WO2022138069A1 - Corrected thickness measurement device, corrected thickness measurement method, film manufacturing method, and polyester film - Google Patents

Corrected thickness measurement device, corrected thickness measurement method, film manufacturing method, and polyester film Download PDF

Info

Publication number
WO2022138069A1
WO2022138069A1 PCT/JP2021/044459 JP2021044459W WO2022138069A1 WO 2022138069 A1 WO2022138069 A1 WO 2022138069A1 JP 2021044459 W JP2021044459 W JP 2021044459W WO 2022138069 A1 WO2022138069 A1 WO 2022138069A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
thickness
thickness profile
value
profile
Prior art date
Application number
PCT/JP2021/044459
Other languages
French (fr)
Japanese (ja)
Inventor
佑記 福岡
洋介 飯野
充 内山
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2022138069A1 publication Critical patent/WO2022138069A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/02Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness
    • G01B21/08Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring length, width, or thickness for measuring thickness

Definitions

  • the present invention relates to a corrected thickness measuring device, a corrected thickness measuring method, a film manufacturing method, and a polyester film.
  • Various films such as polyester films are used in a wide range of applications from the viewpoints of processability, mechanical properties, electrical properties, dimensional stability, transparency, chemical resistance, etc., for example, decorative films or decorative films. It is used as a support and protective film for dry film photoresists.
  • the dry film photoresist has a structure in which a photosensitive resin layer (resist layer) is laminated on a support, and then a protective film is further laminated.
  • dry film photoresists have been used in the touch panel field for etching applications in the wiring forming process, protective film forming applications for protecting wiring portions such as copper or ITO (indium tin oxide) and silver nanoparticles, and interlayer insulating film applications. It's being used.
  • Patent Document 1 describes a method for producing a polyester film roll.
  • the thickness of the continuously formed running film is measured with high accuracy, and the roll shape value (diameter) in the width direction of the wound film roll is measured to satisfy the roll shape.
  • the film thickness is adjusted by feeding back to the adjustment of the temperature or the gap.
  • Patent Document 2 describes a step of extruding a molten polymer into a cooling roll through a gap of an extrusion die, a step of stretching in the longitudinal direction and the transverse direction, and 0.1% in the longitudinal direction while holding the end portion of the film.
  • a method for producing a biaxially stretched film having a thickness of less than 10 ⁇ m which comprises a step of relaxing at a relaxation rate larger than 3% in the lateral direction and a step of winding the film. It is described that the film thickness is measured before the film winding process, and the gap width of the extrusion die is controlled based on the measured value of the film thickness to prevent the film thickness unevenness from occurring. Has been done.
  • the base film used is required to have high precision smoothness due to thinning, smoothing, or high precision of the coating layer.
  • the influence of the thickness unevenness of the base film increases.
  • the influence of thickness unevenness is even greater. Therefore, in the thin film as described above, coating unevenness also occurs in the thin functional layer coated on the thin film.
  • the thickness unevenness is caused by the thickness of the film being different depending on the position of the film. The thickness unevenness indicates the distribution of the thickness of the film.
  • the thickness of the continuously formed running film is measured with high accuracy, or the roll shape value (diameter) in the width direction of the wound film roll is measured and simply fed back.
  • the thickness of the film is measured before the step of winding the film, and the gap width of the extrusion die is controlled based on the measured value of the thickness of the film to control the unevenness of the thickness of the film. Even if the film thickness is thin, it may not be possible to accurately measure the thickness due to the large measurement variation, and it may not be possible to accurately control the thickness unevenness of the film.
  • the thickness cannot be accurately measured due to the large measurement variation. Therefore, even if the film thickness is simply measured, the thickness unevenness of the film is accurately controlled. I can't. Therefore, at present, in order to produce a film having a thin thickness, it is necessary to measure the thickness with higher accuracy.
  • one aspect of the present invention includes a first thickness profile calculation unit for obtaining a first thickness profile using the thickness in one direction of the film measured by a radiation thickness meter, and a first thickness profile calculation unit.
  • the second thickness profile is obtained by using the first average thickness profile calculation unit for averaging the thickness profile of the first average thickness profile and the thickness in one direction of the film measured by the spectral interference type thickness meter.
  • the ratio W expressed by (value ⁇ to the nth power) / (value ⁇ to the nth power) of the value ⁇ of the thickness profile and the value ⁇ of the average second thickness profile is calculated, and each position in one direction is calculated.
  • the present invention provides a correction thickness measuring device having a correction thickness profile calculation unit for obtaining a correction thickness profile by multiplying the value of the second thickness profile in (1) by a value M obtained by multiplying the ratio W by 1 / n. ..
  • the radiation thickness gauge and the spectroscopic interferometry thickness gauge preferably measure the film after biaxial stretching.
  • One direction of the film is preferably the width direction of the film orthogonal to the transport direction of the film.
  • One aspect of the present invention is a step of obtaining a first thickness profile using the thickness of the film measured by a radiation thickness meter in one direction, and an average treatment of the first thickness profile to average the first thickness.
  • the step of obtaining the profile, the step of obtaining the second thickness profile using the thickness in one direction of the film measured by the spectral interference type thickness gauge, and the step of averaging the second thickness profile are performed to average the second thickness.
  • the step of obtaining the thickness profile and the value ⁇ of the average first thickness profile and the value ⁇ of the average second thickness profile at each position in one direction of the film are (value ⁇ to the nth power) / (value ⁇ ).
  • the ratio W represented by (nth power) is calculated, and the value of the second thickness profile at each position in one direction is multiplied by the value M obtained by multiplying the ratio W by 1 / n to obtain a corrected thickness profile. It provides a correction thickness measuring method including a step.
  • the thickness of the film measured by the radiation thickness meter in one direction and the thickness of the film measured by the spectroscopic interferometry thickness meter in one direction are preferably the thickness in one direction of the film after biaxial stretching.
  • One direction of the film is preferably the width direction of the film orthogonal to the transport direction of the film.
  • One aspect of the present invention is a step of manufacturing a film, a step of measuring the thickness of the film manufactured by a radiation thickness meter in one direction to obtain a first thickness profile, and a step of averaging the first thickness profile.
  • a step of processing and obtaining an average first thickness profile, a step of measuring the thickness in one direction of a film manufactured by a spectral interference type thickness gauge, and a step of obtaining a second thickness profile, and a second thickness profile are performed.
  • the ratio W represented by (nth power of) / (value ⁇ to the nth power) is calculated, and the value M obtained by multiplying the value of the second thickness profile at each position in one direction by the ratio W to the power of 1 / n is obtained.
  • the present invention provides a method for producing a film, which comprises a step of obtaining a corrected thickness profile and a step of adjusting the manufacturing conditions of the film based on the corrected thickness profile to manufacture the film.
  • One direction of the film is preferably the width direction of the film orthogonal to the transport direction of the film.
  • the difference between the maximum value and the minimum value in the corrected thickness profile obtained by measuring with the corrected thickness measuring device is 1.0% or less with respect to the average value of the corrected thickness profile.
  • One aspect of the present invention provides a polyester film in which the difference between the maximum value and the minimum value in the corrected thickness profile obtained by measuring with a corrected thickness measuring device is less than 0.1 ⁇ m.
  • the difference between the maximum value and the minimum value in the corrected thickness profile obtained by measuring by the corrected thickness measuring method is 1.0% or less with respect to the average value of the corrected thickness profile.
  • One aspect of the present invention provides a polyester film in which the difference between the maximum value and the minimum value in the corrected thickness profile obtained by measuring by the corrected thickness measuring method is less than 0.1 ⁇ m.
  • the thickness of a thin film can be measured with high accuracy.
  • a thin film can be manufactured with small thickness unevenness.
  • the corrected thickness measuring device the corrected thickness measuring method, the film manufacturing method, and the polyester film of the present invention will be described in detail based on the preferred embodiments shown in the attached drawings.
  • the figures described below are exemplary for explaining the present invention, and the present invention is not limited to the figures shown below.
  • "-" indicating the numerical range includes the numerical values described on both sides.
  • is a numerical value ⁇ a to a numerical value ⁇ b
  • the range of ⁇ is a range including the numerical value ⁇ a and the numerical value ⁇ b , and is expressed in mathematical symbols as ⁇ a ⁇ ⁇ ⁇ ⁇ b .
  • Angles such as “angle represented by a specific numerical value”, “parallel”, and “orthogonal” include, unless otherwise specified, an error range generally acceptable in the art.
  • the amount of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
  • the term "process” is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
  • FIG. 1 is a schematic perspective view showing an example of a film manufacturing apparatus used in the film manufacturing method of the embodiment of the present invention.
  • FIG. 2 is a plan view showing an example of a stretching machine used in the method for producing a film according to an embodiment of the present invention.
  • the film manufacturing apparatus 10 shown in FIG. 1 uses a melt extrusion method, and is a melt extrusion method that uses a T die casting method.
  • the film manufacturing apparatus 10 includes, for example, an extruder 12, an extrusion die 13, a casting roll 14, a longitudinal stretching section 15, a transverse stretching section 16, a cutting section 17, and a winding section 18.
  • the film manufacturing apparatus 10 includes a radiation thickness gauge 22, a spectroscopic interference type thickness gauge 24, a correction thickness measuring device 26, and an adjusting unit 28.
  • the film manufacturing apparatus 10 includes a control unit (not shown) that controls each part of the film manufacturing apparatus 10 in addition to the above-described configuration.
  • the control unit controls the operation of each part during the production of the film.
  • a polyester film will be described as an example of the film, but the film is not limited to the polyester film.
  • the film is a polyester film unless otherwise specified.
  • the film manufacturing apparatus 10 manufactures a biaxially stretched polyester film.
  • the extruder 12 a known extruder equipped with one or two or more screws is used.
  • the extruder 12 is performed, for example, by heating polyester, which is a raw material of a film, to a temperature equal to or higher than the melting point, and rotating the screw to melt and knead it.
  • the raw material of the film that is, polyester, is melted in the extruder 12 by heating and kneading with a screw to form a melt.
  • the melt is supplied from the extruder 12 to the extruder 13 through, for example, a gear pump (not shown), a filter (not shown), and the like.
  • the extrusion die 13 extrudes the melt supplied by the extruder 12 onto the casting roll 14. With the extrusion die 13, the melt may be extruded in a single layer or in multiple layers.
  • the extrusion die 13 is also simply referred to as a "die” (see JIS (Japanese Industrial Standards) B8650: 2006, a) Extruder, No. 134).
  • the extrusion die 13 is also called a T die.
  • the extruder 12 is preferably a twin-screw extruder in that the kneading temperature can be kept low.
  • the casting roll 14 is a film-shaped molding of the melt extruded from the extrusion die 13.
  • the melt extruded from the extrusion die 13 is brought into contact with the casting roll 14, and the melt is cooled and solidified on the casting roll 14 to form the melt into a film.
  • cooling the melt it is more preferable to blow air on the melt, and it is more preferable to blow cold air on the melt.
  • the temperature of the casting roll 14 is preferably more than (Tg-10 ° C.) and (Tg + 30 ° C.) or less, more preferably (Tg-7 ° C.) to (Tg + 20 ° C.), and more preferably (Tg-5 ° C.) to (Tg + 10 ° C.).
  • Tg is the glass transition temperature of the raw material of the film, and in the case of polyester, it is the glass transition temperature of polyester.
  • the temperature of the polyester film and each member can be measured by using a non-contact thermometer, for example, a radiation thermometer. When the casting roll 14 is used, it is preferable to improve the adhesion between the casting roll and the melt.
  • Examples of the method for improving the adhesion include an electrostatic application method, an air knife method, an air chamber method, a vacuum nozzle method, and a touch roll method.
  • the molded product cooled and molded by using the casting roll 14, that is, the unstretched film F is stripped from the casting roll 14 by using a stripping member such as a stripping roll.
  • the unstretched film F is an unstretched polyester film.
  • the longitudinally stretched portion 15 stretches the unstretched film F in the transport direction MD.
  • the longitudinally stretched portion 15 turns the unstretched film F into a uniaxially stretched film F1.
  • the vertically stretched portion 15 includes, for example, a heating portion for heating the unstretched film F and a plurality of rolls 15a having different velocities.
  • the unstretched film F is stretched in the transport direction MD by a plurality of rolls 15a having different velocities to obtain a uniaxially stretched film F1.
  • the uniaxially stretched film F 1 is a film after uniaxial stretching, and is a uniaxially stretched polyester film.
  • the width direction of the unstretched film F and the width direction of the uniaxially stretched film F1 and the width direction of the biaxially stretched film F2, which are orthogonal to the transport direction MD, are referred to as TD. Further, stretching in the transport direction MD is called longitudinal stretching.
  • the biaxially stretched film F 2 is a film after biaxial stretching, and is a biaxially stretched polyester film.
  • the transversely stretched portion 16 stretches the uniaxially stretched film F1 in the width direction TD.
  • the transversely stretched portion 16 turns the uniaxially stretched film F1 into a biaxially stretched film F2.
  • the laterally stretched portion 16 has, for example, a width in a state where both ends of the uniaxially stretched film F1 are gripped by clips 16a provided at both ends in the width direction and the uniaxially stretched film F1 is conveyed in the transport direction MD. It is stretched in the direction TD to obtain a biaxially stretched film F2.
  • the cut portion 17 cuts both ends of the biaxially stretched film F 2 .
  • the trimming step described later is carried out by the cutting portion 17. Both ends of the biaxially stretched film F 2 are gripped by the clip 16a of the laterally stretched portion 16, and the cutting portion 17 cuts the portion gripped by the clip 16a.
  • the configuration of the cutting portion 17 is not particularly limited, and for example, a slitter is used.
  • the slitter has, for example, a roll blade.
  • the winding portion 18 winds the biaxially stretched film F2 whose both ends are cut by the cutting portion 17 in a roll shape.
  • the take-up portion 18 provides a film roll 20 of the biaxially stretched film F 2 . It is conveyed from the cutting portion 17 to the winding portion 18 by a plurality of guide rollers 19.
  • the configuration of the winding portion 18 is not particularly limited, and includes, for example, a winding core 18a and a driving unit (not shown) for rotating the winding core 18a.
  • the drive unit has, for example, a motor.
  • the biaxially stretched film F 2 is attached to the winding core 18a, and the winding core 18a is rotated by the driving unit to wind the biaxially stretched film F 2 in a roll shape. As a result, the film roll 20 of the biaxially stretched film F 2 is obtained.
  • the adjusting unit 28 adjusts the film manufacturing conditions based on the corrected thickness profile obtained by the corrected thickness measuring device 26, and is connected to the corrected thickness measuring device 26, the extruder 12, and the extrusion die 13. .. Based on the corrected thickness profile, the adjusting unit 28 determines the film manufacturing conditions, for example, in the extrusion die 13, the die lip spacing, the die lip temperature, the temperature of the melt extruded from the extrusion die, or the amount of the melt in the width direction TD. , Or adjust the temperature of the melt supplied from the extruder 12.
  • the laterally stretched portion 16 shown in FIG. 2 includes a pair of annular rails 30a and 30b, and gripping members 31a to 31l attached to each annular rail and movable along the rails.
  • the annular rails 30a and 30b are arranged symmetrically with each other in the width direction TD with the uniaxially stretched film F1 interposed therebetween.
  • the laterally stretched portion 16 grips the uniaxially stretched film F1 by the gripping members 31a to 31l , and stretches the uniaxially stretched film F1 in the width direction TD by moving the gripping members 31a to 31l along the rail. ..
  • the transversely stretched portion 16 has a preheating region 32, a stretching region 33, a heat fixing region 34, a heat relaxation region 35, and a cooling region 36 in this order from the upstream side of the transport direction MD, that is, the longitudinal stretching portion 15.
  • a preheating region 32 is a region for preheating the uniaxially stretched film F1.
  • the stretched region 33 is a region in which the preheated uniaxially stretched film F1 is stretched by applying tension to the TD in the width direction. As shown in FIG.
  • the uniaxially stretched film F1 is stretched from the width L0 to the width L1.
  • the heat-fixing region 34 is a region where the uniaxially stretched film F1 to which tension is applied is heated and heat-fixed while being tensioned.
  • the heat relaxation region 35 is a region for heat relaxation of the tension of the heat - fixed uniaxially stretched film F1 by heating the heat - fixed uniaxially stretched film F1. As shown in FIG. 2 , in the heat relaxation region 35, the uniaxially stretched film F1 is reduced (relaxed) from the width L1 to the width L2.
  • the cooling region 36 is a region for cooling the heat - relaxed uniaxially stretched film F1.
  • the shape of the uniaxially stretched film F 2 can be fixed.
  • FIG. 2 shows that the width of the uniaxially stretched film F1 carried into the cooling region 36 is L2, and the width of the biaxially stretched film F2 carried out from the cooling region 36 is L3. ..
  • Gripping members 31a, 31b, 31e, 31f, 31i, and 31j that can move along the annular rail 30a are attached to the annular rail 30a.
  • the annular rail 30b is attached with gripping members 31c, 31d, 31g, 31h, 31k, and 31l that are movable along the annular rail 30b.
  • the gripping members 31a, 31b, 31e, 31f, 31i, and 31j grip one end of the uniaxially stretched film F1 in the width direction TD.
  • the gripping members 31c, 31d, 31g, 31h, 31k, and 31l grip the other end of the uniaxially stretched film F1 in the width direction TD.
  • the gripping members 31a to 31l are generally referred to as chucks, clips and the like.
  • the gripping members 31a, 31b, 31e, 31f, 31i, and 31j move counterclockwise along the annular rail 30a.
  • the gripping members 31c, 31d, 31g, 31h, 31k, and 31l move clockwise along the annular rail 30b.
  • the gripping members 31a to 31d move along the annular rail 30a or 30b while gripping the end of the uniaxially stretched film F1 in the preheating region 32, and the stretching region 33, the heat fixing region 34, and the heat relaxation region 35.
  • the gripping members 31a and 31b and the gripping members 31c and 31d are end portions on the downstream side of the cooling region 36 in the transport direction MD in the order of transport direction, for example, the grip release point P and the grip release point in FIG.
  • the film After separating the end portion of the biaxially stretched film F2 at Q, the film further moves along the annular rail 30a or 30b and returns to the preheating region 32.
  • the uniaxially stretched film F 1 moves in the direction of the transport direction MD to preheat in the preheating region 32, stretch in the stretching region 33, heat-fix in the heat fixing region 34, and heat relaxation region. Heat relaxation at 35 and cooling at the cooling region 36 are performed, and the film is stretched laterally.
  • the transport speed of the uniaxially stretched film F1 can be adjusted. Further, the gripping members 31a to 31l can independently change the moving speed.
  • the laterally stretched portion 16 enables laterally stretching the uniaxially stretched film F1 in the width direction TD in the stretched region 33.
  • the laterally stretched portion 16 can also stretch the uniaxially stretched film F1 in the transport direction MD by changing the moving speed of the gripping members 31a to 31l. That is, it is also possible to simultaneously perform biaxial stretching in the transport direction MD and the width direction TD using the transverse stretching portion 16.
  • the laterally stretched portion 16 may further have another gripping member in addition to the gripping members 31a to 31l in order to support the uniaxially stretched film F1.
  • the radiation thickness gauge 22 measures the thickness of the biaxially stretched film F2 by using radiation.
  • a ⁇ -ray transmission attenuation type thickness gauge or an infrared transmission attenuation type thickness gauge can be used.
  • the radiation thickness gauge 22 is arranged above the biaxially stretched film F 2 .
  • the radiation thickness gauge 22 measures, for example, the thickness of the biaxially stretched film F 2 by scanning in the width direction TD.
  • the measuring method of the radiation thickness gauge 22 is not limited to the method of scanning in the width direction TD.
  • the spectroscopic interferometry thickness gauge 24 is a measuring method using the refractive index of the film, and a known one can be appropriately used.
  • the spectroscopic interferometry type thickness gauge 24 measures the thickness in the width direction TD using, for example, a line scan type. It is preferable that the radiation thickness gauge 22 and the spectroscopic interference type thickness gauge 24 have the same measurement position on the biaxially stretched film F2.
  • MCPD-9800 multi-channel spectroscope manufactured by Otsuka Electronics Co., Ltd.
  • SI-T80 model manufactured by Keyence Co., Ltd.
  • the correction thickness measuring device 26 obtains a correction thickness profile using the film thickness measured by the radiation thickness gauge 22 and the film thickness measured by the spectral interference type thickness gauge 24.
  • the corrected thickness profile shows the thickness of the film with high accuracy, and shows the thickness unevenness with high accuracy.
  • the corrected thickness profile is used in the production of the film, and feedback control is performed based on the corrected thickness profile, and the production conditions of the film are adjusted.
  • the film manufacturing conditions are, for example, in the extrusion die 13, the die lip spacing, the die lip temperature, the temperature of the melt extruded from the extrusion die, or the amount of melt in the width direction TD, or the melt supplied from the extruder 12. The temperature etc.
  • the correction thickness measuring device 26 has a radiation thickness gauge 22 and a spectroscopic interference type thickness gauge 24 having different configurations, but is not limited to this, and includes a radiation thickness gauge 22 and a spectral interference type thickness gauge 24. It may be configured. As shown in FIG. 3, the correction thickness measuring device 26 includes a first thickness profile calculation unit 40, a first average thickness profile calculation unit 42, a second thickness profile calculation unit 44, and a second average thickness profile calculation unit 46. It has a correction thickness profile calculation unit 47, a memory 48, and a control unit 49.
  • the first thickness profile calculation unit 40, the first average thickness profile calculation unit 42, the second thickness profile calculation unit 44, the second average thickness profile calculation unit 46, and the correction thickness profile calculation unit 47 are all in memory. It is connected to 48.
  • the memory 48 includes a first thickness profile calculation unit 40, a first average thickness profile calculation unit 42, a second thickness profile calculation unit 44, a second average thickness profile calculation unit 46, and a correction thickness profile calculation unit 47. Information such as the obtained corrected thickness profile is stored.
  • the configuration of the memory 48 is not particularly limited, and is composed of, for example, a DRAM (Dynamic Random Access Memory) or a ferroelectric memory.
  • the correction thickness measuring device 26 also has a ROM (Read Only Memory) and the like (not shown).
  • the correction thickness measuring device 26 obtains a correction thickness profile by executing a program (computer software) stored in a ROM or the like on the control unit 49.
  • the correction thickness measuring device 26 may be configured by a computer in which each part functions by executing a program as described above, or may be a dedicated device in which each part is configured by a dedicated circuit.
  • FIG. 4 is a graph showing an example of the measurement result of the film.
  • the vertical axis indicates the thickness measurement value and the degree of orientation
  • the horizontal axis indicates the position in the width direction.
  • Reference numeral 50 shown in FIG. 4 indicates an example of the measurement result of the polyester film having a thickness of 25 ⁇ m by the radiation thickness gauge 22.
  • Reference numeral 52 indicates an example of the measurement result of the polyester film having a thickness of 25 ⁇ m by the spectroscopic interferometry thickness gauge 24.
  • Reference numeral 54 indicates an example of the measurement result of the measured degree of orientation of the polyester film.
  • Reference numerals 50, 52, and 54 are the results of measurement along the width direction TD of the polyester film.
  • the polyester film is biaxially stretched.
  • the degree of orientation of the film is measured using a microwave transmission type molecular orientation meter, for example, MOA-6004, manufactured by Oji Measuring Instruments Co., Ltd.
  • the measurement result of the polyester film having a thickness of 25 ⁇ m by the radiation thickness gauge 22 shown by the reference numeral 50 is compared with the measurement result of the polyester film having a thickness of 25 ⁇ m by the spectral interferometry type thickness gauge 24 shown by the reference numeral 52.
  • the amplitude of the measured value is large, and the variation of the measured value is large.
  • the variation in the measured value means the measurement accuracy, and the large variation in the measured value means that the measurement error is large.
  • the radiation thickness gauge 22 has a variation in the measured value of about 1 ⁇ m, and the smaller the film thickness, the greater the influence of the variation in the measured value.
  • the measured values vary widely, and when only the measured values of the radiation thickness gauge 22 are used for controlling the film thickness, the accuracy of controlling the film thickness is low.
  • the thickness of the continuously formed running film is measured with high accuracy, and the extrusion die 13 (based on the measured thickness) so as to eliminate the unevenness of the film thickness ( The method of adjusting the thickness unevenness of the film by adjusting the die lip temperature or the gap between the die lips (see FIG. 1) is preferably used.
  • the measurement result of the polyester film having a thickness of 25 ⁇ m by the spectroscopic interferometric thickness gauge 24 indicated by reference numeral 52 is influenced by the degree of orientation of the film, and the thickness decreases as the degree of orientation increases. Since the refractive index of a molecularly oriented film such as a stretched polyester film is different in the film, when the spectroscopic interference type thickness gauge 24 is used for measuring the thickness, the measured thickness reflects only the thickness of the film. It also includes the influence of the refractive index (orientation) of the film. Therefore, it is not suitable for measuring the thickness of the stretched polyester film.
  • FIGS. 5 to 8 are schematic views showing a procedure for creating a corrected thickness profile using the corrected thickness measuring device according to the embodiment of the present invention.
  • the vertical axis of FIGS. 5 to 8 shows the measured thickness of the film ( ⁇ m), and the horizontal axis shows the position (mm) in the width direction.
  • the correction thickness measuring device 26 shown in FIG. 3 utilizes the thickness of the film measured by the radiation thickness gauge 22 and the thickness of the film measured by the spectroscopic interference type thickness gauge 24.
  • the first thickness profile calculation unit 40 (see FIG. 3) is connected to the radiation thickness gauge 22. Information on the film thickness measured by the radiation thickness gauge 22 is input.
  • the second thickness profile calculation unit 44 (see FIG. 3) is connected to the spectroscopic interferometry thickness meter 24. Information on the film thickness measured by the spectral interferometry thickness gauge 24 is input.
  • the first thickness profile calculation unit 40 obtains the first thickness profile 56 shown in FIG. 5 by using the thickness in one direction of the film measured by the radiation thickness gauge 22.
  • one direction of the film is, for example, the width direction TD (see FIG. 1).
  • the first average thickness profile calculation unit 42 (see FIG. 3) averages the first thickness profile 56 shown in FIG. 5 to obtain the average first thickness profile 57 shown in FIG.
  • Reference numeral 57a shown in FIG. 6 indicates an averaged point.
  • the method of averaging the first thickness profile 56 to obtain the average first thickness profile 57 is not particularly limited, and the averaging process is performed using, for example, a moving average or an interval average. For the moving average or the section average, the average number of times and the section distance are set as appropriate.
  • the averaged points are plotted.
  • the averaged point may be a value obtained by adding two or more points and dividing by the number of points. That is, in the averaging process, the averaged points may be average values. Further, the averaged point may be the value of the middle point among the points arranged by arranging two or more points in ascending or large order. That is, in the averaging process, the averaged points may be the median value.
  • the moving average width of the moving average is preferably 100 to 400 mm, more preferably 180 to 280 mm.
  • the number of sections in the section average is preferably set so that the width of one section is 50 to 300 mm, and more preferably 50 to 150 mm, when the width of the film is divided by the number of sections. preferable.
  • the number of sections is preferably divided into 5 to 100 equal parts, and more preferably 10 to 40 equal parts.
  • the second thickness profile calculation unit 44 obtains the second thickness profile 58 shown in FIG. 5 by using the thickness in one direction of the film measured by the spectral interferometry type thickness meter.
  • the second average thickness profile calculation unit 46 (see FIG. 3) averages the second thickness profile to obtain the average second thickness profile 59 shown in FIG. Reference numeral 59a shown in FIG. 6 indicates an averaged point.
  • the method of averaging the second thickness profile 58 to obtain the average second thickness profile 59 is not particularly limited, and the averaging process is performed using, for example, a moving average or an interval average. For the moving average or the section average, the average number of times and the section distance are set as appropriate. Further, for example, in the averaging process, the averaged points are plotted.
  • the averaged points are the same as the averaged points described in the above-mentioned averaging process of the first thickness profile 56, detailed description thereof will be omitted.
  • the moving average width of the moving average and the number of sections in the section average are the same as the moving average width of the moving average and the number of sections in the section average of the first thickness profile 56 described above. Omit.
  • the correction thickness profile calculation unit 47 obtains the correction thickness profile 61 shown in FIG. Specifically, the correction thickness profile calculation unit 47 sets the average first thickness profile value ⁇ and the average second thickness profile value ⁇ at each position in one direction of the film, that is, at each position in the width direction.
  • the ratio W expressed by (value ⁇ to the nth power) / (value ⁇ to the nth power) is calculated.
  • the value of the second thickness profile at each position in the width direction is multiplied by the value M obtained by raising the ratio W to the power of 1 / n to obtain the corrected thickness profile 61 shown in FIG.
  • the obtained data of the correction thickness profile 61 is stored in the memory 48 (see FIG. 3).
  • the calculated value M is represented, for example, as in the profile 65 shown in FIG.
  • the above-mentioned data of the ratio W and the data of the value M are temporarily stored in the memory 48 and used for calculating the correction thickness profile 61.
  • the correction thickness measuring device 26 obtains the correction thickness profile 61.
  • the corrected thickness profile 61 shown in FIG. 8 shows the state of the film before control, and does not show the state of the finally obtained film.
  • the following method can also be used as a method for obtaining the corrected thickness profile 61.
  • the ratio WA expressed by (value ⁇ to the nth power) / (value ⁇ to the nth power) of the average second thickness profile value ⁇ and the average first thickness profile value ⁇ at each position in the width direction. calculate.
  • the value of the corrected thickness profile is represented by (value of the second thickness profile) / ( MA ). Further, as described above, both the value ⁇ and the value ⁇ are raised to the nth power, and the ratio W is raised to the 1 / nth power, but n of the nth power and n of the 1 / nth power are the same value.
  • the value of n may be a positive value or a negative value, and is not particularly limited, but it is preferable that n> 1.
  • n is preferably an integer for ease of calculation, and for example, n is preferably 2 or 3.
  • the correction thickness profile 61 obtained by the correction thickness measuring device 26 is used for controlling the thickness of the film, for example, a plurality of die lips arranged in the width direction TD (see FIG. 1) of the extrusion die 13 (see FIG. 1).
  • the section corresponds to each of the above.
  • the difference from the target thickness of the film in each section is calculated.
  • an allowable range is set in advance for the difference from the target thickness of the film. If the difference from the target thickness of the film in each section is within the allowable range, control is not performed in the corresponding section. On the other hand, when the difference from the target thickness of the film exceeds the allowable range, the die lip interval or the die lip temperature is adjusted in the corresponding section.
  • the distance between the die lips is widened.
  • the thickness of the film of the correction thickness profile 61 is thicker than the target thickness of the film, the distance between the die lips is narrowed.
  • the number of feedbacks may be set in advance and controlled so that the difference from the target thickness of the film in each section is within the allowable range.
  • the film manufacturing conditions are adjusted so that the difference from the target thickness of the film in each section becomes smaller even if the difference from the target thickness in each section is within the allowable range by the set number of feedbacks. Further, even if the difference from the target thickness of the film in each section is out of the allowable range, the adjustment of the film manufacturing conditions is stopped by the set number of feedbacks.
  • FIG. 9 is a flowchart showing an example of a film manufacturing method according to the embodiment of the present invention.
  • the film thickness is measured using a radiation thickness gauge 22 (see FIG. 1) (step S10).
  • Step S11 is a step of obtaining a first thickness profile.
  • the first thickness profile 56 shown in FIG. 5 is averaged to obtain, for example, an averaged point 57a (see FIG. 6).
  • the position of the averaged point 57a in the width direction TD and the number of the averaged points 57a are set in advance.
  • the method of the averaging process is not particularly limited, and as described above, a moving average or an interval average is used.
  • the averaged points 57a are plotted to create and obtain an average first thickness profile 57 shown in FIG. 6 (step S12).
  • Step S12 is a step of obtaining an average first thickness profile 57.
  • the film thickness is measured in parallel with step S10 or after step S12 using a spectroscopic interferometric thickness gauge 24 (see FIG. 1) (step S14).
  • the spectroscopic interferometric thickness gauge 24 shown in FIG. 1 is scanned in the width direction TD to measure the thickness of the biaxially stretched film F2 after lateral stretching and before winding.
  • the second thickness profile 58 shown in FIG. 5 is created and obtained (step S15).
  • Step S15 is a step of obtaining a second thickness profile.
  • the second thickness profile 58 shown in FIG. 5 is averaged to obtain, for example, an averaged point 59a (see FIG. 6).
  • the position of the averaged point 59a in the width direction TD and the number of the averaged points 59a are set in advance. It is preferable that the position and number of the averaging points 59a in the width direction are the same as the position and number of the above-mentioned averaging points 57a in the width direction.
  • the method of the averaging process is not particularly limited, and a moving average or an interval average is used as described above.
  • the averaged points 59a are plotted to create and obtain an average second thickness profile 59 shown in FIG. 6 (step S16).
  • Step S16 is a step of obtaining an average second thickness profile 59.
  • the value ⁇ of the average first thickness profile 57 and the value ⁇ of the average second thickness profile 59 at each position in the width direction TD of the film are (value ⁇ to the nth power) / (value ⁇ n).
  • the ratio W represented by (squared) is calculated.
  • W ( ⁇ n / ⁇ n ).
  • M ( ⁇ n / ⁇ n ) 1 / n .
  • the corrected thickness profile specifically, for example, at the position D1 in the width direction of FIG. 6, the value ⁇ 1 of the average first thickness profile 57 is 24.73, and the average second thickness profile 59. The value ⁇ 1 of is 24.97.
  • the method up to step S18 is the correction thickness measuring method.
  • step S18 there is a step of adjusting the film manufacturing conditions based on the corrected thickness profile to manufacture the film.
  • the thickness of the film is controlled to produce the film.
  • a determination condition is set in advance, and the film is manufactured based on the determination condition (step S20) (step S22). It is determined whether to adjust the manufacturing conditions (step S24).
  • a determination condition for example, a section is provided in a region corresponding to each of a plurality of die lips arranged in the width direction of the extrusion die 13 (see FIG. 1), and the difference from the target thickness of the film in each section.
  • step S20 it is determined whether the difference from the target thickness of the film in each section is within the allowable range. If the difference from the target thickness of the film is within the permissible range, the film manufacturing conditions are not adjusted in the section corresponding to the permissible range. If the difference from the target thickness of the film is within the permissible range in all the sections, the film production is continued as it is without adjusting the film production conditions (step S22).
  • step S20 when the difference from the target thickness of the film exceeds the allowable range, the film manufacturing conditions are adjusted (step S24).
  • step S24 for example, in the section where the difference from the target thickness of the film exceeds the allowable range, the die lip interval or the die lip temperature is adjusted.
  • the film production conditions are adjusted to carry out the film production (step S22). Up to step S22 is a film manufacturing method.
  • the film is manufactured after adjusting the film manufacturing conditions in step S24, but the present invention is not limited to this.
  • the process returns to step S10 and step S14, the correction thickness profile 61 is created again, and the difference from the target thickness of the film in each section is within the allowable range. May be determined (step S20). This may be repeated until the difference from the target thickness of the film in each section is within the allowable range. That is, the feedback control may be repeatedly executed, and the adjustment of the film manufacturing conditions and the creation of the corrected thickness profile may be repeatedly executed until the target thickness of the film is converged.
  • the film manufacturing conditions are as described above.
  • the difference between the maximum value and the minimum value in the correction thickness profile obtained by measuring with the correction thickness measuring device or the correction thickness measurement method is 1.0 with respect to the average value of the correction thickness profile. % Or less,
  • the thickness can be measured with high accuracy, and the thickness unevenness of the obtained film is small, that is, the difference between the maximum value (T max ) and the minimum value (T min ) in the corrected thickness profile is large. It can be as small as 1.0% or less with respect to the average value of the corrected thickness profile.
  • the difference between the maximum value and the minimum value in the correction thickness profile obtained by measuring with the correction thickness measuring device or the correction thickness measuring method is less than 0.1 ⁇ m.
  • the thickness can be measured with high accuracy, and the thickness unevenness of the obtained film is small, that is, the difference between the maximum value (T max ) and the minimum value (T min ) in the corrected thickness profile is shown.
  • the R value to be obtained can be reduced to less than 0.1 ⁇ m.
  • the R value can be less than 0.1 ⁇ m in the width direction.
  • step S20 as a determination condition, an allowable range for the difference from the target thickness of the film in each section is set, but the determination condition is not limited to this.
  • the number of feedbacks can also be used as a determination condition.
  • the number of feedbacks may be set in advance and controlled so that the difference from the target thickness of the film in each section is within the allowable range.
  • the set number of feedbacks is determined, and in step S24, the film manufacturing conditions are adjusted.
  • the film manufacturing conditions are adjusted so that the difference from the target thickness of the film in each section becomes smaller even if the difference is within the allowable range. Further, even if the difference from the target thickness of the film in each section is out of the allowable range, the adjustment of the film manufacturing conditions is stopped by the set number of feedbacks.
  • the number of feedbacks described above is not particularly limited, but the larger the number, the more precise the control. Considering the process load, it is preferably more than 10 times and 100 times or less. If the number of feedbacks is the above-mentioned number, the R value represented by the difference between the maximum value (T max ) and the minimum value (T min ) in the correction thickness profile can be reduced, and the time required for feedback control becomes long. And the length of the film to be measured does not increase.
  • steps S10, S11, S12 and steps S14, S15, S16 are executed in parallel, but the present invention is not limited thereto.
  • steps S10, S11, and S12 may be executed first, or steps S14, S15, and S16 may be executed first, depending on the measurement order by the radiation thickness gauge 22 and the spectral interferometry thickness gauge 24. .. If there is measurement data from the radiation thickness gauge 22 and the spectral interferometry thickness gauge 24, steps S10 and S14 are omitted, and steps S11 and S12 and steps S15 and S16 are executed in parallel. can.
  • the correction thickness measuring device 26 When the thickness in the width direction was measured by the correction thickness measuring device 26, the variation in the measured values was small and the film thickness unevenness could be measured with high accuracy as shown in the correction thickness profile 62 shown in FIG. On the other hand, with the radiation thickness gauge alone, as in the corrected thickness profile 64 shown in FIG. 11, the measured values vary widely, and the film thickness unevenness cannot be measured with high accuracy.
  • an unstretched polyester film is formed from, for example, a raw material polyester by an extrusion molding method using the above-mentioned extrusion die 13 (see FIG. 1).
  • the extrusion molding method is a method of molding a raw material resin into a desired shape by extruding the raw material resin using an extruder 12 (see FIG. 1).
  • polyester is heated to a temperature equal to or higher than the melting point and melted to obtain a melt.
  • the melt may be extruded in a single layer or in multiple layers.
  • the melt extruded from the extrusion die 13 is brought into contact with the casting roll 14 (see FIG. 1), and the melt is cooled and solidified on the casting roll 14 to form the melt into a film.
  • the temperature of the casting roll is as described above.
  • the extrusion molding step it is preferable to improve the adhesion between the casting roll 14 and the melt.
  • the method for increasing the adhesion between the casting roll 14 and the melt is as described above.
  • the unstretched polyester film cooled and formed by using the casting roll 14 is stripped from the casting roll 14 by using a stripping member such as a stripping roll.
  • the longitudinal stretching step is a step of stretching the unstretched film F (see FIG. 1) in the transport direction MD, and is executed by the longitudinally stretched portion 15 (see FIG. 1).
  • the unstretched film F is stretched in the transport direction MD by two or more rolls 15a having different transport speeds in the longitudinally stretched portion 15, to form a uniaxially stretched film F1. It is a process to do.
  • the unstretched film F is longitudinally stretched by transporting the unstretched film F while applying tension to the unstretched film F by two or more rolls 15a (see FIG. 1) having different transport speeds in the longitudinally stretched portion 15. Will be.
  • the unstretched film F may be preheated before the longitudinal stretching.
  • the preheating temperature of the unstretched film F is preferably (Tg-20) to (Tg + 50) ° C, more preferably (Tg-10) to (Tg + 40) ° C, and even more preferably (Tg-10) to (Tg + 30) ° C.
  • the preheating temperature in the longitudinal stretching step is preferably 70 to 120 ° C, more preferably 75 to 110 ° C, and even more preferably 75 to 100 ° C.
  • the transport speed (peripheral speed) of the unstretched film F by the roll 15a is not particularly limited as long as it is slower than the roll 15a on the downstream side in the transport direction, but is preferably 5 to 60 m / min, more preferably 10 to 50 m / min, and 15 -45 m / min is more preferable.
  • the transport speed (peripheral speed) of the unstretched film F by the roll 15a on the downstream side is not particularly limited as long as it is faster than the roll 15a on the upstream side, but is preferably 40 to 160 m / min, more preferably 50 to 150 m / min. It is preferable, and more preferably 60 to 140 m / min.
  • the draw ratio in the longitudinal stretching step may be appropriately set depending on the intended use, but is preferably 2.0 to 5.0 times, more preferably 2.5 to 4.0 times, and further preferably 2.8 to 4.0 times. preferable.
  • the stretching speed in the longitudinal stretching step is preferably 800 to 1500% / sec, more preferably 1000 to 1400% / sec, still more preferably 1200 to 1400% / sec.
  • the "stretching speed" is a value obtained by dividing the length ⁇ d in the transport direction of the film stretched in 1 second in the longitudinal stretching step by the length d 0 in the transport direction of the film before stretching, as a percentage. It is a represented value.
  • the roll 15a is not particularly limited, and a known roll used for stretching a plastic film can be used, but it is preferable that the material constituting the surface layer including the surface of each roll is a metal, ceramic or fluororesin. It is more preferably ceramic. Chromium is preferred as the metal. As the ceramic, chromium oxide or alumina oxide is preferable, and chromium oxide is more preferable. As the fluororesin, polytetrafluoroethylene is preferable.
  • the unstretched film F may be heated in the longitudinal stretching step.
  • the heating temperature is preferably (Tg-20) to (Tg + 50) ° C, more preferably (Tg-10) to (Tg + 40) ° C, and even more preferably (Tg) to (Tg + 30) ° C.
  • the heating temperature in the longitudinal stretching step is preferably 70 to 120 ° C, more preferably 80 to 110 ° C, and even more preferably 85 to 100 ° C.
  • the unstretched film F may be heated on only one side of the unstretched film F or on both sides.
  • the method for heating the unstretched film F in the longitudinal stretching step is not limited to the heater, and the method for heating the unstretched film F with a heated roll other than the roll 15a described above and the unstretched film F.
  • a method such as a method of applying warm air to the heater can be mentioned. Examples of the method for heating each roll include a method of providing a heater inside the roll and a method of providing a pipe inside the roll and allowing the heated fluid to flow in the pipe.
  • the longitudinally stretched portion 15 used in the longitudinal stretching step may be provided with two or more preheats for preheating the unstretched film before the longitudinal stretching, and may be provided with two or more low-speed stretching rolls used for the longitudinal stretching. May be.
  • the roll 15a or the like included in the vertically stretched portion 15 is not particularly limited, and may be two opposing rolls (a pair of rolls) or only one roll in contact with one surface of the unstretched film F. good.
  • ⁇ Cooling process> It may have a cooling step of cooling the uniaxially stretched film obtained by the longitudinal stretching step.
  • the uniaxially stretched film is cooled by contacting it with a cooling roll (not shown) provided in the cooling unit (not shown).
  • the condition of the cooling step is the cooling rate of the film by the cooling roll, that is, the value obtained by dividing the temperature of the film, which is lowered from the contact of the film with the cooling roll to the time when the film is separated from the cooling roll, by the time of contact between the film and the cooling roll. , 50 ° C./sec or higher, more preferably 120 ° C./sec or higher, further preferably 150 ° C./sec or higher, and particularly preferably 180 ° C./sec or higher.
  • the upper limit of the above-mentioned cooling rate is not particularly limited, but is preferably 300 ° C./sec or less.
  • the cooling rate of the film by the cooling roll can be adjusted by the surface temperature of the cooling roll and the transport speed of the film by the cooling roll and the opposing roll.
  • the cooling rate of the film by the cooling roll is measured by using a non-contact thermometer, the temperature of the film at the position in contact with the cooling roll (film temperature at the time of contact) and the temperature of the film at the position away from the cooling roll (at the time of separation). It is obtained from the measured value of film temperature), the length of the contact surface between the film and the cooling roll in the transport direction, and the transport speed of the film by the cooling roll and the facing roll.
  • the temperature of the polyester film in contact with the cooling roll in the cooling step is preferably 80 ° C. or higher, more preferably 90 ° C. or higher in that the occurrence of disorder defects in the polyester film can be further suppressed. , 95 ° C. or higher is more preferable.
  • the upper limit is not particularly limited, but 120 ° C. or lower is preferable.
  • the temperature of the film away from the cooling roll is preferably 80 ° C. or lower, more preferably 50 ° C. or lower, in that the occurrence of turbulent defects in the polyester film can be further suppressed.
  • the lower limit is not particularly limited, but is preferably 15 ° C. or higher.
  • the temperature of the polyester film lowered from the contact with the cooling roll to the separation from the cooling roll is preferably 10 ° C. or higher, preferably 30 ° C. or higher in that the occurrence of turbulent defects in the polyester film can be further suppressed.
  • the above is more preferable, and the temperature is more preferably 40 ° C. or higher.
  • the upper limit is not particularly limited, but is preferably 100 ° C. or lower.
  • the temperature of the film and the temperature change in the cooling step can be measured by the above-mentioned method using a non-contact thermometer.
  • the unstretched film F cooled by the cooling roll may be further subjected to a secondary cooling treatment of further cooling by a second cooling roll (not shown).
  • the second cooling roll has a function of cooling while conveying the unstretched film F.
  • the surface temperature of the second cooling roll is not particularly limited as long as it is equal to or lower than the surface temperature of the cooling roll, but is preferably 15 to 50 ° C.
  • the number of the second cooling rolls may be one or two, or may be three.
  • the secondary cooling process may be performed using a device other than the cooling roll.
  • the transverse stretching step is a step of stretching the uniaxially stretched film F1 in the width direction TD (hereinafter, also referred to as “transverse stretching”). More specifically, it is a step of stretching the uniaxially stretched film F 1 in the width direction TD using the laterally stretched portion 16 to form the biaxially stretched film F 2 .
  • the transversely stretched portion 16 applies tension in the width direction to the uniaxially stretched film F1 (see FIG. 1 ) while heating to obtain the uniaxially stretched film F1. It is a device that stretches in the width direction.
  • the laterally stretched portion 16 the one shown in FIG. 2 described above is used, but in addition to this, a known laterally stretched portion such as a tenter is used.
  • the tenter is divided by a windbreak curtain and has a large number of zones whose temperature can be individually adjusted by hot air or the like. Specific examples of the tenter having such a zone include a tenter having a preheating zone, a transverse stretching zone, a heat fixing zone, a heat relaxation zone, and a cooling zone in order from the upstream side in the transport direction.
  • the uniaxially stretched film F1 In the transverse stretching step, it is preferable to preheat the uniaxially stretched film F1 before the transverse stretching.
  • the preheating temperature of the uniaxially stretched film F 1 is preferably (Tg-10) to (Tg + 60) ° C, more preferably (Tg) to (Tg + 50) ° C.
  • the preheating temperature of the uniaxially stretched film F1 is preferably 80 to 120 ° C, more preferably 90 to 110 ° C.
  • the draw ratio in the transverse stretching step is preferably larger than the draw ratio in the above-mentioned longitudinal stretching step.
  • the stretching ratio in the transverse stretching step is preferably 3.0 to 6.0 times, more preferably 3.5 to 5.0 times, still more preferably 3.5 to 4.5 times.
  • the area magnification represented by the product of the stretching ratio in the longitudinal stretching step and the stretching ratio in the transverse stretching step is preferably 12.8 to 15.5 times, more preferably 13.5 to 15.2 times, and 14. It is more preferably 0 to 15.0 times.
  • the area magnification is equal to or more than the above lower limit value, the molecular orientation in the width direction TD becomes good. Further, when the area magnification is not more than the above-mentioned upper limit value, it is easy to maintain a state in which the molecular orientation is difficult to be relaxed when subjected to the heat treatment.
  • the stretching speed in the transverse stretching step is preferably 8 to 80% / sec, more preferably 10 to 75% / sec, still more preferably 15 to 60% / sec.
  • Heat treatment process> It may have a step (hereinafter, also referred to as “heat treatment step”) of heat-treating the biaxially stretched film F 2 (see FIG. 1) stretched in the width direction by the transverse stretching step.
  • the heat treatment step include a heat fixing step and a heat relaxation step.
  • the heat treatment step preferably has at least one of a heat fixing step and a heat relaxation step, and more preferably has both a heat fixing step and a heat relaxation step.
  • the heat treatment step including the heat fixing step and the heat relaxation step is carried out, for example, by using the transverse stretching portion 16 or the tenter including the heat fixing zone and the heat relaxation zone in the above-mentioned transverse stretching step.
  • a heat fixing step and a heat relaxation step are performed.
  • the above-mentioned film is a polyester film
  • the heat fixing step the biaxially oriented polyester film obtained by the transverse stretching step is heated and heat-fixed. By crystallizing the polyester by heat fixing, shrinkage of the polyester film can be suppressed.
  • the heat fixing step is carried out, for example, in the heat fixing region 34 (see FIG. 2) of the above-mentioned transverse stretching portion 16.
  • the surface temperature (heat fixing temperature T1) of the polyester film in the heat fixing step is preferably 190 to 240 ° C., more preferably 200 to 240 ° C., and even more preferably 210 to 230 ° C.
  • the heat treatment is performed while controlling the maximum temperature reached on the surface of the film to be the above-mentioned heat fixing temperature T1.
  • the variation in the surface temperature in the film width direction is preferably 0.5 to 10.0 ° C, more preferably 0.5 to 7.0 ° C, still more preferably 0.5 to 5.0 ° C. 0.5 to 4.0 ° C. is particularly preferable.
  • the variation in the surface temperature in the film width direction within the above range, the variation in the crystallinity in the width direction can be suppressed.
  • Examples of the heating method include a method of applying hot air to the film and a method of radiant heating of the film.
  • Examples of the device used in the method of radiant heating include an infrared heater.
  • the heating time in the heat fixing step is preferably 5 to 50 seconds, more preferably 5 to 30 seconds, and even more preferably 5 to 10 seconds.
  • the film heat-fixed by the heat-fixing step is heated at a temperature lower than that of the heat-fixing step to heat-relax the film. Residual strain of the film can be alleviated by heat relaxation.
  • the heat relaxation step is carried out, for example, in the heat relaxation region 35 of the laterally stretched portion 16 described above.
  • the surface temperature (heat relaxation temperature T2) of the film in the heat relaxation step is preferably 5 ° C. or higher lower than the heat fixation temperature T1, more preferably 15 ° C. or higher, further preferably 25 ° C. or higher, further preferably 30 ° C.
  • the lower temperature is particularly preferable. That is, the heat relaxation temperature T2 is preferably 235 ° C or lower, more preferably 225 ° C or lower, further preferably 210 ° C or lower, and particularly preferably 200 ° C or lower.
  • the lower limit of the heat relaxation temperature T2 is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, still more preferably 120 ° C. or higher.
  • the heat treatment is performed while controlling the maximum temperature reached on the surface of the film to be the above-mentioned heat relaxation temperature T2.
  • Examples of the heating method include a method of applying hot air to the film and a method of radiant heating of the film.
  • Examples of the device used in the method of radiant heating include an infrared heater.
  • the film manufacturing method comprises a cooling step of cooling the heat-relaxed film.
  • the cooling step and the expansion step described later are carried out, for example, in the cooling region 36 of the laterally stretched portion 16 described above.
  • Examples of the method for cooling the film in the cooling step include a method of blowing air (preferably cold air) on the film and a method of bringing the film into contact with a temperature-adjustable member (for example, a temperature control roll).
  • a method of blowing air preferably cold air
  • a method of bringing the film into contact with a temperature-adjustable member for example, a temperature control roll.
  • the cooling rate V of the film is 2200 to 3500 ° C./min.
  • the cooling rate V in the cooling step is preferably 2200 to 3000 ° C./min, more preferably 2300 to 2600 ° C./min.
  • the cooling rate V of the film in the cooling step can be measured using a non-contact thermometer.
  • a non-contact thermometer For example, when the cooling step is carried out in the cooling region 36 of the laterally stretched portion 16 described above, the surface temperature of the uniaxially stretched film F1 carried into the cooling region 36 from the heat relaxation region 35 and the surface temperature of the uniaxially stretched film F1 carried out from the cooling region 36.
  • the surface temperature of the uniaxially stretched film F1 is measured to obtain a temperature difference ⁇ T (° C.) between the two.
  • the cooling rate V is obtained by dividing the obtained temperature difference ⁇ T (° C.) by the residence time ts of the uniaxially stretched film F1 in the cooling region 36.
  • the cooling speed of the uniaxially stretched film F 1 can be adjusted by the operating conditions of the cooling device and the transport speed of the film.
  • the above-mentioned heat fixing step, heat relaxation step, and cooling step in the film manufacturing method are continuously carried out in this order.
  • the method for producing a film includes an expansion step of expanding the heat-relaxed film in the width direction in the above-mentioned cooling step.
  • “Expanding the film in the width direction” in the cooling step means the film width at the end of the cooling step (L3 in FIG. 2) rather than the film width of the film at the start of the cooling step (L2 in FIG. 2). It means applying tension in the width direction to the film during the cooling process so that
  • the method of expanding the film in the width direction is not particularly limited.
  • the cooling region 36 is more than the distance between the annular rails 30a (see FIG. 2) and 30b (see FIG. 2) at the starting point of the cooling region 36.
  • each grip member in the cooling step The uniaxially stretched film F 1 to be gripped can be expanded in the width direction.
  • the expansion step may be carried out continuously or intermittently from the start to the end of the cooling step as long as the film width is expanded before and after the cooling step, or may be carried out only at one time during the cooling step.
  • the expansion ratio in the width direction of the film by the expansion step is not particularly limited as long as it is larger than 0, but the effect of the present invention is more effective.
  • the percentage b of the above-mentioned expansion rate is preferably 0.001% or more, and more preferably 0.01% or more.
  • the upper limit is not particularly limited, but the percentage b of the above-mentioned expansion rate is preferably 1.3% or less, more preferably 1.2% or less, and further preferably 1.0% or less.
  • the trimming step is a step of cutting both end portions gripped by the clip 16a (see FIG. 1) of the laterally stretched portion 16 of the biaxially stretched film F 2 . After the trimming step, a winding step is carried out.
  • ⁇ Rolling process> It has a winding step of obtaining a roll-shaped biaxially stretched film F 2 by winding the biaxially stretched film F 2 after the trimming step obtained by performing the above-mentioned transverse stretching step by a winding unit 18. ..
  • the biaxially stretched film F 2 is the film of the present invention. By going through the above steps, the biaxially stretched film F 2 can be manufactured. The control of the thickness unevenness of the biaxially stretched film F 2 is carried out as described above.
  • FIG. 12 is a graph illustrating control of film thickness in consideration of oscillating cutting in the method for producing a film according to the embodiment of the present invention.
  • the cutting portion 17 shown in FIG. 1 cuts both end portions of the biaxially stretched film F 2 along the transport direction MD, but is not limited thereto.
  • both end portions of the biaxially stretched film F 2 may be cut by changing the cutting position in a triangular wavy shape.
  • This cutting method is called oscillating cutting.
  • the lengths of both end portions of the biaxially stretched film F 2 after cutting change in the width direction TD along the transport direction MD.
  • an EPC engineering position controller
  • the thickness gauge arranged after the correction has the radiation thickness gauge 22 and the spectral interferometry thickness gauge 24 described above.
  • the end face of the oscillated, cut biaxially stretched film F 2 is corrected by using the measurement data of the radiation thickness gauge 22 and the measurement data of the spectral interference type thickness gauge 24, respectively, on the measurement data.
  • the thickness data of the biaxially stretched film F 2 after straightening can be calculated, and this calculated data can be used for the above-mentioned correction thickness measurement and the production of the film.
  • the above-mentioned feedback control is performed using the thickness of the film after the oscillate cut on the measurement data of the radiation thickness gauge 22 and the measurement data of the spectroscopic interference type thickness gauge 24.
  • the profile of the film shown in 70 can be obtained.
  • the profile of the film shown by reference numeral 72 in FIG. 12 is obtained. In both the film profile 70 and the film profile 72 of FIG. 12, the thickness of the widthwise TD of the long film to be wound is measured over the entire length of the film, and the widthwise TD of the long film is measured. The average value of the thickness is shown.
  • the feedback control can be performed by using the thickness of the film after the oscillating cutting, so that the film thickness can be made flat as compared with the case where the film thickness after the oscillating cutting is not used.
  • the polyester film is a film-like object containing polyester as a main polymer component.
  • the "main polymer component” means the polymer having the highest content (mass) among all the polymers contained in the film.
  • the polyester film may contain one kind of polyester alone or may contain two or more kinds of polyesters.
  • Polyester is a polymer having an ester bond in the main chain. Polyester is usually formed by polycondensing a dicarboxylic acid compound and a diol compound, which will be described later.
  • the polyester is not particularly limited, and known polyesters can be used. Examples of the polyester include polyethylene terephthalate (PET) and polyethylene-2,6-naphthalate (PEN), and PET is preferable.
  • the intrinsic viscosity of the polyester is preferably 0.50 dl / g or more and less than 0.80 dl / g, and more preferably 0.55 dl / g or more and less than 0.70 dl / g.
  • the melting point (Tm) of the polyester is preferably 220 to 270 ° C, more preferably 245 to 265 ° C.
  • the glass transition temperature (Tg) of polyester is preferably 65 to 90 ° C, more preferably 70 to 85 ° C.
  • polyester can be produced by polycondensing at least one dicarboxylic acid compound and at least one diol compound in the presence of a catalyst.
  • the catalyst used for producing the polyester is not particularly limited, and a known catalyst that can be used for synthesizing the polyester can be used.
  • the catalyst include alkali metal compounds (for example, potassium compounds and sodium compounds), alkaline earth metal compounds (for example, calcium compounds and magnesium compounds), zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, and antimony.
  • alkali metal compounds for example, potassium compounds and sodium compounds
  • alkaline earth metal compounds for example, calcium compounds and magnesium compounds
  • zinc compounds for example, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, and antimony.
  • examples thereof include compounds, titanium compounds, germanium compounds and phosphorus compounds. Of these, titanium compounds are preferable from the viewpoint of catalytic activity and cost. Only one kind of catalyst may be used, or two or more kinds of catalysts may be used in combination.
  • At least one metal catalyst selected from potassium compounds, sodium compounds, calcium compounds, magnesium compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, germanium compounds, and phosphorus compounds. It is preferable to use in combination, and it is more preferable to use a titanium compound and a phosphorus compound in combination.
  • the titanium compound an organic chelated titanium complex is preferable.
  • the organic chelated titanium complex is a titanium compound having an organic acid as a ligand.
  • the organic acid include citric acid, lactic acid, trimellitic acid, and malic acid.
  • the titanium compound the titanium compound described in paragraphs 0049 to 0053 of Japanese Patent No. 5575671 can also be used, and the contents of the above-mentioned publication are incorporated in the present specification.
  • the dicarboxylic acid compound is preferably a dicarboxylic acid or a dicarboxylic acid ester, and examples thereof include an aliphatic dicarboxylic acid compound, an alicyclic dicarboxylic acid compound, an aromatic dicarboxylic acid compound, and a methyl ester compound or an ethyl ester compound thereof. .. Of these, aromatic dicarboxylic acid or methyl aromatic dicarboxylic acid is preferable.
  • Examples of the aliphatic dicarboxylic acid compound include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecandic acid, dimer acid, eicosandionic acid, pimelic acid, azelaic acid, and methylmalonic acid. And ethylmalonic acid.
  • Examples of the alicyclic dicarboxylic acid compound include adamantandicarboxylic acid, norbornnedicarboxylic acid, cyclohexanedicarboxylic acid, and decalindicarboxylic acid.
  • aromatic dicarboxylic acid compound examples include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 1,8-naphthalenedicarboxylic acid. , 4,4'-diphenyldicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, 5-sodium sulfoisophthalic acid, phenylindandicarboxylic acid, anthracendicarboxylic acid, phenanthrangecarboxylic acid, and 9,9'-bis (4-carboxy). Phenyl) fluorenic acid can be mentioned. Of these, terephthalic acid or 2,6-naphthalenedicarboxylic acid is preferable, and terephthalic acid is more preferable.
  • terephthalic acid may be used alone, or may be copolymerized with another aromatic dicarboxylic acid such as isophthalic acid or an aliphatic dicarboxylic acid.
  • diol compound examples include an aliphatic diol compound, an alicyclic diol compound, and an aromatic diol compound, and an aliphatic diol compound is preferable.
  • Examples of the aliphatic diol compound include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, and neo. Examples include pentyl glycol, preferably ethylene glycol. Examples of the alicyclic diol compound include cyclohexanedimethanol, spiroglycol, and isosorbide. Examples of the aromatic diol compound include bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, and 9,9'-bis (4-hydroxyphenyl) fluorene. Only one kind of diol compound may be used, or two or more kinds may be used in combination.
  • an end-capping agent may be used if necessary.
  • the end sealant By using the end sealant, a structure derived from the end sealant is introduced into the end of the polyester.
  • the terminal encapsulant a known end encapsulant can be used without limitation. Examples of the terminal encapsulant include oxazoline compounds, carbodiimide compounds, and epoxy compounds.
  • the terminal encapsulant the contents described in paragraphs 0055 to 0064 of JP-A-2014-189002 can also be referred to, and the contents of the above-mentioned publication are incorporated in the present specification.
  • the reaction temperature is not limited and may be appropriately set according to the raw material.
  • the reaction temperature is preferably 260 to 300 ° C, more preferably 275 to 285 ° C.
  • the pressure is not limited and may be appropriately set according to the raw material.
  • the pressure is preferably 1.33 ⁇ 10 -3 to 1.33 ⁇ 10 -5 MPa, more preferably 6.67 ⁇ 10 -4 to 6.67 ⁇ 10 -5 MPa.
  • the polyester content in the polyester film is preferably 85% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, still more preferably 98% by mass or more, based on the total mass of the polymer in the polyester film. Especially preferable.
  • the upper limit of the polyester content is not limited and can be appropriately set within a range of 100% by mass or less with respect to the total mass of the polymer in the polyester film.
  • the content of the polyethylene terephthalate is preferably 90 to 100% by mass, more preferably 95 to 100% by mass, and 98 to 100% by mass with respect to the total mass of the polyester in the polyester film. % Is more preferable, and 100% by mass is particularly preferable.
  • the polyester film may contain components other than polyester (for example, catalyst, unreacted raw material component, water, etc.).
  • the polyester film preferably contains substantially no particles.
  • substantially free of particles means that the content of particles is 50 with respect to the total mass of the polyester film when the elements derived from the particles are quantitatively analyzed by fluorescent X-ray analysis. It is defined as having a mass of ppm or less, preferably 10% by mass or less, and more preferably not more than the detection limit. This means that even if the particles are not actively added to the base film, the contamination component derived from foreign matter, the raw material resin, or the dirt adhering to the line or device in the film manufacturing process is peeled off and mixed in the film. This is because it may be done.
  • the thickness of the polyester film is preferably 100 ⁇ m or less, more preferably less than 50 ⁇ m, further preferably 40 ⁇ m or less, and particularly preferably 25 ⁇ m or less, in terms of being able to suppress an increase in haze value and being excellent in laminating property.
  • the lower limit of the thickness is not particularly limited, but 3 ⁇ m or more is preferable, 4 ⁇ m or more is more preferable, and 10 ⁇ m or more is further preferable, from the viewpoint of improving the strength and the workability.
  • the thickness of the polyester film is measured by the above-mentioned corrected thickness measuring device or the corrected thickness measuring method.
  • the polyester film is 1.0% or less with respect to the average value of the corrected thickness profile.
  • the lower limit of the above ratio is preferably 0%.
  • the R value represented by the difference between the maximum value (T max ) and the minimum value (T min ) in the corrected thickness profile is less than 0.1 ⁇ m.
  • the lower limit of the above R value is preferably 0 ⁇ m.
  • the density of the polyester film is preferably 1.39 to 1.41 g / cm 3 , more preferably 1.395 to 1.405 g / cm 3 , and even more preferably 1.398 to 1.400 g / cm 3 .
  • the density of the polyester film can be measured using an electronic hydrometer (product name "SD-200L", manufactured by Alpha Mirage Co., Ltd.).
  • the haze of the polyester film is preferably 1% or less, more preferably 0.5% or less, further preferably 0.4% or less, and particularly preferably 0.3% or less. The smaller the haze, the better, so the lower limit of the haze is not limited. If the lower limit of the haze is set for convenience, it is 0% or more.
  • the haze By setting the haze to the above-mentioned upper limit or less, it is possible to reduce the scattering of ultraviolet light by the polyester film, which is the support of the resist layer when the resist layer is laminated on the polyester film and then irradiated with ultraviolet rays for exposure. It is possible to improve the state of the resist pattern wall surface such as distortion and omission in the subsequent patterning of the resist.
  • Haze is measured by a method according to JIS K7105 using a haze meter (for example, NDH-2000, manufactured by Nippon Denshoku Industries Co., Ltd.).
  • a haze meter for example, NDH-2000, manufactured by Nippon Denshoku Industries Co., Ltd.
  • the b * value in the L * a * b * color system is preferably 0 to 1, more preferably 0 to 0.8, further preferably 0 to 0.6, and particularly preferably 0 to 0.4. preferable.
  • the b * value in the L * a * b * color system is 0 to 1, the yellowness of the film can be reduced, so that the hue of the film can be made almost colorless.
  • the polyester film can be preferably applied, for example, in applications where high visibility is required, for example, in display devices.
  • the b * value in the L * a * b * color system is measured by a transmission method using a spectral color difference meter (for example, SE-2000, manufactured by Nippon Denshoku Industries Co., Ltd.).
  • a spectral color difference meter for example, SE-2000, manufactured by Nippon Denshoku Industries Co., Ltd.
  • the present invention is basically configured as described above. Although the corrected thickness measuring device, the corrected thickness measuring method, the film manufacturing method, and the polyester film of the present invention have been described in detail above, the present invention is not limited to the above-described embodiment and does not deviate from the gist of the present invention. Of course, various improvements or changes may be made in the above.
  • a non-contact thermometer (AD-5616 (product name), manufactured by A & D, emissivity 0.95) is used to measure the temperature of the central portion in the width direction of the film five times. The arithmetic mean value of the obtained measured values was used as the measured value of the surface temperature of the film.
  • Example 1 ⁇ Extrusion molding process> Pellets of polyethylene terephthalate were produced using a titanium compound (citrate chelated titanium complex, VERTEC AC-420, manufactured by Johnson Matthey) described in Japanese Patent No. 5575671 as a polymerization catalyst. The obtained pellets were dried to a water content of 50 ppm or less, charged into a hopper of a uniaxial kneading extruder having a diameter of 30 mm, and then melted and extruded at 280 ° C. The melt was passed through a filter (pore diameter 3 ⁇ m) and then extruded from the die into a cooling drum at 25 ° C. to obtain an unstretched film made of polyethylene terephthalate.
  • a titanium compound cementitrate chelated titanium complex, VERTEC AC-420, manufactured by Johnson Matthey
  • the extruded melt was brought into close contact with the cooling drum by the electrostatic application method.
  • the melting point (Tm) of polyethylene terephthalate constituting the unstretched film was 258 ° C.
  • the glass transition temperature (Tg) was 80 ° C.
  • Transverse stretching process The film subjected to the longitudinal stretching step was stretched in the width direction using a tenter under the following conditions to prepare a biaxially stretched film.
  • Transverse stretching conditions Preheating temperature: 100 ° C Stretching temperature: 120 ° C Stretching ratio: 4.3 times Stretching speed: 50% / sec
  • Heat relaxation process> the heat-fixed film was heated under the following conditions to perform a heat relaxation step of relaxing the tension of the film. Further, in the heat relaxation step, the film width was reduced as compared with the end of the heat fixing step by narrowing the distance (tenter width) between the gripping members of the tenter that grips both ends of the film.
  • the heat-relaxed film was subjected to a cooling step of cooling under the following conditions. Further, in the cooling step, an expansion step was carried out in which the film width was expanded as compared with the time when the heat relaxation step was completed by widening the tenter width.
  • the cooling rate V below is the film surface measured at the time of loading into the cooling region 36, with the residence time from when the film is carried into the cooling region 36 of the laterally stretched portion 16 shown in FIG. 2 until it is carried out as the cooling time ta. It was obtained by dividing the temperature difference ⁇ T (° C.) between the temperature and the film surface temperature measured at the time of carrying out the cooling region 36 by the cooling time ta.
  • the film thickness in the width direction TD of the film and the film thickness of the film transfer direction MD are transferred by using a radiation thickness meter and a spectral interference type thickness meter.
  • Directional MD that is, 1600 m along the longitudinal direction of the film was measured.
  • the correction thickness profile was obtained by the above-mentioned correction thickness measurement method using the measurement results of the radiation thickness gauge and the spectral interferometry thickness gauge. From the corrected thickness profile, the corrected thickness unevenness in the width direction of the film and the corrected thickness unevenness in the transport direction of the film were obtained.
  • Information on the corrected thickness unevenness in the width direction of the film and the corrected thickness unevenness in the film transport direction are fed back to the temperature of the extrusion die, which is the manufacturing condition of the film, the temperature condition of the melt extruded from the extrusion die, and the like. It was controlled so that the correction thickness unevenness in the width direction and the correction thickness unevenness in the transport direction of the film were reduced, that is, the unevenness of the film surface in the width direction and the transport direction was eliminated. During the control, the feedback control was repeated 30 times.
  • Example 2 In Example 2, the number of feedbacks was different from that in Example 1, and other than that, it was the same as in Example 1. In Example 2, the number of feedbacks was 40 times.
  • Example 3 In Example 3, the number of feedbacks was different from that in Example 1, and other than that, it was the same as in Example 1. In Example 3, the number of feedbacks was 45 times.
  • Example 4 In Example 4, the number of feedbacks and the target thickness of the film were different from those in Example 1, and other than that, it was the same as in Example 1. In Example 4, the number of feedbacks was 45, and the target thickness of the film was 31 ⁇ m.
  • Example 5 In Example 5, the number of feedbacks and the target thickness of the film were different from those in Example 1, and other than that, it was the same as in Example 1. In Example 5, the number of feedbacks was 45, and the target thickness of the film was 38 ⁇ m.
  • the corrected thickness in the width direction of the film was measured.
  • the thickness unevenness ratio (%) is the ratio of the difference between the maximum value and the minimum value in the above-mentioned corrected thickness profile to the average value of the corrected thickness profile.
  • the corrected thickness in the transport direction of the film was also measured in the same manner as the corrected thickness in the width direction of the film, and the above-mentioned R value and the ratio (%) of the thickness unevenness in the transport direction were obtained.
  • the coating unevenness shown below was evaluated for each of the biaxially stretched films of Examples 1 to 5.
  • Table 1 shows the evaluation results of coating unevenness.
  • the transport speed of the biaxially stretched film when forming the base layer and the black layer was 70 m / min.
  • a biaxially stretched film provided with a base layer and a black layer was placed on a light table, and color unevenness of the black layer was visually observed at a position 1 m away from the biaxially stretched film.
  • a biaxially stretched film provided with the base layer and the black layer was formed according to the above method except that the drying temperature conditions at the time of forming the base layer and the formation of the black layer were both changed to 120 ° C. The observation was made in. Based on the observation results of each biaxially stretched film manufactured with the drying temperature condition of the coating film set to 90 ° C. or 120 ° C., the coating unevenness of the biaxially stretched film was evaluated according to the following criteria.
  • Example 10 Using the biaxially stretched film prepared in Example 1 as a support, a dry film for forming a touch panel protective film was prepared by the following procedure. A coating liquid for forming a second transparent transfer layer consisting of the following formulation D was applied to the surface of the biaxially stretched film produced in Example 1 and dried at 90 ° C. to form a second transparent transfer layer. Next, a coating liquid for forming a first transparent transfer layer consisting of the following formulation E was applied onto the second transparent transfer layer and then dried at 70 ° C. to form the first transparent transfer layer. The thickness of the second transparent transfer layer was 5.0 ⁇ m, and the thickness of the first transparent transfer layer was about 80 nm.
  • a polyethylene terephthalate film having a thickness of 16 ⁇ m was pressure-bonded to the surface of the first transparent transfer layer as a protective film to prepare a transfer film for forming a touch panel protective film.
  • the obtained transfer film had no change in the refractive index due to uneven coating, no transfer failure, and had good characteristics.
  • contact holes were formed in the obtained transfer film with reference to [0122] to [0128] of International Publication No. 2018/186428, a good pattern could be formed.
  • Example 11 Using the biaxially stretched film prepared in Example 1 as a support, a dry film for forming an etching resist was prepared by the following procedure. A coating liquid for forming a thermoplastic resin layer consisting of the following formulation F was applied to the surface of the biaxially stretched film produced in Example 1 and dried at 80 ° C. to form a thermoplastic resin layer. Next, a coating liquid for forming a water-soluble resin layer consisting of the following formulation G was applied onto the thermoplastic resin layer and then dried at 80 ° C. to form a water-soluble resin layer. Further, a coating liquid for forming a photosensitive resin layer consisting of the following formulation H was applied onto the water-soluble resin layer and then dried at 80 ° C.
  • a coating liquid for forming a thermoplastic resin layer consisting of the following formulation F was applied to the surface of the biaxially stretched film produced in Example 1 and dried at 80 ° C. to form a thermoplastic resin layer.
  • thermoplastic resin layer was 2 ⁇ m
  • the thickness of the water-soluble resin layer was 1 ⁇ m
  • the thickness of the photosensitive resin layer was 2 ⁇ m.
  • a polyethylene terephthalate film having a thickness of 16 ⁇ m was pressure-bonded to the surface of the photosensitive resin layer as a protective film to prepare a transfer film for forming an etching resist.
  • ⁇ Prescription F Coating liquid for forming a thermoplastic resin layer> ⁇ Polymer of benzyl methacrylate / methacrylic acid / acrylic acid (75/10/15 mass%, molecular weight 30,000, solid content concentration 30%) 22.7 parts ⁇ 3,6-bis (diphenylamino) fluorane 0.12 parts A-1, oxime sulfonate type photoacid generator 0.2 part, tricyclodecanedimethanol diacrylate 3.32 part, 8UX-015A (Taisei Fine Chemical Co., Ltd.) described in paragraph 0227 of JP2013-047765A. , 15 functional) 1.66 parts ⁇ Aronix TO-2349 (Toa Synthetic Co., Ltd.) 0.55 parts ⁇ Surfactant (DIC Co., Ltd., Megafuck F-552) 0.02 parts
  • ⁇ Prescription G Coating liquid for forming a water-soluble resin layer> -Polyvinyl alcohol (Kuraray Poval 4-88LA, manufactured by Kuraray Co., Ltd.) 3.22 parts-Polyvinyl pyrrolidone (manufactured by Nippon Catalyst Co., Ltd., K-30) 1.49 parts-Surfactant (Megafuck F-444, DIC stock) Company) 0.0035 parts, methanol (Mitsubishi Gas Chemical Company, Ltd.) 57.1 parts, ion-exchanged water 38.12 parts
  • ⁇ Prescription H Coating liquid for forming a photosensitive resin layer> ⁇ Polymer of styrene / methacrylic acid / methyl methacrylate (52/29/19 mass%, molecular weight 60,000, solid content concentration 30%) 25.2 parts ⁇ Leuco crystal violet 0.06 parts ⁇ Photopolymerization initiator (2) -(2-Chlorophenyl) -4,5-diphenylimidazole dimer) 1.03 parts ⁇ 4,4'-bis (diethylamino) benzophenone 0.04 parts ⁇ (N-phenylcarbamoylmethyl-N-carboxymethylaniline 0) .02 parts ⁇ Ethylated bisphenol A dimethacrylate NK ester BPE-500 (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) 5.61 parts ⁇ Aronix M-270 (manufactured by Toa Synthetic Co., Ltd.) 0.58 parts ⁇ Phenotiazine 0.04
  • Example 12 Using the biaxially stretched film produced in Example 4 as a support, a release film for producing a ceramic green sheet was produced by the following procedure. A coating liquid for forming a release layer made of the following formulation J was applied to the surface of the biaxially stretched film produced in Example 4 and dried at 120 ° C. to form a release layer. The thickness of the release layer was 0.1 ⁇ m. Next, the ceramic slurry consisting of the following formulation K was applied onto the release layer so that the thickness after drying was 0.5 ⁇ m, and then dried at 90 ° C.
  • the slurry surface and the back surface of the biaxially stretched film were overlapped with each other, and a load of 1 kg / cm 2 was applied for 10 minutes, and then the release film was peeled off to obtain a ceramic green sheet.
  • the obtained ceramic green sheet had good characteristics without coating unevenness and transfer failure.
  • ⁇ Prescription J Coating liquid for forming a release layer> -Silicone resin (SRX-345 manufactured by Toradau Corning Co., Ltd., addition reaction type silicone) 10 parts-Platinum catalyst (SRX-212 manufactured by Toradau Corning Co., Ltd.) 0.1 parts-Toluene / methyl ethyl ketone mixed solvent 490 parts
  • ⁇ Prescription K Ceramic Rally> -Polyvinyl butyral (Sekisui Chemical Co., Ltd., Eslek BH-3) 5 parts-Barium titanate (Fuji Titanium Industry Co., Ltd., HPBT) 50 parts-Toluene / ethanol mixed solvent 45 parts

