WO2022019113A1 - Polyester film, release film, and method for producing polyester film - Google Patents

Polyester film, release film, and method for producing polyester film Download PDF

Info

Publication number
WO2022019113A1
WO2022019113A1 PCT/JP2021/025608 JP2021025608W WO2022019113A1 WO 2022019113 A1 WO2022019113 A1 WO 2022019113A1 JP 2021025608 W JP2021025608 W JP 2021025608W WO 2022019113 A1 WO2022019113 A1 WO 2022019113A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester film
film
polyester
main surface
coating layer
Prior art date
Application number
PCT/JP2021/025608
Other languages
French (fr)
Japanese (ja)
Inventor
一仁 宮宅
悠樹 豊嶋
泰雄 江夏
佑記 福岡
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202180060001.3A priority Critical patent/CN116137835A/en
Priority to KR1020237001986A priority patent/KR20230028408A/en
Priority to JP2022537909A priority patent/JPWO2022019113A1/ja
Publication of WO2022019113A1 publication Critical patent/WO2022019113A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters

Definitions

  • the present invention relates to a polyester film for producing a release film, a release film, and a method for producing a polyester film.
  • Biaxially oriented polyester film is used in a wide range of applications from the viewpoints of workability, mechanical properties, electrical properties, dimensional stability, transparency, chemical resistance, and the like.
  • a release film formed by laminating a release layer on the surface of a biaxially oriented polyester film is used for producing a ceramic sheet having a dielectric layer for manufacturing a laminated ceramic capacitor.
  • Patent Document 1 uses a biaxially oriented polyester film composed of two or more layers as a base material, and the base material has a surface layer A containing substantially no particles and a surface layer B containing particles.
  • the release coating layer is laminated on the surface of the surface layer A, and the smoothing coating layer is laminated on the surface of the surface layer B, and the smoothing coating layer has a specific region surface average roughness (Sa) and A release film for manufacturing a ceramic sheet having a maximum protrusion height (P) is disclosed.
  • the surface shape of the release film has a greater influence on the performance of the ceramic sheet. For example, if an uneven shape exists on the peeling surface of the release film, the uneven shape is transferred to the ceramic green sheet when the ceramic green sheet is formed, and the thickness of the ceramic green sheet and the ceramic sheet obtained by firing fluctuates, resulting in ceramic. The performance of condenser products may deteriorate. Further, not only the peeling surface of the peeling film but also the uneven shape of the transport surface which is the surface opposite to the peeling surface may affect the performance of the ceramic sheet.
  • the transport surface of the release film is often provided with a protrusion shape for the purpose of suppressing wrinkles during high-speed transport, but if this protrusion shape is too large, the release film is transported when it is wound into a roll and stored.
  • the protrusion shape of the surface may be transferred to the peeled surface to form transfer marks.
  • the shape of the transfer marks transferred to the peeled surface is considered to be transferred to the ceramic green sheet and the ceramic sheet and affect the performance of the final product.
  • the present inventors further examined the release film used for producing the ceramic green sheet with reference to the technique described in Patent Document 1, and found that the formation of transfer marks on the surface of the release layer and the transportability were improved.
  • the coatability of the release layer such as coating unevenness at the time of forming the release layer and / or defects due to foreign matter may decrease.
  • It comprises a polyester substrate that is substantially free of particles and a coating layer that contains particles and is disposed on one surface of the polyester substrate, and has a first main surface and a second main surface.
  • the average particle size of the particles is 1 to 130 nm, the thickness of the coating layer is 1 to 100 nm, and the average particle size of the particles is larger than the thickness of the coating layer, [1] to [5]. ]
  • the coating layer contains at least one surfactant selected from the group consisting of a hydrocarbon-based surfactant and a fluorine-based surfactant containing a perfluoroalkyl group having 1 to 4 carbon atoms. 1] The polyester film according to any one of [6].
  • a biaxial stretching step of biaxially stretching an unstretched polyester film having a polyester base material It comprises a coating layer forming step of in-line coating using a coating layer forming composition containing particles.
  • the heat fixing step of heating the polyester film biaxially stretched by the biaxial stretching step at a temperature of less than 240 ° C. and heat-fixing the polyester film heat-fixed by the heat fixing step is performed from the heat fixing step.
  • the heat relaxation step of heating at a low temperature to relax the heat the cooling step of cooling the polyester film heat-relaxed by the heat relaxation step, and the cooling step, the heat-relaxed polyester film is expanded in the width direction.
  • the method for producing a polyester film according to [20] wherein the polyester film has a cooling rate of more than 2000 ° C./min and less than 4000 ° C./min in the cooling step.
  • the present invention it is possible to provide a polyester film for producing a release film, which can suppress the formation of transfer marks on the surface of the release layer and has excellent transportability and coatability of the release layer. Further, according to the present invention, it is possible to provide a release film and a method for producing a polyester film.
  • the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise.
  • the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
  • the amount of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. ..
  • the term "process” is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. ..
  • “% by mass” and “% by weight” are synonymous, and “parts by mass” and “parts by weight” are synonymous.
  • a combination of two or more preferred embodiments is a more preferred embodiment.
  • the description of a mere “polyester film” includes both a polyester base material alone and a laminate of a polyester base material and a coating layer.
  • the "longitudinal direction” means the long direction of the polyester film at the time of manufacturing the polyester film, and is synonymous with the "transport direction” and the “mechanical direction”.
  • the "width direction” means a direction orthogonal to the longitudinal direction.
  • “orthogonal” is not limited to strict orthogonality, but includes substantially orthogonality. “Approximately orthogonal” means intersecting at 90 ° ⁇ 5 °, preferably 90 ° ⁇ 3 °, and more preferably 90 ° ⁇ 1 °.
  • the "film width” means the distance between both ends of the polyester film in the width direction.
  • the polyester film according to the present disclosure (hereinafter, also referred to as “this film”) is a coating layer containing particles (hereinafter, “specific coating” arranged on one surface of a polyester base material and a polyester base material).
  • a polyester film having a first main surface and a second main surface, and used for forming a release layer on the first main surface to produce a release film. ..
  • the second main surface is the surface opposite to the polyester base material side of the specific coating layer, and the maximum protrusion height Sp of the second main surface is 1 nm or more and less than 60 nm, and the second main surface.
  • the surface free energy of the surface is 25 to 60 mJ / m 2 .
  • FIG. 1 is a cross-sectional view showing an example of the configuration of this film.
  • the polyester film 1 includes a polyester base material 2 and a specific coating layer 3 arranged on one surface of the polyester base material 2, and has a first main surface 1a and a second main surface 1b.
  • the specific coating layer 3 contains particles (not shown), while the polyester substrate 2 contains substantially no particles.
  • the first main surface 1a of the polyester film 1 is a surface for forming a release layer. That is, after the polyester film 1 is manufactured, the release film having the polyester film 1 and the release layer is produced by laminating the release layer on the first main surface 1a.
  • the second main surface 1b of the polyester film 1 is a surface of the specific coating layer 3 opposite to the surface facing the polyester base material 2. That is, the specific coating layer 3 is the outermost layer of the polyester film 1.
  • the second main surface 1b of the polyester film 1 has the above-mentioned specific maximum protrusion height Sp and a specific surface free energy.
  • this film has an effect that the formation of transfer marks on the surface of the release layer can be suppressed, the transportability is excellent, and the coatability of the release layer is excellent (hereinafter, at least one of these effects). This is also referred to as "the effect of the present invention”).
  • the reason why this film exerts the above-mentioned effect of the present invention is not clear, but it is presumed as follows.
  • the second main surface of this film corresponds to a transport surface which is a surface opposite to the release layer.
  • the transportability is improved by providing the protrusion shape on the transport surface (second main surface), but if the protrusion shape is too large, transfer marks are formed on the release layer when the release film is stored in a roll. There is a problem that it ends up.
  • the formation of transfer marks can be suppressed by suppressing the protrusions (maximum protrusion height Sp) of the second main surface of the polyester film, which is the transport surface of the release film, to be small. By keeping the surface free energy of the second main surface low, it is possible to improve the reduced transportability by making the protrusions smaller.
  • the maximum protrusion height Sp of the second main surface is made too small, the transportability is significantly reduced, wrinkles are generated during transport, and the peeling layer formed on the first main surface may have uneven thickness. There is sex. Further, if the surface free energy of the second main surface is made too small, the polyester film is likely to be charged, and foreign matter adheres to the first main surface and the second main surface to form a coating film of the composition for forming a release layer. Coating defects may occur. On the other hand, by setting each of the maximum protrusion height Sp and the surface free energy of the second main surface to a specific lower limit value or more, the thickness unevenness and / or the coating defect of the peeling layer is reduced, and the coating property of the peeling layer is reduced.
  • the smoothness of the film is improved by providing the polyester base material substantially free of particles and the coating layer containing particles, so that transfer marks are formed on the surface of the release layer. It is considered that both suppression and transportability are well-balanced and excellent.
  • This film has the above polyester base material and the specific coating layer, and if the maximum protrusion height Sp and the surface free energy of the second main surface are specified in the above ranges, the specifics thereof.
  • the embodiment is not particularly limited, and may have an embodiment other than the configuration shown in FIG.
  • the first main surface 1a of the polyester film 1 is a surface opposite to the specific coating layer 3 side of the polyester base material 2, but is different from the specific coating layer side of the polyester base material.
  • another layer may be arranged in which one surface is the first main surface 1a.
  • the specific coating layer 3 is arranged in contact with the surface of the polyester base material 2, but a primer layer or the like may be provided between the specific coating layer and the polyester base material.
  • the polyester base material is a film-like object containing polyester as a main polymer component.
  • the "main polymer component” means the polymer having the highest content (mass) among all the polymers contained in the film.
  • the polyester base material may contain one kind of polyester alone or may contain two or more kinds of polyesters.
  • Polyester is a polymer having an ester bond in the main chain. Polyester is usually formed by polycondensing a dicarboxylic acid compound and a diol compound, which will be described later.
  • the polyester is not particularly limited, and known polyesters can be used. Examples of the polyester include polyethylene terephthalate (PET), polyethylene-2,6-naphthalate (PEN), polypropylene terephthalate (PPT), polybutylene terephthalate (PBT) and copolymers thereof.
  • PET polyethylene terephthalate
  • PEN polyethylene-2,6-naphthalate
  • PPT polypropylene terephthalate
  • PBT polybutylene terephthalate
  • PET is more preferable.
  • the intrinsic viscosity of the polyester is preferably 0.50 dl / g or more and less than 0.80 dl / g, and more preferably 0.55 dl / g or more and less than 0.70 dl / g.
  • the melting point (Tm) of the polyester is preferably 220 to 270 ° C, more preferably 245 to 265 ° C.
  • the glass transition temperature (Tg) of polyester is preferably 65 to 90 ° C, more preferably 70 to 85 ° C.
  • polyester can be produced by polycondensing at least one dicarboxylic acid compound and at least one diol compound in the presence of a catalyst.
  • the catalyst used for producing the polyester is not particularly limited, and a known catalyst that can be used for synthesizing the polyester can be used.
  • the catalyst include alkali metal compounds (for example, potassium compounds and sodium compounds), alkaline earth metal compounds (for example, calcium compounds and magnesium compounds), zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, and antimony compounds.
  • alkali metal compounds for example, potassium compounds and sodium compounds
  • alkaline earth metal compounds for example, calcium compounds and magnesium compounds
  • zinc compounds for example, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, and antimony compounds.
  • examples include compounds, titanium compounds, germanium compounds, and phosphorus compounds. Of these, titanium compounds are preferable from the viewpoint of catalytic activity and cost. Only one type of catalyst may be used, or two or more types may be used in combination.
  • At least one metal catalyst selected from potassium compounds, sodium compounds, calcium compounds, magnesium compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, and germanium compounds, and phosphorus compounds. It is preferable to use in combination with, and it is more preferable to use a titanium compound and a phosphorus compound in combination.
  • the titanium compound an organic chelated titanium complex is preferable.
  • the organic chelated titanium complex is a titanium compound having an organic acid as a ligand.
  • the organic acid include citric acid, lactic acid, trimellitic acid, and malic acid.
  • the titanium compound the titanium compounds described in paragraphs 0049 to 0053 of Japanese Patent No. 5575671 can also be used, and the contents of the above publication are incorporated in the present specification.
  • dicarboxylic acid compound examples include dicarboxylic acids such as aliphatic dicarboxylic acid compounds, alicyclic dicarboxylic acid compounds, and aromatic dicarboxylic acid compounds, and dicarboxylic acids such as methyl ester compounds and ethyl ester compounds of the dicarboxylic acids. Esther can be mentioned. Of these, aromatic dicarboxylic acid or methyl aromatic dicarboxylic acid is preferable.
  • Examples of the aliphatic dicarboxylic acid compound include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecandionic acid, dimer acid, eicosandionic acid, pimelic acid, azelaic acid, and methylmalonic acid. And ethylmalonic acid.
  • Examples of the alicyclic dicarboxylic acid compound include adamantandicarboxylic acid, norbornenedicarboxylic acid, cyclohexanedicarboxylic acid, and decalindicarboxylic acid.
  • aromatic dicarboxylic acid compound examples include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 1,8-naphthalenedicarboxylic acid.
  • dicarboxylic acid compound Only one type of dicarboxylic acid compound may be used, or two or more types may be used in combination.
  • terephthalic acid When terephthalic acid is used as the dicarboxylic acid compound, terephthalic acid may be used alone, or it may be copolymerized with another aromatic dicarboxylic acid such as isophthalic acid or an aliphatic dicarboxylic acid.
  • diol compound examples include an aliphatic diol compound, an alicyclic diol compound, and an aromatic diol compound, and an aliphatic diol compound is preferable.
  • Examples of the aliphatic diol compound include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, and neo. Examples include pentyl glycol, preferably ethylene glycol. Examples of the alicyclic diol compound include cyclohexanedimethanol, spiroglycol, and isosorbide. Examples of the aromatic diol compound include bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, and 9,9'-bis (4-hydroxyphenyl) fluorene. Only one kind of diol compound may be used, or two or more kinds may be used in combination.
  • an end-capping agent may be used if necessary.
  • the end sealant By using the end sealant, a structure derived from the end sealant is introduced into the end of the polyester.
  • the terminal encapsulant a known end encapsulant can be used without limitation. Examples of the terminal encapsulant include oxazoline compounds, carbodiimide compounds, and epoxy compounds.
  • the terminal encapsulant the contents described in paragraphs 0055 to 0064 of JP-A-2014-189002 can also be referred to, and the contents of the above-mentioned publication are incorporated in the present specification.
  • the reaction temperature is not limited and may be appropriately set according to the raw material.
  • the reaction temperature is preferably 260 to 300 ° C, more preferably 275 to 285 ° C.
  • the pressure is not limited and may be set appropriately according to the raw material.
  • the pressure is preferably 1.33 ⁇ 10 -3 to 1.33 ⁇ 10 -5 MPa, more preferably 6.67 ⁇ 10 -4 to 6.67 ⁇ 10 -5 MPa.
  • the polyester content in the polyester base material is preferably 85% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, still more preferably 98% by mass, based on the total mass of the polymer in the polyester base material.
  • the above is particularly preferable.
  • the upper limit of the polyester content is not limited and can be appropriately set within a range of 100% by mass or less with respect to the total mass of the polymer in the polyester substrate.
  • the content of polyethylene terephthalate is preferably 90 to 100% by mass, more preferably 95 to 100% by mass, and 98 to 90 to the total mass of the polyester in the polyester base material. 100% by mass is more preferable, and 100% by mass is particularly preferable.
  • the polyester substrate may contain components other than polyester (eg, catalyst, unreacted raw material components, particles, water, etc.).
  • the polyester substrate is substantially free of particles. Examples of the particles include particles contained in the specific coating layer described later.
  • the phrase "substantially free of particles” means that the content of particles is 50 with respect to the total mass of the polyester substrate when the elements derived from the particles are quantitatively analyzed by fluorescent X-ray analysis. It is defined as having a mass of ppm or less, preferably 10% by mass or less, and more preferably not more than the detection limit.
  • the polyester is polyester. This is because it may be mixed in the base material.
  • the thickness of the polyester base material is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, still more preferably 40 ⁇ m or less, in that the peelability can be controlled.
  • the lower limit of the thickness is not particularly limited, but 3 ⁇ m or more is preferable, 4 ⁇ m or more is more preferable, and 10 ⁇ m or more is further preferable, in terms of improving the strength and the workability.
  • the thickness of the polyester base material is measured according to the method for measuring the thickness of the polyester film described later.
  • the specific coating layer is a layer containing particles and is formed on one surface of a polyester base material. Further, the surface of the specific coating layer opposite to the surface facing the polyester base material constitutes the second main surface.
  • this film can improve the transportability of the polyester film and the release film. More specifically, it is possible to improve the winding quality (suppress blocking), suppress the occurrence of scratches and defects during transport, and reduce transport wrinkles during high-speed transport.
  • the specific coating layer may be provided directly on the surface of the polyester base material or may be provided on the surface of the polyester base material via another layer, but the specific coating layer may be provided directly on the surface of the polyester base material in terms of better adhesion. It is preferable to provide it. That is, it is preferable that the surface of the specific coating layer on the first main surface side is in contact with the polyester base material.
  • the specific coating layer is not particularly limited as long as it contains particles and the second main surface has a specific maximum protrusion height Sp and surface free energy, but it is preferable to contain a binder in addition to the particles. Further, the specific coating layer may contain additives other than particles and a binder.
  • the average particle size of the particles contained in the specific coating layer is not particularly limited, and is preferably 1 to 250 nm, more preferably 10 to 200 nm, and more preferably 30 to 130 nm in terms of better transportability and suppression of transfer marks. Is more preferable. Further, the average particle diameter of the particles contained in the specific coating layer is 10 to 250 nm (more preferably 30 to 130 nm) in terms of better transportability and suppression of transfer marks, and the thickness of the specific coating layer. Is 1 to 200 nm (more preferably 10 to 100 nm), and the average particle size of the particles is preferably larger than the thickness of the specific coating layer.
  • the particles contained in the specific coating layer one type of particles may be used alone, or two or more types of particles may be used.
  • the specific coating layer preferably contains at least one kind of particles having an average particle diameter within the above range, and two kinds having different particle diameters. It is more preferable that all of the above particles are particles having an average particle diameter within the above range.
  • the average particle size of the particles contained in the specific coating layer is determined by the following method using a scanning electron microscope (SEM). That is, the second main surface of the polyester film is observed at a magnification of 20000 times using SEM. Observation is performed on 10 arbitrarily selected fields of view, and the area of each particle is measured using image software for particles that can be identified as protrusions in each field of view (particles that are visible as protrusions protruding from the base surface). Then, the diameter of a circle having the same area (diameter equivalent to the area circle) is calculated. The arithmetic mean value of the obtained area circle equivalent diameter is defined as the average particle diameter of the particles.
  • SEM scanning electron microscope
  • the particle size (secondary particle size) of the secondary particles in the agglomerated state shall be measured.
  • the specific coating layer contains two or more kinds of particles having different particle diameters
  • two or more peaks having different particle diameters can be seen in the distribution of the area equivalent circle diameter measured by the above measuring method. In this way, when the distribution of the area circle equivalent diameter measured by the above measurement method has two or more peaks with different particle diameters, the average value of the area circle equivalent diameter is calculated for each peak. Therefore, the average particle size shall be calculated for each particle with a different particle size.
  • Examples of the particles contained in the specific coating layer include organic particles and inorganic particles. Among them, inorganic particles are preferable from the viewpoint of further improving film winding quality, haze, and durability (for example, thermal stability).
  • As the organic particles resin particles are preferable.
  • Examples of the resin constituting the resin particles include acrylic resin such as polymethyl methacrylate resin (PMMA), polyester resin, silicone resin, and styrene-acrylic resin.
  • the resin particles preferably have a crosslinked structure. Examples of the resin particles having a crosslinked structure include divinylbenzene crosslinked particles.
  • the inorganic particles include silica particles (silicon dioxide particles, colloidal silica), titania particles (titanium oxide particles), calcium carbonate, barium sulfate, and alumina particles (aluminum oxide particles).
  • the inorganic particles are preferably silica particles from the viewpoint of further improving haze and durability.
  • the shape of the particles is not particularly limited, and examples thereof include rice granules, spheres, cubes, spindles, scales, agglutinates, and indefinite shapes.
  • the aggregated state means a state in which the primary particles are aggregated.
  • the shape of the aggregated particles is not limited, but a spherical or irregular shape is preferable.
  • fumed silica particles are preferably mentioned.
  • examples of commercially available products include Aerosil series manufactured by Nippon Aerosil Co., Ltd.
  • Preferred examples of the non-aggregated particles include colloidal silica particles.
  • examples of commercially available products include the Snowtex series manufactured by Nissan Chemical Industries, Ltd.
  • the content of the particles in the specific coating layer is preferably 0.1 to 30% by mass, preferably 1 to 25% by mass, based on the total mass of the specific coating layer from the viewpoint of transportability and coatability of the release layer. More preferably, 1 to 15% by mass is further preferable.
  • the content of the particles is preferably 0.0001 to 0.01% by mass, more preferably 0.0005 to 0.005% by mass, based on the total mass of the polyester film.
  • the specific coating layer preferably contains a binder.
  • a resin binder is preferable.
  • the resin binder include polyacrylic acid, polyurethane, polyester and polyolefin.
  • the specific coating layer is preferably formed by coating an aqueous dispersion containing a binder.
  • an acid-modified resin is preferable as the binder.
  • the acid-modified resin include a copolymer of (meth) acrylate and (meth) acrylic acid, a polyolefin having a carboxyl group, and an acid-modified polyurethane, and a copolymer of (meth) acrylate and (meth) acrylic acid.
  • a polyolefin having a carboxyl group is preferable, and a polyolefin having a carboxyl group is more preferable.
  • the binder is preferably a (meth) acrylate resin, polyolefin or polyurethane, and more preferably a (meth) acrylate resin or polyolefin, in that the surface free energy of the specific coating layer can be easily adjusted to the above-mentioned specific range.
  • polyolefin is even more preferred.
  • the (meth) acrylate resin, polyolefin and polyurethane are not particularly limited, and known resins can be used.
  • the polyolefin may contain a structural unit derived from an olefin in the main chain, and preferably contains a structural unit derived from an olefin as a main component. Having an olefin structure in the main chain results in insufficient compatibility with the polyester substrate, and as a result, transfer marks after long-term storage can be further improved.
  • the olefin is not particularly limited, but an alkene having 2 to 6 carbon atoms is preferable, ethylene, propylene, or hexene is more preferable, and ethylene is further preferable.
  • constituent unit derived from a certain monomer as a main component means that the constituent unit is 50 mol% or more with respect to all the constituent units of the polymer.
  • the constituent unit derived from the olefin of the polyolefin is preferably 50 to 99 mol%, more preferably 60 to 98%, based on all the constituent units of the polyolefin.
  • an acid-modified polyolefin is preferable because it can prevent charging when the release layer is applied.
  • the acid-modified polyolefin include a copolymer obtained by modifying the above-mentioned polyolefin with an acid-modified component such as an unsaturated carboxylic acid or an anhydride thereof.
  • the form of polymerization of this copolymer is not particularly limited, and examples thereof include random copolymerization, block copolymerization, and graft copolymerization.
  • the acid-modifying component examples include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid, and crotonic acid, and half esters and half amides of unsaturated dicarboxylic acids. From the viewpoint of dispersion stability of the resin, crotonic acid, methacrylic acid, maleic acid, or maleic anhydride is preferable.
  • Examples of the acidic group contained in the acid-modified polyolefin include a carboxyl group, a sulfo group, and a phosphoric acid group, which are acidic groups corresponding to the above-mentioned acid-modified component, and a carboxyl group is preferable.
  • the acidic group may form an acid anhydride or may be neutralized with at least one selected from alkali metals, organic amines and ammonia.
  • the acid-modifying component is preferably neutralized with an alkali metal in terms of suppressing charge and improving the coatability of the release layer.
  • the acid-modified polyolefin may contain only one type of structural unit having an acidic group, or may contain two or more types.
  • Examples of the structural unit having an acidic group include a structural unit derived from the above-mentioned acid-modifying component monomer and a structural unit derived from the above-mentioned olefin monomer obtained by grafting the acid-modified component.
  • the content of the structural unit having an acidic group is not particularly limited, but is preferably 0.1 to 30 mol% with respect to all the structural units of the acid-modified polyolefin.
  • Examples of commercially available acid-modified polyolefins include Zyxen (registered trademark) series (manufactured by Sumitomo Seika Co., Ltd.) such as Zyxen AC, A, L, NC, and N, Chemipearl S100, S120, S200, S300, and S650.
  • Zyxen registered trademark
  • Zyxen AC, A, L, NC, and N Chemipearl S100, S120, S200, S300, and S650.
  • Chemipearl (registered trademark) series such as SA100 (manufactured by Mitsui Kagaku Co., Ltd.), Hi-Tech (registered trademark) series such as Hi-Tech S3121 and S3148K (manufactured by Toho Kagaku Co., Ltd.), Arrow Base SE-1013, SE-1010 , SB-1200, SD-1200, SD-1200, DA-1010, DB-4010, etc.
  • Arrow Base registered trademark
  • Hardlen AP-2 examples thereof include Toyobo Co., Ltd., Seporjon G315, and VA407 (Sumitomo Seika Co., Ltd.).
  • the acid-modified polyolefin described in paragraphs 0022 to 0034 of JP-A-2014-076632 can also be preferably used.
  • the (meth) acrylate resin is a resin containing a structural unit derived from (meth) acrylate, and may be copolymerized with a vinyl monomer such as styrene.
  • the (meth) acrylate resin is not particularly limited, but preferably contains a structural unit derived from a (meth) acrylate having an alkyl group having 1 to 12 carbon atoms, and has an alkyl group having 1 to 6 carbon atoms (meth). ) It is more preferable to contain a structural unit derived from acrylate.
  • the (meth) acrylate resin preferably has an acid-modifying component in that it can prevent charging when the release layer is applied.
  • the (meth) acrylate resin preferably contains a structural unit derived from (meth) acrylic acid as an acid-modifying component.
  • the (meth) acrylic acid may form an acid anhydride or may be neutralized with at least one selected from alkali metals, organic amines and ammonia.
  • the (meth) acrylic acid is preferably neutralized with an alkali metal in that it suppresses charging and improves the coatability of the release layer.
  • the content of the structural unit having an acid-modifying group is 0.1 to 10% by mass with respect to all the structural units of the (meth) acrylate resin in that the charge is suppressed and the coatability of the release layer is improved. It is preferably present, and the constituent unit composed of (meth) acrylic acid is more preferably 0.1 to 10% by mass.
  • the acid value can be lowered and the surface free energy can be adjusted to a desired range.
  • an aqueous dispersion containing the (meth) acrylate resin and the dispersant is also preferable.
  • the acid value of the (meth) acrylate resin is preferably 30 mgKOH / g or less, more preferably 20 mgKOH / g or less.
  • the lower limit of the acid value is not particularly limited and is, for example, 0 mgKOH / g, but 2 mgKOH / g or more is preferable from the viewpoint of application as an aqueous dispersion.
  • the acid value of the (meth) acrylate resin is adjusted to be in the above range, and the acid value is adjusted to satisfy at least one of the above range and the inclusion of a structural unit derived from the (meth) acrylate having an alkyl group having 1 to 12 carbon atoms. Thereby, the surface free energy can be adjusted to a desired range.
  • the points that defects can be suppressed are that the acid value of the acrylic resin is within the above range and that the number of carbon atoms is 1 to 12. It is preferable to satisfy both of containing a structural unit derived from a (meth) acrylate having an alkyl group.
  • the polyurethane is not limited as long as it is a polymer having a urethane bond in the main chain, and known polyurethane such as a reaction product of an isocyanate compound and a polyol compound can be used.
  • acid-modified polyurethane is preferable in that an aqueous dispersion can be easily prepared.
  • the acid-modified polyurethane means a polyurethane having an acidic group. Examples of the acidic group include the groups mentioned as the acidic group contained in the above-mentioned acid-modified polyolefin.
  • an aqueous dispersion containing polyurethane and a dispersant is also preferable.
  • the polyurethane contained in the specific coating layer has, for example, the surface free energy of the specific coating layer within a specific range by adjusting the structure and hydrophobicity (hydrophilicity) of each of the polyol compound and / or the isocyanate compound as a raw material. Can be controlled.
  • polyurethane products include, for example, Hydran (registered trademark) AP-20, AP-40N and AP-201 (all manufactured by DIC Corporation); Takelac (registered trademark) W-605, W-5030 and W- 5920 (above, manufactured by Mitsui Chemicals, Inc.); and Superflex (registered trademark) 210 and 130, Elastron (registered trademark) H-3-DF, E-37 and H-15 (above, Dai-ichi Kogyo Seiyaku Co., Ltd.) Made by Co., Ltd.).
  • the specific coating layer may contain one kind of binder alone, or may contain two or more kinds of binders.
  • the polyolefin or (meth) acrylate resin is used in combination with a resin other than the polyolefin and the (meth) acrylate resin in order to control the surface free energy
  • the polyurethane is preferable as the resin to be used in combination.
  • the content of the binder is preferably 30 to 99.8% by mass, more preferably 50 to 99.5% by mass, based on the total mass of the specific coating layer, from the viewpoint of adjusting Sp to a desired range.
  • the specific coating layer may contain additives other than the above particles and binder.
  • Additives contained in the specific coating layer include, for example, surfactants, waxes, cross-linking agents, antioxidants, UV absorbers, colorants, strengthening agents, plasticizers, antistatic agents, flame retardants, and rust preventives. , And antistatic agents.
  • the specific coating layer preferably has a surfactant on the second main surface in that the smoothness of the region other than the portion where the protrusions formed by the particles are present is improved.
  • the surfactant is not particularly limited, and examples thereof include a silicone-based surfactant, a fluorine-based surfactant, and a hydrocarbon-based surfactant.
  • Hydrocarbon-based surfactants are preferable in that the coatability of the peeling layer can be improved by suppressing the charge on the first main surface and suppressing the generation of defects due to foreign substances when the peeling layer is applied.
  • the silicone-based surfactant is not particularly limited as long as it is a surfactant having a silicon-containing group as a hydrophobic group, and examples thereof include polydimethylsiloxane, polyether-modified polydimethylsiloxane, and polymethylalkylsiloxane.
  • silicone-based surfactants include, for example, BYK®-306, BYK-307, BYK-333, BYK-341, BYK-345, BYK-346, BYK-347, BYK-348, and , BYK-349 (all manufactured by BYK), and KF-351A, KF-352A, KF-353, KF-354L, KF-355A, KF-615A, KF-945, KF-640, KF-642, Examples thereof include KF-643, KF-6020, X-22-4515, KF-6011, KF-6012, KF-6015, and KF-6017 (all manufactured by Shin-Etsu Chemical Co., Ltd.).
  • the fluorine-based surfactant is not particularly limited as long as it is a surfactant having a fluorine-containing group as a hydrophobic group, and examples thereof include perfluorooctanesulfonic acid and perfluorocarboxylic acid.
  • Commercially available products of fluorine-based surfactants include, for example, Megafuck (registered trademark) F-114, F-410, F-440, F-447, F-553, and F-556 (all manufactured by DIC Corporation).
  • the fluorine-based surfactant has a linear perfluoroalkyl group having 7 or more carbon atoms, such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), from the viewpoint of improving environmental suitability. It is preferable to use a surfactant derived from a substitute material for the compound, and more preferably to use a surfactant derived from a substitute material for a compound having a linear perfluoroalkyl group having 6 or more carbon atoms.
  • PFOA perfluorooctanoic acid
  • PFOS perfluorooctanesulfonic acid
  • a perfluoroalkyl group having 1 to 4 carbon atoms can improve the coatability of the release layer as compared with a surfactant having a linear perfluoroalkyl group having 6 or more carbon atoms. It is preferable to use a surfactant having the above.
  • the perfluoroalkyl group having 1 to 4 carbon atoms may be linear or branched. Among them, a surfactant having a linear perfluoroalkyl group having 1 to 4 carbon atoms or a branched perfluoroalkyl group having 3 carbon atoms is more preferable, and a perfluoroalkyl group having 1 or 2 carbon atoms is more preferable.
  • a surfactant having a group or a branched perfluoroalkyl group having 3 carbon atoms is more preferable.
  • the perfluoroalkyl group for example, CF 3 - *, C 2 F 5 - *, C 3 F 7 - *, n-C 4 F 9 - *, and, (CF 3) 2 CF- * is Can be mentioned.
  • * indicates a bond position with a carbon atom other than the carbon atom substituted with the fluorine atom.
  • the carbon atom bonded to these perfluoroalkyl groups preferably has either a hydrogen atom or is bonded only to a carbon atom.
  • fluorine-based surfactants having a perfluoroalkyl group having 1 to 4 carbon atoms include, for example, Futergent (registered trademark) 100, 100C, 110, 150, 150H, 212M, 215M, 250, 251, 222F.
  • PF-136A examples thereof include 156A, PF-151N, PF-636, PF-6320, PF-656, PF-6520, and PF-652-NF (all manufactured by OMNOVA).
  • the coatability of the release layer is higher than that when a surfactant having a linear perfluoroalkyl group having 6 or more carbon atoms is used.
  • surfactants having a perfluoroalkyl group having 1 to 4 carbon atoms to include a number of low CF 3 group surface tension per weight, the second main with a small amount The surface free energy of the surface can be reduced.
  • the transportability of the polyester film can be improved, and since the composition of the specific coating layer does not change significantly, it is presumed that the peeling charge described later can be suppressed and the coating property of the peeling layer can be improved. ing.
  • hydrocarbon-based surfactant examples include anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants.
  • anionic surfactant examples include alkyl sulfates, alkylbenzene sulfonates, alkyl phosphates, and fatty acid salts.
  • nonionic surfactant examples include polyalkylene glycol mono or dialkyl ether, polyalkylene glycol mono or dialkyl ester, and polyalkylene glycol monoalkyl ester / monoalkyl ether.
  • the cationic surfactant include primary to tertiary alkylamine salts, quaternary ammonium compounds and the like.
  • amphoteric surfactants include surfactants having both anionic and cationic moieties in the molecule.
  • anionic surfactants examples include Lapizol (registered trademark) A-90, A-80, BW-30, B-90, and C-70 (all manufactured by Nichiyu Co., Ltd.).
  • NIKKOL registered trademark
  • OTP-100 above, manufactured by Nikko Chemical Co., Ltd.
  • Kohakul registered trademark
  • Phosphanol registered trademark
  • Viewlight registered trademark
  • SSS all manufactured by Sanyo Chemical Industries, Ltd.
  • nonionic surfactants include, for example, Naroacty (registered trademark) CL-95, HN-100 (trade name: manufactured by Sanyo Chemical Industries, Ltd.), and Lisolex BW400 (trade name: higher alcohol industry).
  • EMALEX® ET-2020 all manufactured by Nippon Emulsion Co., Ltd.
  • Surfinol® 104E, 420, 440, 465, and Dynol® 604, 607 aboveve, manufactured by Nisshin Chemical Industry Co., Ltd.
  • anionic surfactants and / or nonionic surfactants are preferable and anionic surfactants are preferable because they can form a coating layer having a smooth surface without inhibiting the dispersion of the resin.
  • Activators are more preferred. That is, as the surfactant, an anionic hydrocarbon-based surfactant is more preferable in terms of improving the surface smoothness and the coatability of the release layer.
  • the anionic hydrocarbon-based surfactant preferably has a plurality of hydrophobic end groups in terms of further improving smoothness.
  • the hydrophobic end group may be a part of the hydrocarbon group contained in the hydrocarbon-based surfactant.
  • a hydrocarbon-based surfactant having a hydrocarbon group having a branched chain structure at the end will have a plurality of hydrophobic end groups.
  • anionic hydrocarbon-based surfactants having a plurality of hydrophobic end groups include di-2-ethylhexyl sulfosuccinate (having four hydrophobic end groups) and di-2-ethyloctyl sulfosuccinate (sodium sulfosuccinate). (Has four hydrophobic end groups) and branched chain alkylbenzene sulfonate (has two hydrophobic end groups).
  • the content of the surfactant is preferably 0.1 to 10% by mass with respect to the total mass of the specific coating layer, and is 0.1 in that it is excellent in antistatic property at the time of forming the release layer and surface smoothness. It is more preferably to 5% by mass, and even more preferably 0.5 to 2% by mass.
  • the wax is not particularly limited, and may be a natural wax or a synthetic wax.
  • the natural wax include carnauba wax, candelilla wax, beeswax, montan wax, paraffin wax, and petroleum wax.
  • the slip agent described in [0087] of International Publication No. 2017/169844 can also be used.
  • the wax content is preferably 0 to 10% by mass with respect to the total mass of the specific coating layer.
  • the cross-linking agent is not particularly limited, and known ones can be used.
  • Examples of the cross-linking agent include melamine compounds, oxazoline compounds, epoxy compounds, isocyanate compounds, and carbodiimide-based compounds, and oxazoline-based compounds and carbodiimide-based compounds are particularly preferable.
  • Examples of commercially available products include Carbodilite V-02-L2 (manufactured by Nisshinbo Co., Ltd.) and Epocross K-2020E (manufactured by Nippon Shokubai Co., Ltd.).
  • the description of [0081] to [0083] of JP2015-163457 can be referred to.
  • the cross-linking agent described in [2002] to [0084] of International Publication No. 2017/169844 can also be preferably used.
  • the carbodiimide compound the description of [0038] to [0040] of JP-A-2017-087421 can be referred to.
  • the oxazoline compound, the carbodiimide compound, and the isocyanate compound the cross-linking agent described in [0074] to [0075] of International Publication No. 2018/034294 can also be preferably used.
  • the content of the cross-linking agent is preferably 0 to 50% by mass with respect to the total mass of the specific coating layer.
  • the specific coating layer is often formed to have a thickness of 1 ⁇ m or less by coating a composition containing particles on one surface of a polyester base material.
  • the thickness of the specific coating layer is preferably 1 to 200 nm, more preferably 10 to 100 nm, and even more preferably 20 to 100 nm, from the viewpoint of manufacturing suitability of the specific coating layer and reduction of haze.
  • the thickness of the specific coating layer is measured by preparing a section having a cross section perpendicular to the main surface of the polyester film and using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The arithmetic average value of the thickness at 5 points of the above section is used.
  • the specific coating layer is soft and it is difficult to stably prepare a cross-sectional section
  • measurement may be performed using a refractive index meter.
  • the film thickness of the specific coating layer can be obtained by fitting the measured reflectance spectrum with the film thickness and the refractive index of the specific coating layer and the polyester base material.
  • This film may include a layer other than the polyester base material and the specific coating layer described above, but is more preferably composed of the polyester base material and the specific coating layer.
  • the surface free energy of the second main surface is 25 to 60 mJ / m 2 . Since the surface free energy of the second main surface is in the above range, polyester has excellent transportability and excellent coatability of the release layer even if the maximum protrusion height Sp of the second main surface is in the above range. A film is obtained.
  • the surface free energy of the second main surface is preferably 25 to 50 mJ / m 2 in that the formation of transfer marks on the surface of the release layer of the release film after long-term storage can be further suppressed.
  • the surface free energy of the second main surface is more preferably 30 ⁇ 50 mJ / m 2, more preferably 30 ⁇ 45mJ / m 2, 40 ⁇ 45mJ / m 2 is particularly preferred.
  • the surface free energy of the second main surface (the surface of the specific coating layer) can be adjusted by selecting, for example, the particles constituting the specific coating layer, the above-mentioned binder, the additive, and the like.
  • the surface free energy of the second main surface of the polyester film is the second main surface (specific coating layer) under the condition of 25 ° C. using a contact angle meter (for example, "DROPMASTER-501" manufactured by Kyowa Interface Chemistry Co., Ltd.). Droplets of purified water, methylene iodide, and ethylene glycol were dropped onto the surface on the side), and the contact angle 1 second after the droplets adhered to the surface was measured. It is obtained by calculating according to the method of the field.
  • the "surface free energy” obtained by the above method is the total of the polar component and the hydrogen bond component of the surface free energy.
  • the surface free energy of the first main surface is preferably 50 to 70 mJ / m 2. Further, it is preferable that the difference between the surface free energy of the first main surface and the surface free energy of the second main surface is wide because the film is less likely to be charged.
  • the difference between the surface free energy of the surface free energy and a second major surface of the first main surface is preferably 1 ⁇ 35 mJ / m 2, more preferably 5 ⁇ 35 mJ / m 2, more preferably 10 ⁇ 30 mJ / m 2 ..
  • the surface free energy of the first main surface can be adjusted by the type of resin and additive forming the layer having the first main surface. For example, when the first main surface is the surface opposite to the specific coating layer side of the polyester base material, the surface free energy of the first main surface can be adjusted depending on the type of resin and additive forming the polyester base material. ..
  • the maximum protrusion height Sp of the second main surface is 1 nm or more and less than 60 nm.
  • the maximum protrusion height Sp of the second main surface is within the above range, it is possible to produce a release film having a good balance of suppression of transfer marks and transportability on the surface of the release layer.
  • the maximum protrusion height Sp of the second main surface is preferably 10 to 50 nm, more preferably 20 to 50 nm.
  • the surface average roughness Sa of the second main surface is preferably 1 to 10 nm, more preferably 1 to 9 nm, in that the suppression stability of the transfer marks is more excellent. It is more preferably 1 to 8 nm.
  • the maximum protrusion height Sp and surface average roughness Sa of the second main surface (specific coating layer surface) depend on, for example, the average particle size and content of the particles contained in the specific coating layer, and the thickness of the specific coating layer. , Can be adjusted. When the specific coating layer is formed by in-line coating, the above adjustment can be performed more easily.
  • the maximum protrusion height Sp and surface average roughness Sa of the second main surface of the polyester film are set on the surface of the polyester film on the specific coating layer side with an optical interferometer (for example, "Vertscan 3300G Lite” manufactured by Hitachi High-Tech Co., Ltd.). It is obtained by measuring under the following conditions using the above and then analyzing with the built-in data analysis software. In the measurement of the maximum protrusion height Sp, the measurement is performed 5 times by changing the measurement position, and the maximum value of the obtained measured value is the measured value of the maximum protrusion height Sp (denoted as P in the built-in data analysis software). Ru).
  • the measurement is performed 5 times by changing the measurement position, and the average value of the obtained measured values is used as the measured value of the surface average roughness Sa.
  • Measurement condition WAVE mode-Objective lens: 50x-Measurement area: 186 ⁇ m x 155 ⁇ m
  • the first main surface is as smooth as possible.
  • the maximum protrusion height Sp of the first main surface is preferably 1 to 60 nm, and more preferably 5 to 30 nm.
  • the surface average roughness Sa of the first main surface is preferably 0 to 10 nm, more preferably 0 to 5 nm.
  • the maximum protrusion height Sp and surface average roughness Sa of the first main surface are the types and additions of polyesters constituting the polyester base material so that particles are not substantially contained in the polyester base material and the film is formed smoothly. It can be adjusted by a method such as selecting the type of agent.
  • the maximum protrusion height Sp and the surface average roughness Sa of the first main surface can be measured according to the above-mentioned measuring methods of the maximum protrusion height Sp and the surface average roughness Sa of the second main surface.
  • the density D (unit: piece / ⁇ m 2 , also referred to as “particle density D”) of the particles constituting the protrusions on the second main surface and the above-mentioned second are in terms of being more excellent in transportability.
  • the product (D ⁇ Sp) with the maximum protrusion height Sp (unit: nm) of the main surface is preferably 1 or more, more preferably 20 or more, and further preferably 50 or more.
  • the upper limit is not particularly limited, but 400 or less is preferable, and 300 or less is more preferable, in that the suppression of transfer marks is more excellent.
  • the product (D ⁇ Sp) is an index showing how large the protrusions are present on the second main surface at what density, and the product (D ⁇ Sp) is within the above range. It is preferable because the protrusions, which are preferable from the viewpoint of suppressing transfer marks and transportability, are present on the second main surface in an appropriate amount, and the effects of suppressing transfer marks and transportability are further excellent.
  • the particle density D depends on, for example, the average particle size and content of the particles contained in the specific coating layer, and the thickness of the specific coating layer, similarly to the maximum protrusion height Sp and the surface average roughness Sa. , Can be adjusted. When the specific coating layer is formed by in-line coating, the above adjustment can be performed more easily.
  • the particle density D of the particles constituting the protrusions on the second main surface of the polyester film can be obtained by the same method as the method for measuring the average particle diameter of the particles using SEM. That is, the surface of the polyester film on the specific coating layer side is observed at a magnification of 20000 times. Observation is performed on 10 arbitrarily selected fields of view, and the number of individual particles is measured using image software for particles that can be identified as protrusions in each field of view (particles that are visible as protrusions protruding from the base surface). do. The calculated value obtained by dividing the total number of particles measured in the entire field of view by the total area of the entire field of view is defined as the particle density D (unit: particles / ⁇ m 2 ).
  • This film is a biaxially oriented polyester film.
  • "biaxial orientation” means a property having molecular orientation in the biaxial direction.
  • the molecular orientation is measured using a microwave transmission type molecular orientation meter (for example, MOA-6004, manufactured by Oji Measuring Instruments Co., Ltd.).
  • the angle formed in the biaxial direction is preferably 90 ° ⁇ 5 °, more preferably 90 ° ⁇ 3 °, and even more preferably 90 ° ⁇ 1 °.
  • This film preferably has molecular orientation in the longitudinal direction and the width direction.
  • the "streak defect” means a wrinkle that extends in a streak shape along the longitudinal direction of the film and appears as unevenness in the width direction of the film.
  • the streak defects occur in the film after production, they are often wrinkles that occur irreversibly.
  • the streak defects do not occur in the heat treatment during the production of the film, but are derived from the wrinkles generated in the heat treatment for the film after the production, and the wrinkles are solidified by cooling after the heat treatment.
  • the "streak defect region” means a portion in the film surface where the streak defect has occurred.
  • the peeling layer becomes uneven in thickness, and the coatability of the peeling layer is deteriorated, resulting in the ceramic capacitor. May affect performance. Further, the streak defect region tends to be remarkably generated when the film is heated in a state where a tensile load is applied in the longitudinal direction of the film.
  • the ratio of the total area of the streak defect region generated when heated at 90 ° C. to the total area of the observation region of the polyester film (hereinafter, also referred to as “area ratio of the streak defect region”) is the coatability of the release layer. 40% or less is preferable, 30% or less is more preferable, and 20% or less is further preferable.
  • the lower limit of the area ratio of the streak defect region is not particularly limited, but the area ratio of the streak defect region generated when heated at 90 ° C. is preferably small, and there is no streak defect region, that is, 0%. Is more preferable.
  • the area ratio of the streak defect region is measured by the following method.
  • (1) Using a heating and transporting device, heat the polyester film under the conditions of a transport speed of 30 m / min and a tension of 100 N / m in the transport direction while the surface temperature of the film is 90 ° C. The process is performed for 20 seconds. The heating time in the heat treatment is calculated from the time when the surface temperature of the film reaches the target temperature (90 ° C.), and the film is heated for 20 consecutive seconds from there. The method for measuring the surface temperature of the film will be described later.
  • (2) A heat-treated polyester film was placed on a black flat plate, and then a fluorescent lamp installed on the ceiling of the room [For example, Lupica Ace manufactured by Mitsubishi Electric Co., Ltd.
  • FIG. 2 shows an image (photograph) of a polyester film in which a streak defect region generated by the heat treatment of (1) above is observed.
  • the region surrounded by the solid line shown in FIG. 2 is the streak defect region.
  • an uneven shape extending in the transport (MD) direction is observed.
  • the image (photograph) shown in FIG. 2 shows only a part of the observation area.
  • the streak defect region is often elliptical or circular. Further, when a streak defect region is generated, at least one elliptical streak defect region whose long axis direction is along the transport direction often appears.
  • the biaxially oriented polyester film having the area ratio of the streak defect region in the above range is used in the heat fixing temperature in the heat fixing step, the cooling rate of the polyester film in the cooling step, and the expansion step in the polyester film manufacturing method described later. It can be manufactured by adjusting the expansion ratio of the polyester film in the width direction.
  • the expansion rate of the polyester film in the width direction at 90 ° C. is preferably ⁇ 0.15 to 0.15%, preferably ⁇ 0.10 to 0.10%, based on the film width at 30 ° C. Is more preferable, 0 to 0.10% is further preferable, and 0 to 0.05% is particularly preferable.
  • the coefficient of expansion in the width direction at 90 ° C. is measured by the following method using a thermomechanical analyzer.
  • a thermomechanical analyzer for example, TMA-60, manufactured by Shimadzu Corporation
  • a tensile load of 0.1 g is applied to a sample having a width of 4 mm and a length (distance between chucks) of 20 mm.
  • the value of the length of the sample at each temperature (° C.) by raising the temperature of the above sample from a temperature of 20 ° C.
  • the expansion coefficient in the width direction at 90 ° C. is obtained using the following formula.
  • the coefficient of expansion in the width direction is an arithmetic mean value of the coefficient of expansion obtained using five samples.
  • the expansion rate in the width direction of the polyester film can be adjusted, for example, by appropriately setting the draw ratio in the manufacturing process of the biaxially oriented film, the heat treatment temperature, and the film width during cooling.
  • the density of the polyester film in view of more excellent effects of the present invention, preferably 1.39 ⁇ 1.41g / cm 3, more preferably 1.395 ⁇ 1.405g / cm 3, 1.398 ⁇ 1.400g / cm 3 is more preferred.
  • the density of the polyester film can be measured using an electronic hydrometer (product name "SD-200L", manufactured by Alpha Mirage Co., Ltd.).
  • the thickness of the polyester film is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less, still more preferably 40 ⁇ m or less, in that the peelability is more excellent.
  • the lower limit of the thickness is not particularly limited, but 3 ⁇ m or more is preferable, 5 ⁇ m or more is more preferable, and 10 ⁇ m or more is further preferable, from the viewpoint of excellent handleability.
  • the thickness of the polyester film shall be the arithmetic mean value of the thicknesses at five points measured by the continuous stylus type film thickness meter.
  • the variation in the thickness of the polyester film is preferably 7% or less, more preferably 5% or less of the average thickness of the polyester film in that the surface smoothness of the first main surface forming the release layer is more excellent.
  • the lower limit of the thickness variation is not particularly limited, and may be 0% or more of the average thickness of the polyester film.
  • the thickness variation can be obtained by the following measuring method. Using a continuous stylus film thickness meter, the thickness of the polyester film is measured over 10 m along the longitudinal direction. This measurement is performed at five locations where the positions in the width direction are different. From the obtained measured values, the value obtained by dividing the difference between the maximum value and the minimum value by the arithmetic mean value of all the measured values ((maximum thickness-minimum thickness) / average thickness) is defined as the thickness variation. do.
  • the polyester film is a polyester corresponding to a circle with a diameter of 1.5 cm ⁇ measured in an environment of a temperature of 23 ° C. and a relative humidity (RH) of 20% by the following measurement method in that the coatability of the release layer is improved.
  • the absolute value of the peel charge amount between the first main surface and the second main surface of the film is preferably 0.12 nc (nanocoolon) or less, more preferably 0.11 nc or less, and 0.1 nc or less. Is more preferable.
  • the unit nc (nanocoulomb) is 10-9 coulombs.
  • the method for measuring the peeling charge amount of the polyester film is as follows.
  • a measuring device a reference sample is placed by placing a reference sample of polyester film (first main surface on the upper surface) and ascending and descending along the vertical direction while holding the measurement sample (second main surface on the lower surface).
  • a device equipped with a head capable of repeatedly crimping and peeling the second main surface of the measurement sample against the first main surface of the measurement sample and an electrometer connected to the head and capable of measuring the charge amount of the measurement sample is used. do.
  • a polyester film is cut into a circle with a diameter of 1.5 cm to prepare a sample for measuring the peeling charge, and a rectangular with a size of 13 cm ⁇ 4 cm is cut to prepare a sample as a reference for measuring the peeling charge.
  • the obtained polyester film sample is left to stand in advance under the above-mentioned measurement temperature and humidity environment for 2 hours or more.
  • the reference sample is placed on the base of the measuring device, and the measurement sample is attached to the head.
  • the first main surface is on the upper surface side and the second main surface of the measurement sample is mounted on the head.
  • the main surface is arranged on the lower surface side, respectively.
  • the charge amount of the measurement sample is measured after the first to fifth peeling, and the average value of the measured values is calculated. While changing the measurement sample, the position where the measurement sample contacts in the reference sample is changed for each measurement sample, and the measurement is performed with a total of four samples, and the average of all is taken as the peeling charge amount.
  • the method for measuring the peeling charge amount of the polyester film the contents described in JP-A-2003-194865 (particularly [0053] to [0067]) can also be referred to, and the contents described in the above publication are incorporated in the present specification. ..
  • the amount of peeling charge can be adjusted by selecting the type and amount of components such as the binder and the surfactant contained in the polyester base material and the specific coating layer. More specifically, the peel charge amount can be adjusted within the above range by selecting a material closer in the charging column for the two selected from the group consisting of the polyester substrate, the binder and the surfactant.
  • a method for producing this film for example, a method including a biaxial stretching step of biaxially stretching an unstretched polyester film having a polyester base material and a specific coating layer forming step of forming a specific coating layer containing particles. Can be mentioned.
  • the biaxial stretching may be simultaneous biaxial stretching in which longitudinal stretching and transverse stretching are performed at the same time, or sequential biaxial stretching in which longitudinal stretching and transverse stretching are divided into two or more stages.
  • sequential biaxial stretching include longitudinal stretching ⁇ transverse stretching, longitudinal stretching ⁇ transverse stretching ⁇ longitudinal stretching, longitudinal stretching ⁇ longitudinal stretching ⁇ transverse stretching, and transverse stretching ⁇ longitudinal stretching, and longitudinal stretching ⁇ transverse stretching. Is preferable.
  • the apparatus used for biaxial stretching is not particularly limited, and a known stretching machine can be used.
  • a known stretching machine can be used.
  • an example of the stretching machine will be described with reference to the drawings.
  • FIG. 3 is a plan view showing an example of a stretching machine used for manufacturing a polyester film.
  • the stretching machine 100 shown in FIG. 3 includes a pair of annular rails 60a and 60b, and gripping members 2a to 2l attached to each annular rail and movable along the rails.
  • the annular rails 60a and 60b are arranged symmetrically with respect to each other with the film 200 interposed therebetween.
  • the stretching machine 100 can stretch the film 200 in the width direction by gripping the film 200 with the gripping members 2a to 2l and moving the gripping members 2a to 2l along the rail.
  • the stretching machine 100 has a region including a preheating section 10, a stretching section 20, a heat fixing section 30, a heat relaxing section 40, and a cooling section 50 in this order from the upstream side in the transport direction.
  • the above-mentioned region of the stretching machine 100 is divided by a windbreak curtain, and the temperature in the region can be individually adjusted by hot air or the like.
  • the preheating unit 10 is a region for preheating the film 200.
  • the stretched portion 20 is a region in which the preheated film 200 is stretched by applying tension in the direction of the arrow TD (width direction), which is a direction orthogonal to the direction of the arrow MD (longitudinal direction). As shown in FIG. 3, in the stretched portion 20, the film 200 is stretched from the width L0 to the width L1.
  • the heat fixing portion 30 is a region where the film 200 to which tension is applied is heated and heat-fixed while being tensioned.
  • the heat relaxation unit 40 is a region for heat relaxation of the tension of the heat-fixed film 200 by heating the heat-fixed film 200. As shown in FIG. 3, in the heat relaxation unit 40, the film 200 is reduced (relaxed) from the width L1 to the width L2.
  • the cooling unit 50 is a region for cooling the heat-relaxed film 200. By cooling the film 200, the shape of the film 200 can be fixed.
  • FIG. 3 shows that the width of the film 200 carried into the cooling unit 50 is L2, and the width of the film 200 carried out from the cooling unit 50 is L3.
  • the annular rail 60a is attached with gripping members 2a, 2b, 2e, 2f, 2i, and 2j that are movable along the annular rail 60a.
  • the annular rail 60b is attached with gripping members 2c, 2d, 2g, 2h, 2k, and 2l that are movable along the annular rail 60b.
  • the gripping members 2a, 2b, 2e, 2f, 2i, and 2j grip one end of the film 200 in the direction of the arrow TD.
  • the gripping members 2c, 2d, 2g, 2h, 2k, and 2l grip the other end of the film 200 in the direction of the arrow TD.
  • the gripping members 2a to 2l are generally referred to as chucks, clips and the like.
  • the gripping members 2a, 2b, 2e, 2f, 2i, and 2j move counterclockwise along the annular rail 60a.
  • the gripping members 2c, 2d, 2g, 2h, 2k, and 2l move clockwise along the annular rail 60b.
  • the gripping members 2a to 2d move along the annular rail 60a or 60b while gripping the end portion of the film 200 in the preheating portion 10, pass through the stretching portion 20, the heat fixing portion 30, and the heat relaxing portion 40, and then the cooling portion. Proceed to 50.
  • the gripping members 2a and 2b and the gripping members 2c and 2d are end portions on the downstream side in the direction of the arrow MD of the cooling unit 50 (for example, the gripping release point P and the grip release point Q in FIG. 3) in the order of transport direction.
  • the film After separating the end portion of the film 200 at), the film further moves along the annular rail 60a or 60b and returns to the preheating portion 10.
  • the transport speed of the film 200 can be adjusted. Further, the gripping members 2a to 2l can independently change the moving speed.
  • the stretching machine 100 enables lateral stretching in the stretching portion 20 to stretch the film 200 in the direction of the arrow TD.
  • the stretching machine 100 can also stretch the film 200 in the direction of the arrow MD by changing the moving speed of the gripping members 2a to 2l. That is, it is also possible to perform simultaneous biaxial stretching using the stretching machine 100.
  • the stretching machine 100 may further have other gripping members in addition to the gripping members 2a to 2l in order to support the film 200 (not shown).
  • the manufacturing method includes, for example, an extrusion molding step of extruding a molten resin containing a raw material polyester into a film to form an unstretched polyester film having a polyester base material, and stretching the unstretched polyester film in a transport direction.
  • a biaxial stretching step consisting of a longitudinal stretching step of forming a uniaxially oriented polyester film and a transverse stretching step of stretching the uniaxially oriented polyester film in the width direction to form a biaxially oriented polyester film, and a biaxially oriented polyester film.
  • the heat was relaxed by a heat fixing step of heating and heat fixing, a heat relaxation step of heating the polyester film heat-fixed by the heat fixing step at a temperature lower than that of the heat fixing step, and heat relaxation.
  • the extrusion molding step is a step of extruding a molten resin containing polyester as a raw material into a film by an extrusion molding method to form an unstretched polyester film.
  • the raw material polyester has the same meaning as the polyester described in the above item (polyester).
  • the extrusion molding method is a method of molding a raw material resin into a desired shape by extruding a melt of the raw material resin using, for example, an extruder.
  • the polyester described above is heated to a temperature equal to or higher than the melting point, and the screw is rotated to melt and knead. Is formed by. Polyester is melted in an extruder by heating and kneading with a screw to form a melt.
  • the melt is extruded from the extrusion die through a gear pump, a filter, etc.
  • the extrusion die is also simply referred to as a "die" (see JIS B8650: 2006, a, extruder, number 134).
  • the extruded die described in JP-A-2005-297266, the extruded die described in JP-A-1-154720, and a combination thereof can also be used.
  • the melt may be extruded in a single layer or in multiple layers.
  • melt extrusion it is preferable to replace the inside of the extruder with nitrogen from the viewpoint of suppressing thermal decomposition (for example, hydrolysis of polyester) in the extruder.
  • the extruder is preferably a twin-screw extruder because the kneading temperature can be kept low.
  • the melt extruded from the extrusion die is cooled to form a film.
  • the melt can be formed into a film by bringing the melt into contact with a casting roll and cooling and solidifying the melt on the casting roll. In cooling the melt, it is more preferable to blow wind (preferably cold air) on the melt.
  • the temperature of the casting roll is preferably more than (Tg-10) ° C. and (Tg + 30) ° C., more preferably (Tg-7) to (Tg + 20) ° C., and even more preferably (Tg-5) to (Tg + 10) ° C.
  • Tg means the glass transition temperature of the polyester constituting the film.
  • the temperature of the polyester film and each member in the present manufacturing method can be measured by using a non-contact thermometer (for example, a radiation thermometer).
  • the surface temperature of the film is obtained by measuring the temperature of the central portion in the width direction of the film five times and calculating the average value of the obtained measured values.
  • the method for improving the adhesion include an electrostatic application method, an air knife method, an air chamber method, a vacuum nozzle method, and a touch roll method.
  • the molded product (unstretched polyester film) cooled using a casting roll or the like is stripped from the cooling member such as a casting roll by using a stripping member such as a stripping roll.
  • the biaxial stretching step is a longitudinal stretching step of stretching the unstretched polyester film in the transport direction (hereinafter, also referred to as “longitudinal stretching”) to form a uniaxially oriented polyester film, and a longitudinal stretching step of forming the uniaxially oriented polyester film in the width direction. It has a transverse stretching step of forming a biaxially oriented polyester film by stretching (hereinafter, also referred to as “lateral stretching”).
  • the preheating temperature of the unstretched polyester film is preferably (Tg-30) to (Tg + 40) ° C, more preferably (Tg-20) to (Tg + 30) ° C. Specifically, the preheating temperature is preferably 60 to 100 ° C, more preferably 65 to 80 ° C.
  • a method for preheating the unstretched polyester film for example, a method of arranging a preheating roll having a function of preheating the film on the upstream side of the vertically stretched stretch roll and preheating while transporting the unstretched polyester film can be mentioned. Be done.
  • the stretched roll may have a function of preheating the film.
  • the preferable range of the preheating temperature of the film by the stretch roll is the same as the preferable range of the preheating temperature of the preheating roll described above.
  • Longitudinal stretching can be performed, for example, by applying tension between two or more pairs of stretch rolls installed in the transport direction while transporting the unstretched polyester film in the longitudinal direction.
  • tension between two or more pairs of stretch rolls installed in the transport direction For example, when a pair of stretched rolls A and a pair of stretched rolls B are installed on the upstream side in the transport direction, the rotation speed of the stretched rolls B is set when the unstretched polyester film is transported. By increasing the rotation speed of A, the unstretched polyester film is stretched in the longitudinal direction.
  • the transport speed (peripheral speed) of the film by the pair of stretch rolls A provided on the upstream side in the transport direction and the pair of stretch rolls B provided on the downstream side in the transport direction is the film by the stretch roll A.
  • the transport speed of the film is not particularly limited as long as it is slower than the transport speed of the film by the stretch roll B.
  • the transport speed of the film by the stretch roll A is, for example, 5 to 60 m / min, preferably 10 to 50 m / min, and more preferably 15 to 45 m / min.
  • the transport speed of the film by the stretch roll B is, for example, 40 to 160 m / min, preferably 50 to 150 m / min, and more preferably 60 to 140 m / min.
  • the draw ratio in the longitudinal stretching step is appropriately set depending on the application, but is preferably 2.0 to 5.0 times, more preferably 2.5 to 4.0 times, still more preferably 2.8 to 4.0 times. ..
  • the stretching speed in the longitudinal stretching step is preferably 800 to 1500% / sec, more preferably 1000 to 1400% / sec, and even more preferably 1200 to 1400% / sec.
  • the "stretching speed" is a value obtained by dividing the length ⁇ d in the transport direction of the polyester film stretched in 1 second in the longitudinal stretching step by the length d0 in the transport direction of the polyester film before stretching as a percentage. It is a value expressed by.
  • the heating temperature in the longitudinal stretching step is preferably (Tg-20) to (Tg + 50) ° C, more preferably (Tg-10) to (Tg + 40) ° C, and even more preferably (Tg) to (Tg + 30) ° C.
  • the heating temperature in the longitudinal stretching step is preferably 70 to 120 ° C, more preferably 80 to 110 ° C, and even more preferably 85 to 100 ° C.
  • Examples of the method of heating the unstretched polyester film in the longitudinal stretching step include a method of heating a roll such as a stretched roll in contact with the unstretched polyester film.
  • Examples of the method for heating the roll include a method of providing a heater inside the roll and a method of providing a pipe inside the roll and allowing the heated fluid to flow in the pipe.
  • a method of applying warm air to the unstretched polyester film, and heating the unstretched polyester film by bringing the unstretched polyester film into contact with a heat source such as a heater or passing it in the vicinity of the heat source The method can be mentioned.
  • the longitudinal stretching step of longitudinally stretching the unstretched polyester film is not limited to the above method.
  • the unstretched polyester film is longitudinally stretched by utilizing the difference in the transport speeds of the two stretched rolls, but it is arranged between the two stretched rolls and is faster than those stretched rolls.
  • a uniaxially oriented polyester film may be produced by longitudinally stretching an unstretched polyester film using one or more high-speed stretching rolls that transport the film at a transport speed.
  • the film is sandwiched and conveyed by two rolls (a pair of rolls) facing each other, but the stretching rolls used in the longitudinal stretching step have the opposing rolls. It may be composed of only one roll in contact with one surface of the polyester film.
  • the transverse stretching step is a step of transversely stretching a uniaxially oriented polyester film.
  • the transverse stretching step is carried out, for example, in the transverse stretching portion 20 of the stretching machine 100.
  • the preheating temperature is preferably (Tg-10) to (Tg + 60) ° C, more preferably (Tg) to (Tg + 50) ° C. Specifically, the preheating temperature is preferably 80 to 120 ° C, more preferably 90 to 110 ° C.
  • the stretching ratio (transverse stretching ratio) in the width direction of the uniaxially oriented polyester film in the transverse stretching step is not particularly limited, but is preferably larger than the stretching ratio in the longitudinal stretching step.
  • the stretching ratio in the transverse stretching step is preferably 3.0 to 6.0 times, more preferably 3.5 to 5.0 times, still more preferably 3.5 to 4.5 times.
  • the transverse stretching ratio is the ratio of the film width L1 at the time of carrying out from the transverse stretching portion 20 to the film width L0 at the time of carrying in the transverse stretching portion 20 (L1). It is obtained from / L0).
  • the area magnification represented by the product of the stretching ratio in the longitudinal stretching step and the stretching ratio in the transverse stretching step is preferably 12.8 to 15.5 times, more preferably 13.5 to 15.2 times, and 14. It is more preferably 0 to 15.0 times.
  • the area magnification is at least the above lower limit value, the molecular orientation in the film width direction becomes good. Further, when the area magnification is not more than the above upper limit value, it is easy to maintain a state in which the molecular orientation is difficult to be relaxed when subjected to the heat treatment.
  • the heating temperature in the transverse stretching step is preferably (Tg-10) to (Tg + 80) ° C, more preferably (Tg) to (Tg + 70) ° C, and even more preferably (Tg) to (Tg + 60) ° C.
  • the heating temperature in the transverse stretching step is preferably 100 to 140 ° C, more preferably 110 to 135 ° C, and even more preferably 115 to 130 ° C.
  • the stretching speed in the transverse stretching step is preferably 8 to 45% / sec, more preferably 10 to 30% / sec, and even more preferably 15 to 20% / sec.
  • ⁇ Heat fixing process> In this production method, it is preferable to perform a heat fixing step and a heat relaxation step as a heat treatment for the polyester film laterally stretched by the transverse stretching step.
  • the heat fixing step the biaxially oriented polyester film obtained by the transverse stretching step can be heated and heat-fixed. By crystallizing the polyester by heat fixing, shrinkage of the polyester film can be suppressed.
  • the heat fixing step is carried out, for example, in the heat fixing portion 30 of the stretching machine 100.
  • the surface temperature (heat fixing temperature) of the polyester film in the heat fixing step is not particularly limited, but is preferably less than 240 ° C., more preferably 235 ° C. or lower, still more preferably 230 ° C. or lower.
  • the lower limit is not particularly limited, but is preferably 190 ° C. or higher, more preferably 200 ° C. or higher, and even more preferably 210 ° C. or higher.
  • the heat treatment is performed while controlling the maximum temperature reached on the surface of the polyester film to be the above heat fixing temperature.
  • the variation in the surface temperature in the film width direction is preferably 0.5 to 10.0 ° C, more preferably 0.5 to 7.0 ° C, still more preferably 0.5 to 5.0 ° C. 0.5 to 4.0 ° C. is particularly preferable.
  • the variation in the surface temperature in the film width direction within the above range, the variation in the crystallinity in the width direction can be suppressed.
  • Examples of the heating method include a method of applying hot air to the film and a method of radiant heating of the film.
  • Examples of the device used in the method of radiant heating include an infrared heater.
  • the heating time in the heat fixing step is preferably 5 to 50 seconds, more preferably 5 to 30 seconds, and even more preferably 5 to 10 seconds.
  • Heat relaxation process it is preferable to heat the polyester film heat-fixed by the heat-fixing step at a temperature lower than that of the heat-fixing step to heat-relax. Residual strain of the polyester film can be alleviated by heat relaxation.
  • the heat relaxation step is carried out, for example, in the heat relaxation unit 40 of the stretching machine 100.
  • the surface temperature (heat relaxation temperature) of the polyester film in the heat relaxation step is preferably 5 ° C. or higher lower than the heat fixation temperature, more preferably 15 ° C. or higher, further preferably 25 ° C. or higher, and 30 ° C. or higher. Low temperatures are particularly preferred. That is, the heat relaxation temperature is preferably 235 ° C. or lower, more preferably 225 ° C. or lower, further preferably 210 ° C. or lower, and particularly preferably 200 ° C. or lower. The lower limit of the heat relaxation temperature is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, and even more preferably 120 ° C. or higher. In the heat relaxation step, the heat treatment is performed while controlling the maximum temperature reached on the surface of the polyester film to be the above heat relaxation temperature.
  • Examples of the heating method include a method of applying hot air to the film and a method of radiant heating of the film.
  • Examples of the device used in the method of radiant heating include an infrared heater.
  • the production method preferably includes a cooling step of cooling the heat-relaxed polyester film.
  • the cooling step and the expansion step described later are carried out, for example, in the cooling unit 50 of the stretching machine 100.
  • Examples of the method for cooling the polyester film in the cooling step include a method of blowing air (preferably cold air) on the film and a method of bringing the film into contact with a temperature-adjustable member (for example, a temperature control roll).
  • a method of blowing air preferably cold air
  • a method of bringing the film into contact with a temperature-adjustable member for example, a temperature control roll.
  • the cooling rate of the polyester film in the cooling step is not particularly limited, but the thickness unevenness of the release layer laminated on the biaxially oriented film is reduced, and the coatability of the release layer is more excellent. Less than / min is preferred, 2000-3500 ° C / min is more preferred, more than 2200 ° C / min and less than 3000 ° C / min is even more preferred, and 2300-2800 ° C / min is particularly preferred.
  • the cooling rate of the polyester film in the cooling step can be measured using a non-contact thermometer.
  • a non-contact thermometer For example, when the cooling step is carried out in the cooling unit 50 of the stretching machine 100, the surface temperature of the film 200 carried from the heat relaxation unit 40 to the cooling unit 50 and the surface temperature of the film 200 carried out from the cooling unit 50 Is measured to obtain the temperature difference ⁇ T (° C.) between the two.
  • the cooling rate is obtained by dividing the obtained temperature difference ⁇ T (° C.) by the residence time ta of the film 200 in the cooling unit 50.
  • the cooling speed of the polyester film can be adjusted by the operating conditions of the cooling device and the transport speed of the film.
  • the above-mentioned heat fixing step, heat relaxation step and cooling step in this manufacturing method are continuously carried out in this order. This is because the load (heat history) due to repeated heating and cooling of the polyester film can be reduced, the strain inherent in the film can be reduced, and the occurrence of streak defects can be suppressed.
  • Cooling step it is also preferable to have a step of expanding the heat-relaxed polyester film in the width direction.
  • “Expanding the polyester film in the width direction” in the cooling step means the film width at the end of the cooling step (L2 in FIG. 3) rather than the film width of the polyester film at the start of the cooling step (L2 in FIG. 3). It means applying tension in the width direction to the polyester film during the cooling step so that L3) becomes wider.
  • the method of expanding the polyester film in the width direction is not particularly limited.
  • the end point of the cooling unit 50 (grip release point P and gripping release point P) is more than the distance between the annular rails 60a and 60b at the start point of the cooling unit 50.
  • the expansion step may be carried out continuously or intermittently from the start to the end of the cooling step as long as the film width is expanded before and after the cooling step, or may be carried out only at one time during the cooling step.
  • the expansion ratio of the polyester film in the width direction by the expansion step is preferably 0% or more, more preferably 0.001% or more. 0.01% or more is more preferable.
  • the upper limit of the expansion rate is not particularly limited, but is preferably 1.3% or less, more preferably 1.2% or less, still more preferably 1.0% or less.
  • the present production method preferably includes a specific coating layer forming step of in-line coating using a composition for forming a specific coating layer containing particles (hereinafter, also referred to as “composition A”).
  • composition A a composition for forming a specific coating layer containing particles
  • the specific coating layer formed on one surface of the polyester base material by the specific coating layer forming step has the same meaning as the layer described in detail in the above item ⁇ Specific coating layer>.
  • the specific coating layer may be formed at any stage of the present production method. For example, a method of forming a coating film on one surface of an unstretched or stretched polyester substrate and drying it if necessary. Can be mentioned.
  • the composition A can be prepared by mixing the particles contained in the specific coating layer, the binder and additives added as necessary, and the solvent.
  • the solvent include water, ethanol, toluene, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether. Of these, water is preferable from the viewpoint of environment, safety and economy.
  • the composition A may contain one kind of solvent alone, or may contain two or more kinds of solvents.
  • the content of the solvent is preferably 80 to 99% by mass, more preferably 90 to 98% by mass, based on the total mass of the composition A. That is, in the composition A, the total content of the components (solid content) other than the solvent is preferably 0.5 to 20% by mass, more preferably 1 to 10% by mass, based on the total mass of the composition A.
  • the particles, binders and additives contained in the composition A are as described in detail in the above item ⁇ Specific coating layer>.
  • the content of each component with respect to the total mass of the solid content of the composition A is the same as the preferable content of each component with respect to the total mass of the above-mentioned specific coating layer. , It is preferable to adjust the content of each component in the coating liquid.
  • the method of applying the composition A is not particularly limited, and a known method can be used.
  • the coating method include a spray coating method, a slit coating method, a roll coating method, a blade coating method, a spin coating method, a bar coating method and a dip coating method.
  • an in-line coating method in which a coating liquid is applied to one surface of the polyester substrate while transporting the polyester substrate is applied.
  • the heating time of the polyester base material in the manufacturing process is shortened and the heat history is not applied, so that the streak defect region can be reduced, and as a result, the coatability of the release layer can be further improved.
  • the polyester base material to which the composition A is applied may be an unstretched polyester base material or a uniaxially oriented polyester base material, but the uniaxially oriented polyester base material may be used. It is preferably a base material.
  • the specific coating layer forming step by the in-line coating method between the longitudinal stretching step and the transverse stretching step. This is because the adhesion between the polyester base material and the specific coating layer can be improved by simultaneously laterally stretching the uniaxially oriented polyester base material and the specific coating layer.
  • the present manufacturing method may include a winding step of obtaining a roll-shaped biaxially oriented polyester film by winding the biaxially oriented polyester film obtained through the above steps. Further, the present manufacturing method further includes a trimming step of continuously cutting the polyester film along the transport direction and cutting off at least one end in the width direction of the polyester film before carrying out the winding step. You may.
  • the transport speed of the polyester film in each step other than the longitudinal stretching step of this production method is not particularly limited, but the transverse stretching step, the heat fixing step, the heat relaxation step, the cooling step and the expansion step are performed by using the stretching machine 100. In this case, 50 to 200 m / min is preferable, and 80 to 150 m / min is more preferable in terms of productivity and quality.
  • the transport speed of the polyester film in the longitudinal stretching step is as described above.
  • the tension applied to the polyester film in the transport direction is not particularly limited, but the transverse stretching step, the heat fixing step, the heat relaxation step, the cooling step and the expansion step are performed on the stretching machine.
  • the tension applied to the polyester film in the transport direction can be adjusted by the stretching conditions.
  • the tension applied to the polyester film in the transport direction after the cooling step is applied until the polyester film is taken up in the above winding step is preferably 3 to 30 N / m, more preferably 5 to 20 N / m.
  • a combination of two or more preferred embodiments is a more preferred embodiment.
  • the manufacturing method having two or more combinations selected from the group consisting of the following manufacturing conditions is for adjusting the area ratio of the streaky defect region of the biaxially oriented film to be manufactured and the expansion rate in the width direction. It can be said that this is a preferable embodiment in that it serves as an index of.
  • the stretching ratio in the transverse stretching step is 3.0 to 6.0 times, preferably 3.5 to 5.0 times, and more preferably 3.5 to 4.5 times.
  • the heat fixing temperature in the heat fixing step is less than 240 ° C., preferably 190 ° C.
  • the heat relaxation temperature in the heat relaxation step is lower than the heat fixing temperature, preferably 5 ° C. or higher, more preferably 15 ° C. or higher, further preferably 25 ° C. or higher, and particularly preferably 30 ° C. or higher.
  • the cooling rate of the polyester film in the cooling step is more than 2000 ° C./min and less than 4000 ° C./min, preferably 2000 to 3500 ° C./min, more preferably more than 2200 ° C./min and less than 3000 ° C./min, still more preferably 2300 to. It should be 2800 ° C / min.
  • the expansion ratio of the polyester film in the width direction in the expansion step is 0 to 1.3%, preferably 0.001 to 1.2%, and more preferably 0.01 to 1.0%. ..
  • the area ratio of the streaky defect region and the expansion rate in the width direction of the biaxially oriented film differ depending on the materials constituting the polyester base material and the specific coating layer, and the manufacturing conditions other than the above. It is not always possible to produce a polyester film having an area ratio of a desired streak defect region and / or an expansion rate in the width direction by a production method having two or more combinations selected from the group consisting of production conditions. .. Further, the method for producing a polyester film having a desired area ratio of streaky defect regions and / or an expansion rate in the width direction is not limited to a method having two or more of the above production conditions.
  • the above polyester film can be used for producing a release film. More specifically, by providing the release layer on the first main surface of the polyester film, a release film having the polyester film and the release layer arranged on the first main surface of the polyester film can be manufactured.
  • the release layer contains at least a resin as a release agent.
  • the resin contained in the release layer is not particularly limited, and examples thereof include silicone resin, fluororesin, alkyd resin, acrylic resin, various waxes, and aliphatic olefins, and silicone resin is preferable.
  • the silicone resin means a resin having a silicone structure in the molecule.
  • the silicone resin include curable silicone resins, silicone graft resins, modified silicone resins such as alkyl-modified, and reactive curable silicone resins are preferable.
  • the reactive curable silicone resin include an addition reaction type silicone resin, a condensation reaction type silicone resin, and an ultraviolet ray or electron beam curable type silicone resin. Of these, an addition reaction type silicone resin having low temperature curability or an ultraviolet or electron beam curable silicone resin is preferable because the release layer can be formed at a low temperature.
  • Examples of the addition reaction type silicone resin include a resin obtained by reacting polydimethylsiloxane having a vinyl group introduced at the terminal or side chain with hydrodienesiloxane using a platinum catalyst and curing the resin.
  • the silicone resin of the condensation reaction system is, for example, three-dimensionally formed by subjecting a polydimethylsiloxane having an OH group at the terminal and a polydimethylsiloxane having an H group at the terminal to a condensation reaction using an organic tin catalyst. Examples thereof include a resin having a crosslinked structure.
  • UV-curable silicone resins include those that utilize the same radical reaction as silicone rubber cross-linking, those that are photo-cured by introducing unsaturated groups, and those that decompose onium salts with ultraviolet rays or electron beams to generate strong acids, and epoxys. Examples thereof include those in which the group is cleaved and crosslinked, and those in which the group is crosslinked by the addition reaction of thiol to vinylsiloxane. More specifically, acrylate-modified polydimethylsiloxane, glycidoxy-modified polydimethylsiloxane, and the like can be mentioned.
  • the release layer may contain an additive in addition to the above resin.
  • an additive a light peeling additive, a heavy peeling additive, an adhesion improving agent, an additive such as an antistatic agent, and the like for adjusting the peeling force may be added.
  • the resin contained in the release layer may be used alone or in combination of two or more.
  • the content of the resin in the release layer is preferably 50 to 99% by mass, more preferably 60 to 98% by mass, based on the total mass of the release layer.
  • the remainder of the release layer other than the resin may be the above-mentioned additive and / or a residue such as a solvent and a catalyst contained in the release layer forming coating liquid used for forming the release layer.
  • the thickness of the peeling layer may be set according to the purpose of use and is not particularly limited, but 0.005 to 2.0 ⁇ m is preferable and 0 is preferable in that the peeling performance and the smoothness of the peeling layer surface are well-balanced. More preferably, it is 0.05 to 1.0 ⁇ m.
  • the surface free energy of the surface (also referred to as the release surface) of the release layer opposite to the polyester substrate side is preferably 30 mJ / m 2 or less. More preferably ⁇ is 30 mJ / m 2, further preferably 10 ⁇ 30mJ / m 2. Further, it is preferable that the difference between the surface free energy of the peeling surface of the peeling layer and the surface free energy of the second main surface of the polyester film is wide because the film is less likely to be charged.
  • Difference between the surface free energy of the second main surface of the surface free energy and the polyester film of the release surface of the release layer is preferably 1 ⁇ 50 mJ / m 2, more preferably 1 ⁇ 40mJ / m 2, 1 ⁇ 35mJ / m 2 is more preferable, 5 to 30 mJ / m 2 is particularly preferable, and 10 to 25 mJ / m 2 is most preferable.
  • the surface free energy of the peeling surface of the peeling layer can be adjusted by the type of resin forming the peeling layer and the additive.
  • the peeled surface is preferably as smooth as possible in terms of smoothing the functional layer such as the ceramic green sheet formed on the peeled layer.
  • the maximum protrusion height Sp of the peeled surface is preferably 1 to 60 nm, and more preferably 1 to 40 nm.
  • the surface average roughness Sa of the peeled surface is preferably 0 to 10 nm, more preferably 0 to 5 nm.
  • the maximum protrusion height Sp and surface average roughness Sa of the peeled surface can be adjusted by not putting particles in the peeled layer when providing the peeled layer and by selecting the resin and the additive forming the peeled layer. ..
  • the maximum protrusion height Sp and the surface average roughness Sa of the peeled surface can be measured according to the above-mentioned measuring method of the maximum protrusion height Sp and the surface average roughness Sa of the second main surface.
  • the method of providing the release layer on the first main surface of the film is not particularly limited, but a release layer forming coating liquid obtained by dissolving or dispersing the release agent in a solvent is applied to the first main surface of the film.
  • a release layer forming coating liquid obtained by dissolving or dispersing the release agent in a solvent is applied to the first main surface of the film. Examples thereof include a method of removing the solvent by drying and, if necessary, heating or irradiating with light to form a cured product.
  • the method of applying the coating liquid for forming the release layer is not particularly limited, and a known method can be used.
  • the coating method include a spray coating method, a slit coating method, a roll coating method, a blade coating method, a spin coating method, a bar coating method and a dip coating method.
  • the heating temperature for forming the release layer is preferably 180 ° C. or lower, more preferably 150 ° C. or lower, and even more preferably 120 ° C. or lower.
  • the lower limit is not particularly limited and may be 60 ° C. or higher.
  • the coating liquid for forming a release layer may contain the above-mentioned resin and solvent, and may contain the above-mentioned additive and / or the above-mentioned catalyst used for curing the resin, if necessary.
  • the coating liquid for forming a release layer can be prepared by mixing these components.
  • the solvent include water and organic solvents such as toluene, methyl ethyl ketone, ethanol, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether, and organic solvents are preferable.
  • the coating liquid for forming a release layer may contain one type of solvent alone, or may contain two or more types of solvents.
  • the content of the solvent is preferably 80 to 99.5% by mass, more preferably 90 to 99% by mass, based on the total mass of the coating liquid for forming the release layer. That is, the total content of the components (solid content) other than the solvent in the coating liquid for forming the release layer is preferably 0.5 to 20% by mass, preferably 1 to 10% by mass, based on the total mass of the coating liquid for forming the release layer. More preferably by mass.
  • the first main surface of the film is subjected to pretreatment such as anchor coating, corona treatment, and plasma treatment before the release layer is provided. May be good.
  • the release film provided with this film has excellent transportability, can suppress the formation of transfer marks during roll storage, and can suppress uneven thickness and / or coating defects of the release layer. Therefore, it is a release film for manufacturing a ceramic green sheet. It is preferable to use it as a (carrier film).
  • the ceramic green sheet manufactured by using the above-mentioned release film can be suitably used for manufacturing a ceramic capacitor, which is required to have multiple layers of internal electrodes due to miniaturization and large capacity.
  • the method for producing a ceramic green sheet using the release film is not particularly limited, and a known method can be used.
  • the method for producing the ceramic green sheet include a method in which the prepared ceramic slurry is applied to the surface of the release layer of the release film and the solvent contained in the ceramic slurry is dried and removed.
  • the method for applying the ceramic slurry is not particularly limited, and for example, a known method of applying a ceramic slurry in which a ceramic powder and a binder are dispersed in a solvent by a reverse roll method and removing the solvent by heating and drying is known.
  • the method can be applied.
  • the binder agent is not particularly limited, and examples thereof include polyvinyl butyral and the like.
  • the solvent is not particularly limited, and examples thereof include ethanol and toluene.
  • the release film provided with this film includes a protective film for dry film resist, a sheet forming film such as a decorative layer and a resin sheet, a release film for a semiconductor manufacturing process, a release film for a polarizing plate manufacturing process, and a label. It can be used as a separator for adhesive films for medical and office supplies.
  • the term "film” includes both a polyester base material alone and an embodiment having a polyester base material and a specific coating layer, and an unstretched film, a uniaxially oriented film, and the like. And all of the biaxially oriented films shall be included.
  • a non-contact thermometer AD-5616 (product name), manufactured by A & D Co., Ltd., emissivity 0.95) is used to measure the temperature of the central portion in the width direction of the film five times. Then, the arithmetic mean value of the obtained measured values was used as the measured value of the surface temperature of the film.
  • Example 1 ⁇ Extrusion molding process> Pellets of polyethylene terephthalate were produced using a titanium compound (citrate chelated titanium complex, VERTEC AC-420, manufactured by Johnson Matthey) described in Japanese Patent No. 5575671 as a polymerization catalyst. The obtained pellets were dried to a water content of 50 ppm or less, charged into a hopper of a uniaxial kneading extruder having a diameter of 30 mm, and then melted and extruded at 280 ° C. The melt was passed through a filter (pore diameter 3 ⁇ m) and then extruded from the die into a cooling drum at 25 ° C. to obtain an unstretched film made of polyethylene terephthalate.
  • a titanium compound cementitrate chelated titanium complex, VERTEC AC-420, manufactured by Johnson Matthey
  • the extruded melt was brought into close contact with the cooling drum by the electrostatic application method.
  • the melting point (Tm) of polyethylene terephthalate constituting the unstretched film was 258 ° C.
  • the glass transition temperature (Tg) was 80 ° C.
  • composition A composition for forming a specific coating layer
  • a vertically stretched uniaxially oriented film polyester base material
  • a bar coater a bar coater
  • the formed coating film is blown with hot air at 100 ° C. It was dried to form a specific coating layer.
  • the coating amount of the composition A was adjusted so that the thickness of the formed specific coating layer was 60 nm.
  • composition A Composition A was prepared by mixing each of the components shown below. Filtration treatment of the prepared composition A using a filter having a pore size of 6 ⁇ m (F20, manufactured by Mahle Filter Systems Co., Ltd.) and membrane degassing (2x6 radial flow superphobic, manufactured by Polypore Co., Ltd.). After that, the obtained composition A was applied to the surface of the uniaxially oriented film.
  • Heat relaxation process> the heat-fixed film was heated under the following conditions to perform a heat relaxation step of relaxing the tension of the film. Further, in the heat relaxation step, the film width was reduced as compared with the end of the heat fixing step by narrowing the distance (tenter width) between the gripping members of the tenter that grips both ends of the film.
  • ⁇ Cooling process and expansion process> A cooling step of cooling the heat-relaxed film under the following conditions was performed. Further, in the cooling step, an expansion step was carried out in which the film width was expanded as compared with the time when the heat relaxation step was completed by widening the tenter width.
  • the following cooling rates are the film surface temperature measured at the time of carrying into the cooling unit 50 and the cooling unit 50, with the residence time from the time the film is carried into the cooling unit 50 of the stretching machine 100 to being carried out as the cooling time ta. It was obtained by dividing the temperature difference ⁇ T (° C.) from the film surface temperature measured at the time of carrying out by the cooling time ta.
  • the thickness of the specific coating layer of the obtained biaxially oriented film was measured using SEM, the thickness of the specific coating layer was 60 nm.
  • a biaxially oriented film is cut using a microtome to prepare a sample having a cross section along the thickness direction of the biaxially oriented film, and the obtained sample is etched with Ar ions and subjected to Pt. After the vapor deposition treatment of the above, the cross section of the sample was observed using SEM (“S-4800” manufactured by Hitachi High-Tech Co., Ltd.). From the obtained observation image, the thickness of the specific coating layer was measured at five points, and the measured values were arithmetically averaged to obtain the thickness of the specific coating layer.
  • composition A In the preparation of composition A, "Snowtex MP2040" (manufactured by Nissan Chemical Industries, Ltd., colloidal silica, solid content 40% by mass aqueous dispersion) was used instead of “Snowtex ZL” as particles, and A biaxially oriented film was produced according to the method described in Example 1 except that the thickness of the specific coating layer was adjusted to 160 nm.
  • Snowtex MP2040 manufactured by Nissan Chemical Industries, Ltd., colloidal silica, solid content 40% by mass aqueous dispersion
  • Example 3 A biaxially oriented film was produced according to the method described in Example 1 except that the thickness of the specific coating layer was adjusted to 50 nm.
  • Example 4 A biaxially oriented film was prepared according to the method described in Example 1 except that the amount of particles (“Snowtex ZL”) added was changed from 11 parts to 22 parts in the preparation of the composition A.
  • Example 5 A biaxially oriented film was prepared according to the method described in Example 1 except that the amount of particles (“Snowtex ZL”) added was changed from 11 parts to 1.1 parts in the preparation of the composition A.
  • Example 6 In the preparation of the composition A, "Snowtex XL” (manufactured by Nissan Chemical Industries, Ltd., colloidal silica, solid content 40% by mass aqueous dispersion) was used instead of “Snowtex ZL” as the particles.
  • a biaxially oriented film was produced according to the method described in Example 1 except that the addition amount was changed from 11 parts to 3 parts and the thickness of the specific coating layer was adjusted to 40 nm.
  • Example 7 A biaxially oriented film was prepared according to the method described in Example 1 except that 40 parts of the following additive (crosslinking agent) was further added to the composition A.
  • -A dispersion prepared by adding water to a cross-linking agent (isocyanate compound, "Duranate (registered trademark) WM44L70” manufactured by Asahi Kasei Chemicals Co., Ltd. (solid content 70% by mass) so that the solid content concentration becomes 10% by mass. )
  • a cross-linking agent isocyanate compound, "Duranate (registered trademark) WM44L70” manufactured by Asahi Kasei Chemicals Co., Ltd. (solid content 70% by mass) so that the solid content concentration becomes 10% by mass.
  • Example 8 A biaxially oriented film was prepared according to the method described in Example 1 except that the amount of the anionic hydrocarbon-based surfactant added was changed from 56 parts to 112 parts in the preparation of the composition A.
  • Example 9 In the preparation of the composition A, instead of the anionic hydrocarbon-based surfactant, a silicone-based surfactant (BYK-346, solid content 52% by mass, manufactured by BYK) was added to water so as to have a solid content of 1% by mass. A biaxially oriented film was prepared according to the method described in Example 1 except that 56 parts of the obtained diluted solution was used.
  • a silicone-based surfactant BYK-346, solid content 52% by mass, manufactured by BYK
  • Example 10 In the preparation of the composition A, instead of the anionic hydrocarbon-based surfactant, a fluorine-based surfactant (Surflon S-211, solid content 50% by mass, manufactured by AGC Seimi Chemical Co., Ltd.) was used as a solid content 1% by mass. A biaxially oriented film was prepared according to the method described in Example 1 except that 56 parts of the obtained diluted solution was used.
  • a fluorine-based surfactant Sudflon S-211, solid content 50% by mass, manufactured by AGC Seimi Chemical Co., Ltd.
  • composition A instead of “Zyxen NC” as a resin, "Takelac W605" (manufactured by Mitsui Chemicals, Inc., polyurethane, solid content 30% by mass aqueous dispersion) was used as a binder for the total mass of composition A.
  • a biaxially oriented film was prepared according to the method described in Example 1, except that the films used had the same content.
  • Example 25 In the preparation of the composition A, instead of the resin "Zyxen NC", “Hydran AP-40N” (manufactured by DIC Corporation, polyurethane, solid content 35% by mass aqueous dispersion) was used with respect to the total mass of the composition A.
  • a biaxially oriented film was prepared according to the method described in Example 1 except that the binders were used in the same amount.
  • Example 26 According to the method described in Example 25, except that 5 parts of a fluorine-based surfactant (Futergent 215M, manufactured by Neos Co., Ltd., diluted with water having a solid content of 1% by mass) was added in the preparation of the composition A. A biaxially oriented film was produced.
  • a fluorine-based surfactant Futergent 215M, manufactured by Neos Co., Ltd., diluted with water having a solid content of 1% by mass
  • Example 27 Except for the addition of 20 parts of a water-diluted solution (solid content 1% by mass) of a fluorine-based surfactant (Surflon S-211, solid content 50% by mass, manufactured by AGC Seimi Chemical Co., Ltd.) in the preparation of composition A. Made a biaxially oriented film according to the method described in Example 25.
  • a fluorine-based surfactant Sudflon S-211, solid content 50% by mass, manufactured by AGC Seimi Chemical Co., Ltd.
  • composition A In the preparation of the composition A, "Snowtex MP2040" was used instead of “Snowtex ZL” as the particles, the thickness of the specific coating layer was adjusted to 100 nm, and the heat in the heat fixing step was used.
  • a biaxially oriented film was produced according to the method described in Example 1 except that the fixed temperature, the cooling rate in the cooling step, and the expansion rate in the expansion step were controlled to be the values shown in Table 1 described later. did.
  • composition A an aqueous dispersion of an acrylic resin (methyl methacrylate, 2-hydroxyethyl methacrylate and methacrylic acid) is polymerized at a mass ratio of 28:48:24 instead of "Zyxen NC" as the resin.
  • An aqueous dispersion obtained by neutralizing the polymer) (solid content 25% by mass, acid value 157 mgKOH / g) was used, and the heat fixing temperature in the heat fixing step and the cooling rate in the cooling step are described later in Table 1
  • a biaxially oriented film was produced according to the method described in Example 1, except that the values were controlled to be as described in 1.
  • ⁇ Maximum protrusion height Sp, surface average roughness Sa> The maximum protrusion height Sp and the surface average roughness Sa of the second main surface of the specific coating layer of the biaxially oriented film were measured by the following methods.
  • the surface of the manufactured biaxially oriented film on the specific coating layer side is measured using an optical interferometer (Vertscan 3300G Lite, manufactured by Hitachi High-Tech Co., Ltd.) under the following conditions, and then the built-in data analysis software ( By analysis by VS-Measure5), the maximum protrusion height Sp and the surface average roughness Sa of the second main surface of the specific coating layer were obtained.
  • the maximum protrusion height Sp In the measurement of the maximum protrusion height Sp, the maximum value of the measured value obtained by 5 measurements with different measurement positions is adopted, and in the measurement of the surface average roughness Sa, it is obtained by 5 measurements with different measurement positions. The average value of the measured values to be measured was adopted.
  • the maximum protrusion height Sp and the surface average roughness Sa of the first main surface of the biaxially oriented film were measured. In each example, Sp was 20 nm and Sa was 3 nm.
  • the surface free energy of the second main surface of the specific coating layer of the biaxially oriented film was measured by the following method. Using a contact angle meter (DROPMASTER-501 manufactured by Kyowa Surface Chemistry Co., Ltd.), droplets are dropped on the surface of the manufactured biaxially oriented film on the specific coating layer side under the condition of 25 ° C., and the droplets are surfaced. The contact angle was measured 1 second after adhering to. Using 2 ⁇ L of purified water, 1 ⁇ L of methylene iodide and 1 ⁇ L of ethylene glycol as droplets, the surface free energy was calculated by the method of Kitazaki and Hata from each measured contact angle. The surface free energy of the first main surface of the biaxially oriented film was measured by the same method. In each example, it was 59.7 mJ / m 2 .
  • ⁇ Thickness variation> A sample having a length of 10 m in the longitudinal direction was taken from the produced biaxially oriented film. The thickness of this sample was measured over 10 m along the longitudinal direction using a continuous stylus type film thickness meter (TOF-6R001, manufactured by Yamabun Co., Ltd.). This measurement was performed at 5 locations with different positions in the width direction. From the obtained measured values, the value obtained by dividing the difference between the maximum value and the minimum value by the arithmetic mean value of all the measured values ((maximum thickness-minimum thickness) / average thickness) is used as the thickness variation. Calculated.
  • the biaxially oriented film was heat-treated at 90 ° C. for 20 seconds while being conveyed at a transfer speed of 30 m / min and a tension of 100 N / m in the transfer direction using a heat transfer device.
  • the heating temperature in the heat treatment refers to the surface temperature of the film.
  • the heating time in the heat treatment was calculated from the time when the surface temperature of the film reached the target temperature (90 ° C.).
  • the heat-treated biaxially oriented film was placed on a black flat plate, and then a fluorescent lamp installed on the ceiling of the room [Lupica Ace manufactured by Mitsubishi Electric Corporation (color temperature: 5000K, average color rendering index (Ra): 84).
  • the biaxially oriented film was visually observed from an angle while changing the viewpoint so that the light was reflected. A region of 1 m ⁇ 1 m was visually observed, and a region where the reflected image of the fluorescent lamp was undulating on the surface of the biaxially oriented film was defined as a streak defect region. Next, the ratio (area ratio) of the total area of the observed streaky defect regions to the total area of the observation region of the biaxially oriented film is calculated by the method described above (see the item of "streaky defect region" above). did.
  • ⁇ Average particle size, particle density D> The average particle diameter and the particle density D of the particles contained in the specific coating layer were measured by the following methods. Using a scanning electron microscope (SEM, manufactured by Hitachi High-Tech, S4700), the surface of the biaxially oriented film on the specific coating layer side was observed at a magnification of 20000 times to obtain an observation image of 10 fields of view. For particles that can be identified as protrusions from the obtained image data, the area of each particle is measured using image software and converted into the diameter of a circle having the same area (diameter equivalent to the area circle). After obtaining the diameter, the arithmetic average value of all particles was calculated. Further, the value obtained by dividing the number of particles that can be identified from the image data of each visual field by the visual field area was calculated as the particle density D (unit: individual / ⁇ m 2 ).
  • each biaxially oriented film manufactured rises along the vertical direction while holding the table on which the reference sample (first main surface is on the upper surface) and the measurement sample (second main surface is on the lower side).
  • a measuring device provided with a head capable of repeatedly crimping and peeling the measurement sample against the upper surface of the reference sample by lowering and lowering, and an electrometer connected to this head and capable of measuring the charge amount of the measurement sample. Used and measured. First, each of the manufactured biaxially oriented films is cut into a circle with a diameter of 1.5 cm to prepare a sample for measuring the amount of peeling charge, and then cut into a rectangle with a size of 13 cm ⁇ 4 cm as a reference.
  • Samples were prepared and each sample was left for 2 hours or more in an environment of a temperature of 23 ° C. and a relative humidity (RH) of 20%.
  • the obtained reference sample was placed on the table of the measuring device, and the measurement sample was attached to the head.
  • the first main surface is on the upper surface side and the second main surface of the measurement sample is mounted on the head.
  • the main surface was arranged on the lower surface side, respectively.
  • the head was raised or lowered, and crimping and peeling of the measurement sample against the reference sample were repeated 5 times (contact pressure was 566 g / cm 2 , contact time was 2 seconds).
  • the charge amount of the measurement sample was measured after each of the first to fifth peeling, and the average value of the measured values was calculated. While changing the measurement sample, the position where the measurement sample came into contact with the reference sample was changed for each measurement sample, and measurement was performed with a total of four samples, and the average of all was obtained as the peel charge amount.
  • a release film was prepared using each of the biaxially oriented films of Examples 1 to 27 and Comparative Examples 1 to 3, and the obtained release film was evaluated as follows. The evaluation results are shown in Table 1.
  • the release film produced in the evaluation of the transfer marks was cut out in the longitudinal direction to a length of 30 m. Under a three-wavelength fluorescent lamp, the surface of the obtained sample on the peeling layer side was visually observed, and the number of streaky coating unevenness and defects due to foreign matter observed by the reflected light was measured. From the measurement results, the applicability of the release layer was evaluated according to the following criteria.
  • Table 1 shows the evaluation results of each Example and Comparative Example.
  • resins 1 to 9 in the “resin” column, W-1 to W-4 in the “surfactant” column, cross-linking agents in the “additive” column, and particles in the “type” column of “particles”. 1 to 3 indicate that the following components were used, respectively.
  • Resin 1 Zyxen NC (manufactured by Sumitomo Seika Chemical Co., Ltd., acid-modified polyolefin, aqueous dispersion)
  • Resin 2 Zyxen L (manufactured by Sumitomo Seika Chemical Co., Ltd., acid-modified polyolefin, aqueous dispersion)
  • Resin 3 Zyxen A (manufactured by Sumitomo Seika Chemical Co., Ltd., acid-modified polyolefin, aqueous dispersion)
  • Resin 4 Chemipearl S120 (manufactured by Mitsui Chemicals, Inc., acid-modified polyolefin, aqueous dispersion)
  • Resin 5 Acrylic resin (an aqueous dispersion obtained by polymerizing methyl methacrylate, 2-hydroxyethyl methacrylate and methacrylic acid at a mass ratio of 28:48:24 to neutralize a
  • Resin 6 Cymac US-480 (manufactured by Toagosei Co., Ltd., silicone-modified acrylic resin, aqueous dispersion)
  • Resin 7 Acrylic resin (copolymer obtained by polymerizing methyl methacrylate, styrene, 2-ethylhexyl acrylate, 2-hydroxyethyl methacrylate and acrylic acid at a mass ratio of 59: 8: 26: 5: 2, an aqueous dispersion)
  • Resin 8 Takelac W605 (manufactured by Mitsui Chemicals, Inc., polyurethane, aqueous dispersion)
  • Resin 9 Hydran AP-40N (manufactured by DIC Corporation, polyurethane, aqueous dispersion) (Surfactant)
  • W-1 Anionic hydrocarbon-based surfactant (Lapisol A-90, manufactured by NOF CORPORATION)
  • W-2 Silicone-based surfactant (BYK-346,
  • Particles Particle 1: Snowtex ZL (manufactured by Nissan Chemical Industries, Ltd., colloidal silica, aqueous dispersion)
  • Particle 2 Snowtex MP2040, (manufactured by Nissan Chemical Industries, Ltd., colloidal silica, aqueous dispersion)
  • Particle 3 Snowtex XL (manufactured by Nissan Chemical Industries, Ltd., colloidal silica, aqueous dispersion)
  • Comparative Example 4 As the polyester film of Comparative Example 4, a polyethylene terephthalate film (“Cosmo Shine (registered trademark) A-1517”, manufactured by Toyobo Co., Ltd.) in which a resin layer containing particles is laminated on one main surface of a polyethylene terephthalate base material. , Thickness 16 ⁇ m) was prepared.
  • the polyester film of Comparative Example 4 has a relatively flat first surface (corresponding to the first main surface of the present film) and a second surface having an uneven shape (corresponding to the second main surface of the present film).
  • the maximum protrusion height Sp of the uneven surface of the polyester film of Comparative Example 4 was 63 nm.
  • a roll-shaped release film was produced by providing a release layer on the first surface according to the method described in the above [Preparation of release film].
  • the transfer marks on the surface of the release layer were evaluated by the method described in the above [Transfer mark evaluation 1] using the obtained release film, dents were observed and the release layer was roughened (evaluation B). ..
  • the transfer marks on the surface of the release layer were evaluated by the method described in the above [Transfer mark evaluation 2] using the obtained release film, dents were found on the surface of two or more of the ten release films. It was observed that the peeled layer was roughened (evaluation C).
  • the product (D ⁇ Sp) of the particle density D (unit: piece / ⁇ m 2 ) of the particles constituting the protrusions on the second main surface and the maximum protrusion height Sp (unit: nm) on the second main surface. ) Is 20 or more, it is confirmed that the transportability is more excellent (comparison between Examples 2, 5 and 6 and other Examples).
  • the coating property of the release layer is more excellent (comparison between Examples 1 and 9 to 10).
  • the specific coating layer contains a fluorine-based surfactant having a perfluoroalkyl group having 1 to 4 carbon atoms, it contains a fluorine-based surfactant having a linear perfluoroalkyl group having 6 or more carbon atoms. It was confirmed that the coatability of the release layer was superior to that of the case (comparison of Examples 26 and 27).
  • Example 101 Production of ceramic green sheet
  • a ceramic slurry having the following formulation K is applied onto the release layer of the release film prepared in each of Examples 1 to 26 so that the thickness after drying becomes 0.5 ⁇ m, and then obtained.
  • the resulting slurry coating film was dried at 90 ° C.
  • the ceramic slurry was prepared by mixing each of the raw materials described in the following formulation and dispersing them with a ball mill.
  • the two release films with a slurry coating film produced by the above method were superposed so that the surface of the slurry coating film and the surface of the specific coating film were in contact with each other, and a load of 1 kg / cm 2 was applied for 10 minutes.
  • the release film was peeled off from the release film with the slurry coating film to obtain a ceramic green sheet.
  • the obtained ceramic green sheet had good characteristics without foreign matter or transfer failure.
  • ⁇ Prescription K Ceramic Rally> ⁇ Polyvinyl butyral (manufactured by Sekisui Chemical Co., Ltd., Eslek BX-5) 5 parts ⁇ Barium titanate (manufactured by Fuji Titanium Industry Co., Ltd., HPBT) 100 parts ⁇ Toluene and ethanol 6: 4 mixed solvent 45 parts
  • Polyester film 1a First main surface 1b: Second main surface 2: Polyester base material 2a to 2l: Gripping member 3: Specific coating layer 10: Preheating part 20: Stretched part 30: Heat fixing part 40: Heat relaxation part 50: Cooling parts 60a, 60b: Circular rail 100: Stretching machine 200: Film P, Q: Gripping release point MD: Transport direction (longitudinal direction) TD: Width direction L0, L1, L2, L3: Film width

