applied, and the obtained coating film was dried at 80 ° C. to form a thermoplastic resin layer.
  • a coating liquid for forming a water-soluble resin layer consisting of the following formulation G was applied onto the thermoplastic resin layer, and then the obtained coating film was dried at 80 ° C. to form a water-soluble resin layer.
  • a coating liquid for forming a photosensitive resin layer consisting of the following formulation H was applied onto the water-soluble resin layer, and then the obtained coating film was dried at 80 ° C. to form a photosensitive resin layer.
  • a PET film manufactured by Toray Industries, Inc., Lumirror 16KS40
  • the photosensitive transfer member is an example of DFR and has a layer structure composed of a biaxially oriented film / a thermoplastic resin layer / a water-soluble resin layer / a photosensitive resin layer / a protective film.
  • the thickness of the thermoplastic resin layer was 2 ⁇ m
  • the thickness of the water-soluble resin layer was 1 ⁇ m
  • the thickness of the photosensitive resin layer was 2 ⁇ m.
  • ⁇ Prescription G Coating liquid for forming a water-soluble resin layer> -Polyvinyl alcohol ("Kuraray Poval (registered trademark) 4-88LA” manufactured by Kuraray Co., Ltd.): 3.22 parts-Polyvinyl pyrrolidone ("K-30" manufactured by Nippon Catalyst Co., Ltd.): 1.49 parts-Surfactant activity Agent ("Megafuck F-444" manufactured by DIC Co., Ltd.): 0.0035 parts-Methanol (manufactured by Mitsubishi Gas Chemical Company, Inc.): 57.1 parts-Ion exchanged water: 38.12 parts
  • Photopolymerization initiator (2- (2-chlorophenyl) -4,5-diphenylimidazole dimer): 1.03 parts ⁇ 4,4'-bis (diethylamino) benzophenone: 0 .04 parts ⁇ N-phenylcarbamoylmethyl-N-carboxymethylaniline: 0.02 parts ⁇ Ethylated bisphenol A dimethacrylate (“NK Ester BPE-500” manufactured by Shin-Nakamura Chemical Industry Co., Ltd.): 5.61 parts ⁇ Polyfunctional acrylate monomer (“Aronix M-270” manufactured by Toa Synthetic Co., Ltd.): 0.58 parts ⁇ Phenothiazine: 0.04 parts ⁇ 4-Hydroxymethyl-4-methyl-1-phenyl-3-pyrazolidone: 0.
  • a PET substrate with a copper layer was produced by forming a copper layer having a thickness of 200 nm on a polyethylene terephthalate (PET) film having a thickness of 100 ⁇ m by a sputtering method.
  • PET polyethylene terephthalate
  • the roll-shaped photosensitive transfer member produced above was unwound, and the protective film was peeled off from the photosensitive transfer member.
  • the photosensitive transfer member and the above-mentioned PET substrate with a copper layer were bonded together so that the photosensitive resin layer exposed by peeling of the protective film and the copper layer were in contact with each other to obtain a laminated body.
  • This bonding step was performed under the conditions of a roll temperature of 100 ° C., a linear pressure of 1.0 MPa, and a linear velocity of 4.0 m / min.
  • the photosensitive resin layer was exposed by irradiating an ultrahigh pressure mercury lamp (exposure main wavelength: 365 nm) from the biaxially oriented film side of the obtained laminate via a photomask.
  • the photomask used for exposure had a line-and-space pattern in which the ratio of the widths of the transmission region and the light-shielding region (duty ratio) was 1: 1 and the line width (and space width) was 6 ⁇ m. .. Further, the exposure amount to the photosensitive resin layer was adjusted so that the line width of the resist pattern formed by being exposed by the irradiation light was 6 ⁇ m.
  • the laminate was shower-developed for 30 seconds using a 1.0% sodium carbonate aqueous solution having a liquid temperature of 25 ° C.
  • a 1.0% sodium carbonate aqueous solution having a liquid temperature of 25 ° C.
  • the pattern widths (line widths of the photosensitive resin layer) at 20 arbitrarily selected points were measured using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the standard deviation ⁇ was calculated from the obtained line width data, and the value obtained by multiplying the standard deviation ⁇ by 3 was defined as LWR (Line Width Roughness) and used as an index of pattern linearity.
  • LWR Line Width Roughness
  • the pattern linearity of the produced resist pattern is preferably any one of "A” to "C", more preferably “A” or “B”, and even more preferably "A”. ..
  • Table 2 shows the physical characteristics and evaluation results of the biaxially oriented films produced in each Example and each Comparative Example.
  • the "average particle size” column of the "particle-containing layer” indicates the average particle size (unit: ⁇ m) of the particles contained in the particle-containing layer.
  • a “-" in the "average particle size” column indicates that no particles were observed by the above measuring method.
  • the "D x SRt” column of the “second main surface” shows the particle density D (unit: pieces / ⁇ m 2 ) of the particles constituting the protrusions of the second main surface and the maximum of the second main surface. Represents the product with the cross-sectional height SRt (unit: nm).
  • the biaxially oriented film has better scratch resistance (comparison of Examples 1, 5 and 15).
  • the product (D ⁇ SRt) of the particle density D (unit: piece / ⁇ m 2 ) of the particles constituting the protrusions on the second main surface and the maximum cross-sectional height SRt (unit: nm) of the second main surface is It was confirmed that when it was 600 or less, the pattern linearity was more excellent, and when the product (D ⁇ SRt) was 130 or less, the pattern linearity was further excellent (comparison of Examples 1 to 13).
  • Polyester film 1a First main surface 1b: Second main surface 2: Polyester base material 3: Specific layer (particle-containing layer)

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention addresses the problem of providing a polyester film for optical use, which has excellent anti-scratch properties, and can be used for the production of such a dry film resist that, when a high-precise resist pattern is formed using the dry film, the resist pattern has excellent pattern linearity. The present invention also addresses the problem of providing: a dry film resist; and a method for producing a polyester film. The polyester film according to the present invention is a polyester film for optical use, which comprises a polyester base material containing substantially no particle and a particle-containing layer arranged on at least one surface of the polyester base material and comprising particles and a resin, and which has a first main surface and a second main surface, in which the second main surface is a surface opposed to a polyester base material side of the particle-containing layer, the maximum cross-section height SRt of the second main surface is 20 to 150nm, and the thickness of the particle-containing layer is 1 to 200 nm.