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

Provided are: a corrected thickness measurement device and corrected thickness measurement method such that it is possible to accurately measure the thickness of a thin film; a film manufacturing method; and a polyester film in which the unevenness of a coated thin functional layer has been suppressed. The present invention comprises: a step for obtaining a first thickness profile using the thickness in one direction of a film as measured by a radiation thickness gauge; a step for averaging the first thickness profile to obtain an average first thickness profile; a step for obtaining a second thickness profile using the thickness in the one direction of the film as measured by a spectral interference-type thickness gauge; a step for averaging the second thickness profile to obtain an average second thickness profile; and a step for multiplying the values of the second thickness profile by a value M obtained by raising the ratio W (αn/ βn) of the value α of the average first thickness profile and the value β of the average second thickness profile at each position in the one direction of the film, to the 1/nth power to obtain a corrected thickness profile.

Description

補正厚み測定装置、補正厚み測定方法、フィルムの製造方法、及びポリエステルフィルムCorrected thickness measuring device, corrected thickness measuring method, film manufacturing method, and polyester film
 本発明は、補正厚み測定装置、補正厚み測定方法、フィルムの製造方法、及びポリエステルフィルムに関する。 The present invention relates to a corrected thickness measuring device, a corrected thickness measuring method, a film manufacturing method, and a polyester film.
 ポリエステルフィルム等の各種のフィルムは、加工性、機械的性質、電気的性質、寸法安定性、透明性、及び耐薬品性等の観点から幅広い用途に使用されており、例えば、加飾フィルム、又はドライフィルムフォトレジストの支持体及び保護フィルムとして使用されている。ドライフィルムフォトレジストは、感光性樹脂層(フォトレジスト層)を、支持体上に積層した後、更に保護フィルムを積層してなる構造を有している。近年、ドライフィルムフォトレジストは、タッチパネル分野において、配線形成工程におけるエッチング用途、銅又はITO(酸化インジウムスズ)、銀ナノ粒子等の配線部分を保護する保護膜形成用途、及び層間絶縁膜用途等に利用されている。 Various films such as polyester films are used in a wide range of applications from the viewpoints of processability, mechanical properties, electrical properties, dimensional stability, transparency, chemical resistance, etc., for example, decorative films or decorative films. It is used as a support and protective film for dry film photoresists. The dry film photoresist has a structure in which a photosensitive resin layer (resist layer) is laminated on a support, and then a protective film is further laminated. In recent years, dry film photoresists have been used in the touch panel field for etching applications in the wiring forming process, protective film forming applications for protecting wiring portions such as copper or ITO (indium tin oxide) and silver nanoparticles, and interlayer insulating film applications. It's being used.
 ポリエステルフィルム等の各種のフィルムの製造方法として、例えば、特許文献1には、ポリエステルフィルムロールの製造方法が記載されている。特許文献1では、連続的に製膜される走行フィルムの厚みを高精度に測定したり、巻き取ったフィルムロールの幅方向のロール形状値(直径)を測定し、ロール形状を満足するようダイリップ温度又は間隙の調整にフィードバックしてフィルム厚薄を調整している。 As a method for producing various films such as polyester film, for example, Patent Document 1 describes a method for producing a polyester film roll. In Patent Document 1, the thickness of the continuously formed running film is measured with high accuracy, and the roll shape value (diameter) in the width direction of the wound film roll is measured to satisfy the roll shape. The film thickness is adjusted by feeding back to the adjustment of the temperature or the gap.
 また、特許文献2には、押出しダイのギャップを介して冷却ロールに溶融ポリマーを押出す工程、長手方向及び横方向に延伸する工程、フィルムの端部を保持しながら長手方向に0.1%より大きく且つ横方向に3%より大きい弛緩率で弛緩する工程、及びフィルムを巻取る工程から成る厚み10μm未満の2軸延伸フィルムの製造方法が記載されている。フィルムを巻取る工程の前にフィルムの厚みを測定し、そのフィルムの厚みの測定値を基にして押出しダイのギャップ幅を制御することにより、フィルムの厚みムラが発生しないようにすることが記載されている。 Further, Patent Document 2 describes a step of extruding a molten polymer into a cooling roll through a gap of an extrusion die, a step of stretching in the longitudinal direction and the transverse direction, and 0.1% in the longitudinal direction while holding the end portion of the film. Described is a method for producing a biaxially stretched film having a thickness of less than 10 μm, which comprises a step of relaxing at a relaxation rate larger than 3% in the lateral direction and a step of winding the film. It is described that the film thickness is measured before the film winding process, and the gap width of the extrusion die is controlled based on the measured value of the film thickness to prevent the film thickness unevenness from occurring. Has been done.
国際公開第2001/048061号International Publication No. 2001/048661 特開2000―129009号公報Japanese Unexamined Patent Publication No. 2000-12909
 近年、上述の加飾フィルム、又はドライフィルムフォトレジスト等の各分野において、塗布層の薄膜化、平滑化、又は高精度化に伴い、使用されるベースフィルムには、精度の高い平滑性が要求されている。また、ベースフィルムの厚みが薄くなるにつれて、ベースフィルムの厚みムラの影響が増大する。特に厚み100μm以下の薄いフィルムでは、厚みムラの影響がさらに大きい。このため、上述のように薄いフィルムでは、その上に塗布される薄い機能性層にも塗布ムラが生じる。
 なお、厚みムラは、フィルムの厚みがフィルムの位置により異なることにより生じるものである。厚みムラは、フィルムの厚みの分布を示す。
In recent years, in each field such as the above-mentioned decorative film or dry film photoresist, the base film used is required to have high precision smoothness due to thinning, smoothing, or high precision of the coating layer. Has been done. Further, as the thickness of the base film becomes thinner, the influence of the thickness unevenness of the base film increases. In particular, in a thin film having a thickness of 100 μm or less, the influence of thickness unevenness is even greater. Therefore, in the thin film as described above, coating unevenness also occurs in the thin functional layer coated on the thin film.
The thickness unevenness is caused by the thickness of the film being different depending on the position of the film. The thickness unevenness indicates the distribution of the thickness of the film.
 しかしながら、特許文献1のように、連続的に製膜される走行フィルムの厚みを高精度に測定したり、巻き取ったフィルムロールの幅方向のロール形状値(直径)を測定して、単にフィードバックしても、フィルムの厚みが薄い場合、測定バラつきが大きいために厚みの正確な測定ができず、フィルムの厚みムラを正確に制御できない。
 また、特許文献2のように、フィルムを巻取る工程の前にフィルムの厚みを測定して、フィルムの厚みの測定値を基にして押出しダイのギャップ幅を制御することにより、フィルムの厚みムラが発生しないようにしても、フィルムの厚みが薄い場合、測定バラつきが大きいために厚みの正確な測定ができず、フィルムの厚みムラを正確に制御できないことがあった。
 このように、上述の厚みが100μm以下の薄いフィルムでは、測定バラつきが大きいために厚みの正確な測定ができないことから、単にフィルムの厚みを測定しても、フィルムの厚みムラを正確に制御することができない。そこで、現状では、厚みが薄いフィルムを製造するために、より高精度な厚みの測定が必要とされている。
However, as in Patent Document 1, the thickness of the continuously formed running film is measured with high accuracy, or the roll shape value (diameter) in the width direction of the wound film roll is measured and simply fed back. However, when the thickness of the film is thin, the thickness cannot be measured accurately due to the large variation in measurement, and the unevenness of the thickness of the film cannot be controlled accurately.
Further, as in Patent Document 2, the thickness of the film is measured before the step of winding the film, and the gap width of the extrusion die is controlled based on the measured value of the thickness of the film to control the unevenness of the thickness of the film. Even if the film thickness is thin, it may not be possible to accurately measure the thickness due to the large measurement variation, and it may not be possible to accurately control the thickness unevenness of the film.
As described above, in the above-mentioned thin film having a thickness of 100 μm or less, the thickness cannot be accurately measured due to the large measurement variation. Therefore, even if the film thickness is simply measured, the thickness unevenness of the film is accurately controlled. I can't. Therefore, at present, in order to produce a film having a thin thickness, it is necessary to measure the thickness with higher accuracy.
 本発明の目的は、厚みが薄いフィルムの厚みを精度良く測定することができる補正厚み測定装置、及び補正厚み測定方法、並びにフィルムの製造方法を提供することにある。
 また、他の目的は、その上に塗布される薄い機能性層の塗布ムラが抑制されたポリエステルフィルムを提供することにある。
An object of the present invention is to provide a corrected thickness measuring device capable of accurately measuring the thickness of a thin film, a corrected thickness measuring method, and a film manufacturing method.
Another object of the present invention is to provide a polyester film in which coating unevenness of a thin functional layer coated on the thin functional layer is suppressed.
 上述の目的を達成するために、本発明の一態様は、放射線厚み計により測定されたフィルムの一方向における厚みを用いて、第1の厚みプロファイルを得る第1厚みプロファイル算出部と、第1の厚みプロファイルを平均化処理し、平均第1の厚みプロファイルを得る第1平均厚みプロファイル算出部と、分光干渉式厚み計により測定されたフィルムの一方向における厚みを用いて、第2の厚みプロファイルを得る第2厚みプロファイル算出部と、第2の厚みプロファイルを平均化処理し、平均第2の厚みプロファイルを得る第2平均厚みプロファイル算出部と、フィルムの一方向における各位置での平均第1の厚みプロファイルの値αと平均第2の厚みプロファイルの値βとの、(値αのn乗)/(値βのn乗)で表される比Wを算出して、一方向における各位置での第2の厚みプロファイルの値に、比Wを1/n乗した値Mを乗して、補正厚みプロファイルを得る補正厚みプロファイル算出部とを有する、補正厚み測定装置を提供するものである。
 放射線厚み計、及び分光干渉式厚み計は、2軸延伸後のフィルムを測定することが好ましい。
 フィルムの一方向は、フィルムの搬送方向と直交するフィルムの幅方向であることが好ましい。
In order to achieve the above object, one aspect of the present invention includes a first thickness profile calculation unit for obtaining a first thickness profile using the thickness in one direction of the film measured by a radiation thickness meter, and a first thickness profile calculation unit. The second thickness profile is obtained by using the first average thickness profile calculation unit for averaging the thickness profile of the first average thickness profile and the thickness in one direction of the film measured by the spectral interference type thickness meter. A second thickness profile calculation unit for obtaining an average thickness profile, a second average thickness profile calculation unit for averaging the second thickness profile to obtain an average second thickness profile, and an average first position at each position in one direction of the film. The ratio W expressed by (value α to the nth power) / (value β to the nth power) of the value α of the thickness profile and the value β of the average second thickness profile is calculated, and each position in one direction is calculated. The present invention provides a correction thickness measuring device having a correction thickness profile calculation unit for obtaining a correction thickness profile by multiplying the value of the second thickness profile in (1) by a value M obtained by multiplying the ratio W by 1 / n. ..
The radiation thickness gauge and the spectroscopic interferometry thickness gauge preferably measure the film after biaxial stretching.
One direction of the film is preferably the width direction of the film orthogonal to the transport direction of the film.
 本発明の一態様は、放射線厚み計により測定されたフィルムの一方向における厚みを用いて、第1の厚みプロファイルを得る工程と、第1の厚みプロファイルを平均化処理し、平均第1の厚みプロファイルを得る工程と、分光干渉式厚み計により測定されたフィルムの一方向における厚みを用いて、第2の厚みプロファイルを得る工程と、第2の厚みプロファイルを平均化処理し、平均第2の厚みプロファイルを得る工程と、フィルムの一方向における各位置での平均第1の厚みプロファイルの値αと平均第2の厚みプロファイルの値βとの、(値αのn乗)/(値βのn乗)で表される比Wを算出して、一方向における各位置での第2の厚みプロファイルの値に、比Wを1/n乗した値Mを乗して、補正厚みプロファイルを得る工程とを有する、補正厚み測定方法を提供するものである。
 放射線厚み計により測定されたフィルムの一方向における厚み、及び分光干渉式厚み計により測定されたフィルムの一方向における厚みは、2軸延伸後のフィルムの一方向における厚みであることが好ましい。
 フィルムの一方向は、フィルムの搬送方向と直交するフィルムの幅方向であることが好ましい。
One aspect of the present invention is a step of obtaining a first thickness profile using the thickness of the film measured by a radiation thickness meter in one direction, and an average treatment of the first thickness profile to average the first thickness. The step of obtaining the profile, the step of obtaining the second thickness profile using the thickness in one direction of the film measured by the spectral interference type thickness gauge, and the step of averaging the second thickness profile are performed to average the second thickness. The step of obtaining the thickness profile and the value α of the average first thickness profile and the value β of the average second thickness profile at each position in one direction of the film are (value α to the nth power) / (value β). The ratio W represented by (nth power) is calculated, and the value of the second thickness profile at each position in one direction is multiplied by the value M obtained by multiplying the ratio W by 1 / n to obtain a corrected thickness profile. It provides a correction thickness measuring method including a step.
The thickness of the film measured by the radiation thickness meter in one direction and the thickness of the film measured by the spectroscopic interferometry thickness meter in one direction are preferably the thickness in one direction of the film after biaxial stretching.
One direction of the film is preferably the width direction of the film orthogonal to the transport direction of the film.
 本発明の一態様は、フィルムを製造する工程と、放射線厚み計により製造されたフィルムの一方向における厚みを測定して、第1の厚みプロファイルを得る工程と、第1の厚みプロファイルを平均化処理し、平均第1の厚みプロファイルを得る工程と、分光干渉式厚み計に製造されたフィルムの一方向における厚みを測定して、第2の厚みプロファイルを得る工程と、第2の厚みプロファイルを平均化処理し、平均第2の厚みプロファイルを得る工程と、フィルムの一方向における各位置での平均第1の厚みプロファイルの値αと平均第2の厚みプロファイルの値βとの、(値αのn乗)/(値βのn乗)で表される比Wを算出して、一方向における各位置での第2の厚みプロファイルの値に、比Wを1/n乗した値Mを乗して、補正厚みプロファイルを得る工程と、補正厚みプロファイルに基づいて、フィルムの製造条件を調整して、フィルムを製造する工程とを有する、フィルムの製造方法を提供するものである。フィルムの一方向は、フィルムの搬送方向と直交するフィルムの幅方向であることが好ましい。 One aspect of the present invention is a step of manufacturing a film, a step of measuring the thickness of the film manufactured by a radiation thickness meter in one direction to obtain a first thickness profile, and a step of averaging the first thickness profile. A step of processing and obtaining an average first thickness profile, a step of measuring the thickness in one direction of a film manufactured by a spectral interference type thickness gauge, and a step of obtaining a second thickness profile, and a second thickness profile are performed. The step of averaging to obtain the average second thickness profile, and the value α of the average first thickness profile and the value β of the average second thickness profile at each position in one direction of the film (value α). The ratio W represented by (nth power of) / (value β to the nth power) is calculated, and the value M obtained by multiplying the value of the second thickness profile at each position in one direction by the ratio W to the power of 1 / n is obtained. The present invention provides a method for producing a film, which comprises a step of obtaining a corrected thickness profile and a step of adjusting the manufacturing conditions of the film based on the corrected thickness profile to manufacture the film. One direction of the film is preferably the width direction of the film orthogonal to the transport direction of the film.
 本発明の一態様は、補正厚み測定装置で測定して得られる補正厚みプロファイルにおける最大値と最小値との差が、補正厚みプロファイルの平均値に対して、1.0%以下であるポリエステルフィルムを提供するものである。
 本発明の一態様は、補正厚み測定装置で測定して得られる補正厚みプロファイルにおける最大値と最小値との差が0.1μm未満であるポリエステルフィルムを提供するものである。
 本発明の一態様は、補正厚み測定方法で測定して得られる補正厚みプロファイルにおける最大値と最小値との差が、補正厚みプロファイルの平均値に対して、1.0%以下であるポリエステルフィルムを提供するものである。
 本発明の一態様は、補正厚み測定方法で測定して得られる補正厚みプロファイルにおける最大値と最小値との差が0.1μm未満である、ポリエステルフィルムを提供するものである。
In one aspect of the present invention, the difference between the maximum value and the minimum value in the corrected thickness profile obtained by measuring with the corrected thickness measuring device is 1.0% or less with respect to the average value of the corrected thickness profile. Is to provide.
One aspect of the present invention provides a polyester film in which the difference between the maximum value and the minimum value in the corrected thickness profile obtained by measuring with a corrected thickness measuring device is less than 0.1 μm.
In one aspect of the present invention, the difference between the maximum value and the minimum value in the corrected thickness profile obtained by measuring by the corrected thickness measuring method is 1.0% or less with respect to the average value of the corrected thickness profile. Is to provide.
One aspect of the present invention provides a polyester film in which the difference between the maximum value and the minimum value in the corrected thickness profile obtained by measuring by the corrected thickness measuring method is less than 0.1 μm.
 本発明によれば、厚みが薄いフィルムの厚みを精度良く測定することができる。また、薄いフィルムを、厚みムラを小さく製造することができる。
 さらには、塗布される薄い機能性層の塗布ムラが抑制されたポリエステルフィルムを提供することができる。
According to the present invention, the thickness of a thin film can be measured with high accuracy. In addition, a thin film can be manufactured with small thickness unevenness.
Further, it is possible to provide a polyester film in which coating unevenness of the thin functional layer to be coated is suppressed.
本発明の実施形態のフィルムの製造方法に用いられるフィルムの製造装置の一例を示す模式的斜視図である。It is a schematic perspective view which shows an example of the film manufacturing apparatus used in the film manufacturing method of the embodiment of this invention. 本発明の実施形態のフィルムの製造方法に用いられる延伸機の一例を示す平面図である。It is a top view which shows an example of the stretching machine used in the manufacturing method of the film of the embodiment of this invention. 本発明の実施形態のフィルムの製造方法に用いられる補正厚み測定装置の一例を示す模式図である。It is a schematic diagram which shows an example of the correction thickness measuring apparatus used in the film manufacturing method of the embodiment of this invention. フィルムの測定結果の一例を示すグラフである。It is a graph which shows an example of the measurement result of a film. 本発明の実施形態の補正厚み測定装置を用いた補正厚みプロファイルの作成手順を示す模式図である。It is a schematic diagram which shows the procedure of making a correction thickness profile using the correction thickness measuring apparatus of embodiment of this invention. 本発明の実施形態の補正厚み測定装置を用いた補正厚みプロファイルの作成手順を示す模式図である。It is a schematic diagram which shows the procedure of making a correction thickness profile using the correction thickness measuring apparatus of embodiment of this invention. 本発明の実施形態の補正厚み測定装置を用いた補正厚みプロファイルの作成手順を示す模式図である。It is a schematic diagram which shows the procedure of making a correction thickness profile using the correction thickness measuring apparatus of embodiment of this invention. 本発明の実施形態の補正厚み測定装置を用いた補正厚みプロファイルの作成手順を示す模式図である。It is a schematic diagram which shows the procedure of making a correction thickness profile using the correction thickness measuring apparatus of embodiment of this invention. 本発明の実施形態のフィルムの製造方法の一例を示すフローチャートである。It is a flowchart which shows an example of the manufacturing method of the film of embodiment of this invention. 本発明の実施形態の補正厚み測定装置により測定された補正厚みプロファイルの一例をグラフである。It is an example of the correction thickness profile measured by the correction thickness measuring apparatus of embodiment of this invention is a graph. 放射線厚み計による補正厚みプロファイルの一例をグラフである。It is an example of the correction thickness profile by a radiation thickness gauge. 本発明の実施形態のフィルムの製造方法のオシレート切を考慮したフィルムの厚みの制御を説明するグラフである。It is a graph explaining the control of the film thickness in consideration of the oscillating cut of the film manufacturing method of the embodiment of this invention.
 以下に、添付の図面に示す好適実施形態に基づいて、本発明の補正厚み測定装置、補正厚み測定方法、フィルムの製造方法、及びポリエステルフィルムを詳細に説明する。
 なお、以下に説明する図は、本発明を説明するための例示的なものであり、以下に示す図に本発明が限定されるものではない。
 なお、以下において数値範囲を示す「~」とは両側に記載された数値を含む。例えば、εが数値ε~数値εとは、εの範囲は数値εと数値εを含む範囲であり、数学記号で示せばε≦ε≦εである。
 「具体的な数値で表された角度」、「平行」、及び「直交」等の角度は、特に記載がなければ、該当する技術分野で一般的に許容される誤差範囲を含む。
 組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する複数の物質の合計量を意味する。
 「工程」との用語には、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
Hereinafter, the corrected thickness measuring device, the corrected thickness measuring method, the film manufacturing method, and the polyester film of the present invention will be described in detail based on the preferred embodiments shown in the attached drawings.
It should be noted that the figures described below are exemplary for explaining the present invention, and the present invention is not limited to the figures shown below.
In the following, "-" indicating the numerical range includes the numerical values described on both sides. For example, when ε is a numerical value ε a to a numerical value ε b , the range of ε is a range including the numerical value ε a and the numerical value ε b , and is expressed in mathematical symbols as ε a ≤ ε ≤ ε b .
Angles such as "angle represented by a specific numerical value", "parallel", and "orthogonal" include, unless otherwise specified, an error range generally acceptable in the art.
The amount of each component in the composition means the total amount of the plurality of substances present in the composition when a plurality of substances corresponding to each component are present in the composition, unless otherwise specified.
The term "process" is included in this term not only as an independent process but also as long as the intended purpose of the process is achieved even if it cannot be clearly distinguished from other processes.
[フィルムの製造装置]
 図1は本発明の実施形態のフィルムの製造方法に用いられるフィルムの製造装置の一例を示す模式的斜視図である。図2は本発明の実施形態のフィルムの製造方法に用いられる延伸機の一例を示す平面図である。
 図1に示すフィルムの製造装置10は、溶融押出法を用いるものであり、溶融押出法のうち、Tダイキャスト法を用いるものである。フィルムの製造装置10は、例えば、押出機12と、押出ダイ13と、キャスティングロール14と、縦延伸部15と、横延伸部16と、切断部17と、巻取部18とを有する。また、フィルムの製造装置10は、放射線厚み計22と、分光干渉式厚み計24と、補正厚み測定装置26と、調整部28とを有する。
 フィルムの製造装置10は、上述の構成以外にフィルムの製造装置10の各部を制御する制御ユニット(図示せず)を備えている。制御ユニットによりフィルムの製造の際に、各部の動作が制御される。
 なお、以下の説明では、フィルムとして、ポリエステルフィルムを例にして説明するが、フィルムは、ポリエステルフィルムに限定されるものではない。以下、フィルムとは、特に断りがない限り、ポリエステルフィルムのことである。フィルムの製造装置10では、2軸延伸ポリエステルフィルムが製造される。
[Film manufacturing equipment]
FIG. 1 is a schematic perspective view showing an example of a film manufacturing apparatus used in the film manufacturing method of the embodiment of the present invention. FIG. 2 is a plan view showing an example of a stretching machine used in the method for producing a film according to an embodiment of the present invention.
The film manufacturing apparatus 10 shown in FIG. 1 uses a melt extrusion method, and is a melt extrusion method that uses a T die casting method. The film manufacturing apparatus 10 includes, for example, an extruder 12, an extrusion die 13, a casting roll 14, a longitudinal stretching section 15, a transverse stretching section 16, a cutting section 17, and a winding section 18. Further, the film manufacturing apparatus 10 includes a radiation thickness gauge 22, a spectroscopic interference type thickness gauge 24, a correction thickness measuring device 26, and an adjusting unit 28.
The film manufacturing apparatus 10 includes a control unit (not shown) that controls each part of the film manufacturing apparatus 10 in addition to the above-described configuration. The control unit controls the operation of each part during the production of the film.
In the following description, a polyester film will be described as an example of the film, but the film is not limited to the polyester film. Hereinafter, the film is a polyester film unless otherwise specified. The film manufacturing apparatus 10 manufactures a biaxially stretched polyester film.
 押出機12は、1本又は2本以上のスクリュを備えた、公知の押出機が用いられる。
 押出機12は、例えば、フィルムの原材料であるポリエステルを融点以上の温度に加熱し、そして、スクリュを回転させて溶融混練しながら行われる。フィルムの原材料、すなわち、ポリエステルは、加熱及びスクリュによる混練により、押出機12内で溶融して溶融体(メルト)となる。
 溶融体は、例えば、ギアポンプ(図示せず)、及び濾過器(図示せず)等を通して、押出機12から押出ダイ13に供給される。
As the extruder 12, a known extruder equipped with one or two or more screws is used.
The extruder 12 is performed, for example, by heating polyester, which is a raw material of a film, to a temperature equal to or higher than the melting point, and rotating the screw to melt and knead it. The raw material of the film, that is, polyester, is melted in the extruder 12 by heating and kneading with a screw to form a melt.
The melt is supplied from the extruder 12 to the extruder 13 through, for example, a gear pump (not shown), a filter (not shown), and the like.
 押出ダイ13は、押出機12により供給された溶融体をキャスティングロール14に押し出すものである。押出ダイ13により、溶融体は、単層で押出されてもよく、多層で押出されてもよい。押出ダイ13は、単に「ダイ」とも称する(JIS(日本産業規格) B8650:2006、a)押出成形機、番号134参照)。また、押出ダイ13は、Tダイとも呼ばれる。
 溶融押出法では、押出機内での熱分解、例えば、ポリエステルの加水分解を抑制する観点から、押出機12内を窒素置換することが好ましい。また、押出機12は、混練温度が低く抑えられる点で2軸押出機であることが好ましい。
The extrusion die 13 extrudes the melt supplied by the extruder 12 onto the casting roll 14. With the extrusion die 13, the melt may be extruded in a single layer or in multiple layers. The extrusion die 13 is also simply referred to as a "die" (see JIS (Japanese Industrial Standards) B8650: 2006, a) Extruder, No. 134). The extrusion die 13 is also called a T die.
In the melt extrusion method, it is preferable to replace the inside of the extruder 12 with nitrogen from the viewpoint of suppressing thermal decomposition in the extruder, for example, hydrolysis of polyester. Further, the extruder 12 is preferably a twin-screw extruder in that the kneading temperature can be kept low.
 キャスティングロール14は、押出ダイ13から押し出された溶融体をフィルム状の成形するものである。押出ダイ13から押し出された溶融体を、キャスティングロール14に接触させ、キャスティングロール14上で溶融体を冷却して固化することにより、溶融体がフィルム状に成形される。溶融体を冷却する際、さらに溶融体に風を当てることが好ましく、溶融体に冷風を当てることがより好ましい。 The casting roll 14 is a film-shaped molding of the melt extruded from the extrusion die 13. The melt extruded from the extrusion die 13 is brought into contact with the casting roll 14, and the melt is cooled and solidified on the casting roll 14 to form the melt into a film. When cooling the melt, it is more preferable to blow air on the melt, and it is more preferable to blow cold air on the melt.
 キャスティングロール14の温度は、(Tg-10℃)を超え(Tg+30℃)以下が好ましく、(Tg-7℃)~(Tg+20℃)がより好ましく、(Tg-5℃)~(Tg+10℃)が特に好ましい。なお、以下、「Tg」は、フィルムの原材料のガラス転移温度であり、ポリエステル場合には、ポリエステルのガラス転移温度である。
 また、ポリエステルフィルム及び各部材の温度は、非接触式温度計、例えば、放射温度計を用いて測定できる。
 キャスティングロール14を用いる場合、キャスティングロールと溶融体との密着性を上げることが好ましい。密着性を上げる方法としては、例えば、静電印加法、エアーナイフ法、エアーチャンバー法、バキュームノズル法、及びタッチロール法が挙げられる。
 キャスティングロール14を用いて冷却されて成形された成形体、すなわち、未延伸フィルムFは、剥ぎ取りロール等の剥ぎ取り部材を用いて、キャスティングロール14から剥ぎ取られる。なお、未延伸フィルムFとは、未延伸ポリエステルフィルムのことである。
The temperature of the casting roll 14 is preferably more than (Tg-10 ° C.) and (Tg + 30 ° C.) or less, more preferably (Tg-7 ° C.) to (Tg + 20 ° C.), and more preferably (Tg-5 ° C.) to (Tg + 10 ° C.). Especially preferable. Hereinafter, "Tg" is the glass transition temperature of the raw material of the film, and in the case of polyester, it is the glass transition temperature of polyester.
Further, the temperature of the polyester film and each member can be measured by using a non-contact thermometer, for example, a radiation thermometer.
When the casting roll 14 is used, it is preferable to improve the adhesion between the casting roll and the melt. Examples of the method for improving the adhesion include an electrostatic application method, an air knife method, an air chamber method, a vacuum nozzle method, and a touch roll method.
The molded product cooled and molded by using the casting roll 14, that is, the unstretched film F is stripped from the casting roll 14 by using a stripping member such as a stripping roll. The unstretched film F is an unstretched polyester film.
 縦延伸部15は、未延伸フィルムFを搬送方向MDに延伸するものである。縦延伸部15により、未延伸フィルムFを1軸延伸フィルムFにする。縦延伸部15は、例えば、未延伸フィルムFを加熱する加熱部と、速度の異なるロール15aを複数備える。速度が異なる複数のロール15aにより未延伸フィルムFを搬送方向MDに延伸し、1軸延伸フィルムFを得る。なお、1軸延伸フィルムFとは、1軸延伸後のフィルムのことであり、1軸延伸ポリエステルフィルムのことである。
 なお、搬送方向MDと直交する、未延伸フィルムFの幅方向、1軸延伸フィルムFの幅方向、及び2軸延伸フィルムFの幅方向のことをTDという。また、搬送方向MDに延伸することを縦延伸という。2軸延伸フィルムFとは、2軸延伸後のフィルムのことであり、2軸延伸ポリエステルフィルムのことである。
The longitudinally stretched portion 15 stretches the unstretched film F in the transport direction MD. The longitudinally stretched portion 15 turns the unstretched film F into a uniaxially stretched film F1. The vertically stretched portion 15 includes, for example, a heating portion for heating the unstretched film F and a plurality of rolls 15a having different velocities. The unstretched film F is stretched in the transport direction MD by a plurality of rolls 15a having different velocities to obtain a uniaxially stretched film F1. The uniaxially stretched film F 1 is a film after uniaxial stretching, and is a uniaxially stretched polyester film.
The width direction of the unstretched film F and the width direction of the uniaxially stretched film F1 and the width direction of the biaxially stretched film F2, which are orthogonal to the transport direction MD, are referred to as TD. Further, stretching in the transport direction MD is called longitudinal stretching. The biaxially stretched film F 2 is a film after biaxial stretching, and is a biaxially stretched polyester film.
 横延伸部16は、1軸延伸フィルムFを、幅方向TDに延伸するものである。横延伸部16により、1軸延伸フィルムFを2軸延伸フィルムFにする。横延伸部16は、例えば、幅方向の両端に設けられた、クリップ16aにより、1軸延伸フィルムFの両端を把持して、1軸延伸フィルムFを搬送方向MDに搬送した状態で幅方向TDに延伸し、2軸延伸フィルムFとする。 The transversely stretched portion 16 stretches the uniaxially stretched film F1 in the width direction TD. The transversely stretched portion 16 turns the uniaxially stretched film F1 into a biaxially stretched film F2. The laterally stretched portion 16 has, for example, a width in a state where both ends of the uniaxially stretched film F1 are gripped by clips 16a provided at both ends in the width direction and the uniaxially stretched film F1 is conveyed in the transport direction MD. It is stretched in the direction TD to obtain a biaxially stretched film F2.
 切断部17は、2軸延伸フィルムFの両端部を切断するものである。切断部17により、後述のトリミング工程が実施される。
 2軸延伸フィルムFは横延伸部16のクリップ16aで両端が把持されるが、切断部17は、クリップ16aで把持された部分を切断する。
 切断部17の構成は、特に限定されるものではなく、例えば、スリッターが用いられる。スリッターは、例えば、ロール刃を有する。
The cut portion 17 cuts both ends of the biaxially stretched film F 2 . The trimming step described later is carried out by the cutting portion 17.
Both ends of the biaxially stretched film F 2 are gripped by the clip 16a of the laterally stretched portion 16, and the cutting portion 17 cuts the portion gripped by the clip 16a.
The configuration of the cutting portion 17 is not particularly limited, and for example, a slitter is used. The slitter has, for example, a roll blade.
 巻取部18は、切断部17により、両端部が切断された2軸延伸フィルムFをロール状に巻き取るものである。巻取部18により、2軸延伸フィルムFのフィルムロール20が得られる。切断部17から、巻取部18には、複数のガイドローラ19により搬送される。
 巻取部18の構成は、特に限定されるものではなく、例えば、巻芯18aと、巻芯18aを回転させる駆動部(図示せず)とを有する。駆動部は、例えば、モーターを有する。巻芯18aに2軸延伸フィルムFを取り付け、駆動部により、巻芯18aを回転させて2軸延伸フィルムFをロール状に巻き取る。これにより、2軸延伸フィルムFのフィルムロール20が得られる。
The winding portion 18 winds the biaxially stretched film F2 whose both ends are cut by the cutting portion 17 in a roll shape. The take-up portion 18 provides a film roll 20 of the biaxially stretched film F 2 . It is conveyed from the cutting portion 17 to the winding portion 18 by a plurality of guide rollers 19.
The configuration of the winding portion 18 is not particularly limited, and includes, for example, a winding core 18a and a driving unit (not shown) for rotating the winding core 18a. The drive unit has, for example, a motor. The biaxially stretched film F 2 is attached to the winding core 18a, and the winding core 18a is rotated by the driving unit to wind the biaxially stretched film F 2 in a roll shape. As a result, the film roll 20 of the biaxially stretched film F 2 is obtained.
 調整部28は、補正厚み測定装置26で得られた補正厚みプロファイルに基づいて、フィルムの製造条件を調整するものであり、補正厚み測定装置26、押出機12及び押出ダイ13に接続されている。調整部28は、補正厚みプロファイルに基づき、フィルムの製造条件として、例えば、押出ダイ13において、ダイリップの間隔、ダイリップ温度、押出ダイから押し出される溶融体の温度、若しくは幅方向TDにおける溶融体の量、又は押出機12から供給される溶融体の温度等を調整する。 The adjusting unit 28 adjusts the film manufacturing conditions based on the corrected thickness profile obtained by the corrected thickness measuring device 26, and is connected to the corrected thickness measuring device 26, the extruder 12, and the extrusion die 13. .. Based on the corrected thickness profile, the adjusting unit 28 determines the film manufacturing conditions, for example, in the extrusion die 13, the die lip spacing, the die lip temperature, the temperature of the melt extruded from the extrusion die, or the amount of the melt in the width direction TD. , Or adjust the temperature of the melt supplied from the extruder 12.
 横延伸部16は、例えば、図2に示す構成の装置を用いることができる。
 図2に示す横延伸部16は、1対の環状レール30a及び30bと、各環状レールに取り付けられ、レールに沿って移動可能な把持部材31a~31lと、を備えている。環状レール30a及び30bは、1軸延伸フィルムFを挟んで互いに、幅方向TDにおいて対称の位置に配置されている。横延伸部16は、把持部材31a~31lで、1軸延伸フィルムFを把持し、レールに沿って把持部材31a~31lを移動させることにより1軸延伸フィルムFを幅方向TDに延伸する。
As the laterally stretched portion 16, for example, the device having the configuration shown in FIG. 2 can be used.
The laterally stretched portion 16 shown in FIG. 2 includes a pair of annular rails 30a and 30b, and gripping members 31a to 31l attached to each annular rail and movable along the rails. The annular rails 30a and 30b are arranged symmetrically with each other in the width direction TD with the uniaxially stretched film F1 interposed therebetween. The laterally stretched portion 16 grips the uniaxially stretched film F1 by the gripping members 31a to 31l , and stretches the uniaxially stretched film F1 in the width direction TD by moving the gripping members 31a to 31l along the rail. ..
 横延伸部16は、搬送方向MDの上流側、すなわち、縦延伸部15側から順に、予熱領域32と、延伸領域33と、熱固定領域34と、熱緩和領域35と、冷却領域36とを有する。
 横延伸部16が有する上述の各領域は、それぞれ遮風カーテンで区分され、熱風等により個々に領域内の温度を調整できる。
 予熱領域32は、1軸延伸フィルムFを予熱する領域である。
 延伸領域33は、予熱された1軸延伸フィルムFを幅方向TDに緊張を与えて延伸する領域である。図2に示すように、延伸領域33において、1軸延伸フィルムFは幅L0から幅L1まで延伸される。
 熱固定領域34は、緊張が与えられた1軸延伸フィルムFに緊張を与えたまま加熱して熱固定する領域である。
 熱緩和領域35は、熱固定した1軸延伸フィルムFを加熱することにより熱固定した1軸延伸フィルムFの緊張を熱緩和する領域である。