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

The present invention addresses the problem of providing a polyester film for release film production, that exhibits excellent transportability and excellent release layer coatability and that can suppress the formation of transfer marks in the release layer surface. The present invention also addresses the problem of providing a release film and a method for producing a polyester film. A polyester film according to the present invention is a polyester film for release film production that is provided with a substantially particle-free polyester base material and a particle-containing coating layer disposed on one surface of the polyester base material, that has a first main surface and a second main surface, and that is used to produce a release film by forming a release layer on the first main surface. The second main surface is the surface on the opposite side from the coating layer side of the polyester base material. The maximum projection height Sp of the second main surface is greater than or equal to 1 nm and less than 60 nm, and the surface free energy of the second main surface is 25-60 mJ/m2.

Description

ポリエステルフィルム、剥離フィルム、ポリエステルフィルムの製造方法Manufacturing method of polyester film, release film, polyester film
 本発明は、剥離フィルム製造用のポリエステルフィルム、剥離フィルム、及び、ポリエステルフィルムの製造方法に関する。 The present invention relates to a polyester film for producing a release film, a release film, and a method for producing a polyester film.
 2軸配向ポリエステルフィルムは、加工性、機械的性質、電気的性質、寸法安定性、透明性、及び、耐薬品性等の観点から幅広い用途に使用されている。例えば、積層セラミックコンデンサーの分野において、2軸配向ポリエステルフィルムの表面に剥離層を積層してなる剥離フィルムが、積層セラミックコンデンサー製造用の誘電体層を有するセラミックシートの作製に使用されている。 Biaxially oriented polyester film is used in a wide range of applications from the viewpoints of workability, mechanical properties, electrical properties, dimensional stability, transparency, chemical resistance, and the like. For example, in the field of laminated ceramic capacitors, a release film formed by laminating a release layer on the surface of a biaxially oriented polyester film is used for producing a ceramic sheet having a dielectric layer for manufacturing a laminated ceramic capacitor.
 例えば、特許文献1には、2層以上からなる2軸配向ポリエステルフィルムを基材とし、基材は、粒子を実質的に含有していない表面層Aと粒子を含有する表面層Bを有し、表面層Aの表面上に離型塗布層が積層され、かつ表面層Bの表面上に平滑化塗布層が積層されてなり、平滑化塗布層が特定の領域表面平均粗さ(Sa)及び最大突起高さ(P)を有する、セラミックシート製造用離型フィルムが開示されている。 For example, Patent Document 1 uses a biaxially oriented polyester film composed of two or more layers as a base material, and the base material has a surface layer A containing substantially no particles and a surface layer B containing particles. , The release coating layer is laminated on the surface of the surface layer A, and the smoothing coating layer is laminated on the surface of the surface layer B, and the smoothing coating layer has a specific region surface average roughness (Sa) and A release film for manufacturing a ceramic sheet having a maximum protrusion height (P) is disclosed.
特開2016-060158号公報Japanese Unexamined Patent Publication No. 2016-060158
 近年のセラミックコンデンサーの大容量化及び小型化に伴い、セラミックシートに対しては、より一層の薄膜化が求められている。その一方、セラミックシートの薄膜化が進めば進むほど、剥離フィルムの表面形状がセラミックシートの性能に及ぼす影響が大きくなると考えられる。例えば、剥離フィルムの剥離面に凹凸形状が存在すると、その凹凸形状がセラミックグリーンシートの形成時にセラミックグリーンシートに転写されて、セラミックグリーンシート及び焼成により得られるセラミックシートの厚さが変動し、セラミックコンデンサー製品の性能が低下する可能性がある。
 また、剥離フィルムの剥離面のみならず、剥離面の反対側の表面である搬送面の凹凸形状もセラミックシートの性能に影響を及ぼす可能性がある。剥離フィルムの搬送面には、高速搬送時のシワ抑制等を目的として突起形状を設けることが多いが、この突起形状が大きすぎる場合、剥離フィルムをロール状に巻き取って保管する際に、搬送面の突起形状が剥離面に転写されて転写痕が形成されることがある。剥離面に転写された転写痕の形状は、セラミックグリーンシート及びセラミックシートに転写され、最終製品の性能に影響を及ぼすと考えられる。
With the recent increase in capacity and miniaturization of ceramic capacitors, further thinning of ceramic sheets is required. On the other hand, as the thinning of the ceramic sheet progresses, it is considered that the surface shape of the release film has a greater influence on the performance of the ceramic sheet. For example, if an uneven shape exists on the peeling surface of the release film, the uneven shape is transferred to the ceramic green sheet when the ceramic green sheet is formed, and the thickness of the ceramic green sheet and the ceramic sheet obtained by firing fluctuates, resulting in ceramic. The performance of condenser products may deteriorate.
Further, not only the peeling surface of the peeling film but also the uneven shape of the transport surface which is the surface opposite to the peeling surface may affect the performance of the ceramic sheet. The transport surface of the release film is often provided with a protrusion shape for the purpose of suppressing wrinkles during high-speed transport, but if this protrusion shape is too large, the release film is transported when it is wound into a roll and stored. The protrusion shape of the surface may be transferred to the peeled surface to form transfer marks. The shape of the transfer marks transferred to the peeled surface is considered to be transferred to the ceramic green sheet and the ceramic sheet and affect the performance of the final product.
 本発明者らは、特許文献1に記載された技術を参考にして、セラミックグリーンシートの製造に用いる剥離フィルムについて更に検討したところ、上記の剥離層表面における転写痕の形成、及び、搬送性の課題に加えて、剥離フィルムの基材フィルムの性状によっては、剥離層形成時の塗布ムラ及び/又は異物による欠陥等の剥離層の塗布性が低下する場合があることを見出した。 The present inventors further examined the release film used for producing the ceramic green sheet with reference to the technique described in Patent Document 1, and found that the formation of transfer marks on the surface of the release layer and the transportability were improved. In addition to the problem, it has been found that depending on the properties of the base film of the release film, the coatability of the release layer such as coating unevenness at the time of forming the release layer and / or defects due to foreign matter may decrease.
 本発明は、上記実情に鑑みて、剥離層表面における転写痕の形成を抑制できるとともに、搬送性及び剥離層の塗布性に優れた剥離フィルム製造用のポリエステルフィルムを提供することを課題とする。
 また、本発明は、剥離フィルム、及び、ポリエステルフィルムの製造方法を提供することを課題とする。
In view of the above circumstances, it is an object of the present invention to provide a polyester film for producing a release film, which can suppress the formation of transfer marks on the surface of the release layer and has excellent transportability and coatability of the release layer.
Another object of the present invention is to provide a method for producing a release film and a polyester film.
 本発明者らは、上記課題について鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。 As a result of diligent studies on the above problems, the present inventors have found that the above problems can be solved by the following configuration.
〔1〕
 粒子を実質的に含有しないポリエステル基材と、上記ポリエステル基材の一方の表面上に配置された、粒子を含有する塗布層と、を備え、第1主面及び第2主面を有し、上記第1主面上に剥離層を形成して、剥離フィルムを製造するために用いられる、ポリエステルフィルムであって、上記第2主面は、上記塗布層の上記ポリエステル基材側とは反対側の表面であり、上記第2主面の最大突起高さSpが1nm以上60nm未満であり、上記第2主面の表面自由エネルギーが、25~60mJ/mである、ポリエステルフィルム。
〔2〕
 上記第2主面の突起を構成している粒子の密度D(単位:個/μm)と、上記最大突起高さSp(単位:nm)との積(D×Sp)が、20以上である、〔1〕に記載のポリエステルフィルム。
〔3〕
 上記ポリエステルフィルムの厚さが40μm以下である、〔1〕又は〔2〕に記載のポリエステルフィルム。
〔4〕
 上記塗布層が、ポリオレフィンを更に含有する、〔1〕~〔3〕のいずれかに記載のポリエステルフィルム。
〔5〕
 上記塗布層が、酸価が30mgKOH/g以下である(メタ)アクリレート樹脂を更に含有する、〔1〕~〔4〕のいずれかに記載のポリエステルフィルム。
〔6〕
 上記粒子の平均粒子径が1~130nmであり、上記塗布層の厚さが1~100nmであり、かつ、上記粒子の平均粒子径が上記塗布層の厚さよりも大きい、〔1〕~〔5〕のいずれかに記載のポリエステルフィルム。
〔7〕
 上記塗布層が、炭化水素系界面活性剤、及び、炭素数1~4のパーフルオロアルキル基を含有するフッ素系界面活性剤からなる群より選択される少なくとも1つの界面活性剤を含有する、〔1〕~〔6〕のいずれかに記載のポリエステルフィルム。
〔8〕
 直径1.5cmφの円形に相当するポリエステルフィルムの第1主面と第2主面との剥離帯電量の絶対値が0.12nC以下である、〔1〕~〔7〕のいずれかに記載のポリエステルフィルム。
〔9〕
 上記ポリエステルフィルムに対して、搬送速度30m/分、及び、搬送方向の張力100N/mの条件で搬送しながら、フィルム表面の温度が90℃となる条件にて20秒間加熱処理を行った後、上記ポリエステルフィルムに観察される筋状欠陥領域の面積の合計が、観察領域の全面積に対して40%以下である、〔1〕~〔8〕のいずれかに記載のポリエステルフィルム。
〔10〕
 上記ポリエステルフィルムの密度が、1.39~1.41g/cmである、〔1〕~〔9〕のいずれかに記載のポリエステルフィルム。
〔11〕
 上記ポリエステルフィルムの90℃における幅方向の膨張率が、上記ポリエステルフィルムの30℃における幅方向の長さに対して、-0.15~0.15%である、〔1〕~〔10〕のいずれかに記載のポリエステルフィルム。
〔12〕
 上記第2主面の面平均粗さSaが1~10nmである、〔1〕~〔11〕のいずれかに記載のポリエステルフィルム。
〔13〕
 上記第1主面の最大突起高さSpが1~60nmである、〔1〕~〔12〕のいずれかに記載のポリエステルフィルム。
〔14〕
 上記第1主面の表面自由エネルギーが50~70mJ/mである、〔1〕~〔13〕のいずれかに記載のポリエステルフィルム。
〔15〕
 上記ポリエステルフィルムの厚さのバラツキが、上記ポリエステルフィルムの平均厚さの5%以下である、〔1〕~〔14〕のいずれかに記載のポリエステルフィルム。
〔16〕
 上記剥離フィルムが、セラミックグリーンシート製造用の剥離フィルムである、〔1〕~〔15〕のいずれかに記載のポリエステルフィルム。
〔17〕
 〔1〕~〔16〕のいずれかに記載のポリエステルフィルムと、上記ポリエステルフィルムの上記第1主面に配置された剥離層と、を有する、剥離フィルム。
〔18〕
 上記剥離層の前記ポリエステルフィルム側とは反対側の表面の最大突起高さSpが1~60nmである、〔17〕に記載の剥離フィルム。
〔19〕
 上記剥離層の前記ポリエステルフィルム側とは反対側の表面の表面自由エネルギーが30mJ/m以下である、〔17〕又は〔18〕に記載の剥離フィルム。
〔20〕
 ポリエステル基材を有する未延伸ポリエステルフィルムを2軸延伸する2軸延伸工程と、
 粒子を含有する塗布層形成用組成物を用いてインラインコーティングする塗布層形成工程と、を有する、
 〔1〕~〔16〕のいずれかに記載のポリエステルフィルムの製造方法。
〔21〕
 上記2軸延伸工程により2軸延伸されたポリエステルフィルムを、240℃未満の温度で加熱して熱固定する熱固定工程と、上記熱固定工程により熱固定されたポリエステルフィルムを、上記熱固定工程よりも低い温度で加熱して熱緩和する熱緩和工程と、上記熱緩和工程により熱緩和されたポリエステルフィルムを冷却する冷却工程と、上記冷却工程において、上記熱緩和されたポリエステルフィルムを幅方向に拡張する拡張工程と、を有し、上記冷却工程における上記ポリエステルフィルムの冷却速度が、2000℃/分超4000℃/分未満である、〔20〕に記載のポリエステルフィルムの製造方法。
[1]
It comprises a polyester substrate that is substantially free of particles and a coating layer that contains particles and is disposed on one surface of the polyester substrate, and has a first main surface and a second main surface. A polyester film used for forming a release layer on the first main surface to produce a release film, wherein the second main surface is on the side opposite to the polyester base material side of the coating layer. A polyester film having a maximum protrusion height Sp of 1 nm or more and less than 60 nm of the second main surface, and a surface free energy of the second main surface of 25 to 60 mJ / m 2.
[2]
When the product (D × Sp) of the density D (unit: piece / μm 2 ) of the particles constituting the protrusions on the second main surface and the maximum protrusion height Sp (unit: nm) is 20 or more. The polyester film according to [1].
[3]
The polyester film according to [1] or [2], wherein the polyester film has a thickness of 40 μm or less.
[4]
The polyester film according to any one of [1] to [3], wherein the coating layer further contains polyolefin.
[5]
The polyester film according to any one of [1] to [4], wherein the coating layer further contains a (meth) acrylate resin having an acid value of 30 mgKOH / g or less.
[6]
The average particle size of the particles is 1 to 130 nm, the thickness of the coating layer is 1 to 100 nm, and the average particle size of the particles is larger than the thickness of the coating layer, [1] to [5]. ] The polyester film described in any of.
[7]
The coating layer contains at least one surfactant selected from the group consisting of a hydrocarbon-based surfactant and a fluorine-based surfactant containing a perfluoroalkyl group having 1 to 4 carbon atoms. 1] The polyester film according to any one of [6].
[8]
The description according to any one of [1] to [7], wherein the absolute value of the peeling charge amount between the first main surface and the second main surface of the polyester film corresponding to a circle having a diameter of 1.5 cmφ is 0.12 nC or less. Polyester film.
[9]
The polyester film was heat-treated for 20 seconds under the condition that the temperature of the film surface was 90 ° C. while transporting the polyester film under the conditions of a transport speed of 30 m / min and a tension of 100 N / m in the transport direction. The polyester film according to any one of [1] to [8], wherein the total area of the streaky defect regions observed in the polyester film is 40% or less with respect to the total area of the observation region.
[10]
The polyester film according to any one of [1] to [9], wherein the polyester film has a density of 1.39 to 1.41 g / cm 3.
[11]
[1] to [10], wherein the expansion rate of the polyester film in the width direction at 90 ° C. is −0.15 to 0.15% with respect to the length of the polyester film in the width direction at 30 ° C. The polyester film described in either.
[12]
The polyester film according to any one of [1] to [11], wherein the surface average roughness Sa of the second main surface is 1 to 10 nm.
[13]
The polyester film according to any one of [1] to [12], wherein the maximum protrusion height Sp of the first main surface is 1 to 60 nm.
[14]
The polyester film according to any one of [1] to [13], wherein the surface free energy of the first main surface is 50 to 70 mJ / m 2.
[15]
The polyester film according to any one of [1] to [14], wherein the variation in the thickness of the polyester film is 5% or less of the average thickness of the polyester film.
[16]
The polyester film according to any one of [1] to [15], wherein the release film is a release film for producing a ceramic green sheet.
[17]
A release film comprising the polyester film according to any one of [1] to [16] and a release layer arranged on the first main surface of the polyester film.
[18]
The release film according to [17], wherein the maximum protrusion height Sp of the surface of the release layer opposite to the polyester film side is 1 to 60 nm.
[19]
The release film according to [17] or [18], wherein the surface free energy of the surface of the release layer opposite to the polyester film side is 30 mJ / m 2 or less.
[20]
A biaxial stretching step of biaxially stretching an unstretched polyester film having a polyester base material,
It comprises a coating layer forming step of in-line coating using a coating layer forming composition containing particles.
The method for producing a polyester film according to any one of [1] to [16].
[21]
The heat fixing step of heating the polyester film biaxially stretched by the biaxial stretching step at a temperature of less than 240 ° C. and heat-fixing the polyester film heat-fixed by the heat fixing step is performed from the heat fixing step. In the heat relaxation step of heating at a low temperature to relax the heat, the cooling step of cooling the polyester film heat-relaxed by the heat relaxation step, and the cooling step, the heat-relaxed polyester film is expanded in the width direction. The method for producing a polyester film according to [20], wherein the polyester film has a cooling rate of more than 2000 ° C./min and less than 4000 ° C./min in the cooling step.
 本発明によれば、剥離層表面における転写痕の形成を抑制できるとともに、搬送性及び剥離層の塗布性に優れた剥離フィルム製造用のポリエステルフィルムを提供することができる。
 また、本発明によれば、剥離フィルム、及び、ポリエステルフィルムの製造方法を提供することができる。
According to the present invention, it is possible to provide a polyester film for producing a release film, which can suppress the formation of transfer marks on the surface of the release layer and has excellent transportability and coatability of the release layer.
Further, according to the present invention, it is possible to provide a release film and a method for producing a polyester film.
本開示に係るポリエステルフィルムの構成の一例を示す断面図である。It is sectional drawing which shows an example of the structure of the polyester film which concerns on this disclosure. 筋状欠陥領域が発生したポリエステルフィルムの観察画像である。It is an observation image of a polyester film in which a streak defect region was generated. ポリエステルフィルムの製造に用いられる延伸機の一例を示す平面図である。It is a top view which shows an example of the stretching machine used for manufacturing a polyester film.
 以下、本発明の実施形態について詳細に説明する。なお、本発明は、以下の実施形態に何ら制限されず、本発明の目的の範囲内において、適宜変更を加えて実施することができる。 Hereinafter, embodiments of the present invention will be described in detail. The present invention is not limited to the following embodiments, and can be carried out with appropriate modifications within the scope of the object of the present invention.
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。本開示に段階的に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示に記載されている数値範囲において、ある数値範囲で記載された上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 本開示において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
 本開示において、「工程」との用語には、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
 本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
In the present disclosure, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value. In the numerical range described stepwise in the present disclosure, the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. Further, in the numerical range described in the present disclosure, the upper limit value or the lower limit value described in a certain numerical range may be replaced with the value shown in the examples.
In the present disclosure, the amount of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified. ..
In the present disclosure, the term "process" is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes. ..
In the present disclosure, "% by mass" and "% by weight" are synonymous, and "parts by mass" and "parts by weight" are synonymous.
In the present disclosure, a combination of two or more preferred embodiments is a more preferred embodiment.
 本開示において、単なる「ポリエステルフィルム」との記載は、ポリエステル基材単体、並びに、ポリエステル基材及び塗布層の積層体の両者を包含する。
 本開示において、「長手方向」とは、ポリエステルフィルムの製造時におけるポリエステルフィルムの長尺方向を意味し、「搬送方向」及び「機械方向」と同義である。
 本開示において、「幅方向」とは、長手方向に直交する方向を意味する。本開示において、「直交」は、厳密な直交に限られず、略直交を含む。「略直交」とは、90°±5°で交わることを意味し、90°±3°で交わることが好ましく、90°±1°で交わることがより好ましい。
 また、本開示において、「フィルム幅」とは、ポリエステルフィルムの幅方向の両端間の距離を意味する。
In the present disclosure, the description of a mere "polyester film" includes both a polyester base material alone and a laminate of a polyester base material and a coating layer.
In the present disclosure, the "longitudinal direction" means the long direction of the polyester film at the time of manufacturing the polyester film, and is synonymous with the "transport direction" and the "mechanical direction".
In the present disclosure, the "width direction" means a direction orthogonal to the longitudinal direction. In the present disclosure, "orthogonal" is not limited to strict orthogonality, but includes substantially orthogonality. “Approximately orthogonal” means intersecting at 90 ° ± 5 °, preferably 90 ° ± 3 °, and more preferably 90 ° ± 1 °.
Further, in the present disclosure, the "film width" means the distance between both ends of the polyester film in the width direction.
[ポリエステルフィルム]
 本開示に係るポリエステルフィルム(以下、「本フィルム」とも記載する。)は、ポリエステル基材と、ポリエステル基材の一方の表面上に配置された、粒子を含有する塗布層(以下、「特定塗布層」とも記載する。)とを備え、第1主面及び第2主面を有し、第1主面上に剥離層を形成して剥離フィルムを製造するために用いられる、ポリエステルフィルムである。
 また、本フィルムにおいて、第2主面は、特定塗布層のポリエステル基材側とは反対側の表面であり、第2主面の最大突起高さSpが1nm以上60nm未満であり、第2主面の表面自由エネルギーが、25~60mJ/mである。
[Polyester film]
The polyester film according to the present disclosure (hereinafter, also referred to as “this film”) is a coating layer containing particles (hereinafter, “specific coating” arranged on one surface of a polyester base material and a polyester base material). A polyester film having a first main surface and a second main surface, and used for forming a release layer on the first main surface to produce a release film. ..
Further, in this film, the second main surface is the surface opposite to the polyester base material side of the specific coating layer, and the maximum protrusion height Sp of the second main surface is 1 nm or more and less than 60 nm, and the second main surface. The surface free energy of the surface is 25 to 60 mJ / m 2 .
〔構成〕
 本フィルムの構成を、図面を参照しながら説明する。
 図1は、本フィルムの構成の一例を示す断面図である。ポリエステルフィルム1は、ポリエステル基材2と、ポリエステル基材2の一方の表面上に配置された特定塗布層3とを備え、第1主面1a及び第2主面1bを有する。
 特定塗布層3が、図示しない粒子を含有する一方、ポリエステル基材2は、粒子を実質的に含有しない。
〔composition〕
The structure of this film will be described with reference to the drawings.
FIG. 1 is a cross-sectional view showing an example of the configuration of this film. The polyester film 1 includes a polyester base material 2 and a specific coating layer 3 arranged on one surface of the polyester base material 2, and has a first main surface 1a and a second main surface 1b.
The specific coating layer 3 contains particles (not shown), while the polyester substrate 2 contains substantially no particles.
 ポリエステルフィルム1が有する第1主面1aは、剥離層を形成するための面である。即ち、ポリエステルフィルム1の製造後、第1主面1a上に剥離層を積層することにより、ポリエステルフィルム1と剥離層とを有する剥離フィルムが作製される。
 ポリエステルフィルム1が有する第2主面1bは、特定塗布層3のポリエステル基材2に対向する面とは反対側の表面である。即ち、特定塗布層3は、ポリエステルフィルム1の最外層である。
 このポリエステルフィルム1の第2主面1bは、上記の特定の最大突起高さSpと、特定の表面自由エネルギーとを有する。
The first main surface 1a of the polyester film 1 is a surface for forming a release layer. That is, after the polyester film 1 is manufactured, the release film having the polyester film 1 and the release layer is produced by laminating the release layer on the first main surface 1a.
The second main surface 1b of the polyester film 1 is a surface of the specific coating layer 3 opposite to the surface facing the polyester base material 2. That is, the specific coating layer 3 is the outermost layer of the polyester film 1.
The second main surface 1b of the polyester film 1 has the above-mentioned specific maximum protrusion height Sp and a specific surface free energy.
 本フィルムは、上記の構成を有することにより、剥離層表面における転写痕の形成を抑制できるとともに、搬送性に優れ、且つ、剥離層の塗布性に優れるという効果(以下、これらの効果の少なくとも1つを「本発明の効果」ともいう。)を奏するものとなる。
 本フィルムが上記の本発明の効果を奏する理由は明らかではないが、以下のように推察される。
 本フィルムの第1主面上に剥離層を形成して剥離フィルムを作製すると、本フィルムの第2主面が剥離層とは反対側の表面である搬送面に相当する。上記の通り、搬送面(第2主面)に突起形状を設けることにより搬送性が向上する一方、突起形状が大き過ぎると、剥離フィルムのロール保管時等において、剥離層に転写痕が形成されてしまう問題がある。
 それに対して、本開示に係るポリエステルフィルムでは、剥離フィルムの搬送面となるポリエステルフィルムの第2主面の突起(最大突起高さSp)を小さく抑えることで、転写痕の形成を抑制でき、且つ、第2主面の表面自由エネルギーを低く抑えることで、突起を小さくすることにより低下した搬送性を向上させることができる。
 一方、第2主面の最大突起高さSpを小さくしすぎると、搬送性が著しく低下し、搬送時にシワが発生して、第1主面上に形成される剥離層に厚みムラが生じる可能性がある。また、第2主面の表面自由エネルギーを小さくしすぎると、ポリエステルフィルムが帯電し易くなり、第1主面及び第2主面に異物が付着して、剥離層形成用組成物の塗布膜に塗布欠陥が生じる可能性がある。それに対して、第2主面の最大突起高さSp及び表面自由エネルギーのそれぞれを特定の下限値以上とすることにより、剥離層の厚みムラ及び/又は塗布欠陥を低減し、剥離層の塗布性が向上したものと推察される。
 また、本フィルムでは、粒子を実質的に含有しないポリエステル基材と、粒子を含有する塗布層とを備える構成とすることにより、フィルムの平滑性が向上するため、剥離層表面における転写痕の形成抑制と搬送性とがともにバランス良く優れるものになると考えられる。
By having the above-mentioned structure, this film has an effect that the formation of transfer marks on the surface of the release layer can be suppressed, the transportability is excellent, and the coatability of the release layer is excellent (hereinafter, at least one of these effects). This is also referred to as "the effect of the present invention").
The reason why this film exerts the above-mentioned effect of the present invention is not clear, but it is presumed as follows.
When a release layer is formed on the first main surface of this film to produce a release film, the second main surface of this film corresponds to a transport surface which is a surface opposite to the release layer. As described above, the transportability is improved by providing the protrusion shape on the transport surface (second main surface), but if the protrusion shape is too large, transfer marks are formed on the release layer when the release film is stored in a roll. There is a problem that it ends up.
On the other hand, in the polyester film according to the present disclosure, the formation of transfer marks can be suppressed by suppressing the protrusions (maximum protrusion height Sp) of the second main surface of the polyester film, which is the transport surface of the release film, to be small. By keeping the surface free energy of the second main surface low, it is possible to improve the reduced transportability by making the protrusions smaller.
On the other hand, if the maximum protrusion height Sp of the second main surface is made too small, the transportability is significantly reduced, wrinkles are generated during transport, and the peeling layer formed on the first main surface may have uneven thickness. There is sex. Further, if the surface free energy of the second main surface is made too small, the polyester film is likely to be charged, and foreign matter adheres to the first main surface and the second main surface to form a coating film of the composition for forming a release layer. Coating defects may occur. On the other hand, by setting each of the maximum protrusion height Sp and the surface free energy of the second main surface to a specific lower limit value or more, the thickness unevenness and / or the coating defect of the peeling layer is reduced, and the coating property of the peeling layer is reduced. Is presumed to have improved.
Further, in this film, the smoothness of the film is improved by providing the polyester base material substantially free of particles and the coating layer containing particles, so that transfer marks are formed on the surface of the release layer. It is considered that both suppression and transportability are well-balanced and excellent.
 本フィルムは、上記のポリエステル基材と特定塗布層とを有し、第2主面の最大突起高さSp及び表面自由エネルギーがそれぞれ上記の範囲に特定されたものであれば、その具体的な態様は特に制限されず、図1に示す構成以外の態様を有していてもよい。
 例えば、図1に示す構成では、ポリエステルフィルム1の第1主面1aは、ポリエステル基材2の特定塗布層3側とは反対側の表面であるが、ポリエステル基材の特定塗布層側とは反対側の表面上には、片側の表面が第1主面1aである他の層が配置されていてもよい。
 また、図1に示す構成では、特定塗布層3は、ポリエステル基材2の表面に接して配置されているが、特定塗布層とポリエステル基材との間にプライマー層等を設けてもよい。
This film has the above polyester base material and the specific coating layer, and if the maximum protrusion height Sp and the surface free energy of the second main surface are specified in the above ranges, the specifics thereof. The embodiment is not particularly limited, and may have an embodiment other than the configuration shown in FIG.
For example, in the configuration shown in FIG. 1, the first main surface 1a of the polyester film 1 is a surface opposite to the specific coating layer 3 side of the polyester base material 2, but is different from the specific coating layer side of the polyester base material. On the opposite surface, another layer may be arranged in which one surface is the first main surface 1a.
Further, in the configuration shown in FIG. 1, the specific coating layer 3 is arranged in contact with the surface of the polyester base material 2, but a primer layer or the like may be provided between the specific coating layer and the polyester base material.
 以下、本フィルムが備える各層について詳しく説明する。 Hereinafter, each layer of this film will be described in detail.
<ポリエステル基材>
 ポリエステル基材は、主たる重合体成分としてポリエステルを含有するフィルム状の物体である。ここで、「主たる重合体成分」とは、フィルムに含まれる全ての重合体のうち最も含有量(質量)が多い重合体を意味する。
 ポリエステル基材は、1種単独のポリエステルを含有していてもよく、2種以上のポリエステルを含有していてもよい。
<Polyester base material>
The polyester base material is a film-like object containing polyester as a main polymer component. Here, the "main polymer component" means the polymer having the highest content (mass) among all the polymers contained in the film.
The polyester base material may contain one kind of polyester alone or may contain two or more kinds of polyesters.
(ポリエステル)
 ポリエステルは、主鎖にエステル結合を有する重合体である。ポリエステルは、通常、後述するジカルボン酸化合物とジオール化合物とを重縮合させることにより形成される。
 ポリエステルとしては特に制限されず、公知のポリエステルを利用できる。ポリエステルとしては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレン-2,6-ナフタレート(PEN)、ポリプロピレンテレフタレート(PPT)、ポリブチレンテレフタレート(PBT)及びそれらの共重合体が挙げられる。なかでも、ポリエチレンテレフタレート(PET)、ポリエチレン-2,6-ナフタレート(PEN)、及びそれらの共重合体からなる群より選択されるポリエステルが好ましく、PETがより好ましい。
(polyester)
Polyester is a polymer having an ester bond in the main chain. Polyester is usually formed by polycondensing a dicarboxylic acid compound and a diol compound, which will be described later.
The polyester is not particularly limited, and known polyesters can be used. Examples of the polyester include polyethylene terephthalate (PET), polyethylene-2,6-naphthalate (PEN), polypropylene terephthalate (PPT), polybutylene terephthalate (PBT) and copolymers thereof. Among them, polyester selected from the group consisting of polyethylene terephthalate (PET), polyethylene-2,6-naphthalate (PEN), and copolymers thereof is preferable, and PET is more preferable.
 ポリエステルの固有粘度は、0.50dl/g以上0.80dl/g未満が好ましく、0.55dl/g以上0.70dl/g未満がより好ましい。
 ポリエステルの融点(Tm)は、220~270℃が好ましく、245~265℃がより好ましい。
 ポリエステルのガラス転移温度(Tg)は、65~90℃が好ましく、70~85℃がより好ましい。
The intrinsic viscosity of the polyester is preferably 0.50 dl / g or more and less than 0.80 dl / g, and more preferably 0.55 dl / g or more and less than 0.70 dl / g.
The melting point (Tm) of the polyester is preferably 220 to 270 ° C, more preferably 245 to 265 ° C.
The glass transition temperature (Tg) of polyester is preferably 65 to 90 ° C, more preferably 70 to 85 ° C.
 ポリエステルの製造方法は特に制限されず、公知の方法を利用できる。例えば、触媒存在下で、少なくとも1種のジカルボン酸化合物と、少なくとも1種のジオール化合物とを重縮合させることによりポリエステルを製造できる。 The method for producing polyester is not particularly limited, and a known method can be used. For example, polyester can be produced by polycondensing at least one dicarboxylic acid compound and at least one diol compound in the presence of a catalyst.
-触媒-
 ポリエステルの製造に使用する触媒は、特に制限されず、ポリエステルの合成に使用可能な公知の触媒を利用できる。
 触媒としては、例えば、アルカリ金属化合物(例えば、カリウム化合物、ナトリウム化合物)、アルカリ土類金属化合物(例えば、カルシウム化合物、マグネシウム化合物)、亜鉛化合物、鉛化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、ゲルマニウム化合物、及びリン化合物が挙げられる。中でも、触媒活性、及びコストの観点から、チタン化合物が好ましい。
 触媒は、1種のみ用いてもよく、2種以上を併用してもよい。カリウム化合物、ナトリウム化合物、カルシウム化合物、マグネシウム化合物、亜鉛化合物、鉛化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、及びゲルマニウム化合物から選択される少なくとも1種の金属触媒と、リン化合物とを併用することが好ましく、チタン化合物とリン化合物を併用することがより好ましい。
-catalyst-
The catalyst used for producing the polyester is not particularly limited, and a known catalyst that can be used for synthesizing the polyester can be used.
Examples of the catalyst include alkali metal compounds (for example, potassium compounds and sodium compounds), alkaline earth metal compounds (for example, calcium compounds and magnesium compounds), zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, and antimony compounds. Examples include compounds, titanium compounds, germanium compounds, and phosphorus compounds. Of these, titanium compounds are preferable from the viewpoint of catalytic activity and cost.
Only one type of catalyst may be used, or two or more types may be used in combination. At least one metal catalyst selected from potassium compounds, sodium compounds, calcium compounds, magnesium compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, and germanium compounds, and phosphorus compounds. It is preferable to use in combination with, and it is more preferable to use a titanium compound and a phosphorus compound in combination.
 チタン化合物としては、有機キレートチタン錯体が好ましい。有機キレートチタン錯体は、配位子として有機酸を有するチタン化合物である。
 有機酸としては、例えば、クエン酸、乳酸、トリメリット酸、及びリンゴ酸が挙げられる。
 チタン化合物としては、特許第5575671号公報の段落0049~段落0053に記載されたチタン化合物も利用でき、上記公報の記載内容は、本明細書に組み込まれる。
As the titanium compound, an organic chelated titanium complex is preferable. The organic chelated titanium complex is a titanium compound having an organic acid as a ligand.
Examples of the organic acid include citric acid, lactic acid, trimellitic acid, and malic acid.
As the titanium compound, the titanium compounds described in paragraphs 0049 to 0053 of Japanese Patent No. 5575671 can also be used, and the contents of the above publication are incorporated in the present specification.
-ジカルボン酸化合物-
 ジカルボン酸化合物としては、例えば、脂肪族ジカルボン酸化合物、脂環式ジカルボン酸化合物、及び、芳香族ジカルボン酸化合物等のジカルボン酸、並びに、それらジカルボン酸のメチルエステル化合物及びエチルエステル化合物等のジカルボン酸エステルが挙げられる。中でも、芳香族ジカルボン酸、又は、芳香族ジカルボン酸メチルが好ましい。
-Dicarboxylic acid compound-
Examples of the dicarboxylic acid compound include dicarboxylic acids such as aliphatic dicarboxylic acid compounds, alicyclic dicarboxylic acid compounds, and aromatic dicarboxylic acid compounds, and dicarboxylic acids such as methyl ester compounds and ethyl ester compounds of the dicarboxylic acids. Esther can be mentioned. Of these, aromatic dicarboxylic acid or methyl aromatic dicarboxylic acid is preferable.
 脂肪族ジカルボン酸化合物としては、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸、及びエチルマロン酸が挙げられる。
 脂環式ジカルボン酸化合物としては、例えば、アダマンタンジカルボン酸、ノルボルネンジカルボン酸、シクロヘキサンジカルボン酸、及びデカリンジカルボン酸が挙げられる。
Examples of the aliphatic dicarboxylic acid compound include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecandionic acid, dimer acid, eicosandionic acid, pimelic acid, azelaic acid, and methylmalonic acid. And ethylmalonic acid.
Examples of the alicyclic dicarboxylic acid compound include adamantandicarboxylic acid, norbornenedicarboxylic acid, cyclohexanedicarboxylic acid, and decalindicarboxylic acid.
 芳香族ジカルボン酸化合物としては、例えば、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、フェニルインダンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸、9,9’-ビス(4-カルボキシフェニル)フルオレン酸、及び、それらのメチルエステル体が挙げられる。
 中でも、テレフタル酸又は2,6-ナフタレンジカルボン酸が好ましく、テレフタル酸がより好ましい。
Examples of the aromatic dicarboxylic acid compound include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 1,8-naphthalenedicarboxylic acid. , 4,4'-diphenyldicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, 5-sodium sulfoisophthalic acid, phenylindandicarboxylic acid, anthracendicarboxylic acid, phenanthrangecarboxylic acid, 9,9'-bis (4-carboxyphenyl) ) Dicarboxylic acids and their methyl ester forms are mentioned.
Of these, terephthalic acid or 2,6-naphthalenedicarboxylic acid is preferable, and terephthalic acid is more preferable.
 ジカルボン酸化合物は1種のみ用いてもよく、2種以上を併用してもよい。ジカルボン酸化合物として、テレフタル酸を使用する場合、テレフタル酸単独で用いてもよく、イソフタル酸等の他の芳香族ジカルボン酸又は脂肪族ジカルボン酸と共重合してもよい。 Only one type of dicarboxylic acid compound may be used, or two or more types may be used in combination. When terephthalic acid is used as the dicarboxylic acid compound, terephthalic acid may be used alone, or it may be copolymerized with another aromatic dicarboxylic acid such as isophthalic acid or an aliphatic dicarboxylic acid.
-ジオール化合物-
 ジオール化合物としては、例えば、脂肪族ジオール化合物、脂環式ジオール化合物、及び芳香族ジオール化合物が挙げられ、脂肪族ジオール化合物が好ましい。
-Diol compound-
Examples of the diol compound include an aliphatic diol compound, an alicyclic diol compound, and an aromatic diol compound, and an aliphatic diol compound is preferable.
 脂肪族ジオール化合物としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール、及び、ネオペンチルグリコールが挙げられ、エチレングリコールが好ましい。
 脂環式ジオール化合物としては、例えば、シクロヘキサンジメタノール、スピログリコール、及びイソソルビドが挙げられる。
 芳香族ジオール化合物としては、例えば、ビスフェノールA、1,3―ベンゼンジメタノール,1,4-ベンゼンジメタノール、及び9,9’-ビス(4-ヒドロキシフェニル)フルオレンが挙げられる。
 ジオール化合物は、1種のみ用いてもよく、2種以上を併用してもよい。
Examples of the aliphatic diol compound include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, and neo. Examples include pentyl glycol, preferably ethylene glycol.
Examples of the alicyclic diol compound include cyclohexanedimethanol, spiroglycol, and isosorbide.
Examples of the aromatic diol compound include bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, and 9,9'-bis (4-hydroxyphenyl) fluorene.
Only one kind of diol compound may be used, or two or more kinds may be used in combination.
-末端封止剤-
 ポリエステルの製造においては、必要に応じて、末端封止剤を用いてもよい。末端封止剤を用いることで、ポリエステルの末端に末端封止剤に由来する構造が導入される。
 末端封止剤としては、制限されず、公知の末端封止剤を利用できる。末端封止剤としては、例えば、オキサゾリン系化合物、カルボジイミド化合物、及びエポキシ化合物が挙げられる。
 末端封止剤としては、特開2014-189002号公報の段落0055~段落0064に記載の内容も参照でき、上記公報の内容は、本明細書に組み込まれる。
-End sealant-
In the production of polyester, an end-capping agent may be used if necessary. By using the end sealant, a structure derived from the end sealant is introduced into the end of the polyester.
As the terminal encapsulant, a known end encapsulant can be used without limitation. Examples of the terminal encapsulant include oxazoline compounds, carbodiimide compounds, and epoxy compounds.
As the terminal encapsulant, the contents described in paragraphs 0055 to 0064 of JP-A-2014-189002 can also be referred to, and the contents of the above-mentioned publication are incorporated in the present specification.
-製造条件-
 反応温度は、制限されず、原材料に応じて適宜設定すればよい。反応温度は、260~300℃が好ましく、275~285℃がより好ましい。
 圧力は、制限されず、原材料に応じて適宜設定すればよい。圧力は、1.33×10-3~1.33×10-5MPaが好ましく、6.67×10-4~6.67×10-5MPaがより好ましい。
-Manufacturing conditions-
The reaction temperature is not limited and may be appropriately set according to the raw material. The reaction temperature is preferably 260 to 300 ° C, more preferably 275 to 285 ° C.
The pressure is not limited and may be set appropriately according to the raw material. The pressure is preferably 1.33 × 10 -3 to 1.33 × 10 -5 MPa, more preferably 6.67 × 10 -4 to 6.67 × 10 -5 MPa.
 ポリエステルの合成方法としては、特許第5575671号公報の段落0033~段落0070に記載された方法も利用でき、上記公報の内容は、本明細書に組み込まれる。 As a method for synthesizing polyester, the methods described in paragraphs 0033 to 0070 of Japanese Patent No. 5575671 can also be used, and the contents of the above publication are incorporated in the present specification.
 ポリエステル基材におけるポリエステルの含有量は、ポリエステル基材中の重合体の全質量に対して、85質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましく、98質量%以上が特に好ましい。
 ポリエステルの含有量の上限は、制限されず、ポリエステル基材中の重合体の全質量に対して、100質量%以下の範囲で適宜設定できる。
The polyester content in the polyester base material is preferably 85% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, still more preferably 98% by mass, based on the total mass of the polymer in the polyester base material. The above is particularly preferable.
The upper limit of the polyester content is not limited and can be appropriately set within a range of 100% by mass or less with respect to the total mass of the polymer in the polyester substrate.
 ポリエステル基材がポリエチレンテレフタレートを含有する場合、ポリエチレンテレフタレートの含有量は、ポリエステル基材中のポリエステルの全質量に対して、90~100質量%が好ましく、95~100質量%がより好ましく、98~100質量%が更に好ましく、100質量%が特に好ましい。 When the polyester base material contains polyethylene terephthalate, the content of polyethylene terephthalate is preferably 90 to 100% by mass, more preferably 95 to 100% by mass, and 98 to 90 to the total mass of the polyester in the polyester base material. 100% by mass is more preferable, and 100% by mass is particularly preferable.
 ポリエステル基材は、ポリエステル以外の成分(例えば、触媒、未反応の原料成分、粒子、及び、水等)を含有してもよい。
 ポリエステル基材は、粒子を実質的に含有しない。粒子としては、例えば、後述する特定塗布層が含有する粒子が挙げられる。なお「粒子を実質的に含有しない」とは、ポリエステル基材について、蛍光X線分析で粒子に由来する元素を定量分析した際に、粒子の含有量がポリエステル基材の全質量に対して50質量ppm以下であることで定義され、好ましくは10質量ppm以下であり、より好ましくは検出限界以下である。これは積極的に粒子をポリエステル基材中に添加させなくても、外来異物由来のコンタミ成分、原料樹脂、又は、ポリエステル基材の製造工程におけるラインもしくは装置に付着した汚れが剥離して、ポリエステル基材中に混入する場合があるためである。
The polyester substrate may contain components other than polyester (eg, catalyst, unreacted raw material components, particles, water, etc.).
The polyester substrate is substantially free of particles. Examples of the particles include particles contained in the specific coating layer described later. The phrase "substantially free of particles" means that the content of particles is 50 with respect to the total mass of the polyester substrate when the elements derived from the particles are quantitatively analyzed by fluorescent X-ray analysis. It is defined as having a mass of ppm or less, preferably 10% by mass or less, and more preferably not more than the detection limit. This means that even if the particles are not actively added to the polyester base material, the contamination component derived from foreign matter, the raw material resin, or the dirt adhering to the line or device in the manufacturing process of the polyester base material is peeled off, and the polyester is polyester. This is because it may be mixed in the base material.
 ポリエステル基材の厚さは、剥離性を制御できる点で、100μm以下が好ましく、50μm以下がより好ましく、40μm以下が更に好ましい。厚さの下限は特に制限されないが、強度が向上し、加工性が向上する点で、3μm以上が好ましく、4μm以上がより好ましく、10μm以上が更に好ましい。
 ポリエステル基材の厚さは、後述するポリエステルフィルムの厚さの測定方法に従って、測定される。
The thickness of the polyester base material is preferably 100 μm or less, more preferably 50 μm or less, still more preferably 40 μm or less, in that the peelability can be controlled. The lower limit of the thickness is not particularly limited, but 3 μm or more is preferable, 4 μm or more is more preferable, and 10 μm or more is further preferable, in terms of improving the strength and the workability.
The thickness of the polyester base material is measured according to the method for measuring the thickness of the polyester film described later.
<特定塗布層>
 特定塗布層は、粒子を含有する層であり、ポリエステル基材の一方の表面に形成される。また、特定塗布層のポリエステル基材に対向する面とは反対側の表面は、第2主面を構成する。
 本フィルムは、特定塗布層を有することで、ポリエステルフィルム及び剥離フィルムの搬送性を向上できる。より具体的には、巻き品質を向上(ブロッキングを抑制)し、搬送時のキズ及び欠陥の発生を抑制し、高速搬送における搬送シワを低減できる。
<Specific coating layer>
The specific coating layer is a layer containing particles and is formed on one surface of a polyester base material. Further, the surface of the specific coating layer opposite to the surface facing the polyester base material constitutes the second main surface.
By having a specific coating layer, this film can improve the transportability of the polyester film and the release film. More specifically, it is possible to improve the winding quality (suppress blocking), suppress the occurrence of scratches and defects during transport, and reduce transport wrinkles during high-speed transport.
 特定塗布層は、ポリエステル基材の表面に直接設けてもよく、他の層を介してポリエステル基材の表面に設けてもよいが、密着性がより優れる点で、ポリエステル基材の表面に直接設けることが好ましい。即ち、特定塗布層の第1主面側の表面は、ポリエステル基材と接していることが好ましい。 The specific coating layer may be provided directly on the surface of the polyester base material or may be provided on the surface of the polyester base material via another layer, but the specific coating layer may be provided directly on the surface of the polyester base material in terms of better adhesion. It is preferable to provide it. That is, it is preferable that the surface of the specific coating layer on the first main surface side is in contact with the polyester base material.
 特定塗布層としては、粒子を含有し、第2主面が特定の最大突起高さSp及び表面自由エネルギーを有するものであれば特に制限されないが、粒子に加えてバインダーを含有することが好ましい。また、特定塗布層は、粒子及びバインダー以外の添加剤を含有していてもよい。 The specific coating layer is not particularly limited as long as it contains particles and the second main surface has a specific maximum protrusion height Sp and surface free energy, but it is preferable to contain a binder in addition to the particles. Further, the specific coating layer may contain additives other than particles and a binder.
(粒子)
 特定塗布層に含有される粒子の平均粒子径は、特に制限されず、1~250nmが好ましく、搬送性がより優れる点及び転写痕が抑制できる点で、10~200nmがより好ましく、30~130nmが更に好ましい。
 また、搬送性がより優れる点及び転写痕が抑制できる点で、特定塗布層に含有される粒子の平均粒子径が10~250nm(より好ましくは30~130nm)であり、特定塗布層の厚さが1~200nm(より好ましくは10~100nm)であり、かつ、粒子の平均粒子径が特定塗布層の厚さよりも大きいことが好ましい。
(particle)
The average particle size of the particles contained in the specific coating layer is not particularly limited, and is preferably 1 to 250 nm, more preferably 10 to 200 nm, and more preferably 30 to 130 nm in terms of better transportability and suppression of transfer marks. Is more preferable.
Further, the average particle diameter of the particles contained in the specific coating layer is 10 to 250 nm (more preferably 30 to 130 nm) in terms of better transportability and suppression of transfer marks, and the thickness of the specific coating layer. Is 1 to 200 nm (more preferably 10 to 100 nm), and the average particle size of the particles is preferably larger than the thickness of the specific coating layer.
 特定塗布層が含有する粒子としては、1種単独で用いてもよく、2種以上の粒子を用いてもよい。
 特定塗布層が、粒子径の異なる2種以上の粒子を含有する場合、特定塗布層は、平均粒子径が上記範囲内にある粒子を少なくとも1種含有することが好ましく、粒子径の異なる2種以上の粒子がいずれも平均粒子径が上記範囲内にある粒子であることがより好ましい。
As the particles contained in the specific coating layer, one type of particles may be used alone, or two or more types of particles may be used.
When the specific coating layer contains two or more kinds of particles having different particle diameters, the specific coating layer preferably contains at least one kind of particles having an average particle diameter within the above range, and two kinds having different particle diameters. It is more preferable that all of the above particles are particles having an average particle diameter within the above range.
 特定塗布層に含まれる粒子の平均粒子径は、走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いて、下記の方法により求められる。即ち、ポリエステルフィルムの第2主面を、SEMを用いて20000倍の拡大倍率で観察する。任意に選択された10の視野について観察を行い、各視野において突起として識別可能な粒子(ベース面から突出した突起として視認可能な粒子)について、画像ソフトウエアを用いて個々の粒子の面積を測定し、同一面積を有する円の直径(面積円相当径)を算出する。得られる面積円相当径の算術平均値を粒子の平均粒子径とする。このとき、ゴミ及び/又は1μm以上の粗大凝集粒子が存在する場合であっても、ゴミ及び粗大凝集粒子は平均粒子径を算出する際にカウントしない。
 なお、平均粒子径の測定において、凝集粒子については、凝集した状態の2次粒子の粒子径(2次粒子径)を測定するものとする。
 また、特定塗布層が、粒子径の異なる2種以上の粒子を含有する場合、上記の測定方法で測定される面積円相当径の分布には、粒子径の異なる2以上のピークが見られる。このように、上記の測定方法で測定される面積円相当径の分布が、粒子径の異なる2以上のピークを有している場合、それぞれのピークごとに面積円相当径の平均値を算出して、粒子径の異なるそれぞれの粒子について、平均粒子径を算出するものとする。
The average particle size of the particles contained in the specific coating layer is determined by the following method using a scanning electron microscope (SEM). That is, the second main surface of the polyester film is observed at a magnification of 20000 times using SEM. Observation is performed on 10 arbitrarily selected fields of view, and the area of each particle is measured using image software for particles that can be identified as protrusions in each field of view (particles that are visible as protrusions protruding from the base surface). Then, the diameter of a circle having the same area (diameter equivalent to the area circle) is calculated. The arithmetic mean value of the obtained area circle equivalent diameter is defined as the average particle diameter of the particles. At this time, even if dust and / or coarse agglomerated particles of 1 μm or more are present, the dust and coarse agglomerated particles are not counted when calculating the average particle size.