Description

ポリエステルフィルム、ドライフィルムレジスト、ポリエステルフィルムの製造方法Method for manufacturing polyester film, dry film resist, polyester film
 本発明は、ポリエステルフィルム、ドライフィルムレジスト、及び、ポリエステルフィルムの製造方法に関する。 The present invention relates to a polyester film, a dry film resist, and a method for producing a polyester film.
 ポリエステルフィルムは、加工性、機械的性質、電気的性質、寸法安定性、透明性、及び、耐薬品性等の観点から幅広い用途に使用されており、例えば、ドライフィルムレジストの支持体及び保護フィルムとして使用されている。ドライフィルムレジストは、例えば、支持体上に感光性樹脂層(フォトレジスト層)を積層した後、更に保護フィルムを積層してなる構造を有している。近年、ドライフィルムレジストは、タッチパネル分野において、配線形成工程におけるエッチングの用途、銅、ITO(酸化インジウムスズ)及び銀ナノ粒子等の配線部分を保護する保護膜形成の用途、並びに、層間絶縁膜の用途に利用されている。 Polyester films are used in a wide range of applications from the viewpoints of processability, mechanical properties, electrical properties, dimensional stability, transparency, chemical resistance, etc. For example, dry film resist supports and protective films. It is used as. The dry film resist has, for example, a structure in which a photosensitive resin layer (photoresist layer) is laminated on a support, and then a protective film is further laminated. In recent years, dry film resists have been used in the field of touch panels for etching in the wiring forming process, for forming a protective film for protecting wiring portions such as copper, ITO (indium tin oxide) and silver nanoparticles, and for interlayer insulating films. It is used for various purposes.
 特許文献1には、ポリエステルフィルムを支持体とし、支持体の片面にレジスト層を設けてなる積層ポリエステルフィルムであって、積層フィルムのヘーズが1.0%以下であり、積層フィルムのレジスト層側とは反対側の表面が所定の表面固有抵抗及び耐磨耗性指数を有し、表面の傷の個数が所定値未満である、極細線フォトレジスト用ポリエステルフィルムが開示されている。 Patent Document 1 describes a laminated polyester film in which a polyester film is used as a support and a resist layer is provided on one side of the support, and the haze of the laminated film is 1.0% or less, and the resist layer side of the laminated film is provided. Disclosed is a polyester film for ultrafine wire photoresist in which the surface on the opposite side has a predetermined surface intrinsic resistance and abrasion resistance index, and the number of scratches on the surface is less than a predetermined value.
特開2006-327158号公報Japanese Unexamined Patent Publication No. 2006-327158
 従来、ポリエステルフィルムを支持体として用いて上記ドライフィルムレジスト(DFR)等の積層体を製造する際にフィルム同士が密着して傷がつくことを防止する目的で、ポリエステルフィルムの表面に粒子を含有する表層を設ける技術が知られている。
 一方、近年のレジストパターンの高解像度化(精細化)に伴い、DFRを構成する支持体に対しては、レジストパターンの高解像度化に寄与し得る性能(薄膜化、低ヘイズ等)に関して従来以上の高い性能が要求されている。
 本発明者らは、特許文献1に記載された技術を参考にして、粒子を含有するポリエステルフィルムを支持体として有するDFRを用いて、パターン幅がより狭い精細なレジストパターン(特に10μm以下のL/Sパターン)を形成したところ、ポリエステルフィルムの特性によっては、レジストパターンのパターン直線性が低下する場合があることを知見した。
Conventionally, particles are contained on the surface of a polyester film for the purpose of preventing the films from coming into close contact with each other and being scratched when a laminate such as the dry film resist (DFR) is manufactured using a polyester film as a support. A technique for providing a surface layer is known.
On the other hand, with the recent increase in resolution (finening) of resist patterns, the performance (thin film, low haze, etc.) that can contribute to higher resolution of resist patterns for the supports constituting DFR is higher than before. High performance is required.
With reference to the technique described in Patent Document 1, the present inventors used a DFR having a polyester film containing particles as a support, and used a fine resist pattern having a narrower pattern width (particularly L of 10 μm or less). / S pattern) was formed, and it was found that the pattern linearity of the resist pattern may be lowered depending on the characteristics of the polyester film.
 本発明は、上記実情に鑑みて、傷つき防止性に優れるとともに、ドライフィルムレジストの製造に用いることにより、そのドライフィルムを用いて高精細なレジストパターンを形成した場合であっても、パターン直線性に優れるレジストパターンを形成できるポリエステルフィルムを提供することを課題とする。
 また、本発明は、ドライフィルムレジスト、及び、ポリエステルフィルムの製造方法を提供することを課題とする。
In view of the above circumstances, the present invention is excellent in scratch resistance, and by using it in the production of a dry film resist, the pattern linearity is formed even when a high-definition resist pattern is formed using the dry film. It is an object of the present invention to provide a polyester film capable of forming an excellent resist pattern.
Another object of the present invention is to provide a method for producing a dry film resist and a polyester film.
 本発明者らは、上記課題について鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。 As a result of diligent studies on the above problems, the present inventors have found that the above problems can be solved by the following configuration.
〔1〕
 実質的に粒子を含有しないポリエステル基材と、上記ポリエステル基材の少なくとも一方の表面上に配置された、粒子及び樹脂を含有する粒子含有層と、を備え、第1主面及び第2主面を有する、光学用ポリエステルフィルムであって、上記第2主面は、上記粒子含有層の上記ポリエステル基材側とは反対側の表面であり、上記第2主面の最大断面高さSRtが20~150nmであり、上記粒子含有層の厚みが1~200nmである、ポリエステルフィルム。
〔2〕
 ドライフィルムレジスト製造用ポリエステルフィルムである、〔1〕に記載のポリエステルフィルム。
〔3〕
 上記第2主面の表面自由エネルギーが50mJ/m以下である、〔2〕に記載のポリエステルフィルム。
〔4〕
 上記樹脂がアクリル樹脂を含有する、〔2〕又は〔3〕に記載のポリエステルフィルム。
〔5〕
 上記アクリル樹脂が、スチレンに由来する構成単位と(メタ)アクリレートに由来する構成単位とを有する共重合体である、〔4〕に記載のポリエステルフィルム。
〔6〕
 上記アクリル樹脂が、炭素数1~4の無置換のアルキル基をエステル部位に有する(メタ)アクリレートに由来する構成単位と、炭素数5~10の無置換のアルキル基をエステル部位に有する(メタ)アクリレートに由来する構成単位とを有する、〔4〕又は〔5〕に記載のポリエステルフィルム。
〔7〕
 上記ポリエステルフィルムの厚みが1~35μmである、〔1〕~〔6〕のいずれかに記載のポリエステルフィルム。
〔8〕
 上記第2主面の最大断面高さSRtが20~40nmである、〔1〕~〔7〕のいずれかに記載のポリエステルフィルム。
〔9〕
 上記第2主面の突起を構成している粒子の密度D(単位:個/μm)と、上記第2主面の最大断面高さSRt(単位:nm)との積(D×SRt)が、600以下である、〔1〕~〔8〕のいずれかに記載のポリエステルフィルム。
〔10〕
 上記粒子含有層が炭化水素系界面活性剤を更に含有する、〔1〕~〔9〕のいずれかに記載のポリエステルフィルム。
〔11〕
 上記樹脂が架橋構造を有する、〔1〕~〔10〕のいずれかに記載のポリエステルフィルム。
〔12〕
 上記粒子含有層がワックスを更に含有する、〔1〕~〔11〕のいずれかに記載のポリエステルフィルム。
〔13〕
 上記第1主面の最大断面高さSRtが5~40nmである、〔1〕~〔12〕のいずれかに記載のポリエステルフィルム。
〔14〕
 上記第1主面の面平均粗さSRaが0~5.0nmであり、かつ、上記第2主面の面平均粗さSRaが1.0~5.0nmである、〔1〕~〔13〕のいずれかに記載のポリエステルフィルム。
〔15〕
 上記第1主面の表面自由エネルギーが50~70mJ/mである、〔1〕~〔14〕のいずれかに記載のポリエステルフィルム。
〔16〕
 〔1〕~〔15〕のいずれかに記載のポリエステルフィルムと、上記ポリエステルフィルムの上記第1主面上に設けられた感光性樹脂層と、を有する、ドライフィルムレジスト。
〔17〕
 上記感光性樹脂層が、重合体と、重合性化合物と、光重合開始剤とを含有する、〔16〕に記載のドライフィルムレジスト。
〔18〕
 実質的に粒子を含有しないポリエステル基材に対して、粒子及び樹脂を含有する粒子含有層形成用組成物を用いてインラインコーティングして、粒子含有層を形成する工程を有し、上記粒子含有層形成用組成物中に分散している上記粒子の平均粒子径が、10~250nmである、〔1〕~〔15〕のいずれかに記載のポリエステルフィルムの製造方法。
[1]
A polyester substrate containing substantially no particles and a particle-containing layer containing particles and a resin arranged on at least one surface of the polyester substrate are provided, and the first main surface and the second main surface are provided. The second main surface is a surface of the particle-containing layer opposite to the polyester base material side, and the maximum cross-sectional height SRt of the second main surface is 20. A polyester film having a particle thickness of about 150 nm and a thickness of the particle-containing layer of 1 to 200 nm.
[2]
The polyester film according to [1], which is a polyester film for producing a dry film resist.
[3]
The polyester film according to [2], wherein the surface free energy of the second main surface is 50 mJ / m 2 or less.
[4]
The polyester film according to [2] or [3], wherein the resin contains an acrylic resin.
[5]
The polyester film according to [4], wherein the acrylic resin is a copolymer having a structural unit derived from styrene and a structural unit derived from (meth) acrylate.
[6]
The acrylic resin has a structural unit derived from (meth) acrylate having an unsubstituted alkyl group having 1 to 4 carbon atoms in the ester moiety and an unsubstituted alkyl group having 5 to 10 carbon atoms in the ester moiety (meth). ) The polyester film according to [4] or [5], which has a structural unit derived from acrylate.
[7]
The polyester film according to any one of [1] to [6], wherein the polyester film has a thickness of 1 to 35 μm.
[8]
The polyester film according to any one of [1] to [7], wherein the maximum cross-sectional height SRt of the second main surface is 20 to 40 nm.
[9]
The product (D × SRt) of the density D (unit: piece / μm 2 ) of the particles constituting the protrusions on the second main surface and the maximum cross-sectional height SRt (unit: nm) of the second main surface. The polyester film according to any one of [1] to [8], wherein the polyester film is 600 or less.
[10]
The polyester film according to any one of [1] to [9], wherein the particle-containing layer further contains a hydrocarbon-based surfactant.
[11]
The polyester film according to any one of [1] to [10], wherein the resin has a crosslinked structure.
[12]
The polyester film according to any one of [1] to [11], wherein the particle-containing layer further contains wax.
[13]
The polyester film according to any one of [1] to [12], wherein the maximum cross-sectional height SRt of the first main surface is 5 to 40 nm.
[14]
The surface average roughness SRa of the first main surface is 0 to 5.0 nm, and the surface average roughness SRa of the second main surface is 1.0 to 5.0 nm, [1] to [13]. ] The polyester film described in any of.
[15]
The polyester film according to any one of [1] to [14], wherein the surface free energy of the first main surface is 50 to 70 mJ / m 2 .
[16]
A dry film resist comprising the polyester film according to any one of [1] to [15] and a photosensitive resin layer provided on the first main surface of the polyester film.
[17]
The dry film resist according to [16], wherein the photosensitive resin layer contains a polymer, a polymerizable compound, and a photopolymerization initiator.
[18]
A step of in-line coating a polyester base material containing substantially no particles with a composition for forming a particle-containing layer containing particles and a resin to form a particle-containing layer is provided, and the above-mentioned particle-containing layer is formed. The method for producing a polyester film according to any one of [1] to [15], wherein the average particle size of the particles dispersed in the forming composition is 10 to 250 nm.
 本発明によれば、傷つき防止性に優れるとともに、ドライフィルムレジストの製造に用いることにより、そのドライフィルムを用いて高精細なレジストパターンを形成した場合であっても、パターン直線性に優れるレジストパターンを形成できる、光学用ポリエステルフィルムを提供できる。
 また、本発明によれば、ドライフィルムレジスト、及び、ポリエステルフィルムの製造方法を提供できる。
According to the present invention, a resist pattern excellent in scratch prevention and excellent in pattern linearity even when a high-definition resist pattern is formed by using the dry film resist in the production of a dry film resist. Can provide an optical polyester film capable of forming.
Further, according to the present invention, it is possible to provide a method for producing a dry film resist and a polyester film.
本開示に係るポリエステルフィルムの構成の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the polyester film which concerns on this disclosure.
 以下、本発明の実施形態について詳細に説明する。なお、本発明は、以下の実施形態に何ら制限されず、本発明の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, embodiments of the present invention will be described in detail. The present invention is not limited to the following embodiments, and can be carried out with appropriate modifications within the scope of the object of the present invention.
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
 本開示において、「工程」との用語には、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
In the present disclosure, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value. In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of the numerical range described in another stepwise description. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
In the present disclosure, the amount of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. ..
In the present disclosure, the term "process" is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. ..
In the present disclosure, a combination of two or more preferred embodiments is a more preferred embodiment.
 本開示において、単なる「ポリエステルフィルム」との記載は、ポリエステル基材単体、並びに、ポリエステル基材及び粒子含有層の積層体の両者を包含する。
 本開示において、「長手方向」とは、ポリエステルフィルムの製造時におけるポリエステルフィルムの長尺方向を意味し、「搬送方向」及び「機械方向」と同義である。
 本開示において、「幅方向」とは、長手方向に直交する方向を意味する。本開示において、「直交」は、厳密な直交に限られず、略直交を含む。「略直交」とは、90°±5°で交わることを意味し、90°±3°で交わることが好ましく、90°±1°で交わることがより好ましい。
 また、本開示において、「フィルム幅」とは、ポリエステルフィルムの幅方向の両端間の距離を意味する。
In the present disclosure, the description of a mere "polyester film" includes both a polyester base material alone and a laminate of a polyester base material and a particle-containing layer.
In the present disclosure, the "longitudinal direction" means the elongated direction of the polyester film at the time of manufacturing the polyester film, and is synonymous with the "transport direction" and the "mechanical direction".
In the present disclosure, the "width direction" means a direction orthogonal to the longitudinal direction. In the present disclosure, "orthogonal" is not limited to strict orthogonality, but includes substantially orthogonality. "Approximately orthogonal" means intersecting at 90 ° ± 5 °, preferably at 90 ° ± 3 °, and more preferably at 90 ° ± 1 °.
Further, in the present disclosure, the "film width" means the distance between both ends of the polyester film in the width direction.
 本開示において、「(メタ)アクリレート」はアクリレート及びメタクリレートの少なくとも一方を表し、「(メタ)アクリル酸」はアクリル酸及びメタクリル酸の少なくとも一方を表し、「(メタ)アクリル」はアクリル及びメタクリルの少なくとも一方を表す。 In the present disclosure, "(meth) acrylate" represents at least one of acrylate and methacrylate, "(meth) acrylic acid" represents at least one of acrylic acid and methacrylic acid, and "(meth) acrylic" represents acrylic and methacrylic. Represents at least one.
 また、本明細書において、「露光」とは、特に断らない限り、光を用いた露光のみならず、電子線、イオンビーム等の粒子線を用いた描画も含む。露光に用いられる光としては、例えば、水銀灯の輝線スペクトル、エキシマレーザに代表される遠紫外線、極紫外線(EUV光)、X線、及び、電子線等の活性光線(活性エネルギー線)が挙げられる。 Further, in the present specification, "exposure" includes not only exposure using light but also drawing using particle beams such as an electron beam and an ion beam, unless otherwise specified. Examples of the light used for exposure include emission line spectra of mercury lamps, far ultraviolet rays typified by excima lasers, extreme ultraviolet rays (EUV light), X-rays, and active rays (active energy rays) such as electron beams. ..
[ポリエステルフィルム]
 本開示に係るポリエステルフィルム(以下、「本フィルム」とも記載する。)は、実質的に粒子を含有しないポリエステル基材と、ポリエステル基材の少なくとも一方の表面上に配置された、粒子及び樹脂を含有する粒子含有層(以下、「特定層」とも記載する。)とを備え、第1主面及び第2主面を有する、光学用ポリエステルフィルムである。
 また、本フィルムにおいて、第2主面は、特定層のポリエステル基材側とは反対側の表面であり、第2主面の最大断面高さSRtが20~150nmであり、特定層の厚みが1~200nmである。
[Polyester film]
The polyester film according to the present disclosure (hereinafter, also referred to as “the film”) is a polyester base material containing substantially no particles, and particles and a resin arranged on at least one surface of the polyester base material. An optical polyester film comprising a particle-containing layer containing the particles (hereinafter, also referred to as a “specific layer”) and having a first main surface and a second main surface.
Further, in this film, the second main surface is the surface opposite to the polyester base material side of the specific layer, the maximum cross-sectional height SRt of the second main surface is 20 to 150 nm, and the thickness of the specific layer is It is 1 to 200 nm.
〔構成〕
 本フィルムの構成を、図面を参照しながら説明する。
 図1は、本フィルムの構成の一例を示す断面図である。ポリエステルフィルム1は、ポリエステル基材2と、ポリエステル基材2の少なくとも一方の表面上に配置された、特定の厚みを有する特定層3とを備え、第1主面1a及び第2主面1bを有する。
 特定層3が、図示しない粒子を含有する一方、ポリエステル基材2は、粒子を実質的に含有しない。
〔Constitution〕
The structure of this film will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing an example of the configuration of this film. The polyester film 1 includes a polyester base material 2 and a specific layer 3 having a specific thickness arranged on at least one surface of the polyester base material 2, and has a first main surface 1a and a second main surface 1b. Have.
The specific layer 3 contains particles (not shown), while the polyester substrate 2 contains substantially no particles.
 図1に示す通り、ポリエステルフィルム1の2つの表面を第1主面1a及び第2主面1bと称する。
 これらのうち、第2主面1bは、特定層3のポリエステル基材2に対向する面とは反対側の表面である。即ち、特定層3は、ポリエステルフィルム1の最外層である。この第2主面1bは、上記の特定の最大断面高さSRtを有する。
As shown in FIG. 1, the two surfaces of the polyester film 1 are referred to as a first main surface 1a and a second main surface 1b.
Of these, the second main surface 1b is the surface of the specific layer 3 opposite to the surface facing the polyester base material 2. That is, the specific layer 3 is the outermost layer of the polyester film 1. The second main surface 1b has the above-mentioned specific maximum cross-sectional height SRt.
 本フィルムは、上記の構成を有することにより、傷つき防止性に優れるとともに、より精細なレジストパターンの形成に使用した場合であっても、レジストパターンのパターン直線性に優れるドライフィルムレジストを製造できるポリエステルフィルムを提供できるという効果(以下、これらの効果の少なくとも1つを「本発明の効果」ともいう。)を奏するものとなる。
 本フィルムが上記の本発明の効果を奏する理由は明らかではないが、以下のように推察される。
By having the above structure, this film is excellent in scratch prevention, and even when used for forming a finer resist pattern, polyester can produce a dry film resist having excellent pattern linearity of the resist pattern. It has the effect of being able to provide a film (hereinafter, at least one of these effects is also referred to as "the effect of the present invention").
The reason why this film exerts the above-mentioned effect of the present invention is not clear, but it is presumed as follows.
 上記の通り、DFR製造用のポリエステルフィルムには、DFR製造時の傷つき防止性の向上を目的として、粒子が含有されていることが多い。
 しかしながら、本発明者らの検討によれば、粒子を含有するポリエステルフィルムの表面上に感光性樹脂層を形成してDFRを製造し、得られたDFRを用いて精細なレジストパターンを形成する場合、ポリエステルフィルムに含有される粒子、及び/又は、粒子によりポリエステルフィルムの表面に形成された凹凸構造が感光性樹脂層に転写されてなる転写痕によって、パターン露光時の照射光が散乱されることにより、パターン直線性が低下する可能性があるものと推測される。
 それに対して、本フィルムでは、ポリエステルフィルムを構成する基材として実質的に粒子を含有しないポリエステル基材を採用することで、粒子によるパターン露光の散乱を抑制するとともに、ポリエステルフィルムに積層される感光性樹脂層に形成される転写痕を少なくすることによっても、パターン露光の散乱を抑制できるものと推察される。また、本フィルムの感光性樹脂層が積層されない側の表面(第2主面)において、厚みが薄く、且つ、最大断面高さSRtを特定の値以下に抑えた粒子含有層が形成されているため、粒子含有層の表面におけるパターン露光の散乱も抑制できる。本フィルムが有する上記の特徴的な構成によってパターン露光時の散乱を抑制することにより、高精細であり、且つ、パターン直線性に優れたレジストパターンを形成できるものと考えられる。
 また、本フィルムでは、粒子含有層の最大断面高さSRtが特定の値以上であるため、滑り性が低下してフィルム同士が密着し易くなることによるキズの発生を抑制するとともに、粒子含有層の最大断面高さSRtが特定の値以下であるため、キズ発生の原因となる粒子の脱落を抑制することにより、DFRの製造に有利なポリエステルフィルムの傷つき防止性が確保されているものと考えられる。
 以下、ポリエステルフィルムについて、そのポリエステルフィルムを用いてDFRを作製し、更にそのDFRを用いて高精細なレジストパターンを形成した場合であっても、パターン直線性に優れるレジストパターンが形成できるような特性を、単に「パターン直線性に優れる」とも記載する。
As described above, the polyester film for DFR production often contains particles for the purpose of improving the scratch prevention property during DFR production.
However, according to the study by the present inventors, a case where a photosensitive resin layer is formed on the surface of a polyester film containing particles to produce a DFR, and the obtained DFR is used to form a fine resist pattern. , The particles contained in the polyester film and / or the transfer marks formed by the particles transferring the uneven structure formed on the surface of the polyester film to the photosensitive resin layer scatter the irradiation light at the time of pattern exposure. Therefore, it is presumed that the pattern linearity may decrease.
On the other hand, in this film, by adopting a polyester base material that substantially contains no particles as the base material constituting the polyester film, the scattering of the pattern exposure by the particles is suppressed and the photosensitive material laminated on the polyester film is photosensitive. It is presumed that the scattering of the pattern exposure can be suppressed by reducing the transfer marks formed on the sex resin layer. Further, on the surface (second main surface) of the film on the side where the photosensitive resin layer is not laminated, a particle-containing layer having a thin thickness and having a maximum cross-sectional height SRt suppressed to a specific value or less is formed. Therefore, it is possible to suppress the scattering of the pattern exposure on the surface of the particle-containing layer. It is considered that a resist pattern having high definition and excellent pattern linearity can be formed by suppressing scattering during pattern exposure by the above-mentioned characteristic structure of this film.
Further, in this film, since the maximum cross-sectional height SRt of the particle-containing layer is equal to or higher than a specific value, the slipperiness is lowered and the films are easily adhered to each other to suppress the generation of scratches and the particle-containing layer. Since the maximum cross-sectional height SRt of S Be done.
Hereinafter, with respect to a polyester film, even when a DFR is produced using the polyester film and a high-definition resist pattern is further formed using the DFR, a characteristic that a resist pattern having excellent pattern linearity can be formed. Is simply described as "excellent in pattern linearity".
 本フィルムは、上記のポリエステル基材と上記の特定層とを有し、第2主面の最大断面高さSRtが上記の範囲に特定されたものであれば、その具体的な態様は特に制限されず、図1に示す構成以外の態様を有していてもよい。
 例えば、図1に示す構成では、ポリエステルフィルム1の第1主面1aは、ポリエステル基材2の特定層3側とは反対側の表面であるが、ポリエステル基材の特定層側とは反対側の表面上には、片側の表面が第1主面である他の層が配置されていてもよい。このような他の層としては、密着層、剥離層、帯電防止層及びオリゴマー析出防止層が挙げられる。
 また、図1に示す構成では、特定層3は、ポリエステル基材2の片面のみに配置されているが、両面に配置されていてもよい。
 また、図1に示す構成では、特定層3は、ポリエステル基材2の表面に接して配置されているが、特定層とポリエステル基材との間にプライマー層等の中間層を設けてもよい。
 上記他の層の厚みは、1nm~1μmであることが好ましく、30~500nmがより好ましい。
The present film has the above polyester base material and the above specific layer, and the specific embodiment thereof is particularly limited as long as the maximum cross-sectional height SRt of the second main surface is specified in the above range. However, it may have an embodiment other than the configuration shown in FIG.
For example, in the configuration shown in FIG. 1, the first main surface 1a of the polyester film 1 is a surface opposite to the specific layer 3 side of the polyester base material 2, but is opposite to the specific layer side of the polyester base material 2. On the surface of the above, another layer may be arranged in which one surface is the first main surface. Examples of such other layers include an adhesion layer, a peeling layer, an antistatic layer, and an oligomer precipitation prevention layer.
Further, in the configuration shown in FIG. 1, the specific layer 3 is arranged on only one side of the polyester base material 2, but may be arranged on both sides.
Further, in the configuration shown in FIG. 1, the specific layer 3 is arranged in contact with the surface of the polyester base material 2, but an intermediate layer such as a primer layer may be provided between the specific layer and the polyester base material. ..
The thickness of the other layers is preferably 1 nm to 1 μm, more preferably 30 to 500 nm.
 以下、本フィルムが備える各層について詳しく説明する。 Hereinafter, each layer of this film will be described in detail.
<ポリエステル基材>
 ポリエステル基材は、主たる重合体成分としてポリエステルを含有するフィルム状の物体である。ここで、「主たる重合体成分」とは、フィルムに含まれる全ての重合体のうち最も含有量(質量)が多い重合体を意味する。
 ポリエステル基材は、1種単独のポリエステルを含有していてもよく、2種以上のポリエステルを含有していてもよい。
<Polyester base material>
The polyester base material is a film-like object containing polyester as a main polymer component. Here, the "main polymer component" means the polymer having the highest content (mass) among all the polymers contained in the film.
The polyester base material may contain one kind of polyester alone or may contain two or more kinds of polyesters.
(ポリエステル)
 ポリエステルは、主鎖にエステル結合を有する重合体である。ポリエステルは、通常、後述するジカルボン酸化合物とジオール化合物とを重縮合させることにより形成される。
 ポリエステルとしては特に制限されず、公知のポリエステルを利用できる。ポリエステルとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレン-2,6-ナフタレート(PEN)、及びそれらの共重合体が挙げられ、PETが好ましい。
(polyester)
Polyester is a polymer having an ester bond in the main chain. Polyester is usually formed by polycondensing a dicarboxylic acid compound and a diol compound, which will be described later.
The polyester is not particularly limited, and known polyesters can be used. Examples of the polyester include polyethylene terephthalate (PET), polyethylene-2,6-naphthalate (PEN), and copolymers thereof, and PET is preferable.
 ポリエステルの固有粘度は、0.50dl/g以上0.80dl/g未満が好ましく、0.55dl/g以上0.70dl/g未満がより好ましい。
 ポリエステルの融点(Tm)は、220~270℃が好ましく、245~265℃がより好ましい。
 ポリエステルのガラス転移温度(Tg)は、65~90℃が好ましく、70~85℃がより好ましい。
The intrinsic viscosity of the polyester is preferably 0.50 dl / g or more and less than 0.80 dl / g, and more preferably 0.55 dl / g or more and less than 0.70 dl / g.
The melting point (Tm) of the polyester is preferably 220 to 270 ° C, more preferably 245 to 265 ° C.
The glass transition temperature (Tg) of polyester is preferably 65 to 90 ° C, more preferably 70 to 85 ° C.
 ポリエステルの製造方法は特に制限されず、公知の方法を利用できる。例えば、触媒存在下で、少なくとも1種のジカルボン酸化合物と、少なくとも1種のジオール化合物とを重縮合させることによりポリエステルを製造できる。 The method for producing polyester is not particularly limited, and a known method can be used. For example, polyester can be produced by polycondensing at least one dicarboxylic acid compound and at least one diol compound in the presence of a catalyst.
-触媒-
 ポリエステルの製造に使用する触媒は、特に制限されず、ポリエステルの合成に使用可能な公知の触媒を利用できる。
 触媒としては、例えば、アルカリ金属化合物(例えば、カリウム化合物、ナトリウム化合物)、アルカリ土類金属化合物(例えば、カルシウム化合物、マグネシウム化合物)、亜鉛化合物、鉛化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、ゲルマニウム化合物、及びリン化合物が挙げられる。中でも、触媒活性、及びコストの観点から、チタン化合物が好ましい。
 触媒は、1種のみ用いてもよく、2種以上を併用してもよい。カリウム化合物、ナトリウム化合物、カルシウム化合物、マグネシウム化合物、亜鉛化合物、鉛化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、及びゲルマニウム化合物から選択される少なくとも1種の金属触媒と、リン化合物とを併用することが好ましく、チタン化合物とリン化合物を併用することがより好ましい。
-catalyst-
The catalyst used for producing the polyester is not particularly limited, and a known catalyst that can be used for synthesizing the polyester can be used.
Examples of the catalyst include alkali metal compounds (for example, potassium compounds and sodium compounds), alkaline earth metal compounds (for example, calcium compounds and magnesium compounds), zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, and antimony. Examples include compounds, titanium compounds, germanium compounds, and phosphorus compounds. Of these, titanium compounds are preferable from the viewpoint of catalytic activity and cost.
Only one kind of catalyst may be used, or two or more kinds of catalysts may be used in combination. At least one metal catalyst selected from potassium compounds, sodium compounds, calcium compounds, magnesium compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, and germanium compounds, and phosphorus compounds. It is preferable to use in combination with, and it is more preferable to use a titanium compound and a phosphorus compound in combination.
 チタン化合物としては、有機キレートチタン錯体が好ましい。有機キレートチタン錯体は、配位子として有機酸を有するチタン化合物である。
 有機酸としては、例えば、クエン酸、乳酸、トリメリット酸、及びリンゴ酸が挙げられる。
 チタン化合物としては、特許第5575671号公報の段落0049~0053に記載されたチタン化合物も利用でき、上記公報の記載内容は、本明細書に組み込まれる。
As the titanium compound, an organic chelated titanium complex is preferable. The organic chelated titanium complex is a titanium compound having an organic acid as a ligand.
Examples of the organic acid include citric acid, lactic acid, trimellitic acid, and malic acid.
As the titanium compound, the titanium compound described in paragraphs 0049 to 0053 of Japanese Patent No. 5575671 can also be used, and the contents of the above publication are incorporated in the present specification.
-ジカルボン酸化合物-
 ジカルボン酸化合物としては、例えば、脂肪族ジカルボン酸化合物、脂環式ジカルボン酸化合物、及び、芳香族ジカルボン酸化合物等のジカルボン酸、並びに、それらジカルボン酸のメチルエステル化合物及びエチルエステル化合物等のジカルボン酸エステルが挙げられる。中でも、芳香族ジカルボン酸、又は、芳香族ジカルボン酸メチルが好ましい。
-Dicarboxylic acid compound-
Examples of the dicarboxylic acid compound include dicarboxylic acids such as aliphatic dicarboxylic acid compounds, alicyclic dicarboxylic acid compounds, and aromatic dicarboxylic acid compounds, and dicarboxylic acids such as methyl ester compounds and ethyl ester compounds of the dicarboxylic acids. Esther can be mentioned. Of these, aromatic dicarboxylic acid or methyl aromatic dicarboxylic acid is preferable.
 脂肪族ジカルボン酸化合物としては、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸、及びエチルマロン酸が挙げられる。
 脂環式ジカルボン酸化合物としては、例えば、アダマンタンジカルボン酸、ノルボルネンジカルボン酸、シクロヘキサンジカルボン酸、及びデカリンジカルボン酸が挙げられる。
Examples of the aliphatic dicarboxylic acid compound include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecandic acid, dimer acid, eicosandionic acid, pimelic acid, azelaic acid, and methylmalonic acid. And ethylmalonic acid.
Examples of the alicyclic dicarboxylic acid compound include adamantandicarboxylic acid, norbornnedicarboxylic acid, cyclohexanedicarboxylic acid, and decalindicarboxylic acid.
 芳香族ジカルボン酸化合物としては、例えば、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、フェニルインダンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸、及び9,9’-ビス(4-カルボキシフェニル)フルオレン酸、およびそれらのメチルエステル体が挙げられる。
 中でも、テレフタル酸、テレフタル酸メチル、2,6-ナフタレンジカルボン酸、又は、2,6-ナフタレンジカルボン酸メチルが好ましく、テレフタル酸、又は、テレフタル酸メチルがより好ましい。
Examples of the aromatic dicarboxylic acid compound include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 1,8-naphthalenedicarboxylic acid. , 4,4'-diphenyldicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, 5-sodium sulfoisophthalic acid, phenylindandicarboxylic acid, anthracendicarboxylic acid, phenanthrangecarboxylic acid, and 9,9'-bis (4-carboxy). Examples include phenyl) fluorenic acid and their methyl ester forms.
Of these, terephthalic acid, methyl terephthalate, 2,6-naphthalenedicarboxylic acid, or methyl 2,6-naphthalenedicarboxylic acid is preferable, and terephthalic acid or methyl terephthalate is more preferable.
 ジカルボン酸化合物は1種のみ用いてもよく、2種以上を併用してもよい。ジカルボン酸化合物として、テレフタル酸を使用する場合、テレフタル酸単独で用いてもよく、イソフタル酸等の他の芳香族ジカルボン酸又は脂肪族ジカルボン酸と共重合してもよい。 Only one type of dicarboxylic acid compound may be used, or two or more types may be used in combination. When terephthalic acid is used as the dicarboxylic acid compound, terephthalic acid may be used alone, or may be copolymerized with another aromatic dicarboxylic acid such as isophthalic acid or an aliphatic dicarboxylic acid.
-ジオール化合物-
 ジオール化合物としては、例えば、脂肪族ジオール化合物、脂環式ジオール化合物、及び芳香族ジオール化合物が挙げられ、脂肪族ジオール化合物が好ましい。
-Glycol compound-
Examples of the diol compound include an aliphatic diol compound, an alicyclic diol compound, and an aromatic diol compound, and an aliphatic diol compound is preferable.
 脂肪族ジオール化合物としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール、及び、ネオペンチルグリコールが挙げられ、エチレングリコールが好ましい。
 脂環式ジオール化合物としては、例えば、シクロヘキサンジメタノール、スピログリコール、及びイソソルビドが挙げられる。
 芳香族ジオール化合物としては、例えば、ビスフェノールA、1,3―ベンゼンジメタノール,1,4-ベンゼンジメタノール、及び9,9’-ビス(4-ヒドロキシフェニル)フルオレンが挙げられる。
 ジオール化合物は、1種のみ用いてもよく、2種以上を併用してもよい。
Examples of the aliphatic diol compound include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, and neo. Examples include pentyl glycol, preferably ethylene glycol.
Examples of the alicyclic diol compound include cyclohexanedimethanol, spiroglycol, and isosorbide.
Examples of the aromatic diol compound include bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, and 9,9'-bis (4-hydroxyphenyl) fluorene.