 図2に示すように、熱緩和領域35において、1軸延伸フィルムFは幅L1から幅L2にまで縮小(緩和)される。
The transversely stretched portion 16 has a preheating region 32, a stretching region 33, a heat fixing region 34, a heat relaxation region 35, and a cooling region 36 in this order from the upstream side of the transport direction MD, that is, the longitudinal stretching portion 15. Have.
Each of the above-mentioned regions of the laterally stretched portion 16 is divided by a windshield curtain, and the temperature in the region can be individually adjusted by hot air or the like.
The preheating region 32 is a region for preheating the uniaxially stretched film F1.
The stretched region 33 is a region in which the preheated uniaxially stretched film F1 is stretched by applying tension to the TD in the width direction. As shown in FIG. 2 , in the stretched region 33, the uniaxially stretched film F1 is stretched from the width L0 to the width L1.
The heat-fixing region 34 is a region where the uniaxially stretched film F1 to which tension is applied is heated and heat-fixed while being tensioned.
The heat relaxation region 35 is a region for heat relaxation of the tension of the heat - fixed uniaxially stretched film F1 by heating the heat - fixed uniaxially stretched film F1.
As shown in FIG. 2 , in the heat relaxation region 35, the uniaxially stretched film F1 is reduced (relaxed) from the width L1 to the width L2.
 冷却領域36は、熱緩和された1軸延伸フィルムFを冷却する領域である。1軸延伸フィルムFを冷却することにより、2軸延伸フィルムFの形状を固定化できる。
 図2には、冷却領域36に搬入される1軸延伸フィルムFの幅がL2であり、冷却領域36から搬出される2軸延伸フィルムFの幅がL3であることが示されている。
The cooling region 36 is a region for cooling the heat - relaxed uniaxially stretched film F1. By cooling the uniaxially stretched film F 1 , the shape of the uniaxially stretched film F 2 can be fixed.
FIG. 2 shows that the width of the uniaxially stretched film F1 carried into the cooling region 36 is L2, and the width of the biaxially stretched film F2 carried out from the cooling region 36 is L3. ..
 環状レール30aには、環状レール30aに沿って移動可能な把持部材31a、31b、31e、31f、31i、及び31jが取り付けられている。環状レール30bには、環状レール30bに沿って移動可能な把持部材31c、31d、31g、31h、31k、及び31lが取り付けられている。
 把持部材31a、31b、31e、31f、31i、及び31jは、1軸延伸フィルムFの幅方向TDの方向の一方の端部を把持する。把持部材31c、31d、31g、31h、31k、及び31lは、1軸延伸フィルムFの幅方向TDの方向の他方の端部を把持する。把持部材31a~31lは、一般に、チャック、クリップ等と称される。
 把持部材31a、31b、31e、31f、31i、及び31jは、環状レール30aに沿って反時計回りに移動する。把持部材31c、31d、31g、31h、31k、及び31lは、環状レール30bに沿って時計回りに移動する。
Gripping members 31a, 31b, 31e, 31f, 31i, and 31j that can move along the annular rail 30a are attached to the annular rail 30a. The annular rail 30b is attached with gripping members 31c, 31d, 31g, 31h, 31k, and 31l that are movable along the annular rail 30b.
The gripping members 31a, 31b, 31e, 31f, 31i, and 31j grip one end of the uniaxially stretched film F1 in the width direction TD. The gripping members 31c, 31d, 31g, 31h, 31k, and 31l grip the other end of the uniaxially stretched film F1 in the width direction TD. The gripping members 31a to 31l are generally referred to as chucks, clips and the like.
The gripping members 31a, 31b, 31e, 31f, 31i, and 31j move counterclockwise along the annular rail 30a. The gripping members 31c, 31d, 31g, 31h, 31k, and 31l move clockwise along the annular rail 30b.
 把持部材31a~31dは、予熱領域32において、1軸延伸フィルムFの端部を把持したまま環状レール30a又は30bに沿って移動し、延伸領域33、熱固定領域34、及び熱緩和領域35を経て、冷却領域36まで進行する。次に、把持部材31a及び31bと、把持部材31c及び31dとは、搬送方向順に、冷却領域36の搬送方向MDの方向下流側の端部、例えば、図2における把持解除点P及び把持解除点Qで2軸延伸フィルムFの端部を離した後、さらに環状レール30a又は30bに沿って移動し、予熱領域32に戻る。上述の過程において、1軸延伸フィルムFは、搬送方向MDの方向に移動することにより、予熱領域32での予熱、延伸領域33での延伸、熱固定領域34での熱固定、熱緩和領域35での熱緩和、及び冷却領域36での冷却が行われ、横延伸される。 The gripping members 31a to 31d move along the annular rail 30a or 30b while gripping the end of the uniaxially stretched film F1 in the preheating region 32, and the stretching region 33, the heat fixing region 34, and the heat relaxation region 35. To the cooling region 36. Next, the gripping members 31a and 31b and the gripping members 31c and 31d are end portions on the downstream side of the cooling region 36 in the transport direction MD in the order of transport direction, for example, the grip release point P and the grip release point in FIG. After separating the end portion of the biaxially stretched film F2 at Q, the film further moves along the annular rail 30a or 30b and returns to the preheating region 32. In the above process, the uniaxially stretched film F 1 moves in the direction of the transport direction MD to preheat in the preheating region 32, stretch in the stretching region 33, heat-fix in the heat fixing region 34, and heat relaxation region. Heat relaxation at 35 and cooling at the cooling region 36 are performed, and the film is stretched laterally.
 把持部材31a~31lの移動速度を調節することにより、1軸延伸フィルムFの搬送速度を調節できる。また、把持部材31a~31lは、各々独立に、移動速度を変化することができる。 By adjusting the moving speed of the gripping members 31a to 31l , the transport speed of the uniaxially stretched film F1 can be adjusted. Further, the gripping members 31a to 31l can independently change the moving speed.
 上述のとおり、横延伸部16は、延伸領域33において、1軸延伸フィルムFを幅方向TDの方向に延伸する横延伸を可能とするものである。一方、横延伸部16は、把持部材31a~31lの移動速度を変化させることにより、1軸延伸フィルムFを搬送方向MDの方向に延伸することもできる。すなわち、横延伸部16を用いて同時に、搬送方向MD及び幅方向TDに、2軸延伸を行うことも可能である。
 横延伸部16は、1軸延伸フィルムFを支えるために、把持部材31a~31lに加えて、他の把持部材をさらに有していてもよい。
As described above, the laterally stretched portion 16 enables laterally stretching the uniaxially stretched film F1 in the width direction TD in the stretched region 33. On the other hand, the laterally stretched portion 16 can also stretch the uniaxially stretched film F1 in the transport direction MD by changing the moving speed of the gripping members 31a to 31l. That is, it is also possible to simultaneously perform biaxial stretching in the transport direction MD and the width direction TD using the transverse stretching portion 16.
The laterally stretched portion 16 may further have another gripping member in addition to the gripping members 31a to 31l in order to support the uniaxially stretched film F1.
 放射線厚み計22は、放射線を用いて、2軸延伸フィルムFの厚みを測定するものである。放射線厚み計22は、例えば、β線透過減衰方式の厚み計、又は赤外線透過減衰方式の厚み計を用いることができる。
 放射線厚み計22は、2軸延伸フィルムFの上方に配置される。放射線厚み計22は、例えば、幅方向TDに走査して、2軸延伸フィルムFの厚みを測定する。なお、放射線厚み計22の測定方法は、幅方向TDに走査する方法に限定されるものではない。
 分光干渉式厚み計24は、フィルムの屈折率を利用した測定方法であり、公知のものを適宜利用可能である。分光干渉式厚み計24は、例えば、ラインスキャン式のものを用いて、幅方向TDの厚みを測定する。
 なお、放射線厚み計22と、分光干渉式厚み計24とは、2軸延伸フィルムFにおける測定位置が同じ位置であることが好ましい。分光干渉式厚み計24には、例えば、大塚電子株式会社製 MCPD-9800(マルチチャンネル分光器)、及び株式会社キーエンス製 SI-T80(型式)を用いることができる。
The radiation thickness gauge 22 measures the thickness of the biaxially stretched film F2 by using radiation. As the radiation thickness gauge 22, for example, a β-ray transmission attenuation type thickness gauge or an infrared transmission attenuation type thickness gauge can be used.
The radiation thickness gauge 22 is arranged above the biaxially stretched film F 2 . The radiation thickness gauge 22 measures, for example, the thickness of the biaxially stretched film F 2 by scanning in the width direction TD. The measuring method of the radiation thickness gauge 22 is not limited to the method of scanning in the width direction TD.
The spectroscopic interferometry thickness gauge 24 is a measuring method using the refractive index of the film, and a known one can be appropriately used. The spectroscopic interferometry type thickness gauge 24 measures the thickness in the width direction TD using, for example, a line scan type.
It is preferable that the radiation thickness gauge 22 and the spectroscopic interference type thickness gauge 24 have the same measurement position on the biaxially stretched film F2. For the spectral interferometry type thickness gauge 24, for example, MCPD-9800 (multi-channel spectroscope) manufactured by Otsuka Electronics Co., Ltd. and SI-T80 (model) manufactured by Keyence Co., Ltd. can be used.
 補正厚み測定装置26は、放射線厚み計22により測定されたフィルムの厚みと、分光干渉式厚み計24により測定されたフィルムの厚みとを用いて補正厚みプロファイルを得るものである。補正厚みプロファイルは、フィルムの厚みを高い精度で示すものであり、厚みムラを高い精度で示している。補正厚みプロファイルは、フィルムの製造に利用されるものであり、補正厚みプロファイルに基づき、フィードバック制御が実施され、フィルムの製造条件が調整される。フィルムの製造条件は、例えば、押出ダイ13において、ダイリップの間隔、ダイリップ温度、押出ダイから押し出される溶融体の温度、若しくは幅方向TDにおける溶融体の量、又は押出機12から供給される溶融体の温度等である。
 なお、補正厚み測定装置26は、放射線厚み計22及び分光干渉式厚み計24を別の構成としたが、これに限定されるものではなく、放射線厚み計22及び分光干渉式厚み計24を有する構成でもよい。
 補正厚み測定装置26は、図3に示すように、第1厚みプロファイル算出部40と、第1平均厚みプロファイル算出部42と、第2厚みプロファイル算出部44と、第2平均厚みプロファイル算出部46と、補正厚みプロファイル算出部47と、メモリ48と、制御部49とを有する。
The correction thickness measuring device 26 obtains a correction thickness profile using the film thickness measured by the radiation thickness gauge 22 and the film thickness measured by the spectral interference type thickness gauge 24. The corrected thickness profile shows the thickness of the film with high accuracy, and shows the thickness unevenness with high accuracy. The corrected thickness profile is used in the production of the film, and feedback control is performed based on the corrected thickness profile, and the production conditions of the film are adjusted. The film manufacturing conditions are, for example, in the extrusion die 13, the die lip spacing, the die lip temperature, the temperature of the melt extruded from the extrusion die, or the amount of melt in the width direction TD, or the melt supplied from the extruder 12. The temperature etc.
The correction thickness measuring device 26 has a radiation thickness gauge 22 and a spectroscopic interference type thickness gauge 24 having different configurations, but is not limited to this, and includes a radiation thickness gauge 22 and a spectral interference type thickness gauge 24. It may be configured.
As shown in FIG. 3, the correction thickness measuring device 26 includes a first thickness profile calculation unit 40, a first average thickness profile calculation unit 42, a second thickness profile calculation unit 44, and a second average thickness profile calculation unit 46. It has a correction thickness profile calculation unit 47, a memory 48, and a control unit 49.
 第1厚みプロファイル算出部40と、第1平均厚みプロファイル算出部42と、第2厚みプロファイル算出部44と、第2平均厚みプロファイル算出部46と、補正厚みプロファイル算出部47とは、いずれもメモリ48に接続されている。メモリ48に、第1厚みプロファイル算出部40と、第1平均厚みプロファイル算出部42と、第2厚みプロファイル算出部44と、第2平均厚みプロファイル算出部46と、補正厚みプロファイル算出部47とで得られた補正厚みプロファイル等の情報が記憶される。メモリ48の構成は、特に限定されるものではなく、例えば、DRAM(Dynamic Random Access Memory)又は強誘電体メモリで構成される。
 また、第1厚みプロファイル算出部40と、第1平均厚みプロファイル算出部42と、第2厚みプロファイル算出部44と、第2平均厚みプロファイル算出部46と、メモリ48と、補正厚みプロファイル算出部47とは、いずれも制御部49に接続されており、制御部49により情報の授受等の動作が制御される。補正厚み測定装置26は、この他に図示はしないがROM(Read Only Memory)等を有する。
 補正厚み測定装置26は、ROM等に記憶されたプログラム(コンピュータソフトウェア)を、制御部49で実行することにより、補正厚みプロファイルを得る。補正厚み測定装置26は、上述のようにプログラムが実行されることにより各部位が機能するコンピューターによって構成されてもよいし、各部位が専用回路で構成された専用装置であってもよい。
The first thickness profile calculation unit 40, the first average thickness profile calculation unit 42, the second thickness profile calculation unit 44, the second average thickness profile calculation unit 46, and the correction thickness profile calculation unit 47 are all in memory. It is connected to 48. The memory 48 includes a first thickness profile calculation unit 40, a first average thickness profile calculation unit 42, a second thickness profile calculation unit 44, a second average thickness profile calculation unit 46, and a correction thickness profile calculation unit 47. Information such as the obtained corrected thickness profile is stored. The configuration of the memory 48 is not particularly limited, and is composed of, for example, a DRAM (Dynamic Random Access Memory) or a ferroelectric memory.
Further, the first thickness profile calculation unit 40, the first average thickness profile calculation unit 42, the second thickness profile calculation unit 44, the second average thickness profile calculation unit 46, the memory 48, and the correction thickness profile calculation unit 47. Is connected to the control unit 49, and the control unit 49 controls operations such as exchange of information. The correction thickness measuring device 26 also has a ROM (Read Only Memory) and the like (not shown).
The correction thickness measuring device 26 obtains a correction thickness profile by executing a program (computer software) stored in a ROM or the like on the control unit 49. The correction thickness measuring device 26 may be configured by a computer in which each part functions by executing a program as described above, or may be a dedicated device in which each part is configured by a dedicated circuit.
 図4はフィルムの測定結果の一例を示すグラフである。図4において、縦軸は厚み測定値と配向度を示し、横軸は幅方向の位置を示す。
 図4に示す符号50は、放射線厚み計22による、厚み25μmのポリエステルフィルムの測定結果の一例を示す。符号52は、分光干渉式厚み計24による、厚み25μmのポリエステルフィルムの測定結果の一例を示す。なお、符号54は、測定したポリエステルフィルムの配向度の測定結果の一例を示す。符号50、52、54は、いずれもポリエステルフィルムの幅方向TDに沿って測定した結果である。ポリエステルフィルムは、2軸延伸されたものである。
 なお、フィルムの配向度は、マイクロ波透過型分子配向計、例えば、MOA-6004、株式会社王子計測機器社製を用いて測定する。
FIG. 4 is a graph showing an example of the measurement result of the film. In FIG. 4, the vertical axis indicates the thickness measurement value and the degree of orientation, and the horizontal axis indicates the position in the width direction.
Reference numeral 50 shown in FIG. 4 indicates an example of the measurement result of the polyester film having a thickness of 25 μm by the radiation thickness gauge 22. Reference numeral 52 indicates an example of the measurement result of the polyester film having a thickness of 25 μm by the spectroscopic interferometry thickness gauge 24. Reference numeral 54 indicates an example of the measurement result of the measured degree of orientation of the polyester film. Reference numerals 50, 52, and 54 are the results of measurement along the width direction TD of the polyester film. The polyester film is biaxially stretched.
The degree of orientation of the film is measured using a microwave transmission type molecular orientation meter, for example, MOA-6004, manufactured by Oji Measuring Instruments Co., Ltd.
 図4に示すように、符号50に示す放射線厚み計22による厚み25μmのポリエステルフィルムの測定結果は、符号52に示す分光干渉式厚み計24による厚み25μmのポリエステルフィルムの測定結果に比して、測定値の振幅が大きく、測定値のバラつきが大きい。測定値のバラつきとは、測定精度のことであり、測定値のバラつきが大きいとは、測定誤差が大きいことを意味する。
 放射線厚み計22は、測定値のバラつきが1μm程度あり、フィルムの厚みが薄くなると、測定値のバラつきの影響が大きくなる。このため、放射線厚み計22を用いた場合、測定値のバラつきが大きく、フィルムの厚みの制御に、放射線厚み計22の測定値だけを利用した場合、フィルムの厚みの制御の精度が低い。
 なお、フィルムの厚みを制御する方法としては、連続的に製膜される走行フィルムの厚みを高精度に測定し、測定された厚みに基づいて、フィルムの厚みムラをなくすように押出ダイ13(図1参照)のダイリップ温度又はダイリップの間隙を調整して、フィルムの厚みムラを調整する方法等が好ましく用いられる。
As shown in FIG. 4, the measurement result of the polyester film having a thickness of 25 μm by the radiation thickness gauge 22 shown by the reference numeral 50 is compared with the measurement result of the polyester film having a thickness of 25 μm by the spectral interferometry type thickness gauge 24 shown by the reference numeral 52. The amplitude of the measured value is large, and the variation of the measured value is large. The variation in the measured value means the measurement accuracy, and the large variation in the measured value means that the measurement error is large.
The radiation thickness gauge 22 has a variation in the measured value of about 1 μm, and the smaller the film thickness, the greater the influence of the variation in the measured value. Therefore, when the radiation thickness gauge 22 is used, the measured values vary widely, and when only the measured values of the radiation thickness gauge 22 are used for controlling the film thickness, the accuracy of controlling the film thickness is low.
As a method of controlling the thickness of the film, the thickness of the continuously formed running film is measured with high accuracy, and the extrusion die 13 (based on the measured thickness) so as to eliminate the unevenness of the film thickness ( The method of adjusting the thickness unevenness of the film by adjusting the die lip temperature or the gap between the die lips (see FIG. 1) is preferably used.
 一方、符号52に示す分光干渉式厚み計24による厚み25μmのポリエステルフィルムの測定結果は、フィルムの配向度の影響を受けて、配向度が大きくなると、厚みが減少している。
 延伸されたポリエステルフィルムのような、分子配向したフィルムでは膜内で屈折率が異なるため、厚みの測定に分光干渉式厚み計24を用いると、測定された厚みは、フィルムの厚みだけを反映せずに、フィルムの屈折率(配向)の影響も含む。このため、延伸されたポリエステルフィルムの厚みの測定には適していない。
On the other hand, the measurement result of the polyester film having a thickness of 25 μm by the spectroscopic interferometric thickness gauge 24 indicated by reference numeral 52 is influenced by the degree of orientation of the film, and the thickness decreases as the degree of orientation increases.
Since the refractive index of a molecularly oriented film such as a stretched polyester film is different in the film, when the spectroscopic interference type thickness gauge 24 is used for measuring the thickness, the measured thickness reflects only the thickness of the film. It also includes the influence of the refractive index (orientation) of the film. Therefore, it is not suitable for measuring the thickness of the stretched polyester film.
 ここで、図5~図8は本発明の実施形態の補正厚み測定装置を用いた補正厚みプロファイルの作成手順を示す模式図である。図5~図8の縦軸はフィルムの厚み測定値(μm)を示し、横軸は幅方向の位置(mm)を示す。
 図3に示す補正厚み測定装置26は、放射線厚み計22により測定されたフィルムの厚みと、分光干渉式厚み計24により測定されたフィルムの厚みとを利用する。
 第1厚みプロファイル算出部40(図3参照)は、放射線厚み計22に接続されている。放射線厚み計22で測定されたフィルムの厚みの情報が入力される。
 第2厚みプロファイル算出部44(図3参照)は、分光干渉式厚み計24に接続されている。分光干渉式厚み計24で測定されたフィルムの厚みの情報が入力される。
Here, FIGS. 5 to 8 are schematic views showing a procedure for creating a corrected thickness profile using the corrected thickness measuring device according to the embodiment of the present invention. The vertical axis of FIGS. 5 to 8 shows the measured thickness of the film (μm), and the horizontal axis shows the position (mm) in the width direction.
The correction thickness measuring device 26 shown in FIG. 3 utilizes the thickness of the film measured by the radiation thickness gauge 22 and the thickness of the film measured by the spectroscopic interference type thickness gauge 24.
The first thickness profile calculation unit 40 (see FIG. 3) is connected to the radiation thickness gauge 22. Information on the film thickness measured by the radiation thickness gauge 22 is input.
The second thickness profile calculation unit 44 (see FIG. 3) is connected to the spectroscopic interferometry thickness meter 24. Information on the film thickness measured by the spectral interferometry thickness gauge 24 is input.
 第1厚みプロファイル算出部40は、放射線厚み計22により測定されたフィルムの一方向における厚みを用いて、図5に示す第1の厚みプロファイル56を得る。なお、フィルムの一方向は、例えば、幅方向TD(図1参照)である。
 第1平均厚みプロファイル算出部42(図3参照)は、図5に示す第1の厚みプロファイル56を平均化処理して、図6に示す平均第1の厚みプロファイル57を得る。なお、図6に示す符号57aは平均化した点を示す。
 第1の厚みプロファイル56を平均化処理して、平均第1の厚みプロファイル57を得る方法は、特に限定されるものではなく、例えば、移動平均、又は区間平均を用いて平均化処理する。移動平均又は区間平均については、平均回数及び区間距離を適宜設定する。また、例えば、平均化処理では、平均化した点をプロットする。ここで、平均化した点とは、2つ以上の点を足し合わせ、その点の個数で割った値でもよい。すなわち、平均化処理で、平均化した点は平均値でもよい。また、平均化した点とは、2つ以上の点を小さい順、又は大きい順に並べ、並べた点のうち、真ん中の点の値でもよい。すなわち、平均化処理で、平均化した点は中央値でもよい。
 移動平均の移動平均幅は、100~400mmであることが好ましく、より好ましくは180~280mmである。
 また、区間平均における区間数は、フィルムの幅を区間数で除した際、1区間の幅が50~300mmになるように設定することが好ましく、50~150mmになるように設定することがより好ましい。区間数は、全体幅を5~100等分することが好ましく、より好ましくは10~40等分である。
The first thickness profile calculation unit 40 obtains the first thickness profile 56 shown in FIG. 5 by using the thickness in one direction of the film measured by the radiation thickness gauge 22. In addition, one direction of the film is, for example, the width direction TD (see FIG. 1).
The first average thickness profile calculation unit 42 (see FIG. 3) averages the first thickness profile 56 shown in FIG. 5 to obtain the average first thickness profile 57 shown in FIG. Reference numeral 57a shown in FIG. 6 indicates an averaged point.
The method of averaging the first thickness profile 56 to obtain the average first thickness profile 57 is not particularly limited, and the averaging process is performed using, for example, a moving average or an interval average. For the moving average or the section average, the average number of times and the section distance are set as appropriate. Further, for example, in the averaging process, the averaged points are plotted. Here, the averaged point may be a value obtained by adding two or more points and dividing by the number of points. That is, in the averaging process, the averaged points may be average values. Further, the averaged point may be the value of the middle point among the points arranged by arranging two or more points in ascending or large order. That is, in the averaging process, the averaged points may be the median value.
The moving average width of the moving average is preferably 100 to 400 mm, more preferably 180 to 280 mm.
Further, the number of sections in the section average is preferably set so that the width of one section is 50 to 300 mm, and more preferably 50 to 150 mm, when the width of the film is divided by the number of sections. preferable. The number of sections is preferably divided into 5 to 100 equal parts, and more preferably 10 to 40 equal parts.
 第2厚みプロファイル算出部44は、分光干渉式厚み計により測定されたフィルムの一方向における厚みを用いて、図5に示す第2の厚みプロファイル58を得る。
 第2平均厚みプロファイル算出部46(図3参照)は、第2の厚みプロファイルを平均化処理して、図6に示す平均第2の厚みプロファイル59を得る。なお、図6に示す符号59aは平均化した点を示す。
 第2の厚みプロファイル58を平均化処理して、平均第2の厚みプロファイル59を得る方法は、特に限定されるものではなく、例えば、移動平均、又は区間平均を用いて平均化処理する。移動平均又は区間平均については、平均回数及び区間距離を適宜設定する。また、例えば、平均化処理では、平均化した点をプロットする。ここで、平均化した点とは、上述の第1の厚みプロファイル56の平均化処理にて説明した平均化した点と同じであるため、詳細な説明は省略する。
 また、移動平均の移動平均幅、及び区間平均における区間数についても、上述の第1の厚みプロファイル56の移動平均の移動平均幅及び区間平均における区間数と同じであるため、その詳細な説明は省略する。
The second thickness profile calculation unit 44 obtains the second thickness profile 58 shown in FIG. 5 by using the thickness in one direction of the film measured by the spectral interferometry type thickness meter.
The second average thickness profile calculation unit 46 (see FIG. 3) averages the second thickness profile to obtain the average second thickness profile 59 shown in FIG. Reference numeral 59a shown in FIG. 6 indicates an averaged point.
The method of averaging the second thickness profile 58 to obtain the average second thickness profile 59 is not particularly limited, and the averaging process is performed using, for example, a moving average or an interval average. For the moving average or the section average, the average number of times and the section distance are set as appropriate. Further, for example, in the averaging process, the averaged points are plotted. Here, since the averaged points are the same as the averaged points described in the above-mentioned averaging process of the first thickness profile 56, detailed description thereof will be omitted.
Further, the moving average width of the moving average and the number of sections in the section average are the same as the moving average width of the moving average and the number of sections in the section average of the first thickness profile 56 described above. Omit.
 補正厚みプロファイル算出部47(図3参照)は、図8に示す補正厚みプロファイル61を得る。
 具体的には、補正厚みプロファイル算出部47は、フィルムの一方向における各位置、すなわち、幅方向の各位置での平均第1の厚みプロファイルの値αと平均第2の厚みプロファイルの値βとの、(値αのn乗)/(値βのn乗)で表される比Wを算出する。なお、上述の比Wは、W=(α/β)で表される。
 そして、一方向、図6では幅方向における各位置での第2の厚みプロファイルの値に、比Wを1/n乗した値Mを乗して、図8に示す補正厚みプロファイル61を得る。得られた補正厚みプロファイル61のデータはメモリ48(図3参照)に記憶される。
 算出された値Mは、例えば、図7に示すプロファイル65のように表される。上述の値Mは、M=W1/n=(α/β1/nで表され、第2の厚みプロファイルの値に対する補正量である。なお、例えば、上述の比Wのデータ及び値Mのデータは、それぞれメモリ48に一時的に記憶して、補正厚みプロファイル61の算出に用いられる。
 以上のようにして、補正厚み測定装置26では、補正厚みプロファイル61を得る。
 なお、図8に示す補正厚みプロファイル61は、制御前のフィルムの状態を示すものであり、最終的に得られたフィルムの状態を示すものではない。
The correction thickness profile calculation unit 47 (see FIG. 3) obtains the correction thickness profile 61 shown in FIG.
Specifically, the correction thickness profile calculation unit 47 sets the average first thickness profile value α and the average second thickness profile value β at each position in one direction of the film, that is, at each position in the width direction. The ratio W expressed by (value α to the nth power) / (value β to the nth power) is calculated. The above-mentioned ratio W is represented by W = (α n / β n ).
Then, in one direction, in FIG. 6, the value of the second thickness profile at each position in the width direction is multiplied by the value M obtained by raising the ratio W to the power of 1 / n to obtain the corrected thickness profile 61 shown in FIG. The obtained data of the correction thickness profile 61 is stored in the memory 48 (see FIG. 3).
The calculated value M is represented, for example, as in the profile 65 shown in FIG. The above-mentioned value M is represented by M = W 1 / n = (α n / β n ) 1 / n , and is a correction amount for the value of the second thickness profile. For example, the above-mentioned data of the ratio W and the data of the value M are temporarily stored in the memory 48 and used for calculating the correction thickness profile 61.
As described above, the correction thickness measuring device 26 obtains the correction thickness profile 61.
The corrected thickness profile 61 shown in FIG. 8 shows the state of the film before control, and does not show the state of the finally obtained film.
 なお、補正厚みプロファイル61を得る方法としては、上述の方法以外に、以下の方法を用いることもできる。幅方向の各位置での平均第2の厚みプロファイルの値βと平均第1の厚みプロファイルの値αの(値βのn乗)/(値αのn乗)で表される比Wを算出する。上述の比Wは、W=(β/α)で表される。
 幅方向における各位置での第2の厚みプロファイルの値を、比Wを1/n乗した値Mで除して、図8に示す補正厚みプロファイル61を得る。なお、M=W 1/n=(β/α1/nで表される。補正厚みプロファイルの値は、(第2の厚みプロファイルの値)/(M)で表される。
 また、上述のように、値α及び値βをいずれもn乗し、比Wを1/n乗しているが、n乗のnと、1/n乗のnは同じ値である。nの値は、正の値でも、負の値でもよく、特に限定されるものではないが、n>1であることが好ましい。nは、計算のし易さから整数であることが好ましく、例えば、nは、2または3であることが好ましい。nの値の上限値としては、計算時間の観点から、n=10程度であることが好ましい。また、nの値は、n<1であってもよい。
In addition to the above method, the following method can also be used as a method for obtaining the corrected thickness profile 61. The ratio WA expressed by (value β to the nth power) / (value α to the nth power) of the average second thickness profile value β and the average first thickness profile value α at each position in the width direction. calculate. The above-mentioned ratio WA is represented by WA = (β n / α n ).
The value of the second thickness profile at each position in the width direction is divided by the value MA obtained by multiplying the ratio WA by 1 / n to obtain the corrected thickness profile 61 shown in FIG. It is represented by MA = WA 1 / n = (β n / α n ) 1 / n . The value of the corrected thickness profile is represented by (value of the second thickness profile) / ( MA ).
Further, as described above, both the value α and the value β are raised to the nth power, and the ratio W is raised to the 1 / nth power, but n of the nth power and n of the 1 / nth power are the same value. The value of n may be a positive value or a negative value, and is not particularly limited, but it is preferable that n> 1. n is preferably an integer for ease of calculation, and for example, n is preferably 2 or 3. The upper limit of the value of n is preferably about n = 10 from the viewpoint of calculation time. Further, the value of n may be n <1.
 補正厚み測定装置26で得られた補正厚みプロファイル61を、フィルムの厚みの制御に用いる場合、例えば、押出ダイ13(図1参照)の幅方向TD(図1参照)に配置された複数のダイリップのそれぞれに対応する領域に区間する。各区間における、フィルムの目標厚みとの差を算出する。ここで、フィルムの目標厚みとの差に対して、予め許容範囲を設定しておく、各区間におけるフィルムの目標厚みとの差が、許容範囲内であれば、該当する区間では制御しない。
 一方、フィルムの目標厚みとの差が許容範囲を超えている場合、該当する区間では、ダイリップの間隔、又はダイリップ温度を調整する。例えば、フィルムの目標厚みに対して、補正厚みプロファイル61のフィルムの厚みが薄い場合、ダイリップの間隔を広くする。また、例えば、フィルムの目標厚みに対して、補正厚みプロファイル61のフィルムの厚みが厚い場合、ダイリップの間隔を狭くする。
When the correction thickness profile 61 obtained by the correction thickness measuring device 26 is used for controlling the thickness of the film, for example, a plurality of die lips arranged in the width direction TD (see FIG. 1) of the extrusion die 13 (see FIG. 1). The section corresponds to each of the above. The difference from the target thickness of the film in each section is calculated. Here, an allowable range is set in advance for the difference from the target thickness of the film. If the difference from the target thickness of the film in each section is within the allowable range, control is not performed in the corresponding section.
On the other hand, when the difference from the target thickness of the film exceeds the allowable range, the die lip interval or the die lip temperature is adjusted in the corresponding section. For example, when the thickness of the film of the correction thickness profile 61 is thinner than the target thickness of the film, the distance between the die lips is widened. Further, for example, when the thickness of the film of the correction thickness profile 61 is thicker than the target thickness of the film, the distance between the die lips is narrowed.
 また、フィードバックの回数を予め設定しておき、各区間におけるフィルムの目標厚みとの差を許容範囲内にするように制御してもよい。この場合、設定したフィードバックの回数で、各区間におけるフィルムの目標厚みとの差が許容範囲内になっても差をより小さくするようにフィルムの製造条件を調整する。また、各区間におけるフィルムの目標厚みとの差が許容範囲外であっても、設定したフィードバックの回数でフィルムの製造条件の調整をやめる。 Further, the number of feedbacks may be set in advance and controlled so that the difference from the target thickness of the film in each section is within the allowable range. In this case, the film manufacturing conditions are adjusted so that the difference from the target thickness of the film in each section becomes smaller even if the difference from the target thickness in each section is within the allowable range by the set number of feedbacks. Further, even if the difference from the target thickness of the film in each section is out of the allowable range, the adjustment of the film manufacturing conditions is stopped by the set number of feedbacks.
<補正厚み測定方法及びフィルムの製造方法>
 次に、補正厚み測定方法及びフィルムの製造方法について説明する。
 フィルムの製造方法は、例えば、フィルムの製造装置10(図1参照)を用いてフィルムを製造する。補正厚み測定方法は、例えば、補正厚み測定装置26(図1参照)、放射線厚み計22(図1参照)、及び分光干渉式厚み計24(図1参照)を用いる。
 図9は本発明の実施形態のフィルムの製造方法の一例を示すフローチャートである。
 まず、放射線厚み計22(図1参照)を用いて、フィルムの厚みを測定する(ステップS10)。例えば、図1に示す放射線厚み計22を、幅方向TDに走査して、横延伸後、かつ巻き取り前の2軸延伸フィルムFの厚みを測定する。この測定により、図5に示す第1の厚みプロファイル56を作成し、得る(ステップS11)。ステップS11が第1の厚みプロファイルを得る工程である。
<Correction thickness measurement method and film manufacturing method>
Next, a correction thickness measuring method and a film manufacturing method will be described.
As a method for producing a film, for example, a film is produced using a film manufacturing apparatus 10 (see FIG. 1). As the correction thickness measuring method, for example, a correction thickness measuring device 26 (see FIG. 1), a radiation thickness gauge 22 (see FIG. 1), and a spectroscopic interference type thickness gauge 24 (see FIG. 1) are used.
FIG. 9 is a flowchart showing an example of a film manufacturing method according to the embodiment of the present invention.
First, the film thickness is measured using a radiation thickness gauge 22 (see FIG. 1) (step S10). For example, the radiation thickness gauge 22 shown in FIG. 1 is scanned in the width direction TD to measure the thickness of the biaxially stretched film F2 after lateral stretching and before winding. By this measurement, the first thickness profile 56 shown in FIG. 5 is created and obtained (step S11). Step S11 is a step of obtaining a first thickness profile.
 次に、図5に示す第1の厚みプロファイル56を平均化処理して、例えば、平均化した点57a(図6参照)を得る。なお、平均化した点57aの幅方向TDにおける位置と、平均化する点57aの数は予め設定しておく。平均化処理の方法は、特に限定されるものではなく、上述のように、移動平均又は区間平均が用いられる。
 次に、平均化した点57a(図6参照)をプロットし、図6に示す平均第1の厚みプロファイル57を作成し、得る(ステップS12)。ステップS12が平均第1の厚みプロファイル57を得る工程である。
Next, the first thickness profile 56 shown in FIG. 5 is averaged to obtain, for example, an averaged point 57a (see FIG. 6). The position of the averaged point 57a in the width direction TD and the number of the averaged points 57a are set in advance. The method of the averaging process is not particularly limited, and as described above, a moving average or an interval average is used.
Next, the averaged points 57a (see FIG. 6) are plotted to create and obtain an average first thickness profile 57 shown in FIG. 6 (step S12). Step S12 is a step of obtaining an average first thickness profile 57.
 ステップS10と並行して、又はステップS12の後に、分光干渉式厚み計24(図1参照)を用いて、フィルムの厚みを測定する(ステップS14)。例えば、図1に示す分光干渉式厚み計24を幅方向TDに走査して、横延伸後、かつ巻き取り前の2軸延伸フィルムFの厚みを測定する。この測定により、図5に示す第2の厚みプロファイル58を作成し、得る(ステップS15)。ステップS15が第2の厚みプロファイルを得る工程である。 The film thickness is measured in parallel with step S10 or after step S12 using a spectroscopic interferometric thickness gauge 24 (see FIG. 1) (step S14). For example, the spectroscopic interferometric thickness gauge 24 shown in FIG. 1 is scanned in the width direction TD to measure the thickness of the biaxially stretched film F2 after lateral stretching and before winding. By this measurement, the second thickness profile 58 shown in FIG. 5 is created and obtained (step S15). Step S15 is a step of obtaining a second thickness profile.
 次に、図5に示す第2の厚みプロファイル58を平均化処理して、例えば、平均化した点59a(図6参照)を得る。なお、平均化した点59aの幅方向TDにおける位置と、平均化する点59aの数は予め設定しておく。平均化する点59aの幅方向における位置及び数は、上述の平均化する点57aの幅方向における位置及び数と同じであることが好ましい。平均化処理の方法は、特に限定されるものではなく、上述のように移動平均又は区間平均が用いられる。
 次に、平均化した点59a(図6参照)をプロットし、図6に示す平均第2の厚みプロファイル59を作成し、得る(ステップS16)。ステップS16が平均第2の厚みプロファイル59を得る工程である。