In the measurement of the average particle size, for the agglomerated particles, the particle size (secondary particle size) of the secondary particles in the agglomerated state shall be measured.
Further, when the specific coating layer contains two or more kinds of particles having different particle diameters, two or more peaks having different particle diameters can be seen in the distribution of the area equivalent circle diameter measured by the above measuring method. In this way, when the distribution of the area circle equivalent diameter measured by the above measurement method has two or more peaks with different particle diameters, the average value of the area circle equivalent diameter is calculated for each peak. Therefore, the average particle size shall be calculated for each particle with a different particle size.
 特定塗布層が含有する粒子としては、例えば、有機粒子、及び無機粒子が挙げられる。中でも、フィルム巻き品質、ヘイズ、及び耐久性(例えば、熱安定性)がより向上する観点から、無機粒子が好ましい。
 有機粒子としては、樹脂粒子が好ましい。樹脂粒子を構成する樹脂としては、例えば、ポリメタクリル酸メチル樹脂(PMMA)等のアクリル樹脂、ポリエステル樹脂、シリコーン樹脂、及び、スチレン-アクリル樹脂が挙げられる。樹脂粒子は、架橋構造を有することが好ましい。架橋構造を有する樹脂粒子としては、例えば、ジビニルベンゼン架橋粒子が挙げられる。
 無機粒子としては、例えば、シリカ粒子(二酸化ケイ素粒子、コロイダルシリカ)、チタニア粒子(酸化チタン粒子)、炭酸カルシウム、硫酸バリウム、及び、アルミナ粒子(酸化アルミニウム粒子)が挙げられる。上記の中でも、無機粒子は、ヘイズ、及び、耐久性がより向上する観点から、シリカ粒子であることが好ましい。
Examples of the particles contained in the specific coating layer include organic particles and inorganic particles. Among them, inorganic particles are preferable from the viewpoint of further improving film winding quality, haze, and durability (for example, thermal stability).
As the organic particles, resin particles are preferable. Examples of the resin constituting the resin particles include acrylic resin such as polymethyl methacrylate resin (PMMA), polyester resin, silicone resin, and styrene-acrylic resin. The resin particles preferably have a crosslinked structure. Examples of the resin particles having a crosslinked structure include divinylbenzene crosslinked particles.
Examples of the inorganic particles include silica particles (silicon dioxide particles, colloidal silica), titania particles (titanium oxide particles), calcium carbonate, barium sulfate, and alumina particles (aluminum oxide particles). Among the above, the inorganic particles are preferably silica particles from the viewpoint of further improving haze and durability.
 粒子の形状は、特に制限されず、例えば、米粒状、球形状、立方体状、紡錘形状、鱗片状、凝集状、及び、不定形状が挙げられる。凝集状とは、1次粒子が凝集した状態を意味する。凝集状にある粒子の形状は制限されないが、球状又は不定形状が好ましい。 The shape of the particles is not particularly limited, and examples thereof include rice granules, spheres, cubes, spindles, scales, agglutinates, and indefinite shapes. The aggregated state means a state in which the primary particles are aggregated. The shape of the aggregated particles is not limited, but a spherical or irregular shape is preferable.
 凝集粒子としては、ヒュームドシリカ粒子が好ましく挙げられる。入手可能な市販品としては、例えば、日本アエロジル株式会社のアエロジルシリーズが挙げられる。
 非凝集粒子としては、コロイダルシリカ粒子が好ましく挙げられる。入手可能な市販品としては、例えば、日産化学株式会社製のスノーテックスシリーズが挙げられる。
As the agglomerated particles, fumed silica particles are preferably mentioned. Examples of commercially available products include Aerosil series manufactured by Nippon Aerosil Co., Ltd.
Preferred examples of the non-aggregated particles include colloidal silica particles. Examples of commercially available products include the Snowtex series manufactured by Nissan Chemical Industries, Ltd.
 特定塗布層における粒子の含有量は、搬送性、及び、剥離層の塗布性の観点から、特定塗布層の全質量に対して、0.1~30質量%が好ましく、1~25質量%がより好ましく、1~15質量%が更に好ましい。
 また、粒子の含有量は、ポリエステルフィルムの全質量に対して、0.0001~0.01質量%が好ましく、0.0005~0.005質量%がより好ましい。
The content of the particles in the specific coating layer is preferably 0.1 to 30% by mass, preferably 1 to 25% by mass, based on the total mass of the specific coating layer from the viewpoint of transportability and coatability of the release layer. More preferably, 1 to 15% by mass is further preferable.
The content of the particles is preferably 0.0001 to 0.01% by mass, more preferably 0.0005 to 0.005% by mass, based on the total mass of the polyester film.
(バインダー)
 特定塗布層は、バインダーを含有することが好ましい。バインダーとしては、樹脂バインダーが好ましい。樹脂バインダーとしては、例えば、ポリアクリル、ポリウレタン、ポリエステル及びポリオレフィンが挙げられる。
(binder)
The specific coating layer preferably contains a binder. As the binder, a resin binder is preferable. Examples of the resin binder include polyacrylic acid, polyurethane, polyester and polyolefin.
 特定塗布層は、バインダーを含む水分散体を塗布することにより形成されることが好ましい。その点で、バインダーとしては、酸変性樹脂が好ましい。酸変性樹脂としては、(メタ)アクリレート及び(メタ)アクリル酸の共重合体、カルボキシル基を有するポリオレフィン、並びに、酸変性ポリウレタンが挙げられ、(メタ)アクリレート及び(メタ)アクリル酸の共重合体、又は、カルボキシル基を有するポリオレフィンが好ましく、カルボキシル基を有するポリオレフィンがより好ましい。
 また、バインダーは、特定塗布層の表面自由エネルギーを上記の特定の範囲に調整することが容易である点で、(メタ)アクリレート樹脂、ポリオレフィン又はポリウレタンが好ましく、(メタ)アクリレート樹脂又はポリオレフィンがより好ましく、ポリオレフィンが更に好ましい。(メタ)アクリレート樹脂、ポリオレフィン及びポリウレタンとしては、特に制限されず、公知の樹脂を利用できる。
The specific coating layer is preferably formed by coating an aqueous dispersion containing a binder. In that respect, an acid-modified resin is preferable as the binder. Examples of the acid-modified resin include a copolymer of (meth) acrylate and (meth) acrylic acid, a polyolefin having a carboxyl group, and an acid-modified polyurethane, and a copolymer of (meth) acrylate and (meth) acrylic acid. Or, a polyolefin having a carboxyl group is preferable, and a polyolefin having a carboxyl group is more preferable.
Further, the binder is preferably a (meth) acrylate resin, polyolefin or polyurethane, and more preferably a (meth) acrylate resin or polyolefin, in that the surface free energy of the specific coating layer can be easily adjusted to the above-mentioned specific range. Preferably, polyolefin is even more preferred. The (meth) acrylate resin, polyolefin and polyurethane are not particularly limited, and known resins can be used.
 ポリオレフィンは、主鎖にオレフィンに由来する構成単位を含有していればよく、主成分としてオレフィンに由来する構成単位を含有することが好ましい。主鎖にオレフィン構造を有することで、ポリエステル基材との相溶性が不十分となり、結果として、長期保管後の転写痕をより向上することができる。オレフィンとしては、特に制限されないが、炭素数2~6のアルケンが好ましく、エチレン、プロピレン、又は、ヘキセンがより好ましく、エチレンが更に好ましい。
 なお、本明細書において、ポリマーが、あるモノマーに由来する構成単位を「主成分として有する」とは、その構成単位がポリマーの全構成単位に対して50モル%以上であることを意図する。
 ポリオレフィンが有するオレフィンに由来する構成単位は、ポリオレフィンの全ての構成単位に対して、50~99モル%が好ましく、60~98%がより好ましい。
The polyolefin may contain a structural unit derived from an olefin in the main chain, and preferably contains a structural unit derived from an olefin as a main component. Having an olefin structure in the main chain results in insufficient compatibility with the polyester substrate, and as a result, transfer marks after long-term storage can be further improved. The olefin is not particularly limited, but an alkene having 2 to 6 carbon atoms is preferable, ethylene, propylene, or hexene is more preferable, and ethylene is further preferable.
In addition, in this specification, "having a constituent unit derived from a certain monomer as a main component" means that the constituent unit is 50 mol% or more with respect to all the constituent units of the polymer.
The constituent unit derived from the olefin of the polyolefin is preferably 50 to 99 mol%, more preferably 60 to 98%, based on all the constituent units of the polyolefin.
 ポリオレフィンとしては、剥離層を塗布する際の帯電を防止できる点で、酸変性ポリオレフィンが好ましい。酸変性ポリオレフィンとしては、例えば、上記ポリオレフィンを、不飽和カルボン酸又はその無水物等の酸変性成分で変性した共重合体が挙げられる。この共重合体の重合の形態は特に制限されず、ランダム共重合、ブロック共重合及びグラフト共重合等が挙げられる。
 酸変性成分としては、例えば、アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸、イタコン酸、無水イタコン酸、フマル酸、及び、クロトン酸、並びに、不飽和ジカルボン酸のハーフエステル、及び、ハーフアミドが挙げられ、樹脂の分散安定性の面から、アクリル酸、メタクリル酸、マレイン酸、又は、無水マレイン酸が好ましい。
As the polyolefin, an acid-modified polyolefin is preferable because it can prevent charging when the release layer is applied. Examples of the acid-modified polyolefin include a copolymer obtained by modifying the above-mentioned polyolefin with an acid-modified component such as an unsaturated carboxylic acid or an anhydride thereof. The form of polymerization of this copolymer is not particularly limited, and examples thereof include random copolymerization, block copolymerization, and graft copolymerization.
Examples of the acid-modifying component include acrylic acid, methacrylic acid, maleic acid, maleic anhydride, itaconic acid, itaconic anhydride, fumaric acid, and crotonic acid, and half esters and half amides of unsaturated dicarboxylic acids. From the viewpoint of dispersion stability of the resin, crotonic acid, methacrylic acid, maleic acid, or maleic anhydride is preferable.
 酸変性ポリオレフィンが含有する酸性基としては、上記の酸変性成分に対応する酸性基である、カルボキシル基、スルホ基、及び、リン酸基が挙げられ、カルボキシル基が好ましい。酸性基は、酸無水物を形成していていもよいし、アルカリ金属、有機アミン及びアンモニアから選択される少なくとも1つで中和されていてもよい。帯電を抑制し、剥離層の塗布性が向上する点で、酸変性成分はアルカリ金属で中和されていることが好ましい。
 酸変性ポリオレフィンは、酸性基を有する構成単位を1種のみ含有していてもよく、2種以上含有していてもよい。酸性基を有する構成単位とは、例えば、上記の酸変性成分のモノマーに由来する構成単位、及び、上記のオレフィンモノマーに由来する構成単位に酸変性成分がグラフトされた構成単位が挙げられる。酸性基を有する構成単位の含有量は、特に制限されないが、酸変性ポリオレフィンの全ての構成単位に対して、0.1~30モル%が好ましい。
Examples of the acidic group contained in the acid-modified polyolefin include a carboxyl group, a sulfo group, and a phosphoric acid group, which are acidic groups corresponding to the above-mentioned acid-modified component, and a carboxyl group is preferable. The acidic group may form an acid anhydride or may be neutralized with at least one selected from alkali metals, organic amines and ammonia. The acid-modifying component is preferably neutralized with an alkali metal in terms of suppressing charge and improving the coatability of the release layer.
The acid-modified polyolefin may contain only one type of structural unit having an acidic group, or may contain two or more types. Examples of the structural unit having an acidic group include a structural unit derived from the above-mentioned acid-modifying component monomer and a structural unit derived from the above-mentioned olefin monomer obtained by grafting the acid-modified component. The content of the structural unit having an acidic group is not particularly limited, but is preferably 0.1 to 30 mol% with respect to all the structural units of the acid-modified polyolefin.
 酸変性ポリオレフィンの市販品としては、例えば、ザイクセンAC、A、L、NC、N等のザイクセン(登録商標)シリーズ(住友精化(株)製)、ケミパールS100、S120、S200、S300、S650、SA100等のケミパール(登録商標)シリーズ(三井化学(株)製)、及び、ハイテックS3121、S3148K等のハイテック(登録商標)シリーズ(東邦化学(株)製)、アローベースSE-1013、SE-1010、SB-1200、SD-1200、SD-1200、DA-1010、DB-4010等のアローベース(登録商標)シリーズ(ユニチカ(株)製)、ハードレンAP-2、NZ-1004、NZ-1005(東洋紡(株)製)、セポルジョンG315、VA407(住友精化(株)製)等が挙げられる。
 また、特開2014-076632号公報の段落0022~0034に記載の酸変性ポリオレフィンも好ましく用いることができる。
Examples of commercially available acid-modified polyolefins include Zyxen (registered trademark) series (manufactured by Sumitomo Seika Co., Ltd.) such as Zyxen AC, A, L, NC, and N, Chemipearl S100, S120, S200, S300, and S650. Chemipearl (registered trademark) series such as SA100 (manufactured by Mitsui Kagaku Co., Ltd.), Hi-Tech (registered trademark) series such as Hi-Tech S3121 and S3148K (manufactured by Toho Kagaku Co., Ltd.), Arrow Base SE-1013, SE-1010 , SB-1200, SD-1200, SD-1200, DA-1010, DB-4010, etc. Arrow Base (registered trademark) series (manufactured by Unitika Co., Ltd.), Hardlen AP-2, NZ-1004, NZ-1005 ( Examples thereof include Toyobo Co., Ltd., Seporjon G315, and VA407 (Sumitomo Seika Co., Ltd.).
Further, the acid-modified polyolefin described in paragraphs 0022 to 0034 of JP-A-2014-076632 can also be preferably used.
 (メタ)アクリレート樹脂は、(メタ)アクリレートに由来する構成単位を含有する樹脂であり、スチレンなどのビニル単量体を共重合していていもよい。(メタ)アクリレート樹脂としては、特に制限されないが、炭素数1~12のアルキル基を有する(メタ)アクリレートに由来する構成単位を含むことが好ましく、炭素数1~6のアルキル基を有する(メタ)アクリレートに由来する構成単位を含むことがより好ましい。
 剥離層を塗布する際の帯電を防止できる点で、(メタ)アクリレート樹脂は、酸変性成分を有することが好ましい。(メタ)アクリレート樹脂は、酸変性成分として、(メタ)アクリル酸に由来する構成単位を含むことが好ましい。(メタ)アクリル酸は、酸無水物を形成していていもよいし、アルカリ金属、有機アミン及びアンモニアから選択される少なくとも1つで中和されていてもよい。帯電を抑制し、剥離層の塗布性が向上する点で、(メタ)アクリル酸はアルカリ金属で中和されていることが好ましい。
 帯電を抑制し、剥離層の塗布性が向上する点で、酸変性基を有する構成単位の含有量は、(メタ)アクリレート樹脂の全ての構成単位に対して、0.1~10質量%であることが好ましく、(メタ)アクリル酸からなる構成単位が0.1~10質量%であることがより好ましい。酸変性基を有する構成単位の含有量を上記範囲とすることで、酸価を低くすることができ、表面自由エネルギーを所望の範囲に調節できる。また、(メタ)アクリレート樹脂の水分散体としては、(メタ)アクリレート樹脂と分散剤とを含む水分散体も好ましい。
The (meth) acrylate resin is a resin containing a structural unit derived from (meth) acrylate, and may be copolymerized with a vinyl monomer such as styrene. The (meth) acrylate resin is not particularly limited, but preferably contains a structural unit derived from a (meth) acrylate having an alkyl group having 1 to 12 carbon atoms, and has an alkyl group having 1 to 6 carbon atoms (meth). ) It is more preferable to contain a structural unit derived from acrylate.
The (meth) acrylate resin preferably has an acid-modifying component in that it can prevent charging when the release layer is applied. The (meth) acrylate resin preferably contains a structural unit derived from (meth) acrylic acid as an acid-modifying component. The (meth) acrylic acid may form an acid anhydride or may be neutralized with at least one selected from alkali metals, organic amines and ammonia. The (meth) acrylic acid is preferably neutralized with an alkali metal in that it suppresses charging and improves the coatability of the release layer.
The content of the structural unit having an acid-modifying group is 0.1 to 10% by mass with respect to all the structural units of the (meth) acrylate resin in that the charge is suppressed and the coatability of the release layer is improved. It is preferably present, and the constituent unit composed of (meth) acrylic acid is more preferably 0.1 to 10% by mass. By setting the content of the structural unit having an acid-modifying group within the above range, the acid value can be lowered and the surface free energy can be adjusted to a desired range. Further, as the aqueous dispersion of the (meth) acrylate resin, an aqueous dispersion containing the (meth) acrylate resin and the dispersant is also preferable.
 (メタ)アクリレート樹脂の酸価は、30mgKOH/g以下が好ましく、20mgKOH/g以下がより好ましい。酸価の下限は、特に制限されず、例えば、0mgKOH/gであるが、水分散体として塗布する点からは、2mgKOH/g以上が好ましい。(メタ)アクリレート樹脂の酸価を上記範囲とすること、及び、炭素数1~12のアルキル基を有する(メタ)アクリレートに由来する構成単位を含ませること、の少なくとも一方を満たすように調節することで、表面自由エネルギーを所望の範囲に調節できる。本発明のポリエステルフィルムを長期保管してセラミックグリーンシート製造用の剥離フィルムとした場合に、欠陥を抑制できる点は、アクリル樹脂の酸価を上記範囲とすること、及び、炭素数1~12のアルキル基を有する(メタ)アクリレートに由来する構成単位を含ませること、の両方を満たすことが好ましい。 The acid value of the (meth) acrylate resin is preferably 30 mgKOH / g or less, more preferably 20 mgKOH / g or less. The lower limit of the acid value is not particularly limited and is, for example, 0 mgKOH / g, but 2 mgKOH / g or more is preferable from the viewpoint of application as an aqueous dispersion. The acid value of the (meth) acrylate resin is adjusted to be in the above range, and the acid value is adjusted to satisfy at least one of the above range and the inclusion of a structural unit derived from the (meth) acrylate having an alkyl group having 1 to 12 carbon atoms. Thereby, the surface free energy can be adjusted to a desired range. When the polyester film of the present invention is stored for a long period of time to form a release film for producing a ceramic green sheet, the points that defects can be suppressed are that the acid value of the acrylic resin is within the above range and that the number of carbon atoms is 1 to 12. It is preferable to satisfy both of containing a structural unit derived from a (meth) acrylate having an alkyl group.
 ポリウレタンとしては、主鎖にウレタン結合を有する重合体であれば制限されず、イソシアネート化合物とポリオール化合物との反応生成物等の公知のポリウレタンを利用できる。
 上述の通り、水分散体の調製が容易である点では、酸変性ポリウレタンが好ましい。酸変性ポリウレタンとは、酸性基を有するポリウレタンを意味する。酸性基としては、上記の酸変性ポリオレフィンが含有する酸性基として挙げた基が挙げられる。また、ポリウレタンの水分散体としては、ポリウレタンと分散剤とを含む水分散体も好ましい。
 特定塗布層に含まれるポリウレタンは、例えば、原料となるポリオール化合物及び/又はイソシアネート化合物のそれぞれの構造及び疎水性(親水性)を調整することで、特定塗布層の表面自由エネルギーを特定の範囲に制御できる。
 ポリウレタンの市販品としては、例えば、ハイドラン(登録商標)AP-20、AP-40N及びAP-201(以上、DIC(株)製);タケラック(登録商標)W-605、W-5030及びW-5920(以上、三井化学(株)製);並びに、スーパーフレックス(商標登録)210及び130、エラストロン(登録商標)H-3-DF、E-37及びH-15(以上、第一工業製薬(株)製)が挙げられる。
The polyurethane is not limited as long as it is a polymer having a urethane bond in the main chain, and known polyurethane such as a reaction product of an isocyanate compound and a polyol compound can be used.
As described above, acid-modified polyurethane is preferable in that an aqueous dispersion can be easily prepared. The acid-modified polyurethane means a polyurethane having an acidic group. Examples of the acidic group include the groups mentioned as the acidic group contained in the above-mentioned acid-modified polyolefin. Further, as the aqueous dispersion of polyurethane, an aqueous dispersion containing polyurethane and a dispersant is also preferable.
The polyurethane contained in the specific coating layer has, for example, the surface free energy of the specific coating layer within a specific range by adjusting the structure and hydrophobicity (hydrophilicity) of each of the polyol compound and / or the isocyanate compound as a raw material. Can be controlled.
Commercially available polyurethane products include, for example, Hydran (registered trademark) AP-20, AP-40N and AP-201 (all manufactured by DIC Corporation); Takelac (registered trademark) W-605, W-5030 and W- 5920 (above, manufactured by Mitsui Chemicals, Inc.); and Superflex (registered trademark) 210 and 130, Elastron (registered trademark) H-3-DF, E-37 and H-15 (above, Dai-ichi Kogyo Seiyaku Co., Ltd.) Made by Co., Ltd.).
 特定塗布層は、1種単独のバインダーを含有していてもよく、2種以上のバインダーを含有していてもよい。表面自由エネルギーを制御するために、上記ポリオレフィン又は(メタ)アクリレート樹脂と、ポリオレフィン及び(メタ)アクリレート樹脂以外の樹脂とを併用する場合、併用する樹脂としては、上記ポリウレタンが好ましい。
 バインダーの含有量は、Spを所望の範囲に調節する観点から、特定塗布層の全質量に対して、30~99.8質量%が好ましく、50~99.5質量%がより好ましい。
The specific coating layer may contain one kind of binder alone, or may contain two or more kinds of binders. When the polyolefin or (meth) acrylate resin is used in combination with a resin other than the polyolefin and the (meth) acrylate resin in order to control the surface free energy, the polyurethane is preferable as the resin to be used in combination.
The content of the binder is preferably 30 to 99.8% by mass, more preferably 50 to 99.5% by mass, based on the total mass of the specific coating layer, from the viewpoint of adjusting Sp to a desired range.
(添加剤)
 特定塗布層は、上記の粒子及びバインダー以外の添加剤を含有していてもよい。
 特定塗布層に含有される添加剤としては、例えば、界面活性剤、ワックス、架橋剤、酸化防止剤、紫外線吸収剤、着色剤、強化剤、可塑剤、帯電防止剤、難燃剤、防錆剤、及び、防黴剤が挙げられる。
(Additive)
The specific coating layer may contain additives other than the above particles and binder.
Additives contained in the specific coating layer include, for example, surfactants, waxes, cross-linking agents, antioxidants, UV absorbers, colorants, strengthening agents, plasticizers, antistatic agents, flame retardants, and rust preventives. , And antistatic agents.
 特定塗布層は、第2主面において、粒子により形成される突起が存在する箇所以外の領域の平滑性が向上する点で、界面活性剤を有することが好ましい。第2主面の上記領域の平滑性が向上し、粒子以外の要因で第2主面の表面粗さが小さくなることにより、Spを所望の範囲に制御し、本発明の効果を向上させることができる。 The specific coating layer preferably has a surfactant on the second main surface in that the smoothness of the region other than the portion where the protrusions formed by the particles are present is improved. By improving the smoothness of the above-mentioned region of the second main surface and reducing the surface roughness of the second main surface due to factors other than particles, Sp can be controlled within a desired range and the effect of the present invention can be improved. Can be done.
 界面活性剤としては、特に制限されず、シリコーン系界面活性剤、フッ素系界面活性剤、及び、炭化水素系界面活性剤が挙げられる。第1主面における帯電を抑制し、剥離層を塗布する際の異物による欠陥の発生を抑制することにより、剥離層の塗布性を向上できる点で、炭化水素系界面活性剤が好ましい。 The surfactant is not particularly limited, and examples thereof include a silicone-based surfactant, a fluorine-based surfactant, and a hydrocarbon-based surfactant. Hydrocarbon-based surfactants are preferable in that the coatability of the peeling layer can be improved by suppressing the charge on the first main surface and suppressing the generation of defects due to foreign substances when the peeling layer is applied.
 シリコーン系界面活性剤としては、疎水基としてケイ素含有基を有する界面活性剤であれば特に制限されず、例えば、ポリジメチルシロキサン、ポリエーテル変性ポリジメチルシロキサン、及び、ポリメチルアルキルシロキサンが挙げられる。
 シリコーン系界面活性剤の市販品としては、例えば、BYK(登録商標)-306、BYK-307、BYK-333、BYK-341、BYK-345、BYK-346、BYK-347、BYK-348、及び、BYK-349(以上、BYK社製)、並びに、KF-351A、KF-352A、KF-353、KF-354L、KF-355A、KF-615A、KF-945、KF-640、KF-642、KF-643、KF-6020、X-22-4515、KF-6011、KF-6012、KF-6015、及び、KF-6017(以上、信越化学株式会社製)が挙げられる。
The silicone-based surfactant is not particularly limited as long as it is a surfactant having a silicon-containing group as a hydrophobic group, and examples thereof include polydimethylsiloxane, polyether-modified polydimethylsiloxane, and polymethylalkylsiloxane.
Commercially available products of silicone-based surfactants include, for example, BYK®-306, BYK-307, BYK-333, BYK-341, BYK-345, BYK-346, BYK-347, BYK-348, and , BYK-349 (all manufactured by BYK), and KF-351A, KF-352A, KF-353, KF-354L, KF-355A, KF-615A, KF-945, KF-640, KF-642, Examples thereof include KF-643, KF-6020, X-22-4515, KF-6011, KF-6012, KF-6015, and KF-6017 (all manufactured by Shin-Etsu Chemical Co., Ltd.).
 フッ素系界面活性剤としては、疎水基としてフッ素含有基を有する界面活性剤であれば特に制限されず、例えば、パーフルオロオクタンスルホン酸、及び、パーフルオロカルボン酸が挙げられる。
 フッ素系界面活性剤の市販品としては、例えば、メガファック(登録商標)F-114、F-410、F-440、F-447、F-553、及び、F-556(以上、DIC社製)、並びに、サーフロン(登録商標)S-211、S-221、S-231、S-233、S-241、S-242、S-243、S-420、S-661、S-651、及びS-386(AGCセイミケミカル社製)が挙げられる。
The fluorine-based surfactant is not particularly limited as long as it is a surfactant having a fluorine-containing group as a hydrophobic group, and examples thereof include perfluorooctanesulfonic acid and perfluorocarboxylic acid.
Commercially available products of fluorine-based surfactants include, for example, Megafuck (registered trademark) F-114, F-410, F-440, F-447, F-553, and F-556 (all manufactured by DIC Corporation). ), And Surfron® S-211, S-221, S-231, S-233, S-241, S-242, S-243, S-420, S-661, S-651, and Examples thereof include S-386 (manufactured by AGC Seimi Chemical Co., Ltd.).
 また、フッ素系界面活性剤としては、環境適性向上の観点から、パーフルオロオクタン酸(PFOA)及びパーフルオロオクタンスルホン酸(PFOS)等の炭素数が7以上の直鎖状パーフルオロアルキル基を有する化合物の代替材料に由来する界面活性剤を使用することが好ましく、炭素数が6以上の直鎖状パーフルオロアルキル基を有する化合物の代替材料に由来する界面活性剤を使用することがより好ましい。
 より具体的には、炭素数が6以上の直鎖状パーフルオロアルキル基を有する界面活性剤と比較して、剥離層の塗布性を向上できる点で、炭素数1~4のパーフルオロアルキル基を有する界面活性剤を用いることが好ましい。炭素数1~4のパーフルオロアルキル基は、直鎖状でも分岐鎖状でもよい。なかでも、炭素数1~4の直鎖状のパーフルオロアルキル基、又は、炭素数3の分岐鎖状のパーフルオロアルキル基を有する界面活性剤がより好ましく、炭素数1又は2のパーフルオロアルキル基、又は、炭素数3の分岐鎖状のパーフルオロアルキル基を有する界面活性剤が更に好ましい。
 上記のパーフルオロアルキル基としては、例えば、CF-*、C-*、C-*、n-C-*、及び、(CFCF-*が挙げられる。ここで、*は、フッ素原子により置換されている炭素原子以外の炭素原子との結合位置を示す。これらのパーフルオロアルキル基と結合する炭素原子は、水素原子を有するか、又は、炭素原子のみと結合しているかのいずれかであることが好ましい。
The fluorine-based surfactant has a linear perfluoroalkyl group having 7 or more carbon atoms, such as perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), from the viewpoint of improving environmental suitability. It is preferable to use a surfactant derived from a substitute material for the compound, and more preferably to use a surfactant derived from a substitute material for a compound having a linear perfluoroalkyl group having 6 or more carbon atoms.
More specifically, a perfluoroalkyl group having 1 to 4 carbon atoms can improve the coatability of the release layer as compared with a surfactant having a linear perfluoroalkyl group having 6 or more carbon atoms. It is preferable to use a surfactant having the above. The perfluoroalkyl group having 1 to 4 carbon atoms may be linear or branched. Among them, a surfactant having a linear perfluoroalkyl group having 1 to 4 carbon atoms or a branched perfluoroalkyl group having 3 carbon atoms is more preferable, and a perfluoroalkyl group having 1 or 2 carbon atoms is more preferable. A surfactant having a group or a branched perfluoroalkyl group having 3 carbon atoms is more preferable.
Examples of the perfluoroalkyl group, for example, CF 3 - *, C 2 F 5 - *, C 3 F 7 - *, n-C 4 F 9 - *, and, (CF 3) 2 CF- * is Can be mentioned. Here, * indicates a bond position with a carbon atom other than the carbon atom substituted with the fluorine atom. The carbon atom bonded to these perfluoroalkyl groups preferably has either a hydrogen atom or is bonded only to a carbon atom.
 炭素数1~4のパーフルオロアルキル基を有するフッ素系界面活性剤の市販品としては、例えば、フタージェント(登録商標)100、100C、110、150、150H、212M、215M、250、251、222F、245F、208G、FTX-218、DFX-18、300、310、320、400SW、710FL、683、601AD、602A、及び681、(以上、(株)ネオス製)、並びに、PF-136A、PF-156A、PF-151N、PF-636、PF-6320、PF-656、PF-6520、PF-652-NF(以上、OMNOVA社製)が挙げられる。 Commercially available products of fluorine-based surfactants having a perfluoroalkyl group having 1 to 4 carbon atoms include, for example, Futergent (registered trademark) 100, 100C, 110, 150, 150H, 212M, 215M, 250, 251, 222F. , 245F, 208G, FTX-218, DFX-18, 300, 310, 320, 400SW, 710FL, 683, 601AD, 602A, and 681, (all manufactured by Neos Co., Ltd.), and PF-136A, PF- Examples thereof include 156A, PF-151N, PF-636, PF-6320, PF-656, PF-6520, and PF-652-NF (all manufactured by OMNOVA).
 炭素数1~4のパーフルオロアルキル基を有する界面活性剤を用いると、炭素数が6以上の直鎖状パーフルオロアルキル基を有する界面活性剤を用いる場合と比較して、剥離層の塗布性が向上する理由は定かではないが、炭素数1~4のパーフルオロアルキル基を有する界面活性剤は、表面張力の低いCF基を重量あたりに数多く含むために、少ない添加量で第2主面の表面自由エネルギーを低下させることができる。これにより、ポリエステルフィルムの搬送性を向上することができるとともに、特定塗布層の組成が大きく変わらないため、後述する剥離帯電を抑制し、剥離層の塗布性を向上することができるものと推察している。 When a surfactant having a perfluoroalkyl group having 1 to 4 carbon atoms is used, the coatability of the release layer is higher than that when a surfactant having a linear perfluoroalkyl group having 6 or more carbon atoms is used. Although but no reason is uncertain to improve, surfactants having a perfluoroalkyl group having 1 to 4 carbon atoms, to include a number of low CF 3 group surface tension per weight, the second main with a small amount The surface free energy of the surface can be reduced. As a result, the transportability of the polyester film can be improved, and since the composition of the specific coating layer does not change significantly, it is presumed that the peeling charge described later can be suppressed and the coating property of the peeling layer can be improved. ing.
 炭化水素系界面活性剤としては、例えば、アニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、及び、両性界面活性剤が挙げられる。
 アニオン性界面活性剤としては、例えば、アルキル硫酸塩、アルキルベンゼンスルホン酸塩、アルキルリン酸塩、及び、脂肪酸塩が挙げられる。
 ノニオン性界面活性剤としては、例えば、ポリアルキレングリコールモノ又はジアルキルエーテル、ポリアルキレングリコールモノ又はジアルキルエステル、及び、ポリアルキレングリコールモノアルキルエステル・モノアルキルエーテルが挙げられる。
 カチオン性界面活性剤としては、第1級~第3級アルキルアミン塩、及び、第4級アンモニウム化合物等が挙げられる。
 両性界面活性剤としては、分子内にアニオン性部位とカチオン性部位の両者を有する界面活性剤が挙げられる。
Examples of the hydrocarbon-based surfactant include anionic surfactants, nonionic surfactants, cationic surfactants, and amphoteric surfactants.
Examples of the anionic surfactant include alkyl sulfates, alkylbenzene sulfonates, alkyl phosphates, and fatty acid salts.
Examples of the nonionic surfactant include polyalkylene glycol mono or dialkyl ether, polyalkylene glycol mono or dialkyl ester, and polyalkylene glycol monoalkyl ester / monoalkyl ether.
Examples of the cationic surfactant include primary to tertiary alkylamine salts, quaternary ammonium compounds and the like.
Examples of amphoteric surfactants include surfactants having both anionic and cationic moieties in the molecule.
 アニオン性界面活性剤の市販品としては、例えば、ラピゾール(登録商標)A-90、A-80、BW-30、B-90、及び、C-70(以上、日油(株)製)、NIKKOL(登録商標)OTP-100(以上、日光ケミカル(株)製)、コハクール(登録商標)ON、L-40、及び、フォスファノール(登録商標)702(以上、東邦化学工業(株)製)、並びに、ビューライト(登録商標)A-5000、及び、SSS(以上、三洋化成工業(株)製)が挙げられる。
 ノニオン性界面活性剤の市販品としては、例えば、ナロアクティー(登録商標)CL-95、及び、HN-100(商品名:三洋化成工業(株)製)、リソレックスBW400(商品名:高級アルコール工業(株)製)、EMALEX(登録商標)ET-2020(以上、日本エマルジョン(株)製)、並びに、サーフィノール(登録商標)104E、420、440、465、及び、ダイノール(登録商標)604、607(以上、日信化学工業(株)製)、が挙げられる。
Examples of commercially available anionic surfactants include Lapizol (registered trademark) A-90, A-80, BW-30, B-90, and C-70 (all manufactured by Nichiyu Co., Ltd.). NIKKOL (registered trademark) OTP-100 (above, manufactured by Nikko Chemical Co., Ltd.), Kohakul (registered trademark) ON, L-40, and Phosphanol (registered trademark) 702 (above, manufactured by Toho Chemical Industries, Ltd.) ), Viewlight (registered trademark) A-5000, and SSS (all manufactured by Sanyo Chemical Industries, Ltd.).
Commercially available nonionic surfactants include, for example, Naroacty (registered trademark) CL-95, HN-100 (trade name: manufactured by Sanyo Chemical Industries, Ltd.), and Lisolex BW400 (trade name: higher alcohol industry). EMALEX® ET-2020 (all manufactured by Nippon Emulsion Co., Ltd.), and Surfinol® 104E, 420, 440, 465, and Dynol® 604, 607 (above, manufactured by Nisshin Chemical Industry Co., Ltd.).
 酸変性の樹脂と併用する場合には、樹脂の分散を阻害することなく表面が平滑な塗布層を形成できる点で、アニオン性界面活性剤及び/又はノニオン性界面活性剤が好ましく、アニオン性界面活性剤がより好ましい。即ち、界面活性剤としては、表面平滑性の向上、及び、剥離層の塗布性の向上の点で、アニオン性の炭化水素系界面活性剤がより好ましい。 When used in combination with an acid-modified resin, anionic surfactants and / or nonionic surfactants are preferable and anionic surfactants are preferable because they can form a coating layer having a smooth surface without inhibiting the dispersion of the resin. Activators are more preferred. That is, as the surfactant, an anionic hydrocarbon-based surfactant is more preferable in terms of improving the surface smoothness and the coatability of the release layer.
 アニオン性の炭化水素系界面活性剤は、平滑性がより向上する点で、複数個の疎水性末端基を有することが好ましい。疎水性末端基は、炭化水素系界面活性剤が有する炭化水素基の一部であってよい。例えば、分岐鎖構造を有する炭化水素基を末端に有する炭化水素系界面活性剤は、複数個の疎水性末端基を有することになる。
 複数個の疎水性末端基を有するアニオン性の炭化水素系界面活性剤としては、スルホコハク酸ジ-2-エチルヘキシルナトリウム(疎水性末端基を4つ有する)、スルホコハク酸ジ-2-エチルオクチルナトリウム(疎水性末端基を4つ有する)、及び、分岐鎖型アルキルベンゼンスルホン酸塩(疎水性末端基を2つ有する)が挙げられる。
The anionic hydrocarbon-based surfactant preferably has a plurality of hydrophobic end groups in terms of further improving smoothness. The hydrophobic end group may be a part of the hydrocarbon group contained in the hydrocarbon-based surfactant. For example, a hydrocarbon-based surfactant having a hydrocarbon group having a branched chain structure at the end will have a plurality of hydrophobic end groups.
Examples of anionic hydrocarbon-based surfactants having a plurality of hydrophobic end groups include di-2-ethylhexyl sulfosuccinate (having four hydrophobic end groups) and di-2-ethyloctyl sulfosuccinate (sodium sulfosuccinate). (Has four hydrophobic end groups) and branched chain alkylbenzene sulfonate (has two hydrophobic end groups).
 界面活性剤は1種用いてもよいし、2種以上併用してもよい。
 界面活性剤の含有量は、特定塗布層の全質量に対して、0.1~10質量%が好ましく、剥離層形成時の帯電防止性、及び、表面平滑性により優れる点で、0.1~5質量%であることがより好ましく、0.5~2質量%であることが更に好ましい。
One type of surfactant may be used, or two or more types may be used in combination.
The content of the surfactant is preferably 0.1 to 10% by mass with respect to the total mass of the specific coating layer, and is 0.1 in that it is excellent in antistatic property at the time of forming the release layer and surface smoothness. It is more preferably to 5% by mass, and even more preferably 0.5 to 2% by mass.
 ワックスとしては、特に制限されず、天然ワックスも合成ワックスでもよい。天然ワックスとしては、カルナバワックス、キャンデリラワックス、ミツロウ、モンタンワックス、パラフィンワックス、及び、石油ワックスが挙げられる。その他、国際公開2017/169844号明細書の[0087]の記載の滑り剤も使用できる。
 ワックスの含有量は、特定塗布層の全質量に対して、0~10質量%が好ましい。
The wax is not particularly limited, and may be a natural wax or a synthetic wax. Examples of the natural wax include carnauba wax, candelilla wax, beeswax, montan wax, paraffin wax, and petroleum wax. In addition, the slip agent described in [0087] of International Publication No. 2017/169844 can also be used.
The wax content is preferably 0 to 10% by mass with respect to the total mass of the specific coating layer.
 架橋剤としては、特に制限されず、公知のものを使用できる。
 架橋剤としては、例えば、メラミン化合物、オキサゾリン化合物、エポキシ化合物、イソシアネート系化合物、及び、カルボジイミド系化合物が挙げられ、オキサゾリン系化合物及びカルボジイミド系化合物が特に好ましい。市販品としては、例えば、カルボジライトV-02-L2(日清紡(株)製)及びエポクロスK-2020E(日本触媒(株)製)が挙げられる。エポキシ系化合物、イソシアネート系化合物、及びメラミン系化合物の詳細については、特開2015-163457号公報の[0081]~[0083]の記載を参照することができる。国際公開2017/169844号明細書の[0082]~[0084]の記載の架橋剤も好ましく使用できる。カルボジイミド化合物としては、特開2017-087421号公報の[0038]~[0040]の記載を参照できる。
 オキサゾリン化合物、カルボジイミド化合物、イソシアネート化合物については、国際公開2018/034294号明細書の[0074]~[0075]の記載の架橋剤も好ましく使用できる。
 架橋剤の含有量は、特定塗布層の全質量に対して、0~50質量%が好ましい。
The cross-linking agent is not particularly limited, and known ones can be used.
Examples of the cross-linking agent include melamine compounds, oxazoline compounds, epoxy compounds, isocyanate compounds, and carbodiimide-based compounds, and oxazoline-based compounds and carbodiimide-based compounds are particularly preferable. Examples of commercially available products include Carbodilite V-02-L2 (manufactured by Nisshinbo Co., Ltd.) and Epocross K-2020E (manufactured by Nippon Shokubai Co., Ltd.). For details of the epoxy-based compound, the isocyanate-based compound, and the melamine-based compound, the description of [0081] to [0083] of JP2015-163457 can be referred to. The cross-linking agent described in [2002] to [0084] of International Publication No. 2017/169844 can also be preferably used. As the carbodiimide compound, the description of [0038] to [0040] of JP-A-2017-087421 can be referred to.
As for the oxazoline compound, the carbodiimide compound, and the isocyanate compound, the cross-linking agent described in [0074] to [0075] of International Publication No. 2018/034294 can also be preferably used.
The content of the cross-linking agent is preferably 0 to 50% by mass with respect to the total mass of the specific coating layer.
(厚さ)
 特定塗布層は、粒子を含有する組成物をポリエステル基材の一方の表面上に塗布して形成することにより、その厚さが1μm以下になることが多い。
 特定塗布層の厚さは、特定塗布層の製造適性、及び、ヘイズ低減の観点から、1~200nmが好ましく、10~100nmがより好ましく、20~100nmが更に好ましい。
 特定塗布層の厚さは、ポリエステルフィルムの主面に対して垂直な断面を有する切片を作製し、走査型電子顕微鏡(SEM)又は透過型電子顕微鏡(TEM:Transmission Electron Microscope)を用いて測定される、上記切片の5か所の厚さの算術平均値とする。
 特定塗布層が柔らかく、安定して断面切片を作製することが難しい場合には、屈折率計を用いて測定してもよい。具体的には、測定される反射率スペクトルを特定塗布層及びポリエステル基材の膜厚及び屈折率とフィッテングすることにより、特定塗布層の膜厚を求めることができる。
(thickness)
The specific coating layer is often formed to have a thickness of 1 μm or less by coating a composition containing particles on one surface of a polyester base material.
The thickness of the specific coating layer is preferably 1 to 200 nm, more preferably 10 to 100 nm, and even more preferably 20 to 100 nm, from the viewpoint of manufacturing suitability of the specific coating layer and reduction of haze.
The thickness of the specific coating layer is measured by preparing a section having a cross section perpendicular to the main surface of the polyester film and using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). The arithmetic average value of the thickness at 5 points of the above section is used.
If the specific coating layer is soft and it is difficult to stably prepare a cross-sectional section, measurement may be performed using a refractive index meter. Specifically, the film thickness of the specific coating layer can be obtained by fitting the measured reflectance spectrum with the film thickness and the refractive index of the specific coating layer and the polyester base material.
 特定塗布層の形成方法については、後述する「特定塗布層形成工程」において詳しく説明する。 The method for forming the specific coating layer will be described in detail in the "specific coating layer forming step" described later.
 本フィルムは、上記のポリエステル基材及び特定塗布層以外の層を備えていてもよいが、ポリエステル基材及び特定塗布層からなることがより好ましい。 This film may include a layer other than the polyester base material and the specific coating layer described above, but is more preferably composed of the polyester base material and the specific coating layer.
〔物性等〕
 次に、本フィルムの物性等について説明する。
[Physical characteristics, etc.]
Next, the physical characteristics of this film will be described.
(第2主面の表面自由エネルギー)
 本フィルムにおいては、第2主面の表面自由エネルギーが25~60mJ/mである。第2主面の表面自由エネルギーが上記の範囲にあることにより、第2主面の最大突起高さSpが上記の範囲にあっても搬送性に優れ、かつ、剥離層の塗布性に優れるポリエステルフィルムが得られる。
 第2主面の表面自由エネルギーは、長期保管後の剥離フィルムの剥離層表面における転写痕の形成をより抑制できる点で、25~50mJ/mが好ましい。さらに、上記の搬送性及び剥離層の塗布性の観点から、第2主面の表面自由エネルギーは、30~50mJ/mがより好ましく、30~45mJ/mが更に好ましく、40~45mJ/mが特に好ましい。
 第2主面(特定塗布層表面)の表面自由エネルギーは、例えば、特定塗布層を構成する粒子、上記のバインダー及び添加剤等を選択することにより、調節できる。
(Surface free energy of the second main surface)
In this film, the surface free energy of the second main surface is 25 to 60 mJ / m 2 . Since the surface free energy of the second main surface is in the above range, polyester has excellent transportability and excellent coatability of the release layer even if the maximum protrusion height Sp of the second main surface is in the above range. A film is obtained.
The surface free energy of the second main surface is preferably 25 to 50 mJ / m 2 in that the formation of transfer marks on the surface of the release layer of the release film after long-term storage can be further suppressed. Further, from the viewpoint of the coating property of the transportability and the release layer, the surface free energy of the second main surface is more preferably 30 ~ 50 mJ / m 2, more preferably 30 ~ 45mJ / m 2, 40 ~ 45mJ / m 2 is particularly preferred.
The surface free energy of the second main surface (the surface of the specific coating layer) can be adjusted by selecting, for example, the particles constituting the specific coating layer, the above-mentioned binder, the additive, and the like.
 ポリエステルフィルムの第2主面の表面自由エネルギーは、接触角計(例えば、協和界面化学社製「DROPMASTER-501」等)を用いて、25℃の条件にて、第2主面(特定塗布層側の表面)に精製水、ヨウ化メチレン及びエチレングリコールの液滴を滴下し、液滴が表面に付着してから1秒後の接触角を測定し、得られたそれぞれの接触角から北崎・畑の方法に従って算出することにより、求められる。
 なお、上記の方法で得られる「表面自由エネルギー」は、表面自由エネルギーの極性成分及び水素結合成分の合計である。
The surface free energy of the second main surface of the polyester film is the second main surface (specific coating layer) under the condition of 25 ° C. using a contact angle meter (for example, "DROPMASTER-501" manufactured by Kyowa Interface Chemistry Co., Ltd.). Droplets of purified water, methylene iodide, and ethylene glycol were dropped onto the surface on the side), and the contact angle 1 second after the droplets adhered to the surface was measured. It is obtained by calculating according to the method of the field.
The "surface free energy" obtained by the above method is the total of the polar component and the hydrogen bond component of the surface free energy.
(第1主面の表面自由エネルギー)
 本フィルムを巻き取る際の帯電防止の観点で、第1主面の表面自由エネルギーは、50~70mJ/mであることが好ましい。
 また、第1主面の表面自由エネルギーと第2主面の表面自由エネルギーとの差が広い方が、フィルムが帯電しにくいため、好ましい。第1主面の表面自由エネルギーと第2主面の表面自由エネルギーとの差は、1~35mJ/mが好ましく、5~35mJ/mがより好ましく、10~30mJ/mが更に好ましい。
 第1主面の表面自由エネルギーは、第1主面を有する層を形成する樹脂及び添加剤の種類により調整できる。例えば、第1主面がポリエステル基材の特定塗布層側とは反対側の表面である場合、ポリエステル基材を形成する樹脂及び添加剤の種類により、第1主面の表面自由エネルギーは調整できる。
(Surface free energy of the first main surface)
From the viewpoint of antistatic when winding the film, the surface free energy of the first main surface is preferably 50 to 70 mJ / m 2.
Further, it is preferable that the difference between the surface free energy of the first main surface and the surface free energy of the second main surface is wide because the film is less likely to be charged. The difference between the surface free energy of the surface free energy and a second major surface of the first main surface is preferably 1 ~ 35 mJ / m 2, more preferably 5 ~ 35 mJ / m 2, more preferably 10 ~ 30 mJ / m 2 ..
The surface free energy of the first main surface can be adjusted by the type of resin and additive forming the layer having the first main surface. For example, when the first main surface is the surface opposite to the specific coating layer side of the polyester base material, the surface free energy of the first main surface can be adjusted depending on the type of resin and additive forming the polyester base material. ..
(第2主面の最大突起高さSp、面平均粗さSa)
 本フィルムは、第2主面の最大突起高さSpが1nm以上60nm未満である。第2主面の最大突起高さSpが上記の範囲にあることにより、剥離層表面における転写痕の抑制及び搬送性がバランス良く優れた剥離フィルムを製造できる。
 上記の観点から、第2主面の最大突起高さSpは、10~50nmが好ましく、20~50nmがより好ましい。
(Maximum protrusion height Sp of the second main surface, surface average roughness Sa)
In this film, the maximum protrusion height Sp of the second main surface is 1 nm or more and less than 60 nm. When the maximum protrusion height Sp of the second main surface is within the above range, it is possible to produce a release film having a good balance of suppression of transfer marks and transportability on the surface of the release layer.
From the above viewpoint, the maximum protrusion height Sp of the second main surface is preferably 10 to 50 nm, more preferably 20 to 50 nm.
 また、本フィルムにおいては、転写痕の抑制安定性がより優れる点で、第2主面の面平均粗さSaが、1~10nmであることが好ましく、1~9nmであることがより好ましく、1~8nmであることが更に好ましい。 Further, in this film, the surface average roughness Sa of the second main surface is preferably 1 to 10 nm, more preferably 1 to 9 nm, in that the suppression stability of the transfer marks is more excellent. It is more preferably 1 to 8 nm.
 第2主面(特定塗布層表面)の最大突起高さSp及び面平均粗さSaは、例えば、特定塗布層に含まれる粒子の平均粒子径及び含有量、並びに、特定塗布層の厚さにより、調節することができる。インラインコーティングにて特定塗布層を形成する場合には、上記の調整をより容易に行うことができる。 The maximum protrusion height Sp and surface average roughness Sa of the second main surface (specific coating layer surface) depend on, for example, the average particle size and content of the particles contained in the specific coating layer, and the thickness of the specific coating layer. , Can be adjusted. When the specific coating layer is formed by in-line coating, the above adjustment can be performed more easily.
 ポリエステルフィルムの第2主面の最大突起高さSp及び面平均粗さSaは、ポリエステルフィルムの特定塗布層側の表面を、光学干渉計(例えば、株式会社日立ハイテク製「Vertscan 3300G Lite」等)を用いて下記の条件で測定し、その後、内蔵されているデータ解析ソフトにて解析することにより、求められる。
 最大突起高さSpの測定では、測定位置を変えて5回測定し、得られる測定値の最大値を最大突起高さSpの測定値とする(内蔵されているデータ解析ソフトではPと表記される)。また、面平均粗さSaの測定では、測定位置を変えて5回測定し、得られる測定値の平均値を面平均粗さSaの測定値とする。
(測定条件)
・測定モード:WAVEモード
・対物レンズ:50倍
・測定面積:186μm×155μm
The maximum protrusion height Sp and surface average roughness Sa of the second main surface of the polyester film are set on the surface of the polyester film on the specific coating layer side with an optical interferometer (for example, "Vertscan 3300G Lite" manufactured by Hitachi High-Tech Co., Ltd.). It is obtained by measuring under the following conditions using the above and then analyzing with the built-in data analysis software.
In the measurement of the maximum protrusion height Sp, the measurement is performed 5 times by changing the measurement position, and the maximum value of the obtained measured value is the measured value of the maximum protrusion height Sp (denoted as P in the built-in data analysis software). Ru). Further, in the measurement of the surface average roughness Sa, the measurement is performed 5 times by changing the measurement position, and the average value of the obtained measured values is used as the measured value of the surface average roughness Sa.
(Measurement condition)
-Measurement mode: WAVE mode-Objective lens: 50x-Measurement area: 186 μm x 155 μm
(第1主面の最大突起高さSp、面平均粗さSa)
 剥離層を平滑にする点で、第1主面はできるだけ平滑であることが好ましい。具体的には、第1主面の最大突起高さSpは、1~60nmであることが好ましく、5~30nmであることがより好ましい。また、第1主面の面平均粗さSaは、0~10nmであることが好ましく、0~5nmであることがより好ましい。
 第1主面の最大突起高さSp及び面平均粗さSaは、ポリエステル基材に実質的に粒子を入れず、かつ、平滑に製膜するようにポリエステル基材を構成するポリエステルの種類及び添加剤の種類を選択する等の手法により、調整できる。
 第1主面の最大突起高さSp及び面平均粗さSaは、上記の第2主面の最大突起高さSp及び面平均粗さSaの測定方法に従って測定できる。
(Maximum protrusion height Sp of the first main surface, surface average roughness Sa)
In terms of smoothing the release layer, it is preferable that the first main surface is as smooth as possible. Specifically, the maximum protrusion height Sp of the first main surface is preferably 1 to 60 nm, and more preferably 5 to 30 nm. The surface average roughness Sa of the first main surface is preferably 0 to 10 nm, more preferably 0 to 5 nm.
The maximum protrusion height Sp and surface average roughness Sa of the first main surface are the types and additions of polyesters constituting the polyester base material so that particles are not substantially contained in the polyester base material and the film is formed smoothly. It can be adjusted by a method such as selecting the type of agent.
The maximum protrusion height Sp and the surface average roughness Sa of the first main surface can be measured according to the above-mentioned measuring methods of the maximum protrusion height Sp and the surface average roughness Sa of the second main surface.
(第2主面の最大突起高さSpと粒子密度Dとの積)
 本フィルムにおいては、搬送性がより優れる点で、第2主面の突起を構成している粒子の密度D(単位:個/μm、「粒子密度D」ともいう)と、上記の第2主面の最大突起高さSp(単位:nm)との積(D×Sp)が、1以上であることが好ましく、20以上であることがより好ましく、50以上であることが更に好ましい。上限は特に制限されないが、転写痕抑制がより優れる点で、400以下が好ましく、300以下がより好ましい。
 上記積(D×Sp)は、どの程度の大きさの突起が第2主面にどの程度の密度で存在するかを表す指標であり、上記積(D×Sp)が上記の範囲内にあると、転写痕抑制及び搬送性の観点で好ましい突起が、第2主面に適度な量で存在することになり、転写痕抑制及び搬送性の効果がより一層優れるため、好ましい。
(The product of the maximum protrusion height Sp of the second main surface and the particle density D)