Only one kind of diol compound may be used, or two or more kinds may be used in combination.
-末端封止剤-
 ポリエステルの製造においては、必要に応じて、末端封止剤を用いてもよい。末端封止剤を用いることで、ポリエステルの末端に末端封止剤に由来する構造が導入される。
 末端封止剤としては、制限されず、公知の末端封止剤を利用できる。末端封止剤としては、例えば、オキサゾリン系化合物、カルボジイミド化合物、及びエポキシ化合物が挙げられる。
 末端封止剤としては、特開2014-189002号公報の段落0055~0064に記載の内容も参照でき、上記公報の内容は、本明細書に組み込まれる。
-End sealant-
In the production of polyester, an end-capping agent may be used if necessary. By using the end sealant, a structure derived from the end sealant is introduced into the end of the polyester.
As the terminal encapsulant, a known end encapsulant can be used without limitation. Examples of the terminal encapsulant include oxazoline compounds, carbodiimide compounds, and epoxy compounds.
As the terminal encapsulant, the contents described in paragraphs 0055 to 0064 of JP-A-2014-189002 can also be referred to, and the contents of the above-mentioned publication are incorporated in the present specification.
-製造条件-
 反応温度は、制限されず、原材料に応じて適宜設定すればよい。反応温度は、260~300℃が好ましく、275~285℃がより好ましい。
 圧力は、制限されず、原材料に応じて適宜設定すればよい。圧力は、1.33×10-3~1.33×10-5MPaが好ましく、6.67×10-4~6.67×10-5MPaがより好ましい。
-Manufacturing conditions-
The reaction temperature is not limited and may be appropriately set according to the raw material. The reaction temperature is preferably 260 to 300 ° C, more preferably 275 to 285 ° C.
The pressure is not limited and may be appropriately set according to the raw material. The pressure is preferably 1.33 × 10 -3 to 1.33 × 10 -5 MPa, more preferably 6.67 × 10 -4 to 6.67 × 10 -5 MPa.
 ポリエステルの合成方法としては、特許第5575671号公報の段落0033~0070に記載された方法も利用でき、上記公報の内容は、本明細書に組み込まれる。 As a method for synthesizing polyester, the methods described in paragraphs 0033 to 0070 of Japanese Patent No. 5575671 can also be used, and the contents of the above publication are incorporated in the present specification.
 ポリエステル基材におけるポリエステルの含有量は、ポリエステル基材中の重合体の全質量に対して、85質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましく、98質量%以上が特に好ましい。
 ポリエステルの含有量の上限は、制限されず、ポリエステル基材中の重合体の全質量に対して、100質量%以下の範囲で適宜設定できる。
The polyester content in the polyester base material is preferably 85% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, still more preferably 98% by mass, based on the total mass of the polymer in the polyester base material. The above is particularly preferable.
The upper limit of the polyester content is not limited and can be appropriately set within a range of 100% by mass or less with respect to the total mass of the polymer in the polyester substrate.
 ポリエステル基材がポリエチレンテレフタレートを含有する場合、ポリエチレンテレフタレートの含有量は、ポリエステル基材中のポリエステルの全質量に対して、90~100質量%が好ましく、95~100質量%がより好ましく、98~100質量%が更に好ましく、100質量%が特に好ましい。 When the polyester substrate contains polyethylene terephthalate, the content of polyethylene terephthalate is preferably 90 to 100% by mass, more preferably 95 to 100% by mass, and 98 to 100% by mass, based on the total mass of the polyester in the polyester substrate. 100% by mass is more preferable, and 100% by mass is particularly preferable.
 ポリエステル基材は、ポリエステル以外の成分(例えば、触媒、未反応の原料成分、粒子、及び、水等)を含有してもよい。
 パターン直線性に優れる観点から、ポリエステル基材は、粒子を実質的に含有しない。粒子としては、例えば、後述する特定層が含有する粒子が挙げられる。なお「粒子を実質的に含有しない」とは、ポリエステル基材について、蛍光X線分析で粒子に由来する元素を定量分析した際に、粒子の含有量がポリエステル基材の全質量に対して50質量ppm以下であることで定義され、好ましくは10質量ppm以下であり、より好ましくは検出限界以下である。これは積極的に粒子をポリエステル基材中に添加させなくても、外来異物由来のコンタミ成分、原料樹脂、又は、ポリエステル基材の製造工程におけるラインもしくは装置に付着した汚れが剥離して、ポリエステル基材中に混入する場合があるためである。
The polyester substrate may contain components other than polyester (eg, catalyst, unreacted raw material components, particles, water, etc.).
From the viewpoint of excellent pattern linearity, the polyester base material contains substantially no particles. Examples of the particles include particles contained in a specific layer described later. In addition, "substantially free of particles" means that the content of particles is 50 with respect to the total mass of the polyester substrate when the elements derived from the particles are quantitatively analyzed by fluorescent X-ray analysis. It is defined as having a mass of ppm or less, preferably 10% by mass or less, and more preferably not more than the detection limit. This means that even if particles are not actively added to the polyester base material, the contamination component derived from foreign matter, the raw material resin, or the dirt adhering to the line or device in the manufacturing process of the polyester base material is peeled off, and the polyester is polyester. This is because it may be mixed in the base material.
 ポリエステル基材の厚みは、転写性が向上する点で、100μm以下が好ましく、50μm以下がより好ましく、35μm以下が更に好ましい。厚みの下限は特に制限されないが、強度が向上し、加工性が向上する点で、1μm以上が好ましく、4μm以上がより好ましく、10μm以上が更に好ましい。
 ポリエステル基材の厚みは、後述するポリエステルフィルムの厚みの測定方法に従って、測定される。
The thickness of the polyester base material is preferably 100 μm or less, more preferably 50 μm or less, still more preferably 35 μm or less, in terms of improving transferability. The lower limit of the thickness is not particularly limited, but 1 μm or more is preferable, 4 μm or more is more preferable, and 10 μm or more is further preferable, from the viewpoint of improving the strength and the workability.
The thickness of the polyester base material is measured according to the method for measuring the thickness of the polyester film described later.
<特定層>
 特定層は、粒子及び樹脂を含有する層であり、ポリエステル基材の少なくとも一方の表面に形成される。また、特定層のポリエステル基材に対向する面とは反対側の表面は、第2主面を構成する。
 本フィルムは、上記特定層を有することで、傷つき防止性及びパターン直線性の両者がバランス良く優れるという本発明の効果が発揮される。
<Specific layer>
The specific layer is a layer containing particles and a resin, and is formed on at least one surface of the polyester base material. Further, the surface of the specific layer opposite to the surface facing the polyester base material constitutes the second main surface.
By having the above-mentioned specific layer, the present film exhibits the effect of the present invention that both the scratch prevention property and the pattern linearity are excellent in a well-balanced manner.
 特定層は、ポリエステル基材の表面に直接設けてもよく、他の層を介してポリエステル基材の表面に設けてもよいが、密着性がより優れる点で、ポリエステル基材の表面に直接設けることが好ましい。即ち、特定層の第1主面側の表面は、ポリエステル基材と接していることが好ましい。
 特定層としては、粒子及び樹脂を含有し、厚みが1~200nmであり、第2主面が特定の最大断面高さSRtを有するものであれば特に制限されない。特定層は、粒子及び樹脂以外の添加剤を含有していてもよい。
The specific layer may be provided directly on the surface of the polyester base material or may be provided on the surface of the polyester base material via another layer, but is provided directly on the surface of the polyester base material in terms of better adhesion. Is preferable. That is, it is preferable that the surface of the specific layer on the first main surface side is in contact with the polyester base material.
The specific layer is not particularly limited as long as it contains particles and a resin, has a thickness of 1 to 200 nm, and has a specific maximum cross-sectional height SRt on the second main surface. The specific layer may contain additives other than particles and resin.
(粒子)
 特定層に含有される粒子は、第2主面の最大断面高さSRtが上記の範囲に含まれ、かつ、特定層の厚みが上記の範囲に含まれる限り、特に制限されない。
 粒子の平均粒子径としては、例えば、1~250nmが挙げられる。粒子の平均粒子径は、本発明の効果がより優れる点で、150nm以下が好ましく、130nm以下がより好ましく、100nm以下が更に好ましい。また、下限値は、本発明の効果がより優れる点で、10nm以上が好ましく、30nm以上がより好ましい。
 また、特定層に含有される粒子の平均粒子径が、特定層の厚みよりも大きいことが好ましい。
(particle)
The particles contained in the specific layer are not particularly limited as long as the maximum cross-sectional height SRt of the second main surface is included in the above range and the thickness of the specific layer is included in the above range.
Examples of the average particle size of the particles include 1 to 250 nm. The average particle size of the particles is preferably 150 nm or less, more preferably 130 nm or less, still more preferably 100 nm or less, in that the effect of the present invention is more excellent. Further, the lower limit value is preferably 10 nm or more, more preferably 30 nm or more, in that the effect of the present invention is more excellent.
Further, it is preferable that the average particle size of the particles contained in the specific layer is larger than the thickness of the specific layer.
 特定層が含有する粒子としては、1種単独で用いてもよく、2種以上の粒子を用いてもよい。
 特定層が、粒子径の異なる2種以上の粒子を含有する場合、特定層は、平均粒子径が上記範囲内にある粒子を少なくとも1種含有することが好ましく、粒子径の異なる2種以上の粒子がいずれも平均粒子径が上記範囲内にある粒子であることがより好ましい。
As the particles contained in the specific layer, one type of particles may be used alone, or two or more types of particles may be used.
When the specific layer contains two or more kinds of particles having different particle sizes, the specific layer preferably contains at least one kind of particles having an average particle size within the above range, and two or more kinds having different particle sizes. It is more preferable that all the particles have an average particle size within the above range.
 特定層に含まれる粒子の平均粒子径は、走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いて、下記の方法により求められる。即ち、ポリエステルフィルムの第2主面を、SEMを用いて20000倍の拡大倍率で観察する。任意に選択された10の視野について観察を行い、各視野において突起として識別可能な粒子(ベース面から突出した突起として視認可能な粒子)について、画像ソフトウエアを用いて個々の粒子の面積を測定し、同一面積を有する円の直径(面積円相当径)を算出する。得られる面積円相当径の算術平均値を粒子の平均粒子径とする。このとき、ゴミ及び/又は1μm以上の凝集した粗大粒子が存在していても、このようなゴミ及び凝集した粗大粒子は平均粒子径を算出する際にカウントしない。
 平均粒子径の測定において、凝集粒子については、凝集した状態の2次粒子の粒子径(2次粒子径)を測定するものとする。
The average particle size of the particles contained in the specific layer is determined by the following method using a scanning electron microscope (SEM). That is, the second main surface of the polyester film is observed at a magnification of 20000 times using SEM. Observation is performed on 10 arbitrarily selected visual fields, and the area of each particle is measured using image software for particles that can be identified as protrusions in each visual field (particles that are visible as protrusions protruding from the base surface). Then, the diameter of a circle having the same area (diameter equivalent to the area circle) is calculated. The arithmetic mean value of the obtained area circle equivalent diameter is defined as the average particle size of the particles. At this time, even if dust and / or aggregated coarse particles of 1 μm or more are present, such dust and aggregated coarse particles are not counted when calculating the average particle size.
In the measurement of the average particle size, for the agglomerated particles, the particle size (secondary particle size) of the secondary particles in the agglomerated state shall be measured.
 特定層が含有する粒子としては、例えば、有機粒子、及び無機粒子が挙げられる。中でも、フィルム巻き品質、ヘイズ、及び耐久性(例えば、熱安定性)がより向上する観点から、無機粒子が好ましい。
 有機粒子としては、樹脂粒子が好ましい。樹脂粒子を構成する樹脂としては、例えば、ポリメタクリル酸メチル樹脂(PMMA)等のアクリル樹脂、ポリエステル樹脂、シリコーン樹脂、及び、スチレン-アクリル樹脂が挙げられる。樹脂粒子は、架橋構造を有することが好ましい。架橋構造を有する樹脂粒子としては、例えば、ジビニルベンゼン架橋粒子が挙げられる。
 無機粒子としては、例えば、シリカ粒子(二酸化ケイ素粒子、コロイダルシリカ)、チタニア粒子(酸化チタン粒子)、炭酸カルシウム、硫酸バリウム、及び、アルミナ粒子(酸化アルミニウム粒子)が挙げられる。上記の中でも、無機粒子としては、ヘイズ、及び、耐久性がより向上する観点から、シリカ粒子が好ましい。
Examples of the particles contained in the specific layer include organic particles and inorganic particles. Among them, inorganic particles are preferable from the viewpoint of further improving film winding quality, haze, and durability (for example, thermal stability).
As the organic particles, resin particles are preferable. Examples of the resin constituting the resin particles include acrylic resin such as polymethyl methacrylate resin (PMMA), polyester resin, silicone resin, and styrene-acrylic resin. The resin particles preferably have a crosslinked structure. Examples of the resin particles having a crosslinked structure include divinylbenzene crosslinked particles.
Examples of the inorganic particles include silica particles (silicon dioxide particles, colloidal silica), titania particles (titanium oxide particles), calcium carbonate, barium sulfate, and alumina particles (aluminum oxide particles). Among the above, as the inorganic particles, silica particles are preferable from the viewpoint of further improving haze and durability.
 粒子の形状は、特に制限されず、例えば、米粒状、球形状、立方体状、紡錘形状、鱗片状、凝集状、及び、不定形状が挙げられる。凝集状とは、1次粒子が凝集した状態を意味する。凝集状にある粒子の形状は制限されないが、球形状又は不定形状が好ましい。
 また、粒子としては、中空構造を有する粒子(中空粒子)であってもよく、中空構造を有さない粒子(中実粒子)であってもよいが、パターン直線性(透明性)によりに優れる点で、中実粒子が好ましい。本明細書において、中空構造とは、内部の空洞と、空洞を包囲する外殻とからなる構造を意味する。中実粒子の方が、屈折率の変化が少なく光散乱を抑制できる。
The shape of the particles is not particularly limited, and examples thereof include rice granules, spheres, cubes, spindles, scales, aggregates, and indefinite shapes. The aggregated state means a state in which the primary particles are aggregated. The shape of the aggregated particles is not limited, but a spherical shape or an indefinite shape is preferable.
Further, the particles may be particles having a hollow structure (hollow particles) or particles having no hollow structure (solid particles), but are excellent in pattern linearity (transparency). In that respect, solid particles are preferred. As used herein, the hollow structure means a structure consisting of an inner cavity and an outer shell surrounding the cavity. Solid particles have less change in refractive index and can suppress light scattering.
 中空構造を有さない凝集粒子としては、ヒュームドシリカ粒子が好ましい。入手可能な市販品としては、例えば、日本アエロジル株式会社製のアエロジルシリーズが挙げられる。
 中空構造を有さない非凝集粒子としては、コロイダルシリカ粒子が好ましい。入手可能な市販品としては、例えば、日産化学株式会社製のスノーテックスシリーズが挙げられる。
As the aggregated particles having no hollow structure, fumed silica particles are preferable. Examples of commercially available products include Aerosil series manufactured by Nippon Aerosil Co., Ltd.
Colloidal silica particles are preferable as the non-aggregating particles having no hollow structure. Examples of commercially available products include the Snowtex series manufactured by Nissan Chemical Industries, Ltd.
 特定層における粒子の含有量は、搬送性、及び、剥離層の塗布性の観点から、特定層の全質量に対して、0.1~30質量%が好ましく、1~25質量%がより好ましく、1~15質量%が更に好ましく、1~5質量%が特に好ましい。
 また、粒子の含有量は、ポリエステルフィルムの全質量に対して、0.0001~0.01質量%が好ましく、0.0005~0.005質量%がより好ましい。
The content of the particles in the specific layer is preferably 0.1 to 30% by mass, more preferably 1 to 25% by mass, based on the total mass of the specific layer, from the viewpoint of transportability and coatability of the release layer. 1 to 15% by mass is more preferable, and 1 to 5% by mass is particularly preferable.
The content of the particles is preferably 0.0001 to 0.01% by mass, more preferably 0.0005 to 0.005% by mass, based on the total mass of the polyester film.
 また、特定層においては、本発明の効果がより優れる点で、平均粒子径が250nm超である粒子の含有量が少ないことが好ましい。そのような粒子としては、例えば、平均粒子径が250nm超の粒子、上記粒子が凝集してなる2次粒子、並びに、不可避的に混入するゴミ等の異物が挙げられる。 Further, in the specific layer, it is preferable that the content of particles having an average particle diameter of more than 250 nm is small in that the effect of the present invention is more excellent. Examples of such particles include particles having an average particle diameter of more than 250 nm, secondary particles formed by aggregating the particles, and foreign substances such as dust inevitably mixed.
(樹脂)
 特定層に含有される樹脂としては、特に制限されず、例えば、アクリル樹脂、ウレタン樹脂、ポリエステル及びポリオレフィンが挙げられる。
(resin)
The resin contained in the specific layer is not particularly limited, and examples thereof include acrylic resin, urethane resin, polyester and polyolefin.
 特定層は、樹脂粒子の水分散体を塗布して形成されることが好ましい。その点で、樹脂としては、酸変性樹脂が好ましい。酸変性樹脂としては、例えば、後述する(メタ)アクリル酸に由来する構成単位を有するアクリル樹脂、並びに、カルボキシル基を有するポリオレフィンが挙げられる。
 また、特定層の表面自由エネルギーを所望の範囲とし、傷つき防止性をより向上させる点では、アクリル樹脂が好ましい。
The specific layer is preferably formed by applying an aqueous dispersion of resin particles. In that respect, the resin is preferably an acid-modified resin. Examples of the acid-modified resin include an acrylic resin having a structural unit derived from (meth) acrylic acid, which will be described later, and a polyolefin having a carboxyl group.
Further, the acrylic resin is preferable in that the surface free energy of the specific layer is set in a desired range and the scratch prevention property is further improved.
-アクリル樹脂-
 本明細書において、アクリル樹脂とは、(メタ)アクリレートに由来する構成単位を主成分として有するポリマーを意味する。
 なお、本明細書において、ポリマーが、あるモノマーに由来する構成単位を「主成分として有する」とは、その構成単位がポリマーの全構成単位に対して50モル%以上であることを意図する。
 アクリル樹脂としては、(メタ)アクリレートに由来する構成単位を有するものであれば、特に制限されず、1種の(メタ)アクリレートの単独重合体であってもよく、2種以上の(メタ)アクリレートの共重合体であってもよい。
-acrylic resin-
As used herein, the acrylic resin means a polymer having a structural unit derived from (meth) acrylate as a main component.
In addition, in this specification, "having a structural unit derived from a certain monomer as a main component" means that the structural unit is 50 mol% or more with respect to all the structural units of the polymer.
The acrylic resin is not particularly limited as long as it has a structural unit derived from (meth) acrylate, and may be a copolymer of one kind (meth) acrylate, or two or more kinds (meth). It may be a copolymer of acrylate.
 アクリル樹脂としては、アルキル基をエステル部位に有する(メタ)アクリレート(アルキル(メタ)アクリレート)に由来する構成単位を含むことが好ましい。
 アルキル(メタ)アクリレートにおけるアルキル基は、置換基を更に有していてもよい。上記置換基としては、アリール基、ヒドロキシ基及びアルコキシ基が挙げられ、フェニル基、ヒドロキシ基又は炭素数1~3のアルコキシ基が好ましい。アルキル(メタ)アクリレートにおける置換基を有してもよいアルキル基(より好ましくは無置換のアルキル基)の炭素数は、1~15が好ましく、1~10がより好ましい。
 特に、表面エネルギーを所望の範囲に調整しやすい点で、炭素数1~4の無置換のアルキル基をエステル部位に有する(メタ)アクリレートに由来する構成単位と、炭素数5~10の無置換のアルキル基をエステル部位に有する(メタ)アクリレートに由来する構成単位とを有するアクリル樹脂が好ましい。
The acrylic resin preferably contains a structural unit derived from a (meth) acrylate having an alkyl group at the ester moiety (alkyl (meth) acrylate).
The alkyl group in the alkyl (meth) acrylate may further have a substituent. Examples of the substituent include an aryl group, a hydroxy group and an alkoxy group, and a phenyl group, a hydroxy group or an alkoxy group having 1 to 3 carbon atoms is preferable. The number of carbon atoms of the alkyl group (more preferably unsubstituted alkyl group) which may have a substituent in the alkyl (meth) acrylate is preferably 1 to 15, more preferably 1 to 10.
In particular, in that the surface energy can be easily adjusted to a desired range, a structural unit derived from a (meth) acrylate having an unsubstituted alkyl group having 1 to 4 carbon atoms at an ester moiety and an unsubstituted moiety having 5 to 10 carbon atoms. Acrylic resins having a structural unit derived from (meth) acrylate having the alkyl group of the above in the ester moiety are preferable.
 上記アルキル(メタ)アクリレートの具体例としては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、i-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、及び、2-エチルヘキシル(メタ)アクリレートが挙げられる。 Specific examples of the above alkyl (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, i-propyl (meth) acrylate, n-butyl (meth) acrylate, and i-. Examples thereof include butyl (meth) acrylate, t-butyl (meth) acrylate, cyclohexyl (meth) acrylate, lauryl (meth) acrylate, and 2-ethylhexyl (meth) acrylate.
 アクリル樹脂は、少なくとも1種の(メタ)アクリレートと、(メタ)アクリレート以外の少なくとも1種のビニルモノマー(例えば、(メタ)アクリルアミド、(メタ)アクリル酸及びスチレン等)との共重合体であってもよい。
 中でも、フィルムのキズ抑制により優れる点で、スチレンに由来する構成単位と(メタ)アクリレートに由来する構成単位とを有する共重合体であるアクリル樹脂が好ましい。
The acrylic resin is a copolymer of at least one (meth) acrylate and at least one vinyl monomer other than (meth) acrylate (for example, (meth) acrylamide, (meth) acrylic acid, styrene, etc.). You may.
Among them, acrylic resin, which is a copolymer having a structural unit derived from styrene and a structural unit derived from (meth) acrylate, is preferable because it is excellent in suppressing scratches on the film.
 また、アクリル樹脂は、酸変性成分を有することが好ましい。アクリル樹脂は、酸変性成分として、(メタ)アクリル酸に由来する構成単位を含むことが好ましい。(メタ)アクリル酸は、酸無水物を形成していていもよいし、アルカリ金属、有機アミン及びアンモニアから選択される少なくとも1つで中和されていてもよい。 Further, the acrylic resin preferably has an acid denaturing component. The acrylic resin preferably contains a structural unit derived from (meth) acrylic acid as an acid-modifying component. The (meth) acrylic acid may form an acid anhydride or may be neutralized with at least one selected from alkali metals, organic amines and ammonia.
 アクリル樹脂において、(メタ)アクリレートに由来する構成単位の含有量は、アクリル樹脂の全構成単位に対して、50質量%以上が好ましく、70質量%以上がより好ましく、90質量%以上が更に好ましい。(メタ)アクリレートに由来する構成単位の含有量の上限は特に制限されず、アクリル樹脂の全構成単位に対して100質量%であってもよい。 In the acrylic resin, the content of the structural unit derived from (meth) acrylate is preferably 50% by mass or more, more preferably 70% by mass or more, still more preferably 90% by mass or more, based on all the structural units of the acrylic resin. .. The upper limit of the content of the structural unit derived from (meth) acrylate is not particularly limited, and may be 100% by mass with respect to all the structural units of the acrylic resin.
 アクリル樹脂が(メタ)アクリレート以外のモノマーに由来する構成単位を有する場合、その含有量は、アクリル樹脂の全ての構成単位に対して、0~30質量%であることが好ましく、0.1~10質量%であることがより好ましい。
 アクリル樹脂が酸変性基を有する構成単位を有する場合、その含有量は、アクリル樹脂の全ての構成単位に対して、0.1~10質量%であることが好ましく、(メタ)アクリル酸に由来する構成単位が1~10質量%であることがより好ましい。酸変性基を有する構成単位の含有量を上記範囲とすることで、帯電を抑制するとともに、アクリル樹脂の酸価を低くして、第2主面の表面自由エネルギーを所望の範囲に調節できる。
 アクリル樹脂の酸価は、30mgKOH/g以下が好ましく、20mgKOH/g以下がより好ましい。酸価の下限は、特に制限されず、例えば、0mgKOH/gであるが、水分散体として塗布する点からは、2mgKOH/g以上が好ましい。
 ここで、酸価は、試料1gを中和するのに必要な水酸化カリウムの質量[mg]であり、本明細書においては、単位をmgKOH/gと記載する。酸価は、例えば、化合物中における酸基の平均含有量から算出できる。
When the acrylic resin has a structural unit derived from a monomer other than the (meth) acrylate, the content thereof is preferably 0 to 30% by mass, preferably 0.1 to 30% by mass, based on all the structural units of the acrylic resin. It is more preferably 10% by mass.
When the acrylic resin has a structural unit having an acid-modifying group, the content thereof is preferably 0.1 to 10% by mass with respect to all the structural units of the acrylic resin, and is derived from (meth) acrylic acid. It is more preferable that the constituent unit to be formed is 1 to 10% by mass. By setting the content of the structural unit having an acid-modifying group in the above range, it is possible to suppress charging and lower the acid value of the acrylic resin to adjust the surface free energy of the second main surface to a desired range.
The acid value of the acrylic resin is preferably 30 mgKOH / g or less, more preferably 20 mgKOH / g or less. The lower limit of the acid value is not particularly limited and is, for example, 0 mgKOH / g, but 2 mgKOH / g or more is preferable from the viewpoint of application as an aqueous dispersion.
Here, the acid value is the mass [mg] of potassium hydroxide required to neutralize 1 g of the sample, and the unit is described as mgKOH / g in the present specification. The acid value can be calculated, for example, from the average content of acid groups in the compound.
 アクリル樹脂の製造方法は特に制限されず、1種以上の(メタ)アクリレートと、任意の(メタ)アクリレート以外のモノマーとを公知の方法で重合させることにより、調製できる。 The method for producing the acrylic resin is not particularly limited, and the acrylic resin can be prepared by polymerizing one or more kinds of (meth) acrylates with a monomer other than any (meth) acrylate by a known method.
 特定層は、1種単独の樹脂を含有していてもよく、2種以上の樹脂を含有していてもよい。併用する樹脂としては、異なる種類のアクリル樹脂、ウレタン樹脂、ポリオレフィン及びポリエステルが挙げられる。 また、特定層に含有される樹脂は、耐久性により優れる点で、架橋構造を有することが好ましい。架橋構造を有する樹脂は、後述する架橋剤を用いて樹脂を架橋することにより、形成できる。
 樹脂の含有量は、最大断面高さSRtを所望の範囲に調節する観点から、特定層の全質量に対して、30~99.8質量%が好ましく、50~99.5質量%がより好ましい。
The specific layer may contain one kind of resin alone or may contain two or more kinds of resins. Examples of the resin to be used in combination include different types of acrylic resin, urethane resin, polyolefin and polyester. Further, the resin contained in the specific layer preferably has a crosslinked structure in that it is more excellent in durability. A resin having a crosslinked structure can be formed by cross-linking the resin with a cross-linking agent described later.
The resin content is preferably 30 to 99.8% by mass, more preferably 50 to 99.5% by mass, based on the total mass of the specific layer, from the viewpoint of adjusting the maximum cross-sectional height SRt to a desired range. ..
(添加剤)
 特定層は、上記の粒子及び樹脂以外の添加剤を含有していてもよい。
 特定層に含有される添加剤としては、例えば、界面活性剤、ワックス、架橋剤、酸化防止剤、紫外線吸収剤、着色剤、強化剤、可塑剤、帯電防止剤、難燃剤、防錆剤、消泡剤、発泡剤、潤滑剤、増粘剤、及び、防黴剤が挙げられる。
(Additive)
The specific layer may contain additives other than the above particles and resin.
Examples of the additive contained in the specific layer include surfactants, waxes, cross-linking agents, antioxidants, ultraviolet absorbers, colorants, strengthening agents, plasticizers, antistatic agents, flame retardants, and rust preventives. Examples thereof include defoaming agents, foaming agents, lubricants, thickeners, and antifungal agents.
-界面活性剤-
 特定層は、第2主面において、粒子により形成される突起が存在する箇所以外の領域の平滑性が向上する点で、界面活性剤を有することが好ましい。第2主面の上記領域の平滑性が向上し、粒子以外の要因で第2主面の表面粗さが小さくなることにより、SRtを所望の範囲に制御し、本発明の効果を向上させることができる。
-Surfactant-
The specific layer preferably has a surfactant on the second main surface in that the smoothness of the region other than the portion where the protrusions formed by the particles are present is improved. By improving the smoothness of the above-mentioned region of the second main surface and reducing the surface roughness of the second main surface due to factors other than particles, SRt can be controlled within a desired range and the effect of the present invention can be improved. Can be done.
 界面活性剤としては、特に制限されず、シリコーン系界面活性剤、フッ素系界面活性剤、及び、炭化水素系界面活性剤が挙げられ、表面自由エネルギーの調整が容易な点で、炭化水素系界面活性剤が好ましい。 The surfactant is not particularly limited, and examples thereof include a silicone-based surfactant, a fluorine-based surfactant, and a hydrocarbon-based surfactant, and the hydrocarbon-based surfactant is easy to adjust the surface free energy. Activators are preferred.
 シリコーン系界面活性剤としては、疎水基としてケイ素含有基を有する界面活性剤であれば特に制限されず、例えば、ポリジメチルシロキサン、ポリエーテル変性ポリジメチルシロキサン、及び、ポリメチルアルキルシロキサンが挙げられる。
 シリコーン系界面活性剤の市販品としては、例えば、BYK(登録商標)-306、BYK-307、BYK-333、BYK-341、BYK-345、BYK-346、BYK-347、BYK-348、及び、BYK-349(以上、BYK社製)、並びに、KF-351A、KF-352A、KF-353、KF-354L、KF-355A、KF-615A、KF-945、KF-640、KF-642、KF-643、KF-6020、X-22-4515、KF-6011、KF-6012、KF-6015、及び、KF-6017(以上、信越化学株式会社製)が挙げられる。
The silicone-based surfactant is not particularly limited as long as it is a surfactant having a silicon-containing group as a hydrophobic group, and examples thereof include polydimethylsiloxane, polyether-modified polydimethylsiloxane, and polymethylalkylsiloxane.
Commercially available products of silicone-based surfactants include, for example, BYK®-306, BYK-307, BYK-333, BYK-341, BYK-345, BYK-346, BYK-347, BYK-348, and , BYK-349 (all manufactured by BYK), and KF-351A, KF-352A, KF-353, KF-354L, KF-355A, KF-615A, KF-945, KF-640, KF-642, Examples thereof include KF-643, KF-6020, X-22-4515, KF-6011, KF-6012, KF-6015, and KF-6017 (all manufactured by Shin-Etsu Chemical Co., Ltd.).
 フッ素系界面活性剤としては、疎水基としてフッ素含有基を有する界面活性剤であれば特に制限されず、例えば、パーフルオロオクタンスルホン酸、及び、パーフルオロカルボン酸が挙げられる。
 フッ素系界面活性剤の市販品としては、例えば、メガファック(登録商標)F-114、F-410、F-440、F-447、F-553、及び、F-556(以上、DIC社製)、並びに、サーフロン(登録商標)S-211、S-221、S-231、S-233、S-241、S-242、S-243、S-420、S-661、S-651、及びS-386(AGCセイミケミカル社製)が挙げられる。
 フッ素系界面活性剤としては、環境適性向上の観点から、パーフルオロオクタン酸(PFOA)及びパーフルオロオクタンスルホン酸(PFOS)等の炭素数が7以上の直鎖状パーフルオロアルキル基を有する化合物の代替材料に由来する界面活性剤であることが好ましい。
The fluorine-based surfactant is not particularly limited as long as it is a surfactant having a fluorine-containing group as a hydrophobic group, and examples thereof include perfluorooctanesulfonic acid and perfluorocarboxylic acid.
Commercially available products of fluorine-based surfactants include, for example, Megafuck (registered trademark) F-114, F-410, F-440, F-447, F-553, and F-556 (all manufactured by DIC Corporation). ), And Surfron® S-211, S-221, S-231, S-233, S-241, S-242, S-243, S-420, S-661, S-651, and Examples thereof include S-386 (manufactured by AGC Seimi Chemical Co., Ltd.).
As the fluorine-based surfactant, from the viewpoint of improving environmental suitability, a compound having a linear perfluoroalkyl group having 7 or more carbon atoms, such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), may be used. It is preferably a surfactant derived from an alternative material.
 炭化水素系界面活性剤としては、例えば、アニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、及び、両性界面活性剤が挙げられる。
 アニオン性界面活性剤としては、例えば、アルキル硫酸塩、アルキルベンゼンスルホン酸塩、アルキルリン酸塩、及び、脂肪酸塩が挙げられる。
 ノニオン性界面活性剤としては、例えば、ポリアルキレングリコールモノ又はジアルキルエーテル、ポリアルキレングリコールモノ又はジアルキルエステル、及び、ポリアルキレングリコールモノアルキルエステル・モノアルキルエーテルが挙げられる。
 カチオン性界面活性剤としては、第1級~第3級アルキルアミン塩、及び、第4級アンモニウム化合物等が挙げられる。
 両性界面活性剤としては、分子内にアニオン性部位とカチオン性部位の両者を有する界面活性剤が挙げられる。
Examples of the hydrocarbon-based surfactant include anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants.
Examples of the anionic surfactant include alkyl sulfates, alkylbenzene sulfonates, alkyl phosphates, and fatty acid salts.
Examples of the nonionic surfactant include polyalkylene glycol mono or dialkyl ether, polyalkylene glycol mono or dialkyl ester, and polyalkylene glycol monoalkyl ester / monoalkyl ether.
Examples of the cationic surfactant include primary to tertiary alkylamine salts, quaternary ammonium compounds and the like.
Examples of the amphoteric surfactant include a surfactant having both an anionic moiety and a cationic moiety in the molecule.
 アニオン性界面活性剤の市販品としては、例えば、ラピゾール(登録商標)A-90、A-80、BW-30、B-90、及び、C-70(以上、日油(株)製)、NIKKOL(登録商標)OTP-100(以上、日光ケミカル(株)製)、コハクール(登録商標)ON、L-40、及び、フォスファノール(登録商標)702(以上、東邦化学工業(株)製)、並びに、ビューライト(登録商標)A-5000、及び、SSS(以上、三洋化成工業(株)製)が挙げられる。
 ノニオン性界面活性剤の市販品としては、例えば、ナロアクティー(登録商標)CL-95、及び、HN-100(商品名:三洋化成工業(株)製)、リソレックスBW400(商品名:高級アルコール工業(株)製)、EMALEX(登録商標)ET-2020(以上、日本エマルジョン(株)製)、並びに、サーフィノール(登録商標)104E、420、440、465、及び、ダイノール(登録商標)604、607(以上、日信化学工業(株)製)、が挙げられる。
Commercially available anionic surfactants include, for example, Rapisol® A-90, A-80, BW-30, B-90, and C-70 (all manufactured by NOF CORPORATION). NIKKOL (registered trademark) OTP-100 (above, manufactured by Nikko Chemical Industries, Ltd.), Kohakul (registered trademark) ON, L-40, and Phosphanol (registered trademark) 702 (above, manufactured by Toho Chemical Industries, Ltd.) ), Viewlight (registered trademark) A-5000, and SSS (all manufactured by Sanyo Chemical Industries, Ltd.).
Commercially available nonionic surfactants include, for example, Naroacty (registered trademark) CL-95, HN-100 (trade name: manufactured by Sanyo Kasei Kogyo Co., Ltd.), and Lisolex BW400 (trade name: higher alcohol industry). EMALEX® ET-2020 (all manufactured by Nippon Emulsion Co., Ltd.), and Surfinol® 104E, 420, 440, 465, and Dynol® 604, 607 (above, manufactured by Nisshin Kagaku Kogyo Co., Ltd.).