Next, the second thickness profile 58 shown in FIG. 5 is averaged to obtain, for example, an averaged point 59a (see FIG. 6). The position of the averaged point 59a in the width direction TD and the number of the averaged points 59a are set in advance. It is preferable that the position and number of the averaging points 59a in the width direction are the same as the position and number of the above-mentioned averaging points 57a in the width direction. The method of the averaging process is not particularly limited, and a moving average or an interval average is used as described above.
Next, the averaged points 59a (see FIG. 6) are plotted to create and obtain an average second thickness profile 59 shown in FIG. 6 (step S16). Step S16 is a step of obtaining an average second thickness profile 59.
 次に、フィルムの幅方向TDにおける各位置での平均第1の厚みプロファイル57の値αと平均第2の厚みプロファイル59の値βとの、(値αのn乗)/(値βのn乗)で表される比Wを算出する。なお、W=(α/β)である。さらに、比Wを1/n乗した値Mを算出する。これにより、例えば、図7に示すプロファイル65が得られる。なお、M=(α/β1/nである。
 幅方向TDにおける各位置での第2の厚みプロファイル58の値γに、比Wを1/n乗した値Mを乗じて、図8に示す補正厚みプロファイル61を作成し、得る(ステップS18)。ステップS18が補正厚みプロファイル61を得る工程である。
 すなわち、補正厚みプロファイル61の幅方向TDにおける任意の位置の値を、Cとするとき、補正厚みプロファイルの幅方向TDにおける任意の位置の値は、C=γ×Mである。
 補正厚みプロファイルについては、具体的には、例えば、図6の幅方向の位置Dにおいて、平均第1の厚みプロファイル57の値αは、24.73であり、平均第2の厚みプロファイル59の値βは、24.97である。
 比W(値α/値β)は、n=2の場合、W=(24.73)/(24.97)=0.9809である。値Mは、M=W1/2=0.9904である。
 また、第2の厚みプロファイル58の位置Dの値は25.01である。よって、位置Dにおける補正厚みプロファイル61の値Cは、25.01×((24.73)/(24.97)1/2=24.77である。このようにして、補正厚みプロファイル61の各位置における値を求める。なお、ステップS18までが、補正厚み測定方法である。
 補正厚みプロファイル61の各位置における値を求める際、n=2の場合について説明したが、上述のようにn=2に限定されるものではなく、上述のようにn>1が好ましい。例えば、n=3でも、n=2と同様にして、補正厚みプロファイル61の各位置における値を求めることができる。
Next, the value α of the average first thickness profile 57 and the value β of the average second thickness profile 59 at each position in the width direction TD of the film are (value α to the nth power) / (value β n). The ratio W represented by (squared) is calculated. W = (α n / β n ). Further, the value M obtained by multiplying the ratio W by the power of 1 / n is calculated. As a result, for example, the profile 65 shown in FIG. 7 is obtained. In addition, M = (α n / β n ) 1 / n .
The corrected thickness profile 61 shown in FIG. 8 is created and obtained by multiplying the value γ of the second thickness profile 58 at each position in the width direction TD by the value M obtained by multiplying the ratio W by 1 / n (step S18). .. Step S18 is a step of obtaining the corrected thickness profile 61.
That is, when the value of an arbitrary position in the width direction TD of the correction thickness profile 61 is C, the value of the arbitrary position in the width direction TD of the correction thickness profile 61 is C = γ × M.
Regarding the corrected thickness profile, specifically, for example, at the position D1 in the width direction of FIG. 6, the value α 1 of the average first thickness profile 57 is 24.73, and the average second thickness profile 59. The value β 1 of is 24.97.
The ratio W (value α n / value β n ) is W = (24.73) 2 / (24.97) 2 = 0.9809 when n = 2. The value M is M = W 1/2 = 0.9904.
Further, the value of the position D1 of the second thickness profile 58 is 25.01. Therefore, the value C 1 of the correction thickness profile 61 at the position D 1 is 25.01 × ((24.73) 2 / (24.97) 2 ) 1/2 = 24.77. In this way, the value at each position of the correction thickness profile 61 is obtained. The method up to step S18 is the correction thickness measuring method.
When obtaining the value at each position of the correction thickness profile 61, the case of n = 2 has been described, but it is not limited to n = 2 as described above, and n> 1 is preferable as described above. For example, even when n = 3, the value at each position of the correction thickness profile 61 can be obtained in the same manner as n = 2.
 フィルムの製造方法では、ステップS18の次の工程として、補正厚みプロファイルに基づいて、フィルムの製造条件を調整して、フィルムを製造する工程を有する。このようにして、フィルムの厚みを制御して、フィルムを製造する。
 具体的には、補正厚みプロファイル61を、フィルムの厚みの制御に用いる場合、予め判定条件を設定し、この判定条件(ステップS20)に基づいて、フィルムを製造するか(ステップS22)、フィルムの製造条件を調整するか(ステップS24)が決定される。
 例えば、ステップS20では判定条件として、例えば、押出ダイ13(図1参照)の幅方向に配置された複数のダイリップのそれぞれに対応する領域に区間し、各区間における、フィルムの目標厚みとの差に対する許容範囲を設定する。
 例えば、ステップS20において、各区間におけるフィルムの目標厚みとの差を、許容範囲内にあるかを判定する。フィルムの目標厚みとの差が許容範囲内にあれば、許容範囲内に該当する区間では、フィルムの製造条件を調整しない。全ての区間において、フィルムの目標厚みとの差が許容範囲内にあれば、フィルムの製造条件を調整することなく、そのまま、フィルムの製造を続ける(ステップS22)。
In the film manufacturing method, as the next step of step S18, there is a step of adjusting the film manufacturing conditions based on the corrected thickness profile to manufacture the film. In this way, the thickness of the film is controlled to produce the film.
Specifically, when the corrected thickness profile 61 is used to control the thickness of the film, a determination condition is set in advance, and the film is manufactured based on the determination condition (step S20) (step S22). It is determined whether to adjust the manufacturing conditions (step S24).
For example, in step S20, as a determination condition, for example, a section is provided in a region corresponding to each of a plurality of die lips arranged in the width direction of the extrusion die 13 (see FIG. 1), and the difference from the target thickness of the film in each section. Set the tolerance for.
For example, in step S20, it is determined whether the difference from the target thickness of the film in each section is within the allowable range. If the difference from the target thickness of the film is within the permissible range, the film manufacturing conditions are not adjusted in the section corresponding to the permissible range. If the difference from the target thickness of the film is within the permissible range in all the sections, the film production is continued as it is without adjusting the film production conditions (step S22).
 一方、ステップS20において、フィルムの目標厚みとの差が許容範囲を超えている場合、フィルム製造条件を調整する(ステップS24)。ステップS24では、例えば、フィルムの目標厚みとの差が許容範囲を超えている区間では、ダイリップの間隔、又はダイリップ温度を調整する。
 例えば、フィルムの目標厚みに対して、補正厚みプロファイル61のフィルムの厚みが薄い場合、ダイリップの間隔を広くする。また、例えば、フィルムの目標厚みに対して、補正厚みプロファイル61のフィルムの厚みが厚い場合、ダイリップの間隔を狭くする。
 上述のように、フィルム製造条件を調整して、フィルムの製造を実施する(ステップS22)。ステップS22までが、フィルムの製造方法である。
On the other hand, in step S20, when the difference from the target thickness of the film exceeds the allowable range, the film manufacturing conditions are adjusted (step S24). In step S24, for example, in the section where the difference from the target thickness of the film exceeds the allowable range, the die lip interval or the die lip temperature is adjusted.
For example, when the thickness of the film of the correction thickness profile 61 is thinner than the target thickness of the film, the distance between the die lips is widened. Further, for example, when the thickness of the film of the correction thickness profile 61 is thicker than the target thickness of the film, the distance between the die lips is narrowed.
As described above, the film production conditions are adjusted to carry out the film production (step S22). Up to step S22 is a film manufacturing method.
 なお、ステップS24においてフィルム製造条件を調整した後、フィルムを製造しているが、これに限定されるものではない。例えば、ステップS24においてフィルム製造条件を調整した後、ステップS10、及びステップS14に戻り、再度、補正厚みプロファイル61を作成し、各区間におけるフィルムの目標厚みとの差を、許容範囲内にあるかを判定してもよい(ステップS20)。これを、各区間におけるフィルムの目標厚みとの差を、許容範囲内になるまで繰り返し実行してもよい。すなわち、フィードバック制御を繰り返し実行し、フィルムの目標厚みに収束するまで、フィルム製造条件の調整と、補正厚みプロファイルの作成とを繰り返し実行してもよい。なお、フィルムの製造条件は、上述の通りである。 The film is manufactured after adjusting the film manufacturing conditions in step S24, but the present invention is not limited to this. For example, after adjusting the film manufacturing conditions in step S24, the process returns to step S10 and step S14, the correction thickness profile 61 is created again, and the difference from the target thickness of the film in each section is within the allowable range. May be determined (step S20). This may be repeated until the difference from the target thickness of the film in each section is within the allowable range. That is, the feedback control may be repeatedly executed, and the adjustment of the film manufacturing conditions and the creation of the corrected thickness profile may be repeatedly executed until the target thickness of the film is converged. The film manufacturing conditions are as described above.
 なお、製造されたフィルムは、補正厚み測定装置又は補正厚み測定方法により測定して得られる補正厚みプロファイルにおける最大値と最小値との差が、補正厚みプロファイルの平均値に対して、1.0%以下である、
 特に、厚み25μm以下のフィルムにおいて、厚みを高い精度で測定でき、得られるフィルムの厚みムラを小さく、すなわち、補正厚みプロファイルにおける最大値(Tmax)と最小値(Tmin)との差が、補正厚みプロファイルの平均値に対して、1.0%以下と小さくできる。
 また、製造されたフィルムは、補正厚み測定装置又は補正厚み測定方法により測定して得られる補正厚みプロファイルにおける最大値と最小値との差が0.1μm未満である。
 特に、厚み25μm以下のフィルムにおいて、厚みを高い精度で測定でき、得られるフィルムの厚みムラを小さく、すなわち、補正厚みプロファイルにおける最大値(Tmax)と最小値(Tmin)との差で表されるR値を0.1μm未満と小さくできる。
 例えば、幅方向において、R値を0.1μm未満にできる。
In the manufactured film, the difference between the maximum value and the minimum value in the correction thickness profile obtained by measuring with the correction thickness measuring device or the correction thickness measurement method is 1.0 with respect to the average value of the correction thickness profile. % Or less,
In particular, in a film having a thickness of 25 μm or less, the thickness can be measured with high accuracy, and the thickness unevenness of the obtained film is small, that is, the difference between the maximum value (T max ) and the minimum value (T min ) in the corrected thickness profile is large. It can be as small as 1.0% or less with respect to the average value of the corrected thickness profile.
Further, in the manufactured film, the difference between the maximum value and the minimum value in the correction thickness profile obtained by measuring with the correction thickness measuring device or the correction thickness measuring method is less than 0.1 μm.
In particular, in a film having a thickness of 25 μm or less, the thickness can be measured with high accuracy, and the thickness unevenness of the obtained film is small, that is, the difference between the maximum value (T max ) and the minimum value (T min ) in the corrected thickness profile is shown. The R value to be obtained can be reduced to less than 0.1 μm.
For example, the R value can be less than 0.1 μm in the width direction.
 ステップS20では判定条件として、各区間におけるフィルムの目標厚みとの差に対する許容範囲を設定したが、判定条件は、これに限定されるものではない。判定条件として、フィードバックの回数を用いることもできる。
 ステップS20において、フィードバックの回数を予め設定しておき、各区間におけるフィルムの目標厚みとの差を許容範囲内にするように制御してもよい。この場合、ステップS20において、設定したフィードバックの回数が判定され、ステップS24において、フィルムの製造条件を調整する。フィードバックの回数を用いる場合、各区間におけるフィルムの目標厚みとの差が許容範囲内になっても差をより小さくするようにフィルムの製造条件を調整する。また、各区間におけるフィルムの目標厚みとの差が許容範囲外であっても、設定したフィードバックの回数でフィルムの製造条件の調整をやめる。
In step S20, as a determination condition, an allowable range for the difference from the target thickness of the film in each section is set, but the determination condition is not limited to this. The number of feedbacks can also be used as a determination condition.
In step S20, the number of feedbacks may be set in advance and controlled so that the difference from the target thickness of the film in each section is within the allowable range. In this case, in step S20, the set number of feedbacks is determined, and in step S24, the film manufacturing conditions are adjusted. When the number of feedbacks is used, the film manufacturing conditions are adjusted so that the difference from the target thickness of the film in each section becomes smaller even if the difference is within the allowable range. Further, even if the difference from the target thickness of the film in each section is out of the allowable range, the adjustment of the film manufacturing conditions is stopped by the set number of feedbacks.
 上述のフィードバックの回数は、特に限定されるものではないが、回数が多いほど精密に制御ができる。工程負荷を考慮すると、10回超100回以下であることが好ましい。
 フィードバックの回数が、上述の回数であれば、補正厚みプロファイルにおける最大値(Tmax)と最小値(Tmin)との差で表されるR値を小さくでき、フィードバック制御に要する時間も長くなることがなく、かつ測定されるフィルムの長さも長くならない。
The number of feedbacks described above is not particularly limited, but the larger the number, the more precise the control. Considering the process load, it is preferably more than 10 times and 100 times or less.
If the number of feedbacks is the above-mentioned number, the R value represented by the difference between the maximum value (T max ) and the minimum value (T min ) in the correction thickness profile can be reduced, and the time required for feedback control becomes long. And the length of the film to be measured does not increase.
 なお、上述のステップS10、S11、S12と、ステップS14、S15、S16とは、並行して実行することとしたが、これに限定されるものではない。
 放射線厚み計22と、分光干渉式厚み計24とによる測定順によって、例えば、ステップS10、S11、S12を先に実行してもよいし、ステップS14、S15、S16を先に実行してもよい。また、放射線厚み計22と、分光干渉式厚み計24とによる測定データがある場合には、ステップS10及びステップS14を省略して、ステップS11、S12と、ステップS15、S16とを並行して実行できる。
 なお、補正厚み測定装置26により、幅方向TDの厚みを測定したところ、図10に示す補正厚みプロファイル62のように、測定値のバラつきが小さく、フィルムの厚みムラを高い精度で測定できた。一方、放射線厚み計だけでは、図11に示す補正厚みプロファイル64のように、測定値のバラつきが大きく、フィルムの厚みムラを高い精度で測定できなかった。
It should be noted that the above-mentioned steps S10, S11, S12 and steps S14, S15, S16 are executed in parallel, but the present invention is not limited thereto.
For example, steps S10, S11, and S12 may be executed first, or steps S14, S15, and S16 may be executed first, depending on the measurement order by the radiation thickness gauge 22 and the spectral interferometry thickness gauge 24. .. If there is measurement data from the radiation thickness gauge 22 and the spectral interferometry thickness gauge 24, steps S10 and S14 are omitted, and steps S11 and S12 and steps S15 and S16 are executed in parallel. can.
When the thickness in the width direction was measured by the correction thickness measuring device 26, the variation in the measured values was small and the film thickness unevenness could be measured with high accuracy as shown in the correction thickness profile 62 shown in FIG. On the other hand, with the radiation thickness gauge alone, as in the corrected thickness profile 64 shown in FIG. 11, the measured values vary widely, and the film thickness unevenness cannot be measured with high accuracy.
(フィルムの各製造工程)
 以下、フィルムの各製造工程について説明する。
 上述の各部の詳しい構成及び機能等の説明については、以下に記載する本実施形態の製造方法が有する各製造工程の説明とともに記載する。
 図1に示すフィルムの製造装置10を参照して、フィルムの製造方法の各工程について、具体的に説明する。
(Each manufacturing process of film)
Hereinafter, each manufacturing process of the film will be described.
A detailed description of the configuration, functions, and the like of each of the above-mentioned parts will be described together with a description of each manufacturing process included in the manufacturing method of the present embodiment described below.
Each step of the film manufacturing method will be specifically described with reference to the film manufacturing apparatus 10 shown in FIG.
[押出成形工程]
 押出成形工程においては、上述の押出ダイ13(図1参照)を用いた押出成形法により、例えば、原料のポリエステルから未延伸ポリエステルフィルムを形成する。
 押出成形法は、押出機12(図1参照)を用いて原料樹脂を押し出すことによって、原料樹脂を所望の形状に成形する方法である。
 押出機12内で、例えば、ポリエステルを融点以上の温度に加熱し、溶融して溶融体(メルト)とする。溶融体は、単層で押出されてもよく、多層で押出されてもよい。
 押出ダイ13から押し出された溶融体は、キャスティングロール14(図1参照)に接触させ、キャスティングロール14上で溶融体を冷却及び固化することで、溶融体をフィルム状に成形する。キャスティングロールの温度は、上述のとおりである。
[Extrusion molding process]
In the extrusion molding step, an unstretched polyester film is formed from, for example, a raw material polyester by an extrusion molding method using the above-mentioned extrusion die 13 (see FIG. 1).
The extrusion molding method is a method of molding a raw material resin into a desired shape by extruding the raw material resin using an extruder 12 (see FIG. 1).
In the extruder 12, for example, polyester is heated to a temperature equal to or higher than the melting point and melted to obtain a melt. The melt may be extruded in a single layer or in multiple layers.
The melt extruded from the extrusion die 13 is brought into contact with the casting roll 14 (see FIG. 1), and the melt is cooled and solidified on the casting roll 14 to form the melt into a film. The temperature of the casting roll is as described above.
 押出成形工程において、キャスティングロール14と溶融体との密着性を上げることが好ましい。キャスティングロール14と溶融体との密着性を上げる方法は、上述の通りである。
 キャスティングロール14を用いて冷却されて成形された未延伸ポリエステルフィルムは、剥ぎ取りロール等の剥ぎ取り部材を用いて、キャスティングロール14から剥ぎ取られる。
In the extrusion molding step, it is preferable to improve the adhesion between the casting roll 14 and the melt. The method for increasing the adhesion between the casting roll 14 and the melt is as described above.
The unstretched polyester film cooled and formed by using the casting roll 14 is stripped from the casting roll 14 by using a stripping member such as a stripping roll.
[縦延伸工程]
 縦延伸工程は、未延伸フィルムF(図1参照)を搬送方向MDに延伸する工程であり、縦延伸部15(図1参照)で実行される。縦延伸工程は、縦延伸部15において、搬送速度が異なる2つ以上のロール15aにより、未延伸フィルムFを搬送方向MDに延伸して、1軸延伸された、1軸延伸フィルムFを形成する工程である。
 縦延伸工程では、縦延伸部15で搬送速度が異なる2つ以上のロール15a(図1参照)により、未延伸フィルムFに緊張を与えながら搬送することによって、未延伸フィルムFの縦延伸が行われる。
[Vertical stretching process]
The longitudinal stretching step is a step of stretching the unstretched film F (see FIG. 1) in the transport direction MD, and is executed by the longitudinally stretched portion 15 (see FIG. 1). In the longitudinal stretching step, the unstretched film F is stretched in the transport direction MD by two or more rolls 15a having different transport speeds in the longitudinally stretched portion 15, to form a uniaxially stretched film F1. It is a process to do.
In the longitudinal stretching step, the unstretched film F is longitudinally stretched by transporting the unstretched film F while applying tension to the unstretched film F by two or more rolls 15a (see FIG. 1) having different transport speeds in the longitudinally stretched portion 15. Will be.
 縦延伸工程では、縦延伸前に、未延伸フィルムFを予熱してもよい。例えば、未延伸ポリエステルフィルムを予熱することで、ポリエステルフィルムを容易に縦延伸できる。
 未延伸フィルムFの予熱温度は、(Tg-20)~(Tg+50)℃が好ましく、(Tg-10)~(Tg+40)℃がより好ましく、(Tg-10)~(Tg+30)℃が更に好ましい。具体的に、縦延伸工程における予熱温度は、70~120℃が好ましく、75~110℃がより好ましく、75~100℃が更に好ましい。
In the longitudinal stretching step, the unstretched film F may be preheated before the longitudinal stretching. For example, by preheating the unstretched polyester film, the polyester film can be easily stretched vertically.
The preheating temperature of the unstretched film F is preferably (Tg-20) to (Tg + 50) ° C, more preferably (Tg-10) to (Tg + 40) ° C, and even more preferably (Tg-10) to (Tg + 30) ° C. Specifically, the preheating temperature in the longitudinal stretching step is preferably 70 to 120 ° C, more preferably 75 to 110 ° C, and even more preferably 75 to 100 ° C.
 ロール15aによる未延伸フィルムFの搬送速度(周速度)は、搬送方向下流側のロール15aよりも遅ければ特に制限されないが、5~60m/分が好ましく、10~50m/分がより好ましく、15~45m/分が更に好ましい。
 また、下流側のロール15aによる未延伸フィルムFの搬送速度(周速度)は、上流側のロール15aよりも速ければ特に制限されないが、40~160m/分が好ましく、50~150m/分がより好ましく、60~140m/分が更に好ましい。
The transport speed (peripheral speed) of the unstretched film F by the roll 15a is not particularly limited as long as it is slower than the roll 15a on the downstream side in the transport direction, but is preferably 5 to 60 m / min, more preferably 10 to 50 m / min, and 15 -45 m / min is more preferable.
The transport speed (peripheral speed) of the unstretched film F by the roll 15a on the downstream side is not particularly limited as long as it is faster than the roll 15a on the upstream side, but is preferably 40 to 160 m / min, more preferably 50 to 150 m / min. It is preferable, and more preferably 60 to 140 m / min.
 縦延伸工程における延伸倍率は、用途によって適宜設定すればよいが、2.0~5.0倍が好ましく、2.5~4.0倍がより好ましく、2.8~4.0倍が更に好ましい。 The draw ratio in the longitudinal stretching step may be appropriately set depending on the intended use, but is preferably 2.0 to 5.0 times, more preferably 2.5 to 4.0 times, and further preferably 2.8 to 4.0 times. preferable.
 縦延伸工程における延伸速度は、800~1500%/秒が好ましく、1000~1400%/秒がより好ましく、1200~1400%/秒が更に好ましい。ここで、「延伸速度」とは、縦延伸工程において1秒間に延伸されたフィルムの搬送方向の長さΔdを、延伸前のフィルムの搬送方向の長さdで除した値を、百分率で表した値である。 The stretching speed in the longitudinal stretching step is preferably 800 to 1500% / sec, more preferably 1000 to 1400% / sec, still more preferably 1200 to 1400% / sec. Here, the "stretching speed" is a value obtained by dividing the length Δd in the transport direction of the film stretched in 1 second in the longitudinal stretching step by the length d 0 in the transport direction of the film before stretching, as a percentage. It is a represented value.
 ロール15aとしては、特に制限されず、プラスチックフィルムの延伸に用いられる公知のロールが使用できるが、各ロールの表面を含む表層を構成する材料が、金属、セラミック又はフッ素樹脂であることが好ましく、セラミックであることがより好ましい。金属としては、クロムが好ましい。セラミックとしては、酸化クロム又は酸化アルミナが好ましく、酸化クロムがより好ましい。フッ素樹脂としては、ポリテトラフルオロエチレンが好ましい。 The roll 15a is not particularly limited, and a known roll used for stretching a plastic film can be used, but it is preferable that the material constituting the surface layer including the surface of each roll is a metal, ceramic or fluororesin. It is more preferably ceramic. Chromium is preferred as the metal. As the ceramic, chromium oxide or alumina oxide is preferable, and chromium oxide is more preferable. As the fluororesin, polytetrafluoroethylene is preferable.
 縦延伸工程において、未延伸フィルムFを加熱してもよい。加熱温度は、(Tg-20)~(Tg+50)℃が好ましく、(Tg-10)~(Tg+40)℃がより好ましく、(Tg)~(Tg+30)℃が更に好ましい。具体的に、縦延伸工程における加熱温度は、70~120℃が好ましく、80~110℃がより好ましく、85~100℃が更に好ましい。 The unstretched film F may be heated in the longitudinal stretching step. The heating temperature is preferably (Tg-20) to (Tg + 50) ° C, more preferably (Tg-10) to (Tg + 40) ° C, and even more preferably (Tg) to (Tg + 30) ° C. Specifically, the heating temperature in the longitudinal stretching step is preferably 70 to 120 ° C, more preferably 80 to 110 ° C, and even more preferably 85 to 100 ° C.
 なお、未延伸フィルムFの加熱は、未延伸フィルムFの一方の面のみでもよく、両面でもよい。
 また、縦延伸工程における未延伸フィルムFの加熱方法は、ヒーターに制限されるものではなく、上述のロール15a以外の加熱したロールにより、未延伸フィルムFを加熱する方法、及び、未延伸フィルムFに温風を当てる方法等の方法が挙げられる。
 各ロールを加熱する方法としては、例えば、ロール内部にヒーターを設ける方法、及び、ロール内部に配管を設け、その配管内に加熱した流体を流す方法が挙げられる。
The unstretched film F may be heated on only one side of the unstretched film F or on both sides.
Further, the method for heating the unstretched film F in the longitudinal stretching step is not limited to the heater, and the method for heating the unstretched film F with a heated roll other than the roll 15a described above and the unstretched film F. A method such as a method of applying warm air to the heater can be mentioned.
Examples of the method for heating each roll include a method of providing a heater inside the roll and a method of providing a pipe inside the roll and allowing the heated fluid to flow in the pipe.
 また、上述の通り、縦延伸工程に用いる縦延伸部15は、縦延伸前に未延伸フィルムを予熱する予熱を2つ以上備えていてもよく、縦延伸に用いる低速延伸ロールを2つ以上備えていてもよい。
 また、縦延伸部15が備えるロール15a等は、特に限定されるものではなく、対向する2つのロール(1対のロール)でもよく、未延伸フィルムFの一方の面に接する1つのロールのみでもよい。
Further, as described above, the longitudinally stretched portion 15 used in the longitudinal stretching step may be provided with two or more preheats for preheating the unstretched film before the longitudinal stretching, and may be provided with two or more low-speed stretching rolls used for the longitudinal stretching. May be.
Further, the roll 15a or the like included in the vertically stretched portion 15 is not particularly limited, and may be two opposing rolls (a pair of rolls) or only one roll in contact with one surface of the unstretched film F. good.
<冷却工程>
 縦延伸工程により得られた1軸延伸フィルムを冷却する冷却工程を有してもよい。この場合、1軸延伸されたフィルムを、冷却部(図示せず)が備える冷却ロール(図示せず)に接触させることにより冷却する。
<Cooling process>
It may have a cooling step of cooling the uniaxially stretched film obtained by the longitudinal stretching step. In this case, the uniaxially stretched film is cooled by contacting it with a cooling roll (not shown) provided in the cooling unit (not shown).
(冷却条件)
 冷却工程の条件としては、冷却ロールによるフィルムの冷却速度、すなわち、フィルムが冷却ロールに接触してから離れるまでに低下したフィルムの温度を、フィルムと冷却ロールとが接触する時間で除した値が、50℃/秒以上であることが好ましく、120℃/秒以上であることがより好ましく、150℃/秒以上であることが更に好ましく、180℃/秒以上であることが特に好ましい。冷却速度が上述の範囲内であると、フィルムにおける乱れ欠陥の発生をより抑制できる。
 上述の冷却速度の上限は特に制限されないが、300℃/秒以下が好ましい。
(Cooling conditions)
The condition of the cooling step is the cooling rate of the film by the cooling roll, that is, the value obtained by dividing the temperature of the film, which is lowered from the contact of the film with the cooling roll to the time when the film is separated from the cooling roll, by the time of contact between the film and the cooling roll. , 50 ° C./sec or higher, more preferably 120 ° C./sec or higher, further preferably 150 ° C./sec or higher, and particularly preferably 180 ° C./sec or higher. When the cooling rate is within the above range, the occurrence of turbulent defects in the film can be further suppressed.
The upper limit of the above-mentioned cooling rate is not particularly limited, but is preferably 300 ° C./sec or less.
 冷却ロールによるフィルムの冷却速度は、冷却ロールの表面温度、並びに、冷却ロール及び対向ロールによるフィルムの搬送速度により、調整できる。
 冷却ロールによるフィルムの冷却速度は、非接触温度計を用いて測定された、冷却ロールに接触する位置のフィルムの温度(接触時膜温)及び冷却ロールから離れる位置でのフィルムの温度(離間時膜温)の測定値、フィルムと冷却ロールとの接触面の搬送方向の長さ、並びに、冷却ロールと対向ロールとによるフィルムの搬送速度から、求められる。
The cooling rate of the film by the cooling roll can be adjusted by the surface temperature of the cooling roll and the transport speed of the film by the cooling roll and the opposing roll.
The cooling rate of the film by the cooling roll is measured by using a non-contact thermometer, the temperature of the film at the position in contact with the cooling roll (film temperature at the time of contact) and the temperature of the film at the position away from the cooling roll (at the time of separation). It is obtained from the measured value of film temperature), the length of the contact surface between the film and the cooling roll in the transport direction, and the transport speed of the film by the cooling roll and the facing roll.
 上述のフィルムがポリエステルフィルムである場合、冷却工程において、冷却ロールに接触するポリエステルフィルムの温度は、ポリエステルフィルムにおける乱れ欠陥の発生をより抑制できる点で80℃以上が好ましく、90℃以上がより好ましく、95℃以上がさらに好ましい。上限は特に制限されないが、120℃以下が好ましい。
 冷却工程において、冷却ロールから離れるフィルムの温度は、ポリエステルフィルムにおける乱れ欠陥の発生をより抑制できる点で、80℃以下が好ましく、50℃以下がより好ましい。下限は特に制限されないが、15℃以上が好ましい。
 冷却工程において、冷却ロールに接触してから冷却ロールから離れるまでに低下したポリエステルフィルムの温度が、ポリエステルフィルムにおける乱れ欠陥の発生をより抑制できる点で、10℃以上であることが好ましく、30℃以上であることがより好ましく、40℃以上であることが更に好ましい。上限は特に制限されないが、100℃以下が好ましい。
 冷却工程におけるフィルムの温度及び温度変化は、非接触温度計を用いて上述の方法により測定できる。
When the above-mentioned film is a polyester film, the temperature of the polyester film in contact with the cooling roll in the cooling step is preferably 80 ° C. or higher, more preferably 90 ° C. or higher in that the occurrence of disorder defects in the polyester film can be further suppressed. , 95 ° C. or higher is more preferable. The upper limit is not particularly limited, but 120 ° C. or lower is preferable.
In the cooling step, the temperature of the film away from the cooling roll is preferably 80 ° C. or lower, more preferably 50 ° C. or lower, in that the occurrence of turbulent defects in the polyester film can be further suppressed. The lower limit is not particularly limited, but is preferably 15 ° C. or higher.
In the cooling step, the temperature of the polyester film lowered from the contact with the cooling roll to the separation from the cooling roll is preferably 10 ° C. or higher, preferably 30 ° C. or higher in that the occurrence of turbulent defects in the polyester film can be further suppressed. The above is more preferable, and the temperature is more preferably 40 ° C. or higher. The upper limit is not particularly limited, but is preferably 100 ° C. or lower.
The temperature of the film and the temperature change in the cooling step can be measured by the above-mentioned method using a non-contact thermometer.
(2次冷却処理)
 冷却部を用いる冷却工程では、冷却ロールにより冷却された未延伸フィルムFに対して、さらに、第2冷却ロール(図示せず)により更に冷却する2次冷却処理を施してもよい。
 第2冷却ロールは、未延伸フィルムFを搬送しながら冷却する機能を有する。第2冷却ロールの表面温度は、冷却ロールの表面温度以下であれば特に制限されないが、15~50℃が好ましい。
 第2冷却ロールの数は、1つ又は2つであってもよく、3つでもよい。また、冷却ロール以外の装置を用いて2次冷却処理を行ってもよい。
(Secondary cooling process)
In the cooling step using the cooling unit, the unstretched film F cooled by the cooling roll may be further subjected to a secondary cooling treatment of further cooling by a second cooling roll (not shown).
The second cooling roll has a function of cooling while conveying the unstretched film F. The surface temperature of the second cooling roll is not particularly limited as long as it is equal to or lower than the surface temperature of the cooling roll, but is preferably 15 to 50 ° C.
The number of the second cooling rolls may be one or two, or may be three. Further, the secondary cooling process may be performed using a device other than the cooling roll.
<横延伸工程>
 横延伸工程は、1軸延伸フィルムFを幅方向TDに延伸(以下、「横延伸」ともいう。)する工程である。より具体的には、横延伸部16を用いて1軸延伸フィルムFを幅方向TDに延伸して、2軸延伸フィルムFを形成する工程である。
<Transverse stretching process>
The transverse stretching step is a step of stretching the uniaxially stretched film F1 in the width direction TD (hereinafter, also referred to as “transverse stretching”). More specifically, it is a step of stretching the uniaxially stretched film F 1 in the width direction TD using the laterally stretched portion 16 to form the biaxially stretched film F 2 .
 横延伸部16(図1参照)は、上述のように、1軸延伸フィルムF(図1参照)に対して加熱しながら幅方向に張力を付与することにより、1軸延伸フィルムFを幅方向に延伸する装置である。横延伸部16としては、上述の図2に示すものが用いられるが、これ以外に、テンター等の公知の横延伸部が用いられる。
 テンターは、遮風カーテンで区分され、熱風等により個々に温度調整可能な多数のゾーンを備えている。そのようなゾーンを備えるテンターの具体例としては、搬送方向上流側から順に、予熱ゾーン、横延伸ゾーン、熱固定ゾーン、熱緩和ゾーン及び冷却ゾーンを備えるテンターが挙げられる。
As described above, the transversely stretched portion 16 (see FIG. 1 ) applies tension in the width direction to the uniaxially stretched film F1 (see FIG. 1 ) while heating to obtain the uniaxially stretched film F1. It is a device that stretches in the width direction. As the laterally stretched portion 16, the one shown in FIG. 2 described above is used, but in addition to this, a known laterally stretched portion such as a tenter is used.
The tenter is divided by a windbreak curtain and has a large number of zones whose temperature can be individually adjusted by hot air or the like. Specific examples of the tenter having such a zone include a tenter having a preheating zone, a transverse stretching zone, a heat fixing zone, a heat relaxation zone, and a cooling zone in order from the upstream side in the transport direction.
 横延伸工程においては、横延伸前に、1軸延伸フィルムFを予熱することが好ましい。1軸延伸フィルムFを予熱することで、1軸延伸フィルムFを容易に横延伸できる。
 1軸延伸フィルムFの予熱温度は、(Tg-10)~(Tg+60)℃が好ましく、(Tg)~(Tg+50)℃がより好ましい。具体的に、1軸延伸フィルムFの予熱温度は、80~120℃が好ましく、90~110℃がより好ましい。
In the transverse stretching step, it is preferable to preheat the uniaxially stretched film F1 before the transverse stretching. By preheating the uniaxially stretched film F 1 , the uniaxially stretched film F 1 can be easily laterally stretched.
The preheating temperature of the uniaxially stretched film F 1 is preferably (Tg-10) to (Tg + 60) ° C, more preferably (Tg) to (Tg + 50) ° C. Specifically, the preheating temperature of the uniaxially stretched film F1 is preferably 80 to 120 ° C, more preferably 90 to 110 ° C.
 横延伸工程における延伸倍率は、上述の縦延伸工程における延伸倍率より大きいことが好ましい。横延伸工程における延伸倍率は、3.0~6.0倍が好ましく、3.5~5.0倍がより好ましく、3.5~4.5倍が更に好ましい。 The draw ratio in the transverse stretching step is preferably larger than the draw ratio in the above-mentioned longitudinal stretching step. The stretching ratio in the transverse stretching step is preferably 3.0 to 6.0 times, more preferably 3.5 to 5.0 times, still more preferably 3.5 to 4.5 times.
 縦延伸工程における延伸倍率と、横延伸工程における延伸倍率との積で表される面積倍率は、12.8~15.5倍が好ましく、13.5~15.2倍がより好ましく、14.0~15.0倍が更に好ましい。面積倍率が上述の下限値以上であると、幅方向TDにおける分子配向が良好になる。また、面積倍率が上述の上限値以下であると、加熱処理に供された際に分子配向が緩和されにくい状態を維持しやすい。 The area magnification represented by the product of the stretching ratio in the longitudinal stretching step and the stretching ratio in the transverse stretching step is preferably 12.8 to 15.5 times, more preferably 13.5 to 15.2 times, and 14. It is more preferably 0 to 15.0 times. When the area magnification is equal to or more than the above lower limit value, the molecular orientation in the width direction TD becomes good. Further, when the area magnification is not more than the above-mentioned upper limit value, it is easy to maintain a state in which the molecular orientation is difficult to be relaxed when subjected to the heat treatment.
 横延伸工程における延伸速度は、8~80%/秒が好ましく、10~75%/秒がより好ましく、15~60%/秒が更に好ましい。
 なお、被覆層を有するポリエステルフィルムを製造する場合、搬送方向MDに延伸されたポリエステルフィルム上に被覆層形成用塗布液を塗布し、次いで、横延伸することが好ましい。上述の方法により、被覆層の密着性を向上できる。
The stretching speed in the transverse stretching step is preferably 8 to 80% / sec, more preferably 10 to 75% / sec, still more preferably 15 to 60% / sec.
When producing a polyester film having a coating layer, it is preferable to apply a coating liquid for forming a coating layer on the polyester film stretched in the transport direction MD, and then laterally stretch the film. By the above method, the adhesion of the coating layer can be improved.
<加熱処理工程>
 横延伸工程により幅方向に延伸された2軸延伸フィルムF(図1参照)を加熱処理する工程(以下、「加熱処理工程」ともいう。)を有してもよい。加熱処理工程としては、例えば、熱固定工程及び熱緩和工程が挙げられる。加熱処理工程は、熱固定工程及び熱緩和工程の少なくとも一方を有することが好ましく、熱固定工程及び熱緩和工程の両者を有することがより好ましい。
 熱固定工程及び熱緩和工程を含む加熱処理工程は、例えば、上述の横延伸工程において横延伸部16、又は熱固定ゾーン及び熱緩和ゾーンを含むテンター等を用いて実施される。
<Heat treatment process>
It may have a step (hereinafter, also referred to as “heat treatment step”) of heat-treating the biaxially stretched film F 2 (see FIG. 1) stretched in the width direction by the transverse stretching step. Examples of the heat treatment step include a heat fixing step and a heat relaxation step. The heat treatment step preferably has at least one of a heat fixing step and a heat relaxation step, and more preferably has both a heat fixing step and a heat relaxation step.