In this film, the density D (unit: piece / μm 2 , also referred to as “particle density D”) of the particles constituting the protrusions on the second main surface and the above-mentioned second are in terms of being more excellent in transportability. The product (D × Sp) with the maximum protrusion height Sp (unit: nm) of the main surface is preferably 1 or more, more preferably 20 or more, and further preferably 50 or more. The upper limit is not particularly limited, but 400 or less is preferable, and 300 or less is more preferable, in that the suppression of transfer marks is more excellent.
The product (D × Sp) is an index showing how large the protrusions are present on the second main surface at what density, and the product (D × Sp) is within the above range. It is preferable because the protrusions, which are preferable from the viewpoint of suppressing transfer marks and transportability, are present on the second main surface in an appropriate amount, and the effects of suppressing transfer marks and transportability are further excellent.
 上記の粒子密度Dは、上記の最大突起高さSp及び面平均粗さSaと同様に、例えば、特定塗布層に含まれる粒子の平均粒子径及び含有量、並びに、特定塗布層の厚さにより、調節することができる。インラインコーティングにて特定塗布層を形成する場合には、上記の調整をより容易に行うことができる。 The particle density D depends on, for example, the average particle size and content of the particles contained in the specific coating layer, and the thickness of the specific coating layer, similarly to the maximum protrusion height Sp and the surface average roughness Sa. , Can be adjusted. When the specific coating layer is formed by in-line coating, the above adjustment can be performed more easily.
 また、ポリエステルフィルムの第2主面の突起を構成している粒子の粒子密度Dは、SEMを用いて、粒子の平均粒子径の測定方法と同様の方法により求められる。即ち、ポリエステルフィルムの特定塗布層側の表面を、20000倍の拡大倍率で観察する。任意に選択された10の視野について観察を行い、各視野において突起として識別可能な粒子(ベース面から突出した突起として視認可能な粒子)について、画像ソフトウエアを用いて個々の粒子の個数を計測する。全視野で計測された粒子の個数の合計を、全視野の合計面積で除して得られる算出値を、粒子密度D(単位:個/μm)とする。 Further, the particle density D of the particles constituting the protrusions on the second main surface of the polyester film can be obtained by the same method as the method for measuring the average particle diameter of the particles using SEM. That is, the surface of the polyester film on the specific coating layer side is observed at a magnification of 20000 times. Observation is performed on 10 arbitrarily selected fields of view, and the number of individual particles is measured using image software for particles that can be identified as protrusions in each field of view (particles that are visible as protrusions protruding from the base surface). do. The calculated value obtained by dividing the total number of particles measured in the entire field of view by the total area of the entire field of view is defined as the particle density D (unit: particles / μm 2 ).
(配向性)
 本フィルムは、2軸配向ポリエステルフィルムである。本開示において「2軸配向」とは、2軸方向に分子配向性を有する性質を意味する。
 分子配向性は、マイクロ波透過型分子配向計(例えば、MOA-6004、株式会社王子計測機器社製)を用いて測定する。2軸方向のなす角は、90°±5°が好ましく、90°±3°がより好ましく、90°±1°が更に好ましい。本フィルムは、長手方向及び幅方向に分子配向性を有することが好ましい。
(Orientation)
This film is a biaxially oriented polyester film. In the present disclosure, "biaxial orientation" means a property having molecular orientation in the biaxial direction.
The molecular orientation is measured using a microwave transmission type molecular orientation meter (for example, MOA-6004, manufactured by Oji Measuring Instruments Co., Ltd.). The angle formed in the biaxial direction is preferably 90 ° ± 5 °, more preferably 90 ° ± 3 °, and even more preferably 90 ° ± 1 °. This film preferably has molecular orientation in the longitudinal direction and the width direction.
(筋状欠陥領域)
 本開示において「筋状欠陥」とは、フィルムの長手方向に沿って筋状に延び、かつ、フィルムの幅方向においては凹凸として現れるシワをいう。後述するように、筋状欠陥は製造後のフィルムに生じるものであるから、不可逆的に発生するシワである場合が多い。筋状欠陥は、フィルムの製造時の熱処理において生じるものではなく、製造後のフィルムに対する熱処理において生じる波状のシワに由来し、上記波状のシワが、熱処理後の冷却により固化したものである。そして、「筋状欠陥領域」とは、フィルム面内において筋状欠陥が発生した部分を意味する。
 筋状欠陥領域が発生(すなわち、フィルム面内において筋状欠陥が部分的に発生)すると、剥離層に厚さムラを生じさせて、剥離層の塗布性を低下させ、結果として、セラミックコンデンサーの性能に影響を及ぼす可能性がある。また、筋状欠陥領域は、フィルムの長手方向に引張荷重が加えられた状態で加熱された際に顕著に発生する傾向にある。
(Streak defect area)
In the present disclosure, the "streak defect" means a wrinkle that extends in a streak shape along the longitudinal direction of the film and appears as unevenness in the width direction of the film. As will be described later, since the streak defects occur in the film after production, they are often wrinkles that occur irreversibly. The streak defects do not occur in the heat treatment during the production of the film, but are derived from the wrinkles generated in the heat treatment for the film after the production, and the wrinkles are solidified by cooling after the heat treatment. The "streak defect region" means a portion in the film surface where the streak defect has occurred.
When a streak defect region is generated (that is, a streak defect is partially generated in the film surface), the peeling layer becomes uneven in thickness, and the coatability of the peeling layer is deteriorated, resulting in the ceramic capacitor. May affect performance. Further, the streak defect region tends to be remarkably generated when the film is heated in a state where a tensile load is applied in the longitudinal direction of the film.
 90℃で加熱した場合に発生する筋状欠陥領域の合計面積のポリエステルフィルムの観察領域の全面積に対する比率(以下、「筋状欠陥領域の面積比」ともいう。)は、剥離層の塗布性をより向上できる点で、40%以下が好ましく、30%以下がより好ましく、20%以下が更に好ましい。
 筋状欠陥領域の面積比の下限は特に制限されないが、90℃で加熱した場合に発生する筋状欠陥領域の面積比は少ないことが好ましく、筋状欠陥領域がない、つまり0%であることがより好ましい。
The ratio of the total area of the streak defect region generated when heated at 90 ° C. to the total area of the observation region of the polyester film (hereinafter, also referred to as “area ratio of the streak defect region”) is the coatability of the release layer. 40% or less is preferable, 30% or less is more preferable, and 20% or less is further preferable.
The lower limit of the area ratio of the streak defect region is not particularly limited, but the area ratio of the streak defect region generated when heated at 90 ° C. is preferably small, and there is no streak defect region, that is, 0%. Is more preferable.
 上記の筋状欠陥領域の面積比は、以下の方法により測定する。
(1)加熱搬送装置を用いて、ポリエステルフィルムに対して、搬送速度30m/分、及び、搬送方向の張力100N/mの条件で搬送しながら、フィルムの表面温度が90℃となる条件で加熱処理を20秒間行う。加熱処理における加熱時間は、フィルムの表面温度が目的とする温度(90℃)に達した時点から起算し、そこから連続した20秒間、加熱する。フィルムの表面温度の測定方法については後述する。
(2)加熱処理を施したポリエステルフィルムを黒色の平板上に置き、次いで、室内の天井に設置された蛍光灯〔例えば、三菱電機株式会社製のルピカエース(色温度:5000K、平均演色評価数(Ra):84)〕の光が反射するように視点を変えながらポリエステルフィルムを斜めから目視で観察する。目視により観察される、ポリエステルフィルムの表面に映った蛍光灯の反射像がうねっている領域を筋状欠陥領域とする。
(3)観察される筋状欠陥領域の個数を数えるとともに、目視で観察されるポリエステルフィルムの観察領域(面積1mの領域)に存在する各筋状欠陥領域の外周をマーキングする。次いで、各筋状欠陥領域の外周に外接する平行な2本の接線のうち、接線間の距離が最大となるように選ばれる平行な2本の接線の距離を長軸の長さLと、長さLを与える平行な2本の接線に直交し、且つ、筋状欠陥領域の外周に外接する平行な2本の接線の距離を短軸の長さSとを計測する。得られた長さL及びSから、下記式により各筋状欠陥領域の面積を算出する。これらの値から、筋状欠陥領域の合計面積のポリエステルフィルムの全面積に対する比率を算出する。
 筋状欠点領域の長軸の長さL×筋状欠点領域の短軸の長さS×π=筋状欠点領域の面積筋状欠陥領域は上記の通り楕円状又は円状であることが多いため、上記(3)の算出方法により筋状欠陥領域の面積が算出できる。
The area ratio of the streak defect region is measured by the following method.
(1) Using a heating and transporting device, heat the polyester film under the conditions of a transport speed of 30 m / min and a tension of 100 N / m in the transport direction while the surface temperature of the film is 90 ° C. The process is performed for 20 seconds. The heating time in the heat treatment is calculated from the time when the surface temperature of the film reaches the target temperature (90 ° C.), and the film is heated for 20 consecutive seconds from there. The method for measuring the surface temperature of the film will be described later.
(2) A heat-treated polyester film was placed on a black flat plate, and then a fluorescent lamp installed on the ceiling of the room [For example, Lupica Ace manufactured by Mitsubishi Electric Co., Ltd. (color temperature: 5000K, average color rendering index) ( The polyester film is visually observed from an angle while changing the viewpoint so that the light of Ra): 84)] is reflected. The region where the reflected image of the fluorescent lamp reflected on the surface of the polyester film, which is visually observed, is undulating is defined as a streak defect region.
(3) The number of observed streak defect regions is counted, and the outer circumference of each streak defect region existing in the visually observed observation region (area 1 m 2) of the polyester film is marked. Next, of the two parallel tangents circumscribing the outer periphery of each streak defect region, the distance between the two parallel tangents selected so as to maximize the distance between the tangents is defined as the length L of the major axis. The distance between two parallel tangents orthogonal to the two parallel tangents giving the length L and circumscribing the outer periphery of the streak defect region is measured with the length S of the minor axis. From the obtained lengths L and S, the area of each streak defect region is calculated by the following formula. From these values, the ratio of the total area of the streak defect region to the total area of the polyester film is calculated.
Length of the major axis of the streak defect region L × Length of the minor axis of the streak defect region S × π = Area of the streak defect region The streak defect region is often elliptical or circular as described above. Therefore, the area of the streak defect region can be calculated by the calculation method of (3) above.
 図2に、上記(1)の加熱処理により発生した筋状欠陥領域が観察されるポリエステルフィルムの画像(写真)を示す。図2において示す実線で囲まれた領域が筋状欠陥領域である。図2に示す筋状欠陥領域では、搬送(MD)方向に延びる凹凸形状が観察される。なお、図2に示す画像(写真)は、観察領域の一部のみを示している。
 このように、筋状欠陥領域は、楕円形状又は円形状であることが多い。また、筋状欠陥領域が発生する場合、長軸の方向が搬送方向に沿っている楕円形状の筋状欠陥領域が少なくとも1つ現れることが多い。
FIG. 2 shows an image (photograph) of a polyester film in which a streak defect region generated by the heat treatment of (1) above is observed. The region surrounded by the solid line shown in FIG. 2 is the streak defect region. In the streak defect region shown in FIG. 2, an uneven shape extending in the transport (MD) direction is observed. The image (photograph) shown in FIG. 2 shows only a part of the observation area.
As described above, the streak defect region is often elliptical or circular. Further, when a streak defect region is generated, at least one elliptical streak defect region whose long axis direction is along the transport direction often appears.
 筋状欠陥領域の面積比が上記範囲にある2軸配向ポリエステルフィルムは、後述するポリエステルフィルムの製造方法における、熱固定工程における熱固定温度、冷却工程におけるポリエステルフィルムの冷却速度、及び、拡張工程におけるポリエステルフィルムの幅方向の拡張率を調整することにより、製造できる。 The biaxially oriented polyester film having the area ratio of the streak defect region in the above range is used in the heat fixing temperature in the heat fixing step, the cooling rate of the polyester film in the cooling step, and the expansion step in the polyester film manufacturing method described later. It can be manufactured by adjusting the expansion ratio of the polyester film in the width direction.
(膨張率)
 ポリエステルフィルムは、90℃における幅方向の膨張率が、30℃におけるフィルム幅に対して、-0.15~0.15%であることが好ましく、-0.10~0.10%であることがより好ましく、0~0.10%であることが更に好ましく、0~0.05%であることが特に好ましい。
 ポリエステルフィルムにおける90℃における幅方向の膨張率を上記範囲に調整することで、加熱過程におけるフィルムの幅方向への膨張を抑えるだけでなく、フィルム面の場所ごとの膨張率ムラを小さくできる。その結果、加熱に起因する筋状欠陥領域の発生を抑制できると推察される。
(Expansion rate)
The expansion rate of the polyester film in the width direction at 90 ° C. is preferably −0.15 to 0.15%, preferably −0.10 to 0.10%, based on the film width at 30 ° C. Is more preferable, 0 to 0.10% is further preferable, and 0 to 0.05% is particularly preferable.
By adjusting the expansion coefficient in the width direction of the polyester film at 90 ° C. within the above range, not only the expansion of the film in the width direction in the heating process can be suppressed, but also the expansion coefficient unevenness in each place on the film surface can be reduced. As a result, it is presumed that the generation of streaky defect regions due to heating can be suppressed.
 90℃における幅方向の膨張率は、熱機械分析装置を用いて以下の方法により測定する。
(1)2軸配向フィルムの幅方向に対して平行な方向に少なくとも20mm、2軸配向フィルムの幅方向に対して直交する方向に4mmの長さに調節された試料を準備する。
(2)熱機械分析装置(例えば、TMA-60、株式会社島津製作所製)を用い、幅4mm及び長さ(チャック間距離)20mmの試料に対し、引張荷重0.1gを負荷する。
(3)上記試料を20℃以上30℃未満の温度(好ましくは25℃)から150℃まで昇温速度5℃/分で昇温させることにより、各温度(℃)における試料の長さの値を得る。
(4)30℃における試料の長さ(L30)、及び、90℃における長さ(L90)から、下記式を用いて90℃における幅方向の膨張率を求める。本開示において、幅方向の膨張率は、5つの試料を用いて得られる膨張率の算術平均値とする。なお、正の膨張率は膨張を意味し、負の膨張率は収縮を意味する。
 式:膨張率(%)=(L90-L30)/L30×100
The coefficient of expansion in the width direction at 90 ° C. is measured by the following method using a thermomechanical analyzer.
(1) Prepare a sample adjusted to a length of at least 20 mm in a direction parallel to the width direction of the biaxially oriented film and 4 mm in a direction orthogonal to the width direction of the biaxially oriented film.
(2) Using a thermomechanical analyzer (for example, TMA-60, manufactured by Shimadzu Corporation), a tensile load of 0.1 g is applied to a sample having a width of 4 mm and a length (distance between chucks) of 20 mm.
(3) The value of the length of the sample at each temperature (° C.) by raising the temperature of the above sample from a temperature of 20 ° C. or higher and lower than 30 ° C. (preferably 25 ° C.) to 150 ° C. at a heating rate of 5 ° C./min. To get.
(4) From the sample length (L30) at 30 ° C. and the length (L90) at 90 ° C., the expansion coefficient in the width direction at 90 ° C. is obtained using the following formula. In the present disclosure, the coefficient of expansion in the width direction is an arithmetic mean value of the coefficient of expansion obtained using five samples. A positive expansion rate means expansion, and a negative expansion rate means contraction.
Equation: Expansion rate (%) = (L90-L30) / L30 × 100
 ポリエステルフィルムの幅方向の膨張率は、例えば、2軸配向フィルムの製造過程における延伸倍率、熱処理温度、及び冷却中のフィルム幅を適宜設定することにより調節できる。 The expansion rate in the width direction of the polyester film can be adjusted, for example, by appropriately setting the draw ratio in the manufacturing process of the biaxially oriented film, the heat treatment temperature, and the film width during cooling.
(フィルム密度)
 ポリエステルフィルムの密度は、本発明の効果により優れる点で、1.39~1.41g/cmが好ましく、1.395~1.405g/cmがより好ましく、1.398~1.400g/cmが更に好ましい。
 ポリエステルフィルムの密度は、電子比重計(製品名「SD-200L」、アルファーミラージュ社製)を使用して測定できる。
(Film density)
The density of the polyester film, in view of more excellent effects of the present invention, preferably 1.39 ~ 1.41g / cm 3, more preferably 1.395 ~ 1.405g / cm 3, 1.398 ~ 1.400g / cm 3 is more preferred.
The density of the polyester film can be measured using an electronic hydrometer (product name "SD-200L", manufactured by Alpha Mirage Co., Ltd.).
(厚さ)
 ポリエステルフィルムの厚さは、剥離性がより優れる点で、100μm以下が好ましく、50μm以下がより好ましく、40μm以下が更に好ましい。厚さの下限は特に制限されないが、ハンドリング性に優れる点で、3μm以上が好ましく、5μm以上がより好ましく、10μm以上が更に好ましい。
 ポリエステルフィルムの厚さは、連続式触針式膜厚計により測定される5か所の厚さの算術平均値とする。
(thickness)
The thickness of the polyester film is preferably 100 μm or less, more preferably 50 μm or less, still more preferably 40 μm or less, in that the peelability is more excellent. The lower limit of the thickness is not particularly limited, but 3 μm or more is preferable, 5 μm or more is more preferable, and 10 μm or more is further preferable, from the viewpoint of excellent handleability.
The thickness of the polyester film shall be the arithmetic mean value of the thicknesses at five points measured by the continuous stylus type film thickness meter.
 また、ポリエステルフィルムの厚さのバラツキは、剥離層を形成する第1主面の表面平滑性がより優れる点で、ポリエステルフィルムの平均厚さの7%以下が好ましく、5%以下がより好ましい。厚さバラつきの下限は特に制限されず、ポリエステルフィルムの平均厚さの0%以上であってよい。
 厚さバラツキは、以下の測定方法で得られる。連続式触針式膜厚計を用いて、ポリエステルフィルムの厚さを、長手方向に沿って10mにわたり測定する。この測定を、幅方向の位置が異なる5か所において行う。得られた測定値から、最大値と最小値との差を全測定値の算術平均値で割って得られる値((最大厚さ-最小厚さ)/平均厚さ)を、厚さバラツキとする。
Further, the variation in the thickness of the polyester film is preferably 7% or less, more preferably 5% or less of the average thickness of the polyester film in that the surface smoothness of the first main surface forming the release layer is more excellent. The lower limit of the thickness variation is not particularly limited, and may be 0% or more of the average thickness of the polyester film.
The thickness variation can be obtained by the following measuring method. Using a continuous stylus film thickness meter, the thickness of the polyester film is measured over 10 m along the longitudinal direction. This measurement is performed at five locations where the positions in the width direction are different. From the obtained measured values, the value obtained by dividing the difference between the maximum value and the minimum value by the arithmetic mean value of all the measured values ((maximum thickness-minimum thickness) / average thickness) is defined as the thickness variation. do.
(剥離帯電量)
 ポリエステルフィルムは、剥離層の塗布性が向上する点で、下記の測定方法により、温度23℃、相対湿度(RH)20%の環境下で測定された、直径1.5cmφの円形に相当するポリエステルフィルムの第1主面と第2主面との剥離帯電量の絶対値が、0.12nc(ナノクーロン)以下であることが好ましく、0.11nc以下であることがより好ましく、0.1nc以下であることが更に好ましい。ここで、単位のnc(ナノクーロン)は、10-9クーロンである。
(Peeling charge amount)
The polyester film is a polyester corresponding to a circle with a diameter of 1.5 cmφ measured in an environment of a temperature of 23 ° C. and a relative humidity (RH) of 20% by the following measurement method in that the coatability of the release layer is improved. The absolute value of the peel charge amount between the first main surface and the second main surface of the film is preferably 0.12 nc (nanocoolon) or less, more preferably 0.11 nc or less, and 0.1 nc or less. Is more preferable. Here, the unit nc (nanocoulomb) is 10-9 coulombs.
 ポリエステルフィルムの剥離帯電量の測定方法は、以下の通りである。
 測定装置として、ポリエステルフィルムの基準サンプル(第1主面を上面)を置く台と、測定サンプル(第2主面を下面)を保持しながら鉛直方向に沿って上昇及び下降することにより、基準サンプルの第1主面に対して測定サンプルの第2主面の圧着及び剥離を繰り返し行うことができるヘッドと、このヘッドにつながっており測定サンプルの帯電量を測定できるエレクトロメーターとを備える装置を使用する。
 ポリエステルフィルムを、直径1.5cmの大きさの円形に切り取って剥離帯電量測定用のサンプルを作製し、また、13cm×4cmの大きさの長方形に切り取って剥離帯電量測定の基準となるサンプルを作製する。次いで、得られたポリエステルフィルムのサンプルを、予め上記の測定温度及び湿度の環境下で2時間以上放置する。その後、基準サンプルを測定装置の台に載せ、ヘッドに測定サンプルを装着する。このとき、基準サンプルの第1主面と測定サンプルの第2主面とが互いに対向するように、台に載せる基準サンプルにおいて第1主面を上面側に、ヘッドに装着する測定サンプルの第2主面を下面側に、それぞれ配置する。
 測定サンプルを除電したのち、ヘッドを上昇又は下降させて、測定サンプルに対する基準フィルムの圧着及び剥離を繰り返す。同じ測定サンプルを用いて1回目から5回目の剥離後のそれぞれにおいて測定サンプルの帯電量を測定し、測定値の平均値を算出する。測定サンプルを変えるとともに、基準サンプルにおいて測定サンプルが接触する位置を測定サンプルごとに変えて、合計で4つのサンプルで測定を行い、全てを平均したものを剥離帯電量とする。
 ポリエステルフィルムの剥離帯電量の測定方法については、特開2003-194865号公報(特に[0053]~[0067])に記載の内容も参照でき、上記公報の記載内容は、本明細書に組み込まれる。
The method for measuring the peeling charge amount of the polyester film is as follows.
As a measuring device, a reference sample is placed by placing a reference sample of polyester film (first main surface on the upper surface) and ascending and descending along the vertical direction while holding the measurement sample (second main surface on the lower surface). A device equipped with a head capable of repeatedly crimping and peeling the second main surface of the measurement sample against the first main surface of the measurement sample and an electrometer connected to the head and capable of measuring the charge amount of the measurement sample is used. do.
A polyester film is cut into a circle with a diameter of 1.5 cm to prepare a sample for measuring the peeling charge, and a rectangular with a size of 13 cm × 4 cm is cut to prepare a sample as a reference for measuring the peeling charge. To make. Next, the obtained polyester film sample is left to stand in advance under the above-mentioned measurement temperature and humidity environment for 2 hours or more. After that, the reference sample is placed on the base of the measuring device, and the measurement sample is attached to the head. At this time, in the reference sample to be placed on the table so that the first main surface of the reference sample and the second main surface of the measurement sample face each other, the first main surface is on the upper surface side and the second main surface of the measurement sample is mounted on the head. The main surface is arranged on the lower surface side, respectively.
After static elimination of the measurement sample, the head is raised or lowered, and the reference film is repeatedly crimped and peeled off from the measurement sample. Using the same measurement sample, the charge amount of the measurement sample is measured after the first to fifth peeling, and the average value of the measured values is calculated. While changing the measurement sample, the position where the measurement sample contacts in the reference sample is changed for each measurement sample, and the measurement is performed with a total of four samples, and the average of all is taken as the peeling charge amount.
Regarding the method for measuring the peeling charge amount of the polyester film, the contents described in JP-A-2003-194865 (particularly [0053] to [0067]) can also be referred to, and the contents described in the above publication are incorporated in the present specification. ..
 剥離帯電量は、ポリエステル基材と特定塗布層に含まれるバインダー及び界面活性剤等の成分の種類及び量を選択することにより調整できる。より具体的には、ポリエステル基材、バインダー及び界面活性剤からなる群より選択される2つについて、帯電列においてより近い材料を選択することにより、剥離帯電量を上記の範囲に調整できる。 The amount of peeling charge can be adjusted by selecting the type and amount of components such as the binder and the surfactant contained in the polyester base material and the specific coating layer. More specifically, the peel charge amount can be adjusted within the above range by selecting a material closer in the charging column for the two selected from the group consisting of the polyester substrate, the binder and the surfactant.
〔製造方法〕
 本フィルムの製造方法としては、例えば、ポリエステル基材を有する未延伸ポリエステルフィルムを2軸延伸する2軸延伸工程と、粒子を含有する特定塗布層を形成する特定塗布層形成工程と、を有する方法が挙げられる。
〔Production method〕
As a method for producing this film, for example, a method including a biaxial stretching step of biaxially stretching an unstretched polyester film having a polyester base material and a specific coating layer forming step of forming a specific coating layer containing particles. Can be mentioned.
 2軸延伸は、縦延伸及び横延伸を同時に行う同時2軸延伸であってもよく、縦延伸及び横延伸を2段階以上の多段階に分けて行う逐次2軸延伸であってもよい。逐次2軸延伸の形態としては、例えば、縦延伸→横延伸、縦延伸→横延伸→縦延伸、縦延伸→縦延伸→横延伸、及び横延伸→縦延伸が挙げられ、縦延伸→横延伸が好ましい。 The biaxial stretching may be simultaneous biaxial stretching in which longitudinal stretching and transverse stretching are performed at the same time, or sequential biaxial stretching in which longitudinal stretching and transverse stretching are divided into two or more stages. Examples of the form of sequential biaxial stretching include longitudinal stretching → transverse stretching, longitudinal stretching → transverse stretching → longitudinal stretching, longitudinal stretching → longitudinal stretching → transverse stretching, and transverse stretching → longitudinal stretching, and longitudinal stretching → transverse stretching. Is preferable.
<延伸機>
 2軸延伸に使用する装置は特に制限されず、公知の延伸機を利用できる。以下、延伸機の一例について図面を参照して説明する。
<Stretching machine>
The apparatus used for biaxial stretching is not particularly limited, and a known stretching machine can be used. Hereinafter, an example of the stretching machine will be described with reference to the drawings.
 図3は、ポリエステルフィルムの製造に用いられる延伸機の一例を示す平面図である。
 図3に示す延伸機100は、1対の環状レール60a及び60bと、各環状レールに取り付けられ、レールに沿って移動可能な把持部材2a~2lと、を備えている。環状レール60a及び60bは、フィルム200を挟んで互いに対称的に配置されている。延伸機100は、把持部材2a~2lでフィルム200を把持し、レールに沿って把持部材2a~2lを移動させることにより、フィルム200を幅方向に延伸できる。
FIG. 3 is a plan view showing an example of a stretching machine used for manufacturing a polyester film.
The stretching machine 100 shown in FIG. 3 includes a pair of annular rails 60a and 60b, and gripping members 2a to 2l attached to each annular rail and movable along the rails. The annular rails 60a and 60b are arranged symmetrically with respect to each other with the film 200 interposed therebetween. The stretching machine 100 can stretch the film 200 in the width direction by gripping the film 200 with the gripping members 2a to 2l and moving the gripping members 2a to 2l along the rail.
 延伸機100は、搬送方向上流側から順に、予熱部10と、延伸部20と、熱固定部30と、熱緩和部40と、冷却部50と、からなる領域を有する。
 延伸機100が有する上記の領域は、遮風カーテンで区分され、熱風等により個々に領域内の温度を調整できる。
The stretching machine 100 has a region including a preheating section 10, a stretching section 20, a heat fixing section 30, a heat relaxing section 40, and a cooling section 50 in this order from the upstream side in the transport direction.
The above-mentioned region of the stretching machine 100 is divided by a windbreak curtain, and the temperature in the region can be individually adjusted by hot air or the like.
 予熱部10は、フィルム200を予熱する領域である。 The preheating unit 10 is a region for preheating the film 200.
 延伸部20は、予熱されたフィルム200を矢印MDの方向(長手方向)と直交する方向である矢印TDの方向(幅方向)に緊張を与えて延伸する領域である。図3に示すように、延伸部20において、フィルム200は幅L0から幅L1まで延伸される。 The stretched portion 20 is a region in which the preheated film 200 is stretched by applying tension in the direction of the arrow TD (width direction), which is a direction orthogonal to the direction of the arrow MD (longitudinal direction). As shown in FIG. 3, in the stretched portion 20, the film 200 is stretched from the width L0 to the width L1.
 熱固定部30は、緊張が与えられたフィルム200に緊張を与えたまま加熱して熱固定する領域である。 The heat fixing portion 30 is a region where the film 200 to which tension is applied is heated and heat-fixed while being tensioned.
 熱緩和部40は、熱固定したフィルム200を加熱することにより熱固定したフィルム200の緊張を熱緩和する領域である。
 図3に示すように、熱緩和部40において、フィルム200は幅L1から幅L2にまで縮小(緩和)される。
The heat relaxation unit 40 is a region for heat relaxation of the tension of the heat-fixed film 200 by heating the heat-fixed film 200.
As shown in FIG. 3, in the heat relaxation unit 40, the film 200 is reduced (relaxed) from the width L1 to the width L2.
 冷却部50は、熱緩和されたフィルム200を冷却する領域である。フィルム200を冷却することにより、フィルム200の形状を固定化できる。
 図3には、冷却部50に搬入されるフィルム200の幅がL2であり、冷却部50から搬出されるフィルム200の幅がL3であることが示されている。
The cooling unit 50 is a region for cooling the heat-relaxed film 200. By cooling the film 200, the shape of the film 200 can be fixed.
FIG. 3 shows that the width of the film 200 carried into the cooling unit 50 is L2, and the width of the film 200 carried out from the cooling unit 50 is L3.
 環状レール60aには、環状レール60aに沿って移動可能な把持部材2a、2b、2e、2f、2i、及び2jが取り付けられている。環状レール60bには、環状レール60bに沿って移動可能な把持部材2c、2d、2g、2h、2k、及び2lが取り付けられている。
 把持部材2a、2b、2e、2f、2i、及び2jは、フィルム200の矢印TDの方向の一方の端部を把持する。把持部材2c、2d、2g、2h、2k、及び2lは、フィルム200の矢印TDの方向の他方の端部を把持する。把持部材2a~2lは、一般に、チャック、クリップ等と称される。
 把持部材2a、2b、2e、2f、2i、及び2jは、環状レール60aに沿って反時計回りに移動する。把持部材2c、2d、2g、2h、2k、及び2lは、環状レール60bに沿って時計回りに移動する。
The annular rail 60a is attached with gripping members 2a, 2b, 2e, 2f, 2i, and 2j that are movable along the annular rail 60a. The annular rail 60b is attached with gripping members 2c, 2d, 2g, 2h, 2k, and 2l that are movable along the annular rail 60b.
The gripping members 2a, 2b, 2e, 2f, 2i, and 2j grip one end of the film 200 in the direction of the arrow TD. The gripping members 2c, 2d, 2g, 2h, 2k, and 2l grip the other end of the film 200 in the direction of the arrow TD. The gripping members 2a to 2l are generally referred to as chucks, clips and the like.
The gripping members 2a, 2b, 2e, 2f, 2i, and 2j move counterclockwise along the annular rail 60a. The gripping members 2c, 2d, 2g, 2h, 2k, and 2l move clockwise along the annular rail 60b.
 把持部材2a~2dは、予熱部10においてフィルム200の端部を把持したまま環状レール60a又は60bに沿って移動し、延伸部20、熱固定部30、及び熱緩和部40を経て、冷却部50まで進行する。次に、把持部材2a及び2bと、把持部材2c及び2dとは、搬送方向順に、冷却部50の矢印MDの方向下流側の端部(例えば、図3における把持解除点P及び把持解除点Q)でフィルム200の端部を離した後、更に環状レール60a又は60bに沿って移動し、予熱部10に戻る。上記過程において、フィルム200は、矢印MDの方向に移動することで、予熱部10での予熱、延伸部20での延伸、熱固定部30での熱固定、熱緩和部40での熱緩和、及び冷却部50での冷却が行われ、横延伸される。 The gripping members 2a to 2d move along the annular rail 60a or 60b while gripping the end portion of the film 200 in the preheating portion 10, pass through the stretching portion 20, the heat fixing portion 30, and the heat relaxing portion 40, and then the cooling portion. Proceed to 50. Next, the gripping members 2a and 2b and the gripping members 2c and 2d are end portions on the downstream side in the direction of the arrow MD of the cooling unit 50 (for example, the gripping release point P and the grip release point Q in FIG. 3) in the order of transport direction. After separating the end portion of the film 200 at), the film further moves along the annular rail 60a or 60b and returns to the preheating portion 10. In the above process, by moving the film 200 in the direction of the arrow MD, preheating in the preheating section 10, stretching in the stretching section 20, heat fixing in the heat fixing section 30, heat relaxation in the heat relaxing section 40, And cooling is performed by the cooling unit 50, and the film is laterally stretched.
 把持部材2a~2lの移動速度を調節することで、フィルム200の搬送速度を調節できる。また、把持部材2a~2lは、各々独立に、移動速度を変化することができる。 By adjusting the moving speed of the gripping members 2a to 2l, the transport speed of the film 200 can be adjusted. Further, the gripping members 2a to 2l can independently change the moving speed.
 上記のとおり、延伸機100は、延伸部20において、フィルム200を矢印TDの方向に延伸する横延伸を可能とするものである。一方、延伸機100は、把持部材2a~2lの移動速度を変化させることにより、フィルム200を矢印MDの方向に延伸することもできる。すなわち、延伸機100を用いて同時2軸延伸を行うことも可能である。 As described above, the stretching machine 100 enables lateral stretching in the stretching portion 20 to stretch the film 200 in the direction of the arrow TD. On the other hand, the stretching machine 100 can also stretch the film 200 in the direction of the arrow MD by changing the moving speed of the gripping members 2a to 2l. That is, it is also possible to perform simultaneous biaxial stretching using the stretching machine 100.
 延伸機100は、フィルム200を支えるために、把持部材2a~2lに加えて、他の把持部材を更に有していてもよい(不図示)。 The stretching machine 100 may further have other gripping members in addition to the gripping members 2a to 2l in order to support the film 200 (not shown).
 次に、本製造方法について、具体的に説明する。
 本製造方法としては、例えば、原料ポリエステルを含有する溶融樹脂をフィルム状に押し出して、ポリエステル基材を有する未延伸ポリエステルフィルムを形成する押出成形工程と、未延伸ポリエステルフィルムを搬送方向に延伸して1軸配向ポリエステルフィルムを形成する縦延伸工程、及び、1軸配向ポリエステルフィルムを幅方向に延伸して2軸配向ポリエステルフィルムを形成する横延伸工程からなる2軸延伸工程と、2軸配向ポリエステルフィルムを加熱して熱固定する熱固定工程と、熱固定工程により熱固定されたポリエステルフィルムを熱固定工程よりも低い温度で加熱して熱緩和する熱緩和工程と、熱緩和工程により熱緩和されたポリエステルフィルムを冷却する冷却工程と、冷却工程において、熱緩和されたポリエステルフィルムを幅方向に拡張する拡張工程と、粒子を含有する特定塗布層形成用組成物を用いてインラインコーティング法によりポリエステル基材の一方の面に特定塗布層を設ける特定塗布層形成工程と、を有する方法が挙げられる。
Next, this manufacturing method will be specifically described.
The manufacturing method includes, for example, an extrusion molding step of extruding a molten resin containing a raw material polyester into a film to form an unstretched polyester film having a polyester base material, and stretching the unstretched polyester film in a transport direction. A biaxial stretching step consisting of a longitudinal stretching step of forming a uniaxially oriented polyester film and a transverse stretching step of stretching the uniaxially oriented polyester film in the width direction to form a biaxially oriented polyester film, and a biaxially oriented polyester film. The heat was relaxed by a heat fixing step of heating and heat fixing, a heat relaxation step of heating the polyester film heat-fixed by the heat fixing step at a temperature lower than that of the heat fixing step, and heat relaxation. A cooling step for cooling the polyester film, an expansion step for expanding the heat-relaxed polyester film in the width direction in the cooling step, and a polyester substrate by an in-line coating method using a composition for forming a specific coating layer containing particles. Examples thereof include a method having a specific coating layer forming step of providing a specific coating layer on one surface.
<押出成形工程>
 押出成形工程は、押出成形法により原料のポリエステルを含有する溶融樹脂をフィルム状に押し出して、未延伸ポリエステルフィルムを形成する工程である。原料のポリエステルについては、上記の(ポリエステル)の項目において説明したポリエステルと同義である。
<Extrusion molding process>
The extrusion molding step is a step of extruding a molten resin containing polyester as a raw material into a film by an extrusion molding method to form an unstretched polyester film. The raw material polyester has the same meaning as the polyester described in the above item (polyester).
 押出成形法は、例えば押出機を用いて原料樹脂の溶融体を押し出すことによって、原料樹脂を所望の形状に成形する方法である。
 ポリエステルを含有する溶融樹脂は、例えば、1本又は2本以上のスクリュを備えた押出機を用いて、上述したポリエステルを融点以上の温度に加熱し、そして、スクリュを回転させて溶融混練することにより、形成される。ポリエステルは、加熱及びスクリュによる混練により、押出機内で溶融して溶融体(メルト)となる。
The extrusion molding method is a method of molding a raw material resin into a desired shape by extruding a melt of the raw material resin using, for example, an extruder.
For the molten resin containing polyester, for example, using an extruder equipped with one or more screws, the polyester described above is heated to a temperature equal to or higher than the melting point, and the screw is rotated to melt and knead. Is formed by. Polyester is melted in an extruder by heating and kneading with a screw to form a melt.
 溶融体は、ギアポンプ、及び濾過器等を通して、押出ダイから押し出される。押出ダイは、単に「ダイ」とも称する(JIS B8650:2006、a、押出成形機、番号134参照)。例えば、特開2005-297266号公報に記載の押出しダイ、特開平1-154720号公報に記載の押出しダイ、及び、それらの組合せを使用することもできる。溶融体は、単層で押出されてもよく、多層で押出されてもよい。 The melt is extruded from the extrusion die through a gear pump, a filter, etc. The extrusion die is also simply referred to as a "die" (see JIS B8650: 2006, a, extruder, number 134). For example, the extruded die described in JP-A-2005-297266, the extruded die described in JP-A-1-154720, and a combination thereof can also be used. The melt may be extruded in a single layer or in multiple layers.
 溶融押出においては、押出機内での熱分解(例えばポリエステルの加水分解)を抑制する観点から、押出機内を窒素置換することが好ましい。また、押出機は、混練温度が低く抑えられる点で2軸押出機が好ましい。 In melt extrusion, it is preferable to replace the inside of the extruder with nitrogen from the viewpoint of suppressing thermal decomposition (for example, hydrolysis of polyester) in the extruder. Further, the extruder is preferably a twin-screw extruder because the kneading temperature can be kept low.
 押出ダイから押し出された溶融体は、冷却されることによってフィルム状に成形される。例えば、溶融体をキャスティングロールに接触させ、キャスティングロール上で溶融体を冷却及び固化することで、溶融体をフィルム状に成形できる。溶融体の冷却においては、更に、溶融体に風(好ましくは冷風)を当てることが好ましい。 The melt extruded from the extrusion die is cooled to form a film. For example, the melt can be formed into a film by bringing the melt into contact with a casting roll and cooling and solidifying the melt on the casting roll. In cooling the melt, it is more preferable to blow wind (preferably cold air) on the melt.
 キャスティングロールの温度は、(Tg-10)℃を超え(Tg+30)℃以下が好ましく、(Tg-7)~(Tg+20)℃がより好ましく、(Tg-5)~(Tg+10)℃が更に好ましい。上記の「Tg」は、フィルムを構成するポリエステルのガラス転移温度を意味する。
 ここで、本製造方法におけるポリエステルフィルム及び各部材の温度は、非接触式温度計(例えば、放射温度計)を用いて測定できる。フィルムの表面温度は、フィルムの幅方向中央部の温度を5回計測し、得られた計測値の平均値を算出することにより求められる。
The temperature of the casting roll is preferably more than (Tg-10) ° C. and (Tg + 30) ° C., more preferably (Tg-7) to (Tg + 20) ° C., and even more preferably (Tg-5) to (Tg + 10) ° C. The above-mentioned "Tg" means the glass transition temperature of the polyester constituting the film.
Here, the temperature of the polyester film and each member in the present manufacturing method can be measured by using a non-contact thermometer (for example, a radiation thermometer). The surface temperature of the film is obtained by measuring the temperature of the central portion in the width direction of the film five times and calculating the average value of the obtained measured values.
 押出成形工程においてキャスティングロールを用いる場合、キャスティングロールと溶融体との密着性を上げることが好ましい。密着性を上げる方法としては、例えば、静電印加法、エアーナイフ法、エアーチャンバー法、バキュームノズル法、及びタッチロール法が挙げられる。 When a casting roll is used in the extrusion molding process, it is preferable to improve the adhesion between the casting roll and the melt. Examples of the method for improving the adhesion include an electrostatic application method, an air knife method, an air chamber method, a vacuum nozzle method, and a touch roll method.
 キャスティングロール等を用いて冷却された成形体(未延伸ポリエステルフィルム)は、剥ぎ取りロール等の剥ぎ取り部材を用いて、キャスティングロール等の冷却部材から剥ぎ取られる。 The molded product (unstretched polyester film) cooled using a casting roll or the like is stripped from the cooling member such as a casting roll by using a stripping member such as a stripping roll.
<2軸延伸工程>
 2軸延伸工程は、未延伸ポリエステルフィルムを搬送方向に延伸(以下、「縦延伸」ともいう。)して1軸配向ポリエステルフィルムを形成する縦延伸工程、及び、1軸配向ポリエステルフィルムを幅方向に延伸(以下、「横延伸」ともいう。)して2軸配向ポリエステルフィルムを形成する横延伸工程を有する。
<Biaxial stretching process>
The biaxial stretching step is a longitudinal stretching step of stretching the unstretched polyester film in the transport direction (hereinafter, also referred to as “longitudinal stretching”) to form a uniaxially oriented polyester film, and a longitudinal stretching step of forming the uniaxially oriented polyester film in the width direction. It has a transverse stretching step of forming a biaxially oriented polyester film by stretching (hereinafter, also referred to as “lateral stretching”).
(縦延伸工程)
 縦延伸工程においては、縦延伸前に、未延伸ポリエステルフィルムを予熱することが好ましい。未延伸ポリエステルフィルムを予熱することで、ポリエステルフィルムを容易に縦延伸できる。
 未延伸ポリエステルフィルムの予熱温度は、(Tg-30)~(Tg+40)℃が好ましく、(Tg-20)~(Tg+30)℃がより好ましい。具体的に、予熱温度は、60~100℃が好ましく、65~80℃がより好ましい。
 未延伸ポリエステルフィルムを予熱する方法としては、例えば、縦延伸する延伸ロールよりも上流側に、フィルムを予熱する機能を有する予熱ロールを配置し、未延伸ポリエステルフィルムを搬送しながら予熱する方法が挙げられる。
(Vertical stretching process)
In the longitudinal stretching step, it is preferable to preheat the unstretched polyester film before longitudinal stretching. By preheating the unstretched polyester film, the polyester film can be easily stretched vertically.
The preheating temperature of the unstretched polyester film is preferably (Tg-30) to (Tg + 40) ° C, more preferably (Tg-20) to (Tg + 30) ° C. Specifically, the preheating temperature is preferably 60 to 100 ° C, more preferably 65 to 80 ° C.
As a method for preheating the unstretched polyester film, for example, a method of arranging a preheating roll having a function of preheating the film on the upstream side of the vertically stretched stretch roll and preheating while transporting the unstretched polyester film can be mentioned. Be done.
 また、延伸ロールがフィルムを予熱する機能を有してもよい。延伸ロールによるフィルムの予熱温度の好ましい範囲は、上記の予熱ロールの予熱温度の好ましい範囲と同じである。 Further, the stretched roll may have a function of preheating the film. The preferable range of the preheating temperature of the film by the stretch roll is the same as the preferable range of the preheating temperature of the preheating roll described above.
 縦延伸は、例えば、未延伸ポリエステルフィルムを長手方向に搬送しながら、搬送方向に設置した2対以上の延伸ロール間で緊張を与えることによって行うことができる。例えば、搬送方向上流側に1対の延伸ロールA、及び搬送方向下流側に1対の延伸ロールBを設置した場合、未延伸ポリエステルフィルムを搬送する際に延伸ロールBの回転速度を、延伸ロールAの回転速度より速くすることで、未延伸ポリエステルフィルムが長手方向に延伸される。 Longitudinal stretching can be performed, for example, by applying tension between two or more pairs of stretch rolls installed in the transport direction while transporting the unstretched polyester film in the longitudinal direction. For example, when a pair of stretched rolls A and a pair of stretched rolls B are installed on the upstream side in the transport direction, the rotation speed of the stretched rolls B is set when the unstretched polyester film is transported. By increasing the rotation speed of A, the unstretched polyester film is stretched in the longitudinal direction.
 縦延伸工程における、搬送方向上流側に設けた1対の延伸ロールA、及び、搬送方向下流側に設けた1対の延伸ロールBによるフィルムの搬送速度(周速度)は、延伸ロールAによるフィルムの搬送速度が、延伸ロールBによるフィルムの搬送速度よりも遅ければ、特に制限されない。
 延伸ロールAによるフィルムの搬送速度は、例えば、5~60m/分であり、10~50m/分が好ましく、15~45m/分がより好ましい。延伸ロールBによるフィルムの搬送速度は、例えば40~160m/分であり、50~150m/分が好ましく、60~140m/分がより好ましい。
In the longitudinal stretching step, the transport speed (peripheral speed) of the film by the pair of stretch rolls A provided on the upstream side in the transport direction and the pair of stretch rolls B provided on the downstream side in the transport direction is the film by the stretch roll A. The transport speed of the film is not particularly limited as long as it is slower than the transport speed of the film by the stretch roll B.
The transport speed of the film by the stretch roll A is, for example, 5 to 60 m / min, preferably 10 to 50 m / min, and more preferably 15 to 45 m / min. The transport speed of the film by the stretch roll B is, for example, 40 to 160 m / min, preferably 50 to 150 m / min, and more preferably 60 to 140 m / min.
 縦延伸工程における延伸倍率は、用途によって適宜設定されるが、2.0~5.0倍が好ましく、2.5~4.0倍がより好ましく、2.8~4.0倍が更に好ましい。 The draw ratio in the longitudinal stretching step is appropriately set depending on the application, but is preferably 2.0 to 5.0 times, more preferably 2.5 to 4.0 times, still more preferably 2.8 to 4.0 times. ..
 縦延伸工程における延伸速度は、800~1500%/秒が好ましく、1000~1400%/秒がより好ましく、1200~1400%/秒が更に好ましい。ここで、「延伸速度」とは、縦延伸工程において1秒間に延伸されたポリエステルフィルムの搬送方向の長さΔdを、延伸前のポリエステルフィルムの搬送方向の長さd0で除した値を、百分率で表した値である。 The stretching speed in the longitudinal stretching step is preferably 800 to 1500% / sec, more preferably 1000 to 1400% / sec, and even more preferably 1200 to 1400% / sec. Here, the "stretching speed" is a value obtained by dividing the length Δd in the transport direction of the polyester film stretched in 1 second in the longitudinal stretching step by the length d0 in the transport direction of the polyester film before stretching as a percentage. It is a value expressed by.
 縦延伸工程においては、未延伸ポリエステルフィルムを加熱することが好ましい。加熱により縦延伸が容易になるためである。
 縦延伸工程における加熱温度は、(Tg-20)~(Tg+50)℃が好ましく、(Tg-10)~(Tg+40)℃がより好ましく、(Tg)~(Tg+30)℃が更に好ましい。具体的に、縦延伸工程における加熱温度は、70~120℃が好ましく、80~110℃がより好ましく、85~100℃が更に好ましい。
In the longitudinal stretching step, it is preferable to heat the unstretched polyester film. This is because longitudinal stretching becomes easier by heating.
The heating temperature in the longitudinal stretching step is preferably (Tg-20) to (Tg + 50) ° C, more preferably (Tg-10) to (Tg + 40) ° C, and even more preferably (Tg) to (Tg + 30) ° C. Specifically, the heating temperature in the longitudinal stretching step is preferably 70 to 120 ° C, more preferably 80 to 110 ° C, and even more preferably 85 to 100 ° C.
 縦延伸工程において未延伸ポリエステルフィルムを加熱する方法としては、未延伸ポリエステルフィルムに接触する延伸ロール等のロールを加熱する方法が挙げられる。ロールを加熱する方法としては、例えば、ロール内部にヒーターを設ける方法、及び、ロール内部に配管を設け、その配管内に加熱した流体を流す方法が挙げられる。上記の他、例えば、未延伸ポリエステルフィルムに温風を当てる方法、並びに、未延伸ポリエステルフィルムをヒーター等の熱源に接触させるか、又は、熱源の近傍を通過させることによって未延伸ポリエステルフィルムを加熱する方法が挙げられる。 Examples of the method of heating the unstretched polyester film in the longitudinal stretching step include a method of heating a roll such as a stretched roll in contact with the unstretched polyester film. Examples of the method for heating the roll include a method of providing a heater inside the roll and a method of providing a pipe inside the roll and allowing the heated fluid to flow in the pipe. In addition to the above, for example, a method of applying warm air to the unstretched polyester film, and heating the unstretched polyester film by bringing the unstretched polyester film into contact with a heat source such as a heater or passing it in the vicinity of the heat source. The method can be mentioned.
 未延伸ポリエステルフィルムに対して縦延伸する縦延伸工程は、上記の方法に制限されない。
 上記の縦延伸工程では、2対の延伸ロールの搬送速度の差を利用して未延伸ポリエステルフィルムを縦延伸しているが、2つの延伸ロールの間に配置され、それらの延伸ロールよりも速い搬送速度でフィルムを搬送する高速延伸ロールを1つ以上用いて、未延伸ポリエステルフィルムを縦延伸して、1軸配向ポリエステルフィルムを作製してもよい。
 また、上記の縦延伸工程では、互いに対向する2つのロール(1対のロール)によりフィルムを挟んで搬送する構成を有しているが、縦延伸工程に使用する延伸ロールが、対向するロールを有さず、ポリエステルフィルムの一方の面に接する1つのロールのみで構成されていてもよい。
The longitudinal stretching step of longitudinally stretching the unstretched polyester film is not limited to the above method.
In the above-mentioned longitudinal stretching step, the unstretched polyester film is longitudinally stretched by utilizing the difference in the transport speeds of the two stretched rolls, but it is arranged between the two stretched rolls and is faster than those stretched rolls. A uniaxially oriented polyester film may be produced by longitudinally stretching an unstretched polyester film using one or more high-speed stretching rolls that transport the film at a transport speed.
Further, in the above-mentioned longitudinal stretching step, the film is sandwiched and conveyed by two rolls (a pair of rolls) facing each other, but the stretching rolls used in the longitudinal stretching step have the opposing rolls. It may be composed of only one roll in contact with one surface of the polyester film.
(横延伸工程)
 横延伸工程は、1軸配向ポリエステルフィルムを横延伸する工程である。横延伸工程は、例えば、上記延伸機100の横延伸部20において実施される。
(Transverse stretching process)
The transverse stretching step is a step of transversely stretching a uniaxially oriented polyester film. The transverse stretching step is carried out, for example, in the transverse stretching portion 20 of the stretching machine 100.
 横延伸工程においては、横延伸前に、ポリエステルフィルムを予熱することが好ましい。ポリエステルフィルムを予熱することで、ポリエステルフィルムを容易に横延伸できる。