 酸変性の樹脂と併用する場合には、樹脂の分散を阻害することなく表面が平滑な粒子含有層を形成できる点で、アニオン性界面活性剤及び/又はノニオン性界面活性剤が好ましく、アニオン性界面活性剤がより好ましい。即ち、界面活性剤としては、表面平滑性の向上の点で、アニオン性の炭化水素系界面活性剤がより好ましい。 When used in combination with an acid-modified resin, anionic surfactants and / or nonionic surfactants are preferable and anionic surfactants are preferable because they can form a particle-containing layer having a smooth surface without inhibiting the dispersion of the resin. Surfactants are more preferred. That is, as the surfactant, an anionic hydrocarbon-based surfactant is more preferable in terms of improving the surface smoothness.
 アニオン性の炭化水素系界面活性剤は、平滑性がより向上する点で、複数個の疎水性末端基を有することが好ましい。疎水性末端基は、炭化水素系界面活性剤が有する炭化水素基の一部であってよい。例えば、分岐鎖構造を有する炭化水素基を末端に有する炭化水素系界面活性剤は、複数個の疎水性末端基を有することになる。
 複数個の疎水性末端基を有するアニオン性の炭化水素系界面活性剤としては、スルホコハク酸ジ-2-エチルヘキシルナトリウム(疎水性末端基を4つ有する)、スルホコハク酸ジ-2-エチルオクチルナトリウム(疎水性末端基を4つ有する)、及び、分岐鎖型アルキルベンゼンスルホン酸塩(疎水性末端基を2つ有する)が挙げられる。
The anionic hydrocarbon-based surfactant preferably has a plurality of hydrophobic end groups in terms of further improving smoothness. The hydrophobic end group may be a part of the hydrocarbon group contained in the hydrocarbon-based surfactant. For example, a hydrocarbon-based surfactant having a hydrocarbon group having a branched chain structure at the end will have a plurality of hydrophobic end groups.
Examples of anionic hydrocarbon-based surfactants having a plurality of hydrophobic end groups include di-2-ethylhexyl sulfosuccinate (having four hydrophobic end groups) and di-2-ethyloctyl sulfosuccinate (sodium sulfosuccinate). (Has four hydrophobic end groups) and branched chain alkylbenzene sulfonate (has two hydrophobic end groups).
 界面活性剤は、1種を用いてもよいし、2種以上を併用してもよい。
 界面活性剤の含有量は、特定層の全質量に対して、0.1~10質量%が好ましく、剥離層形成時の帯電防止性、及び、表面平滑性により優れる点で、0.1~5質量%であることがより好ましく、0.5~2質量%であることが更に好ましい。
One type of surfactant may be used, or two or more types may be used in combination.
The content of the surfactant is preferably 0.1 to 10% by mass with respect to the total mass of the specific layer, and is 0.1 to 0.1 to 10 in that it is excellent in antistatic property at the time of forming the release layer and surface smoothness. It is more preferably 5% by mass, and even more preferably 0.5 to 2% by mass.
-ワックス-
 特定層は、表面自由エネルギーの調整が容易な点で、ワックスを更に含有することが好ましい。
 ワックスとしては、特に制限されず、天然ワックス及び合成ワックスのいずれであってもよい。天然ワックスとしては、カルナバワックス、キャンデリラワックス、ミツロウ、モンタンワックス、パラフィンワックス、及び、石油ワックスが挙げられる。その他、国際公開2017/169844号明細書の段落0087に記載の滑り剤も使用できる。
 ワックスの市販品としては、例えば、セロゾール(登録商標)シリーズ(中京油脂株式会社製)が挙げられる。
 ワックスの含有量は、特定層の全質量に対して、0~10質量%が好ましい。
-wax-
The specific layer preferably further contains wax because the surface free energy can be easily adjusted.
The wax is not particularly limited and may be either a natural wax or a synthetic wax. Examples of the natural wax include carnauba wax, candelilla wax, beeswax, montan wax, paraffin wax, and petroleum wax. In addition, the slip agent described in paragraph 0087 of International Publication No. 2017/169844 can also be used.
Examples of commercially available wax products include Celozol (registered trademark) series (manufactured by Chukyo Yushi Co., Ltd.).
The wax content is preferably 0 to 10% by mass with respect to the total mass of the specific layer.
-架橋剤-
 特定層に含有される樹脂は、架橋剤を用いて形成される架橋構造を有することが好ましい。架橋剤としては、特に制限されず、公知のものを使用できる。
 架橋剤としては、例えば、メラミン化合物、オキサゾリン化合物、エポキシ化合物、イソシアネート系化合物、及び、カルボジイミド系化合物が挙げられ、オキサゾリン系化合物及びカルボジイミド系化合物が特に好ましい。
 市販品としては、例えば、カルボジライト(登録商標)V-02-L2(日清紡(株)製)及びエポクロス(登録商標)K-2020E(日本触媒(株)製)が挙げられる。エポキシ系化合物、イソシアネート系化合物及びメラミン系化合物の詳細については、特開2015-163457号公報の段落0081~0083の記載を参照できる。国際公開2017/169844号明細書の段落0082~0084の記載の架橋剤も好ましく使用できる。カルボジイミド化合物としては、特開2017-087421号公報の段落0038~0040の記載を参照できる。
 オキサゾリン化合物、カルボジイミド化合物及びイソシアネート化合物については、国際公開2018/034294号明細書の段落0074~0075の記載の架橋剤も好ましく使用できる。
 架橋剤の含有量は、特定層の全質量に対して、0~50質量%が好ましい。
-Crosslinking agent-
The resin contained in the specific layer preferably has a crosslinked structure formed by using a crosslinking agent. The cross-linking agent is not particularly limited, and known ones can be used.
Examples of the cross-linking agent include melamine compounds, oxazoline compounds, epoxy compounds, isocyanate compounds, and carbodiimide compounds, and oxazoline compounds and carbodiimide compounds are particularly preferable.
Examples of commercially available products include Carbodilite (registered trademark) V-02-L2 (manufactured by Nisshinbo Co., Ltd.) and Epocross (registered trademark) K-2020E (manufactured by Nippon Shokubai Co., Ltd.). For details of the epoxy-based compound, the isocyanate-based compound, and the melamine-based compound, the description in paragraphs 0083 to 0083 of JP2015-163457 can be referred to. The cross-linking agent described in paragraphs 882-0084 of WO 2017/169844 can also be preferably used. As the carbodiimide compound, the description in paragraphs 0038 to 0040 of JP-A-2017-087421 can be referred to.
As for the oxazoline compound, the carbodiimide compound and the isocyanate compound, the cross-linking agent described in paragraphs 0074 to 0075 of International Publication No. 2018/034294 can also be preferably used.
The content of the cross-linking agent is preferably 0 to 50% by mass with respect to the total mass of the specific layer.
 特定層は、樹脂及び/又は粒子と凝集して特定層形成時の塗布性が悪化しない点で、カチオン性有機化合物の含有量が少ないことが好ましい。 The specific layer preferably has a low content of the cationic organic compound in that it aggregates with the resin and / or the particles and the coatability at the time of forming the specific layer does not deteriorate.
(厚み)
 特定層の厚みは、1~200nmであり、本発明の効果がより優れる点、特定層の製造適性、及び、ヘイズ低減の点で、10~100nmが好ましく、20~100nmがより好ましい。
 特定層の厚みは、ポリエステルフィルムの主面に対して垂直な断面を有する切片を作製し、走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM:Transmission Electron Microscope)を用いて測定される、上記切片の5か所の厚みの算術平均値とする。
 特定層が柔らかく、安定して断面切片を作製することが難しい場合には、分光光度計を用いて測定してもよい。具体的には、分光光度計に絶対反射率を測定できるユニットを設置し入射角5度の絶対反射率スペクトル(特定層表面)を測定する。その反射率スペクトルと特定層及びポリエステル基材の屈折率と特定層の膜厚をパラメーターとして計算されるスペクトルとをフィッテングすることにより、特定層の膜厚を求めることができる。
(Thickness)
The thickness of the specific layer is 1 to 200 nm, and 10 to 100 nm is preferable, and 20 to 100 nm is more preferable, in terms of the superior effect of the present invention, the manufacturing suitability of the specific layer, and the reduction of haze.
The thickness of the specific layer is measured by preparing a section having a cross section perpendicular to the main surface of the polyester film and using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The arithmetic average value of the thicknesses of the five sections of the above section is used.
If the specific layer is soft and it is difficult to stably prepare a cross-sectional section, measurement may be performed using a spectrophotometer. Specifically, a unit capable of measuring absolute reflectance is installed in a spectrophotometer to measure the absolute reflectance spectrum (specific layer surface) at an incident angle of 5 degrees. The film thickness of the specific layer can be obtained by fitting the reflectance spectrum, the refractive index of the specific layer and the polyester substrate, and the spectrum calculated using the film thickness of the specific layer as parameters.
 特定層の形成方法については、後述する「特定層形成工程」において詳しく説明する。 The method for forming the specific layer will be described in detail in the "specific layer forming step" described later.
〔物性等〕
 次に、本フィルムの物性等について説明する。
[Physical characteristics, etc.]
Next, the physical characteristics of this film will be described.
(第2主面の表面自由エネルギー)
 本フィルムの第2主面の表面自由エネルギーは、60mJ/m以下が好ましく、50mJ/m以下がより好ましく、25~50mJ/mが更に好ましく、30~50mJ/mが特に好ましい。第2主面の表面自由エネルギーが上記の範囲にあることにより、第2主面の最大断面高さSRtが上記の範囲にあっても、フィルム同士が密着しすぎることなく傷つき防止性に優れ、ゴミなどの異物が付着することなくフィルム表面にキズが付きにくいポリエステルフィルムが得られる。
 第2主面(特定層表面)の表面自由エネルギーは、例えば、特定層に含有される粒子、樹脂及び添加剤の種類及びそれらの含有量を選択することにより、調節できる。
(Surface free energy of the second main surface)
The surface free energy of the second main surface of this film is preferably 60 mJ / m 2 or less, more preferably 50 mJ / m 2 or less, further preferably 25 to 50 mJ / m 2 , and particularly preferably 30 to 50 mJ / m 2 . Since the surface free energy of the second main surface is within the above range, even if the maximum cross-sectional height SRt of the second main surface is within the above range, the films do not adhere too much to each other and are excellent in scratch prevention. A polyester film can be obtained in which the surface of the film is not easily scratched without foreign matter such as dust adhering to it.
The surface free energy of the second main surface (specific layer surface) can be adjusted, for example, by selecting the types of particles, resins and additives contained in the specific layer and their contents.
 ポリエステルフィルムの第2主面の表面自由エネルギーは、後述する方法で測定できる。 The surface free energy of the second main surface of the polyester film can be measured by the method described later.
(第1主面の表面自由エネルギー)
 本フィルムを巻き取る際の帯電防止の観点で、第1主面の表面自由エネルギーは、40~80mJ/mであることが好ましく、50~70mJ/mであることがより好ましい。
 また、第1主面の表面自由エネルギーと第2主面の表面自由エネルギーとの差が広い方が、フィルムが帯電しにくいため、好ましい。第1主面の表面自由エネルギーと第2主面の表面自由エネルギーとの差は、1~35mJ/mであることが好ましく、10~30mJ/mであることがより好ましい。
 第1主面の表面自由エネルギーは、第1主面を有する層を形成する樹脂及び添加剤の種類により調整できる。例えば、特定層がポリエステル基材の片面のみに設けられ、第1主面がポリエステル基材の特定層側とは反対側の表面である場合、ポリエステル基材を形成するポリエステル及び添加剤の種類及びそれらの含有量により、第1主面の表面自由エネルギーを調整できる。また、非ポリエステル樹脂層を設ける場合には、非ポリエステル樹脂及び非ポリエステル樹脂層に含まれる添加剤の種類及びそれらの含有量により、第1主面の表面自由エネルギーを調整できる。また、特定層をポリエステル基材の両面に設ける場合には、第1主面を形成する側の特定層に含まれる樹脂及び添加剤の種類及びそれらの含有量により、第1主面の表面自由エネルギーを調整できる。
(Surface free energy of the first main surface)
From the viewpoint of preventing static electricity when winding the film, the surface free energy of the first main surface is preferably 40 to 80 mJ / m 2 , and more preferably 50 to 70 mJ / m 2 .
Further, it is preferable that the difference between the surface free energy of the first main surface and the surface free energy of the second main surface is wide because the film is less likely to be charged. The difference between the surface free energy of the first main surface and the surface free energy of the second main surface is preferably 1 to 35 mJ / m 2 , and more preferably 10 to 30 mJ / m 2 .
The surface free energy of the first main surface can be adjusted by the type of resin and additive forming the layer having the first main surface. For example, when the specific layer is provided on only one side of the polyester base material and the first main surface is the surface opposite to the specific layer side of the polyester base material, the types of polyester and additives forming the polyester base material and Depending on their content, the surface free energy of the first main surface can be adjusted. When the non-polyester resin layer is provided, the surface free energy of the first main surface can be adjusted by the type of the non-polyester resin and the additive contained in the non-polyester resin layer and the content thereof. When the specific layer is provided on both sides of the polyester base material, the surface of the first main surface is free depending on the types of resins and additives contained in the specific layer on the side forming the first main surface and their contents. You can adjust the energy.
(第2主面の最大断面高さSRt、面平均粗さSRa)
 本フィルムにおいては、第2主面の最大断面高さSRtが20~150nmである。第2主面の最大断面高さSRtが上記の範囲にあることにより、傷つき防止性とパターン直線性とのバランスに優れたポリエステルフィルムが得られる。
 上記の観点から、第2主面の最大断面高さSRtは、20~100nmが好ましく、20~40nmがより好ましい。
(Maximum cross-sectional height SRt of the second main surface, surface average roughness SRa)
In this film, the maximum cross-sectional height SRt of the second main surface is 20 to 150 nm. When the maximum cross-sectional height SRt of the second main surface is within the above range, a polyester film having an excellent balance between scratch prevention and pattern linearity can be obtained.
From the above viewpoint, the maximum cross-sectional height SRt of the second main surface is preferably 20 to 100 nm, more preferably 20 to 40 nm.
 また、本フィルムにおいては、転写痕の抑制安定性がより優れる点で、第2主面の面平均粗さSRaは、0.5~10.0nmが好ましく、1.0~8.0nmがより好ましく、1.0~5.0nmが更に好ましい。 Further, in this film, the surface average roughness SRa of the second main surface is preferably 0.5 to 10.0 nm, more preferably 1.0 to 8.0 nm, in that the suppression stability of transfer marks is more excellent. It is preferable, and more preferably 1.0 to 5.0 nm.
 第2主面(特定層表面)の最大断面高さSRt及び面平均粗さSRaは、例えば、特定層に含まれる粒子の平均粒子径及び含有量、並びに、特定層の厚みにより、調節することができる。インラインコーティングにて特定層を形成する場合には、上記の調整をより容易に行うことができる。 The maximum cross-sectional height SRt and surface average roughness SRa of the second main surface (specific layer surface) are adjusted by, for example, the average particle size and content of the particles contained in the specific layer, and the thickness of the specific layer. Can be done. When a specific layer is formed by in-line coating, the above adjustment can be performed more easily.
 ポリエステルフィルムの第2主面の最大断面高さSRt及び面平均粗さSRaは、後述する方法で測定できる。 The maximum cross-sectional height SRt and the surface average roughness SRa of the second main surface of the polyester film can be measured by the method described later.
(第1主面の最大断面高さSRt、面平均粗さSRa)
 DFR製造時に積層される感光性樹脂層等の層を平滑にする点で、第1主面はできるだけ平滑であることが好ましい。具体的には、第1主面の最大断面高さSRtは、1~60nmが好ましく、5~40nmであることがより好ましい。また、第1主面の面平均粗さSRaは、0~10.0nmが好ましく、0~5.0nmがより好ましい。
(Maximum cross-sectional height SRt of the first main surface, surface average roughness SRa)
The first main surface is preferably as smooth as possible in terms of smoothing a layer such as a photosensitive resin layer laminated during DFR production. Specifically, the maximum cross-sectional height SRt of the first main surface is preferably 1 to 60 nm, more preferably 5 to 40 nm. The surface average roughness SRa of the first main surface is preferably 0 to 10.0 nm, more preferably 0 to 5.0 nm.
 第1主面の最大断面高さSRt及び面平均粗さSRaは、特定層を片面のみに設け、ポリエステル基材に実質的に粒子を入れず、かつ、平滑に製膜するようにポリエステル基材を構成するポリエステルの種類及び添加剤の種類を選択する等の手法により、調整できる。また、非ポリエステル樹脂層を設ける場合には、非ポリエステル樹脂層に粒子を入れないこと、非ポリエステル樹脂層を形成する非ポリエステル樹脂及び添加剤(界面活性剤など)の種類を選択すること、並びに、平滑な粒子含有層を形成することにより、調整できる。
 第1主面の最大断面高さSRt及び面平均粗さSRaは、上記の第2主面の最大断面高さSRt及び面平均粗さSRaの測定方法に従って測定できる。
For the maximum cross-sectional height SRt and surface average roughness SRa of the first main surface, the polyester base material is provided with a specific layer on only one side so that particles are not substantially contained in the polyester base material and the film is formed smoothly. It can be adjusted by a method such as selecting the type of polyester and the type of additive constituting the above. When providing a non-polyester resin layer, do not put particles in the non-polyester resin layer, select the type of non-polyester resin and additives (such as surfactant) that form the non-polyester resin layer, and select the type. It can be adjusted by forming a smooth particle-containing layer.
The maximum cross-sectional height SRt and the surface average roughness SRa of the first main surface can be measured according to the above-mentioned measuring methods of the maximum cross-sectional height SRt and the surface average roughness SRa of the second main surface.
(第2主面の粒子密度D)
 本フィルムにおいては、本発明の効果がより優れる点で、第2主面の突起を構成している粒子の密度D(単位:個/μm、「粒子密度D」ともいう)が、1~10個/μmであることが好ましく、1~5個/μmであることがより好ましい。
(Particle density D on the second main surface)
In this film, the density D (unit: piece / μm 2 , also referred to as “particle density D”) of the particles constituting the protrusions on the second main surface is 1 to 1 in that the effect of the present invention is more excellent. It is preferably 10 pieces / μm 2 , and more preferably 1 to 5 pieces / μm 2 .
 上記の粒子密度Dは、上記の最大断面高さSRt及び面平均粗さSRaと同様に、例えば、特定層に含まれる粒子の平均粒子径及び含有量、並びに、特定層の厚みにより、調節できる。インラインコーティングにて特定層を形成する場合には、上記の調整をより容易に行うことができる。 The particle density D can be adjusted by, for example, the average particle size and content of the particles contained in the specific layer, and the thickness of the specific layer, similarly to the maximum cross-sectional height SRt and the surface average roughness SRa. .. When a specific layer is formed by in-line coating, the above adjustment can be performed more easily.
 また、ポリエステルフィルムの第2主面の突起を構成している粒子の粒子密度Dは、後述する方法で測定できる。 Further, the particle density D of the particles constituting the protrusions on the second main surface of the polyester film can be measured by the method described later.
(第2主面の最大断面高さSRtと粒子密度Dとの積)
 本フィルムにおいては、本発明の効果がより優れる点で、上記の第2主面の粒子密度D(単位:個/μm)と、上記の第2主面の最大断面高さSRt(単位:nm)との積(D×SRt)が、1000以下であることが好ましく、600以下であることがより好ましく、130以下であることが更に好ましい。下限は特に制限されないが、傷つき防止性がより優れる点で、1以上が好ましく、20以上がより好ましく、50以上が更に好ましい。
(The product of the maximum cross-sectional height SRt of the second main surface and the particle density D)
In this film, the particle density D (unit: piece / μm 2 ) of the second main surface and the maximum cross-sectional height SRt (unit: unit:) of the second main surface are described in that the effect of the present invention is more excellent. The product (D × SRt) with (nm) is preferably 1000 or less, more preferably 600 or less, and even more preferably 130 or less. The lower limit is not particularly limited, but 1 or more is preferable, 20 or more is more preferable, and 50 or more is further preferable, in that the scratch prevention property is more excellent.
(配向性)
 本フィルムは、2軸配向ポリエステルフィルムである。本開示において「2軸配向」とは、2軸方向に分子配向性を有する性質を意味する。
 分子配向性は、マイクロ波透過型分子配向計(例えば、MOA-6004、株式会社王子計測機器社製)を用いて測定する。2軸方向のなす角は、90°±5°が好ましく、90°±3°がより好ましく、90°±1°が更に好ましい。本フィルムは、長手方向及び幅方向に分子配向性を有することが好ましい。
(Orientation)
This film is a biaxially oriented polyester film. In the present disclosure, "biaxial orientation" means a property having molecular orientation in the biaxial direction.
The molecular orientation is measured using a microwave transmission type molecular orientation meter (for example, MOA-6004, manufactured by Oji Measuring Instruments Co., Ltd.). The angle formed in the biaxial direction is preferably 90 ° ± 5 °, more preferably 90 ° ± 3 °, and even more preferably 90 ° ± 1 °. This film preferably has molecular orientation in the longitudinal direction and the width direction.
(膨張率)
 ポリエステルフィルムは、90℃における幅方向の膨張率が、30℃におけるフィルム幅に対して、-0.15~0.15%であることが好ましく、-0.10~0.10%であることがより好ましく、0~0.10%であることが更に好ましく、0~0.05%であることが特に好ましい。
 ポリエステルフィルムにおける90℃における幅方向の膨張率を上記範囲に調整することで、加熱過程におけるフィルムの幅方向への膨張を抑えるだけでなく、フィルム面の場所ごとの膨張率ムラを小さくできる。その結果、加熱に起因する筋状欠陥領域の発生を抑制できると推察される。
(Expansion rate)
The expansion rate of the polyester film in the width direction at 90 ° C. is preferably −0.15 to 0.15%, preferably −0.10 to 0.10%, based on the film width at 30 ° C. Is more preferable, 0 to 0.10% is further preferable, and 0 to 0.05% is particularly preferable.
By adjusting the expansion coefficient in the width direction of the polyester film at 90 ° C. within the above range, not only the expansion of the film in the width direction in the heating process can be suppressed, but also the expansion coefficient unevenness in each place on the film surface can be reduced. As a result, it is presumed that the generation of streaky defect regions due to heating can be suppressed.
 90℃における幅方向の膨張率は、熱機械分析装置を用いて以下の方法により測定する。
(1)2軸配向フィルムの幅方向に対して平行な方向に少なくとも20mm、2軸配向フィルムの幅方向に対して直交する方向に4mmの長さに調節された試料を準備する。
(2)熱機械分析装置(例えば、TMA-60、株式会社島津製作所製)を用い、幅4mm及び長さ(チャック間距離)20mmの試料に対し、引張荷重0.1gを負荷する。
(3)上記試料を20℃以上30℃未満の温度(好ましくは25℃)から150℃まで昇温速度5℃/分で昇温させることにより、各温度(℃)における試料の長さの値を得る。
(4)30℃における試料の長さ(L30)、及び、90℃における長さ(L90)から、下記式を用いて90℃における幅方向の膨張率を求める。本開示において、幅方向の膨張率は、5つの試料を用いて得られる膨張率の算術平均値とする。なお、正の膨張率は膨張を意味し、負の膨張率は収縮を意味する。
 式:膨張率(%)=(L90-L30)/L30×100
The coefficient of expansion in the width direction at 90 ° C. is measured by the following method using a thermomechanical analyzer.
(1) Prepare a sample adjusted to a length of at least 20 mm in a direction parallel to the width direction of the biaxially oriented film and 4 mm in a direction orthogonal to the width direction of the biaxially oriented film.
(2) Using a thermomechanical analyzer (for example, TMA-60, manufactured by Shimadzu Corporation), a tensile load of 0.1 g is applied to a sample having a width of 4 mm and a length (distance between chucks) of 20 mm.
(3) The value of the length of the sample at each temperature (° C.) by raising the temperature of the above sample from a temperature of 20 ° C. or higher and lower than 30 ° C. (preferably 25 ° C.) to 150 ° C. at a heating rate of 5 ° C./min. To get.
(4) From the sample length (L30) at 30 ° C. and the length (L90) at 90 ° C., the expansion coefficient in the width direction at 90 ° C. is obtained using the following formula. In the present disclosure, the coefficient of expansion in the width direction is an arithmetic mean value of the coefficient of expansion obtained using five samples. A positive expansion rate means expansion, and a negative expansion rate means contraction.
Equation: Expansion rate (%) = (L90-L30) / L30 × 100
 ポリエステルフィルムの幅方向の膨張率は、例えば、2軸配向フィルムの製造過程における延伸倍率、熱処理温度及び冷却中のフィルム幅を適宜設定することにより調節できる。 The expansion rate in the width direction of the polyester film can be adjusted, for example, by appropriately setting the draw ratio in the manufacturing process of the biaxially oriented film, the heat treatment temperature, and the film width during cooling.
(フィルム密度)
 ポリエステルフィルムの密度は、1.39~1.41g/cmが好ましく、1.395~1.405g/cmがより好ましく、1.398~1.400g/cmが更に好ましい。
 ポリエステルフィルムの密度は、電子比重計(製品名「SD-200L」、アルファーミラージュ社製)を使用して測定できる。
(Film density)
The density of the polyester film is preferably 1.39 to 1.41 g / cm 3 , more preferably 1.395 to 1.405 g / cm 3 , and even more preferably 1.398 to 1.400 g / cm 3 .
The density of the polyester film can be measured using an electronic hydrometer (product name "SD-200L", manufactured by Alpha Mirage Co., Ltd.).
(厚み)
 ポリエステルフィルムの厚みは、転写性が向上する点で、100μm以下が好ましく、50μm以下がより好ましく、35μm以下が更に好ましい。厚みの下限は特に制限されないが、ハンドリング性に優れる点で、1μm以上が好ましく、5μm以上がより好ましく、10μm以上が更に好ましい。
 ポリエステルフィルムの厚みは、連続式触針式膜厚計により測定される5か所の厚みの算術平均値とする。
(Thickness)
The thickness of the polyester film is preferably 100 μm or less, more preferably 50 μm or less, still more preferably 35 μm or less, in terms of improving transferability. The lower limit of the thickness is not particularly limited, but 1 μm or more is preferable, 5 μm or more is more preferable, and 10 μm or more is further preferable, from the viewpoint of excellent handleability.
The thickness of the polyester film shall be the arithmetic mean value of the thicknesses at five points measured by the continuous stylus type film thickness meter.
 また、ポリエステルフィルムの厚みのバラツキは、剥離層を形成する第1主面の表面平滑性がより優れる点で、ポリエステルフィルムの平均厚みの7%以下が好ましく、5%以下がより好ましい。厚みバラつきの下限は特に制限されず、ポリエステルフィルムの平均厚みの0%以上であってよい。
 厚みバラツキは、後述する方法で測定できる。
Further, the variation in the thickness of the polyester film is preferably 7% or less, more preferably 5% or less of the average thickness of the polyester film in that the surface smoothness of the first main surface forming the release layer is more excellent. The lower limit of the thickness variation is not particularly limited, and may be 0% or more of the average thickness of the polyester film.
The thickness variation can be measured by the method described later.
〔製造方法〕
 本フィルムの製造方法(以下、「本製造方法」ともいう。)としては、例えば、実質的に粒子を含有しないポリエステル基材に対して、粒子及び樹脂を含有する特定層を形成する特定層形成工程を有する方法が挙げられる。特定層形成工程としては、上記ポリエステル基材に対して、粒子及び樹脂を含有する粒子含有層形成用組成物を用いてインラインコーティングして、特定層を形成する工程が好ましい。
 また、本製造方法としては、実質的に粒子を含有しないポリエステル基材を有する未延伸ポリエステルフィルムを2軸延伸する2軸延伸工程を有する方法が挙げられる。
〔Production method〕
As a method for producing this film (hereinafter, also referred to as “the present production method”), for example, a specific layer formation for forming a specific layer containing particles and a resin on a polyester base material containing substantially no particles is used. Examples include methods having steps. As the specific layer forming step, a step of in-line coating the polyester base material with a particle-containing layer forming composition containing particles and a resin to form a specific layer is preferable.
Further, as the present production method, there is a method having a biaxial stretching step of biaxially stretching an unstretched polyester film having a polyester base material substantially containing no particles.
 2軸延伸は、縦延伸及び横延伸を同時に行う同時2軸延伸であってもよく、縦延伸及び横延伸を2段階以上の多段階に分けて行う逐次2軸延伸であってもよい。逐次2軸延伸の形態としては、例えば、縦延伸→横延伸、縦延伸→横延伸→縦延伸、縦延伸→縦延伸→横延伸、及び横延伸→縦延伸が挙げられ、縦延伸→横延伸が好ましい。 The biaxial stretching may be simultaneous biaxial stretching in which longitudinal stretching and transverse stretching are performed at the same time, or sequential biaxial stretching in which longitudinal stretching and transverse stretching are divided into two or more stages. Examples of the form of sequential biaxial stretching include longitudinal stretching → transverse stretching, longitudinal stretching → transverse stretching → longitudinal stretching, longitudinal stretching → longitudinal stretching → transverse stretching, and transverse stretching → longitudinal stretching, and longitudinal stretching → transverse stretching. Is preferable.
 本製造方法について、具体的に説明する。
 本製造方法としては、例えば、原料ポリエステルを含有する溶融樹脂をフィルム状に押し出して、実質的に粒子を含有しないポリエステル基材を有する未延伸ポリエステルフィルムを形成する押出成形工程と、未延伸ポリエステルフィルムを搬送方向に延伸して1軸配向ポリエステルフィルムを形成する縦延伸工程、及び、1軸配向ポリエステルフィルムを幅方向に延伸して2軸配向ポリエステルフィルムを形成する横延伸工程からなる2軸延伸工程と、2軸配向ポリエステルフィルムを加熱して熱固定する熱固定工程と、熱固定工程により熱固定されたポリエステルフィルムを熱固定工程よりも低い温度で加熱して熱緩和する熱緩和工程と、熱緩和工程により熱緩和されたポリエステルフィルムを冷却する冷却工程と、冷却工程において、熱緩和されたポリエステルフィルムを幅方向に拡張する拡張工程と、実質的に粒子を含有しないポリエステル基材の少なくとも一方の面に対して、粒子及び樹脂を含有する粒子含有層形成用組成物を用いてインラインコーティングして特定層を設ける特定層形成工程と、を有する方法が挙げられる。
This manufacturing method will be specifically described.
The manufacturing method includes, for example, an extrusion molding step of extruding a molten resin containing a raw material polyester into a film to form an unstretched polyester film having a polyester base material substantially free of particles, and an unstretched polyester film. A biaxial stretching step consisting of a longitudinal stretching step of stretching in the transport direction to form a uniaxially oriented polyester film and a transverse stretching step of stretching the uniaxially oriented polyester film in the width direction to form a biaxially oriented polyester film. A heat fixing step of heating and heat-fixing a biaxially oriented polyester film, a heat mitigation step of heating a polyester film heat-fixed by a heat fixing step at a temperature lower than that of the heat fixing step to relieve heat, and heat. At least one of a cooling step of cooling the heat-relaxed polyester film by the relaxation step, an expansion step of expanding the heat-relaxed polyester film in the width direction in the cooling step, and a substantially particle-free polyester substrate. Examples thereof include a method having a specific layer forming step of in-line coating a surface with a particle-containing layer forming composition containing particles and a resin to provide a specific layer.
<押出成形工程>
 押出成形工程は、押出成形法により原料のポリエステルを含有する溶融樹脂をフィルム状に押し出して、実質的に粒子を含有しない未延伸ポリエステルフィルムを形成する工程である。原料のポリエステルについては、上記の(ポリエステル)の項目において説明したポリエステルと同義である。
<Extrusion molding process>
The extrusion molding step is a step of extruding a molten resin containing polyester as a raw material into a film by an extrusion molding method to form an unstretched polyester film containing substantially no particles. The raw material polyester has the same meaning as the polyester described in the above item (polyester).
 押出成形法は、公知の押出機を用いて原料樹脂の溶融体を押出ダイから押し出すことによって、原料樹脂を所望の形状に成形する方法である。
 溶融体は、単層で押出されてもよく、多層で押出されてもよい。
The extrusion molding method is a method of molding a raw material resin into a desired shape by extruding a melt of the raw material resin from an extrusion die using a known extruder.
The melt may be extruded in a single layer or in multiple layers.
 押出ダイから押し出された溶融体は、冷却されることによってフィルム状に成形される。例えば、溶融体をキャスティングロールに接触させ、キャスティングロール上で溶融体を冷却及び固化することで、溶融体をフィルム状に成形できる。 The melt extruded from the extrusion die is cooled to form a film. For example, the melt can be formed into a film by bringing the melt into contact with a casting roll and cooling and solidifying the melt on the casting roll.
 キャスティングロールの温度は、(Tg-10)℃を超え(Tg+30)℃以下が好ましい。上記の「Tg」は、フィルムを構成するポリエステルのガラス転移温度を意味する。
 ここで、本製造方法におけるポリエステルフィルム及び各部材の温度は、非接触式温度計(例えば、放射温度計)を用いて測定できる。
 冷却された成形体(未延伸ポリエステルフィルム)は、剥ぎ取りロール等の剥ぎ取り部材を用いて、キャスティングロール等の冷却部材から剥ぎ取られる。
The temperature of the casting roll is preferably more than (Tg-10) ° C and not more than (Tg + 30) ° C. The above-mentioned "Tg" means the glass transition temperature of the polyester constituting the film.
Here, the temperature of the polyester film and each member in the present manufacturing method can be measured by using a non-contact thermometer (for example, a radiation thermometer).
The cooled molded body (unstretched polyester film) is stripped from the cooling member such as a casting roll by using a stripping member such as a stripping roll.
<2軸延伸工程>
 2軸延伸工程は、未延伸ポリエステルフィルムを搬送方向に延伸(以下、「縦延伸」ともいう。)して1軸配向ポリエステルフィルムを形成する縦延伸工程、及び、1軸配向ポリエステルフィルムを幅方向に延伸(以下、「横延伸」ともいう。)して2軸配向ポリエステルフィルムを形成する横延伸工程を有する。
<Biaxial stretching process>
The biaxial stretching step is a longitudinal stretching step of stretching the unstretched polyester film in the transport direction (hereinafter, also referred to as “longitudinal stretching”) to form a uniaxially oriented polyester film, and a longitudinal stretching step of forming the uniaxially oriented polyester film in the width direction. It has a transverse stretching step of forming a biaxially oriented polyester film by stretching (hereinafter, also referred to as “lateral stretching”).
(縦延伸工程)
 縦延伸工程においては、縦延伸前に、未延伸ポリエステルフィルムを予熱することが好ましい。未延伸ポリエステルフィルムを予熱することで、ポリエステルフィルムを容易に縦延伸できる。
 未延伸ポリエステルフィルムの予熱温度は、(Tg-30)~(Tg+40)℃が好ましく、具体的には、60~100℃が好ましい。
 後述の延伸ロールがフィルムを予熱する機能を有してもよい。
(Vertical stretching process)
In the longitudinal stretching step, it is preferable to preheat the unstretched polyester film before longitudinal stretching. By preheating the unstretched polyester film, the polyester film can be easily stretched vertically.
The preheating temperature of the unstretched polyester film is preferably (Tg-30) to (Tg + 40) ° C., specifically 60 to 100 ° C.
The stretched roll described below may have a function of preheating the film.
 縦延伸は、例えば、未延伸ポリエステルフィルムを長手方向に搬送しながら、搬送方向に設置した2対以上の延伸ロール間で緊張を与えることによって行うことができる。
 縦延伸工程における、搬送方向上流側に設けた1対の延伸ロールA、及び、搬送方向下流側に設けた1対の延伸ロールBによるフィルムの搬送速度(周速度)は、延伸ロールAによるフィルムの搬送速度が、延伸ロールBによるフィルムの搬送速度よりも遅ければ、特に制限されない。延伸ロールAによるフィルムの搬送速度は、5~60m/分が好ましい。延伸ロールBによるフィルムの搬送速度は、40~160m/分が好ましい。
 縦延伸工程における延伸倍率は、用途によって適宜設定され、2.0~5.0倍が好ましい。
 縦延伸工程における延伸速度は、800~1500%/秒が好ましい。ここで、「延伸速度」とは、縦延伸工程において1秒間に延伸されたポリエステルフィルムの搬送方向の長さΔdを、延伸前のポリエステルフィルムの搬送方向の長さd0で除した値を、百分率で表した値である。
The longitudinal stretching can be performed, for example, by applying tension between two or more pairs of stretching rolls installed in the transporting direction while transporting the unstretched polyester film in the longitudinal direction.
In the longitudinal stretching step, the transport speed (peripheral speed) of the film by the pair of stretch rolls A provided on the upstream side in the transport direction and the pair of stretch rolls B provided on the downstream side in the transport direction is the film by the stretch roll A. The transfer speed of the film is not particularly limited as long as it is slower than the transfer rate of the film by the stretch roll B. The transport speed of the film by the stretch roll A is preferably 5 to 60 m / min. The transport speed of the film by the stretch roll B is preferably 40 to 160 m / min.
The draw ratio in the longitudinal stretching step is appropriately set depending on the application, and is preferably 2.0 to 5.0 times.
The stretching speed in the longitudinal stretching step is preferably 800 to 1500% / sec. Here, the "stretching speed" is a percentage obtained by dividing the length Δd in the transport direction of the polyester film stretched in 1 second in the longitudinal stretching step by the length d0 in the transport direction of the polyester film before stretching. It is a value represented by.
 縦延伸工程においては、未延伸ポリエステルフィルムを加熱することが好ましい。加熱により縦延伸が容易になるためである。
 縦延伸工程における加熱温度は、(Tg-20)~(Tg+50)℃が好ましく、具体的には、70~120℃が好ましい。
In the longitudinal stretching step, it is preferable to heat the unstretched polyester film. This is because longitudinal stretching becomes easier by heating.
The heating temperature in the longitudinal stretching step is preferably (Tg-20) to (Tg + 50) ° C., specifically 70 to 120 ° C.
(横延伸工程)
 横延伸工程は、1軸配向ポリエステルフィルムを横延伸する工程である。
 横延伸工程においては、横延伸前に、ポリエステルフィルムを予熱することが好ましい。ポリエステルフィルムを予熱することで、ポリエステルフィルムを容易に横延伸できる。
 予熱温度は、(Tg-10)~(Tg+60)℃が好ましく、具体的には、80~120℃が好ましい。
(Transverse stretching process)
The transverse stretching step is a step of transversely stretching a uniaxially oriented polyester film.
In the transverse stretching step, it is preferable to preheat the polyester film before the transverse stretching. By preheating the polyester film, the polyester film can be easily stretched laterally.
The preheating temperature is preferably (Tg-10) to (Tg + 60) ° C, specifically 80 to 120 ° C.
 横延伸工程における1軸配向ポリエステルフィルムの幅方向の延伸倍率(横延伸倍率)は特に制限されないが、上記縦延伸工程における延伸倍率より大きいことが好ましく、3.0~6.0倍がより好ましい。
 縦延伸工程における延伸倍率と、横延伸工程における延伸倍率との積で表される面積倍率は、フィルム幅方向における分子配向が良好になり、加熱処理に供された際に分子配向が緩和されにくい状態を維持しやすい点で、12.8~15.5倍が好ましい。
 横延伸工程における加熱温度は、(Tg-10)~(Tg+80)℃が好ましく、具体的には、100~140℃が好ましい。
 横延伸工程における延伸速度は、8~45%/秒が好ましい。
The stretching ratio (transverse stretching ratio) in the width direction of the uniaxially oriented polyester film in the transverse stretching step is not particularly limited, but is preferably larger than the stretching ratio in the longitudinal stretching step, and more preferably 3.0 to 6.0 times. ..
The area magnification expressed by the product of the stretching ratio in the longitudinal stretching step and the stretching ratio in the transverse stretching step has a good molecular orientation in the film width direction, and the molecular orientation is difficult to be relaxed when subjected to heat treatment. It is preferably 12.8 to 15.5 times because it is easy to maintain the state.
The heating temperature in the transverse stretching step is preferably (Tg-10) to (Tg + 80) ° C., specifically 100 to 140 ° C.
The stretching speed in the transverse stretching step is preferably 8 to 45% / sec.
<熱固定工程>
 本製造方法では、横延伸工程により横延伸されたポリエステルフィルムに対する加熱処理として、熱固定工程及び熱緩和工程を行うことが好ましい。
 横延伸工程により得られた2軸配向ポリエステルフィルムを加熱して、熱固定することによってポリエステルを結晶化させることができ、ポリエステルフィルムの収縮を抑えることができる。
 熱固定工程におけるポリエステルフィルムの表面温度(熱固定温度)は、特に制限されないが、190~240℃が好ましい。
 熱固定工程における加熱時間は、5~50秒間が好ましい。
<Heat fixing process>
In this production method, it is preferable to perform a heat fixing step and a heat relaxation step as a heat treatment for the polyester film laterally stretched by the transverse stretching step.
By heating and heat-fixing the biaxially oriented polyester film obtained in the transverse stretching step, the polyester can be crystallized and the shrinkage of the polyester film can be suppressed.
The surface temperature (heat fixing temperature) of the polyester film in the heat fixing step is not particularly limited, but is preferably 190 to 240 ° C.
The heating time in the heat fixing step is preferably 5 to 50 seconds.
<熱緩和工程>
 熱固定工程により熱固定されたポリエステルフィルムを、熱固定工程よりも低い温度で加熱することで熱緩和する工程を行うことが好ましい。熱緩和によってポリエステルフィルムの残留歪みを緩和できる。
<Heat relaxation process>
It is preferable to perform a step of heat-relaxing the polyester film heat-fixed by the heat-fixing step by heating it at a temperature lower than that of the heat-fixing step. Residual strain of the polyester film can be alleviated by heat relaxation.
 熱緩和工程におけるポリエステルフィルムの表面温度(熱緩和温度)は、熱固定温度より、5℃以上低い温度が好ましく、具体的には、熱緩和温度は、100~235℃が好ましい。 The surface temperature (heat relaxation temperature) of the polyester film in the heat relaxation step is preferably 5 ° C. or higher lower than the heat fixation temperature, and specifically, the heat relaxation temperature is preferably 100 to 235 ° C.
<冷却工程>
 本製造方法は、熱緩和されたポリエステルフィルムを冷却する冷却工程を有することが好ましい。
 冷却工程におけるポリエステルフィルムの冷却方法としては、例えば、フィルムに風(好ましくは冷風)を当てる方法、及び温度調節可能な部材(例えば、温調ロール)にフィルムを接触させる方法が挙げられる。
 冷却工程におけるポリエステルフィルムの冷却速度は、特に制限されないが、2軸配向フィルムに積層される剥離層の厚みムラが低減する点で、2000℃/分超4000℃/分未満が好ましい。
<Cooling process>
The production method preferably includes a cooling step of cooling the heat-relaxed polyester film.
Examples of the method for cooling the polyester film in the cooling step include a method of blowing air (preferably cold air) on the film and a method of bringing the film into contact with a temperature-adjustable member (for example, a temperature control roll).
The cooling rate of the polyester film in the cooling step is not particularly limited, but is preferably more than 2000 ° C./min and less than 4000 ° C./min in that the thickness unevenness of the release layer laminated on the biaxially oriented film is reduced.
 本製造方法における上記の熱固定工程、熱緩和工程及び冷却工程は、この順に連続して実施することが好ましい。これにより、ポリエステルフィルムに対する加熱及び冷却の繰返しによる負荷(熱履歴)を低減し、フィルムに内在する歪み等を低減して、筋状欠陥の発生を抑制できるためである。 It is preferable that the above-mentioned heat fixing step, heat relaxation step and cooling step in this manufacturing method are continuously carried out in this order. This is because the load (heat history) due to repeated heating and cooling of the polyester film can be reduced, the strain inherent in the film can be reduced, and the occurrence of streak defects can be suppressed.
<拡張工程>
 上記冷却工程において、熱緩和されたポリエステルフィルムを幅方向に拡張する工程を行うことが好ましい。
 拡張工程によるポリエステルフィルムの幅方向の拡張率、即ち、冷却工程の開始前におけるフィルム幅に対する冷却工程の終了時におけるフィルム幅の比率は、0~1.3%が好ましい。
<Expansion process>
In the cooling step, it is preferable to perform a step of expanding the heat-relaxed polyester film in the width direction.
The expansion ratio of the polyester film in the width direction by the expansion step, that is, the ratio of the film width at the end of the cooling step to the film width before the start of the cooling step is preferably 0 to 1.3%.
<特定層形成工程>
 特定層形成工程として、粒子及び樹脂を含有する粒子含有層形成用組成物(以下、「組成物A」ともいう。)を用いてインラインコーティングして特定層を形成する工程を説明する。特定層形成工程によりポリエステル基材の少なくとも一方の表面に形成される特定層については、上記<特定層>の項目において詳しく説明した層と同義である。
 特定層の形成は、本製造方法のいずれの段階で行ってもよく、例えば、未延伸又は延伸されたポリエステル基材の一方または両方の表面上に塗布膜を形成し、必要に応じて乾燥する方法が挙げられる。
<Specific layer forming process>
As a specific layer forming step, a step of forming a specific layer by in-line coating using a particle-containing layer forming composition (hereinafter, also referred to as “composition A”) containing particles and a resin will be described. The specific layer formed on at least one surface of the polyester base material by the specific layer forming step has the same meaning as the layer described in detail in the above item <Specific layer>.
The formation of the specific layer may be carried out at any stage of the present production method, for example, a coating film is formed on the surface of one or both of unstretched or stretched polyester substrates, and dried as necessary. The method can be mentioned.
 まず、組成物Aを用いて特定層を形成する方法について、説明する。
 組成物Aは、特定層が含有する粒子及び樹脂、必要に応じて添加される添加剤、並びに、溶剤を混合することにより調製できる。
 溶剤としては、例えば、水、エタノール、トルエン、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル及びプロピレングリコールモノエチルエーテルが挙げられる。中でも、環境、安全性及び経済性の観点から、水が好ましい。
First, a method of forming a specific layer using the composition A will be described.
The composition A can be prepared by mixing the particles and resin contained in the specific layer, additives added as necessary, and a solvent.
Examples of the solvent include water, ethanol, toluene, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether. Of these, water is preferable from the viewpoint of environment, safety and economy.
 組成物Aは、1種単独の溶剤を含有していてもよく、2種以上の溶剤を含有していてもよい。
 溶剤の含有量は、組成物Aの全質量に対して、80~99質量%が好ましく、90~98質量%がより好ましい。
 即ち、組成物Aにおいて、溶剤以外の成分(固形分)の合計含有量は、組成物Aの全質量に対して、0.5~20質量%が好ましく、1~10質量%がより好ましい。
The composition A may contain one kind of solvent alone, or may contain two or more kinds of solvents.
The content of the solvent is preferably 80 to 99% by mass, more preferably 90 to 98% by mass, based on the total mass of the composition A.
That is, in the composition A, the total content of the components (solid content) other than the solvent is preferably 0.5 to 20% by mass, more preferably 1 to 10% by mass, based on the total mass of the composition A.
 組成物Aに含有される粒子、樹脂及び添加剤については、それらの好ましい態様も含めて、上記<特定層>の項目において詳しく説明した通りである。なお、組成物Aに含有される粒子として市販品を使用する場合、それらの市販品のカタログ値を粒子の平均粒子径として用いてもよい。
 組成物Aにおける溶剤以外の各成分については、組成物Aの固形分の全質量に対する各成分の含有量が、上記の特定層の全質量に対する各成分の好ましい含有量と同じになるように、塗布液における各成分の含有量を調整することが好ましい。
The particles, resins and additives contained in the composition A, including their preferred embodiments, are as described in detail in the above item <Specific layer>. When commercially available products are used as the particles contained in the composition A, the catalog values of those commercially available products may be used as the average particle size of the particles.
For each component other than the solvent in the composition A, the content of each component with respect to the total mass of the solid content of the composition A is the same as the preferable content of each component with respect to the total mass of the specific layer described above. It is preferable to adjust the content of each component in the coating liquid.
 組成物Aの塗布方法は特に制限されず、公知の方法を利用できる。塗布方法としては、例えば、スプレーコート法、スリットコート法、ロールコート法、ブレードコート法、スピンコート法、バーコート法及びディップコート法が挙げられる。 The method of applying the composition A is not particularly limited, and a known method can be used. Examples of the coating method include a spray coating method, a slit coating method, a roll coating method, a blade coating method, a spin coating method, a bar coating method and a dip coating method.
 特定層形成工程においては、ポリエステル基材を搬送しながら、ポリエステル基材の一方または両方に表面に塗布液を塗布するインラインコーティング法が適用される。インラインコーティング法を適用することにより、製造工程におけるポリエステル基材の加熱時間が短くなり、熱履歴がかからないため、ポリエステルフィルムの筋状欠陥領域を低減できる。
 インラインコーティング法において、組成物Aを塗布するポリエステル基材は、未延伸のポリエステル基材であってもよく、1軸配向されたポリエステル基材であってもよいが、1軸配向されたポリエステル基材であることが好ましい。即ち、インラインコーティング法による特定層形成工程を、縦延伸工程と横延伸工程との間に行うことが好ましい。1軸配向されたポリエステル基材と特定層とを同時に横延伸することにより、ポリエステル基材及び特定層の密着性を向上できるためである。
In the specific layer forming step, an in-line coating method is applied in which a coating liquid is applied to one or both of the polyester substrates while transporting the polyester substrate. By applying the in-line coating method, the heating time of the polyester base material in the manufacturing process is shortened and the heat history is not applied, so that the streak defect region of the polyester film can be reduced.
In the in-line coating method, the polyester base material to which the composition A is applied may be an unstretched polyester base material or a uniaxially oriented polyester base material, but may be a uniaxially oriented polyester group. It is preferably a material. That is, it is preferable to perform the specific layer forming step by the in-line coating method between the longitudinal stretching step and the transverse stretching step. This is because the adhesion between the polyester base material and the specific layer can be improved by simultaneously laterally stretching the uniaxially oriented polyester base material and the specific layer.
 本製造方法は、上記の工程を経て得られた2軸配向ポリエステルフィルムを巻き取ることにより、ロール状の2軸配向ポリエステルフィルムを得る巻き取り工程を有していてもよい。
 また、本製造方法は、巻き取り工程を実施する前に、ポリエステルフィルムを搬送方向に沿って連続的に切断して、ポリエステルフィルムの幅方向の少なくとも一方の端部を切り取るトリミング工程を更に有してもよい。
The present manufacturing method may include a winding step of obtaining a roll-shaped biaxially oriented polyester film by winding the biaxially oriented polyester film obtained through the above steps.
Further, the present manufacturing method further includes a trimming step of continuously cutting the polyester film along the transport direction and cutting off at least one end in the width direction of the polyester film before carrying out the winding step. You may.
 本製造方法の縦延伸工程以外の各工程におけるポリエステルフィルムの搬送速度は、特に制限されないが、生産性及び品質の点で、50~200m/分が好ましい。
 また、冷却工程を施された後、上記の巻き取り工程において巻き取られるまでのポリエステルフィルムに付与される搬送方向の張力は、3~30N/mが好ましい。
The transport speed of the polyester film in each step other than the longitudinal stretching step of this production method is not particularly limited, but is preferably 50 to 200 m / min in terms of productivity and quality.
Further, the tension applied to the polyester film in the transport direction after the cooling step is applied until the polyester film is taken up in the above winding step is preferably 3 to 30 N / m.
〔用途〕
 本フィルムは、透明性と平滑性に優れるため、光学用ポリエステルフィルムとして好適に用いられる。
 中でも、本フィルムは、傷つき防止性及びパターン直線性に優れるため、ドライフィルムレジスト製造用ポリエステルフィルムとして好適に用いられる。本フィルムを用いて製造されるドライフィルムレジストは、高精細なレジストパターンを形成した場合であっても、パターン直線性に優れるレジストパターンを形成できるため、レジストパターンの形成に好適に用いることができる。
 本フィルムを用いて製造されるドライフィルムレジスト、及び、本フィルムを用いるドライフィルムレジストの製造方法については、後述する。
[Use]
Since this film is excellent in transparency and smoothness, it is suitably used as an optical polyester film.
Above all, this film is preferably used as a polyester film for producing a dry film resist because it has excellent scratch resistance and pattern linearity. A dry film resist produced using this film can form a resist pattern having excellent pattern linearity even when a high-definition resist pattern is formed, and thus can be suitably used for forming a resist pattern. ..
A dry film resist manufactured using this film and a method for manufacturing a dry film resist using this film will be described later.
 本フィルムは、透明性と平滑性に優れるため、ドライフィルムレジスト製造用以外の光学用途にも好適に用いられる。より具体的には、ドライフィルムレジスト等各種用途の保護フィルム、加飾シート及び装飾シート等各種用途の支持フィルム、加飾層及び樹脂シート等の成形用フィルム、光学ディスプレイ用フィルム、導電性フィルム、セラミックシート製造等各種用途の剥離フィルム、半導体製造工程用フィルム、偏光板製造工程用フィルム、磁気テープ用フィルム、並びに、ラベル用、医療用及び事務用品用等の粘着フィルムのセパレーターとして好適に用いることができる。 Since this film has excellent transparency and smoothness, it is suitably used for optical applications other than dry film resist production. More specifically, protective films for various uses such as dry film resists, support films for various uses such as decorative sheets and decorative sheets, molding films such as decorative layers and resin sheets, optical display films, conductive films, etc. Suitable for use as a separator for release films for various applications such as ceramic sheet production, films for semiconductor manufacturing processes, films for polarizing plate manufacturing processes, films for magnetic tapes, and adhesive films for labels, medical use, office supplies, etc. Can be done.
[DFR]
 本発明のDFRは、仮支持体としての本フィルムと、本フィルムの第1主面上に設けられた感光性樹脂層とを有し、感光性転写部材として使用される。
 DFRは、本フィルムと感光性樹脂層との間に中間層を有していてもよい。
 ここで、中間層とは、仮支持体と上記感光性樹脂層との間にある全ての層を意味する。
[DFR]
The DFR of the present invention has the present film as a temporary support and a photosensitive resin layer provided on the first main surface of the present film, and is used as a photosensitive transfer member.
The DFR may have an intermediate layer between the present film and the photosensitive resin layer.
Here, the intermediate layer means all the layers between the temporary support and the photosensitive resin layer.
 本発明のDFRは、仮支持体として本フィルムを有する。なお、仮支持体とは、剥離可能な支持体であることを意味する。
 本フィルムについては、上記で既に説明した通りである。
The DFR of the present invention has the present film as a temporary support. The temporary support means a support that can be peeled off.
This film is as described above.
 感光性樹脂層としては、公知の感光性樹脂層を用いることができるが、高速でのラミネート性がより優れることから、ネガ型感光性樹脂層であることが好ましい。具体的には、二重結合を有するモノマー重合性化合物、重合体(好ましくは酸基を有する重合体)及び光重合開始剤を有することが好ましい。
 感光性樹脂層としては、例えば、特開2016-224162号公報に記載の感光性樹脂層を用いてもよい。また、国際公開第2018/105313号明細書に記載のバインダーポリマー、エチレン性不飽和化合物及び光重合開始剤を含有する感光性樹脂層も好ましい形態として挙げられる。より好ましい形態としては、環状構造を有するアルカリ可溶性のアクリル樹脂と、多官能アクリレートと、オキシム系光重合開始剤又はビスイミダゾール型光重合開始剤とを有する感光性樹脂層が挙げられる。
As the photosensitive resin layer, a known photosensitive resin layer can be used, but a negative photosensitive resin layer is preferable because the laminating property at high speed is more excellent. Specifically, it is preferable to have a monomer polymerizable compound having a double bond, a polymer (preferably a polymer having an acid group), and a photopolymerization initiator.
As the photosensitive resin layer, for example, the photosensitive resin layer described in JP-A-2016-224162 may be used. Further, a photosensitive resin layer containing a binder polymer, an ethylenically unsaturated compound and a photopolymerization initiator described in International Publication No. 2018/10513 is also mentioned as a preferable form. More preferable forms include a photosensitive resin layer having an alkali-soluble acrylic resin having a cyclic structure, a polyfunctional acrylate, and an oxime-based photopolymerization initiator or a bisimidazole-type photopolymerization initiator.
 DFRは、感光性樹脂層の仮支持体側とは反対側の表面に、保護フィルムを有することが好ましい。
 保護フィルムとして本フィルムを使用する態様も好ましい。
The DFR preferably has a protective film on the surface of the photosensitive resin layer opposite to the temporary support side.
It is also preferable to use this film as a protective film.
[DFRの製造方法]
 本発明のDFRの製造方法は、特に制限されず、本発明のDFRは、公知の製造方法で製造できる。
 DFRの製造方法としては、例えば、上述した各層の構成成分と溶媒とを混合して熱可塑性樹脂組成物等の各層形成用の組成物をそれぞれ調製する工程と、本フィルムの第1主面上に、上記組成物を塗布して塗布層を形成した後、塗布層を乾燥して各層を形成する工程とを、所望の層構成に応じて順に行うことにより、本フィルムと、中間層と、感光性樹脂層とをこの順に有するDFRを製造する方法が挙げられる。
[DFR manufacturing method]
The method for producing the DFR of the present invention is not particularly limited, and the DFR of the present invention can be produced by a known production method.
As a method for producing DFR, for example, a step of mixing the above-mentioned constituent components of each layer and a solvent to prepare a composition for forming each layer such as a thermoplastic resin composition, and on the first main surface of this film. After applying the above composition to form a coating layer, the steps of drying the coating layer to form each layer are performed in order according to the desired layer structure, whereby the film, the intermediate layer, and the intermediate layer are formed. Examples thereof include a method of producing a DFR having a photosensitive resin layer in this order.
 本発明のDFRは、高精細なレジストパターンの形成に用いた場合であっても、パターン直線性に優れるレジストパターンが形成できるという優れた効果を有する。
 従って、本発明のDFRの用途としては、レジストパターン及び回路配線の製造に使用することが好ましい。
The DFR of the present invention has an excellent effect that a resist pattern having excellent pattern linearity can be formed even when it is used for forming a high-definition resist pattern.
Therefore, the DFR of the present invention is preferably used for manufacturing a resist pattern and circuit wiring.
 以下に実施例を挙げて本開示を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順は、本開示の趣旨を逸脱しない限り、適宜、変更することができる。したがって、本開示の範囲は以下に示す具体例に制限されない。なお、特に断りのない限り、「部」、「ppm」及び「%」は質量基準である。 The present disclosure will be described in more detail with reference to examples below. The materials, amounts, ratios, treatment contents, and treatment procedures shown in the following examples may be appropriately changed as long as they do not deviate from the gist of the present disclosure. Therefore, the scope of the present disclosure is not limited to the specific examples shown below. Unless otherwise specified, "parts", "ppm" and "%" are based on mass.
 以下、本実施例において、単なる「フィルム」との表記は、ポリエステル基材単体、及び、ポリエステル基材と粒子含有層とを有する態様の両者を包含するとともに、未延伸フィルム、1軸配向フィルム、及び、2軸配向フィルムの全てを包含するものとする。
 また、本実施例の各工程では、非接触式温度計(AD-5616(製品名)、A&D社製、放射率0.95)を用いて、フィルムの幅方向中央部の温度を5回計測し、得られた計測値の算術平均値をフィルムの表面温度の測定値とした。
Hereinafter, in the present embodiment, the term "film" includes both a polyester base material alone and an embodiment having a polyester base material and a particle-containing layer, and an unstretched film, a uniaxially oriented film, and the like. And all of the biaxially oriented films shall be included.
Further, in each step of this embodiment, a non-contact thermometer (AD-5616 (product name), manufactured by A & D, emissivity 0.95) is used to measure the temperature of the central portion in the width direction of the film five times. Then, the arithmetic mean value of the obtained measured values was used as the measured value of the surface temperature of the film.
〔実施例1〕
<押出成形工程>
 重合触媒として特許第5575671号公報に記載のチタン化合物(クエン酸キレートチタン錯体、VERTEC AC-420、ジョンソン・マッセイ社製)、マグネシウム化合物(酢酸マグネシウム四水和物)、及び、リン化合物(リン酸トリメチル)を用いて、ポリエチレンテレフタレートのペレットを製造した。なお、ペレットに含まれるマグネシウム、リン、及び、チタンの含有量は、それぞれ、ペレットの全質量に対して、82質量ppm、73質量ppm、及び、9質量ppmであった。得られたペレットを、含水率が50ppm以下になるまで乾燥させた後、直径30mmの1軸混練押出し機のホッパーに投入し、次いで、280℃で溶融して押出した。溶融体(メルト)を、濾過器(孔径2μm)に通した後、ダイから25℃の冷却ドラムに押し出すことにより、ポリエチレンテレフタレートからなり、粒子を含有しない未延伸フィルムを得た。なお、押し出された溶融体(メルト)は、静電印加法により冷却ドラムに密着させた。
 未延伸フィルムを構成するポリエチレンテレフタレートの融点(Tm)は258℃であり、ガラス転移温度(Tg)は80℃であった。
[Example 1]
<Extrusion molding process>
Titanium compounds (citrate chelate titanium complex, VERTEC AC-420, manufactured by Johnson Matthey), magnesium compounds (magnesium acetate tetrahydrate), and phosphorus compounds (phosphoric acid) described in Japanese Patent No. 5575671 as polymerization catalysts. Pellets of polyethylene terephthalate were produced using (trimethyl). The contents of magnesium, phosphorus, and titanium contained in the pellets were 82 mass ppm, 73 mass ppm, and 9 mass ppm, respectively, with respect to the total mass of the pellets. The obtained pellets were dried to a water content of 50 ppm or less, charged into a hopper of a uniaxial kneading extruder having a diameter of 30 mm, and then melted and extruded at 280 ° C. The melt was passed through a filter (pore diameter 2 μm) and then extruded from the die into a cooling drum at 25 ° C. to obtain an unstretched film made of polyethylene terephthalate and containing no particles. The extruded melt was brought into close contact with the cooling drum by the electrostatic application method.
The melting point (Tm) of polyethylene terephthalate constituting the unstretched film was 258 ° C., and the glass transition temperature (Tg) was 80 ° C.
<縦延伸工程>
 上記未延伸フィルムに対し、以下の方法により縦延伸工程を施した。
 予熱された未延伸フィルムを、下記の条件にて、周速の異なる2対のロールの間に通過させて縦方向(搬送方向)に延伸することにより、1軸配向フィルムを作製した。
(縦延伸条件)
 予熱温度:75℃
 延伸温度:90℃
 延伸倍率:3.4倍
 延伸速度:1300%/秒
<Vertical stretching process>
The unstretched film was subjected to a longitudinal stretching step by the following method.
A uniaxially oriented film was produced by passing a preheated unstretched film between two pairs of rolls having different peripheral speeds and stretching the film in the vertical direction (conveyance direction) under the following conditions.
(Vertical stretching conditions)
Preheating temperature: 75 ° C
Stretching temperature: 90 ° C
Stretching ratio: 3.4 times Stretching speed: 1300% / sec
<粒子含有層形成工程>
 縦延伸された1軸配向フィルム(ポリエステル基材)の片面に、下記の組成物1(粒子含有層形成用組成物)をバーコーターで塗布し、形成された塗布膜を100℃の熱風にて乾燥させて、粒子含有層(特定層)を形成した。このとき、成膜された粒子含有層の厚みが40nmとなるように、組成物1の塗布量を調整した。
<Particle-containing layer forming process>
The following composition 1 (composition for forming a particle-containing layer) is applied to one side of a vertically stretched uniaxially oriented film (polyester base material) with a bar coater, and the formed coating film is coated with hot air at 100 ° C. It was dried to form a particle-containing layer (specific layer). At this time, the coating amount of the composition 1 was adjusted so that the thickness of the formed particle-containing layer was 40 nm.
(組成物1)
 下記に示す各成分を混合することにより、組成物1を調製した。調製された組成物1に対して、孔径が6μmであるフィルター(F20、株式会社マーレフィルターシステムズ製)を用いたろ過処理、及び、膜脱気(2x6ラジアルフロースーパーフォビック、ポリポア株式会社製)を実施した後、得られた組成物1を、1軸配向フィルムの表面に塗布した。
・アクリル樹脂(樹脂A1)(メタクリル酸メチル、スチレン、2-エチルヘキシルアクリレート、2-ヒドロキシエチルメタクリレート及びアクリル酸(59:8:26:5:2の質量比で含有)を重合して得られるコポリマーを、固形分として27.5質量%含有する水分散液):167部
・アニオン性炭化水素系界面活性剤(界面活性剤W-1)(「ラピゾール(登録商標)A-90」、スルホコハク酸ジ-2-エチルヘキシルナトリウム、日油株式会社製、固形分1質量%水希釈液):55.7部
・ノニオン性界面活性剤(界面活性剤W-2)(「ナロアクティー(登録商標)CL95」、三洋化成工業株式会社製、ポリオキシアルキレンアルキルエーテル、固形分100質量%):0.7部
・ワックス1(「セロゾール(登録商標)524」、中京油脂株式会社製、カルナバワックス分散物、固形分30質量%):7部
・架橋剤1(「カルボジライト(登録商標)V-02-L2」、日清紡ケミカル株式会社製、カルボジイミド化合物、固形分10質量%水希釈液):20.9部
・非凝集粒子(粒子1)(「スノーテックス(登録商標)XL」、平均粒子径50nm、コロイダルシリカ、日産化学株式会社製、固形分40質量%水分散液):2.8部
・水:743部
(Composition 1)
Composition 1 was prepared by mixing each of the components shown below. Filtration treatment of the prepared composition 1 using a filter having a pore size of 6 μm (F20, manufactured by Mahle Filter Systems Corp.) and membrane degassing (2x6 radial flow superphobic, manufactured by Polypore Co., Ltd.). After that, the obtained composition 1 was applied to the surface of the uniaxially oriented film.
A copolymer obtained by polymerizing an acrylic resin (resin A1) (methyl methacrylate, styrene, 2-ethylhexyl acrylate, 2-hydroxyethyl methacrylate and acrylic acid (containing in a mass ratio of 59: 8: 26: 5: 2)). (Aqueous dispersion containing 27.5% by mass as a solid content): 167 parts, anionic hydrocarbon-based surfactant (surfactant W-1) (“Rapisol® A-90”, sulfosuccinic acid Di-2-ethylhexyl sodium, manufactured by Nichiyu Co., Ltd., solid content 1% by mass water diluted solution): 55.7 parts, nonionic surfactant (surfactant W-2) ("Naroacty (registered trademark) CL95" , Sanyo Kasei Kogyo Co., Ltd., polyoxyalkylene alkyl ether, solid content 100% by mass): 0.7 part, wax 1 ("Cerozol (registered trademark) 524", Chukyo Oil & Fat Co., Ltd., carnauba wax dispersion, Solid content 30% by mass): 7 parts, detergent 1 ("Carbodilite (registered trademark) V-02-L2", manufactured by Nisshinbo Chemical Co., Ltd., Carbodiimide compound, solid content 10% by mass water diluted solution): 20.9 parts -Non-aggregated particles (particles 1) ("Snowtex (registered trademark) XL", average particle diameter 50 nm, colloidal silica, manufactured by Nissan Chemical Co., Ltd., solid content 40% by mass aqueous dispersion): 2.8 parts-Water: 743 copies
<横延伸工程>
 縦延伸工程及び粒子含有層形成工程を行ったフィルムに対し、テンターを用いて下記の条件にて幅方向に延伸し、2軸配向フィルムを作製した。
(横延伸条件)
 予熱温度:100℃
 延伸温度:120℃
 延伸倍率:4.2倍
 延伸速度:50%/秒
<Transverse stretching process>
The film subjected to the longitudinal stretching step and the particle-containing layer forming step was stretched in the width direction using a tenter under the following conditions to prepare a biaxially oriented film.
(Transverse stretching conditions)
Preheating temperature: 100 ° C
Stretching temperature: 120 ° C
Stretching ratio: 4.2 times Stretching speed: 50% / sec
<熱固定工程>
 上記横延伸工程を施した2軸配向フィルムに対して、テンターを用いて下記条件で加熱することにより、フィルムを熱固定する熱固定工程を行った。
(熱固定条件)
 熱固定温度:227℃
 熱固定時間:6秒間
<Heat fixing process>
The biaxially oriented film subjected to the above-mentioned transverse stretching step was heated under the following conditions using a tenter to perform a heat fixing step of heat-fixing the film.
(Heat fixing conditions)
Heat fixation temperature: 227 ° C
Heat fixing time: 6 seconds
<熱緩和工程>
 次いで、熱固定されたフィルムに対して、下記条件で加熱することにより、フィルムの緊張を緩和する熱緩和工程を行った。また、熱緩和工程において、フィルムの両端を把持するテンターの把持部材間の距離(テンター幅)を狭めることにより、熱固定工程終了時と比較してフィルム幅を縮小した。下記の熱緩和率Lrは、熱緩和工程の開始時におけるフィルム幅L1に対する熱緩和工程の終了時におけるフィルム幅L2から、Lr=(L1-L2)/L1×100の式により求めた。
(熱緩和条件)
 熱緩和温度:190℃
 熱緩和率Lr:4%
<Heat relaxation process>
Next, the heat-fixed film was heated under the following conditions to perform a heat relaxation step of relaxing the tension of the film. Further, in the heat relaxation step, the film width was reduced as compared with the end of the heat fixing step by narrowing the distance (tenter width) between the gripping members of the tenter that grips both ends of the film. The following heat relaxation rate Lr was obtained from the film width L2 at the end of the heat relaxation step with respect to the film width L1 at the start of the heat relaxation step by the formula Lr = (L1-L2) / L1 × 100.
(Heat relaxation conditions)
Heat relaxation temperature: 190 ° C
Heat relaxation rate Lr: 4%
<冷却工程、及び、拡張工程>
 熱緩和されたフィルムに対して、下記条件で冷却する冷却工程を行った。また、冷却工程において、テンター幅を広げることにより、熱緩和工程終了時と比較してフィルム幅を拡張する拡張工程を実施した。
 下記の冷却速度は、フィルムが延伸機100の冷却部50に搬入されてから搬出されるまでの滞在時間を冷却時間taとして、冷却部50への搬入時に測定したフィルム表面温度と冷却部50の搬出時に測定したフィルム表面温度との温度差ΔT(℃)を、冷却時間taで割ることにより求めた。
 また、下記の拡張率ΔLは、冷却工程の開始時におけるポリエステルフィルムのフィルム幅L2に対する冷却工程の終了時におけるフィルム幅L3から、ΔL=(L3-L2)/L2×100の式により求めた。
(冷却条件)
 冷却速度:2500℃/分
(拡張条件)
 拡張率ΔL:0.6%
<Cooling process and expansion process>
The heat-relaxed film was subjected to a cooling step of cooling under the following conditions. Further, in the cooling step, an expansion step was carried out in which the film width was expanded as compared with the time when the heat relaxation step was completed by widening the tenter width.
The following cooling rates are the film surface temperature measured at the time of carrying into the cooling unit 50 and the cooling unit 50, with the residence time from the time the film is carried into the cooling unit 50 of the stretching machine 100 to being carried out as the cooling time ta. It was obtained by dividing the temperature difference ΔT (° C.) from the film surface temperature measured at the time of carrying out by the cooling time ta.
Further, the following expansion ratio ΔL was obtained from the film width L3 at the end of the cooling step with respect to the film width L2 of the polyester film at the start of the cooling step by the formula ΔL = (L3-L2) / L2 × 100.
(Cooling conditions)
Cooling rate: 2500 ° C / min (expansion condition)
Expansion rate ΔL: 0.6%
<巻き取り工程>
 冷却工程により冷却されたフィルムに対して、トリミング装置を用いて、フィルムの幅方向の両端から20cmの位置で搬送方向に沿って連続的にフィルムを切断して、フィルムの両端部をトリミングした。次いで、フィルムの両端から幅方向10mmまでの領域に対して、押出し加工(ナーリング)を行った後、張力40kg/mでフィルムを巻き取った。
 以上の方法により、2軸配向フィルムを作製した。得られた2軸配向フィルムの幅は1.5mであり、巻長は7000mであった。また、得られた2軸配向フィルムのポリエステル基材及び粒子含有層の厚みをSEMを用いて測定したところ、ポリエステル基材の厚みは16μmであり、粒子含有層の厚みは40nmであった。
<Rolling process>
With respect to the film cooled by the cooling step, the film was continuously cut along the transport direction at a position 20 cm from both ends in the width direction of the film using a trimming device, and both ends of the film were trimmed. Next, an extrusion process (knurling) was performed on a region from both ends of the film to 10 mm in the width direction, and then the film was wound up at a tension of 40 kg / m.
A biaxially oriented film was produced by the above method. The width of the obtained biaxially oriented film was 1.5 m, and the winding length was 7,000 m. Moreover, when the thickness of the polyester base material and the particle-containing layer of the obtained biaxially oriented film was measured using SEM, the thickness of the polyester base material was 16 μm, and the thickness of the particle-containing layer was 40 nm.
〔実施例2~16〕
 粒子含有層形成工程において、実施例1で粒子含有層形成用組成物として使用した組成物1に代えて、後述する表1に記載の組成を有する組成物2~16をそれぞれ使用したこと、及び、粒子含有層の厚みが後述する表2に記載の数値になるように各組成物の塗布量を調整したこと以外は、実施例1に記載の方法に従って、2軸配向フィルムをそれぞれ作製した。
[Examples 2 to 16]
In the particle-containing layer forming step, the compositions 2 to 16 having the compositions shown in Table 1 described later were used instead of the composition 1 used as the particle-containing layer forming composition in Example 1, respectively. A biaxially oriented film was prepared according to the method described in Example 1 except that the coating amount of each composition was adjusted so that the thickness of the particle-containing layer became the numerical value shown in Table 2 described later.
〔比較例1~2〕
 粒子含有層形成工程において、実施例1で粒子含有層形成用組成物として使用した組成物1に代えて、後述する表1に記載の組成を有する組成物C1及びC2をそれぞれ使用したこと、及び、粒子含有層の厚みが後述する表2に記載の数値になるように調整したこと以外は、実施例1に記載の方法に従って、2軸配向フィルムをそれぞれ作製した。
[Comparative Examples 1 and 2]
In the particle-containing layer forming step, the compositions C1 and C2 having the compositions shown in Table 1 described later were used instead of the composition 1 used as the particle-containing layer forming composition in Example 1, respectively. A biaxially oriented film was prepared according to the method described in Example 1 except that the thickness of the particle-containing layer was adjusted to the values shown in Table 2 described later.
〔比較例3〕
 実施例1に記載の押出成形工程におけるポリエチレンテレフタレートのペレット作製時に、平均粒子径50nmのアルミナ粒子を樹脂ペレット全体に対して0.5質量%となる量を添加した以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。
[Comparative Example 3]
Described in Example 1 except that when the polyethylene terephthalate pellets were prepared in the extrusion molding step according to Example 1, alumina particles having an average particle diameter of 50 nm were added in an amount of 0.5% by mass with respect to the entire resin pellets. A biaxially oriented film was prepared according to the above method.
 表1中、「粒子」欄の粒子1~6、「樹脂」欄の樹脂A1~A3、C及びD、「界面活性剤」欄のW-1~W-3、「ワックス」欄のワックス1、並びに、「架橋剤」欄の架橋剤1~3は、それぞれ下記の成分を示す。
 なお、表1中、「量(%)」との表記は、粒子含有層形成用組成物の固形分の全質量に対する各成分の含有量(単位:質量%)を示す。
In Table 1, particles 1 to 6 in the "particle" column, resins A1 to A3, C and D in the "resin" column, W-1 to W-3 in the "surfactant" column, and wax 1 in the "wax" column. , And the cross-linking agents 1 to 3 in the "cross-linking agent" column indicate the following components, respectively.
In Table 1, the notation "amount (%)" indicates the content (unit: mass%) of each component with respect to the total mass of the solid content of the particle-containing layer forming composition.
(粒子)
 粒子1:コロイダルシリカ(日産化学株式会社製「スノーテックスXL」、平均粒子径50nm)
 粒子2:コロイダルシリカ(日産化学株式会社製「スノーテックスYL」、平均粒子径50~80nm)
 粒子3:コロイダルシリカ(日産化学株式会社製「スノーテックスZL」、平均粒子径70~100nm)
 粒子4:凝集シリカ(アエロジルOX50、日本アエロジル株式会社製、平均粒子径200nm、平均一次粒子径40nm)
 粒子5:多孔質シリカ(平均粒子径1.8μm)
 なお、上記粒子1~5はいずれも中空構造を有さない粒子である。
(particle)
Particle 1: Colloidal silica ("Snowtex XL" manufactured by Nissan Chemical Industries, Ltd., average particle diameter 50 nm)
Particle 2: Colloidal silica ("Snowtex YL" manufactured by Nissan Chemical Industries, Ltd., average particle diameter 50-80 nm)
Particle 3: Colloidal silica ("Snowtex ZL" manufactured by Nissan Chemical Industries, Ltd., average particle diameter 70-100 nm)
Particle 4: Aggregated silica (Aerosil OX50, manufactured by Nippon Aerosil Co., Ltd., average particle size 200 nm, average primary particle size 40 nm)
Particle 5: Porous silica (average particle size 1.8 μm)
The particles 1 to 5 are particles that do not have a hollow structure.
(樹脂)
 樹脂A1:アクリル樹脂(メタクリル酸メチル、スチレン、2-エチルヘキシルアクリレート、2-ヒドロキシエチルメタクリレート及びアクリル酸を質量比59:8:26:5:2で乳化重合させてなる共重合体、水分散液)
 樹脂A3:アクリル樹脂(メタクリル酸メチル、2-ヒドロキシエチルメタクリレート及びメタクリル酸を質量比28:48:24で重合させてなる共重合体を中和した水分散体)
 樹脂C:酸変性ポリオレフィン(住友精化(株)製「ザイクセン(登録商標)N」、水分散体)
 樹脂D:ウレタン樹脂(下記の方法で合成されたポリウレタン樹脂の水分散体)
 撹拌機、ジムロート冷却器、窒素導入管、シリカゲル乾燥管、及び温度計を備えた4つ口フラスコに、4,4-ジシクロヘキシルメタンジイソシアネート43.75部、ジメチロールブタン酸12.85部、数平均分子量2000のポリヘキサメチレンカーボネートジオール153.41部、ジブチルスズジラウレート0.03部、及び溶剤としてアセトン84.00部を投入し、窒素雰囲気下、75℃において3時間撹拌し、反応液が所定のアミン当量に達したことを確認した。次に、この反応液を40℃にまで降温した後、トリエチルアミン8.77部を添加し、ポリウレタンプレポリマー溶液を得た。次に、高速攪拌可能なホモディスパーを備えた反応容器に、水450部を添加して、25℃に調整して、2000rpmで攪拌混合しながら、ポリウレタンプレポリマー溶液を添加して水分散した。その後、減圧下で、アセトンおよび水の一部を除去することにより、固形分37%のポリウレタン樹脂の水分散体を調製した。
(resin)
Resin A1: Acrylic resin (methyl methacrylate, styrene, 2-ethylhexyl acrylate, 2-hydroxyethyl methacrylate and acrylic acid emulsified and polymerized at a mass ratio of 59: 8: 26: 5: 2, a copolymer and an aqueous dispersion. )
Resin A3: Acrylic resin (aqueous dispersion obtained by polymerizing methyl methacrylate, 2-hydroxyethyl methacrylate and methacrylic acid at a mass ratio of 28:48:24 to neutralize a copolymer)
Resin C: Acid-modified polyolefin ("Zyxen (registered trademark) N" manufactured by Sumitomo Seika Chemical Co., Ltd., aqueous dispersion)
Resin D: Urethane resin (aqueous dispersion of polyurethane resin synthesized by the following method)
In a four-necked flask equipped with a stirrer, Dimroth condenser, nitrogen introduction tube, silica gel drying tube, and thermometer, 43.75 parts of 4,4-dicyclohexylmethanediiscetone, 12.85 parts of dimethylolbutanoic acid, number average. 153.41 parts of polyhexamethylene carbonate diol having a molecular weight of 2000, 0.03 part of dibutyltin dilaurate, and 84.00 parts of acetone as a solvent were added, and the mixture was stirred at 75 ° C. for 3 hours under a nitrogen atmosphere, and the reaction solution became a predetermined amine. It was confirmed that the equivalent amount was reached. Next, the reaction solution was cooled to 40 ° C., and then 8.77 parts of triethylamine was added to obtain a polyurethane prepolymer solution. Next, 450 parts of water was added to a reaction vessel equipped with a homodisper capable of high-speed stirring, adjusted to 25 ° C., and the polyurethane prepolymer solution was added and dispersed in water while stirring and mixing at 2000 rpm. Then, under reduced pressure, acetone and a part of water were removed to prepare an aqueous dispersion of a polyurethane resin having a solid content of 37%.
(界面活性剤)
 W-1:アニオン性炭化水素系界面活性剤(日油株式会社製「ラピゾール(登録商標)A-90」)
 W-2:ノニオン系界面活性剤(三洋化成工業株式会社製「ナロアクティー(登録商標)CL95」、ポリオキシアルキレンアルキルエーテル、固形分100質量%)
 W-3:フッ素系界面活性剤(AGCセイミケミカル株式会社製「サーフロン(登録商標)S-211」)
(Surfactant)
W-1: Anionic hydrocarbon-based surfactant (“Rapisol® A-90” manufactured by NOF CORPORATION)
W-2: Nonionic surfactant ("Naroacty (registered trademark) CL95" manufactured by Sanyo Chemical Industries, Ltd., polyoxyalkylene alkyl ether, solid content 100% by mass)
W-3: Fluorosurfactant (“Surflon (registered trademark) S-211” manufactured by AGC Seimi Chemical Co., Ltd.)
(ワックス)
 ワックス1:カルナバワックス(中京油脂株式会社製「セロゾール(登録商標)524」)
(wax)
Wax 1: Carnauba wax ("Cerozol (registered trademark) 524" manufactured by Chukyo Yushi Co., Ltd.)
(架橋剤)
 架橋剤1:カルボジイミド架橋剤(日清紡ケミカル株式会社製「カルボジライト(登録商標)V-02-L2」)
 架橋剤2:メラミン架橋剤(ヘキサメトキシメチロールメラミン)
 架橋剤3:オキサゾリン架橋剤(日本触媒株式会社製「エポクロスWS-700」)
(Crosslinking agent)
Crosslinking agent 1: Carbodiimide crosslinking agent ("Carbodilite (registered trademark) V-02-L2" manufactured by Nisshinbo Chemical Co., Ltd.)
Cross-linking agent 2: Melamine cross-linking agent (hexamethoxymethylol melamine)
Crosslinking agent 3: Oxazoline crosslinking agent ("Epocross WS-700" manufactured by Nippon Shokubai Co., Ltd.)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
〔2軸配向フィルムの物性の測定〕
 実施例1~16及び比較例1~3の各2軸配向フィルムについて、以下の物性を測定した。
[Measurement of physical properties of biaxially oriented film]
The following physical properties were measured for each of the biaxially oriented films of Examples 1 to 16 and Comparative Examples 1 to 3.
<最大断面高さSRt、面平均粗さSRa>
 2軸配向フィルムの第2主面の最大断面高さSRt及び面平均粗さSRaを、下記の方法で測定した。
 製造された2軸配向フィルムの粒子含有層側の表面を、光学干渉計(Vertscan 3300G Lite、株式会社日立ハイテク製)を用いて下記の条件で測定し、その後、内蔵されているデータ解析ソフト(VS-Measure5)にて解析することにより、2軸配向フィルムの第2主面の最大断面高さSRt(上記光学干渉計における表記は「St」)及び面平均粗さSRa(上記光学干渉計における表記は「Sa」)を求めた。
 最大断面高さSRtの測定では、測定位置を変えた5回の測定で得られる測定値の最大値を採用し、面平均粗さSRaの測定では、測定位置を変えた5回の測定で得られる測定値の平均値を採用した。測定された第2主面の最大断面高さSRt及び面平均粗さSRaを、表2に示す。
(測定条件)
・測定モード:WAVEモード
・対物レンズ:50倍
・測定面積:186μm×155μm
<Maximum cross-sectional height SRt, surface average roughness SRa>
The maximum cross-sectional height SRt and the surface average roughness SRa of the second main surface of the biaxially oriented film were measured by the following methods.
The surface of the manufactured biaxially oriented film on the particle-containing layer side was measured using an optical interferometer (Vertscan 3300G Lite, manufactured by Hitachi High-Tech Co., Ltd.) under the following conditions, and then the built-in data analysis software ( By analysis with VS-Measure5), the maximum cross-sectional height SRt of the second main surface of the biaxially oriented film (the notation in the optical interferometer is “St”) and the surface average roughness SRa (in the optical interferometer). The notation is "Sa").
In the measurement of the maximum cross-sectional height SRt, the maximum value of the measured value obtained by 5 measurements with different measurement positions is adopted, and in the measurement of the surface average roughness SRa, it is obtained by 5 measurements with different measurement positions. The average value of the measured values to be measured was adopted. Table 2 shows the measured maximum cross-sectional height SRt and surface average roughness SRa of the second main surface.
(Measurement condition)
-Measurement mode: WAVE mode-Objective lens: 50x-Measurement area: 186 μm x 155 μm
 上記と同様の方法で、2軸配向フィルムの第1主面の最大断面高さSRt及び面平均粗さSRaを測定した。いずれの実施例においても、第1主面の最大断面高さSRtは18nmであり、第1主面の最大断面高さSRaは1nmであった。 The maximum cross-sectional height SRt and the surface average roughness SRa of the first main surface of the biaxially oriented film were measured by the same method as above. In each of the examples, the maximum cross-sectional height SRt of the first main surface was 18 nm, and the maximum cross-sectional height SRa of the first main surface was 1 nm.
<表面自由エネルギー>
 2軸配向フィルムの第2主面の表面自由エネルギーを、下記の方法で測定した。
 接触角計(協和界面化学社製、DROPMASTER-501)を用いて、25℃の条件にて、製造された2軸配向フィルムの粒子含有層側の表面に液滴を滴下し、液滴が表面に付着してから1秒後の接触角を測定した。液滴として精製水2μL、ヨウ化メチレン1μL及びエチレングリコール1μLを使用し、測定されたそれぞれの接触角から、北崎・畑の方法により表面自由エネルギーを算出した。測定された第2主面の表面自由エネルギーを、表2に示す。
 上記と同様の方法で、2軸配向フィルムの第1主面の表面自由エネルギーを測定した結果、いずれの実施例においても、第1主面の表面自由エネルギーは59.7mJ/mであった。
<Surface free energy>
The surface free energy of the second main surface of the biaxially oriented film was measured by the following method.
Using a contact angle meter (DROPMASTER-501 manufactured by Kyowa Interface Chemistry Co., Ltd.), droplets are dropped on the surface of the manufactured biaxially oriented film on the particle-containing layer side under the condition of 25 ° C., and the droplets are surfaced. The contact angle was measured 1 second after adhering to the surface. Using 2 μL of purified water, 1 μL of methylene iodide and 1 μL of ethylene glycol as droplets, the surface free energy was calculated by the method of Kitazaki and Hata from each measured contact angle. The measured surface free energy of the second main surface is shown in Table 2.
As a result of measuring the surface free energy of the first main surface of the biaxially oriented film by the same method as above, the surface free energy of the first main surface was 59.7 mJ / m 2 in all the examples. ..
<平均粒子径、粒子密度D>
 粒子含有層に含まれる粒子の平均粒子径、及び、粒子密度Dを、以下の方法で測定した。
 走査型電子顕微鏡(SEM、日立ハイテク社製、S4700)を用いて、2軸配向フィルムの粒子含有層側の表面を、20000倍の拡大倍率で観察し、10視野の観察画像を得た。得られた画像データから突起として識別できる粒子について、画像ソフトウエアを用いて個々の粒子の面積を測定し、同一面積を有する円の直径(面積円相当径)に換算して個々の粒子の粒子径を得た後、粒子の算術平均値を算出した。
 また、各視野の画像データから識別できる粒子の個数を視野面積で除した値を、粒子密度D(単位:個/μm)として算出した。
 なお、上記の平均粒子径及び粒子密度Dの測定において、ゴミ及び凝集した粗大粒子は粒子としてカウントしていない。
<Average particle size, particle density D>
The average particle size and the particle density D of the particles contained in the particle-containing layer were measured by the following methods.
Using a scanning electron microscope (SEM, manufactured by Hitachi High-Tech, S4700), the surface of the biaxially oriented film on the particle-containing layer side was observed at a magnification of 20000 times to obtain an observation image of 10 fields. For particles that can be identified as protrusions from the obtained image data, the area of each particle is measured using image software and converted into the diameter of a circle having the same area (diameter equivalent to the area circle). After obtaining the diameter, the arithmetic average value of the particles was calculated.
Further, the value obtained by dividing the number of particles that can be identified from the image data of each visual field by the visual field area was calculated as the particle density D (unit: individual / μm 2 ).
In the above-mentioned measurement of the average particle size and the particle density D, dust and aggregated coarse particles are not counted as particles.
<厚みバラツキ>
 製造された2軸配向フィルムから長手方向に10mの長さのサンプルを採取した。このサンプルの厚みを、連続式触針式膜厚計(TOF-6R001、山文(株)製)を用いて、長手方向に沿って10mにわたり測定した。この測定を、幅方向の位置が異なる5か所において行った。得られた測定値から、厚みバラツキとして、最大値と最小値との差を全測定値の算術平均値で割って得られる値((最大厚み-最小厚み)/平均厚み)を算出した。
 その結果、各実施例及び各比較例で製造された2軸は行くフィルムの厚みバラツキは、いずれも4.5%であった。
<Thickness variation>
A sample having a length of 10 m in the longitudinal direction was taken from the produced biaxially oriented film. The thickness of this sample was measured over 10 m along the longitudinal direction using a continuous stylus type film thickness meter (TOF-6R001, manufactured by Yamabun Co., Ltd.). This measurement was performed at 5 locations with different positions in the width direction. From the obtained measured values, a value ((maximum thickness-minimum thickness) / average thickness) obtained by dividing the difference between the maximum value and the minimum value by the arithmetic mean value of all the measured values was calculated as the thickness variation.
As a result, the thickness variation of the biaxially directed film produced in each Example and each Comparative Example was 4.5%.
〔評価〕
 実施例1~16及び比較例1~3の各2軸配向フィルムに対して、以下の評価を行った。評価結果を表2に示す。
〔evaluation〕
The following evaluations were performed on each of the biaxially oriented films of Examples 1 to 16 and Comparative Examples 1 to 3. The evaluation results are shown in Table 2.
<パターン直線性(LWR)>
 各実施例及び各比較例において上記冷却工程が施された2軸配向フィルムに対して、粒子含有層とは反対側の表面である第1主面に下記処方Fからなる熱可塑性樹脂層形成用塗布液を塗布し、得られた塗布膜を80℃で乾燥して熱可塑性樹脂層を形成した。次いで、下記処方Gからなる水溶性樹脂層形成用塗布液を、熱可塑性樹脂層の上に塗布した後、得られた塗布膜を80℃で乾燥して水溶性樹脂層を形成した。更に、下記処方Hからなる感光性樹脂層形成用塗布液を、水溶性樹脂層の上に塗布した後、得られた塗布膜を80℃で乾燥して感光性樹脂層を形成した。最後に、感光性樹脂層の表面に、保護フィルムとしてPETフィルム(東レ社製、ルミラー16KS40)を圧着した後、得られた積層体を巻き取り、ロール形態の感光性転写部材を作製した。
 上記感光性転写部材は、DFRの一例であり、2軸配向フィルム/熱可塑性樹脂層/水溶性樹脂層/感光性樹脂層/保護フィルムからなる層構成を有する。熱可塑性樹脂層の厚さは2μmであり、水溶性樹脂層の厚さは1μmであり、感光性樹脂層の厚さは2μmであった。
<Pattern linearity (LWR)>
For forming a thermoplastic resin layer having the following formulation F on the first main surface, which is the surface opposite to the particle-containing layer, with respect to the biaxially oriented film subjected to the above cooling step in each Example and each Comparative Example. The coating liquid was applied, and the obtained coating film was dried at 80 ° C. to form a thermoplastic resin layer. Next, a coating liquid for forming a water-soluble resin layer consisting of the following formulation G was applied onto the thermoplastic resin layer, and then the obtained coating film was dried at 80 ° C. to form a water-soluble resin layer. Further, a coating liquid for forming a photosensitive resin layer consisting of the following formulation H was applied onto the water-soluble resin layer, and then the obtained coating film was dried at 80 ° C. to form a photosensitive resin layer. Finally, a PET film (manufactured by Toray Industries, Inc., Lumirror 16KS40) was pressure-bonded to the surface of the photosensitive resin layer as a protective film, and then the obtained laminate was wound up to prepare a roll-shaped photosensitive transfer member.
The photosensitive transfer member is an example of DFR and has a layer structure composed of a biaxially oriented film / a thermoplastic resin layer / a water-soluble resin layer / a photosensitive resin layer / a protective film. The thickness of the thermoplastic resin layer was 2 μm, the thickness of the water-soluble resin layer was 1 μm, and the thickness of the photosensitive resin layer was 2 μm.
<処方F:熱可塑性樹脂層形成用塗布液>
 ・ベンジルメタクリレート、メタクリル酸及びアクリル酸を重合してなる共重合体(各モノマーの質量比=75:10:15、分子量3万、固形分濃度30%の水分散体)22.7部
 ・3,6-ビス(ジフェニルアミノ)フルオラン:0.12部
 ・オキシムスルホネート型光酸発生剤(特開2013-047765号公報の段落0227に準じて合成):0.2部
 ・トリシクロデカンジメタノールジアクリレート:3.32部
 ・UV硬化型ウレタンアクリレートオリゴマー(大成ファインケミカル(株)製「8UX-015A」、15官能):1.66部
 ・多官能アクリレートモノマー(東亜合成(株)製「アロニックス(登録商標)TO-2349」):0.55部
 ・界面活性剤(DIC(株)製「メガファック(登録商標)F-552」):0.02部
<Prescription F: Coating liquid for forming a thermoplastic resin layer>
-Copolymer made by polymerizing benzyl methacrylate, methacrylic acid and acrylic acid (aqueous dispersion having a mass ratio of each monomer = 75:10:15, a molecular weight of 30,000 and a solid content concentration of 30%) 22.7 parts-3 , 6-Bis (diphenylamino) fluorane: 0.12 part ・ Oxymsulfonate type photoacid generator (synthesized according to paragraph 0227 of JP2013-047765A): 0.2 part ・ Tricyclodecanedimethanoldi Acrylate: 3.32 parts ・ UV curable urethane acrylate oligomer (“8UX-015A” manufactured by Taisei Fine Chemical Co., Ltd., 15 functional): 1.66 parts ・ Polyfunctional acrylate monomer (Aronix (registered) manufactured by Toa Synthetic Co., Ltd.) (Trademark) TO-2349 "): 0.55 parts ・ Surface active agent ("Megafuck (registered trademark) F-552 "manufactured by DIC Co., Ltd.): 0.02 parts
<処方G:水溶性樹脂層形成用塗布液>
 ・ポリビニルアルコール((株)クラレ製「クラレポバール(登録商標)4-88LA」):3.22部
 ・ポリビニルピロリドン(日本触媒(株)製「K-30」):1.49部
 ・界面活性剤(DIC(株)製「メガファックF-444」):0.0035部
 ・メタノール(三菱ガス化学(株)製):57.1部
 ・イオン交換水:38.12部
<Prescription G: Coating liquid for forming a water-soluble resin layer>
-Polyvinyl alcohol ("Kuraray Poval (registered trademark) 4-88LA" manufactured by Kuraray Co., Ltd.): 3.22 parts-Polyvinyl pyrrolidone ("K-30" manufactured by Nippon Catalyst Co., Ltd.): 1.49 parts-Surfactant activity Agent ("Megafuck F-444" manufactured by DIC Co., Ltd.): 0.0035 parts-Methanol (manufactured by Mitsubishi Gas Chemical Company, Inc.): 57.1 parts-Ion exchanged water: 38.12 parts
<処方H:感光性樹脂層形成用塗布液>
 ・スチレン、メタクリル酸及びメタクリル酸メチルを重合してなる共重合体(各モノマーの質量比=52:29:19、分子量6万、固形分濃度30%の水分散体):25.2部
 ・ロイコクリスタルバイオレット:0.06部
 ・光重合開始剤(2-(2-クロロフェニル)-4,5-ジフェニルイミダゾール二量体):1.03部
 ・4,4’-ビス(ジエチルアミノ)ベンゾフェノン:0.04部
 ・N-フェニルカルバモイルメチル-N-カルボキシメチルアニリン:0.02部
 ・エトキシ化ビスフェノールAジメタクリレート(新中村化学工業(株)製「NKエステルBPE-500」):5.61部
 ・多官能アクリレートモノマー(東亞合成(株)製「アロニックスM-270」):0.58部
 ・フェノチアジン:0.04部
 ・4-ヒドロキシメチル-4―メチル-1-フェニル-3-ピラゾリドン:0.002部
 ・界面活性剤(DIC(株)製「メガファックF-552」):0.048部
 ・プロピレングリコールモノメチルエーテルアセテート:19.7部
 ・メチルエチルケトン:43.8部
<Prescription H: Coating liquid for forming a photosensitive resin layer>
-Polymer obtained by polymerizing styrene, methacrylic acid and methyl methacrylate (aqueous dispersion having a mass ratio of each monomer = 52: 29: 19, molecular weight 60,000 and solid content concentration 30%): 25.2 parts. Leuco Crystal Violet: 0.06 parts ・ Photopolymerization initiator (2- (2-chlorophenyl) -4,5-diphenylimidazole dimer): 1.03 parts ・ 4,4'-bis (diethylamino) benzophenone: 0 .04 parts ・ N-phenylcarbamoylmethyl-N-carboxymethylaniline: 0.02 parts ・ Ethylated bisphenol A dimethacrylate (“NK Ester BPE-500” manufactured by Shin-Nakamura Chemical Industry Co., Ltd.): 5.61 parts ・Polyfunctional acrylate monomer (“Aronix M-270” manufactured by Toa Synthetic Co., Ltd.): 0.58 parts ・ Phenothiazine: 0.04 parts ・ 4-Hydroxymethyl-4-methyl-1-phenyl-3-pyrazolidone: 0. 002 parts ・ Surfactant (“Megafuck F-552” manufactured by DIC Co., Ltd.): 0.048 parts ・ Propropylene glycol monomethyl ether acetate: 19.7 parts ・ Methyl ethyl ketone: 43.8 parts
 厚さ100μmのポリエチレンテレフタレート(PET)フィルム上に、スパッタ法にて厚さ200nmの銅層を形成することにより、銅層付きPET基板を作製した。
 上記で作製したロール形態の感光性転写部材を巻き出し、感光性転写部材から保護フィルムを剥離した。次いで、感光性転写部材と上記の銅層付きPET基板とを、保護フィルムの剥離により露出した感光性樹脂層と銅層とが互いに接触するように貼り合わせて、積層体を得た。この貼り合わせ工程は、ロール温度100℃、線圧1.0MPa、及び、線速度4.0m/minの条件で行った。
A PET substrate with a copper layer was produced by forming a copper layer having a thickness of 200 nm on a polyethylene terephthalate (PET) film having a thickness of 100 μm by a sputtering method.
The roll-shaped photosensitive transfer member produced above was unwound, and the protective film was peeled off from the photosensitive transfer member. Next, the photosensitive transfer member and the above-mentioned PET substrate with a copper layer were bonded together so that the photosensitive resin layer exposed by peeling of the protective film and the copper layer were in contact with each other to obtain a laminated body. This bonding step was performed under the conditions of a roll temperature of 100 ° C., a linear pressure of 1.0 MPa, and a linear velocity of 4.0 m / min.
 得られた積層体の2軸配向フィルム側から、フォトマスクを介して超高圧水銀灯(露光主波長:365nm)を照射して、感光性樹脂層を露光した。露光に使用したフォトマスクは、透過領域と遮光領域の幅の比(Duty比)が1:1であり、且つ、ライン幅(及びスペース幅)が6μmであるラインアンドスペースパターンを有していた。また、照射光によって露光されて形成されるレジストパターンの線幅が6μmとなるように、感光性樹脂層に対する露光量を調整した。
 露光された積層体から2軸配向フィルムを剥離した後、積層体に対して、液温25℃の1.0%炭酸ナトリウム水溶液を用いて30秒間のシャワー現像を行った。この現像工程により、積層体から、未露光の感光性樹脂層、並びに、未露光の感光性樹脂層に積層した水溶性樹脂層及び熱可塑性樹脂層を除去し、銅層の表面に線幅が6μmであるラインアンドスペースパターンを有するレジストパターンを作製した。
The photosensitive resin layer was exposed by irradiating an ultrahigh pressure mercury lamp (exposure main wavelength: 365 nm) from the biaxially oriented film side of the obtained laminate via a photomask. The photomask used for exposure had a line-and-space pattern in which the ratio of the widths of the transmission region and the light-shielding region (duty ratio) was 1: 1 and the line width (and space width) was 6 μm. .. Further, the exposure amount to the photosensitive resin layer was adjusted so that the line width of the resist pattern formed by being exposed by the irradiation light was 6 μm.
After peeling the biaxially oriented film from the exposed laminate, the laminate was shower-developed for 30 seconds using a 1.0% sodium carbonate aqueous solution having a liquid temperature of 25 ° C. By this developing step, the unexposed photosensitive resin layer and the water-soluble resin layer and the thermoplastic resin layer laminated on the unexposed photosensitive resin layer are removed from the laminate, and the line width is increased on the surface of the copper layer. A resist pattern having a line and space pattern of 6 μm was produced.
 上記方法で形成されたレジストパターンについて、任意に選んだ20箇所のパターン幅(感光性樹脂層の線幅)を、走査型電子顕微鏡(SEM)を用いて測定した。得られた線幅のデータから標準偏差σを算出し、標準偏差σを3倍した値をLWR(Line Width Roughness)と定義し、パターン直線性の指標とした。
 LWRは、定義上、小さいほど線幅変動が小さくなり好ましい。6μm線幅のパターンに対しては、LWRの値によって以下のように評価される。LWRの値が小さいほどパターン直線性に優れるといえる。また、パターン直線性に優れるほど、線幅のぎざつき(エッジラフネス)に優れるともいえる。
 作製されたレジストパターンのパターン直線性は、「A」~「C」のいずれかであることが好ましく、「A」又は「B」であることがより好ましく、「A」であることが更に好ましい。
With respect to the resist pattern formed by the above method, the pattern widths (line widths of the photosensitive resin layer) at 20 arbitrarily selected points were measured using a scanning electron microscope (SEM). The standard deviation σ was calculated from the obtained line width data, and the value obtained by multiplying the standard deviation σ by 3 was defined as LWR (Line Width Roughness) and used as an index of pattern linearity.
By definition, the smaller the LWR, the smaller the line width fluctuation, which is preferable. For a pattern with a line width of 6 μm, it is evaluated as follows according to the value of LWR. It can be said that the smaller the LWR value, the better the pattern linearity. Further, it can be said that the better the pattern linearity, the better the roughness of the line width (edge roughness).
The pattern linearity of the produced resist pattern is preferably any one of "A" to "C", more preferably "A" or "B", and even more preferably "A". ..
(パターン直線性の評価基準)
 A:LWR<300nm:回路配線基板として非常に好ましい。
 B:300nm≦LWR<500nm:回路配線基板として好ましい。
 C:500nm≦LWR<700nm:回路配線基板として使用可能。
 D:700nm≦LWR:線幅変動が大きく回路不良に繋がり、好ましくない。
(Evaluation criteria for pattern linearity)
A: LWR <300 nm: Very preferable as a circuit wiring board.
B: 300 nm ≦ LWR <500 nm: Preferable as a circuit wiring board.
C: 500 nm ≤ LWR <700 nm: Can be used as a circuit wiring board.
D: 700 nm ≦ LWR: The line width fluctuation is large and leads to a circuit failure, which is not preferable.
<傷つき防止性>
 各実施例及び各比較例で製造されたロール状の2軸配向フィルムから巻き終わり部、ロール長さの半分の位置、巻き出し部の3か所から1.5m×2mのサンプルを採取した。得られた2軸配向フィルムの第1主面をポラリオンライトを使い目視により観察して、1.5m×2mの検査範囲内における傷状欠陥の発生状況を検査した。検査結果から、以下の基準に従って、2軸配向フィルムの傷つき防止性を評価した。
<Scratch prevention>
From the roll-shaped biaxially oriented film produced in each Example and each Comparative Example, a sample of 1.5 m × 2 m was taken from three places, the winding end portion, the position of half the roll length, and the unwinding portion. The first main surface of the obtained biaxially oriented film was visually observed using a polarion light to inspect the occurrence of scratch defects within an inspection range of 1.5 m × 2 m. From the inspection results, the scratch prevention property of the biaxially oriented film was evaluated according to the following criteria.
(傷つき防止性の評価基準)
 A:検査範囲には、傷状欠陥が観察されなかった。
 B:検査範囲においてわずかな傷状欠陥が観察されたが、許容範囲内であった。
 C:検査範囲において明らかな傷状欠陥が複数観察された。
(Evaluation criteria for scratch prevention)
A: No scratch defects were observed in the inspection range.
B: A slight scratch defect was observed in the inspection range, but it was within the allowable range.
C: Multiple obvious scratch defects were observed in the inspection range.
 表2に、各実施例及び各比較例で作製された2軸配向フィルムの物性及び評価結果をそれぞれ示す。
 表中、「粒子含有層」の「平均粒子径」欄は、粒子含有層に含まれる粒子の平均粒子径(単位:μm)を示す。「平均粒子径」欄における「-」は、上記の測定方法で粒子が観測されなかったことを示す。
 表中、「第2主面」の「D×SRt」欄は、第2主面の突起を構成している粒子の粒子密度D(単位:個/μm)と、第2主面の最大断面高さSRt(単位:nm)との積を表す。
Table 2 shows the physical characteristics and evaluation results of the biaxially oriented films produced in each Example and each Comparative Example.
In the table, the "average particle size" column of the "particle-containing layer" indicates the average particle size (unit: μm) of the particles contained in the particle-containing layer. A "-" in the "average particle size" column indicates that no particles were observed by the above measuring method.
In the table, the "D x SRt" column of the "second main surface" shows the particle density D (unit: pieces / μm 2 ) of the particles constituting the protrusions of the second main surface and the maximum of the second main surface. Represents the product with the cross-sectional height SRt (unit: nm).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2より、本発明に係る実施例1~16の2軸配向ポリエステルフィルムは、比較例1~3に比べて、本発明の効果がより優れることが確認された。 From Table 2, it was confirmed that the biaxially oriented polyester films of Examples 1 to 16 according to the present invention were more excellent in the effect of the present invention than those of Comparative Examples 1 to 3.
 また、2軸配向フィルムの第2主面の最大断面高さSRtが40nm以下である場合、パターン直線性がより優れることが確認された(実施例1~13の比較)。 Further, it was confirmed that the pattern linearity was more excellent when the maximum cross-sectional height SRt of the second main surface of the biaxially oriented film was 40 nm or less (comparison of Examples 1 to 13).
 2軸配向フィルムの粒子含有層がアクリル樹脂を含有する場合、2軸配向フィルムの傷つき防止性がより優れることが確認された(実施例1、5及び15の比較)。 It was confirmed that when the particle-containing layer of the biaxially oriented film contains an acrylic resin, the biaxially oriented film has better scratch resistance (comparison of Examples 1, 5 and 15).
 2軸配向フィルムの第2主面の表面自由エネルギーが50mJ/m以下である場合、2軸配向フィルムの傷つき防止性がより優れることが確認された(実施例7と10、及び、実施例13と15の比較)。 When the surface free energy of the second main surface of the biaxially oriented film was 50 mJ / m 2 or less, it was confirmed that the biaxially oriented film was more excellent in scratch prevention (Examples 7 and 10 and Examples). Comparison of 13 and 15).
 第2主面の突起を構成している粒子の粒子密度D(単位:個/μm)と、第2主面の最大断面高さSRt(単位:nm)との積(D×SRt)が600以下である場合、パターン直線性がより優れ、積(D×SRt)が130以下である場合、パターン直線性が更に優れることが確認された(実施例1~13の比較)。 The product (D × SRt) of the particle density D (unit: piece / μm 2 ) of the particles constituting the protrusions on the second main surface and the maximum cross-sectional height SRt (unit: nm) of the second main surface is It was confirmed that when it was 600 or less, the pattern linearity was more excellent, and when the product (D × SRt) was 130 or less, the pattern linearity was further excellent (comparison of Examples 1 to 13).
 粒子含有層の厚みが100nm以下である場合、パターン直線性がより優れることが確認された(実施例1~3及び16の比較)。 It was confirmed that the pattern linearity was more excellent when the thickness of the particle-containing layer was 100 nm or less (comparison of Examples 1 to 3 and 16).
 1:ポリエステルフィルム
 1a:第1主面
 1b:第2主面
 2:ポリエステル基材
 3:特定層(粒子含有層)
1: Polyester film 1a: First main surface 1b: Second main surface 2: Polyester base material 3: Specific layer (particle-containing layer)

Claims (18)

  1.  実質的に粒子を含有しないポリエステル基材と、
     前記ポリエステル基材の少なくとも一方の表面上に配置された、粒子及び樹脂を含有する粒子含有層と、を備え、
     第1主面及び第2主面を有する、光学用ポリエステルフィルムであって、
     前記第2主面は、前記粒子含有層の前記ポリエステル基材側とは反対側の表面であり、
     前記第2主面の最大断面高さSRtが20~150nmであり、
     前記粒子含有層の厚みが1~200nmである、ポリエステルフィルム。
    With a polyester substrate that contains virtually no particles,
    A particle-containing layer containing particles and a resin, which is arranged on at least one surface of the polyester substrate, is provided.
    An optical polyester film having a first main surface and a second main surface.
    The second main surface is a surface of the particle-containing layer opposite to the polyester substrate side.
    The maximum cross-sectional height SRt of the second main surface is 20 to 150 nm.
    A polyester film having a particle-containing layer having a thickness of 1 to 200 nm.
  2.  ドライフィルムレジスト製造用ポリエステルフィルムである、請求項1に記載のポリエステルフィルム。 The polyester film according to claim 1, which is a polyester film for manufacturing a dry film resist.
  3.  前記第2主面の表面自由エネルギーが50mJ/m以下である、請求項1又は2に記載のポリエステルフィルム。 The polyester film according to claim 1 or 2, wherein the surface free energy of the second main surface is 50 mJ / m 2 or less.
  4.  前記樹脂がアクリル樹脂を含有する、請求項3に記載のポリエステルフィルム。 The polyester film according to claim 3, wherein the resin contains an acrylic resin.
  5.  前記アクリル樹脂が、スチレンに由来する構成単位と(メタ)アクリレートに由来する構成単位とを有する共重合体である、請求項4に記載のポリエステルフィルム。 The polyester film according to claim 4, wherein the acrylic resin is a copolymer having a structural unit derived from styrene and a structural unit derived from (meth) acrylate.
  6.  前記アクリル樹脂が、炭素数1~4の無置換のアルキル基をエステル部位に有する(メタ)アクリレートに由来する構成単位と、炭素数5~10の無置換のアルキル基をエステル部位に有する(メタ)アクリレートに由来する構成単位とを有する、請求項4又は5に記載のポリエステルフィルム。 The acrylic resin has a structural unit derived from (meth) acrylate having an unsubstituted alkyl group having 1 to 4 carbon atoms in the ester moiety and an unsubstituted alkyl group having 5 to 10 carbon atoms in the ester moiety (meth). ) The polyester film according to claim 4 or 5, which has a structural unit derived from acrylate.
  7.  前記ポリエステルフィルムの厚みが1~35μmである、請求項1~6のいずれか1項に記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 6, wherein the polyester film has a thickness of 1 to 35 μm.
  8.  前記第2主面の最大断面高さSRtが20~40nmである、請求項1~7のいずれか1項に記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 7, wherein the maximum cross-sectional height SRt of the second main surface is 20 to 40 nm.
  9.  前記第2主面の突起を構成している粒子の密度D(単位:個/μm)と、前記第2主面の最大断面高さSRt(単位:nm)との積(D×SRt)が、600以下である、請求項1~8のいずれか1項に記載のポリエステルフィルム。 The product (D × SRt) of the density D (unit: piece / μm 2 ) of the particles constituting the protrusions on the second main surface and the maximum cross-sectional height SRt (unit: nm) of the second main surface. The polyester film according to any one of claims 1 to 8, wherein the polyester film is 600 or less.
  10.  前記粒子含有層が炭化水素系界面活性剤を更に含有する、請求項1~9のいずれか1項に記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 9, wherein the particle-containing layer further contains a hydrocarbon-based surfactant.
  11.  前記樹脂が架橋構造を有する、請求項1~10のいずれか1項に記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 10, wherein the resin has a crosslinked structure.
  12.  前記粒子含有層がワックスを更に含有する、請求項1~11のいずれか1項に記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 11, wherein the particle-containing layer further contains wax.
  13.  前記第1主面の最大断面高さSRtが5~40nmである、請求項1~12のいずれか1項に記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 12, wherein the maximum cross-sectional height SRt of the first main surface is 5 to 40 nm.
  14.  前記第1主面の面平均粗さSRaが0~5.0nmであり、かつ、
     前記第2主面の面平均粗さSRaが1.0~5.0nmである、
     請求項1~13のいずれか1項に記載のポリエステルフィルム。
    The surface average roughness SRa of the first main surface is 0 to 5.0 nm, and the surface average roughness SRa is 0 to 5.0 nm.
    The surface average roughness SRa of the second main surface is 1.0 to 5.0 nm.
    The polyester film according to any one of claims 1 to 13.
  15.  前記第1主面の表面自由エネルギーが50~70mJ/mである、請求項1~14のいずれか1項に記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 14, wherein the surface free energy of the first main surface is 50 to 70 mJ / m 2 .
  16.  請求項1~15のいずれか1項に記載のポリエステルフィルムと、
     前記ポリエステルフィルムの前記第1主面上に設けられた感光性樹脂層と、を有する、ドライフィルムレジスト。
    The polyester film according to any one of claims 1 to 15 and the polyester film.
    A dry film resist comprising a photosensitive resin layer provided on the first main surface of the polyester film.
  17.  前記感光性樹脂層が、重合体と、重合性化合物と、光重合開始剤とを含有する、請求項16に記載のドライフィルムレジスト。 The dry film resist according to claim 16, wherein the photosensitive resin layer contains a polymer, a polymerizable compound, and a photopolymerization initiator.
  18.  実質的に粒子を含有しないポリエステル基材に対して、粒子及び樹脂を含有する粒子含有層形成用組成物を用いてインラインコーティングして、粒子含有層を形成する工程を有し、
     前記粒子含有層形成用組成物中に分散している前記粒子の平均粒子径が、10~250nmである、
     請求項1~15のいずれか1項に記載のポリエステルフィルムの製造方法。
    It comprises a step of in-line coating a polyester base material containing substantially no particles with a composition for forming a particle-containing layer containing particles and a resin to form a particle-containing layer.
    The average particle size of the particles dispersed in the composition for forming a particle-containing layer is 10 to 250 nm.
    The method for producing a polyester film according to any one of claims 1 to 15.
PCT/JP2021/044298 2020-12-17 2021-12-02 Polyester film, dry film resist, and method for producing polyester film WO2022131008A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180084865.9A CN116601567A (en) 2020-12-17 2021-12-02 Polyester film, dry film resist, and method for producing polyester film
JP2022569853A JPWO2022131008A1 (en) 2020-12-17 2021-12-02