The heat treatment step including the heat fixing step and the heat relaxation step is carried out, for example, by using the transverse stretching portion 16 or the tenter including the heat fixing zone and the heat relaxation zone in the above-mentioned transverse stretching step.
<熱固定工程>
 横延伸工程により横延伸されたフィルムに対する加熱処理として、熱固定工程及び熱緩和工程を行う。
 上述のフィルムがポリエステルフィルムである場合、熱固定工程においては、横延伸工程により得られた2軸配向ポリエステルフィルムを加熱して、熱固定する。熱固定によってポリエステルを結晶化させることにより、ポリエステルフィルムの収縮を抑えることができる。
 熱固定工程は、例えば、上述の横延伸部16の熱固定領域34(図2参照)において実施される。
<Heat fixing process>
As a heat treatment for the film stretched laterally by the transverse stretching step, a heat fixing step and a heat relaxation step are performed.
When the above-mentioned film is a polyester film, in the heat fixing step, the biaxially oriented polyester film obtained by the transverse stretching step is heated and heat-fixed. By crystallizing the polyester by heat fixing, shrinkage of the polyester film can be suppressed.
The heat fixing step is carried out, for example, in the heat fixing region 34 (see FIG. 2) of the above-mentioned transverse stretching portion 16.
 熱固定工程におけるポリエステルフィルムの表面温度(熱固定温度T1)は、190~240℃が好ましく、200~240℃がより好ましく、210~230℃が更に好ましい。
 熱固定工程では、フィルムの表面の最高到達温度が上述の熱固定温度T1となるように制御しながら加熱処理が行われる。
The surface temperature (heat fixing temperature T1) of the polyester film in the heat fixing step is preferably 190 to 240 ° C., more preferably 200 to 240 ° C., and even more preferably 210 to 230 ° C.
In the heat fixing step, the heat treatment is performed while controlling the maximum temperature reached on the surface of the film to be the above-mentioned heat fixing temperature T1.
 熱固定工程において、フィルム幅方向の表面温度のバラつきは、0.5~10.0℃が好ましく、0.5~7.0℃がより好ましく、0.5~5.0℃が更に好ましく、0.5~4.0℃が特に好ましい。フィルム幅方向の表面温度のバラつきを上述の範囲内に制御することで、幅方向における結晶化度のバラつきを抑制できる。 In the heat fixing step, the variation in the surface temperature in the film width direction is preferably 0.5 to 10.0 ° C, more preferably 0.5 to 7.0 ° C, still more preferably 0.5 to 5.0 ° C. 0.5 to 4.0 ° C. is particularly preferable. By controlling the variation in the surface temperature in the film width direction within the above range, the variation in the crystallinity in the width direction can be suppressed.
 加熱方法としては、例えば、フィルムに熱風を当てる方法、及び、フィルムを輻射加熱する方法が挙げられる。輻射加熱する方法において用いられる装置としては、例えば、赤外線ヒーターが挙げられる。 Examples of the heating method include a method of applying hot air to the film and a method of radiant heating of the film. Examples of the device used in the method of radiant heating include an infrared heater.
 熱固定工程における加熱時間は、5~50秒間が好ましく、5~30秒間がより好ましく、5~10秒間が更に好ましい。 The heating time in the heat fixing step is preferably 5 to 50 seconds, more preferably 5 to 30 seconds, and even more preferably 5 to 10 seconds.
<熱緩和工程>
 熱緩和工程においては、熱固定工程により熱固定されたフィルムを、熱固定工程よりも低い温度で加熱することで熱緩和する。熱緩和によってフィルムの残留歪みを緩和できる。
 熱緩和工程は、例えば、上述の横延伸部16の熱緩和領域35において実施される。
<Heat relaxation process>
In the heat relaxation step, the film heat-fixed by the heat-fixing step is heated at a temperature lower than that of the heat-fixing step to heat-relax the film. Residual strain of the film can be alleviated by heat relaxation.
The heat relaxation step is carried out, for example, in the heat relaxation region 35 of the laterally stretched portion 16 described above.
 熱緩和工程におけるフィルムの表面温度(熱緩和温度T2)は、熱固定温度T1より、5℃以上低い温度が好ましく、15℃以上低い温度がより好ましく、25℃以上低い温度が更に好ましく、30℃以上低い温度が特に好ましい。即ち、熱緩和温度T2は、235℃以下が好ましく、225℃以下がより好ましく、210℃以下が更に好ましく、200℃以下が特に好ましい。
 熱緩和温度T2の下限は、100℃以上が好ましく、110℃以上がより好ましく、120℃以上が更に好ましい。
 熱緩和工程では、フィルムの表面の最高到達温度が上述の熱緩和温度T2となるように制御しながら加熱処理が行われる。
The surface temperature (heat relaxation temperature T2) of the film in the heat relaxation step is preferably 5 ° C. or higher lower than the heat fixation temperature T1, more preferably 15 ° C. or higher, further preferably 25 ° C. or higher, further preferably 30 ° C. The lower temperature is particularly preferable. That is, the heat relaxation temperature T2 is preferably 235 ° C or lower, more preferably 225 ° C or lower, further preferably 210 ° C or lower, and particularly preferably 200 ° C or lower.
The lower limit of the heat relaxation temperature T2 is preferably 100 ° C. or higher, more preferably 110 ° C. or higher, still more preferably 120 ° C. or higher.
In the heat relaxation step, the heat treatment is performed while controlling the maximum temperature reached on the surface of the film to be the above-mentioned heat relaxation temperature T2.
 加熱方法としては、例えば、フィルムに熱風を当てる方法、フィルムを輻射加熱する方法が挙げられる。輻射加熱する方法において用いられる装置としては、例えば、赤外線ヒーターが挙げられる。 Examples of the heating method include a method of applying hot air to the film and a method of radiant heating of the film. Examples of the device used in the method of radiant heating include an infrared heater.
<冷却工程>
 フィルムの製造方法は、熱緩和されたフィルムを冷却する冷却工程を有する。冷却工程及び後述する拡張工程は、例えば、上述の横延伸部16の冷却領域36において実施される。
<Cooling process>
The film manufacturing method comprises a cooling step of cooling the heat-relaxed film. The cooling step and the expansion step described later are carried out, for example, in the cooling region 36 of the laterally stretched portion 16 described above.
 冷却工程におけるフィルムの冷却方法としては、例えば、フィルムに風(好ましくは冷風)を当てる方法、及び温度調節可能な部材(例えば、温調ロール)にフィルムを接触させる方法が挙げられる。 Examples of the method for cooling the film in the cooling step include a method of blowing air (preferably cold air) on the film and a method of bringing the film into contact with a temperature-adjustable member (for example, a temperature control roll).
 フィルムの製造方法では、フィルムの冷却速度Vが2200~3500℃/分となるように冷却工程を実施することが好ましい。冷却速度Vを上述の範囲内に調節することで、2軸配向フィルムに積層される機能層の厚みムラを低減できる。
 冷却速度Vの範囲を特定することにより機能層の厚みムラが低減されるメカニズムの詳細は明らかではないが、フィルム表面の温度が効率的に低下され、かつ、フィルム表面の温度ムラを抑制できる冷却速度とすることにより、冷却後のフィルムに内在する歪みが低減され、機能層積層時の高温処理に伴ううねりの発生を抑制できるためと推測される。
 上述の観点から、冷却工程における冷却速度Vは、2200~3000℃/分が好ましく、2300~2600℃/分がより好ましい。
In the film manufacturing method, it is preferable to carry out the cooling step so that the cooling rate V of the film is 2200 to 3500 ° C./min. By adjusting the cooling rate V within the above range, it is possible to reduce the uneven thickness of the functional layer laminated on the biaxially oriented film.
Although the details of the mechanism by which the thickness unevenness of the functional layer is reduced by specifying the range of the cooling rate V are not clear, the cooling that can efficiently lower the temperature of the film surface and suppress the temperature unevenness of the film surface. It is presumed that by setting the speed, the strain inherent in the film after cooling can be reduced, and the generation of waviness due to the high temperature treatment at the time of laminating the functional layer can be suppressed.
From the above viewpoint, the cooling rate V in the cooling step is preferably 2200 to 3000 ° C./min, more preferably 2300 to 2600 ° C./min.
 冷却工程におけるフィルムの冷却速度Vは、非接触式温度計を用いて、測定できる。例えば、上述の横延伸部16の冷却領域36において冷却工程を実施する場合、熱緩和領域35から冷却領域36に搬入される1軸延伸フィルムFの表面温度と、冷却領域36から搬出される1軸延伸フィルムFの表面温度とを測定して、両者の温度差ΔT(℃)を得る。得られた温度差ΔT(℃)を、冷却領域36における1軸延伸フィルムFの滞在時間tsで割ることにより、冷却速度Vが求められる。
 1軸延伸フィルムFの冷却速度は、冷却装置の運転条件、及びフィルムの搬送速度により調整できる。
The cooling rate V of the film in the cooling step can be measured using a non-contact thermometer. For example, when the cooling step is carried out in the cooling region 36 of the laterally stretched portion 16 described above, the surface temperature of the uniaxially stretched film F1 carried into the cooling region 36 from the heat relaxation region 35 and the surface temperature of the uniaxially stretched film F1 carried out from the cooling region 36. The surface temperature of the uniaxially stretched film F1 is measured to obtain a temperature difference ΔT (° C.) between the two. The cooling rate V is obtained by dividing the obtained temperature difference ΔT (° C.) by the residence time ts of the uniaxially stretched film F1 in the cooling region 36.
The cooling speed of the uniaxially stretched film F 1 can be adjusted by the operating conditions of the cooling device and the transport speed of the film.
 フィルムの製造方法における上述の熱固定工程、熱緩和工程及び冷却工程は、この順に連続して実施することが好ましい。これにより、フィルムに対する加熱及び冷却の繰返しによる負荷(熱履歴)を低減し、フィルムに内在する歪み等を低減して、筋状欠陥の発生を抑制できる。 It is preferable that the above-mentioned heat fixing step, heat relaxation step, and cooling step in the film manufacturing method are continuously carried out in this order. As a result, it is possible to reduce the load (heat history) due to repeated heating and cooling of the film, reduce the distortion inherent in the film, and suppress the occurrence of streak defects.
<拡張工程>
 フィルムの製造方法は、上述の冷却工程において、熱緩和されたフィルムを幅方向に拡張する拡張工程を有する。
 冷却工程においてフィルムを「幅方向に拡張する」とは、冷却工程の開始時におけるフィルムのフィルム幅(図2中のL2)よりも、冷却工程の終了時におけるフィルム幅(図2中のL3)が広くなるように、冷却工程の間に、フィルムに対して幅方向に張力を付与することを意味する。
<Expansion process>
The method for producing a film includes an expansion step of expanding the heat-relaxed film in the width direction in the above-mentioned cooling step.
“Expanding the film in the width direction” in the cooling step means the film width at the end of the cooling step (L3 in FIG. 2) rather than the film width of the film at the start of the cooling step (L2 in FIG. 2). It means applying tension in the width direction to the film during the cooling process so that
 冷却工程において、フィルムを幅方向に拡張する方法は、特に制限されない。例えば、上述の横延伸部16を用いて2軸配向フィルムを製造する場合、冷却領域36の開始地点における環状レール30a(図2参照)及び30b(図2参照)の距離よりも、冷却領域36(図2参照)の終了地点(把持解除点P(図2参照)及び把持解除点Q(図2参照))における環状レール30a及び30bの距離を広げることにより、冷却工程において、各把持部材により把持される1軸延伸フィルムFを幅方向に拡張することができる。
 拡張工程は、冷却工程の前後でフィルム幅が拡張される限り、冷却工程の開始から終了まで連続的又は断続的に実施してもよく、冷却工程の間の一時期においてのみ実施してもよい。
In the cooling step, the method of expanding the film in the width direction is not particularly limited. For example, when a biaxially oriented film is manufactured using the above-mentioned transversely stretched portion 16, the cooling region 36 is more than the distance between the annular rails 30a (see FIG. 2) and 30b (see FIG. 2) at the starting point of the cooling region 36. By increasing the distance between the annular rails 30a and 30b at the end point (grip release point P (see FIG. 2) and grip release point Q (see FIG. 2)) of (see FIG. 2), each grip member in the cooling step The uniaxially stretched film F 1 to be gripped can be expanded in the width direction.
The expansion step may be carried out continuously or intermittently from the start to the end of the cooling step as long as the film width is expanded before and after the cooling step, or may be carried out only at one time during the cooling step.
 拡張工程によるフィルムの幅方向の拡張率、即ち、冷却工程の開始前におけるフィルム幅に対する冷却工程の終了時におけるフィルム幅の比率は、0よりも大きければ特に制限されないが、本発明の効果がより優れる点で、上述の拡張率の百分率bが0.001%以上であることが好ましく、0.01%以上であることがより好ましい。
 上限は特に制限されないが、上述の拡張率の百分率bが1.3%以下であることが好ましく、1.2%以下であることがより好ましく、1.0%以下であることが更に好ましい。フィルム幅の拡張率を上述の上限値以下に設定することにより、フィルム製造時に高速で搬送するために搬送方向に強い張力を付与した場合(例えば、搬送方向の張力が100N/m以上である場合)であっても、後述するトリミング工程における切断面の乱れ、更には、その切断乱れに伴うフィルムの破断を抑制できる。
The expansion ratio in the width direction of the film by the expansion step, that is, the ratio of the film width at the end of the cooling step to the film width before the start of the cooling step is not particularly limited as long as it is larger than 0, but the effect of the present invention is more effective. In terms of excellence, the percentage b of the above-mentioned expansion rate is preferably 0.001% or more, and more preferably 0.01% or more.
The upper limit is not particularly limited, but the percentage b of the above-mentioned expansion rate is preferably 1.3% or less, more preferably 1.2% or less, and further preferably 1.0% or less. When a strong tension is applied in the transport direction in order to transport the film at high speed by setting the expansion rate of the film width to the above upper limit value or less (for example, when the tension in the transport direction is 100 N / m or more). ), It is possible to suppress the disorder of the cut surface in the trimming step described later, and further, the breakage of the film due to the cutting disorder.
<トリミング工程>
 トリミング工程は、2軸延伸フィルムFの横延伸部16のクリップ16a(図1参照)で把持された両端部分を切断する工程である。トリミング工程後に、巻き取り工程が実施される。
<Trimming process>
The trimming step is a step of cutting both end portions gripped by the clip 16a (see FIG. 1) of the laterally stretched portion 16 of the biaxially stretched film F 2 . After the trimming step, a winding step is carried out.
<巻き取り工程>
 上述の横延伸工程を施して得られた、トリミング工程後の2軸延伸フィルムFを、巻取部18で巻き取ることにより、ロール状の2軸延伸フィルムFを得る巻き取り工程を有する。2軸延伸フィルムFが、本発明のフィルムである。
 以上の工程を経ることにより、2軸延伸フィルムFを製造できる。2軸延伸フィルムFの厚みムラの制御は、上述のようにして実施される。
<Rolling process>
It has a winding step of obtaining a roll-shaped biaxially stretched film F 2 by winding the biaxially stretched film F 2 after the trimming step obtained by performing the above-mentioned transverse stretching step by a winding unit 18. .. The biaxially stretched film F 2 is the film of the present invention.
By going through the above steps, the biaxially stretched film F 2 can be manufactured. The control of the thickness unevenness of the biaxially stretched film F 2 is carried out as described above.
(オシレート切)
 図12は本発明の実施形態のフィルムの製造方法のオシレート切を考慮したフィルムの厚みの制御を説明するグラフである。
(Off oscillate)
FIG. 12 is a graph illustrating control of film thickness in consideration of oscillating cutting in the method for producing a film according to the embodiment of the present invention.
 図1に示す切断部17は、2軸延伸フィルムFの両端部分を、搬送方向MDに沿って切断するが、これに限定されるものではない。例えば、幅方向TDにおいて、三角波状に切断位置を変えて、2軸延伸フィルムFの両端部分を切断してもよい。この切断方式をオシレート切という。この場合、切断後の2軸延伸フィルムFの両端部分は、搬送方向MDに沿って、幅方向TDに長さが変わる。オシレート切後の2軸延伸フィルムFの両端部分を搬送方向MDと平行な方向に矯正することが好ましい。例えば、矯正にはEPC(エッジポジションコントローラー)が用いられる。オシレート切により、巻き取り後、フィルムロール20の表面が平坦になる。 The cutting portion 17 shown in FIG. 1 cuts both end portions of the biaxially stretched film F 2 along the transport direction MD, but is not limited thereto. For example, in the width direction TD, both end portions of the biaxially stretched film F 2 may be cut by changing the cutting position in a triangular wavy shape. This cutting method is called oscillating cutting. In this case, the lengths of both end portions of the biaxially stretched film F 2 after cutting change in the width direction TD along the transport direction MD. It is preferable to straighten both end portions of the biaxially stretched film F 2 after cutting the oscillate in a direction parallel to the transport direction MD. For example, an EPC (engineering position controller) is used for correction. By oscillating, the surface of the film roll 20 becomes flat after winding.
 なお、オシレート切した場合、矯正後に厚み計(図示せず)を配置することが好ましい。矯正後に配置される厚み計は、上述の放射線厚み計22と分光干渉式厚み計24を有するものである。厚み計により測定された、端部の矯正後の2軸延伸フィルムFの厚みが測定され、この測定値が、上述の補正厚み測定、及びフィルムの製造に利用される。 When the oscillate is cut, it is preferable to arrange a thickness gauge (not shown) after the correction. The thickness gauge arranged after the correction has the radiation thickness gauge 22 and the spectral interferometry thickness gauge 24 described above. The thickness of the biaxially stretched film F 2 after the edge is straightened, which is measured by a thickness gauge, is measured, and this measured value is used for the above-mentioned corrected thickness measurement and the production of the film.
 オシレート切された、切断後の2軸延伸フィルムFの端面を、上述の放射線厚み計22の測定データと分光干渉式厚み計24の測定データとを、それぞれ測定データ上で端面を矯正して、矯正後の2軸延伸フィルムFの厚みデータを算出し、この算出データを上述の補正厚み測定、及びフィルムの製造に利用することもできる。 The end face of the oscillated, cut biaxially stretched film F 2 is corrected by using the measurement data of the radiation thickness gauge 22 and the measurement data of the spectral interference type thickness gauge 24, respectively, on the measurement data. , The thickness data of the biaxially stretched film F 2 after straightening can be calculated, and this calculated data can be used for the above-mentioned correction thickness measurement and the production of the film.
 オシレート切した場合、上述の放射線厚み計22の測定データと分光干渉式厚み計24の測定データに、オシレート切後のフィルムの厚みを用いて、上述のフィードバック制御を実施した場合、図12の符号70に示すフィルムのプロファイルを得ることができる。一方、オシレート切後のフィルムの厚みを用いることなく、上述のフィードバック制御を実施した場合、図12の符号72に示すフィルムのプロファイルが得られる。
 図12のフィルムのプロファイル70と、フィルムのプロファイル72とは、いずれも、巻き取られる長尺のフィルムについて、幅方向TDの厚みをフィルムの全長にわたり測定し、長尺のフィルムの幅方向TDの厚みの平均値を示す。
 オシレート切を実施した場合、オシレート切後のフィルムの厚みを用いて、フィードバック制御を実施することにより、オシレート切後のフィルムの厚みを用いない場合に比して、フィルムの厚みを平坦にできる。
When the oscillate cut is performed, the above-mentioned feedback control is performed using the thickness of the film after the oscillate cut on the measurement data of the radiation thickness gauge 22 and the measurement data of the spectroscopic interference type thickness gauge 24. The profile of the film shown in 70 can be obtained. On the other hand, when the above-mentioned feedback control is performed without using the thickness of the film after oscillating, the profile of the film shown by reference numeral 72 in FIG. 12 is obtained.
In both the film profile 70 and the film profile 72 of FIG. 12, the thickness of the widthwise TD of the long film to be wound is measured over the entire length of the film, and the widthwise TD of the long film is measured. The average value of the thickness is shown.
When the oscillate cutting is performed, the feedback control can be performed by using the thickness of the film after the oscillating cutting, so that the film thickness can be made flat as compared with the case where the film thickness after the oscillating cutting is not used.
<ポリエステルフィルム>
 ポリエステルフィルムは、主たる重合体成分としてポリエステルを含有するフィルム状の物体である。ここで、「主たる重合体成分」とは、フィルムに含まれる全ての重合体のうち最も含有量(質量)が多い重合体を意味する。
 ポリエステルフィルムは、1種単独のポリエステルを含有していてもよく、2種以上のポリエステルを含有していてもよい。
<Polyester film>
The polyester film is a film-like object containing polyester as a main polymer component. Here, the "main polymer component" means the polymer having the highest content (mass) among all the polymers contained in the film.
The polyester film may contain one kind of polyester alone or may contain two or more kinds of polyesters.
(ポリエステル)
 ポリエステルは、主鎖にエステル結合を有する重合体である。ポリエステルは、通常、後述するジカルボン酸化合物とジオール化合物とを重縮合させることにより形成される。
 ポリエステルとしては特に制限されず、公知のポリエステルを利用できる。ポリエステルとしては、例えば、ポリエチレンテレフタレート(PET)、及びポリエチレン-2,6-ナフタレート(PEN)が挙げられ、PETが好ましい。
(polyester)
Polyester is a polymer having an ester bond in the main chain. Polyester is usually formed by polycondensing a dicarboxylic acid compound and a diol compound, which will be described later.
The polyester is not particularly limited, and known polyesters can be used. Examples of the polyester include polyethylene terephthalate (PET) and polyethylene-2,6-naphthalate (PEN), and PET is preferable.
 ポリエステルの固有粘度は、0.50dl/g以上0.80dl/g未満が好ましく、0.55dl/g以上0.70dl/g未満がより好ましい。
 ポリエステルの融点(Tm)は、220~270℃が好ましく、245~265℃がより好ましい。
 ポリエステルのガラス転移温度(Tg)は、65~90℃が好ましく、70~85℃がより好ましい。
The intrinsic viscosity of the polyester is preferably 0.50 dl / g or more and less than 0.80 dl / g, and more preferably 0.55 dl / g or more and less than 0.70 dl / g.
The melting point (Tm) of the polyester is preferably 220 to 270 ° C, more preferably 245 to 265 ° C.
The glass transition temperature (Tg) of polyester is preferably 65 to 90 ° C, more preferably 70 to 85 ° C.
 ポリエステルの製造方法は特に制限されず、公知の方法を利用できる。例えば、触媒存在下で、少なくとも1種のジカルボン酸化合物と、少なくとも1種のジオール化合物とを重縮合させることによりポリエステルを製造できる。 The method for producing polyester is not particularly limited, and a known method can be used. For example, polyester can be produced by polycondensing at least one dicarboxylic acid compound and at least one diol compound in the presence of a catalyst.
-触媒-
 ポリエステルの製造に使用する触媒は、特に制限されず、ポリエステルの合成に使用可能な公知の触媒を利用できる。
 触媒としては、例えば、アルカリ金属化合物(例えば、カリウム化合物、ナトリウム化合物)、アルカリ土類金属化合物(例えば、カルシウム化合物、マグネシウム化合物)、亜鉛化合物、鉛化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、ゲルマニウム化合物及びリン化合物が挙げられる。中でも、触媒活性、及びコストの観点から、チタン化合物が好ましい。
 触媒は、1種のみ用いてもよく、2種以上を併用してもよい。カリウム化合物、ナトリウム化合物、カルシウム化合物、マグネシウム化合物、亜鉛化合物、鉛化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、ゲルマニウム化合物から選択される少なくとも1種の金属触媒と、リン化合物とを併用することが好ましく、チタン化合物とリン化合物を併用することがより好ましい。
-catalyst-
The catalyst used for producing the polyester is not particularly limited, and a known catalyst that can be used for synthesizing the polyester can be used.
Examples of the catalyst include alkali metal compounds (for example, potassium compounds and sodium compounds), alkaline earth metal compounds (for example, calcium compounds and magnesium compounds), zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, and antimony. Examples thereof include compounds, titanium compounds, germanium compounds and phosphorus compounds. Of these, titanium compounds are preferable from the viewpoint of catalytic activity and cost.
Only one kind of catalyst may be used, or two or more kinds of catalysts may be used in combination. At least one metal catalyst selected from potassium compounds, sodium compounds, calcium compounds, magnesium compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, germanium compounds, and phosphorus compounds. It is preferable to use in combination, and it is more preferable to use a titanium compound and a phosphorus compound in combination.
 チタン化合物としては、有機キレートチタン錯体が好ましい。有機キレートチタン錯体は、配位子として有機酸を有するチタン化合物である。
 有機酸としては、例えば、クエン酸、乳酸、トリメリット酸、及びリンゴ酸が挙げられる。
 チタン化合物としては、特許第5575671号公報の段落0049~段落0053に記載されたチタン化合物も利用でき、上述の公報の記載内容は、本明細書に組み込まれる。
As the titanium compound, an organic chelated titanium complex is preferable. The organic chelated titanium complex is a titanium compound having an organic acid as a ligand.
Examples of the organic acid include citric acid, lactic acid, trimellitic acid, and malic acid.
As the titanium compound, the titanium compound described in paragraphs 0049 to 0053 of Japanese Patent No. 5575671 can also be used, and the contents of the above-mentioned publication are incorporated in the present specification.
-ジカルボン酸化合物-
 ジカルボン酸化合物としては、ジカルボン酸又はジカルボン酸エステルが好ましく、例えば、脂肪族ジカルボン酸化合物、脂環式ジカルボン酸化合物、芳香族ジカルボン酸化合物、及び、それらのメチルエステル化合物又はエチルエステル化合物が挙げられる。中でも、芳香族ジカルボン酸、又は、芳香族ジカルボン酸メチルが好ましい。
-Dicarboxylic acid compound-
The dicarboxylic acid compound is preferably a dicarboxylic acid or a dicarboxylic acid ester, and examples thereof include an aliphatic dicarboxylic acid compound, an alicyclic dicarboxylic acid compound, an aromatic dicarboxylic acid compound, and a methyl ester compound or an ethyl ester compound thereof. .. Of these, aromatic dicarboxylic acid or methyl aromatic dicarboxylic acid is preferable.
 脂肪族ジカルボン酸化合物としては、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸、及びエチルマロン酸が挙げられる。
 脂環式ジカルボン酸化合物としては、例えば、アダマンタンジカルボン酸、ノルボルネンジカルボン酸、シクロヘキサンジカルボン酸、及びデカリンジカルボン酸が挙げられる。
Examples of the aliphatic dicarboxylic acid compound include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecandic acid, dimer acid, eicosandionic acid, pimelic acid, azelaic acid, and methylmalonic acid. And ethylmalonic acid.
Examples of the alicyclic dicarboxylic acid compound include adamantandicarboxylic acid, norbornnedicarboxylic acid, cyclohexanedicarboxylic acid, and decalindicarboxylic acid.
 芳香族ジカルボン酸化合物としては、例えば、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、フェニルインダンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン酸、及び9,9’-ビス(4-カルボキシフェニル)フルオレン酸が挙げられる。
 中でも、テレフタル酸又は2,6-ナフタレンジカルボン酸が好ましく、テレフタル酸がより好ましい。
Examples of the aromatic dicarboxylic acid compound include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 1,8-naphthalenedicarboxylic acid. , 4,4'-diphenyldicarboxylic acid, 4,4'-diphenyletherdicarboxylic acid, 5-sodium sulfoisophthalic acid, phenylindandicarboxylic acid, anthracendicarboxylic acid, phenanthrangecarboxylic acid, and 9,9'-bis (4-carboxy). Phenyl) fluorenic acid can be mentioned.
Of these, terephthalic acid or 2,6-naphthalenedicarboxylic acid is preferable, and terephthalic acid is more preferable.
 ジカルボン酸化合物は1種のみ用いてもよく、2種以上を併用してもよい。ジカルボン酸化合物として、テレフタル酸を使用する場合、テレフタル酸単独で用いてもよく、イソフタル酸等の他の芳香族ジカルボン酸又は脂肪族ジカルボン酸と共重合してもよい。 Only one type of dicarboxylic acid compound may be used, or two or more types may be used in combination. When terephthalic acid is used as the dicarboxylic acid compound, terephthalic acid may be used alone, or may be copolymerized with another aromatic dicarboxylic acid such as isophthalic acid or an aliphatic dicarboxylic acid.
-ジオール化合物-
 ジオール化合物としては、例えば、脂肪族ジオール化合物、脂環式ジオール化合物、及び芳香族ジオール化合物が挙げられ、脂肪族ジオール化合物が好ましい。
-Glycol compound-
Examples of the diol compound include an aliphatic diol compound, an alicyclic diol compound, and an aromatic diol compound, and an aliphatic diol compound is preferable.
 脂肪族ジオール化合物としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール、及び、ネオペンチルグリコールが挙げられ、エチレングリコールが好ましい。
 脂環式ジオール化合物としては、例えば、シクロヘキサンジメタノール、スピログリコール、及びイソソルビドが挙げられる。
 芳香族ジオール化合物としては、例えば、ビスフェノールA、1,3―ベンゼンジメタノール,1,4-ベンゼンジメタノール、及び9,9’-ビス(4-ヒドロキシフェニル)フルオレンが挙げられる。
 ジオール化合物は、1種のみ用いてもよく、2種以上を併用してもよい。
Examples of the aliphatic diol compound include ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, 1,3-butanediol, and neo. Examples include pentyl glycol, preferably ethylene glycol.
Examples of the alicyclic diol compound include cyclohexanedimethanol, spiroglycol, and isosorbide.
Examples of the aromatic diol compound include bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, and 9,9'-bis (4-hydroxyphenyl) fluorene.
Only one kind of diol compound may be used, or two or more kinds may be used in combination.
-末端封止剤-
 ポリエステルの製造においては、必要に応じて、末端封止剤を用いてもよい。末端封止剤を用いることで、ポリエステルの末端に末端封止剤に由来する構造が導入される。
 末端封止剤としては、制限されず、公知の末端封止剤を利用できる。末端封止剤としては、例えば、オキサゾリン系化合物、カルボジイミド化合物、及びエポキシ化合物が挙げられる。
 末端封止剤としては、特開2014-189002号公報の段落0055~0064に記載の内容も参照でき、上述の公報の内容は、本明細書に組み込まれる。
-End sealant-
In the production of polyester, an end-capping agent may be used if necessary. By using the end sealant, a structure derived from the end sealant is introduced into the end of the polyester.
As the terminal encapsulant, a known end encapsulant can be used without limitation. Examples of the terminal encapsulant include oxazoline compounds, carbodiimide compounds, and epoxy compounds.
As the terminal encapsulant, the contents described in paragraphs 0055 to 0064 of JP-A-2014-189002 can also be referred to, and the contents of the above-mentioned publication are incorporated in the present specification.
-ポリエステルの製造条件-
 反応温度は、制限されず、原材料に応じて適宜設定すればよい。反応温度は、260~300℃が好ましく、275~285℃がより好ましい。
 圧力は、制限されず、原材料に応じて適宜設定すればよい。圧力は、1.33×10-3~1.33×10-5MPaが好ましく、6.67×10-4~6.67×10-5MPaがより好ましい。
-Polyester manufacturing conditions-
The reaction temperature is not limited and may be appropriately set according to the raw material. The reaction temperature is preferably 260 to 300 ° C, more preferably 275 to 285 ° C.
The pressure is not limited and may be appropriately set according to the raw material. The pressure is preferably 1.33 × 10 -3 to 1.33 × 10 -5 MPa, more preferably 6.67 × 10 -4 to 6.67 × 10 -5 MPa.
 ポリエステルの合成方法としては、特許第5575671号公報の段落0033~段落0070に記載された方法も利用でき、上述の公報の内容は、本明細書に組み込まれる。 As a method for synthesizing polyester, the methods described in paragraphs 0033 to 0070 of Japanese Patent No. 5575671 can also be used, and the contents of the above-mentioned publication are incorporated in the present specification.
 ポリエステルフィルムにおけるポリエステルの含有量は、ポリエステルフィルム中の重合体の全質量に対して、85質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上が更に好ましく、98質量%以上が特に好ましい。
 ポリエステルの含有量の上限は、制限されず、ポリエステルフィルム中の重合体の全質量に対して、100質量%以下の範囲で適宜設定できる。
The polyester content in the polyester film is preferably 85% by mass or more, more preferably 90% by mass or more, further preferably 95% by mass or more, still more preferably 98% by mass or more, based on the total mass of the polymer in the polyester film. Especially preferable.
The upper limit of the polyester content is not limited and can be appropriately set within a range of 100% by mass or less with respect to the total mass of the polymer in the polyester film.
 ポリエステルフィルムがポリエチレンテレフタレートを含有する場合、ポリエチレンテレフタレートの含有量は、ポリエステルフィルム中のポリエステルの全質量に対して、90~100質量%が好ましく、95~100質量%がより好ましく、98~100質量%が更に好ましく、100質量%が特に好ましい。 When the polyester film contains polyethylene terephthalate, the content of the polyethylene terephthalate is preferably 90 to 100% by mass, more preferably 95 to 100% by mass, and 98 to 100% by mass with respect to the total mass of the polyester in the polyester film. % Is more preferable, and 100% by mass is particularly preferable.
 ポリエステルフィルムは、ポリエステル以外の成分(例えば、触媒、未反応の原料成分、及び、水等)を含有してもよい。
 ポリエステルフィルムは、粒子を実質的に含有しないことが好ましい。ここで、「粒子を実質的に含有しない」とは、ポリエステルフィルムについて、蛍光X線分析で粒子に由来する元素を定量分析した際に、粒子の含有量がポリエステルフィルムの全質量に対して50質量ppm以下であることで定義され、好ましくは10質量ppm以下であり、より好ましくは検出限界以下である。これは積極的に粒子を基材フィルム中に添加させなくても、外来異物由来のコンタミ成分、若しくは原料樹脂あるいはフィルムの製造工程におけるライン又は装置に付着した汚れが剥離して、フィルム中に混入する場合があるためである。
The polyester film may contain components other than polyester (for example, catalyst, unreacted raw material component, water, etc.).
The polyester film preferably contains substantially no particles. Here, "substantially free of particles" means that the content of particles is 50 with respect to the total mass of the polyester film when the elements derived from the particles are quantitatively analyzed by fluorescent X-ray analysis. It is defined as having a mass of ppm or less, preferably 10% by mass or less, and more preferably not more than the detection limit. This means that even if the particles are not actively added to the base film, the contamination component derived from foreign matter, the raw material resin, or the dirt adhering to the line or device in the film manufacturing process is peeled off and mixed in the film. This is because it may be done.
(厚み)
 ポリエステルフィルムの厚みは、ヘイズ値の上昇を抑制できる点及びラミネート性に優れる点で、100μm以下が好ましく、50μm未満がより好ましく、40μm以下がさらに好ましく、25μm以下が特に好ましい。厚みの下限は特に制限されないが、強度が向上し、加工性が向上する点で、3μm以上が好ましく、4μm以上がより好ましく、10μm以上が更に好ましい。
 ポリエステルフィルムの厚みは、上述の補正厚み測定装置、又は補正厚み測定方法により測定される。
 ポリエステルフィルムは、補正厚みプロファイルの平均値に対して、1.0%以下である。上述の割合の下限値は0%であることが好ましい。
 また、ポリエステルフィルムは、補正厚みプロファイルにおける最大値(Tmax)と最小値(Tmin)との差で表されるR値が0.1μm未満である。上述のR値の下限値は0μmであることが好ましい。
(Thickness)
The thickness of the polyester film is preferably 100 μm or less, more preferably less than 50 μm, further preferably 40 μm or less, and particularly preferably 25 μm or less, in terms of being able to suppress an increase in haze value and being excellent in laminating property. The lower limit of the thickness is not particularly limited, but 3 μm or more is preferable, 4 μm or more is more preferable, and 10 μm or more is further preferable, from the viewpoint of improving the strength and the workability.
The thickness of the polyester film is measured by the above-mentioned corrected thickness measuring device or the corrected thickness measuring method.
The polyester film is 1.0% or less with respect to the average value of the corrected thickness profile. The lower limit of the above ratio is preferably 0%.
Further, in the polyester film, the R value represented by the difference between the maximum value (T max ) and the minimum value (T min ) in the corrected thickness profile is less than 0.1 μm. The lower limit of the above R value is preferably 0 μm.
(密度)
 ポリエステルフィルムの密度は、1.39~1.41g/cmが好ましく、1.395~1.405g/cmがより好ましく、1.398~1.400g/cmが更に好ましい。
 ポリエステルフィルムの密度は、電子比重計(製品名「SD-200L」、アルファーミラージュ社製)を使用して測定できる。
(density)
The density of the polyester film is preferably 1.39 to 1.41 g / cm 3 , more preferably 1.395 to 1.405 g / cm 3 , and even more preferably 1.398 to 1.400 g / cm 3 .
The density of the polyester film can be measured using an electronic hydrometer (product name "SD-200L", manufactured by Alpha Mirage Co., Ltd.).
(ヘイズ)
 ポリエステルフィルムをドライフィルムレジストの支持体として使用する場合には、高い透明性が要求される。特に、50μm以下のラインアンドスペースなどの微細パターン形成する際には、より高い透明性が求められる。その点で、ポリエステルフィルムのヘイズは、1%以下が好ましく、0.5%以下がより好ましく、0.4%以下が更に好ましく、0.3%以下が特に好ましい。ヘイズは小さいほど好ましいため、ヘイズの下限は制限されない。ヘイズの下限を便宜上設定するとすれば、0%以上である。ヘイズを上述の上限値以下とすることにより、ポリエステルフィルムにレジスト層を積層した後、紫外線を照射して露光するにあたってのレジスト層の支持体であるポリエステルフィルムによる紫外光線の散乱を小さくでき、現像後のレジストのパターニングにおけるゆがみ及び抜け等のレジストパターン壁面の状態を改善できる。
(Haze)
When a polyester film is used as a support for a dry film resist, high transparency is required. In particular, higher transparency is required when forming a fine pattern such as a line and space of 50 μm or less. In that respect, the haze of the polyester film is preferably 1% or less, more preferably 0.5% or less, further preferably 0.4% or less, and particularly preferably 0.3% or less. The smaller the haze, the better, so the lower limit of the haze is not limited. If the lower limit of the haze is set for convenience, it is 0% or more. By setting the haze to the above-mentioned upper limit or less, it is possible to reduce the scattering of ultraviolet light by the polyester film, which is the support of the resist layer when the resist layer is laminated on the polyester film and then irradiated with ultraviolet rays for exposure. It is possible to improve the state of the resist pattern wall surface such as distortion and omission in the subsequent patterning of the resist.