 予熱温度は、(Tg-10)~(Tg+60)℃が好ましく、(Tg)~(Tg+50)℃がより好ましい。具体的に、予熱温度は、80~120℃が好ましく、90~110℃がより好ましい。
In the transverse stretching step, it is preferable to preheat the polyester film before the transverse stretching. By preheating the polyester film, the polyester film can be easily stretched laterally.
The preheating temperature is preferably (Tg-10) to (Tg + 60) ° C, more preferably (Tg) to (Tg + 50) ° C. Specifically, the preheating temperature is preferably 80 to 120 ° C, more preferably 90 to 110 ° C.
 横延伸工程における1軸配向ポリエステルフィルムの幅方向の延伸倍率(横延伸倍率)は特に制限されないが、上記縦延伸工程における延伸倍率より大きいことが好ましい。横延伸工程における延伸倍率は、3.0~6.0倍が好ましく、3.5~5.0倍がより好ましく、3.5~4.5倍が更に好ましい。
 横延伸工程を延伸機100の横延伸部20において実施する場合、横延伸倍率は、横延伸部20の搬入時のフィルム幅L0に対する横延伸部20からの搬出時のフィルム幅L1の比率(L1/L0)から求められる。
The stretching ratio (transverse stretching ratio) in the width direction of the uniaxially oriented polyester film in the transverse stretching step is not particularly limited, but is preferably larger than the stretching ratio in the longitudinal stretching step. The stretching ratio in the transverse stretching step is preferably 3.0 to 6.0 times, more preferably 3.5 to 5.0 times, still more preferably 3.5 to 4.5 times.
When the transverse stretching step is carried out in the transverse stretching portion 20 of the stretching machine 100, the transverse stretching ratio is the ratio of the film width L1 at the time of carrying out from the transverse stretching portion 20 to the film width L0 at the time of carrying in the transverse stretching portion 20 (L1). It is obtained from / L0).
 縦延伸工程における延伸倍率と、横延伸工程における延伸倍率との積で表される面積倍率は、12.8~15.5倍が好ましく、13.5~15.2倍がより好ましく、14.0~15.0倍が更に好ましい。面積倍率が上記の下限値以上であると、フィルム幅方向における分子配向が良好になる。また、面積倍率が上記の上限値以下であると、加熱処理に供された際に分子配向が緩和されにくい状態を維持しやすい。 The area magnification represented by the product of the stretching ratio in the longitudinal stretching step and the stretching ratio in the transverse stretching step is preferably 12.8 to 15.5 times, more preferably 13.5 to 15.2 times, and 14. It is more preferably 0 to 15.0 times. When the area magnification is at least the above lower limit value, the molecular orientation in the film width direction becomes good. Further, when the area magnification is not more than the above upper limit value, it is easy to maintain a state in which the molecular orientation is difficult to be relaxed when subjected to the heat treatment.
 横延伸工程における加熱温度は、(Tg-10)~(Tg+80)℃が好ましく、(Tg)~(Tg+70)℃がより好ましく、(Tg)~(Tg+60)℃が更に好ましい。具体的に、横延伸工程における加熱温度は、100~140℃が好ましく、110~135℃がより好ましく、115~130℃が更に好ましい。 The heating temperature in the transverse stretching step is preferably (Tg-10) to (Tg + 80) ° C, more preferably (Tg) to (Tg + 70) ° C, and even more preferably (Tg) to (Tg + 60) ° C. Specifically, the heating temperature in the transverse stretching step is preferably 100 to 140 ° C, more preferably 110 to 135 ° C, and even more preferably 115 to 130 ° C.
 横延伸工程における延伸速度は、8~45%/秒が好ましく、10~30%/秒がより好ましく、15~20%/秒が更に好ましい。 The stretching speed in the transverse stretching step is preferably 8 to 45% / sec, more preferably 10 to 30% / sec, and even more preferably 15 to 20% / sec.
<熱固定工程>
 本製造方法では、横延伸工程により横延伸されたポリエステルフィルムに対する加熱処理として、熱固定工程及び熱緩和工程を行うことが好ましい。
 熱固定工程においては、横延伸工程により得られた2軸配向ポリエステルフィルムを加熱して、熱固定することができる。熱固定によってポリエステルを結晶化させることにより、ポリエステルフィルムの収縮を抑えることができる。
 熱固定工程は、例えば、上記延伸機100の熱固定部30において実施される。
<Heat fixing process>
In this production method, it is preferable to perform a heat fixing step and a heat relaxation step as a heat treatment for the polyester film laterally stretched by the transverse stretching step.
In the heat fixing step, the biaxially oriented polyester film obtained by the transverse stretching step can be heated and heat-fixed. By crystallizing the polyester by heat fixing, shrinkage of the polyester film can be suppressed.
The heat fixing step is carried out, for example, in the heat fixing portion 30 of the stretching machine 100.
 熱固定工程におけるポリエステルフィルムの表面温度(熱固定温度)は、特に制限されないが、240℃未満が好ましく、235℃以下がより好ましく、230℃以下が更に好ましい。下限は特に制限されないが、190℃以上が好ましく、200℃以上がより好ましく、210℃以上が更に好ましい。
 熱固定工程では、ポリエステルフィルムの表面の最高到達温度が上記熱固定温度となるように制御しながら加熱処理が行われる。
The surface temperature (heat fixing temperature) of the polyester film in the heat fixing step is not particularly limited, but is preferably less than 240 ° C., more preferably 235 ° C. or lower, still more preferably 230 ° C. or lower. The lower limit is not particularly limited, but is preferably 190 ° C. or higher, more preferably 200 ° C. or higher, and even more preferably 210 ° C. or higher.
In the heat fixing step, the heat treatment is performed while controlling the maximum temperature reached on the surface of the polyester film to be the above heat fixing temperature.
 熱固定工程において、フィルム幅方向の表面温度のバラツキは、0.5~10.0℃が好ましく、0.5~7.0℃がより好ましく、0.5~5.0℃が更に好ましく、0.5~4.0℃が特に好ましい。フィルム幅方向の表面温度のバラツキを上記範囲内に制御することで、幅方向における結晶化度のバラツキを抑制できる。 In the heat fixing step, the variation in the surface temperature in the film width direction is preferably 0.5 to 10.0 ° C, more preferably 0.5 to 7.0 ° C, still more preferably 0.5 to 5.0 ° C. 0.5 to 4.0 ° C. is particularly preferable. By controlling the variation in the surface temperature in the film width direction within the above range, the variation in the crystallinity in the width direction can be suppressed.
 加熱方法としては、例えば、フィルムに熱風を当てる方法、及び、フィルムを輻射加熱する方法が挙げられる。輻射加熱する方法において用いられる装置としては、例えば、赤外線ヒーターが挙げられる。 Examples of the heating method include a method of applying hot air to the film and a method of radiant heating of the film. Examples of the device used in the method of radiant heating include an infrared heater.
 熱固定工程における加熱時間は、5~50秒間が好ましく、5~30秒間がより好ましく、5~10秒間が更に好ましい。 The heating time in the heat fixing step is preferably 5 to 50 seconds, more preferably 5 to 30 seconds, and even more preferably 5 to 10 seconds.
<熱緩和工程>
 熱緩和工程においては、熱固定工程により熱固定されたポリエステルフィルムを、熱固定工程よりも低い温度で加熱することで熱緩和することが好ましい。熱緩和によってポリエステルフィルムの残留歪みを緩和できる。
 熱緩和工程は、例えば、上記延伸機100の熱緩和部40において実施される。
<Heat relaxation process>
In the heat relaxation step, it is preferable to heat the polyester film heat-fixed by the heat-fixing step at a temperature lower than that of the heat-fixing step to heat-relax. Residual strain of the polyester film can be alleviated by heat relaxation.
The heat relaxation step is carried out, for example, in the heat relaxation unit 40 of the stretching machine 100.
 熱緩和工程におけるポリエステルフィルムの表面温度(熱緩和温度)は、熱固定温度より、5℃以上低い温度が好ましく、15℃以上低い温度がより好ましく、25℃以上低い温度が更に好ましく、30℃以上低い温度が特に好ましい。即ち、熱緩和温度は、235℃以下が好ましく、225℃以下がより好ましく、210℃以下が更に好ましく、200℃以下が特に好ましい。
 熱緩和温度の下限は、100℃以上が好ましく、110℃以上がより好ましく、120℃以上が更に好ましい。
 熱緩和工程では、ポリエステルフィルムの表面の最高到達温度が上記熱緩和温度となるように制御しながら加熱処理が行われる。
The surface temperature (heat relaxation temperature) of the polyester film in the heat relaxation step is preferably 5 ° C. or higher lower than the heat fixation temperature, more preferably 15 ° C. or higher, further preferably 25 ° C. or higher, and 30 ° C. or higher. Low temperatures are particularly preferred. That is, the heat relaxation temperature is preferably 235 ° C. or lower, more preferably 225 ° C. or lower, further preferably 210 ° C. or lower, and particularly preferably 200 ° C. or lower.
The lower limit of the heat relaxation temperature is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, and even more preferably 120 ° C. or higher.
In the heat relaxation step, the heat treatment is performed while controlling the maximum temperature reached on the surface of the polyester film to be the above heat relaxation temperature.
 加熱方法としては、例えば、フィルムに熱風を当てる方法、フィルムを輻射加熱する方法が挙げられる。輻射加熱する方法において用いられる装置としては、例えば、赤外線ヒーターが挙げられる。 Examples of the heating method include a method of applying hot air to the film and a method of radiant heating of the film. Examples of the device used in the method of radiant heating include an infrared heater.
<冷却工程>
 本製造方法は、熱緩和されたポリエステルフィルムを冷却する冷却工程を有することが好ましい。冷却工程及び後述する拡張工程は、例えば、上記延伸機100の冷却部50において実施される。
<Cooling process>
The production method preferably includes a cooling step of cooling the heat-relaxed polyester film. The cooling step and the expansion step described later are carried out, for example, in the cooling unit 50 of the stretching machine 100.
 冷却工程におけるポリエステルフィルムの冷却方法としては、例えば、フィルムに風(好ましくは冷風)を当てる方法、及び温度調節可能な部材(例えば、温調ロール)にフィルムを接触させる方法が挙げられる。 Examples of the method for cooling the polyester film in the cooling step include a method of blowing air (preferably cold air) on the film and a method of bringing the film into contact with a temperature-adjustable member (for example, a temperature control roll).
 冷却工程におけるポリエステルフィルムの冷却速度は、特に制限されないが、2軸配向フィルムに積層される剥離層の厚みムラが低減し、剥離層の塗布性がより優れる点で、2000℃/分超4000℃/分未満が好ましく、2000~3500℃/分がより好ましく、2200℃/分超3000℃/分未満が更に好ましく、2300~2800℃/分が特に好ましい。 The cooling rate of the polyester film in the cooling step is not particularly limited, but the thickness unevenness of the release layer laminated on the biaxially oriented film is reduced, and the coatability of the release layer is more excellent. Less than / min is preferred, 2000-3500 ° C / min is more preferred, more than 2200 ° C / min and less than 3000 ° C / min is even more preferred, and 2300-2800 ° C / min is particularly preferred.
 冷却工程におけるポリエステルフィルムの冷却速度は、非接触式温度計を用いて、測定できる。例えば、上記延伸機100の冷却部50において冷却工程を実施する場合、熱緩和部40から冷却部50に搬入されるフィルム200の表面温度と、冷却部50から搬出されるフィルム200の表面温度とを測定して、両者の温度差ΔT(℃)を得る。得られた温度差ΔT(℃)を、冷却部50におけるフィルム200の滞在時間taで割ることにより、冷却速度が求められる。
 ポリエステルフィルムの冷却速度は、冷却装置の運転条件、及び、フィルムの搬送速度により、調整できる。
The cooling rate of the polyester film in the cooling step can be measured using a non-contact thermometer. For example, when the cooling step is carried out in the cooling unit 50 of the stretching machine 100, the surface temperature of the film 200 carried from the heat relaxation unit 40 to the cooling unit 50 and the surface temperature of the film 200 carried out from the cooling unit 50 Is measured to obtain the temperature difference ΔT (° C.) between the two. The cooling rate is obtained by dividing the obtained temperature difference ΔT (° C.) by the residence time ta of the film 200 in the cooling unit 50.
The cooling speed of the polyester film can be adjusted by the operating conditions of the cooling device and the transport speed of the film.
 本製造方法における上記の熱固定工程、熱緩和工程及び冷却工程は、この順に連続して実施することが好ましい。これにより、ポリエステルフィルムに対する加熱及び冷却の繰返しによる負荷(熱履歴)を低減し、フィルムに内在する歪み等を低減して、筋状欠陥の発生を抑制できるためである。 It is preferable that the above-mentioned heat fixing step, heat relaxation step and cooling step in this manufacturing method are continuously carried out in this order. This is because the load (heat history) due to repeated heating and cooling of the polyester film can be reduced, the strain inherent in the film can be reduced, and the occurrence of streak defects can be suppressed.
<拡張工程>
 上記冷却工程において、熱緩和されたポリエステルフィルムを幅方向に拡張する工程を有することも好ましい。
 冷却工程においてポリエステルフィルムを「幅方向に拡張する」とは、冷却工程の開始時におけるポリエステルフィルムのフィルム幅(図3中のL2)よりも、冷却工程の終了時におけるフィルム幅(図3中のL3)が広くなるように、冷却工程の間に、ポリエステルフィルムに対して幅方向に張力を付与することを意味する。
<Expansion process>
In the cooling step, it is also preferable to have a step of expanding the heat-relaxed polyester film in the width direction.
"Expanding the polyester film in the width direction" in the cooling step means the film width at the end of the cooling step (L2 in FIG. 3) rather than the film width of the polyester film at the start of the cooling step (L2 in FIG. 3). It means applying tension in the width direction to the polyester film during the cooling step so that L3) becomes wider.
 拡張工程において、ポリエステルフィルムを幅方向に拡張する方法は、特に制限されない。例えば、上記の延伸機100を用いて2軸配向ポリエステルフィルムを製造する場合、冷却部50の開始地点における環状レール60a及び60bの距離よりも、冷却部50の終了地点(把持解除点P及び把持解除点Q)における環状レール60a及び60bの距離を広げることにより、各把持部材により把持されるフィルム200を幅方向に拡張できる。
 拡張工程は、冷却工程の前後でフィルム幅が拡張される限り、冷却工程の開始から終了まで連続的又は断続的に実施してもよく、冷却工程の間の一時期においてのみ実施してもよい。
In the expansion step, the method of expanding the polyester film in the width direction is not particularly limited. For example, when a biaxially oriented polyester film is manufactured using the above-mentioned stretching machine 100, the end point of the cooling unit 50 (grip release point P and gripping release point P) is more than the distance between the annular rails 60a and 60b at the start point of the cooling unit 50. By increasing the distance between the annular rails 60a and 60b at the release point Q), the film 200 gripped by each gripping member can be expanded in the width direction.
The expansion step may be carried out continuously or intermittently from the start to the end of the cooling step as long as the film width is expanded before and after the cooling step, or may be carried out only at one time during the cooling step.
 拡張工程によるポリエステルフィルムの幅方向の拡張率、即ち、冷却工程の開始前におけるフィルム幅に対する冷却工程の終了時におけるフィルム幅の比率は、0%以上が好ましく、0.001%以上がより好ましく、0.01%以上が更に好ましい。
 拡張率の上限は特に制限されないが、1.3%以下が好ましく、1.2%以下がより好ましく、1.0%以下が更に好ましい。フィルム幅の拡張率を上記の上限値以下に設定することにより、フィルム製造時に高速で搬送するために搬送方向に強い張力を付与した場合(例えば、搬送方向の張力が100N/m以上である場合)であっても、後述するトリミング工程における切断面の乱れ、更には、その切断乱れに伴うフィルムの破断を抑制できる。
The expansion ratio of the polyester film in the width direction by the expansion step, that is, the ratio of the film width to the film width before the start of the cooling step at the end of the cooling step is preferably 0% or more, more preferably 0.001% or more. 0.01% or more is more preferable.
The upper limit of the expansion rate is not particularly limited, but is preferably 1.3% or less, more preferably 1.2% or less, still more preferably 1.0% or less. When a strong tension is applied in the transport direction in order to transport the film at high speed by setting the expansion rate of the film width to the above upper limit value or less (for example, when the tension in the transport direction is 100 N / m or more). ), It is possible to suppress the disorder of the cut surface in the trimming step described later, and further, the breakage of the film due to the cutting disorder.
<特定塗布層形成工程>
 本製造方法は、粒子を含有する特定塗布層形成用組成物(以下、「組成物A」ともいう。)を用いてインラインコーティングする特定塗布層形成工程を有することが好ましい。特定塗布層形成工程によりポリエステル基材の一方の表面に形成される特定塗布層については、上記<特定塗布層>の項目において詳しく説明した層と同義である。
 特定塗布層の形成は、本製造方法のいずれの段階で行ってもよく、例えば、未延伸又は延伸されたポリエステル基材の一方の表面上に塗布膜を形成し、必要に応じて乾燥する方法が挙げられる。
<Specific coating layer forming process>
The present production method preferably includes a specific coating layer forming step of in-line coating using a composition for forming a specific coating layer containing particles (hereinafter, also referred to as “composition A”). The specific coating layer formed on one surface of the polyester base material by the specific coating layer forming step has the same meaning as the layer described in detail in the above item <Specific coating layer>.
The specific coating layer may be formed at any stage of the present production method. For example, a method of forming a coating film on one surface of an unstretched or stretched polyester substrate and drying it if necessary. Can be mentioned.
 まず、組成物Aを用いて特定塗布層を形成する方法について、説明する。
 組成物Aは、特定塗布層が含有する粒子、必要に応じて添加されるバインダー及び添加剤、並びに、溶剤を混合することにより調製できる。
 溶剤としては、例えば、水、エタノール、トルエン、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル及びプロピレングリコールモノエチルエーテルが挙げられる。中でも、環境、安全性及び経済性の観点から、水が好ましい。
First, a method of forming a specific coating layer using the composition A will be described.
The composition A can be prepared by mixing the particles contained in the specific coating layer, the binder and additives added as necessary, and the solvent.
Examples of the solvent include water, ethanol, toluene, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether. Of these, water is preferable from the viewpoint of environment, safety and economy.
 組成物Aは、1種単独の溶剤を含有していてもよく、2種以上の溶剤を含有していてもよい。
 溶剤の含有量は、組成物Aの全質量に対して、80~99質量%が好ましく、90~98質量%がより好ましい。
 即ち、組成物Aにおいて、溶剤以外の成分(固形分)の合計含有量は、組成物Aの全質量に対して、0.5~20質量%が好ましく、1~10質量%がより好ましい。
The composition A may contain one kind of solvent alone, or may contain two or more kinds of solvents.
The content of the solvent is preferably 80 to 99% by mass, more preferably 90 to 98% by mass, based on the total mass of the composition A.
That is, in the composition A, the total content of the components (solid content) other than the solvent is preferably 0.5 to 20% by mass, more preferably 1 to 10% by mass, based on the total mass of the composition A.
 組成物Aに含有される粒子、バインダー及び添加剤については、それらの好ましい態様も含めて、上記<特定塗布層>の項目において詳しく説明した通りである。
 組成物Aにおける溶剤以外の各成分については、組成物Aの固形分の全質量に対する各成分の含有量が、上記の特定塗布層の全質量に対する各成分の好ましい含有量と同じになるように、塗布液における各成分の含有量を調整することが好ましい。
The particles, binders and additives contained in the composition A, including their preferred embodiments, are as described in detail in the above item <Specific coating layer>.
For each component other than the solvent in the composition A, the content of each component with respect to the total mass of the solid content of the composition A is the same as the preferable content of each component with respect to the total mass of the above-mentioned specific coating layer. , It is preferable to adjust the content of each component in the coating liquid.
 組成物Aの塗布方法は特に制限されず、公知の方法を利用できる。塗布方法としては、例えば、スプレーコート法、スリットコート法、ロールコート法、ブレードコート法、スピンコート法、バーコート法及びディップコート法が挙げられる。 The method of applying the composition A is not particularly limited, and a known method can be used. Examples of the coating method include a spray coating method, a slit coating method, a roll coating method, a blade coating method, a spin coating method, a bar coating method and a dip coating method.
 特定塗布層形成工程においては、ポリエステル基材を搬送しながら、ポリエステル基材の一方の表面に塗布液を塗布するインラインコーティング法が適用される。インラインコーティング法を適用することにより、製造工程におけるポリエステル基材の加熱時間が短くなり、熱履歴がかからないため、筋状欠陥領域を低減でき、結果として剥離層の塗布性をより向上できる。
 インラインコーティング法において、組成物Aを塗布するポリエステル基材は、未延伸のポリエステル基材であってもよく、1軸配向されたポリエステル基材であってもよよいが、1軸配向されたポリエステル基材であることが好ましい。即ち、インラインコーティング法による特定塗布層形成工程を、縦延伸工程と横延伸工程との間に行うことが好ましい。1軸配向されたポリエステル基材と特定塗布層とを同時に横延伸することにより、ポリエステル基材及び特定塗布層の密着性を向上できるためである。
In the specific coating layer forming step, an in-line coating method in which a coating liquid is applied to one surface of the polyester substrate while transporting the polyester substrate is applied. By applying the in-line coating method, the heating time of the polyester base material in the manufacturing process is shortened and the heat history is not applied, so that the streak defect region can be reduced, and as a result, the coatability of the release layer can be further improved.
In the in-line coating method, the polyester base material to which the composition A is applied may be an unstretched polyester base material or a uniaxially oriented polyester base material, but the uniaxially oriented polyester base material may be used. It is preferably a base material. That is, it is preferable to perform the specific coating layer forming step by the in-line coating method between the longitudinal stretching step and the transverse stretching step. This is because the adhesion between the polyester base material and the specific coating layer can be improved by simultaneously laterally stretching the uniaxially oriented polyester base material and the specific coating layer.
 本製造方法は、上記の工程を経て得られた2軸配向ポリエステルフィルムを巻き取ることにより、ロール状の2軸配向ポリエステルフィルムを得る巻き取り工程を有していてもよい。
 また、本製造方法は、巻き取り工程を実施する前に、ポリエステルフィルムを搬送方向に沿って連続的に切断して、ポリエステルフィルムの幅方向の少なくとも一方の端部を切り取るトリミング工程を更に有してもよい。
The present manufacturing method may include a winding step of obtaining a roll-shaped biaxially oriented polyester film by winding the biaxially oriented polyester film obtained through the above steps.
Further, the present manufacturing method further includes a trimming step of continuously cutting the polyester film along the transport direction and cutting off at least one end in the width direction of the polyester film before carrying out the winding step. You may.
 本製造方法の縦延伸工程以外の各工程におけるポリエステルフィルムの搬送速度は、特に制限されないが、横延伸工程、熱固定工程、熱緩和工程、冷却工程及び拡張工程を上記延伸機100を用いて行う場合、生産性及び品質の点で、50~200m/分が好ましく、80~150m/分がより好ましい。縦延伸工程におけるポリエステルフィルムの搬送速度は、上記の通りである。 The transport speed of the polyester film in each step other than the longitudinal stretching step of this production method is not particularly limited, but the transverse stretching step, the heat fixing step, the heat relaxation step, the cooling step and the expansion step are performed by using the stretching machine 100. In this case, 50 to 200 m / min is preferable, and 80 to 150 m / min is more preferable in terms of productivity and quality. The transport speed of the polyester film in the longitudinal stretching step is as described above.
 また、縦延伸工程以外の各工程において、ポリエステルフィルムに付与される搬送方向の張力は、特に制限されないが、横延伸工程、熱固定工程、熱緩和工程、冷却工程及び拡張工程を、上記延伸機100を用いて行う場合、ポリエステルフィルムに付与される搬送方向の張力は、延伸条件によって調節できる。
 また、冷却工程を施された後、上記の巻き取り工程において巻き取られるまでのポリエステルフィルムに付与される搬送方向の張力は、3~30N/mが好ましく、5~20N/mがより好ましい。
Further, in each step other than the longitudinal stretching step, the tension applied to the polyester film in the transport direction is not particularly limited, but the transverse stretching step, the heat fixing step, the heat relaxation step, the cooling step and the expansion step are performed on the stretching machine. When 100 is used, the tension applied to the polyester film in the transport direction can be adjusted by the stretching conditions.
Further, the tension applied to the polyester film in the transport direction after the cooling step is applied until the polyester film is taken up in the above winding step is preferably 3 to 30 N / m, more preferably 5 to 20 N / m.
 上記で具体的に説明した本フィルムの製造方法において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 中でも、下記の製造条件からなる群より選択される2以上の組合せを有する製造方法は、製造される2軸配向フィルムの筋状欠陥領域の面積比、及び、幅方向の膨張率を調整するための指標となる点において、好ましい態様であるといえる。
・横延伸工程における延伸倍率が、3.0~6.0倍、好ましくは3.5~5.0倍、より好ましくは3.5~4.5倍であること。
・熱固定工程における熱固定温度が、240℃未満、好ましくは190℃以上240℃未満、より好ましくは200~230℃、更に好ましくは210~230℃であること。
・熱緩和工程における熱緩和温度が、上記熱固定温度よりも低く、好ましくは5℃以上低く、より好ましくは15℃以上低く、更に好ましくは25℃以上低く、特に好ましくは30度以上低いこと。
・冷却工程におけるポリエステルフィルムの冷却速度が、2000℃/分超4000℃/分未満、好ましくは2000~3500℃/分、より好ましくは2200℃/分超3000℃/分未満、更に好ましくは2300~2800℃/分であること。
・拡張工程におけるポリエステルフィルムの幅方向の拡張率が、0~1.3%であり、好ましくは0.001~1.2%であり、より好ましくは0.01~1.0%であること。
In the method for producing the present film specifically described above, a combination of two or more preferred embodiments is a more preferred embodiment.
Among them, the manufacturing method having two or more combinations selected from the group consisting of the following manufacturing conditions is for adjusting the area ratio of the streaky defect region of the biaxially oriented film to be manufactured and the expansion rate in the width direction. It can be said that this is a preferable embodiment in that it serves as an index of.
-The stretching ratio in the transverse stretching step is 3.0 to 6.0 times, preferably 3.5 to 5.0 times, and more preferably 3.5 to 4.5 times.
The heat fixing temperature in the heat fixing step is less than 240 ° C., preferably 190 ° C. or higher and lower than 240 ° C., more preferably 200 to 230 ° C., still more preferably 210 to 230 ° C.
The heat relaxation temperature in the heat relaxation step is lower than the heat fixing temperature, preferably 5 ° C. or higher, more preferably 15 ° C. or higher, further preferably 25 ° C. or higher, and particularly preferably 30 ° C. or higher.
The cooling rate of the polyester film in the cooling step is more than 2000 ° C./min and less than 4000 ° C./min, preferably 2000 to 3500 ° C./min, more preferably more than 2200 ° C./min and less than 3000 ° C./min, still more preferably 2300 to. It should be 2800 ° C / min.
The expansion ratio of the polyester film in the width direction in the expansion step is 0 to 1.3%, preferably 0.001 to 1.2%, and more preferably 0.01 to 1.0%. ..
 なお、2軸配向フィルムの筋状欠陥領域の面積比及び幅方向の膨張率は、ポリエステル基材及び特定塗布層を構成する各材料、及び、上記以外の各製造条件等によって異なるため、上記の製造条件からなる群より選択される2以上の組合せを有する製造方法であれば、必ず所望の筋状欠陥領域の面積比及び/又は幅方向の膨張率を有するポリエステルフィルムが製造できるとは限らない。また、所望の筋状欠陥領域の面積比及び/又は幅方向の膨張率を有するポリエステルフィルムの製造方法は、上記の製造条件を2以上有する方法に制限されない。 The area ratio of the streaky defect region and the expansion rate in the width direction of the biaxially oriented film differ depending on the materials constituting the polyester base material and the specific coating layer, and the manufacturing conditions other than the above. It is not always possible to produce a polyester film having an area ratio of a desired streak defect region and / or an expansion rate in the width direction by a production method having two or more combinations selected from the group consisting of production conditions. .. Further, the method for producing a polyester film having a desired area ratio of streaky defect regions and / or an expansion rate in the width direction is not limited to a method having two or more of the above production conditions.
[剥離フィルム]
 上記のポリエステルフィルムは、剥離フィルムの製造に使用できる。より具体的には、ポリエステルフィルムの第1主面上に剥離層を設けることにより、ポリエステルフィルムと、ポリエステルフィルムの第1主面に配置された剥離層と、を有する剥離フィルムが製造できる。
[Release film]
The above polyester film can be used for producing a release film. More specifically, by providing the release layer on the first main surface of the polyester film, a release film having the polyester film and the release layer arranged on the first main surface of the polyester film can be manufactured.
 剥離層は、剥離剤としての樹脂を少なくとも含有する。剥離層に含有される樹脂は特に制限されず、例えば、シリコーン樹脂、フッ素樹脂、アルキド樹脂、アクリル樹脂、各種ワックス、及び、脂肪族オレフィンが挙げられ、シリコーン樹脂が好ましい。 The release layer contains at least a resin as a release agent. The resin contained in the release layer is not particularly limited, and examples thereof include silicone resin, fluororesin, alkyd resin, acrylic resin, various waxes, and aliphatic olefins, and silicone resin is preferable.
 シリコーン樹脂とは、分子内にシリコーン構造を有する樹脂を意味する。シリコーン樹脂としては、硬化型シリコーン樹脂、シリコーングラフト樹脂、アルキル変性等の変性シリコーン樹脂等が挙げられ、反応性の硬化型シリコーン樹脂が好ましい。
 反応性の硬化型シリコーン樹脂としては、付加反応系のシリコーン樹脂、縮合反応系のシリコーン樹脂、及び、紫外線又は電子線硬化系のシリコーン樹脂が挙げられる。中でも、剥離層を低温で形成できることから、低温硬化性を有する付加反応系のシリコーン樹脂、又は、紫外線もしくは電子線硬化系のシリコーン樹脂が好ましい。
The silicone resin means a resin having a silicone structure in the molecule. Examples of the silicone resin include curable silicone resins, silicone graft resins, modified silicone resins such as alkyl-modified, and reactive curable silicone resins are preferable.
Examples of the reactive curable silicone resin include an addition reaction type silicone resin, a condensation reaction type silicone resin, and an ultraviolet ray or electron beam curable type silicone resin. Of these, an addition reaction type silicone resin having low temperature curability or an ultraviolet or electron beam curable silicone resin is preferable because the release layer can be formed at a low temperature.
 付加反応系のシリコーン樹脂としては、例えば、末端又は側鎖にビニル基を導入したポリジメチルシロキサンとハイドロジエンシロキサンとを、白金触媒を用いて反応させて硬化させることにより得られる樹脂が挙げられる。
 縮合反応系のシリコーン樹脂としては、例えば、末端にOH基を有するポリジメチルシロキサンと、末端にH基を有するポリジメチルシロキサンを、有機錫触媒を用いて縮合反応させることにより形成される、3次元架橋構造を有する樹脂が挙げられる。
 紫外線硬化系のシリコーン樹脂としては、シリコーンゴム架橋と同じラジカル反応を利用するもの、不飽和基を導入して光硬化させるもの、紫外線又は電子線でオニウム塩を分解して強酸を生成し、エポキシ基を開裂させて架橋させるもの、及び、ビニルシロキサンへのチオールの付加反応で架橋するもの等が挙げられる。より具体的には、アクリレート変性されたポリジメチルシロキサン、及び、グリシドキシ変性されたポリジメチルシロキサン等が挙げられる。
Examples of the addition reaction type silicone resin include a resin obtained by reacting polydimethylsiloxane having a vinyl group introduced at the terminal or side chain with hydrodienesiloxane using a platinum catalyst and curing the resin.
The silicone resin of the condensation reaction system is, for example, three-dimensionally formed by subjecting a polydimethylsiloxane having an OH group at the terminal and a polydimethylsiloxane having an H group at the terminal to a condensation reaction using an organic tin catalyst. Examples thereof include a resin having a crosslinked structure.
UV-curable silicone resins include those that utilize the same radical reaction as silicone rubber cross-linking, those that are photo-cured by introducing unsaturated groups, and those that decompose onium salts with ultraviolet rays or electron beams to generate strong acids, and epoxys. Examples thereof include those in which the group is cleaved and crosslinked, and those in which the group is crosslinked by the addition reaction of thiol to vinylsiloxane. More specifically, acrylate-modified polydimethylsiloxane, glycidoxy-modified polydimethylsiloxane, and the like can be mentioned.
 剥離層は、上記樹脂以外に添加剤を含有していてもよい。添加剤としては、剥離力を調整するための軽剥離添加剤及び重剥離添加剤、密着向上剤、並びに、帯電防止剤等の添加剤等を添加してもよい。
 剥離層が含有する樹脂は、1種単独で用いてもよいし、2種以上を用いてもよい。
 剥離層における上記樹脂の含有量は、剥離層の全質量に対して50~99質量%が好ましく、60~98質量%がより好ましい。剥離層における樹脂以外の残部は、上記の添加剤、及び/又は、剥離層の形成に使用した剥離層形成用塗布液に含まれる溶剤及び触媒等の残渣物であってよい。
The release layer may contain an additive in addition to the above resin. As the additive, a light peeling additive, a heavy peeling additive, an adhesion improving agent, an additive such as an antistatic agent, and the like for adjusting the peeling force may be added.
The resin contained in the release layer may be used alone or in combination of two or more.
The content of the resin in the release layer is preferably 50 to 99% by mass, more preferably 60 to 98% by mass, based on the total mass of the release layer. The remainder of the release layer other than the resin may be the above-mentioned additive and / or a residue such as a solvent and a catalyst contained in the release layer forming coating liquid used for forming the release layer.
 剥離層の厚さは、その使用目的に応じて設定すればよく、特に制限されないが、剥離性能及び剥離層表面の平滑性がバランス良く優れる点で、0.005~2.0μmが好ましく、0.05~1.0μmがより好ましい。 The thickness of the peeling layer may be set according to the purpose of use and is not particularly limited, but 0.005 to 2.0 μm is preferable and 0 is preferable in that the peeling performance and the smoothness of the peeling layer surface are well-balanced. More preferably, it is 0.05 to 1.0 μm.
(剥離面の表面自由エネルギー)
 剥離フィルムを巻き取る際の帯電防止の観点で、剥離層のポリエステル基材側とは反対側の表面(剥離面ともいう)の表面自由エネルギーは、30mJ/m以下であることが好ましく、1~30mJ/mであることがより好ましく、10~30mJ/mであることが更に好ましい。
 また、剥離層の剥離面の表面自由エネルギーとポリエステルフィルムの第2主面の表面自由エネルギーとの差が広い方が、フィルムが帯電しにくいため、好ましい。剥離層の剥離面の表面自由エネルギーとポリエステルフィルムの第2主面の表面自由エネルギーとの差は、1~50mJ/mが好ましく、1~40mJ/mがより好ましく、1~35mJ/mが更に好ましく、5~30mJ/mが特に好ましく、10~25mJ/mが最も好ましい。
 剥離層の剥離面の表面自由エネルギーは、剥離層を形成する樹脂の種類及び添加剤により調整できる。
(Surface free energy of peeled surface)
From the viewpoint of antistatic when the release film is wound, the surface free energy of the surface (also referred to as the release surface) of the release layer opposite to the polyester substrate side is preferably 30 mJ / m 2 or less. more preferably ~ is 30 mJ / m 2, further preferably 10 ~ 30mJ / m 2.
Further, it is preferable that the difference between the surface free energy of the peeling surface of the peeling layer and the surface free energy of the second main surface of the polyester film is wide because the film is less likely to be charged. Difference between the surface free energy of the second main surface of the surface free energy and the polyester film of the release surface of the release layer is preferably 1 ~ 50 mJ / m 2, more preferably 1 ~ 40mJ / m 2, 1 ~ 35mJ / m 2 is more preferable, 5 to 30 mJ / m 2 is particularly preferable, and 10 to 25 mJ / m 2 is most preferable.
The surface free energy of the peeling surface of the peeling layer can be adjusted by the type of resin forming the peeling layer and the additive.
(剥離面の最大突起高さSp、面平均粗さSa)
 剥離層に形成するセラミックグリーンシートなどの機能層を平滑にする点で、剥離面はできるだけ平滑であることが好ましい。具体的には、剥離面の最大突起高さSpは、1~60nmであることが好ましく、1~40nmであることがより好ましい。また、剥離面の面平均粗さSaは、0~10nmであることが好ましく、0~5nmであることがより好ましい。
 剥離面の最大突起高さSp及び面平均粗さSaは、剥離層を設ける際に剥離層に粒子を入れないこと、並びに、剥離層を形成する樹脂及び添加剤を選択することにより、調整できる。
 剥離面の最大突起高さSp及び面平均粗さSaは、上記の第2主面の最大突起高さSp及び面平均粗さSaの測定方法に準じて測定できる。
(Maximum protrusion height Sp of peeled surface, surface average roughness Sa)
The peeled surface is preferably as smooth as possible in terms of smoothing the functional layer such as the ceramic green sheet formed on the peeled layer. Specifically, the maximum protrusion height Sp of the peeled surface is preferably 1 to 60 nm, and more preferably 1 to 40 nm. The surface average roughness Sa of the peeled surface is preferably 0 to 10 nm, more preferably 0 to 5 nm.
The maximum protrusion height Sp and surface average roughness Sa of the peeled surface can be adjusted by not putting particles in the peeled layer when providing the peeled layer and by selecting the resin and the additive forming the peeled layer. ..
The maximum protrusion height Sp and the surface average roughness Sa of the peeled surface can be measured according to the above-mentioned measuring method of the maximum protrusion height Sp and the surface average roughness Sa of the second main surface.
 本フィルムの第1主面に剥離層を設ける方法は、特に制限されないが、剥離剤を溶剤に溶解又は分散させてなる剥離層形成用塗布液を、本フィルムの第1主面に塗布し、乾燥により溶剤を除去し、必要に応じて加熱又は光を照射して硬化物を形成する方法が挙げられる。 The method of providing the release layer on the first main surface of the film is not particularly limited, but a release layer forming coating liquid obtained by dissolving or dispersing the release agent in a solvent is applied to the first main surface of the film. Examples thereof include a method of removing the solvent by drying and, if necessary, heating or irradiating with light to form a cured product.
 剥離層形成用塗布液の塗布方法は特に制限されず、公知の方法を利用できる。塗布方法としては、例えば、スプレーコート法、スリットコート法、ロールコート法、ブレードコート法、スピンコート法、バーコート法及びディップコート法が挙げられる。
 剥離層の形成における加熱温度は、180℃以下が好ましく、150℃以下がより好ましく、120℃以下が更に好ましい。下限は特に制限されず、60℃以上であってよい。
The method of applying the coating liquid for forming the release layer is not particularly limited, and a known method can be used. Examples of the coating method include a spray coating method, a slit coating method, a roll coating method, a blade coating method, a spin coating method, a bar coating method and a dip coating method.
The heating temperature for forming the release layer is preferably 180 ° C. or lower, more preferably 150 ° C. or lower, and even more preferably 120 ° C. or lower. The lower limit is not particularly limited and may be 60 ° C. or higher.
 剥離層形成用塗布液は、上記の樹脂及び溶剤を含有し、必要に応じて、上記の添加剤及び/又は樹脂の硬化に使用される上記の触媒を含有してもよい。剥離層形成用塗布液は、これらの成分を混合することにより調製できる。
 溶剤としては、例えば、水、並びに、トルエン、メチルエチルケトン、エタノール、エチレングリコールモノエチルエーテル、エチレングリコールジメチルエーテル、プロピレングリコールモノメチルエーテル及びプロピレングリコールモノエチルエーテル等の有機溶剤が挙げられ、有機溶剤が好ましい。
The coating liquid for forming a release layer may contain the above-mentioned resin and solvent, and may contain the above-mentioned additive and / or the above-mentioned catalyst used for curing the resin, if necessary. The coating liquid for forming a release layer can be prepared by mixing these components.
Examples of the solvent include water and organic solvents such as toluene, methyl ethyl ketone, ethanol, ethylene glycol monoethyl ether, ethylene glycol dimethyl ether, propylene glycol monomethyl ether and propylene glycol monoethyl ether, and organic solvents are preferable.
 剥離層形成用塗布液は、1種単独の溶剤を含有していてもよく、2種以上の溶剤を含有していてもよい。
 溶剤の含有量は、剥離層形成用塗布液の全質量に対して、80~99.5質量%が好ましく、90~99質量%がより好ましい。
 即ち、剥離層形成用塗布液において、溶剤以外の成分(固形分)の合計含有量は、剥離層形成用塗布液の全質量に対して、0.5~20質量%が好ましく、1~10質量%がより好ましい。
The coating liquid for forming a release layer may contain one type of solvent alone, or may contain two or more types of solvents.
The content of the solvent is preferably 80 to 99.5% by mass, more preferably 90 to 99% by mass, based on the total mass of the coating liquid for forming the release layer.
That is, the total content of the components (solid content) other than the solvent in the coating liquid for forming the release layer is preferably 0.5 to 20% by mass, preferably 1 to 10% by mass, based on the total mass of the coating liquid for forming the release layer. More preferably by mass.
 また、本フィルムと剥離層との密着性を向上させるために、剥離層を設ける前に、本フィルムの第1主面に、アンカーコート、コロナ処理、及び、プラズマ処理等の前処理を施してもよい。 Further, in order to improve the adhesion between the film and the release layer, the first main surface of the film is subjected to pretreatment such as anchor coating, corona treatment, and plasma treatment before the release layer is provided. May be good.
<用途>
 本フィルムを備える剥離フィルムは、搬送性に優れ、ロール保管時等における転写痕の形成を抑制できるとともに、剥離層の厚みムラ及び/又は塗布欠陥を抑制できることから、セラミックグリーンシート製造用の剥離フィルム(キャリアフィルム)として用いることが好ましい。上記の剥離フィルムを用いて製造されるセラミックグリーンシートは、小型化及び大容量化に伴って内部電極の多層化が求められているセラミックコンデンサの製造に好適に用いることができる。
<Use>
The release film provided with this film has excellent transportability, can suppress the formation of transfer marks during roll storage, and can suppress uneven thickness and / or coating defects of the release layer. Therefore, it is a release film for manufacturing a ceramic green sheet. It is preferable to use it as a (carrier film). The ceramic green sheet manufactured by using the above-mentioned release film can be suitably used for manufacturing a ceramic capacitor, which is required to have multiple layers of internal electrodes due to miniaturization and large capacity.
 上記剥離フィルムを使用してセラミックグリーンシートを製造する方法は、特に制限されず、公知の方法で実施できる。セラミックグリーンシートの製造方法としては、例えば、準備したセラミックスラリーを、上記剥離フィルムの剥離層表面に塗布し、セラミックスラリーに含まれる溶媒を乾燥除去する方法が挙げられる。
 セラミックスラリーの塗布方法は、特に制限されず、例えば、セラミック粉体及びバインダー剤を溶媒に分散させてなるセラミックスラリーを、リバースロール法により塗布し、加熱乾燥により溶媒を除去する方法等の公知の方法が適用できる。バインダー剤としては、特に限定されず、例えば、ポリビニルブチラール等が挙げられる。また、溶媒としても特に限定されず、例えば、エタノール及びトルエンが挙げられる。
The method for producing a ceramic green sheet using the release film is not particularly limited, and a known method can be used. Examples of the method for producing the ceramic green sheet include a method in which the prepared ceramic slurry is applied to the surface of the release layer of the release film and the solvent contained in the ceramic slurry is dried and removed.
The method for applying the ceramic slurry is not particularly limited, and for example, a known method of applying a ceramic slurry in which a ceramic powder and a binder are dispersed in a solvent by a reverse roll method and removing the solvent by heating and drying is known. The method can be applied. The binder agent is not particularly limited, and examples thereof include polyvinyl butyral and the like. Further, the solvent is not particularly limited, and examples thereof include ethanol and toluene.
 本フィルムを備える剥離フィルムは、ドライフィルムレジストの保護フィルム、加飾層及び樹脂シート等のシート成形用フィルム、半導体製造工程用の剥離フィルム、偏光板製造工程用の剥離フィルム、並びに、ラベル用、医療用及び事務用品用等の粘着フィルムのセパレーターとして用いることができる。 The release film provided with this film includes a protective film for dry film resist, a sheet forming film such as a decorative layer and a resin sheet, a release film for a semiconductor manufacturing process, a release film for a polarizing plate manufacturing process, and a label. It can be used as a separator for adhesive films for medical and office supplies.
 以下に実施例を挙げて本開示を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順は、本開示の趣旨を逸脱しない限り、適宜、変更することができる。したがって、本開示の範囲は以下に示す具体例に制限されない。なお、特に断りのない限り、「部」及び「%」は質量基準である。 The present disclosure will be described in more detail with reference to examples below. The materials, amounts, ratios, treatment contents, and treatment procedures shown in the following examples may be appropriately changed as long as they do not deviate from the gist of the present disclosure. Therefore, the scope of the present disclosure is not limited to the specific examples shown below. Unless otherwise specified, "parts" and "%" are based on mass.
 以下、本実施例において、単なる「フィルム」との表記は、ポリエステル基材単体、及び、ポリエステル基材と特定塗布層とを有する態様の両者を包含するとともに、未延伸フィルム、1軸配向フィルム、及び、2軸配向フィルムの全てを包含するものとする。
 また、本実施例の各工程では、非接触式温度計(AD-5616(製品名)、A&D社製、放射率0.95)を用いて、フィルムの幅方向中央部の温度を5回計測し、得られた計測値の算術平均値をフィルムの表面温度の測定値とした。
Hereinafter, in the present embodiment, the term "film" includes both a polyester base material alone and an embodiment having a polyester base material and a specific coating layer, and an unstretched film, a uniaxially oriented film, and the like. And all of the biaxially oriented films shall be included.
Further, in each step of this embodiment, a non-contact thermometer (AD-5616 (product name), manufactured by A & D Co., Ltd., emissivity 0.95) is used to measure the temperature of the central portion in the width direction of the film five times. Then, the arithmetic mean value of the obtained measured values was used as the measured value of the surface temperature of the film.
〔実施例1〕
<押出成形工程>
 重合触媒として特許第5575671号公報に記載のチタン化合物(クエン酸キレートチタン錯体、VERTEC AC-420、ジョンソン・マッセイ社製)を用いて、ポリエチレンテレフタレートのペレットを製造した。得られたペレットを、含水率が50ppm以下になるまで乾燥させた後、直径30mmの1軸混練押出し機のホッパーに投入し、次いで、280℃で溶融して押出した。溶融体(メルト)を、濾過器(孔径3μm)に通した後、ダイから25℃の冷却ドラムに押し出すことにより、ポリエチレンテレフタレートからなる未延伸フィルムを得た。なお、押し出された溶融体(メルト)は、静電印加法により冷却ドラムに密着させた。
 未延伸フィルムを構成するポリエチレンテレフタレートの融点(Tm)は258℃であり、ガラス転移温度(Tg)は80℃であった。
[Example 1]
<Extrusion molding process>
Pellets of polyethylene terephthalate were produced using a titanium compound (citrate chelated titanium complex, VERTEC AC-420, manufactured by Johnson Matthey) described in Japanese Patent No. 5575671 as a polymerization catalyst. The obtained pellets were dried to a water content of 50 ppm or less, charged into a hopper of a uniaxial kneading extruder having a diameter of 30 mm, and then melted and extruded at 280 ° C. The melt was passed through a filter (pore diameter 3 μm) and then extruded from the die into a cooling drum at 25 ° C. to obtain an unstretched film made of polyethylene terephthalate. The extruded melt was brought into close contact with the cooling drum by the electrostatic application method.
The melting point (Tm) of polyethylene terephthalate constituting the unstretched film was 258 ° C., and the glass transition temperature (Tg) was 80 ° C.
<縦延伸工程>
 上記未延伸フィルムに対し、以下の方法により縦延伸工程を施した。
 予熱された未延伸フィルムを、下記の条件にて、周速の異なる2対のロールの間に通過させて縦方向(搬送方向)に延伸することにより、1軸配向フィルムを作製した。
(縦延伸条件)
 予熱温度:75℃
 延伸温度:90℃
 延伸倍率:3.4倍
 延伸速度:1300%/秒
<Vertical stretching process>
The unstretched film was subjected to a longitudinal stretching step by the following method.
A uniaxially oriented film was produced by passing a preheated unstretched film between two pairs of rolls having different peripheral speeds and stretching the film in the vertical direction (conveyance direction) under the following conditions.
(Vertical stretching conditions)
Preheating temperature: 75 ° C
Stretching temperature: 90 ° C
Stretching ratio: 3.4 times Stretching speed: 1300% / sec
<特定塗布層形成工程>
 縦延伸された1軸配向フィルム(ポリエステル基材)の片面に、下記の組成物A(特定塗布層形成用組成物)をバーコーターで塗布し、形成された塗布膜を100℃の熱風にて乾燥させて、特定塗布層を形成した。このとき、成膜された特定塗布層の厚さが60nmとなるように、組成物Aの塗布量を調整した。
<Specific coating layer forming process>
The following composition A (composition for forming a specific coating layer) is applied to one side of a vertically stretched uniaxially oriented film (polyester base material) with a bar coater, and the formed coating film is blown with hot air at 100 ° C. It was dried to form a specific coating layer. At this time, the coating amount of the composition A was adjusted so that the thickness of the formed specific coating layer was 60 nm.
(組成物A)
 下記に示す各成分を混合することにより、組成物Aを調製した。調製された組成物Aに対して、孔径が6μmであるフィルター(F20、株式会社マーレフィルターシステムズ製)を用いたろ過処理、及び、膜脱気(2x6ラジアルフロースーパーフォビック、ポリポア株式会社製)を実施した後、得られた組成物Aを、1軸配向フィルムの表面に塗布した。
・酸変性ポリオレフィン(ザイクセン(登録商標)NC、住友精化(株)製、固形分25質量%に加水して調整した水分散液):157部
・アニオン性炭化水素系界面活性剤(ラピゾール(登録商標)A-90、スルホコハク酸ジ-2-エチルヘキシルナトリウム、日油株式会社製、固形分1質量%水希釈液):56部
・粒子(スノーテックス(登録商標)ZL、日産化学(株)製、コロイダルシリカ、固形分40質量%水分散液):11部
・水:776部
(Composition A)
Composition A was prepared by mixing each of the components shown below. Filtration treatment of the prepared composition A using a filter having a pore size of 6 μm (F20, manufactured by Mahle Filter Systems Co., Ltd.) and membrane degassing (2x6 radial flow superphobic, manufactured by Polypore Co., Ltd.). After that, the obtained composition A was applied to the surface of the uniaxially oriented film.
-Acid-modified polyolefin (Zyxen (registered trademark) NC, manufactured by Sumitomo Seika Co., Ltd., aqueous dispersion prepared by adding water to a solid content of 25% by mass): 157 parts-Anionic hydrocarbon-based surfactant (rapizol (rapizol) Registered trademark) A-90, di-2-ethylhexyl sulfosuccinate, manufactured by Nichiyu Co., Ltd., solid content 1% by mass water diluted solution): 56 parts / particles (Snowtex (registered trademark) ZL, Nissan Chemical Co., Ltd.) Made, colloidal silica, solid content 40% by mass aqueous dispersion): 11 parts, water: 776 parts
<横延伸工程>
 縦延伸工程及び特定塗布層形成工程を行ったフィルムに対し、テンターを用いて下記の条件にて幅方向に延伸し、2軸配向フィルムを作製した。
(横延伸条件)
 予熱温度:100℃
 延伸温度:120℃
 延伸倍率:4.2倍
 延伸速度:50%/秒
<Transverse stretching process>
The film subjected to the longitudinal stretching step and the specific coating layer forming step was stretched in the width direction using a tenter under the following conditions to prepare a biaxially oriented film.