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020209079 2020-12-17
JP2020-209079 2020-12-17

Publications (1)

Publication Number Publication Date
WO2022131008A1 true WO2022131008A1 (en) 2022-06-23

Family

ID=82057608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044298 WO2022131008A1 (en) 2020-12-17 2021-12-02 Polyester film, dry film resist, and method for producing polyester film

Country Status (3)

Country Link
JP (1) JPWO2022131008A1 (en)
CN (1) CN116601567A (en)
WO (1) WO2022131008A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048728A1 (en) * 2022-08-31 2024-03-07 富士フイルム株式会社 Film and laminate
WO2024070623A1 (en) * 2022-09-26 2024-04-04 富士フイルム株式会社 Film, layered film, and method for producing film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019084803A (en) * 2017-11-10 2019-06-06 東洋紡株式会社 Release film
JP2019143131A (en) * 2018-02-15 2019-08-29 三菱ケミカル株式会社 Polyester film for dry film resist substrate
WO2020129962A1 (en) * 2018-12-20 2020-06-25 東洋紡株式会社 Release film
JP2020100148A (en) * 2017-08-24 2020-07-02 東洋紡株式会社 Release film for manufacturing ceramic green sheet

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020100148A (en) * 2017-08-24 2020-07-02 東洋紡株式会社 Release film for manufacturing ceramic green sheet
JP2019084803A (en) * 2017-11-10 2019-06-06 東洋紡株式会社 Release film
JP2019143131A (en) * 2018-02-15 2019-08-29 三菱ケミカル株式会社 Polyester film for dry film resist substrate
WO2020129962A1 (en) * 2018-12-20 2020-06-25 東洋紡株式会社 Release film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024048728A1 (en) * 2022-08-31 2024-03-07 富士フイルム株式会社 Film and laminate
WO2024070623A1 (en) * 2022-09-26 2024-04-04 富士フイルム株式会社 Film, layered film, and method for producing film

Also Published As

Publication number Publication date
JPWO2022131008A1 (en) 2022-06-23
CN116601567A (en) 2023-08-15

Similar Documents

Publication Publication Date Title
WO2022131008A1 (en) Polyester film, dry film resist, and method for producing polyester film
WO2021261412A1 (en) Method for producing polyester film, polyester film, laminated film
JP5127306B2 (en) Protective polyester film for photosensitive adhesive resin
WO2022019113A1 (en) Polyester film, release film, and method for producing polyester film
WO2018198720A1 (en) Film
WO2024070442A1 (en) Film, laminated film, and film production method
JP5107761B2 (en) Release film
JP2011178002A (en) Double-sided mold release film
WO2024070623A1 (en) Film, layered film, and method for producing film
WO2023027033A1 (en) Polyester film, polyester film manufacturing method, and release film
WO2023281972A1 (en) Release film and method for producing release film
JP2021059031A (en) Film for dry film resist substrate
WO2023026800A1 (en) Release film, method for manufacturing release film, and ceramic capacitor
JP4919996B2 (en) Release film
JP7275064B2 (en) Method for manufacturing resin pattern, method for manufacturing conductive pattern, laminated polyester film, photosensitive transfer material, resin pattern, and touch panel
WO2022138066A1 (en) Corrected thickness measuring device, corrected thickness measuring method, method for manufacturing film, and polyester film
WO2020241692A1 (en) Biaxially oriented polyester film
TW202319243A (en) Polyester film and release film
JP2023165302A (en) Release film for the production of ceramic green sheets and method for producing the same, and laminate
JP2023007424A (en) Polyester film and release film
JP2023012427A (en) release film
JP2023151185A (en) Release film, method for producing release film, and laminate
JP2023073192A (en) Polyester film, release film, method for producing polyester film, and ceramic capacitor
WO2023153074A1 (en) Polyester resin composition, method for producing same, and laminated polyester film
JP2017124623A (en) Laminated film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21906371

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022569853

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180084865.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21906371

Country of ref document: EP

Kind code of ref document: A1