 ヘイズは、ヘイズメーター(例えば、NDH-2000、日本電色工業株式会社製)を用いて、JIS K 7105に準ずる方法により測定される。 Haze is measured by a method according to JIS K7105 using a haze meter (for example, NDH-2000, manufactured by Nippon Denshoku Industries Co., Ltd.).
(b値)
 ポリエステルフィルムをドライフィルムレジストの支持体として使用する場合には、高い透明性が要求される。その点で、L表色系におけるb値は、0~1が好ましく、0~0.8がより好ましく、0~0.6が更に好ましく、0~0.4が特に好ましい。L表色系におけるb値が0~1であることで、フィルムの黄色度を小さくできるため、フィルムの色相を無色に近づけることができる。この結果、例えば、高い視認性が求められる用途、例えば、表示装置において、ポリエステルフィルムを好ましく適用できる。
(B * value)
When a polyester film is used as a support for a dry film resist, high transparency is required. In that respect, the b * value in the L * a * b * color system is preferably 0 to 1, more preferably 0 to 0.8, further preferably 0 to 0.6, and particularly preferably 0 to 0.4. preferable. When the b * value in the L * a * b * color system is 0 to 1, the yellowness of the film can be reduced, so that the hue of the film can be made almost colorless. As a result, the polyester film can be preferably applied, for example, in applications where high visibility is required, for example, in display devices.
 L表色系におけるb値は、分光色差計(例えば、SE-2000、日本電色工業株式会社製)を用いて、透過法により測定される。 The b * value in the L * a * b * color system is measured by a transmission method using a spectral color difference meter (for example, SE-2000, manufactured by Nippon Denshoku Industries Co., Ltd.).
 本発明は、基本的に以上のように構成されるものである。以上、本発明の補正厚み測定装置、補正厚み測定方法、フィルムの製造方法、及びポリエステルフィルムについて詳細に説明したが、本発明は上述の実施形態に限定されず、本発明の主旨を逸脱しない範囲において、種々の改良又は変更をしてもよいのはもちろんである。 The present invention is basically configured as described above. Although the corrected thickness measuring device, the corrected thickness measuring method, the film manufacturing method, and the polyester film of the present invention have been described in detail above, the present invention is not limited to the above-described embodiment and does not deviate from the gist of the present invention. Of course, various improvements or changes may be made in the above.
 以下に実施例を挙げて本発明の特徴をさらに具体的に説明する。以下の実施例に示す材料、試薬、物質量とその割合、及び、操作等は本発明の趣旨から逸脱しない限り適宜変更することができる。従って、本発明の範囲は以下の実施例に限定されるものではない。
 本実施例の各工程では、非接触式温度計(AD-5616(製品名)、A&D社製、放射率0.95)を用いて、フィルムの幅方向中央部の温度を5回計測し、得られた計測値の算術平均値をフィルムの表面温度の測定値とした。
Hereinafter, the features of the present invention will be described in more detail with reference to examples. The materials, reagents, amounts of substances and their ratios, operations and the like shown in the following examples can be appropriately changed as long as they do not deviate from the gist of the present invention. Therefore, the scope of the present invention is not limited to the following examples.
In each step of this embodiment, a non-contact thermometer (AD-5616 (product name), manufactured by A & D, emissivity 0.95) is used to measure the temperature of the central portion in the width direction of the film five times. The arithmetic mean value of the obtained measured values was used as the measured value of the surface temperature of the film.
〔実施例1〕
<押出成形工程>
 重合触媒として特許第5575671号公報に記載のチタン化合物(クエン酸キレートチタン錯体、VERTEC AC-420、ジョンソン・マッセイ社製)を用いて、ポリエチレンテレフタレートのペレットを製造した。得られたペレットを、含水率が50ppm以下になるまで乾燥させた後、直径30mmの1軸混練押出し機のホッパーに投入し、次いで、280℃で溶融して押出した。溶融体(メルト)を、濾過器(孔径3μm)に通した後、ダイから25℃の冷却ドラムに押し出すことにより、ポリエチレンテレフタレートからなる未延伸フィルムを得た。なお、押し出された溶融体(メルト)は、静電印加法により冷却ドラムに密着させた。
 未延伸フィルムを構成するポリエチレンテレフタレートの融点(Tm)は258℃であり、ガラス転移温度(Tg)は80℃であった。
[Example 1]
<Extrusion molding process>
Pellets of polyethylene terephthalate were produced using a titanium compound (citrate chelated titanium complex, VERTEC AC-420, manufactured by Johnson Matthey) described in Japanese Patent No. 5575671 as a polymerization catalyst. The obtained pellets were dried to a water content of 50 ppm or less, charged into a hopper of a uniaxial kneading extruder having a diameter of 30 mm, and then melted and extruded at 280 ° C. The melt was passed through a filter (pore diameter 3 μm) and then extruded from the die into a cooling drum at 25 ° C. to obtain an unstretched film made of polyethylene terephthalate. The extruded melt was brought into close contact with the cooling drum by the electrostatic application method.
The melting point (Tm) of polyethylene terephthalate constituting the unstretched film was 258 ° C., and the glass transition temperature (Tg) was 80 ° C.
<縦延伸工程>
 上述の未延伸フィルムに対し、以下の方法により縦延伸工程を施した。
 予熱された未延伸フィルムを、下記の条件にて、周速の異なる2対のロールの間に通過させて縦方向(搬送方向)に延伸することにより、1軸配向フィルムを作製した。
(縦延伸条件)
 予熱温度:75℃
 延伸温度:90℃
 延伸倍率:3.4倍
 延伸速度:1300%/秒
<Vertical stretching process>
The above-mentioned unstretched film was subjected to a longitudinal stretching step by the following method.
A uniaxially oriented film was produced by passing a preheated unstretched film between two pairs of rolls having different peripheral speeds and stretching the film in the vertical direction (conveyance direction) under the following conditions.
(Vertical stretching conditions)
Preheating temperature: 75 ° C
Stretching temperature: 90 ° C
Stretching ratio: 3.4 times Stretching speed: 1300% / sec
<横延伸工程>
 縦延伸工程及を行ったフィルムに対し、テンターを用いて下記の条件にて幅方向に延伸し、2軸延伸フィルムを作製した。
(横延伸条件)
 予熱温度:100℃
 延伸温度:120℃
 延伸倍率:4.3倍
 延伸速度:50%/秒
<Transverse stretching process>
The film subjected to the longitudinal stretching step was stretched in the width direction using a tenter under the following conditions to prepare a biaxially stretched film.
(Transverse stretching conditions)
Preheating temperature: 100 ° C
Stretching temperature: 120 ° C
Stretching ratio: 4.3 times Stretching speed: 50% / sec
<熱固定工程>
 上述の横延伸工程を施した2軸延伸フィルムに対して、テンターを用いて下記条件で加熱することにより、フィルムを熱固定する熱固定工程を行った。
(熱固定条件)
 熱固定温度T1:227℃
 熱固定時間:6秒間
<Heat fixing process>
The biaxially stretched film subjected to the above-mentioned transverse stretching step was heated under the following conditions using a tenter to perform a heat fixing step of heat-fixing the film.
(Heat fixing conditions)
Heat fixation temperature T1: 227 ° C
Heat fixing time: 6 seconds
<熱緩和工程>
 次いで、熱固定されたフィルムに対して、下記条件で加熱することにより、フィルムの緊張を緩和する熱緩和工程を行った。また、熱緩和工程において、フィルムの両端を把持するテンターの把持部材間の距離(テンター幅)を狭めることにより、熱固定工程終了時と比較してフィルム幅を縮小した。下記の熱緩和率ΔLrは、熱緩和工程の開始時におけるフィルム幅L1に対する熱緩和工程の終了時におけるフィルム幅L2から、Lr=(L1-L2)/L1×100の式により求めた。
(熱緩和条件)
 熱緩和温度T2:190℃
 熱緩和率Lr:4%
<Heat relaxation process>
Next, the heat-fixed film was heated under the following conditions to perform a heat relaxation step of relaxing the tension of the film. Further, in the heat relaxation step, the film width was reduced as compared with the end of the heat fixing step by narrowing the distance (tenter width) between the gripping members of the tenter that grips both ends of the film. The following heat relaxation rate ΔLr was obtained from the film width L2 at the end of the heat relaxation step with respect to the film width L1 at the start of the heat relaxation step by the formula Lr = (L1-L2) / L1 × 100.
(Heat relaxation conditions)
Heat relaxation temperature T2: 190 ° C
Heat relaxation rate Lr: 4%
<冷却工程、及び拡張工程>
 熱緩和されたフィルムに対して、下記条件で冷却する冷却工程を行った。また、冷却工程において、テンター幅を広げることにより、熱緩和工程終了時と比較してフィルム幅を拡張する拡張工程を実施した。
 下記の冷却速度Vは、フィルムが図2に示す横延伸部16の冷却領域36に搬入されてから搬出されるまでの滞在時間を冷却時間taとして、冷却領域36への搬入時に測定したフィルム表面温度と冷却領域36の搬出時に測定したフィルム表面温度との温度差ΔT(℃)を、冷却時間taで割ることにより求めた。
 また、下記の拡張率ΔLは、冷却工程の開始時におけるポリエステルフィルムのフィルム幅L2に対する冷却工程の終了時におけるフィルム幅L3から、ΔL=(L3-L2)/L2×100の式により求めた。
(冷却条件)
 冷却速度V:2500℃/分
 冷却時間ta:3.1秒間
(拡張条件)
 拡張率ΔL:0.6%
<Cooling process and expansion process>
The heat-relaxed film was subjected to a cooling step of cooling under the following conditions. Further, in the cooling step, an expansion step was carried out in which the film width was expanded as compared with the time when the heat relaxation step was completed by widening the tenter width.
The cooling rate V below is the film surface measured at the time of loading into the cooling region 36, with the residence time from when the film is carried into the cooling region 36 of the laterally stretched portion 16 shown in FIG. 2 until it is carried out as the cooling time ta. It was obtained by dividing the temperature difference ΔT (° C.) between the temperature and the film surface temperature measured at the time of carrying out the cooling region 36 by the cooling time ta.
Further, the following expansion ratio ΔL was obtained from the film width L3 at the end of the cooling step with respect to the film width L2 of the polyester film at the start of the cooling step by the formula ΔL = (L3-L2) / L2 × 100.
(Cooling conditions)
Cooling speed V: 2500 ° C / min Cooling time ta: 3.1 seconds (expansion condition)
Expansion rate ΔL: 0.6%
<巻き取り工程>
 冷却工程により冷却されたフィルムに対して、トリミング装置を用いて、フィルムの幅方向の両端から20cmの位置で搬送方向に沿って連続的にフィルムを切断して、フィルムの両端部をトリミングした。次いで、フィルムの両端から幅方向10mmまでの領域に対して、押出し加工(ナーリング)を行った後、張力40kg/mでフィルムを巻き取った。
 以上の方法により、2軸延伸フィルムを作製した。得られた2軸延伸フィルムの幅は1.5mであり、巻長は1600mであった。
<Rolling process>
With respect to the film cooled by the cooling step, the film was continuously cut along the transport direction at a position 20 cm from both ends in the width direction of the film using a trimming device, and both ends of the film were trimmed. Next, an extrusion process (knurling) was performed on a region from both ends of the film to 10 mm in the width direction, and then the film was wound up at a tension of 40 kg / m.
A biaxially stretched film was produced by the above method. The width of the obtained biaxially stretched film was 1.5 m, and the winding length was 1600 m.
 なお、2軸延伸フィルムを巻き取る際に、フィルムの幅方向TDの膜厚と、フィルムの搬送方向MDの膜厚とを、放射線厚み計と分光干渉式厚み計とを用いて、フィルムの搬送方向MD、すなわち、フィルム長手方向に沿って1600m分測定した。
 放射線厚み計と、分光干渉式厚み計との測定結果を用い、上述の補正厚み測定方法により補正厚みプロファイルを得た。補正厚みプロファイルから、フィルムの幅方向の補正厚みムラと、フィルムの搬送方向の補正厚みムラとを得た。フィルムの幅方向の補正厚みムラの情報と、フィルムの搬送方向の補正厚みムラとを、フィルムの製造条件である押出ダイの温度、又は押出ダイから押し出される溶融体の温度条件等にフィードバックし、フィルムの幅方向の補正厚みムラ及び搬送方向の補正厚みムラが小さくなるように、すなわち、フィルムの表面の幅方向及び搬送方向の凹凸がなくなるように制御した。制御の際、フィードバック制御を30回繰り返した。
When winding the biaxially stretched film, the film thickness in the width direction TD of the film and the film thickness of the film transfer direction MD are transferred by using a radiation thickness meter and a spectral interference type thickness meter. Directional MD, that is, 1600 m along the longitudinal direction of the film was measured.
The correction thickness profile was obtained by the above-mentioned correction thickness measurement method using the measurement results of the radiation thickness gauge and the spectral interferometry thickness gauge. From the corrected thickness profile, the corrected thickness unevenness in the width direction of the film and the corrected thickness unevenness in the transport direction of the film were obtained. Information on the corrected thickness unevenness in the width direction of the film and the corrected thickness unevenness in the film transport direction are fed back to the temperature of the extrusion die, which is the manufacturing condition of the film, the temperature condition of the melt extruded from the extrusion die, and the like. It was controlled so that the correction thickness unevenness in the width direction and the correction thickness unevenness in the transport direction of the film were reduced, that is, the unevenness of the film surface in the width direction and the transport direction was eliminated. During the control, the feedback control was repeated 30 times.
〔実施例2〕
 実施例2は、実施例1に比して、フィードバックの回数が異なり、それ以外は、実施例1と同じとした。実施例2は、フィードバックの回数を40回とした。
〔実施例3〕
 実施例3は、実施例1に比して、フィードバックの回数が異なり、それ以外は、実施例1と同じとした。実施例3は、フィードバックの回数を45回とした。
〔実施例4〕
 実施例4は、実施例1に比して、フィードバックの回数と、フィルムの目標厚みとが異なり、それ以外は、実施例1と同じとした。実施例4は、フィードバックの回数を45回とし、フィルムの目標厚みを31μmとした。
〔実施例5〕
 実施例5は、実施例1に比して、フィードバックの回数と、フィルムの目標厚みとが異なり、それ以外は、実施例1と同じとした。実施例5は、フィードバックの回数を45回とし、フィルムの目標厚みを38μmとした。
[Example 2]
In Example 2, the number of feedbacks was different from that in Example 1, and other than that, it was the same as in Example 1. In Example 2, the number of feedbacks was 40 times.
[Example 3]
In Example 3, the number of feedbacks was different from that in Example 1, and other than that, it was the same as in Example 1. In Example 3, the number of feedbacks was 45 times.
[Example 4]
In Example 4, the number of feedbacks and the target thickness of the film were different from those in Example 1, and other than that, it was the same as in Example 1. In Example 4, the number of feedbacks was 45, and the target thickness of the film was 31 μm.
[Example 5]
In Example 5, the number of feedbacks and the target thickness of the film were different from those in Example 1, and other than that, it was the same as in Example 1. In Example 5, the number of feedbacks was 45, and the target thickness of the film was 38 μm.
 なお、巻き取る直前に、フィルムの幅方向の補正厚みを測定した。フィルム幅方向の補正厚みの平均値を厚みTとし、最大厚みTmaxと最小厚みTminとの差をR値(μm)とした。すなわち、R値(μm)=(Tmax-Tmin)(μm)
 また、R値/厚みを、厚みムラの割合(%)とした。
 すなわち、厚みムラの割合(%)=((Tmax-Tmin)/T)×100(%)である。厚みムラの割合(%)は、上述の補正厚みプロファイルにおける最大値と最小値との差の、補正厚みプロファイルの平均値に対する割合である。
 また、フィルムの幅方向の補正厚みと同様に、フィルムの搬送方向の補正厚みも測定し、搬送方向における、上述のR値及び厚みムラの割合(%)を得た。
Immediately before winding, the corrected thickness in the width direction of the film was measured. The average value of the corrected thickness in the film width direction was defined as the thickness Ta, and the difference between the maximum thickness T max and the minimum thickness T min was defined as the R value (μm). That is, R value (μm) = (T max −T min ) (μm)
Further, the R value / thickness was defined as the ratio of thickness unevenness (%).
That is, the ratio of thickness unevenness (%) = ((T max −T min ) / Ta) × 100 (%). The thickness unevenness ratio (%) is the ratio of the difference between the maximum value and the minimum value in the above-mentioned corrected thickness profile to the average value of the corrected thickness profile.
Further, the corrected thickness in the transport direction of the film was also measured in the same manner as the corrected thickness in the width direction of the film, and the above-mentioned R value and the ratio (%) of the thickness unevenness in the transport direction were obtained.
 実施例1~5の各2軸延伸フィルムに対して、以下に示す塗布ムラを評価した。塗布ムラの評価結果を表1に示す。
〔塗布ムラ〕
 実施例1~5の2軸延伸フィルムを搬送しながら、スリット状ノズルを用いて下記処方Aからなる下地層用塗布液を2軸延伸フィルムの表面に塗布した後、90℃の温度条件下で塗布膜を乾燥することにより、下地層を形成した。次に、下地層が形成された2軸延伸フィルムを搬送しながら、下記処方Bからなる黒色層用塗布液を下地層上に塗布した後、90℃の温度条件下で塗布膜を乾燥することにより黒色層を形成した。下地層及び黒色層を形成する際の2軸延伸フィルムの搬送速度は、70m/分であった。
 下地層及び黒色層を設けた2軸延伸フィルムをライトテーブルに置き、2軸延伸フィルムから1m離れた位置で黒色層の色ムラを目視で観察した。
 下地層の形成時、及び、黒色層の形成時の乾燥温度条件をいずれも120℃に変更したこと以外は上述の方法に従って、下地層及び黒色層を設けた2軸延伸フィルムを形成し、目視での観察を行った。
 塗布膜の乾燥温度条件を90℃又は120℃として製造されたそれぞれの2軸延伸フィルムの観察結果に基づいて、以下の基準に従って2軸延伸フィルムの塗布ムラを評価した。
The coating unevenness shown below was evaluated for each of the biaxially stretched films of Examples 1 to 5. Table 1 shows the evaluation results of coating unevenness.
[Uneven coating]
While transporting the biaxially stretched film of Examples 1 to 5, a coating liquid for a base layer composed of the following formulation A was applied to the surface of the biaxially stretched film using a slit-shaped nozzle, and then under a temperature condition of 90 ° C. An underlayer was formed by drying the coating film. Next, while transporting the biaxially stretched film on which the base layer is formed, a coating liquid for a black layer consisting of the following formulation B is applied onto the base layer, and then the coating film is dried under a temperature condition of 90 ° C. Formed a black layer. The transport speed of the biaxially stretched film when forming the base layer and the black layer was 70 m / min.
A biaxially stretched film provided with a base layer and a black layer was placed on a light table, and color unevenness of the black layer was visually observed at a position 1 m away from the biaxially stretched film.
A biaxially stretched film provided with the base layer and the black layer was formed according to the above method except that the drying temperature conditions at the time of forming the base layer and the formation of the black layer were both changed to 120 ° C. The observation was made in.
Based on the observation results of each biaxially stretched film manufactured with the drying temperature condition of the coating film set to 90 ° C. or 120 ° C., the coating unevenness of the biaxially stretched film was evaluated according to the following criteria.
(処方A:下地層用塗布液)
・PVA205(ポリビニルアルコール、株式会社クラレ製、鹸化度88%、重合度550):32.2質量部
・ポリビニルピロリドン(アイエスピー・ジャパン株式会社製、K-30):14.9部
・蒸留水:524質量部
・メタノール:429質量部
(Prescription A: Coating liquid for base layer)
-PVA205 (polyvinyl alcohol, manufactured by Kuraray Co., Ltd., saponification degree 88%, polymerization degree 550): 32.2 parts by mass-polyvinylpyrrolidone (manufactured by ISP Japan Co., Ltd., K-30): 14.9 parts-distilled water : 524 parts by mass, methanol: 429 parts by mass
(処方B:黒色層用塗布液)
・特許第5320652号公報の段落0036~段落0042の記載に従って作製した樹脂被覆カーボンブラック:13.1質量部
・分散剤:国際公開2017/208849号明細書の段落[0103]に記載の分散剤1 0.65質量部
・ポリマー(ベンジルメタクリレート/メタクリル酸=72/28モル比のランダム共重合体物、重量平均分子量3.7万):6.72質量部
・プロピレングリコールモノメチルエーテルアセテート:79.53質量部
(Prescription B: Coating solution for black layer)
Resin-coated carbon black produced in accordance with paragraphs 0036 to 0042 of Japanese Patent No. 5320652: 13.1 parts by mass ・ Dispersant: Dispersant 1 according to paragraph [0103] of International Publication No. 2017/208849. 0.65 parts by mass ・ Polymer (benzyl methacrylate / methacrylic acid = 72/28 molar ratio random copolymer, weight average molecular weight 37,000): 672 parts by mass ・ Propropylene glycol monomethyl ether acetate: 79.53 Mass part
(評価基準)
A:黒色層の色ムラについて、黒色層のムラ故障が見えない
B:黒色層の色ムラについて、黒色層のムラ故障が少し見えるが、許容範囲内である。
C:黒色層の色ムラについて、黒色層のムラ故障が多数見える
(Evaluation criteria)
A: Regarding the color unevenness of the black layer, the unevenness failure of the black layer is not visible. B: Regarding the color unevenness of the black layer, the unevenness failure of the black layer is slightly visible, but it is within the allowable range.
C: Regarding the color unevenness of the black layer, many unevenness failures of the black layer can be seen.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、実施例1~5は、R値及び厚みムラの割合が小さく、かつ塗布ムラが良好なポリエステルフィルムを得ることができた。
 なお、放射線厚み計だけの構成では、図11に示す補正厚みプロファイル64のように、測定値のバラつきが生じて厚みムラを測定できなかった。このため、放射線厚み計だけの構成では、補正厚みムラの情報を得ることができず、さらには、塗布ムラ等の評価を実施していない。
 分光干渉式厚み計みだけの構成では、図4に示す分光干渉式厚み計24による、厚み25μmのポリエステルフィルムの測定結果のように、フィルムの配向度の影響を受けて厚みムラを測定できなかった。このため、分光干渉式厚み計みだけの構成では、補正厚みムラの情報を得ることができず、さらには、塗布ムラ等の評価を実施していない。
As shown in Table 1, in Examples 1 to 5, it was possible to obtain a polyester film having a small ratio of R value and thickness unevenness and good coating unevenness.
In addition, in the configuration of only the radiation thickness gauge, the thickness unevenness could not be measured due to the variation of the measured values as in the corrected thickness profile 64 shown in FIG. Therefore, it is not possible to obtain information on the corrected thickness unevenness with the configuration of only the radiation thickness gauge, and further, the evaluation of the coating unevenness and the like is not performed.
With the configuration of only the spectral interferometry type thickness gauge, the thickness unevenness cannot be measured due to the influence of the degree of orientation of the film as in the measurement result of the polyester film having a thickness of 25 μm by the spectral interferometry type thickness gauge 24 shown in FIG. rice field. For this reason, it is not possible to obtain information on the corrected thickness unevenness with the configuration of only the spectral interferometry type thickness gauge, and further, the evaluation of the coating unevenness and the like is not performed.
〔実施例10〕
 実施例1で作製した2軸延伸フィルムを支持体として用いて、以下の手順にて、タッチパネル保護膜形成用のドライフィルムを作製した。
 実施例1で作製した2軸延伸フィルムの表面に、下記処方Dからなる第2透明転写層形成用塗布液を塗布し、90℃で乾燥して第2透明転写層を形成した。次いで、下記処方Eからなる第1透明転写層形成用塗布液を、第2透明転写層の上に塗布した後、70℃で乾燥させて第1透明転写層を形成した。第2透明転写層の厚みは5.0μm、第1透明転写層の厚みは約80nmであった。最後に、第1透明転写層の表面に、保護フィルムとして、厚み16μmのポリエチレンテレフタレートフィルムを圧着し、タッチパネル保護膜形成用の転写フィルムを作製した。
 得られた転写フィルムは、塗布ムラに起因する屈折率変化が認められず、転写故障もなく、良好な特性を有していた。得られた転写フィルムに対して、国際公開2018/186428号明細書の[0122]~[0128]を参考にコンタクトホールを形成したところ、良好なパターンを形成できた。
[Example 10]
Using the biaxially stretched film prepared in Example 1 as a support, a dry film for forming a touch panel protective film was prepared by the following procedure.
A coating liquid for forming a second transparent transfer layer consisting of the following formulation D was applied to the surface of the biaxially stretched film produced in Example 1 and dried at 90 ° C. to form a second transparent transfer layer. Next, a coating liquid for forming a first transparent transfer layer consisting of the following formulation E was applied onto the second transparent transfer layer and then dried at 70 ° C. to form the first transparent transfer layer. The thickness of the second transparent transfer layer was 5.0 μm, and the thickness of the first transparent transfer layer was about 80 nm. Finally, a polyethylene terephthalate film having a thickness of 16 μm was pressure-bonded to the surface of the first transparent transfer layer as a protective film to prepare a transfer film for forming a touch panel protective film.
The obtained transfer film had no change in the refractive index due to uneven coating, no transfer failure, and had good characteristics. When contact holes were formed in the obtained transfer film with reference to [0122] to [0128] of International Publication No. 2018/186428, a good pattern could be formed.
<処方D:第2透明転写層形成用塗布液>
・アロニックスTO-2349(東亞合成株式会社、カルボン酸含有モノマー)0.93部
・A-DCP(新中村化学工業株式会社、2官能、分子量304)5.6部
・8UX-015A(大成ファインケミカル株式会社、ウレタンアクリレート)2.80部
・バインダー(シクロヘキシルメタクリレート/メタクリル酸メチル/メタクリル酸/メタクリル酸のグリシジルメタクリレート付加物の共重合体、51.5/2/26.5/20%、重量平均分子量(Mw)=29000、酸価=95mgKOH)15.59部
・重合開始剤IRGACURE OXE-02(BASF社)0.11部
・重合開始剤Omnirad 907(BASF社、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン)0.21部
・N-フェニルグリシン 0.03部
・ブロックイソシアネート(旭化成ケミカルズ株式会社、デュラネートWT32-B75P) 3.63部
・ベンゾイミダゾール 0.09部
・界面活性剤(DIC株式会社、メガファックF-551)0.02部
・1-メトキシ-2-プロピルアセテート 31.08部
・メチルエチルケトン 40.0部
<Prescription D: Coating liquid for forming the second transparent transfer layer>
・ Aronix TO-2349 (Toa Synthetic Co., Ltd., carboxylic acid-containing monomer) 0.93 parts ・ A-DCP (Shin-Nakamura Chemical Industry Co., Ltd., bifunctional, molecular weight 304) 5.6 parts ・ 8UX-015A (Taisei Fine Chemicals Co., Ltd.) Company, Urethane acrylate) 2.80 parts ・ Binder (polymer of glycidyl methacrylate adduct of cyclohexyl methacrylate / methyl methacrylate / methacrylic acid / methacrylic acid, 51.5 / 2 / 26.5 / 20%, weight average molecular weight (Mw) = 29000, acid value = 95 mgKOH) 15.59 parts ・ Polymerization initiator IRGACURE OXE-02 (BASF) 0.11 parts ・ Polymerization initiator Omnirad 907 (BASF, 2-methyl-1- (4-) Methylthiophenyl) -2-morpholinopropane-1-one) 0.21 part ・ N-phenylglycine 0.03 part ・ Block isocyanate (Asahi Kasei Chemicals Co., Ltd., Duranate WT32-B75P) 3.63 part ・ Benzoimidazole 0. 09 parts ・ Surface active agent (DIC Co., Ltd., Megafuck F-551) 0.02 parts ・ 1-methoxy-2-propyl acetate 31.08 parts ・ Methyl ethyl ketone 40.0 parts
<処方E:第1透明転写層形成用塗布液>
・ナノユースOZ-S30M(ZrO粒子メタノール分散液、日産化学工業株式会社、不揮発分30.5%)4.34部
・アンモニア水(25%)7.82部
・モノイソプロパノールアミン 0.02部
・バインダー(アリルメタクリレート/メタクリル酸共重合体、40/60mol%、重量平均分子量(Mw)=38000) 0.24部
・アロニックスTO-2349(東亞合成株式会社)0.03部
・ベンゾトリアゾール 0.03部
・界面活性剤(DIC株式会社、メガファックF-444)0.01部
・イオン交換水 21.5部
・メタノール 66.0部
<Prescription E: Coating liquid for forming the first transparent transfer layer>
・ Nanouse OZ-S30M (ZrO 2 particle methanol dispersion, Nissan Chemical Industry Co., Ltd., non-volatile content 30.5%) 4.34 parts ・ Ammonia water (25%) 7.82 parts ・ Monoisopropanolamine 0.02 parts ・Binder (allyl methacrylate / methacrylic acid copolymer, 40/60 mol%, weight average molecular weight (Mw) = 38000) 0.24 part, Aronix TO-2349 (Toa Synthetic Co., Ltd.) 0.03 part, benzotriazole 0.03 Part ・ Surfactant (DIC Co., Ltd., Megafuck F-444) 0.01 part ・ Ion exchanged water 21.5 part ・ Methanol 66.0 part
〔実施例11〕
 実施例1で作製した2軸延伸フィルムを支持体として用いて、以下の手順にて、エッチングレジスト形成用のドライフィルムを作製した。
 実施例1で作製した2軸延伸フィルムの表面に、下記処方Fからなる熱可塑性樹脂層形成用塗布液を塗布し、80℃で乾燥して熱可塑性樹脂層を形成した。次いで、下記処方Gからなる水溶性樹脂層形成用塗布液を、熱可塑性樹脂層の上に塗布した後、80℃で乾燥させて水溶性樹脂層を形成した。更に、下記処方Hからなる感光性樹脂層形成用塗布液を、水溶性樹脂層の上に塗布した後、80℃で乾燥させて感光性樹脂層を形成した。熱可塑性樹脂層の厚みは2μm、水溶性樹脂層の厚みは1μm、感光性樹脂層の厚みは2μmであった。最後に、感光性樹脂層の表面に、保護フィルムとして、厚み16μmのポリエチレンテレフタレートフィルムを圧着し、エッチングレジスト形成用の転写フィルムを作製した。
 得られた転写フィルムに対して、国際公開2019/151534号明細書の[0429]~[0430]を参考に露光し、視認性を確認したところ、ラインアンドスペースパターンをはっきりと視認できた。
[Example 11]
Using the biaxially stretched film prepared in Example 1 as a support, a dry film for forming an etching resist was prepared by the following procedure.
A coating liquid for forming a thermoplastic resin layer consisting of the following formulation F was applied to the surface of the biaxially stretched film produced in Example 1 and dried at 80 ° C. to form a thermoplastic resin layer. Next, a coating liquid for forming a water-soluble resin layer consisting of the following formulation G was applied onto the thermoplastic resin layer and then dried at 80 ° C. to form a water-soluble resin layer. Further, a coating liquid for forming a photosensitive resin layer consisting of the following formulation H was applied onto the water-soluble resin layer and then dried at 80 ° C. to form a photosensitive resin layer. The thickness of the thermoplastic resin layer was 2 μm, the thickness of the water-soluble resin layer was 1 μm, and the thickness of the photosensitive resin layer was 2 μm. Finally, a polyethylene terephthalate film having a thickness of 16 μm was pressure-bonded to the surface of the photosensitive resin layer as a protective film to prepare a transfer film for forming an etching resist.
When the obtained transfer film was exposed with reference to [0429] to [0430] of International Publication No. 2019/151534 and the visibility was confirmed, the line and space pattern was clearly visible.
<処方F:熱可塑性樹脂層形成用塗布液>
・ベンジルメタクリレート/メタクリル酸/アクリル酸の重合体(75/10/15質量%、分子量3万、固形分濃度30%)22.7部
・3,6-ビス(ジフェニルアミノ)フルオラン 0.12部
・特開2013-047765号公報の段落0227に記載のA-1、オキシムスルホネート型光酸発生剤 0.2部
・トリシクロデカンジメタノールジアクリレート 3.32部
・8UX-015A(大成ファインケミカル株式会社、15官能)1.66部
・アロニックスTO-2349(東亞合成株式会社)0.55部
・界面活性剤(DIC株式会社、メガファックF-552)0.02部
<Prescription F: Coating liquid for forming a thermoplastic resin layer>
・ Polymer of benzyl methacrylate / methacrylic acid / acrylic acid (75/10/15 mass%, molecular weight 30,000, solid content concentration 30%) 22.7 parts ・ 3,6-bis (diphenylamino) fluorane 0.12 parts A-1, oxime sulfonate type photoacid generator 0.2 part, tricyclodecanedimethanol diacrylate 3.32 part, 8UX-015A (Taisei Fine Chemical Co., Ltd.) described in paragraph 0227 of JP2013-047765A. , 15 functional) 1.66 parts ・ Aronix TO-2349 (Toa Synthetic Co., Ltd.) 0.55 parts ・ Surfactant (DIC Co., Ltd., Megafuck F-552) 0.02 parts
<処方G:水溶性樹脂層形成用塗布液>
・ポリビニルアルコール(クラレポバール4-88LA、株式会社クラレ製)3.22部
・ポリビニルピロリドン(日本触媒株式会社製、K-30)1.49部
・界面活性剤(メガファックF-444、DIC株式会社製)0.0035部
・メタノール(三菱ガス化学株式会社製)57.1部
・イオン交換水 38.12部
<Prescription G: Coating liquid for forming a water-soluble resin layer>
-Polyvinyl alcohol (Kuraray Poval 4-88LA, manufactured by Kuraray Co., Ltd.) 3.22 parts-Polyvinyl pyrrolidone (manufactured by Nippon Catalyst Co., Ltd., K-30) 1.49 parts-Surfactant (Megafuck F-444, DIC stock) Company) 0.0035 parts, methanol (Mitsubishi Gas Chemical Company, Ltd.) 57.1 parts, ion-exchanged water 38.12 parts
<処方H:感光性樹脂層形成用塗布液>
・スチレン/メタクリル酸/メタクリル酸メチルの重合体(52/29/19質量%、分子量6万、固形分濃度30%)25.2部
・ロイコクリスタルバイオレット 0.06部
・光重合開始剤(2-(2-クロロフェニル)-4,5-ジフェニルイミダゾール二量体)1.03部
・4,4‘-ビス(ジエチルアミノ)ベンゾフェノン 0.04部
・(N-フェニルカルバモイルメチル-N-カルボキシメチルアニリン 0.02部
・エトキシ化ビスフェノールAジメタクリレートNKエステルBPE-500(新中村化学工業株式会社製)5.61部
・アロニックスM-270(東亞合成株式会社製)0.58部
・フェノチアジン 0.04部
・4-ヒドロキシメチル-4―メチル-1-フェニル-3-ピラゾリドン 0.002部
・界面活性剤(DIC株式会社、メガファックF-552)0.048部
・プロピレングリコールモノメチルエーテルアセテート 19.7部
・メチルエチルケトン 43.8部
<Prescription H: Coating liquid for forming a photosensitive resin layer>
・ Polymer of styrene / methacrylic acid / methyl methacrylate (52/29/19 mass%, molecular weight 60,000, solid content concentration 30%) 25.2 parts ・ Leuco crystal violet 0.06 parts ・ Photopolymerization initiator (2) -(2-Chlorophenyl) -4,5-diphenylimidazole dimer) 1.03 parts · 4,4'-bis (diethylamino) benzophenone 0.04 parts · (N-phenylcarbamoylmethyl-N-carboxymethylaniline 0) .02 parts ・ Ethylated bisphenol A dimethacrylate NK ester BPE-500 (manufactured by Shin-Nakamura Chemical Industry Co., Ltd.) 5.61 parts ・ Aronix M-270 (manufactured by Toa Synthetic Co., Ltd.) 0.58 parts ・ Phenotiazine 0.04 parts・ 4-Hydroxymethyl-4-methyl-1-phenyl-3-pyrazolidone 0.002 parts ・ Surfactant (DIC Co., Ltd., Megafuck F-552) 0.048 parts ・ Propropylene glycol monomethyl ether acetate 19.7 parts・ Methyl ethyl ketone 43.8 parts
〔実施例12〕
 実施例4で作製した2軸延伸フィルムを支持体として用いて、以下の手順にて、セラミックグリーンシート製造用の剥離フィルムを作製した。
 実施例4で作製した2軸延伸フィルムの表面に、下記処方Jからなる剥離層形成用塗布液を塗布し、120℃で乾燥して剥離層を形成した。剥離層の厚みは0.1μmであった。次いで、下記処方Kからなるセラミックスラリーを、乾燥後の厚みが0.5μmになるように剥離層の上に塗布した後、90℃で乾燥させた。スラリー面と2軸延伸フィルムの裏面とを重ね合わせ、10分間、1kg/cmの荷重をかけた後、剥離フィルムを剥離し、セラミックグリーンシートを得た。
 得られたセラミックグリーンシートは、塗布ムラも転写故障もなく、良好な特性を有していた。
[Example 12]
Using the biaxially stretched film produced in Example 4 as a support, a release film for producing a ceramic green sheet was produced by the following procedure.
A coating liquid for forming a release layer made of the following formulation J was applied to the surface of the biaxially stretched film produced in Example 4 and dried at 120 ° C. to form a release layer. The thickness of the release layer was 0.1 μm. Next, the ceramic slurry consisting of the following formulation K was applied onto the release layer so that the thickness after drying was 0.5 μm, and then dried at 90 ° C. The slurry surface and the back surface of the biaxially stretched film were overlapped with each other, and a load of 1 kg / cm 2 was applied for 10 minutes, and then the release film was peeled off to obtain a ceramic green sheet.
The obtained ceramic green sheet had good characteristics without coating unevenness and transfer failure.
<処方J:剥離層形成用塗布液>
・シリコーン樹脂(東レダウコーニング株式会社製、SRX-345、付加反応型のシリコーン)10部
・白金触媒(東レダウコーニング株式会社製、SRX-212)0.1部
・トルエン/メチルエチルケトン混合溶媒 490部
<Prescription J: Coating liquid for forming a release layer>
-Silicone resin (SRX-345 manufactured by Toradau Corning Co., Ltd., addition reaction type silicone) 10 parts-Platinum catalyst (SRX-212 manufactured by Toradau Corning Co., Ltd.) 0.1 parts-Toluene / methyl ethyl ketone mixed solvent 490 parts
<処方K:セラミックスラリー>
・ポリビニルブチラール(積水化学工業株式会社製、エスレックBH-3)5部
・チタン酸バリウム(富士チタン工業株式会社製、HPBT)50部
・トルエン/エタノール混合溶媒 45部
<Prescription K: Ceramic Rally>
-Polyvinyl butyral (Sekisui Chemical Co., Ltd., Eslek BH-3) 5 parts-Barium titanate (Fuji Titanium Industry Co., Ltd., HPBT) 50 parts-Toluene / ethanol mixed solvent 45 parts
 10 製造装置
 12 押出機
 13 押出ダイ
 14 キャスティングロール
 15 縦延伸部
 15a ロール
 16 横延伸部
 16a クリップ
 17 切断部
 18 巻取部
 18a 巻芯
 19 ガイドローラ
 20 フィルムロール
 22 放射線厚み計
 24 分光干渉式厚み計
 26 補正厚み測定装置
 28 調整部
 30a、30b 環状レール
 31a、31b、31c、31d、31e、31f、31g、31h、31i、31j、31k、31l 把持部材
 32 予熱領域
 33 延伸領域
 34 熱固定領域
 35 熱緩和領域
 36 冷却領域
 40 第1厚みプロファイル算出部
 42 第1平均厚みプロファイル算出部
 44 第2厚みプロファイル算出部
 46 第2平均厚みプロファイル算出部
 47 補正厚みプロファイル算出部
 48 メモリ
 49 制御部
 56 第1の厚みプロファイル
 57 平均第1の厚みプロファイル
 58 第2の厚みプロファイル
 59 平均第2の厚みプロファイル
 61、62、64 補正厚みプロファイル
 65 プロファイル
 70、72 フィルムのプロファイル
 F  未延伸フィルム
 F 1軸延伸フィルム
 F 2軸延伸フィルム
 MD 搬送方向
 P 把持解除点
 Q 把持解除点
 S10、S11、S12、S14、S15、S16、S18、S20、S22、S24 ステップ
 TD 幅方向
10 Manufacturing equipment 12 Extruder 13 Extruder die 14 Casting roll 15 Longitudinal stretching part 15a Roll 16 Horizontal stretching part 16a Clip 17 Cutting part 18 Winding part 18a Winding core 19 Guide roller 20 Film roll 22 Radiation thickness gauge 24 Spectral interference type thickness gauge 26 Compensation thickness measuring device 28 Adjusting part 30a, 30b Circular rail 31a, 31b, 31c, 31d, 31e, 31f, 31g, 31h, 31i, 31j, 31k, 31l Gripping member 32 Preheating area 33 Stretching area 34 Thermal fixing area 35 Heat Relaxation area 36 Cooling area 40 1st thickness profile calculation unit 42 1st average thickness profile calculation unit 44 2nd thickness profile calculation unit 46 2nd average thickness profile calculation unit 47 Corrected thickness profile calculation unit 48 Memory 49 Control unit 56 First Thickness Profile 57 Average First Thickness Profile 58 Second Thickness Profile 59 Average Second Thickness Profile 61, 62, 64 Corrected Thickness Profile 65 Profile 70, 72 Film Profile F Unstretched Film F 1 Uniaxial Stretched Film F 2 Biaxially stretched film MD transport direction P grip release point Q grip release point S10, S11, S12, S14, S15, S16, S18, S20, S22, S24 step TD width direction