(Transverse stretching conditions)
Preheating temperature: 100 ° C
Stretching temperature: 120 ° C
Stretching ratio: 4.2 times Stretching speed: 50% / sec
<熱固定工程>
 上記横延伸工程を施した2軸配向フィルムに対して、テンターを用いて下記条件で加熱することにより、フィルムを熱固定する熱固定工程を行った。
(熱固定条件)
 熱固定温度:227℃
 熱固定時間:6秒間
<Heat fixing process>
The biaxially oriented film subjected to the above-mentioned transverse stretching step was heated under the following conditions using a tenter to perform a heat fixing step of heat-fixing the film.
(Heat fixing conditions)
Heat fixation temperature: 227 ° C
Heat fixing time: 6 seconds
<熱緩和工程>
 次いで、熱固定されたフィルムに対して、下記条件で加熱することにより、フィルムの緊張を緩和する熱緩和工程を行った。また、熱緩和工程において、フィルムの両端を把持するテンターの把持部材間の距離(テンター幅)を狭めることにより、熱固定工程終了時と比較してフィルム幅を縮小した。下記の熱緩和率Lrは、熱緩和工程の開始時におけるフィルム幅L1に対する熱緩和工程の終了時におけるフィルム幅L2から、Lr=(L1-L2)/L1×100の式により求めた。
(熱緩和条件)
 熱緩和温度:190℃
 熱緩和率Lr:4%
<Heat relaxation process>
Next, the heat-fixed film was heated under the following conditions to perform a heat relaxation step of relaxing the tension of the film. Further, in the heat relaxation step, the film width was reduced as compared with the end of the heat fixing step by narrowing the distance (tenter width) between the gripping members of the tenter that grips both ends of the film. The following heat relaxation rate Lr was obtained from the film width L2 at the end of the heat relaxation step with respect to the film width L1 at the start of the heat relaxation step by the formula Lr = (L1-L2) / L1 × 100.
(Heat relaxation conditions)
Heat relaxation temperature: 190 ° C
Heat relaxation rate Lr: 4%
<冷却工程、及び、拡張工程>
 熱緩和されたフィルムに対して、下記条件で冷却する冷却工程を行った。また、冷却工程において、テンター幅を広げることにより、熱緩和工程終了時と比較してフィルム幅を拡張する拡張工程を実施した。
 下記の冷却速度は、フィルムが延伸機100の冷却部50に搬入されてから搬出されるまでの滞在時間を冷却時間taとして、冷却部50への搬入時に測定したフィルム表面温度と冷却部50の搬出時に測定したフィルム表面温度との温度差ΔT(℃)を、冷却時間taで割ることにより求めた。
 また、下記の拡張率ΔLは、冷却工程の開始時におけるポリエステルフィルムのフィルム幅L2に対する冷却工程の終了時におけるフィルム幅L3から、ΔL=(L3-L2)/L2×100の式により求めた。
(冷却条件)
 冷却速度:2500℃/分
(拡張条件)
 拡張率ΔL:0.6%
<Cooling process and expansion process>
A cooling step of cooling the heat-relaxed film under the following conditions was performed. Further, in the cooling step, an expansion step was carried out in which the film width was expanded as compared with the time when the heat relaxation step was completed by widening the tenter width.
The following cooling rates are the film surface temperature measured at the time of carrying into the cooling unit 50 and the cooling unit 50, with the residence time from the time the film is carried into the cooling unit 50 of the stretching machine 100 to being carried out as the cooling time ta. It was obtained by dividing the temperature difference ΔT (° C.) from the film surface temperature measured at the time of carrying out by the cooling time ta.
Further, the following expansion ratio ΔL was obtained from the film width L3 at the end of the cooling step with respect to the film width L2 of the polyester film at the start of the cooling step by the formula ΔL = (L3-L2) / L2 × 100.
(Cooling conditions)
Cooling rate: 2500 ° C / min (expansion condition)
Expansion rate ΔL: 0.6%
<巻き取り工程>
 冷却工程により冷却されたフィルムに対して、トリミング装置を用いて、フィルムの幅方向の両端から20cmの位置で搬送方向に沿って連続的にフィルムを切断して、フィルムの両端部をトリミングした。次いで、フィルムの両端から幅方向10mmまでの領域に対して、押出し加工(ナーリング)を行った後、張力40kg/mでフィルムを巻き取った。
 以上の方法により、2軸配向フィルムを作製した。得られた2軸配向フィルムの厚さは31μmであり、幅は1.5mであり、巻長は7000mであった。また、得られた2軸配向フィルムの特定塗布層の厚さをSEMを用いて測定したところ、特定塗布層の厚さは60nmであった。具体的には、ミクロトームを用いて2軸配向フィルムを切削して2軸配向フィルムの厚さ方向に沿った断面を有するサンプルを作製し、得られたサンプルにArイオンでのエッチング処理およびPtでの蒸着処理を施した後、サンプルの断面を、SEM((株)日立ハイテク製「S-4800」)を用いて観察した。得られた観察画像から、特定塗布層の5か所の厚さを測定し、測定値を算術平均することにより、特定塗布層の厚さを求めた。
<Rolling process>
With respect to the film cooled by the cooling step, the film was continuously cut along the transport direction at a position 20 cm from both ends in the width direction of the film using a trimming device, and both ends of the film were trimmed. Next, an extrusion process (knurling) was performed on a region from both ends of the film to 10 mm in the width direction, and then the film was wound up at a tension of 40 kg / m.
A biaxially oriented film was produced by the above method. The thickness of the obtained biaxially oriented film was 31 μm, the width was 1.5 m, and the winding length was 7000 m. Moreover, when the thickness of the specific coating layer of the obtained biaxially oriented film was measured using SEM, the thickness of the specific coating layer was 60 nm. Specifically, a biaxially oriented film is cut using a microtome to prepare a sample having a cross section along the thickness direction of the biaxially oriented film, and the obtained sample is etched with Ar ions and subjected to Pt. After the vapor deposition treatment of the above, the cross section of the sample was observed using SEM (“S-4800” manufactured by Hitachi High-Tech Co., Ltd.). From the obtained observation image, the thickness of the specific coating layer was measured at five points, and the measured values were arithmetically averaged to obtain the thickness of the specific coating layer.
〔実施例2〕
 組成物Aの調製において、粒子として「スノーテックス ZL」に代えて、「スノーテックス MP2040」(日産化学(株)製、コロイダルシリカ、固形分40質量%水分散液)を使用したこと、及び、特定塗布層の厚さを160nmになるように調整したこと以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。
[Example 2]
In the preparation of composition A, "Snowtex MP2040" (manufactured by Nissan Chemical Industries, Ltd., colloidal silica, solid content 40% by mass aqueous dispersion) was used instead of "Snowtex ZL" as particles, and A biaxially oriented film was produced according to the method described in Example 1 except that the thickness of the specific coating layer was adjusted to 160 nm.
〔実施例3〕
 特定塗布層の厚さを50nmになるように調整したこと以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。
[Example 3]
A biaxially oriented film was produced according to the method described in Example 1 except that the thickness of the specific coating layer was adjusted to 50 nm.
〔実施例4〕
 組成物Aの調製において、粒子(「スノーテックス ZL」)の添加量を11部から22部に変更したこと以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。
[Example 4]
A biaxially oriented film was prepared according to the method described in Example 1 except that the amount of particles (“Snowtex ZL”) added was changed from 11 parts to 22 parts in the preparation of the composition A.
〔実施例5〕
 組成物Aの調製において、粒子(「スノーテックス ZL」)の添加量を11部から1.1部に変更したこと以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。
[Example 5]
A biaxially oriented film was prepared according to the method described in Example 1 except that the amount of particles (“Snowtex ZL”) added was changed from 11 parts to 1.1 parts in the preparation of the composition A.
〔実施例6〕
 組成物Aの調製において、粒子として「スノーテックス ZL」に代えて、「スノーテックス XL」(日産化学(株)製、コロイダルシリカ、固形分40質量%水分散液)を使用したこと、粒子の添加量を11部から3部に変更したこと、及び、特定塗布層の厚さを40nmになるように調整したこと以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。
[Example 6]
In the preparation of the composition A, "Snowtex XL" (manufactured by Nissan Chemical Industries, Ltd., colloidal silica, solid content 40% by mass aqueous dispersion) was used instead of "Snowtex ZL" as the particles. A biaxially oriented film was produced according to the method described in Example 1 except that the addition amount was changed from 11 parts to 3 parts and the thickness of the specific coating layer was adjusted to 40 nm.
〔実施例7〕
 組成物Aに、更に下記の添加剤(架橋剤)を40部添加したこと以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。
・架橋剤(イソシアネート化合物、「デュラネート(登録商標)WM44L70」旭化成ケミカルズ(株)製(固形分70質量%)を、固形分濃度が10質量%になるように水を添加して調整した分散液)
[Example 7]
A biaxially oriented film was prepared according to the method described in Example 1 except that 40 parts of the following additive (crosslinking agent) was further added to the composition A.
-A dispersion prepared by adding water to a cross-linking agent (isocyanate compound, "Duranate (registered trademark) WM44L70" manufactured by Asahi Kasei Chemicals Co., Ltd. (solid content 70% by mass) so that the solid content concentration becomes 10% by mass. )
〔実施例8〕
 組成物Aの調製において、アニオン性炭化水素系界面活性剤の添加量を56部から112部に変更したこと以外は、実施例1の記載の方法に従って、2軸配向フィルムを作製した。
[Example 8]
A biaxially oriented film was prepared according to the method described in Example 1 except that the amount of the anionic hydrocarbon-based surfactant added was changed from 56 parts to 112 parts in the preparation of the composition A.
〔実施例9〕
 組成物Aの調製において、アニオン性炭化水素系界面活性剤に代えて、シリコーン系界面活性剤(BYK-346、固形分52質量%、BYK社製)を固形分1質量%になるように水で希釈し、得られた希釈液を56部使用したこと以外は、実施例1に記載の方法に従って2軸配向フィルムを作製した。
[Example 9]
In the preparation of the composition A, instead of the anionic hydrocarbon-based surfactant, a silicone-based surfactant (BYK-346, solid content 52% by mass, manufactured by BYK) was added to water so as to have a solid content of 1% by mass. A biaxially oriented film was prepared according to the method described in Example 1 except that 56 parts of the obtained diluted solution was used.
〔実施例10〕
 組成物Aの調製において、アニオン性炭化水素系界面活性剤に代えて、フッ素系界面活性剤(サーフロンS-211、固形分50質量%、AGCセイミケミカル株式会社製)を固形分1質量%になるように水で希釈し、得られた希釈液を56部使用したこと以外は、実施例1に記載の方法に従って2軸配向フィルムを作製した。
[Example 10]
In the preparation of the composition A, instead of the anionic hydrocarbon-based surfactant, a fluorine-based surfactant (Surflon S-211, solid content 50% by mass, manufactured by AGC Seimi Chemical Co., Ltd.) was used as a solid content 1% by mass. A biaxially oriented film was prepared according to the method described in Example 1 except that 56 parts of the obtained diluted solution was used.
〔実施例11~13及び23〕
 組成物Aの調製において、樹脂として「ザイクセン NC」に代えて、「ザイクセン L」(住友精化(株)製、酸変性ポリオレフィン、固形分25質量%水分散液)(実施例11)、「ザイクセン A」(住友精化(株)製、酸変性ポリオレフィン、固形分25質量%水分散液)(実施例12)、及び、「ケミパール S120」(三井化学(株)製、酸変性ポリオレフィン、固形分25質量%水分散液)(実施例13)、アクリル樹脂(メタクリル酸メチル、スチレン、2-エチルヘキシルアクリレート、2-ヒドロキシエチルメタクリレート及びアクリル酸を質量比59:8:26:5:2で重合させてなる共重合体の水分散液、固形分濃度25質量%、酸価16mgKOH/g)(実施例23)をそれぞれ使用したこと以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。
[Examples 11 to 13 and 23]
In the preparation of the composition A, instead of "Zyxen NC" as the resin, "Zyxen L" (manufactured by Sumitomo Seika Co., Ltd., acid-modified polyolefin, solid content 25% by mass aqueous dispersion) (Example 11), ""ZyxenA" (manufactured by Sumitomo Seika Co., Ltd., acid-modified polyolefin, water dispersion with a solid content of 25% by mass) (Example 12) and "Chemipal S120" (manufactured by Mitsui Chemicals Co., Ltd., acid-modified polyolefin, solid) 25% by mass water dispersion) (Example 13), acrylic resin (methyl methacrylate, styrene, 2-ethylhexyl acrylate, 2-hydroxyethyl methacrylate and acrylic acid polymerized at a mass ratio of 59: 8: 26: 5: 2. Biaxially oriented film according to the method described in Example 1 except that the water dispersion of the polyolefin, the solid content concentration of 25% by mass, and the acid value of 16 mgKOH / g) (Example 23) were used. Was produced.
〔実施例14~22〕
 熱固定工程における熱固定温度、冷却工程における冷却速度、及び、拡張工程における拡張率を後述する表1に記載の数値となるように制御したこと以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。
[Examples 14 to 22]
2 An axial alignment film was prepared.
〔実施例24〕
 組成物Aの調製において、樹脂として「ザイクセン NC」に代えて、「タケラック W605」(三井化学(株)製、ポリウレタン、固形分30質量%水分散液)を、組成物Aの全質量に対するバインダーの含有量が同じになるような量で使用したこと以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。
[Example 24]
In the preparation of composition A, instead of "Zyxen NC" as a resin, "Takelac W605" (manufactured by Mitsui Chemicals, Inc., polyurethane, solid content 30% by mass aqueous dispersion) was used as a binder for the total mass of composition A. A biaxially oriented film was prepared according to the method described in Example 1, except that the films used had the same content.
〔実施例25〕
 組成物Aの調製において、樹脂として「ザイクセン NC」に代えて、「ハイドラン AP-40N」(DIC(株)製、ポリウレタン、固形分35質量%水分散液)を、組成物Aの全質量に対するバインダーの含有量が同じになるような量で使用したこと以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。
[Example 25]
In the preparation of the composition A, instead of the resin "Zyxen NC", "Hydran AP-40N" (manufactured by DIC Corporation, polyurethane, solid content 35% by mass aqueous dispersion) was used with respect to the total mass of the composition A. A biaxially oriented film was prepared according to the method described in Example 1 except that the binders were used in the same amount.
〔実施例26〕
 組成物Aの調製において、フッ素系界面活性剤(フタージェント215M、(株)ネオス製、固形分1質量%水希釈液)をさらに5部追加したこと以外は、実施例25に記載の方法に従って、2軸配向フィルムを作製した。
[Example 26]
According to the method described in Example 25, except that 5 parts of a fluorine-based surfactant (Futergent 215M, manufactured by Neos Co., Ltd., diluted with water having a solid content of 1% by mass) was added in the preparation of the composition A. A biaxially oriented film was produced.
〔実施例27〕
 組成物Aの調製において、フッ素系界面活性剤(サーフロンS-211、固形分50質量%、AGCセイミケミカル株式会社製)の水による希釈液(固形分1質量%)20部を追加したこと以外は、実施例25に記載の方法に従って、2軸配向フィルムを作製した。
[Example 27]
Except for the addition of 20 parts of a water-diluted solution (solid content 1% by mass) of a fluorine-based surfactant (Surflon S-211, solid content 50% by mass, manufactured by AGC Seimi Chemical Co., Ltd.) in the preparation of composition A. Made a biaxially oriented film according to the method described in Example 25.
〔比較例1〕
 組成物Aの調製において、粒子として「スノーテックス ZL」に代えて「スノーテックス MP2040」を使用したこと、特定塗布層の厚さを100nmになるように調整したこと、並びに、熱固定工程における熱固定温度、冷却工程における冷却速度、及び、拡張工程における拡張率を後述する表1に記載の数値となるように制御したこと以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。
[Comparative Example 1]
In the preparation of the composition A, "Snowtex MP2040" was used instead of "Snowtex ZL" as the particles, the thickness of the specific coating layer was adjusted to 100 nm, and the heat in the heat fixing step was used. A biaxially oriented film was produced according to the method described in Example 1 except that the fixed temperature, the cooling rate in the cooling step, and the expansion rate in the expansion step were controlled to be the values shown in Table 1 described later. did.
〔比較例2〕
 組成物Aの調製において、樹脂として「ザイクセン NC」に代えて、アクリル樹脂の水分散液(メタクリル酸メチル、2-ヒドロキシエチルメタクリレート及びメタクリル酸を質量比28:48:24で重合させてなる共重合体を中和した水分散体)(固形分25質量%、酸価157mgKOH/g)を使用したこと、並びに、熱固定工程における熱固定温度、及び、冷却工程における冷却速度を後述する表1に記載の数値となるように制御したこと以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。
[Comparative Example 2]
In the preparation of the composition A, an aqueous dispersion of an acrylic resin (methyl methacrylate, 2-hydroxyethyl methacrylate and methacrylic acid) is polymerized at a mass ratio of 28:48:24 instead of "Zyxen NC" as the resin. An aqueous dispersion obtained by neutralizing the polymer) (solid content 25% by mass, acid value 157 mgKOH / g) was used, and the heat fixing temperature in the heat fixing step and the cooling rate in the cooling step are described later in Table 1 A biaxially oriented film was produced according to the method described in Example 1, except that the values were controlled to be as described in 1.
〔比較例3〕
 組成物Aの調製において、粒子として「スノーテックス ZL」に代えて「スノーテックス MP2040」を使用し、且つ、樹脂として「ザイクセン NC」に代えて、「サイマック US-480」(東亞合成(株)製、シリコーン変性アクリル樹脂、固形分25質量%)を使用したこと、特定塗布層の厚さを100nmになるように調整したこと、並びに、熱固定工程における熱固定温度、冷却工程における冷却速度、及び、拡張工程における拡張率を後述する表1に記載の数値となるように制御したこと以外は、実施例1に記載の方法に従って、2軸配向フィルムを作製した。
[Comparative Example 3]
In the preparation of the composition A, "Snowtex MP2040" is used instead of "Snowtex ZL" as the particles, and "Simac US-480" (Toa Synthetic Co., Ltd.) is used instead of "Zyxen NC" as the resin. Made of silicone modified acrylic resin, solid content 25% by mass), the thickness of the specific coating layer was adjusted to 100 nm, the heat fixing temperature in the heat fixing process, the cooling rate in the cooling process, A biaxially oriented film was produced according to the method described in Example 1 except that the expansion rate in the expansion step was controlled to be the numerical value shown in Table 1 described later.
〔物性測定〕
 実施例1~27及び比較例1~3の各2軸配向フィルムについて、以下の物性を測定した。測定結果を表1に示す。
[Measurement of physical properties]
The following physical properties were measured for each of the biaxially oriented films of Examples 1 to 27 and Comparative Examples 1 to 3. The measurement results are shown in Table 1.
<最大突起高さSp、面平均粗さSa>
 2軸配向フィルムが有する特定塗布層の第2主面の最大突起高さSp及び面平均粗さSaを、下記の方法で測定した。
 製造された2軸配向フィルムの特定塗布層側の表面を、光学干渉計(Vertscan 3300G Lite、株式会社日立ハイテク製)を用いて下記の条件で測定し、その後、内蔵されているデータ解析ソフト(VS-Measure5)にて解析することにより、特定塗布層の第2主面の最大突起高さSp及び面平均粗さSaを求めた。
 最大突起高さSpの測定では、測定位置を変えた5回の測定で得られる測定値の最大値を採用し、面平均粗さSaの測定では、測定位置を変えた5回の測定で得られる測定値の平均値を採用した。
(測定条件)
・測定モード:WAVEモード
・対物レンズ:50倍
・測定面積:186μm×155μm
 同様の方法で、2軸配向フィルムの第1主面の最大突起高さSp及び面平均粗さSaを測定した。いずれの実施例も、Spが20nmであり、Saが3nmであった。
<Maximum protrusion height Sp, surface average roughness Sa>
The maximum protrusion height Sp and the surface average roughness Sa of the second main surface of the specific coating layer of the biaxially oriented film were measured by the following methods.
The surface of the manufactured biaxially oriented film on the specific coating layer side is measured using an optical interferometer (Vertscan 3300G Lite, manufactured by Hitachi High-Tech Co., Ltd.) under the following conditions, and then the built-in data analysis software ( By analysis by VS-Measure5), the maximum protrusion height Sp and the surface average roughness Sa of the second main surface of the specific coating layer were obtained.
In the measurement of the maximum protrusion height Sp, the maximum value of the measured value obtained by 5 measurements with different measurement positions is adopted, and in the measurement of the surface average roughness Sa, it is obtained by 5 measurements with different measurement positions. The average value of the measured values to be measured was adopted.
(Measurement condition)
-Measurement mode: WAVE mode-Objective lens: 50x-Measurement area: 186 μm x 155 μm
In the same manner, the maximum protrusion height Sp and the surface average roughness Sa of the first main surface of the biaxially oriented film were measured. In each example, Sp was 20 nm and Sa was 3 nm.
<表面自由エネルギー>
 2軸配向フィルムが有する特定塗布層の第2主面の表面自由エネルギーを、下記の方法で測定した。
 接触角計(協和界面化学社製、DROPMASTER-501)を用いて、25℃の条件にて、製造された2軸配向フィルムの特定塗布層側の表面に液滴を滴下し、液滴が表面に付着してから1秒後の接触角を測定した。液滴として精製水2μL、ヨウ化メチレン1μL及びエチレングリコール1μLを使用し、測定されたそれぞれの接触角から、北崎・畑の方法により表面自由エネルギーを算出した。
 同様の方法で、2軸配向フィルムの第1主面の表面自由エネルギーを測定した。いずれの実施例も59.7mJ/mであった。
<Surface free energy>
The surface free energy of the second main surface of the specific coating layer of the biaxially oriented film was measured by the following method.
Using a contact angle meter (DROPMASTER-501 manufactured by Kyowa Surface Chemistry Co., Ltd.), droplets are dropped on the surface of the manufactured biaxially oriented film on the specific coating layer side under the condition of 25 ° C., and the droplets are surfaced. The contact angle was measured 1 second after adhering to. Using 2 μL of purified water, 1 μL of methylene iodide and 1 μL of ethylene glycol as droplets, the surface free energy was calculated by the method of Kitazaki and Hata from each measured contact angle.
The surface free energy of the first main surface of the biaxially oriented film was measured by the same method. In each example, it was 59.7 mJ / m 2 .
<厚さバラツキ>
 製造された2軸配向フィルムから長手方向に10mの長さのサンプルを採取した。このサンプルの厚さを、連続式触針式膜厚計(TOF-6R001、山文(株)製)を用いて、長手方向に沿って10mにわたり測定した。この測定を、幅方向の位置が異なる5か所において行った。得られた測定値から、厚さバラツキとして、最大値と最小値との差を全測定値の算術平均値で割って得られる値((最大厚さ-最小厚さ)/平均厚さ)を算出した。
<Thickness variation>
A sample having a length of 10 m in the longitudinal direction was taken from the produced biaxially oriented film. The thickness of this sample was measured over 10 m along the longitudinal direction using a continuous stylus type film thickness meter (TOF-6R001, manufactured by Yamabun Co., Ltd.). This measurement was performed at 5 locations with different positions in the width direction. From the obtained measured values, the value obtained by dividing the difference between the maximum value and the minimum value by the arithmetic mean value of all the measured values ((maximum thickness-minimum thickness) / average thickness) is used as the thickness variation. Calculated.
<フィルム密度>
 2軸配向フィルムの密度(g/cm)を、電子比重計(製品名「SD-200L」、アルファーミラージュ社製)を用いて、測定した。
<Film density>
The density (g / cm 3 ) of the biaxially oriented film was measured using an electronic hydrometer (product name "SD-200L", manufactured by Alpha Mirage Co., Ltd.).
<筋状欠陥領域>
 加熱搬送装置を用いて、2軸配向フィルムを搬送速度30m/分、搬送方向の張力100N/mで搬送しながら90℃で20秒間加熱処理した。加熱処理における加熱温度は、フィルムの表面温度を指す。加熱処理における加熱時間は、フィルムの表面温度が目的とする温度(90℃)に達した時点から起算した。加熱処理後の2軸配向フィルムを黒色の平板上に置き、次いで、室内の天井に設置された蛍光灯〔三菱電機株式会社製のルピカエース(色温度:5000K、平均演色評価数(Ra):84)〕の光が反射するように視点を変えながら2軸配向フィルムを斜めから目視で観察した。1m×1mの領域を目視により観察し、2軸配向フィルムの表面において蛍光灯の反射像がうねっている領域を筋状欠陥領域とした。次いで、観察される筋状欠陥領域の面積の合計の、2軸配向フィルムの観察領域の全面積に対する比率(面積比)を既述の方法(上記「筋状欠陥領域」の項目参照)で算出した。
<Streak defect area>
The biaxially oriented film was heat-treated at 90 ° C. for 20 seconds while being conveyed at a transfer speed of 30 m / min and a tension of 100 N / m in the transfer direction using a heat transfer device. The heating temperature in the heat treatment refers to the surface temperature of the film. The heating time in the heat treatment was calculated from the time when the surface temperature of the film reached the target temperature (90 ° C.). The heat-treated biaxially oriented film was placed on a black flat plate, and then a fluorescent lamp installed on the ceiling of the room [Lupica Ace manufactured by Mitsubishi Electric Corporation (color temperature: 5000K, average color rendering index (Ra): 84). )] The biaxially oriented film was visually observed from an angle while changing the viewpoint so that the light was reflected. A region of 1 m × 1 m was visually observed, and a region where the reflected image of the fluorescent lamp was undulating on the surface of the biaxially oriented film was defined as a streak defect region. Next, the ratio (area ratio) of the total area of the observed streaky defect regions to the total area of the observation region of the biaxially oriented film is calculated by the method described above (see the item of "streaky defect region" above). did.
<膨張率>
 2軸配向フィルムの90℃における幅方向の膨張率を、熱機械分析装置(TMA-60、株式会社島津製作所製)を用いて、既述の方法(上記「膨張率」の項目参照)に従って測定した。
<Expansion rate>
The expansion coefficient in the width direction of the biaxially oriented film at 90 ° C. is measured using a thermomechanical analyzer (TMA-60, manufactured by Shimadzu Corporation) according to the method described above (see the item "Expansion rate" above). did.
<平均粒子径、粒子密度D>
 特定塗布層に含まれる粒子の平均粒子径、及び、粒子密度Dを、以下の方法で測定した。
 走査型電子顕微鏡(SEM、日立ハイテク社製、S4700)を用いて、2軸配向フィルムの特定塗布層側の表面を、20000倍の拡大倍率で観察し、10視野の観察画像を得た。得られた画像データから突起として識別できる粒子について、画像ソフトウエアを用いて個々の粒子の面積を測定し、同一面積を有する円の直径(面積円相当径)に換算して個々の粒子の粒子径を得た後、全ての粒子の算術平均値を算出した。
 また、各視野の画像データから識別できる粒子の個数を視野面積で除した値を、粒子密度D(単位:個/μm)として算出した。
<Average particle size, particle density D>
The average particle diameter and the particle density D of the particles contained in the specific coating layer were measured by the following methods.
Using a scanning electron microscope (SEM, manufactured by Hitachi High-Tech, S4700), the surface of the biaxially oriented film on the specific coating layer side was observed at a magnification of 20000 times to obtain an observation image of 10 fields of view. For particles that can be identified as protrusions from the obtained image data, the area of each particle is measured using image software and converted into the diameter of a circle having the same area (diameter equivalent to the area circle). After obtaining the diameter, the arithmetic average value of all particles was calculated.
Further, the value obtained by dividing the number of particles that can be identified from the image data of each visual field by the visual field area was calculated as the particle density D (unit: individual / μm 2 ).
<剥離帯電量測定>
 製造された各2軸配向フィルムの剥離帯電量を、基準サンプル(第1主面を上面)を置く台と、測定サンプル(第2主面を下側)を保持しながら鉛直方向に沿って上昇及び下降することにより、基準サンプルの上面に対して測定サンプルの圧着及び剥離を繰り返し行うことができるヘッドと、このヘッドにつながっており測定サンプルの帯電量を測定できるエレクトロメーターとを備える測定装置を使用して、測定した。
 まず、製造されたそれぞれの2軸配向フィルムを、直径1.5cmの大きさの円形に切り取って剥離帯電量測定用のサンプルを作製し、また、13cm×4cmの大きさの長方形に切り取って基準サンプルを作製し、それぞれのサンプルを、温度23℃、相対湿度(RH)20%の環境下で2時間以上放置した。
 得られた基準サンプルを測定装置の台に載せ、測定サンプルをヘッドに装着した。このとき、基準サンプルの第1主面と測定サンプルの第2主面とが互いに対向するように、台に載せる基準サンプルにおいて第1主面を上面側に、ヘッドに装着する測定サンプルの第2主面を下面側に、それぞれ配置した。測定サンプルを除電したのち、ヘッドを上昇又は下降させて、基準サンプルに対する測定サンプルの圧着及び剥離を5回繰り返した(接触圧は566g/cm、接触時間2秒間)。1回目から5回目までの剥離後のそれぞれにおいて測定サンプルの帯電量を測定し、測定値の平均値を算出した。測定サンプルを変えるとともに、基準サンプルにおいて測定サンプルが接触する位置を測定サンプルごとに変えて、合計で4つのサンプルで測定を行い、全てを平均したものを剥離帯電量として得た。
<Measurement of peeling charge>
The amount of peeling charge of each biaxially oriented film manufactured rises along the vertical direction while holding the table on which the reference sample (first main surface is on the upper surface) and the measurement sample (second main surface is on the lower side). A measuring device provided with a head capable of repeatedly crimping and peeling the measurement sample against the upper surface of the reference sample by lowering and lowering, and an electrometer connected to this head and capable of measuring the charge amount of the measurement sample. Used and measured.
First, each of the manufactured biaxially oriented films is cut into a circle with a diameter of 1.5 cm to prepare a sample for measuring the amount of peeling charge, and then cut into a rectangle with a size of 13 cm × 4 cm as a reference. Samples were prepared and each sample was left for 2 hours or more in an environment of a temperature of 23 ° C. and a relative humidity (RH) of 20%.
The obtained reference sample was placed on the table of the measuring device, and the measurement sample was attached to the head. At this time, in the reference sample to be placed on the table so that the first main surface of the reference sample and the second main surface of the measurement sample face each other, the first main surface is on the upper surface side and the second main surface of the measurement sample is mounted on the head. The main surface was arranged on the lower surface side, respectively. After static elimination of the measurement sample, the head was raised or lowered, and crimping and peeling of the measurement sample against the reference sample were repeated 5 times (contact pressure was 566 g / cm 2 , contact time was 2 seconds). The charge amount of the measurement sample was measured after each of the first to fifth peeling, and the average value of the measured values was calculated. While changing the measurement sample, the position where the measurement sample came into contact with the reference sample was changed for each measurement sample, and measurement was performed with a total of four samples, and the average of all was obtained as the peel charge amount.
[評価]
 実施例1~27及び比較例1~3の各2軸配向フィルムを用いて剥離フィルムを作製し、得られた剥離フィルムに対して、以下の評価を行った。評価結果を表1に示す。
[evaluation]
A release film was prepared using each of the biaxially oriented films of Examples 1 to 27 and Comparative Examples 1 to 3, and the obtained release film was evaluated as follows. The evaluation results are shown in Table 1.
〔剥離フィルムの作製〕
 各実施例及び比較例で製造された2軸配向フィルムを送り出し、2軸配向ポリエステルフィルムの粒子含有層とは反対側の表面に、下記処方Aからなる塗布液をスロットダイ方式で塗布した後、120℃の熱風乾燥機を用いて塗布膜を乾燥して、巻き取り、ロール状の剥離フィルム(剥離層を設けた2軸配向フィルム)を作製した。乾燥後の剥離層の厚さは、0.5μmであった。
[Preparation of release film]
The biaxially oriented film produced in each Example and Comparative Example was sent out, and a coating liquid consisting of the following formulation A was applied to the surface of the biaxially oriented polyester film opposite to the particle-containing layer by a slot die method. The coating film was dried using a hot air dryer at 120 ° C. and wound to prepare a roll-shaped release film (biaxially oriented film provided with a release layer). The thickness of the peeled layer after drying was 0.5 μm.
〔転写痕評価1〕
 得られた剥離フィルムを3.5cm角に裁断したものを、剥離層と特定塗布層とが接触する向きで10枚重ねて、積層体のサンプルを得た。このサンプルに対して、84kgの加重をかけた状態で、40℃のオーブンで3日間保持した。オーブンからサンプルを取り出して、サンプルから1枚ずつ剥離フィルムを剥がした。剥離フィルムの剥離層の表面を、走査型電子顕微鏡(SEM、日立ハイテク社製、S4700)を用いて20000倍で観察し、凹みの存在から下記の基準に従って転写痕を評価した。
[Transfer mark evaluation 1]
The obtained release film cut into 3.5 cm squares was stacked 10 sheets in a direction in which the release layer and the specific coating layer were in contact with each other to obtain a sample of a laminated body. This sample was kept in an oven at 40 ° C. for 3 days with a weight of 84 kg. The sample was taken out of the oven and the release film was peeled off one by one from the sample. The surface of the release layer of the release film was observed at 20000 times using a scanning electron microscope (SEM, manufactured by Hitachi High-Tech, Ltd., S4700), and transfer marks were evaluated from the presence of dents according to the following criteria.
(処方A:剥離層形成用塗布液)
・付加反応型のシリコーン(東レダウコーニング(株)製、SRX-345、剥離剤):10部
・トルエン及びメチルエチルケトンの混合溶剤(混合比=7:3(質量比)):490部
・白金触媒(東レダウコーニング(株)製、SRX-212):0.1部
 剥離層形成用塗布液は、上記成分を攪拌及び混合することにより調製した。
(Prescription A: Coating liquid for forming a release layer)
-Additional reaction type silicone (manufactured by Toray Dow Corning Co., Ltd., SRX-345, release agent): 10 parts-Mixed solvent of toluene and methyl ethyl ketone (mixing ratio = 7: 3 (mass ratio)): 490 parts-Platinum catalyst (SRX-212, manufactured by Toray Dow Corning Co., Ltd.): 0.1 part The coating liquid for forming a peeling layer was prepared by stirring and mixing the above components.
(評価基準)
 A:凹みが観察されず、平滑な表面であった。
 B:凹みが観察され、剥離層の表面が粗面化していた。
(Evaluation criteria)
A: No dents were observed, and the surface was smooth.
B: A dent was observed, and the surface of the release layer was roughened.
〔転写痕評価2:長期保管後評価〕
 上記〔剥離フィルムの作製〕に記載の方法で作製した剥離フィルムを、常温常湿環境下に3カ月間保管する長期保管試験を行った。保管後の剥離フィルムを用いた以外は、上述した〔転写痕評価1〕に記載の方法に従って、剥離フィルムに形成された転写痕の評価を行った。
 転写痕評価2における評価基準を、以下に示す。
[Transfer mark evaluation 2: Evaluation after long-term storage]
A long-term storage test was conducted in which the release film prepared by the method described in the above [Preparation of release film] was stored in a normal temperature and humidity environment for 3 months. Except for using the release film after storage, the transfer marks formed on the release film were evaluated according to the method described in [Transfer Mark Evaluation 1] described above.
The evaluation criteria in the transfer mark evaluation 2 are shown below.
(評価基準)
 A:凹みが観察されず、平滑な表面であった。
 B:10枚の剥離フィルムのうち1枚だけ凹みが観察されたが、残り9枚は平滑な表面であった。
 C:10枚の剥離フィルムのうち2枚以上に凹みが観察され、剥離層の表面が粗面化していた。
(Evaluation criteria)
A: No dents were observed, and the surface was smooth.
B: Only one of the 10 release films was dented, but the remaining 9 had a smooth surface.
C: A dent was observed on two or more of the 10 release films, and the surface of the release layer was roughened.
〔搬送性〕
 各実施例及び比較例において、上記冷却工程が施された2軸配向フィルムを上記巻取工程に記載の方法に従って巻き取る前に、下記の搬送条件で搬送した。このとき搬送ロールで搬送される2軸配向フィルムに現れるシワの状態を目視で観察し、以下の基準に従って搬送性を評価した。
(搬送条件)
 搬送ロール材質:ステンレス鋼(SUS)
 搬送ロールラップ角:130°(塗工面)
 搬送速度:100m/分
 搬送テンション:100N/m
[Transportability]
In each Example and Comparative Example, the biaxially oriented film subjected to the above cooling step was conveyed under the following conveying conditions before being wound according to the method described in the above winding step. At this time, the state of wrinkles appearing on the biaxially oriented film transported by the transport roll was visually observed, and the transportability was evaluated according to the following criteria.
(Transport conditions)
Transport roll material: Stainless steel (SUS)
Transport roll wrap angle: 130 ° (coated surface)
Transport speed: 100 m / min Transport tension: 100 N / m
(評価基準)
 A:搬送時にシワが観察されなかった。
 B:搬送ロールの近辺においてのみ、シワが観察された。
 C:搬送ロールよりも下流側においても、定常的にシワが観察された。
(Evaluation criteria)
A: No wrinkles were observed during transportation.
B: Wrinkles were observed only in the vicinity of the transport roll.
C: Wrinkles were constantly observed even on the downstream side of the transport roll.
〔剥離層の塗布性〕
 上記転写痕の評価において作製した剥離フィルムを長手方向に30mの長さで切り出した。3波長蛍光灯の下、得られたサンプルの剥離層側の表面を目視で観察し、反射光により観察される筋状の塗布ムラ及び異物による欠陥の数を計測した。計測結果から、以下の基準に従って、剥離層の塗布性を評価した。
[Applicability of release layer]
The release film produced in the evaluation of the transfer marks was cut out in the longitudinal direction to a length of 30 m. Under a three-wavelength fluorescent lamp, the surface of the obtained sample on the peeling layer side was visually observed, and the number of streaky coating unevenness and defects due to foreign matter observed by the reflected light was measured. From the measurement results, the applicability of the release layer was evaluated according to the following criteria.
(評価基準)
 A:塗布ムラ及び欠陥がいずれも観察されなかった。
 B:塗布ムラ及び/又は欠陥が観察されたが、許容範囲内であった。
 C:許容範囲を超える塗布ムラ及び/又は欠陥が観察された。
(Evaluation criteria)
A: No coating unevenness or defects were observed.
B: Coating unevenness and / or defects were observed, but were within the permissible range.
C: Coating unevenness and / or defects exceeding the allowable range were observed.
 表1に、各実施例及び比較例の評価結果をそれぞれ示す。
 表1中、「樹脂」欄の樹脂1~9、「界面活性剤」欄のW-1~W-4、「添加剤」欄の架橋剤、及び、「粒子」の「種類」欄の粒子1~3は、それぞれ下記の成分を使用したことを示す。
(樹脂)
 樹脂1: ザイクセン NC(住友精化(株)製、酸変性ポリオレフィン、水分散体)
 樹脂2: ザイクセン L(住友精化(株)製、酸変性ポリオレフィン、水分散体)
 樹脂3: ザイクセン A(住友精化(株)製、酸変性ポリオレフィン、水分散体)
 樹脂4: ケミパール S120(三井化学(株)製、酸変性ポリオレフィン、水分散体)
 樹脂5: アクリル樹脂(メタクリル酸メチル、2-ヒドロキシエチルメタクリレート及びメタクリル酸を質量比28:48:24で重合させてなる共重合体を中和した水分散体)
 樹脂6: サイマック US-480(東亞合成(株)製、シリコーン変性アクリル樹脂、水分散体)
 樹脂7: アクリル樹脂(メタクリル酸メチル、スチレン、2-エチルヘキシルアクリレート、2-ヒドロキシエチルメタクリレート及びアクリル酸を質量比59:8:26:5:2で重合させてなる共重合体、水分散体)
 樹脂8: タケラック W605(三井化学(株)製、ポリウレタン、水分散体)
 樹脂9: ハイドラン AP-40N(DIC(株)製、ポリウレタン、水分散体)
(界面活性剤)
 W-1:アニオン性炭化水素系界面活性剤(ラピゾールA-90、日油株式会社製)
 W-2:シリコーン系界面活性剤(BYK-346、BYK社製)
 W-3:フッ素系界面活性剤(サーフロンS-211、AGCセイミケミカル株式会社製、炭素数6以上の直鎖状パーフルオロアルキル基を含む構造)
 W-4:フッ素系界面活性剤(フタージェント215M、(株)ネオス製、パーフルオロイソプロピル基を含み、炭素数6以上の直鎖状パーフルオロアルキル基を含まない構造)
(添加剤)
 架橋剤:イソシアネート化合物、「デュラネート(登録商標)WM44L70」旭化成ケミカルズ(株)製
(粒子)
 粒子1: スノーテックス ZL(日産化学株式会社製、コロイダルシリカ、水分散体)
 粒子2: スノーテックス MP2040、(日産化学株式会社製、コロイダルシリカ、水分散体)
 粒子3: スノーテックス XL(日産化学株式会社製、コロイダルシリカ、水分散体)
Table 1 shows the evaluation results of each Example and Comparative Example.
In Table 1, resins 1 to 9 in the "resin" column, W-1 to W-4 in the "surfactant" column, cross-linking agents in the "additive" column, and particles in the "type" column of "particles". 1 to 3 indicate that the following components were used, respectively.
(resin)
Resin 1: Zyxen NC (manufactured by Sumitomo Seika Chemical Co., Ltd., acid-modified polyolefin, aqueous dispersion)
Resin 2: Zyxen L (manufactured by Sumitomo Seika Chemical Co., Ltd., acid-modified polyolefin, aqueous dispersion)
Resin 3: Zyxen A (manufactured by Sumitomo Seika Chemical Co., Ltd., acid-modified polyolefin, aqueous dispersion)
Resin 4: Chemipearl S120 (manufactured by Mitsui Chemicals, Inc., acid-modified polyolefin, aqueous dispersion)
Resin 5: Acrylic resin (an aqueous dispersion obtained by polymerizing methyl methacrylate, 2-hydroxyethyl methacrylate and methacrylic acid at a mass ratio of 28:48:24 to neutralize a copolymer).
Resin 6: Cymac US-480 (manufactured by Toagosei Co., Ltd., silicone-modified acrylic resin, aqueous dispersion)
Resin 7: Acrylic resin (copolymer obtained by polymerizing methyl methacrylate, styrene, 2-ethylhexyl acrylate, 2-hydroxyethyl methacrylate and acrylic acid at a mass ratio of 59: 8: 26: 5: 2, an aqueous dispersion)
Resin 8: Takelac W605 (manufactured by Mitsui Chemicals, Inc., polyurethane, aqueous dispersion)
Resin 9: Hydran AP-40N (manufactured by DIC Corporation, polyurethane, aqueous dispersion)
(Surfactant)
W-1: Anionic hydrocarbon-based surfactant (Lapisol A-90, manufactured by NOF CORPORATION)
W-2: Silicone-based surfactant (BYK-346, manufactured by BYK)
W-3: Fluorosurfactant (Surflon S-211, manufactured by AGC Seimi Chemical Co., Ltd., structure containing a linear perfluoroalkyl group having 6 or more carbon atoms)
W-4: Fluorosurfactant (Futergent 215M, manufactured by Neos Co., Ltd., a structure containing a perfluoroisopropyl group and not containing a linear perfluoroalkyl group having 6 or more carbon atoms)
(Additive)
Crosslinking agent: Isocyanate compound, "Duranate (registered trademark) WM44L70" manufactured by Asahi Kasei Chemicals Co., Ltd. (particles)
Particle 1: Snowtex ZL (manufactured by Nissan Chemical Industries, Ltd., colloidal silica, aqueous dispersion)
Particle 2: Snowtex MP2040, (manufactured by Nissan Chemical Industries, Ltd., colloidal silica, aqueous dispersion)
Particle 3: Snowtex XL (manufactured by Nissan Chemical Industries, Ltd., colloidal silica, aqueous dispersion)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表1より、本発明に係る実施例1~27の2軸配向ポリエステルフィルムは、比較例1~比較例3に比べて、本発明の効果がより優れることが確認された。 From Table 1, it was confirmed that the biaxially oriented polyester films of Examples 1 to 27 according to the present invention were more excellent in the effect of the present invention than those of Comparative Examples 1 to 3.
〔比較例4〕
 比較例4のポリエステルフィルムとして、粒子を含有する樹脂層をポリエチレンテレフタレート基材の一方の主面に積層してなるポリエチレンテレフタレートフィルム(「コスモシャイン(登録商標)A-1517」、東洋紡(株)製、厚み16μm)を用意した。比較例4のポリエステルフィルムは、比較的平坦な第1面(本フィルムの第1主面に相当)と、凹凸形状が存在する第2面(本フィルムの第2主面に相当)とを有していた。比較例4のポリエステルフィルムの凹凸面の最大突起高さSpは63nmであった。
 比較例4のポリエステルフィルムを用いて、上記〔剥離フィルムの作製〕に記載の方法に従って、第1面に剥離層を設けることによりロール状の剥離フィルムを作製した。得られた剥離フィルムを用いて、上記〔転写痕評価1〕に記載の方法で剥離層の表面の転写痕を評価したところ、凹みが観察され、剥離層が粗面化していた(評価B)。
 また、得られた剥離フィルムを用いて、上記〔転写痕評価2〕に記載の方法で剥離層の表面の転写痕を評価したところ、10枚の剥離フィルムのうち2枚以上の表面に凹みが観察され、剥離層が粗面化していた(評価C)。
[Comparative Example 4]
As the polyester film of Comparative Example 4, a polyethylene terephthalate film (“Cosmo Shine (registered trademark) A-1517”, manufactured by Toyobo Co., Ltd.) in which a resin layer containing particles is laminated on one main surface of a polyethylene terephthalate base material. , Thickness 16 μm) was prepared. The polyester film of Comparative Example 4 has a relatively flat first surface (corresponding to the first main surface of the present film) and a second surface having an uneven shape (corresponding to the second main surface of the present film). Was. The maximum protrusion height Sp of the uneven surface of the polyester film of Comparative Example 4 was 63 nm.
Using the polyester film of Comparative Example 4, a roll-shaped release film was produced by providing a release layer on the first surface according to the method described in the above [Preparation of release film]. When the transfer marks on the surface of the release layer were evaluated by the method described in the above [Transfer mark evaluation 1] using the obtained release film, dents were observed and the release layer was roughened (evaluation B). ..
Further, when the transfer marks on the surface of the release layer were evaluated by the method described in the above [Transfer mark evaluation 2] using the obtained release film, dents were found on the surface of two or more of the ten release films. It was observed that the peeled layer was roughened (evaluation C).
 特定塗布層が含有する粒子の平均粒子径が130nm以下である場合、搬送性がより優れることが確認された(実施例1及び2の比較)。 It was confirmed that when the average particle size of the particles contained in the specific coating layer was 130 nm or less, the transportability was more excellent (comparison between Examples 1 and 2).
 また、第2主面の突起を構成している粒子の粒子密度D(単位:個/μm)と、第2主面の最大突起高さSp(単位:nm)との積(D×Sp)が20以上である場合、搬送性がより優れることが確認された(実施例2、5及び6と、他の実施例との比較)。 Further, the product (D × Sp) of the particle density D (unit: piece / μm 2 ) of the particles constituting the protrusions on the second main surface and the maximum protrusion height Sp (unit: nm) on the second main surface. ) Is 20 or more, it is confirmed that the transportability is more excellent (comparison between Examples 2, 5 and 6 and other Examples).
 90℃で加熱した場合に発生する筋状欠陥領域の面積比が20%以下である場合、剥離層の塗布性がより優れることが確認された(実施例1、20~22と実施例14~19の比較)。 When the area ratio of the streak defect region generated when heated at 90 ° C. was 20% or less, it was confirmed that the applicability of the release layer was more excellent (Examples 1, 20 to 22 and Examples 14 to 14). Comparison of 19).
 冷却工程におけるポリエステルフィルムの冷却速度が、2200℃/分超3000℃/分未満である場合、剥離層の塗布性がより優れることが確認された(実施例1と17~19の比較)。 It was confirmed that when the cooling rate of the polyester film in the cooling step was more than 2200 ° C./min and less than 3000 ° C./min, the coatability of the release layer was more excellent (comparison between Examples 1 and 17-19).
 特定塗布層が炭化水素系界面活性剤を含有する場合、剥離層の塗布性がより優れることが確認された(実施例1及び9~10の比較)。
 特定塗布層が、炭素数1~4のパーフルオロアルキル基を有するフッ素系界面活性剤を含有する場合、炭素数が6以上の直鎖状パーフルオロアルキル基を有するフッ素系界面活性剤を含有する場合と比較して、剥離層の塗布性がより優れることが確認された(実施例26及び27の比較)。
It was confirmed that when the specific coating layer contains a hydrocarbon-based surfactant, the coating property of the release layer is more excellent (comparison between Examples 1 and 9 to 10).
When the specific coating layer contains a fluorine-based surfactant having a perfluoroalkyl group having 1 to 4 carbon atoms, it contains a fluorine-based surfactant having a linear perfluoroalkyl group having 6 or more carbon atoms. It was confirmed that the coatability of the release layer was superior to that of the case (comparison of Examples 26 and 27).
 また、上記の測定方法で測定された2軸配向フィルムの剥離帯電量の絶対値が0.12nC以下の場合、剥離層の塗布性がより優れることが確認された(実施例9~10と、実施例1~8、11~13、23、25、26との比較)。 Further, it was confirmed that when the absolute value of the peeling charge amount of the biaxially oriented film measured by the above measuring method was 0.12 nC or less, the coatability of the peeling layer was more excellent (Examples 9 to 10). Comparison with Examples 1-8, 11-13, 23, 25, 26).
 第2主面の表面自由エネルギーが50mJ/m以下である場合、剥離フィルムを長期に保管した後であっても、剥離層表面における転写痕の形成をより抑制できることが確認された(実施例24と、他の実施例との比較)。 When the surface free energy of the second main surface was 50 mJ / m 2 or less, it was confirmed that the formation of transfer marks on the surface of the release layer could be further suppressed even after the release film was stored for a long period of time (Example). 24 and comparison with other examples).
[実施例101:セラミックグリーンシートの製造]
 実施例1~26のそれぞれで作製した剥離フィルムの剥離層の上に、下記処方Kを有するセラミックスラリーを、乾燥後の厚みが0.5μmになるように剥離層の上に塗布した後、得られたスラリー塗布膜を90℃で乾燥させた。なお、セラミックスラリーは、下記処方に記載の各原料を混合し、ボールミルで分散することにより調製した。上記の方法で作製された2枚のスラリー塗布膜付き剥離フィルムを、スラリー塗布膜の表面と特定塗布膜の表面とが接するように重ね合わせ、10分間、1kg/cmの荷重をかけた。その後、スラリー塗布膜付き剥離フィルムから剥離フィルムを剥離して、セラミックグリーンシートを得た。
 得られたセラミックグリーンシートは、異物や転写故障もなく、良好な特性を有していた。
[Example 101: Production of ceramic green sheet]
A ceramic slurry having the following formulation K is applied onto the release layer of the release film prepared in each of Examples 1 to 26 so that the thickness after drying becomes 0.5 μm, and then obtained. The resulting slurry coating film was dried at 90 ° C. The ceramic slurry was prepared by mixing each of the raw materials described in the following formulation and dispersing them with a ball mill. The two release films with a slurry coating film produced by the above method were superposed so that the surface of the slurry coating film and the surface of the specific coating film were in contact with each other, and a load of 1 kg / cm 2 was applied for 10 minutes. Then, the release film was peeled off from the release film with the slurry coating film to obtain a ceramic green sheet.
The obtained ceramic green sheet had good characteristics without foreign matter or transfer failure.
<処方K:セラミックスラリー>
・ポリビニルブチラール(積水化学工業(株)製、エスレックBX-5)5部
・チタン酸バリウム(富士チタン工業(株)製、HPBT)100部
・トルエン及びエタノールの6:4の混合溶剤 45部
<Prescription K: Ceramic Rally>
・ Polyvinyl butyral (manufactured by Sekisui Chemical Co., Ltd., Eslek BX-5) 5 parts ・ Barium titanate (manufactured by Fuji Titanium Industry Co., Ltd., HPBT) 100 parts ・ Toluene and ethanol 6: 4 mixed solvent 45 parts
 1:ポリエステルフィルム
 1a:第1主面
 1b:第2主面
 2:ポリエステル基材
 2a~2l:把持部材
 3:特定塗布層
 10:予熱部
 20:延伸部
 30:熱固定部
 40:熱緩和部
 50:冷却部
 60a、60b:環状レール
 100:延伸機
 200:フィルム
 P、Q:把持解除点
 MD:搬送方向(長手方向)
 TD:幅方向
 L0、L1、L2、L3:フィルム幅
1: Polyester film 1a: First main surface 1b: Second main surface 2: Polyester base material 2a to 2l: Gripping member 3: Specific coating layer 10: Preheating part 20: Stretched part 30: Heat fixing part 40: Heat relaxation part 50: Cooling parts 60a, 60b: Circular rail 100: Stretching machine 200: Film P, Q: Gripping release point MD: Transport direction (longitudinal direction)
TD: Width direction L0, L1, L2, L3: Film width

Claims (21)

  1.  粒子を実質的に含有しないポリエステル基材と、
     前記ポリエステル基材の一方の表面上に配置された、粒子を含有する塗布層と、を備え、
     第1主面及び第2主面を有し、
     前記第1主面上に剥離層を形成して、剥離フィルムを製造するために用いられる、ポリエステルフィルムであって、
     前記第2主面は、前記塗布層の前記ポリエステル基材側とは反対側の表面であり、
     前記第2主面の最大突起高さSpが1nm以上60nm未満であり、
     前記第2主面の表面自由エネルギーが25~60mJ/mである、ポリエステルフィルム。
    With a polyester substrate that contains virtually no particles,
    A coating layer containing particles, which is arranged on one surface of the polyester substrate, is provided.
    It has a first main surface and a second main surface,
    A polyester film used for producing a release film by forming a release layer on the first main surface.
    The second main surface is a surface of the coating layer opposite to the polyester base material side.
    The maximum protrusion height Sp of the second main surface is 1 nm or more and less than 60 nm.
    A polyester film having a surface free energy of 25 to 60 mJ / m 2 on the second main surface.
  2.  前記第2主面の突起を構成している粒子の密度D(単位:個/μm)と、前記最大突起高さSp(単位:nm)との積(D×Sp)が、20以上である、請求項1に記載のポリエステルフィルム。 When the product (D × Sp) of the density D (unit: piece / μm 2 ) of the particles constituting the protrusions on the second main surface and the maximum protrusion height Sp (unit: nm) is 20 or more. The polyester film according to claim 1.
  3.  前記ポリエステルフィルムの厚さが40μm以下である、請求項1又は2に記載のポリエステルフィルム。 The polyester film according to claim 1 or 2, wherein the polyester film has a thickness of 40 μm or less.
  4.  前記塗布層が、ポリオレフィンを更に含有する、請求項1~3のいずれか1項に記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 3, wherein the coating layer further contains polyolefin.
  5.  前記塗布層が、酸価が30mgKOH/g以下である(メタ)アクリレート樹脂を更に含有する、請求項1~4のいずれか1項に記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 4, wherein the coating layer further contains a (meth) acrylate resin having an acid value of 30 mgKOH / g or less.
  6.  前記粒子の平均粒子径が1~130nmであり、
     前記塗布層の厚さが1~100nmであり、かつ、
     前記粒子の平均粒子径が前記塗布層の厚さよりも大きい、請求項1~5のいずれか1項に記載のポリエステルフィルム。
    The average particle size of the particles is 1 to 130 nm, and the particles have an average particle diameter of 1 to 130 nm.
    The thickness of the coating layer is 1 to 100 nm, and
    The polyester film according to any one of claims 1 to 5, wherein the average particle diameter of the particles is larger than the thickness of the coating layer.
  7.  前記塗布層が、炭化水素系界面活性剤、及び、炭素数1~4のパーフルオロアルキル基を含有するフッ素系界面活性剤からなる群より選択される少なくとも1つの界面活性剤を含有する、請求項1~6のいずれか1項に記載のポリエステルフィルム。 The coating layer contains at least one surfactant selected from the group consisting of a hydrocarbon-based surfactant and a fluorine-based surfactant containing a perfluoroalkyl group having 1 to 4 carbon atoms. Item 6. The polyester film according to any one of Items 1 to 6.
  8.  直径1.5cmφの円形に相当するポリエステルフィルムの第1主面と第2主面との剥離帯電量の絶対値が0.12nC以下である、請求項1~7のいずれか1項に記載のポリエステルフィルム。 The invention according to any one of claims 1 to 7, wherein the absolute value of the peeling charge amount between the first main surface and the second main surface of the polyester film corresponding to a circle having a diameter of 1.5 cmφ is 0.12 nC or less. Polyester film.
  9.  前記ポリエステルフィルムに対して、搬送速度30m/分、及び、搬送方向の張力100N/mの条件で搬送しながら、フィルム表面の温度が90℃となる条件にて20秒間加熱処理を行った後、前記ポリエステルフィルムに観察される筋状欠陥領域の面積の合計が、観察領域の全面積に対して40%以下である、請求項1~8のいずれか1項に記載のポリエステルフィルム。 The polyester film was heat-treated for 20 seconds under the condition that the temperature of the film surface was 90 ° C. while transporting the polyester film under the conditions of a transport speed of 30 m / min and a tension of 100 N / m in the transport direction. The polyester film according to any one of claims 1 to 8, wherein the total area of the streaky defect regions observed in the polyester film is 40% or less with respect to the total area of the observation region.
  10.  前記ポリエステルフィルムの密度が、1.39~1.41g/cmである、請求項1~9のいずれか1項に記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 9, wherein the polyester film has a density of 1.39 to 1.41 g / cm 3.
  11.  前記ポリエステルフィルムの90℃における幅方向の膨張率が、前記ポリエステルフィルムの30℃における幅方向の長さに対して、-0.15~0.15%である、請求項1~10のいずれか1項に記載のポリエステルフィルム。 Any of claims 1 to 10, wherein the expansion rate of the polyester film in the width direction at 90 ° C. is −0.15 to 0.15% with respect to the length of the polyester film in the width direction at 30 ° C. The polyester film according to item 1.
  12.  前記第2主面の面平均粗さSaが1~10nmである、請求項1~11のいずれか1項に記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 11, wherein the surface average roughness Sa of the second main surface is 1 to 10 nm.
  13.  前記第1主面の最大突起高さSpが1~60nmである、請求項1~12のいずれか1項に記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 12, wherein the maximum protrusion height Sp of the first main surface is 1 to 60 nm.
  14.  前記第1主面の表面自由エネルギーが50~70mJ/mである、請求項1~13のいずれか1項に記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 13, wherein the surface free energy of the first main surface is 50 to 70 mJ / m 2.
  15.  前記ポリエステルフィルムの厚さのバラツキが、前記ポリエステルフィルムの平均厚さの5%以下である、請求項1~14のいずれか1項に記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 14, wherein the variation in the thickness of the polyester film is 5% or less of the average thickness of the polyester film.
  16.  前記剥離フィルムが、セラミックグリーンシート製造用の剥離フィルムである、請求項1~15のいずれか1項に記載のポリエステルフィルム。 The polyester film according to any one of claims 1 to 15, wherein the release film is a release film for manufacturing a ceramic green sheet.
  17.  請求項1~16のいずれか1項に記載のポリエステルフィルムと、前記ポリエステルフィルムの前記第1主面に配置された剥離層と、を有する、剥離フィルム。 A release film comprising the polyester film according to any one of claims 1 to 16 and a release layer arranged on the first main surface of the polyester film.
  18.  前記剥離層の前記ポリエステルフィルム側とは反対側の表面の最大突起高さSpが1~60nmである、請求項17に記載の剥離フィルム。 The release film according to claim 17, wherein the maximum protrusion height Sp of the surface of the release layer opposite to the polyester film side is 1 to 60 nm.
  19.  前記剥離層の前記ポリエステルフィルム側とは反対側の表面の表面自由エネルギーが30mJ/m以下である、請求項17又は18に記載の剥離フィルム。 The release film according to claim 17 or 18, wherein the surface free energy of the surface of the release layer opposite to the polyester film side is 30 mJ / m 2 or less.
  20.  ポリエステル基材を有する未延伸ポリエステルフィルムを2軸延伸する2軸延伸工程と、
     粒子を含有する塗布層形成用組成物を用いてインラインコーティングする塗布層形成工程と、を有する、
     請求項1~16のいずれか1項に記載のポリエステルフィルムの製造方法。
    A biaxial stretching step of biaxially stretching an unstretched polyester film having a polyester base material,
    It comprises a coating layer forming step of in-line coating using a coating layer forming composition containing particles.
    The method for producing a polyester film according to any one of claims 1 to 16.
  21.  前記2軸延伸工程により2軸延伸されたポリエステルフィルムを、240℃未満の温度で加熱して熱固定する熱固定工程と、
     前記熱固定工程により熱固定されたポリエステルフィルムを、前記熱固定工程よりも低い温度で加熱して熱緩和する熱緩和工程と、
     前記熱緩和工程により熱緩和されたポリエステルフィルムを冷却する冷却工程と、
     前記冷却工程において、前記熱緩和されたポリエステルフィルムを幅方向に拡張する拡張工程と、を有し、
     前記冷却工程における前記ポリエステルフィルムの冷却速度が、2000℃/分超4000℃/分未満である、請求項20に記載のポリエステルフィルムの製造方法。
    A heat fixing step of heating and fixing the polyester film biaxially stretched by the biaxial stretching step at a temperature of less than 240 ° C.
    A heat relaxation step of heating the polyester film heat-fixed by the heat-fixing step at a temperature lower than that of the heat-fixing step to heat-relax the polyester film.
    A cooling step of cooling the polyester film heat-relaxed by the heat-relaxation step, and a cooling step of cooling the polyester film.
    The cooling step includes an expansion step of expanding the heat-relaxed polyester film in the width direction.
    The method for producing a polyester film according to claim 20, wherein the cooling rate of the polyester film in the cooling step is more than 2000 ° C./min and less than 4000 ° C./min.
PCT/JP2021/025608 2020-07-20 2021-07-07 Polyester film, release film, and method for producing polyester film WO2022019113A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180060001.3A CN116137835A (en) 2020-07-20 2021-07-07 Polyester film, release film, and method for producing polyester film
KR1020237001986A KR20230028408A (en) 2020-07-20 2021-07-07 Polyester film, peeling film, manufacturing method of polyester film
JP2022537909A JPWO2022019113A1 (en) 2020-07-20 2021-07-07

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2020-123800 2020-07-20
JP2020123800 2020-07-20
JP2020208252 2020-12-16
JP2020-208252 2020-12-16
JP2021107520 2021-06-29
JP2021-107520 2021-06-29

Publications (1)

Publication Number Publication Date
WO2022019113A1 true WO2022019113A1 (en) 2022-01-27

Family

ID=79729727

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/025608 WO2022019113A1 (en) 2020-07-20 2021-07-07 Polyester film, release film, and method for producing polyester film

Country Status (4)

Country Link
JP (1) JPWO2022019113A1 (en)
KR (1) KR20230028408A (en)
CN (1) CN116137835A (en)
WO (1) WO2022019113A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006181994A (en) * 2004-12-28 2006-07-13 Toyobo Co Ltd Manufacturing method of mold release film roll for manufacturing thin ceramic sheet
JP2014144636A (en) * 2012-04-23 2014-08-14 Lintec Corp Release film for manufacturing green sheet
JP2016193529A (en) * 2015-03-31 2016-11-17 リンテック株式会社 Release film for ceramic green sheet production process and ceramic green sheet production method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6414424B2 (en) 2014-09-19 2018-10-31 東洋紡株式会社 Release film for ceramic sheet production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006181994A (en) * 2004-12-28 2006-07-13 Toyobo Co Ltd Manufacturing method of mold release film roll for manufacturing thin ceramic sheet
JP2014144636A (en) * 2012-04-23 2014-08-14 Lintec Corp Release film for manufacturing green sheet
JP2016193529A (en) * 2015-03-31 2016-11-17 リンテック株式会社 Release film for ceramic green sheet production process and ceramic green sheet production method

Also Published As

Publication number Publication date
CN116137835A (en) 2023-05-19
JPWO2022019113A1 (en) 2022-01-27
KR20230028408A (en) 2023-02-28

Similar Documents

Publication Publication Date Title
JP7017183B2 (en) Release film for manufacturing ceramic green sheets
WO2021261412A1 (en) Method for producing polyester film, polyester film, laminated film
WO2022131008A1 (en) Polyester film, dry film resist, and method for producing polyester film
JP2022025703A (en) Laminated film
JP2008302547A (en) Protective polyester film for photosensitive adhesive resin
WO2022019113A1 (en) Polyester film, release film, and method for producing polyester film
WO2023281972A1 (en) Release film and method for producing release film
WO2023027033A1 (en) Polyester film, polyester film manufacturing method, and release film
WO2024070442A1 (en) Film, laminated film, and film production method
WO2024070623A1 (en) Film, layered film, and method for producing film
WO2020241692A1 (en) Biaxially oriented polyester film
WO2023026800A1 (en) Release film, method for manufacturing release film, and ceramic capacitor
JP2023073192A (en) Polyester film, release film, method for producing polyester film, and ceramic capacitor
JP2023007424A (en) Polyester film and release film
KR20230154744A (en) Release film for manufacturing ceramic green sheet, manufacturing method thereof, and laminate
TW202319243A (en) Polyester film and release film
JP2023012427A (en) release film
JP2007030232A (en) Laminated polyester film
KR20230141469A (en) Release film, method of producing release film and laminate
KR20230141468A (en) Release film, method of producing release film and laminate
WO2021220717A1 (en) Method for producing polyester film, and polyester film
WO2022138066A1 (en) Corrected thickness measuring device, corrected thickness measuring method, method for manufacturing film, and polyester film
WO2022138069A1 (en) Corrected thickness measurement device, corrected thickness measurement method, film manufacturing method, and polyester film
WO2022138065A1 (en) Apparatus for measuring correction thickness, method for measuring correction thickness, method for manufacturing film, and polyester film
JP2023152690A (en) Release film, method for producing release film, and laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21845774

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022537909

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21845774

Country of ref document: EP

Kind code of ref document: A1