Claims (12)

  1.  放射線厚み計により測定されたフィルムの一方向における厚みを用いて、第1の厚みプロファイルを得る第1厚みプロファイル算出部と、
     前記第1の厚みプロファイルを平均化処理し、平均第1の厚みプロファイルを得る第1平均厚みプロファイル算出部と、
     分光干渉式厚み計により測定された前記フィルムの前記一方向における厚みを用いて、第2の厚みプロファイルを得る第2厚みプロファイル算出部と、
     前記第2の厚みプロファイルを平均化処理し、平均第2の厚みプロファイルを得る第2平均厚みプロファイル算出部と、
     前記フィルムの前記一方向における各位置での前記平均第1の厚みプロファイルの値αと前記平均第2の厚みプロファイルの値βとの、(値αのn乗)/(値βのn乗)で表される比Wを算出して、前記一方向における各位置での前記第2の厚みプロファイルの値に、前記比Wを1/n乗した値Mを乗して、補正厚みプロファイルを得る補正厚みプロファイル算出部とを有する、補正厚み測定装置。
    A first thickness profile calculation unit that obtains a first thickness profile using the thickness of the film in one direction measured by a radiation thickness meter.
    A first average thickness profile calculation unit for averaging the first thickness profile and obtaining an average first thickness profile.
    A second thickness profile calculation unit that obtains a second thickness profile using the thickness of the film in one direction measured by a spectroscopic interferometry thickness meter.
    A second average thickness profile calculation unit for averaging the second thickness profile and obtaining an average second thickness profile.
    (Value α to the nth power) / (value β to the nth power) of the value α of the average first thickness profile and the value β of the average second thickness profile at each position of the film in the one direction. The ratio W represented by is calculated, and the value of the second thickness profile at each position in the one direction is multiplied by the value M obtained by multiplying the ratio W by 1 / n to obtain a corrected thickness profile. A correction thickness measuring device having a correction thickness profile calculation unit.
  2.  前記放射線厚み計、及び前記分光干渉式厚み計は、2軸延伸後のフィルムを測定する、請求項1に記載の補正厚み測定装置。 The corrected thickness measuring device according to claim 1, wherein the radiation thickness gauge and the spectroscopic interferometry thickness gauge measure the film after biaxial stretching.
  3.  前記フィルムの前記一方向は、前記フィルムの搬送方向と直交する前記フィルムの幅方向である、請求項1又は2に記載の補正厚み測定装置。 The corrected thickness measuring device according to claim 1 or 2, wherein the one direction of the film is the width direction of the film orthogonal to the transport direction of the film.
  4.  放射線厚み計により測定されたフィルムの一方向における厚みを用いて、第1の厚みプロファイルを得る工程と、
     前記第1の厚みプロファイルを平均化処理し、平均第1の厚みプロファイルを得る工程と、
     分光干渉式厚み計により測定されたフィルムの前記一方向における厚みを用いて、第2の厚みプロファイルを得る工程と、
     前記第2の厚みプロファイルを平均化処理し、平均第2の厚みプロファイルを得る工程と、
     前記フィルムの前記一方向における各位置での前記平均第1の厚みプロファイルの値αと前記平均第2の厚みプロファイルの値βとの、(値αのn乗)/(値βのn乗)で表される比Wを算出して、前記一方向における各位置での前記第2の厚みプロファイルの値に、前記比Wを1/n乗した値Mを乗して、補正厚みプロファイルを得る工程とを有する、補正厚み測定方法。
    A step of obtaining a first thickness profile using the thickness of the film in one direction measured by a radiation thickness gauge.
    A step of averaging the first thickness profile to obtain an average first thickness profile, and
    A step of obtaining a second thickness profile using the thickness of the film in one direction measured by a spectral interferometry thickness gauge.
    A step of averaging the second thickness profile to obtain an average second thickness profile, and
    (Value α to the nth power) / (value β to the nth power) of the value α of the average first thickness profile and the value β of the average second thickness profile at each position of the film in the one direction. The ratio W represented by is calculated, and the value of the second thickness profile at each position in the one direction is multiplied by the value M obtained by multiplying the ratio W by 1 / n to obtain a corrected thickness profile. A correction thickness measuring method having a process.
  5.  前記放射線厚み計により測定された前記フィルムの前記一方向における厚み、及び前記分光干渉式厚み計により測定された前記フィルムの前記一方向における厚みは、2軸延伸後のフィルムの前記一方向における厚みである、請求項4に記載の補正厚み測定方法。 The thickness of the film measured by the radiation thickness meter in the one direction and the thickness of the film measured by the spectroscopic interferometry thickness meter in the one direction are the thickness of the film after biaxial stretching in the one direction. The corrected thickness measuring method according to claim 4.
  6.  前記フィルムの前記一方向は、前記フィルムの搬送方向と直交する前記フィルムの幅方向である、請求項4又は5に記載の補正厚み測定方法。 The corrected thickness measuring method according to claim 4, wherein the one direction of the film is the width direction of the film orthogonal to the transport direction of the film.
  7.  フィルムを製造する工程と、
     放射線厚み計により前記製造されたフィルムの一方向における厚みを測定して、第1の厚みプロファイルを得る工程と、
     前記第1の厚みプロファイルを平均化処理し、平均第1の厚みプロファイルを得る工程と、
     分光干渉式厚み計に前記製造されたフィルムの前記一方向における厚みを測定して、第2の厚みプロファイルを得る工程と、
     前記第2の厚みプロファイルを平均化処理し、平均第2の厚みプロファイルを得る工程と、
     前記フィルムの前記一方向における各位置での前記平均第1の厚みプロファイルの値αと前記平均第2の厚みプロファイルの値βとの、(値αのn乗)/(値βのn乗)で表される比Wを算出して、前記一方向における各位置での前記第2の厚みプロファイルの値に、前記比Wを1/n乗した値Mを乗して、補正厚みプロファイルを得る工程と、
     前記補正厚みプロファイルに基づいて、フィルムの製造条件を調整して、フィルムを製造する工程とを有する、フィルムの製造方法。
    The process of manufacturing the film and
    A step of measuring the thickness of the produced film in one direction with a radiation thickness meter to obtain a first thickness profile, and
    A step of averaging the first thickness profile to obtain an average first thickness profile, and
    A step of measuring the thickness of the manufactured film in the one direction with a spectroferometric thickness meter to obtain a second thickness profile, and a step of obtaining a second thickness profile.
    A step of averaging the second thickness profile to obtain an average second thickness profile, and
    (Value α to the nth power) / (value β to the nth power) of the average first thickness profile value α and the average second thickness profile value β at each position of the film in the one direction. The ratio W represented by is calculated, and the value of the second thickness profile at each position in the one direction is multiplied by the value M obtained by multiplying the ratio W by 1 / n to obtain a corrected thickness profile. Process and
    A film manufacturing method comprising a step of adjusting the film manufacturing conditions based on the corrected thickness profile to manufacture the film.
  8.  前記フィルムの前記一方向は、前記フィルムの搬送方向と直交する前記フィルムの幅方向である、請求項7に記載のフィルムの製造方法。 The film manufacturing method according to claim 7, wherein the one direction of the film is the width direction of the film orthogonal to the transport direction of the film.
  9.  請求項1~3のいずれか1項に記載の補正厚み測定装置で測定して得られる補正厚みプロファイルにおける最大値と最小値との差が、補正厚みプロファイルの平均値に対して、1.0%以下である、ポリエステルフィルム。 The difference between the maximum value and the minimum value in the correction thickness profile obtained by measuring with the correction thickness measuring device according to any one of claims 1 to 3 is 1.0 with respect to the average value of the correction thickness profile. % Or less, polyester film.
  10.  請求項1~3のいずれか1項に記載の補正厚み測定装置で測定して得られる補正厚みプロファイルにおける最大値と最小値との差が0.1μm未満である、ポリエステルフィルム。 A polyester film in which the difference between the maximum value and the minimum value in the correction thickness profile obtained by measuring with the correction thickness measuring device according to any one of claims 1 to 3 is less than 0.1 μm.
  11.  請求項4~6のいずれか1項に記載の補正厚み測定方法で測定して得られる補正厚みプロファイルにおける最大値と最小値との差が、補正厚みプロファイルの平均値に対して、1.0%以下である、ポリエステルフィルム。 The difference between the maximum value and the minimum value in the corrected thickness profile obtained by measuring by the corrected thickness measuring method according to any one of claims 4 to 6 is 1.0 with respect to the average value of the corrected thickness profile. % Or less, polyester film.
  12.  請求項4~6のいずれか1項に記載の補正厚み測定方法で測定して得られる補正厚みプロファイルにおける最大値と最小値との差が0.1μm未満である、ポリエステルフィルム。 A polyester film in which the difference between the maximum value and the minimum value in the corrected thickness profile obtained by measuring by the corrected thickness measuring method according to any one of claims 4 to 6 is less than 0.1 μm.
PCT/JP2021/044459 2020-12-24 2021-12-03 Corrected thickness measurement device, corrected thickness measurement method, film manufacturing method, and polyester film WO2022138069A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-215094 2020-12-24
JP2020215094 2020-12-24

Publications (1)

Publication Number Publication Date
WO2022138069A1 true WO2022138069A1 (en) 2022-06-30

Family

ID=82159444

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044459 WO2022138069A1 (en) 2020-12-24 2021-12-03 Corrected thickness measurement device, corrected thickness measurement method, film manufacturing method, and polyester film

Country Status (1)

Country Link
WO (1) WO2022138069A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210211A (en) * 1988-06-29 1990-01-16 Toshiba Mach Co Ltd Profile measuring system of thin film
JPH0511009U (en) * 1991-07-23 1993-02-12 横河電機株式会社 Basis weight
JP2001133242A (en) * 1999-11-04 2001-05-18 Yokogawa Electric Corp Thickness measuring apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0210211A (en) * 1988-06-29 1990-01-16 Toshiba Mach Co Ltd Profile measuring system of thin film
JPH0511009U (en) * 1991-07-23 1993-02-12 横河電機株式会社 Basis weight
JP2001133242A (en) * 1999-11-04 2001-05-18 Yokogawa Electric Corp Thickness measuring apparatus

Similar Documents

Publication Publication Date Title
JP7253413B2 (en) Stretched film manufacturing method
JP5755674B2 (en) Method for producing retardation film and method for producing circularly polarizing plate
KR101260718B1 (en) Process for production of biaxially oriented polyester film
JP5755675B2 (en) Method for producing retardation film and method for producing circularly polarizing plate
JP5755684B2 (en) Method for producing retardation film and method for producing circularly polarizing plate
JP6005005B2 (en) Biaxially stretched polyester film and method for producing the same
KR20160026846A (en) Biaxially oriented polyester film
WO2016104353A1 (en) Manufacturing method of phase difference film
WO2021261412A1 (en) Method for producing polyester film, polyester film, laminated film
CN102869503A (en) Textured film and process for manufacture thereof
JP2007185898A (en) Biaxially oriented polyester film and its manufacturing process
TWI540046B (en) Textured film and process for manufacture
WO2022131008A1 (en) Polyester film, dry film resist, and method for producing polyester film
WO2014156623A1 (en) Method for producing phase-difference film and method for producing circularly polarizing plate
WO2022138069A1 (en) Corrected thickness measurement device, corrected thickness measurement method, film manufacturing method, and polyester film
WO2022138065A1 (en) Apparatus for measuring correction thickness, method for measuring correction thickness, method for manufacturing film, and polyester film
WO2022138066A1 (en) Corrected thickness measuring device, corrected thickness measuring method, method for manufacturing film, and polyester film
WO2020241692A1 (en) Biaxially oriented polyester film
JP7031316B2 (en) Method for manufacturing diagonally stretched film
JP2011178002A (en) Double-sided mold release film
JP5391569B2 (en) Biaxially stretched polyethylene terephthalate resin film
WO2022019113A1 (en) Polyester film, release film, and method for producing polyester film
WO2021220717A1 (en) Method for producing polyester film, and polyester film
JP6272048B2 (en) Polyester film
WO2023027033A1 (en) Polyester film, polyester film manufacturing method, and release film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21910221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21910221

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP