WO2014084008A1 - Hard coat film and transparent conducting film - Google Patents

Hard coat film and transparent conducting film Download PDF

Info

Publication number
WO2014084008A1
WO2014084008A1 PCT/JP2013/079968 JP2013079968W WO2014084008A1 WO 2014084008 A1 WO2014084008 A1 WO 2014084008A1 JP 2013079968 W JP2013079968 W JP 2013079968W WO 2014084008 A1 WO2014084008 A1 WO 2014084008A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard coat
coat layer
layer
particles
mass
Prior art date
Application number
PCT/JP2013/079968
Other languages
French (fr)
Japanese (ja)
Inventor
豊島裕
前田清成
土本達郎
Original Assignee
東レフィルム加工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レフィルム加工株式会社 filed Critical 東レフィルム加工株式会社
Priority to JP2013555666A priority Critical patent/JP5528645B1/en
Priority to KR1020157010588A priority patent/KR101563564B1/en
Priority to CN201380061679.9A priority patent/CN104822522B/en
Publication of WO2014084008A1 publication Critical patent/WO2014084008A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/0427Coating with only one layer of a composition containing a polymer binder
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/10Coating on the layer surface on synthetic resin layer or on natural or synthetic rubber layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • B32B2264/102Oxide or hydroxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers

Definitions

  • the present invention relates to a hard coat film having high transparency and good slipperiness and blocking resistance, and more particularly to a hard coat film suitable for a transparent conductive film.
  • a hard coat film in which a hard coat layer is laminated on a base film is used as a surface film for a display or a touch panel, or as a base film for an electrode film for a touch panel (transparent conductive film for a touch panel).
  • the hard coat film used for these uses is required to have high transparency and good slipping and blocking resistance.
  • Patent Documents 1 and 2 It has been proposed to provide protrusions on the surface in order to improve the slipperiness and blocking resistance of the hard coat film or polyester film.
  • JP-A-7-314628 Japanese Patent Laid-Open No. 2000-211082
  • an object of the present invention is to provide a hard coat film having high transparency and good slipping and blocking resistance in view of the above-mentioned problems of the prior art.
  • Another object of the present invention is to provide a hard coat film suitable for a transparent conductive film.
  • a first hard coat layer containing particles is provided on at least one surface of the base film, and protrusions made of the particles are present on the surface of the first hard coat layer at a density of 300 to 4000 per 100 ⁇ m 2.
  • a resin layer is provided between the base film and the first hard coat layer, and the resin layer has a thickness of 0.005 to 0.3 ⁇ m and an average particle diameter of 1.
  • the hard coat film according to any one of 1) to 6), which contains particles that are three times or more.
  • the base film is a polyethylene terephthalate film, and has a resin layer having a refractive index of 1.55 to 1.61 between the base film and the first hard coat layer. Hard coat film according to crab.
  • Q represents an alkoxy group having 1 to 5 carbon atoms or a halogen atom.
  • II Treatment with a compound represented by the following general formula (2), and further surface treatment with a fluorine compound represented by the following general formula (3).
  • General formula (2) DR 7 -Rf 2 ...
  • B and D each independently represent a reactive site, and R 4 and R 7 are each independently derived from an alkylene group having 1 to 3 carbon atoms, or the alkylene group.
  • R 5 and R 6 each independently represent hydrogen or an alkyl group having 1 to 4 carbon atoms
  • Rf 2 represents a fluoroalkyl group
  • n represents an integer of 0 to 2.
  • the hydrophobic compound used in the hydrophobization treatment for obtaining inorganic particles having the surface of the particles hydrophobized is a fluorine compound having a fluoroalkyl group having 4 or more carbon atoms and a reactive site, carbon number 8 11)
  • Hard coat film is a fluorine compound having a fluoroalkyl group having 4 or more carbon atoms and a reactive site, carbon number 8 11
  • a second hard coat layer is provided on the surface of the base film opposite to the surface on which the first hard coat layer is provided, and the surface of the second hard coat layer is substantially free of protrusions made of particles.
  • the hard coat film according to any one of 1) to 14), wherein the center line average roughness (Ra2) of the surface of the second hard coat layer is 25 nm or less.
  • a transparent conductive film comprising a transparent conductive film on at least one surface of the hard coat film according to any one of 1) to 15) above.
  • the hard coat film of the present invention is suitable for a base film of a transparent conductive film.
  • FIG. 1 is an example of an observation view of the surface of the first hard coat layer observed with a scanning electron microscope.
  • FIG. 2 is a diagram schematically showing the planar shape of the protrusions on the surface of the first hard coat layer.
  • FIG. 3 is a schematic view schematically showing the surface of the first hard coat layer in FIG.
  • FIG. 4 is a schematic diagram in which a part of FIG. 3 is omitted.
  • the hard coat film which concerns on one embodiment of this invention has a 1st hard coat layer in the at least one surface of a base film.
  • the first hard coat layer contains particles, protrusions due to particles on the surface of the first hard coat layer (hereinafter, simply will be referred to as "projections") are perforated 300-4000 per 100 [mu] m 2 of.
  • the center line average roughness (Ra1) of the surface of the first hard coat layer is less than 30 nm.
  • Such a hard coat film of this embodiment has a haze value of less than 1.5%.
  • the slipping property and the blocking resistance are improved.
  • the range of the number density of protrusions is preferably in the range of 400 to 3,500 per 100 ⁇ m 2 , more preferably in the range of 500 to 3000, still more preferably in the range of 600 to 3000, and particularly preferably in the range of 700 to 2500.
  • the slipperiness and blocking resistance are lowered.
  • the number density of the particles exceeds 4000 per 100 ⁇ m 2 , the smoothness of the surface of the first hard coat layer is lowered, the haze value is increased, and the transparency of the hard coat film is lowered.
  • the hard coat film of this embodiment has a relatively large number of protrusions on the surface of the first hard coat layer as described above, while the surface of the first hard coat layer is relatively smooth and the haze value of the hard coat film is small. This is one of the features. Specifically, it is important that the center line average roughness (Ra1) on the surface of the first hard coat layer in this embodiment is less than 30 nm, and the haze value of the hard coat film is less than 1.5%. .
  • the center line average roughness (Ra1) of the first hard coat layer surface is preferably 25 nm or less, more preferably 20 nm or less, and particularly preferably 18 nm or less.
  • the lower limit center line average roughness (Ra1) is preferably 5 nm or more, more preferably 7 nm or more, and particularly preferably 9 nm or more from the viewpoint of ensuring slipperiness and blocking resistance.
  • the hard coat film of the present embodiment has a haze value of less than 1.5% from the viewpoint of realizing high transparency.
  • the haze value of the hard coat film of this embodiment is preferably 1.1% or less, more preferably 1.0% or less.
  • the lower haze value is preferably as small as possible, but practically about 0.01%.
  • the surface of the first hard coat layer has 300 to 4000 protrusions per 100 ⁇ m 2 , the center line average roughness (Ra1) of the first hard coat layer surface is less than 30 nm, and the haze value of the hard coat film is 1.
  • particles having an average particle diameter (r) of 0.05 to 0.5 ⁇ m are contained in the first hard coat layer, and these particles are relatively placed in the vicinity of the surface of the first hard coat layer. It is preferable that protrusions be formed on the surface of the first hard coat layer by making it exist in large quantities.
  • the ratio (r / d) of the average particle diameter (r) ( ⁇ m) of the particles contained in the first hard coat layer to the thickness (d) ( ⁇ m) of the first hard coat layer is 0.01 to 0.00. 30 is preferable. Thereby, the center line average roughness (Ra1) on the surface of the first hard coat layer is reduced, and the haze value of the hard coat film is also reduced.
  • a plastic film is preferably used for the base film.
  • the material constituting the base film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyimide, polyphenylene sulfide, aramid, polypropylene, polyethylene, polylactic acid, polyvinyl chloride, polycarbonate, and polymethacrylic.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyimide, polyphenylene sulfide, aramid, polypropylene, polyethylene, polylactic acid, polyvinyl chloride, polycarbonate, and polymethacrylic.
  • Examples include methyl acid, alicyclic acrylic resin, cycloolefin resin, triacetyl cellulose, and those obtained by mixing and / or copolymerizing these resins.
  • a film obtained by unstretching these resins, or uniaxially stretching or biaxially stretching into a film can be applied
  • the polyester film is excellent in transparency, dimensional stability, mechanical properties, heat resistance, electrical properties, chemical resistance, and the like, and a polyethylene terephthalate film (PET film) is particularly preferably used.
  • PET film polyethylene terephthalate film
  • the range of the thickness of the base film is suitably 20 to 300 ⁇ m, preferably 30 to 200 ⁇ m, and more preferably 50 to 150 ⁇ m.
  • the base film preferably has at least a resin layer as shown below on the surface on which the first hard coat layer is laminated. That is, it is preferable to have the resin layer shown below between a base film and a 1st hard-coat layer.
  • the base film is preferably provided with a resin layer on at least the surface on which the first hard coat layer is laminated.
  • the resin layer is a layer containing a resin as a main component. Specifically, the resin layer is a layer containing 50% by mass or more of resin with respect to 100% by mass of the total solid content of the resin layer.
  • the resin forming the resin layer include polyester resin, acrylic resin, urethane resin, polycarbonate resin, epoxy resin, alkyd resin, urea resin, and the like. These resins can be used alone or in combination.
  • the resin layer is interposed between the base film and the first hard coat layer, and from the viewpoint of improving the adhesion between the base film and the first hard coat layer, the resin is a polyester resin, an acrylic resin, and a polyurethane resin. It is preferable to contain at least one selected from the group consisting of In particular, the resin layer preferably contains at least a polyester resin as a resin.
  • the resin content in the resin layer is preferably 60% by mass or more, more preferably 70% by mass or more, and particularly preferably 80% by mass or more with respect to 100% by mass of the total solid content of the resin layer.
  • the resin content in the resin layer is preferably 95% by mass or less, and more preferably 90% by mass or less.
  • the resin layer may be formed in a two-layer configuration.
  • a first resin layer mainly composed of a polyester resin and a second resin layer mainly composed of an acrylic resin are sequentially formed from the base film side. Details of the two-layer configuration will be described later.
  • the resin layer preferably contains particles from the viewpoint of ensuring appropriate slipping and winding properties in the manufacturing process of the hard coat film.
  • the particles contained in the resin layer are not particularly limited, but inorganic particles such as silica particles, titanium oxide, aluminum oxide, zirconium oxide, calcium carbonate, zeolite particles, acrylic particles, silicone particles, polyimide particles, Teflon (registered trademark) ) Organic particles such as particles, crosslinked polyester particles, crosslinked polystyrene particles, crosslinked polymer particles, and core-shell particles.
  • silica particles are preferable, and colloidal silica is particularly preferable.
  • the particles contained in the resin layer preferably have an average particle size larger than the thickness of the resin layer.
  • the average particle diameter is preferably 1.3 times or more of the thickness of the resin layer, more preferably 1.5 times or more, and particularly preferably 2.0 times or more.
  • the upper limit is preferably 20 times or less, more preferably 15 times or less, and particularly preferably 10 times or less.
  • the slip property and the blocking resistance are further improved by directly laminating the first hard coat layer on the resin layer containing particles having an average particle diameter larger than the thickness of the resin layer.
  • the average particle size of the particles contained in the resin layer is appropriately selected according to the thickness design of the resin layer. Specifically, the range of the average particle size is preferably in the range of 0.02 to 1 ⁇ m. A range of 0.05 to 0.7 ⁇ m is more preferable, and a range of 0.1 to 0.5 ⁇ m is particularly preferable. If the average particle size is less than 0.02 ⁇ m, the slipperiness and blocking resistance may be lowered. If the average particle diameter exceeds 1 ⁇ m, the particles may fall off, the transparency may be lowered, or the appearance may be deteriorated.
  • the thickness range of the resin layer is preferably in the range of 0.005 to 0.3 ⁇ m.
  • the thickness of the resin layer is further preferably 0.01 ⁇ m or more, more preferably 0.015 ⁇ m or more, and particularly preferably 0.02 ⁇ m or more.
  • the thickness of the resin layer is preferably 0.25 ⁇ m or less, preferably 0.2 ⁇ m or less, particularly preferably 0.15 ⁇ m or less.
  • the range of the content of the particles in the resin layer is preferably in the range of 0.05 to 10% by mass, more preferably in the range of 0.1 to 8% by mass, particularly 0% to 100% by mass of the total solid content of the resin layer.
  • the range of 5 to 5% by mass is preferable.
  • the content of the particles in the resin layer is less than 0.05% by mass, good slipping property and blocking resistance may not be obtained.
  • the content of the particles exceeds 10% by mass, the transparency is lowered. Or the applicability of the first hard coat layer may deteriorate, or the adhesion between the base film and the first hard coat layer may be reduced.
  • the resin layer preferably further contains a crosslinking agent.
  • the resin layer is preferably a thermosetting layer containing the above-described resin and a crosslinking agent.
  • the conditions (heating temperature, time) for thermosetting the resin layer are not particularly limited, but the heating temperature is preferably 70 ° C or higher, more preferably 100 ° C or higher, particularly preferably 150 ° C or higher, and most preferably 200 ° C or higher. .
  • the heating temperature is preferably 300 ° C. or lower.
  • the range of the heating time is preferably 5 to 300 seconds, and more preferably 10 to 200 seconds.
  • crosslinking agent examples include melamine crosslinking agent, oxazoline crosslinking agent, carbodiimide crosslinking agent, isocyanate crosslinking agent, aziridine crosslinking agent, epoxy crosslinking agent, methylolated or alkylolized urea crosslinking agent, acrylamide
  • examples thereof include system crosslinking agents, polyamide resins, amide epoxy compounds, various silane coupling agents, and various titanate coupling agents.
  • laminic crosslinking agents, oxazoline crosslinking agents, carbodiimide crosslinking agents, isocyanate crosslinking agents, and aziridine crosslinking agents are preferable, and melamine crosslinking agents are particularly preferable.
  • Examples of the melamine-based crosslinking agent include imino group type methylated melamine resin, methylol group type melamine resin, methylol group type methylated melamine resin, and fully alkyl type methylated melamine resin. Among these, imino group type melamine resins and methylolated melamine resins are preferably used.
  • the range of the content of the crosslinking agent in the resin layer is preferably in the range of 0.5 to 40% by mass, more preferably in the range of 1 to 30% by mass, especially 2 to 2% with respect to 100% by mass of the total solid content of the resin layer. A range of 20% by weight is preferred.
  • the reflection color of the hard coat film obtained by laminating the first hard coat layer on the base film via the resin layer is preferably a neutral colorless hue.
  • the range of the refractive index of the resin layer is preferably 1.55 to 1.61, and more preferably 1.56 to 1.60. A range of 1.57 to 1.59 is more preferable.
  • the refractive index of a polyethylene terephthalate film is generally about 1.62 to 1.70, and by adjusting the refractive index of the resin layer to the above range (1.55 to 1.61), The reflected color can be close to neutral and colorless. That is, the difference (np ⁇ nr) between the refractive index (np) of the PET film and the refractive index (nr) of the resin layer is preferably in the range of 0.02 to 0.1, preferably 0.03 to 0.00. The range of 09 is more preferable, and the range of 0.04 to 0.08 is particularly preferable.
  • a polyester resin containing a naphthalene ring in the molecule is preferable to use as the resin.
  • a polyester resin containing a naphthalene ring can be synthesized, for example, by using a polyvalent carboxylic acid such as 1,4-naphthalenedicarboxylic acid or 2,6-naphthalenedicarboxylic acid as a copolymerization component.
  • the range of the content of the polyester resin containing a naphthalene ring in the molecule in the resin layer is preferably 5 to 70% by mass, more preferably 10 to 60% by mass with respect to 100% by mass of the total resin.
  • the resin layer is applied on the base film by a wet coating method, and is thermoset and laminated. Furthermore, it is preferable that the resin layer is applied by a wet coating method in the manufacturing process of the base film, which is applied by a so-called in-line coating method, and is thermally cured and laminated. Examples of the wet coating method include a reverse coating method, a spray coating method, a bar coating method, a gravure coating method, a rod coating method, and a die coating method.
  • a resin layer having a two-layer structure can be adopted.
  • Such a two-layered resin layer is preferably formed by applying one coating solution once and causing self-phase separation in the drying process. That is, a coating liquid containing the main component (polyester resin) of the first resin layer and the main component (acrylic resin) of the second resin layer is applied, and self-phase separation of each component is utilized in the drying process. It is preferable to employ a method of forming the first resin layer and the second resin layer.
  • the surface energy difference between the main component (polyester resin) of the first resin layer and the main component (acrylic resin) of the second resin layer it is preferable to increase the surface energy difference between the main component (polyester resin) of the first resin layer and the main component (acrylic resin) of the second resin layer. That is, it is preferable to use a polyester resin having a high surface energy and an acrylic resin having a low surface energy. In particular, it is preferable to use a polyester resin having a sulfonic acid group in order to increase the surface energy of the polyester resin.
  • the thickness of the first resin layer is set from the viewpoint of enhancing the adhesion between the base film and the first hard coat layer and making the reflected color of the hard coat film close to neutral and colorless. It is preferable to be larger than the thickness of the two resin layers.
  • the thickness of the first resin layer is preferably 1.5 times or more, more preferably 2.0 times or more, and particularly preferably 3.0 times or more the thickness of the second resin layer.
  • the thickness range of the first resin layer is preferably 0.02 to 0.2 ⁇ m, more preferably 0.03 to 0.15 ⁇ m, and particularly preferably 0.05 to 0.12 ⁇ m. preferable.
  • the thickness of the second resin layer is preferably in the range of 0.005 to 0.1 ⁇ m, more preferably in the range of 0.01 to 0.07 ⁇ m, and particularly preferably in the range of 0.01 to 0.05 ⁇ m.
  • the resin layer provided between the base film and the first hard coat layer preferably has a surface wetting tension of 52 mN / m or less. That is, in the present invention, it is preferable that the wetting tension on the surface of the resin layer to which the first hard coat layer is applied is 52 mN / m or less.
  • the wetting tension is a physical property value defined in JIS-K-6768.
  • a mode in which a resin layer having a wetting tension of 52 mN / m or less is provided between the base film and the first hard coat layer is effective when the thickness of the first hard coat layer is relatively small.
  • the absolute amount of particles contained in the first hard coat layer is also reduced.
  • the particles contained in the first hard coat layer are likely to be unevenly distributed near the surface. Can be formed.
  • This aspect is effective when the thickness of the first hard coat layer is less than 2 ⁇ m, and is particularly effective when the thickness of the first hard coat layer is 1.7 ⁇ m or less.
  • the wetting tension on the surface of the resin layer is preferably 50 mN / m or less.
  • the lower limit of the wetting tension on the surface of the resin layer is preferably 35 mN / m or more, more preferably 37 mN / m or more, and 40 mN / m. The above is particularly preferable. If the wetting tension on the surface of the resin layer is less than 35 mN / m, the adhesion of the first hard coat layer may be lowered.
  • the resin to be contained in the resin layer is a polyester resin or an acrylic resin. It is preferable to use at least one selected from the group consisting of polyurethane resins. Among these resins, it is preferable to use a polyester resin and / or an acrylic resin, and it is particularly preferable to use at least a polyester resin as the resin.
  • the wetting tension on the surface of the resin layer can be controlled by adjusting the type and content of the crosslinking agent described above. For example, when the content of the crosslinking agent increases, the wetting tension on the surface of the resin layer tends to decrease. Conversely, when the content of the crosslinking agent decreases, the wetting tension on the surface of the resin layer tends to increase.
  • the first hard coat layer contains particles, and protrusions due to the particles are formed on the surface of the first hard coat layer.
  • the number density of protrusions on the surface of the first hard coat layer is 300 to 4000 per unit area (100 ⁇ m 2 ) of the surface of the first hard coat layer.
  • the range of the number density of the protrusions is preferably in the range of 400 to 3,500 per 100 ⁇ m 2 , more preferably in the range of 500 to 3000, further preferably in the range of 600 to 3000, and particularly preferably in the range of 700 to 2500. .
  • the range of the average particle diameter (r) of the particles contained in the first hard coat layer is preferably in the range of 0.05 to 0.5 ⁇ m, more preferably in the range of 0.06 to 0.4 ⁇ m, particularly 0.07. A range of ⁇ 0.3 ⁇ m is preferred.
  • the average particle diameter (r) of the particles contained in the first hard coat layer is less than 0.05 ⁇ m, a sufficiently large protrusion is not formed on the surface of the first hard coat layer, and slipping and blocking resistance are prevented. May not be improved sufficiently.
  • the average particle diameter (r) exceeds 0.5 ⁇ m, the smoothness of the surface of the first hard coat layer is lowered, the center line average roughness (Ra1) is 30 nm or more, or the haze value of the hard coat film is 1. .5% or more may cause inconvenience such as a decrease in transparency.
  • the average particle diameter (r) of the particles contained in the first hard coat layer is sufficiently smaller than the thickness (d) of the first hard coat layer. That is, the ratio between the average particle diameter (r) of the particles and the thickness (d) of the first hard coat layer is preferably in the range of 0.01 to 0.30. It is preferable that a relatively large amount of such particles be present near the surface of the first hard coat layer to form a relatively large number of protrusions on the surface of the first hard coat layer as described above. This can improve slipperiness and blocking resistance without reducing the smoothness of the surface of the first hard coat layer.
  • the range of the ratio (r / d) of the average particle diameter (r) of the particles contained in the first hard coat layer to the thickness (d) of the first hard coat layer is further in the range of 0.01 to 0.20.
  • the range of 0.01 to 0.15 is more preferable, the range of 0.02 to 0.10 is particularly preferable, and the range of 0.02 to 0.08 is most preferable.
  • the range of the average diameter of the protrusions formed on the surface of the first hard coat layer by the particles as described above is preferably in the range of 0.03 to 0.3 ⁇ m. Further, the range of the average diameter of the protrusions is preferably in the range of 0.04 to 0.25 ⁇ m, and more preferably in the range of 0.05 to 0.2 ⁇ m. Thereby, slipperiness and blocking resistance can be improved without reducing transparency.
  • the average height of the protrusions is preferably in the range of 0.03 to 0.3 ⁇ m. Further, the range of the average height of the protrusions is preferably in the range of 0.04 to 0.25 ⁇ m, and more preferably in the range of 0.05 to 0.2 ⁇ m. Thereby, slipperiness and blocking resistance can be improved without reducing transparency.
  • the shape of the protrusion formed on the surface of the first hard coat layer is not particularly limited, but preferably has a circular shape or a planar shape close to a circular shape.
  • the planar shape of the protrusion refers to the planar shape when the surface of the first hard coat layer is observed with a scanning electron microscope (SEM).
  • FIG. 1 is an example of a surface photograph of the first hard coat layer by a scanning electron microscope. Projections 11 made of particles are formed on the surface of the first hard coat layer.
  • FIG. 2 is a diagram schematically showing the planar shape of the protrusions on the surface of the first hard coat layer.
  • the planar shape of the protrusion means that the diameter (Lmin) of the protrusion 11 orthogonal to the line segment representing the maximum diameter (Lmax) of the protrusion 11 and the center Lc, and the maximum of the protrusion 11. It means that the ratio (Lmin / Lmax) to the diameter (Lmax) is 0.65 or more.
  • the ratio (Lmin / Lmax) is preferably 0.70 or more, more preferably 0.80 or more, and particularly preferably 0.85 or more.
  • the upper limit is 1.0.
  • the diameter of the protrusion means the maximum diameter (Lmax) shown in FIG.
  • the average diameter of the protrusions can be obtained from a surface photograph of the first hard coat layer as shown in FIG. 1 using a scanning electron microscope.
  • the height of the protrusion means the length from the top of the protrusion to the surface of the first hard coat layer.
  • the average height of the protrusions can be measured from a cross-sectional photograph taken with a transmission electron microscope (TEM) of the first hard coat layer.
  • TEM transmission electron microscope
  • the range of the average spacing of the protrusions on the surface of the first hard coat layer is preferably in the range of 0.10 to 0.70 ⁇ m, more preferably in the range of 0.15 to 0.50 ⁇ m, particularly 0.20 to 0.40 ⁇ m. A range is preferred. Thereby, slipperiness and blocking resistance can be improved without reducing transparency.
  • the average interval between the protrusions can be obtained from a surface photograph of the first hard coat layer by a scanning electron microscope.
  • FIG. 3 is a diagram schematically showing a surface photograph of the first hard coat layer by a scanning electron microscope. A method for measuring the average interval between the protrusions will be described with reference to FIG.
  • a single straight line 20 is drawn in the horizontal direction, and a vertical straight line 30 orthogonal to the horizontal straight line 20 is drawn.
  • the distance between the adjacent protrusions is measured.
  • a similar operation is performed on the vertical straight line 30. The intervals (distances) of all the protrusions thus obtained are averaged.
  • FIG. 4 is a diagram in which only the projections on the horizontal straight line 20 or the vertical straight line 30 in FIG. 3 are selected and edited.
  • the number of protrusions riding on the horizontal straight line 20 is five as indicated by reference numerals 1 to 5.
  • the interval between adjacent protrusions is, for example, the distance P between the protrusion 1 and the protrusion 2 adjacent to the protrusion 1.
  • the distance between the protrusion 2 and the protrusion 3 and the protrusion 4 and the protrusion 5 the distance between adjacent protrusions for all particles on the horizontal straight line 20 is measured. Measure.
  • the above operation is performed by changing the position of the straight line in the horizontal direction and the position of the straight line in the vertical direction three times, and the average of all the obtained protrusion intervals is taken as the average interval of the protrusions.
  • each protrusion on the surface of the first hard coat layer is preferably formed by one particle. This makes it easy to adjust the center line average roughness (Ra1) of the first hard coat layer surface to less than 30 nm and to adjust the haze value of the hard coat film to less than 1.5%. If protrusions are formed in a state where a plurality of particles are aggregated, the center line average roughness (Ra1) on the surface of the first hard coat layer and the haze value of the hard coat film tend to increase, such being undesirable.
  • the range of the content of the particles in the first hard coat layer is preferably 2.5 to 17% by mass, more preferably 3 to 15% by mass with respect to 100% by mass of the total solid content of the first hard coat layer.
  • the range of 4 to 12% by mass is particularly preferable.
  • particles having an average particle diameter (r) sufficiently smaller than the thickness (d) of the first hard coat layer are contained in the first hard coat layer, and the particles are in the vicinity of the surface of the first hard coat layer. It is preferable that a relatively large number of protrusions be formed on the surface of the first hard coat layer.
  • the particles In order for the particles to be present in the vicinity of the surface of the first hard coat layer, it is necessary to move (float) the particles in the vicinity of the surface in the process of forming the first hard coat layer. This can be achieved, for example, by using particles that have been subjected to a surface treatment for reducing the surface free energy of the particles, or particles that have been subjected to a hydrophobic treatment for hydrophobizing the surface of the particles. As the particles to be subjected to these treatments, inorganic particles are preferable, and silica particles are particularly preferable.
  • inorganic particles are preferably used.
  • Inorganic particles are preferably inorganic particles containing an element selected from Si, Na, K, Ca, and Mg. More preferably, inorganic particles containing a compound selected from silica particles (SiO 2 ), alkali metal fluorides (NaF, KF, etc.), and alkaline earth metal fluorides (CaF 2 , MgF 2, etc.) can be mentioned, Silica particles are particularly preferable from the viewpoint of durability.
  • the surface treatment for reducing the surface free energy of the particles includes an organosilane compound having a fluorine atom represented by the following general formula (1), a hydrolyzate of the organosilane, and a hydrolysis of the organosilane. And a surface treatment with at least one compound selected from the group consisting of partial condensates.
  • n represents an integer of 1 to 10
  • m represents an integer of 1 to 5.
  • Q represents an alkoxy group having 1 to 5 carbon atoms or a halogen atom.
  • Specific examples of the compound of the general formula (1) include the following compounds. C 4 F 9 CH 2 CH 2 Si (OCH 3) 3 C 6 F 13 CH 2 CH 2 Si (OCH 3 ) 3 C 8 F 17 CH 2 CH 2 Si (OCH 3) 3 C 6 F 13 CH 2 CH 2 CH 2 Si (OCH 3) 3 C 6 F 13 CH 2 CH 2 CH 2 Si (OCH 3) 3 C 6 F 13 CH 2 CH 2 Si (OC 2 H 5) 3 C 8 F 17 CH 2 CH 2 CH 2 Si (OC 2 H 5) 3 C 6 F 13 CH 2 CH 2 CH 2 CH 2 Si (OC 2 H 5 ) 3 C 6 F 13 CH 2 CH 2 SiCl 3 C 6 F 13 CH 2 CH 2 SiBr 3 C 6 F 13 CH 2 CH 2 CH 2 SiCl 3 C 6 F 13 CH 2 CH 2 Si (OCH 3 ) Cl 2
  • B and D each independently represent a reactive site
  • R 4 and R 7 are each independently derived from an alkylene group having 1 to 3 carbon atoms, or the alkylene group.
  • R 5 and R 6 each independently represent hydrogen or an alkyl group having 1 to 4 carbon atoms
  • Rf 2 represents a fluoroalkyl group
  • n represents an integer of 0 to 2.
  • Examples of the reactive site represented by B and D include a vinyl group, an allyl group, an acryloyl group, a methacryloyl group, an acryloyloxy group, a methacryloyloxy group, an epoxy group, a carboxyl group, and a hydroxyl group.
  • Specific examples of the general formula (2) include acryloxyethyltrimethoxysilane, acryloxypropyltrimethoxysilane, acryloxybutyltrimethoxysilane, acryloxypentyltrimethoxysilane, acryloxyhexyltrimethoxysilane, acryloxyheptyltri Methoxysilane, methacryloxyethyltrimethoxysilane, methacryloxypropyltrimethoxysilane, methacryloxybutyltrimethoxysilane, methacryloxyhexyltrimethoxysilane, methacryloxyheptyltrimethoxysilane, methacryloxypropylmethyldimethoxysilane, methacryloxypropylmethyldimethoxy Examples include silane and compounds in which the methoxy group in these compounds is substituted with other alkoxyl groups or hydroxyl groups. It is.
  • Specific examples of the general formula (3) include 2,2,2-trifluoroethyl acrylate, 2,2,3,3,3-pentafluoropropyl acrylate, 2-perfluorobutylethyl acrylate, 3-perfluoro Butyl-2-hydroxypropyl acrylate, 2-perfluorohexylethyl acrylate, 3-perfluorohexyl-2-hydroxypropyl acrylate, perfluorooctylmethyl acrylate, 2-perfluorooctylethyl acrylate, 3-perfluorooctyl-2- Hydroxypropyl acrylate, 2-perfluorodecylethyl acrylate, 2-perfluoro-3-methylbutylethyl acrylate, 3-perfluoro-3-methoxybutyl-2-hydroxypropyl acrylate, 2-perf Oro-5-methylhexyl ethyl acrylate, 3-perfluoro-5-methylhexyl-2-
  • hydrophobic compound for subjecting the particle surface to a hydrophobic treatment examples include compounds having a hydrophobic group and a reactive site in the molecule.
  • the hydrophobic group of the hydrophobic compound is not particularly limited as long as it generally has a hydrophobic function, but specific examples of the hydrophobic group include, for example, a fluoroalkyl group having 4 or more carbon atoms, a hydrocarbon group having 8 or more carbon atoms, and Examples include at least one functional group selected from the group consisting of siloxane groups.
  • the reactive site is a site that chemically reacts with radicals generated by receiving energy such as light or heat.
  • Specific examples include vinyl group, allyl group, acryloyl group, methacryloyl group, acryloyloxy group, It is more preferable to have a reactive site that undergoes a chemical reaction upon receiving energy such as light or heat, such as a methacryloyloxy group, an epoxy group, a carboxyl group, or a hydroxyl group.
  • a hydrophobic compound for subjecting the particle surface to a hydrophobization treatment a compound having a fluoroalkyl group having 4 or more carbon atoms and a reactive site (fluorine compound), a hydrocarbon group having 8 or more carbon atoms and reactivity. It is preferable to use at least one selected from the group consisting of a compound having a moiety (long chain hydrocarbon compound) and a compound having a siloxane group and a reactive moiety (silicone compound).
  • the long-chain hydrocarbon compound represents a compound having a hydrocarbon group having 8 or more carbon atoms which is a hydrophobic group in the molecule and a reactive site.
  • the hydrocarbon group having 8 or more carbon atoms preferably has 8 to 30 carbon atoms.
  • the hydrocarbon group having 8 or more carbon atoms can be selected regardless of a linear structure, a branched structure, or an alicyclic structure. More preferably, a linear alkyl alcohol having 10 to 22 carbon atoms, an alkyl epoxide, an alkyl acrylate, an alkyl methacrylate, an alkyl carboxylate (including acid anhydrides and esters), etc. are used as the long-chain hydrocarbon compound. be able to.
  • long-chain hydrocarbon compound examples include polyhydric alcohols such as octanol, hexanediol, heptanediol, octanediol, stearyl alcohol, octyl acrylate, octyl methacrylate, 2-hydroxyoctyl acrylate, 2-hydroxyoctyl methacrylate, etc.
  • Acrylate (methacrylate) acrylic silane such as octyltrimethoxysilane, and the like.
  • silicone compound examples include compounds having a siloxane group that is a hydrophobic group in the molecule and a reactive site.
  • a reactive site of the silicone compound an acryloyloxy group or a methacryloyloxy group is preferably used.
  • siloxane group a polysiloxane group represented by the following general formula (4) is preferably used.
  • R 8 and R 9 are each independently an alkyl group having 1 to 6 carbon atoms, a phenyl group, a 3-acryloxy-2-hydroxypropyl-oxypropyl group, a 2-acryloxy-3-hydroxypropyl group.
  • silicone compound having a polysiloxane group represented by the general formula (4) as a hydrophobic group include compounds having a dimethylsiloxane group represented by the following general formula (5) and a reactive site.
  • Specific examples of the silicone compound having a dimethylsiloxane group of the general formula (5) and a reactive site include X-22-164B, X-22-164C, X-22-5002, X-22-174D, X -22-167B (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.).
  • R represents alkyl having 1 to 7 carbon atoms
  • k represents an integer of 0 or 1
  • m represents an integer of 10 to 200.
  • silicone compound having a polysiloxane group represented by the general formula (4) as a hydrophobic group and a reactive site is 3-acryloxy-2-hydroxy represented by the general formula (6).
  • examples thereof include compounds having a propyl-oxypropyl group and a methyl group, and compounds having a 2-acryloxy-3-hydroxypropyl-oxypropyl group and a methyl group represented by the general formula (7).
  • R represents an alkyl having 1 to 7 carbon atoms
  • k represents an integer of 0 or 1
  • m represents an integer of 10 to 200.
  • silicone compound having a polysiloxane group represented by the general formula (4) and a reactive site as a hydrophobic group is an acryloyloxy group or methacryloyloxy at the terminal represented by the general formula (8).
  • examples thereof include a compound having a polyethylene glycol propyl ether group having a group and a methyl group, and a compound having a polyethylene glycol propyl ether group having a hydroxy group at the terminal and a methyl group, represented by the general formula (9).
  • R represents alkyl having 1 to 7 carbon atoms
  • k represents an integer of 0 or 1
  • x represents an integer of 1 to 10
  • m represents 10 to 200. Represents an integer.
  • the fluorine compound having a fluoroalkyl group having 4 or more carbon atoms and a reactive site will be described.
  • the fluoroalkyl group may have a linear structure or a branched structure.
  • the fluoroalkyl group preferably has 4 to 8 carbon atoms.
  • fluorine compound fluoroalkyl alcohol, fluoroalkyl epoxide, fluoroalkyl halide, fluoroalkyl acrylate, fluoroalkyl methacrylate, fluoroalkyl carboxylate (including acid anhydrides and esters), and the like can be used.
  • fluoroalkyl acrylate and fluoroalkyl methacrylate are preferable.
  • a compound having a fluoroalkyl group having 4 or more carbon atoms can be used from the compounds exemplified in the general formula (3).
  • the number of fluoroalkyl groups in the fluorine compound is not necessarily one, and the fluorine compound may have a plurality of fluoroalkyl groups.
  • the first hard coat layer preferably has a high hardness in order to suppress the occurrence of scratches on the hard coat film surface, and the pencil hardness defined by JIS K5600-5-4 (1999) is H or more. Those are preferred. The upper limit of pencil hardness is about 9H.
  • the first hard coat layer preferably contains a thermosetting resin or an active energy ray curable resin as a resin, and particularly preferably contains an active energy ray curable resin.
  • the active energy ray-curable resin means a resin that is polymerized and cured by active energy rays such as ultraviolet rays and electron beams.
  • a compound (monomer or oligomer) having a polymerizable functional group such as acryloyl group, methacryloyl group, acryloyloxy group, methacryloyloxy group, vinyl group, and allyl group.
  • the first hard coat layer is formed by applying the active energy ray-curable composition containing the polymerizable compound by a wet coating method, drying it as necessary, and then irradiating the active energy ray to cure. It is preferable that
  • ... (Meth) acrylate includes two compounds “... acrylate” and “... methacrylate”.
  • Examples of the monomer include methyl (meth) acrylate, lauryl (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, phenoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl ( Monofunctional acrylates such as (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy-3-phenoxy (meth) acrylate, neopentyl glycol di (meth) acrylate, 1, 6-hexanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythrito Rutetra (meth) acrylate, dipentaerythritol tri
  • polyfunctional monomers having 3 or more polymerizable functional groups in one molecule are preferably used.
  • oligomer examples include polyester (meth) acrylate, polyurethane (meth) acrylate, epoxy (meth) acrylate, polyether (meth) acrylate, alkit (meth) acrylate, melamine (meth) acrylate, and silicone (meth) acrylate. be able to.
  • polyfunctional urethane (meth) acrylate oligomers having 3 or more polymerizable functional groups in one molecule are preferably used.
  • a polyfunctional urethane (meth) acrylate oligomer a commercially available product can be used.
  • the content of the polymerizable compound in the active energy ray-curable composition is preferably 50% by mass or more and 55% by mass or more with respect to 100% by mass of the total solid content of the active energy ray-curable composition. More preferably, it is more preferably 60% by mass or more, and particularly preferably 70% by mass or more.
  • the upper limit is preferably 97% by mass or less, and more preferably 95% by mass or less.
  • the active energy ray curable composition preferably contains a photopolymerization initiator.
  • the photopolymerization initiator include acetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, p-dimethylaminopropiophenone, benzophenone, 2-chlorobenzophenone, 4,4′-dichlorobenzophenone, 4,4′-bisdiethylaminobenzophenone, Michler's ketone, benzyl, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, methyl benzoylformate, p-isopropyl- ⁇ -hydroxyisobutylphenone, ⁇ -hydroxyisobutylphenone, 2, Carbonyl compounds such as 2-dimethoxy-2-phenylacetophenone and 1-hydroxycyclohexyl phenyl ket
  • photopolymerization initiators are generally commercially available and can be used.
  • Irgacure registered trademark
  • Irgacure 907 Irgacure 379
  • Irgacure 819 Irgacure 127
  • Irgacure 500 Irgacure 754
  • Irgacure 250 Irgacure 1800
  • Irgacure 1870 Irgacure OXEDA
  • ROCIA OXEDA manufactured by Ciba Specialty Chemicals Co., Ltd.
  • the range of the content of the photopolymerization initiator is suitably in the range of 0.1 to 10% by mass with respect to 100% by mass of the total solid content of the active energy ray-curable composition, and 0.5 to 8% by mass.
  • the range of is preferable.
  • the active energy ray-curable composition can further contain various additives such as an antioxidant, an ultraviolet absorber, a leveling agent, a particle dispersant, an organic antistatic agent, a lubricant, a colorant, and a pigment. .
  • the active energy ray-curable composition contains particles for forming protrusions on the surface of the first hard coat layer.
  • particles that have been subjected to the above-described surface treatment or hydrophobic treatment are preferably used.
  • the range of the content of particles in the active energy ray-curable composition is preferably 2.5 to 17% by mass with respect to 100% by mass of the total solid content of the active energy ray-curable composition, and preferably 3 to 15% by mass. Is more preferable, and a range of 4 to 12% by mass is particularly preferable.
  • the refractive index range of the first hard coat layer is preferably from 1.48 to 1.54, more preferably from 1.50 to 1.54.
  • the active energy ray-curable composition described above is applied by a wet coating method, dried as necessary, and then irradiated with active energy rays to form a first hard coat layer, whereby the refractive index is reduced.
  • a first hard coat layer in the range of 1.48 to 1.54 can be obtained.
  • the range of the thickness of the first hard coat layer is suitably from 0.5 ⁇ m to less than 10 ⁇ m, preferably from 0.8 ⁇ m to 7 ⁇ m, more preferably from 1 ⁇ m to 5 ⁇ m, particularly from 1 ⁇ m to 3 ⁇ m. The following is preferred.
  • the thickness of the first hard coat layer is less than 0.5 ⁇ m, the hardness of the first hard coat layer is lowered and scratches are easily formed.
  • the thickness of the first hard coat layer is 10 ⁇ m or more, inconveniences such as slipperiness and blocking resistance may decrease, curl may increase, and transmittance may decrease.
  • the hard coat film has a first hard coat layer on at least one surface of the base film.
  • the hard coat film may have a first hard coat layer only on one side of the base film, or may have a first hard coat layer on both sides of the base film.
  • the first hard coat layer is provided on one side of the base film, and the first hard coat layer of the base film is provided on the other side of the base film (that is, Examples thereof include a hard coat film having a second hard coat layer (on the side opposite to the provided surface).
  • stacked on the other surface of a base film takes the completely same structure as the 1st hard coat layer laminated
  • the first hard coat layer is laminated on both sides of the first hard coat layer, it may be referred to as a second hard coat layer in order to distinguish it from the first hard coat layer on one side.
  • the second hard coat layer preferably has a high hardness in order to suppress the occurrence of scratches on the hard coat film surface, and the pencil hardness defined by JIS K5600-5-4 (1999) is H or more. It is preferable and 2H or more is more preferable. The upper limit of pencil hardness is about 9H.
  • the surface of the second hard coat layer is preferably relatively smooth and clear.
  • the center line average roughness (Ra2) of the surface of the second hard coat layer is preferably 25 nm or less, more preferably 20 nm or less, and particularly preferably 15 nm or less.
  • the lower limit is not particularly limited, but is practically about 1 nm.
  • the second hard coat layer has a center line average roughness (Ra2) of the second hard coat layer surface of 25 nm or less
  • the second hard coat layer substantially contains particles having an average particle diameter of more than 0.5 ⁇ m. It is preferable not to contain.
  • the fact that the second hard coat layer does not substantially contain particles having an average particle size larger than 0.5 ⁇ m means that the coating liquid for forming the second hard coat layer (for example, active energy ray-curable composition) Means that particles having an average particle size of more than 0.5 ⁇ m are not intentionally added to the product.
  • the surface of the second hard coat layer is preferably relatively smooth and clear. Accordingly, it is preferable that substantially no protrusions due to particles exist on the surface of the second hard coat layer.
  • the fact that there are substantially no protrusions due to particles on the surface of the second hard coat layer means that the number of protrusions per unit area (100 ⁇ m 2 ) on the surface of the second hard coat layer is 100 or less. To do.
  • the number of protrusions per unit area (100 ⁇ m 2 ) on the surface of the second hard coat layer is 50 or less, more preferably 30 or less, and particularly preferably 0.
  • the second hard coat layer can contain particles having an average particle size of 0.5 ⁇ m or less, but it is preferable to adjust the average particle size of the particles contained in the second hard coat layer from the above viewpoint.
  • the average particle diameter of the particles is preferably 0.2 ⁇ m or less, and more preferably 0.1 ⁇ m or less.
  • the range of the content of such particles is suitably in the range of 0.1 to 15% by mass with respect to 100% by mass of the total solid content of the second hard coat layer, and in the range of 0.5 to 10% by mass. More preferably, the range of 1 to 8% by mass is particularly preferable.
  • the second hard coat layer preferably contains a thermosetting resin or an active energy ray curable resin as the resin, and particularly preferably contains an active energy ray curable resin.
  • the active energy ray-curable resin means a resin that is polymerized and cured by active energy rays such as ultraviolet rays and electron beams.
  • the same compounds as those described in the first hard coat layer can be used.
  • the second hard coat layer is coated with an active energy ray-curable composition containing a polymerizable compound by a wet coating method, dried as necessary, and then irradiated with active energy rays. It is preferably formed by curing.
  • the refractive index range of the second hard coat layer is preferably in the range of 1.48 to 1.54, more preferably in the range of 1.50 to 1.54.
  • the second hard coat layer is formed by applying the active energy ray-curable composition described above by a wet coating method, drying it as necessary, and then irradiating and curing with an active energy ray, whereby the refractive index. Can be obtained in the range of 1.48 to 1.54.
  • the range of the thickness of the second hard coat layer is suitably from 0.5 ⁇ m to less than 10 ⁇ m, preferably from 0.8 ⁇ m to 7 ⁇ m, more preferably from 1 ⁇ m to 5 ⁇ m, particularly from 1 ⁇ m to 3 ⁇ m. The following is preferred.
  • the thickness of the second hard coat layer is less than 0.5 ⁇ m, the hardness of the second hard coat layer is lowered and scratches are easily formed.
  • the thickness of the second hard coat layer is 10 ⁇ m or more, inconveniences such as slipperiness and blocking resistance decrease, curl increase, and transmittance may decrease.
  • the hard coat film of this embodiment is suitable as a base film of a transparent conductive film. That is, the transparent conductive film using the hard coat film of this embodiment as a base film is obtained by laminating a transparent conductive film on at least one surface of the hard coat film of this embodiment.
  • the transparent conductive film may be laminated on only one side of the hard coat film, or may be laminated on both sides.
  • i) or iii) is preferable.
  • the first hard coat layer should be exposed without being laminated. Is preferred.
  • the hard coat layer on the surface on which the transparent conductive film is laminated is relatively smooth and clear. Therefore, in the configuration example of iii), the center line average roughness (Ra2) of the surface of the second hard coat layer is preferably 25 nm or less, more preferably 20 nm or less, and particularly preferably 15 nm or less. As described above, since the surface of the hard coat layer (for example, the second hard coat layer) on which the transparent conductive film is laminated is relatively smooth and clear, the transparency of the transparent conductive film is improved, which is preferable.
  • Transparent conductive film examples of the material for forming the transparent conductive layer include tin oxide, indium oxide, antimony oxide, zinc oxide, ITO (indium tin oxide), metal oxide such as ATO (antimony tin oxide), and metal nanowires (for example, silver Nanowire) and carbon naotube.
  • ITO indium tin oxide
  • metal oxide such as ATO (antimony tin oxide)
  • metal nanowires for example, silver Nanowire
  • carbon naotube carbon naotube.
  • ITO is preferably used.
  • the thickness of the transparent conductive film is preferably 10 nm or more, more preferably 15 nm or more, and particularly preferably 20 nm or more, from the viewpoint of ensuring good conductivity with a surface resistance value of 10 3 ⁇ / ⁇ or less. Preferably there is. On the other hand, if the thickness of the transparent conductive film is too large, the color (coloring) may become inconvenient or the transparency may be lowered. Therefore, the upper limit of the thickness of the transparent conductive film is preferably 60 nm or less. 50 nm or less is more preferable, and 40 nm or less is particularly preferable.
  • the method for forming the transparent conductive film is not particularly limited, and a conventionally known method can be used. Specifically, a dry film forming method (vapor phase film forming method) such as a vacuum vapor deposition method, a sputtering method, an ion plating method, or a wet coating method can be used.
  • the transparent conductive film formed as described above may be patterned.
  • the patterning can form various patterns depending on the application to which the transparent conductive film is applied.
  • a pattern part and a non-pattern part are formed by patterning of a transparent conductive film, as a shape of a pattern part, stripe shape, a lattice shape, etc. are mentioned, for example.
  • the patterning of the transparent conductive film is generally performed by etching.
  • a transparent conductive film is patterned by forming a patterned etching resist film on the transparent conductive film by a photolithography method, a laser exposure method, or a printing method and then performing an etching process. After the transparent conductive film is patterned, the etching resist film is peeled off with an alkaline aqueous solution.
  • etching liquid A conventionally well-known thing is used as an etching liquid.
  • inorganic acids such as hydrogen chloride, hydrogen bromide, sulfuric acid, nitric acid and phosphoric acid, organic acids such as acetic acid, and mixtures thereof, and aqueous solutions thereof are used.
  • Examples of the alkaline aqueous solution used for stripping and removing the etching resist film include 1 to 5% by mass of a sodium hydroxide aqueous solution and a potassium hydroxide aqueous solution.
  • the transparent conductive film may be directly laminated on the first hard coat layer or the second hard coat layer.
  • the transparent conductive film and the first hard coat layer or the second hard coat layer may be laminated. It is preferable to interpose a refractive index adjusting layer between the coat layer.
  • the refractive index adjustment layer will be described.
  • the refractive index adjusting layer may be composed of only one layer or may be a laminated structure of two or more layers.
  • the refractive index adjustment layer has a function for adjusting the reflection color and transmission color of the transparent conductive film laminated thereon, or a so-called “bone appearance” in which the patterned portion of the patterned transparent conductive film is visually recognized. It is a layer having a function to suppress.
  • the refractive index adjustment layer for example, a single layer configuration of a high refractive index layer having a refractive index (n1) of 1.60 to 1.80, and a low refractive index having a refractive index (n2) of 1.30 to 1.53.
  • a high refractive index layer having a refractive index (n1) of 1.60 to 1.80 and a low refractive index having a refractive index (n2) of 1.30 to 1.53.
  • the range of the refractive index (n1) of the high refractive index layer is further preferably in the range of 1.63 to 1.78, and more preferably in the range of 1.65 to 1.75.
  • the refractive index (n2) of the low refractive index layer is further preferably in the range of 1.30 to 1.50, more preferably in the range of 1.30 to 1.48, and particularly preferably in the range of 1.33 to 1.46. preferable.
  • the thickness of the refractive index adjusting layer (referring to the total thickness in the case of a multilayer structure) is preferably 200 nm or less, more preferably 150 nm or less, particularly preferably 120 nm or less, and most preferably 100 nm or less.
  • the lower limit thickness is preferably 30 nm or more, more preferably 40 nm or more, particularly preferably 50 nm or more, and most preferably 60 nm or more.
  • the refractive index adjusting layer is preferably a laminated structure of a high refractive index layer and a low refractive index layer from the viewpoint of suppressing “bone appearance”.
  • the sum (nm) of the optical thickness of the high refractive index layer and the optical thickness of the low refractive index layer satisfies (1/4) ⁇ (nm).
  • the optical thickness (nm) is the product of the refractive index and the actual layer thickness (nm)
  • is 380 to 780 (nm) which is the wavelength range of the visible light region.
  • n1 represents the refractive index of the high refractive index layer
  • d1 represents the thickness (nm) of the high refractive index layer
  • n2 represents the refractive index of the low refractive index layer
  • d2 represents the thickness (nm) of the low refractive index layer.
  • the total of the optical thickness (n1 ⁇ d1) of the high refractive index layer and the optical thickness (n2 ⁇ d2) of the low refractive index layer is preferably 95 nm or more and 195 nm or less.
  • the total range of the optical thickness of the high refractive index layer and the optical thickness of the low refractive index layer is more preferably 95 to 163 nm, particularly preferably 95 to 150 nm, and most preferably 100 to 140 nm.
  • an active energy ray-curable composition containing metal oxide fine particles having a refractive index of 1.65 or more is applied by a wet coating method, dried as necessary, and then irradiated with active energy rays. Then, it can be formed by curing.
  • the active energy ray-curable composition is a composition containing the polymerizable compound and the photopolymerization initiator described in the first hard coat layer.
  • the metal oxide fine particles include metal oxide particles such as titanium, zirconium, zinc, tin, antimony, cerium, iron, and indium.
  • Specific examples of the metal oxide fine particles include, for example, titanium oxide, zirconium oxide, zinc oxide, tin oxide, antimony oxide, cerium oxide, iron oxide, zinc antimonate, tin oxide-doped indium oxide (ITO), and antimony-doped tin oxide. (ATO), phosphorus-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, fluorine-doped tin oxide, and the like. These metal oxide fine particles may be used alone or in combination.
  • titanium oxide and zirconium oxide are particularly preferable because they can increase the refractive index without reducing transparency.
  • the content of the metal oxide fine particles in the active energy ray-curable composition is preferably 30% by mass or more, more preferably 40% by mass or more, with respect to 100% by mass of the total solid content of the active energy ray-curable composition.
  • a mass% or more is particularly preferred.
  • the upper limit is preferably 70% by mass or less, and preferably 60% by mass or less.
  • the low refractive index layer is, for example, coated with an active energy ray-curable composition containing low refractive index inorganic particles and / or a fluorine-containing compound as a low refractive index material by a wet coating method and, if necessary, dried. It can be formed by irradiating with active energy rays and curing.
  • the active energy ray-curable composition is a composition containing the polymerizable compound and the photopolymerization initiator described in the first hard coat layer.
  • inorganic particles such as silica and magnesium fluoride are preferable. Further, these inorganic particles are preferably hollow or porous.
  • the content of such low refractive index inorganic particles is preferably 10% by mass or more, more preferably 20% by mass or more, and particularly preferably 30% by mass or more with respect to 100% by mass of the total solid content of the active energy ray-curable composition. Is preferred.
  • the upper limit is preferably 70% by mass or less, preferably 60% by mass or less, and particularly preferably 50% by mass or less.
  • the fluorine-containing compound examples include fluorine-containing monomers, fluorine-containing oligomers, and fluorine-containing polymer compounds.
  • the fluorine-containing monomer or fluorine-containing oligomer is a monomer or oligomer having in the molecule thereof the aforementioned polymerizable functional group (functional group containing a carbon-carbon double bond group) and a fluorine atom.
  • fluorine-containing monomers and fluorine-containing oligomers examples include 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3,3-pentafluoropropyl (meth) acrylate, and 2- (perfluorobutyl).
  • fluorine-containing polymer compound examples include a fluorine-containing copolymer having a fluorine-containing monomer and a monomer for imparting a crosslinkable group as structural units.
  • fluorine-containing monomer unit examples include, for example, fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole, etc.
  • (Meth) acrylic acid partial or fully fluorinated alkyl ester derivatives for example, Biscoat 6FM (manufactured by Osaka Organic Chemical), M-2020 (manufactured by Daikin), etc.), fully or partially fluorinated vinyl ethers, and the like.
  • a monomer for imparting a crosslinkable group in addition to a (meth) acrylate monomer having a crosslinkable functional group in the molecule in advance such as glycidyl methacrylate, it has a carboxyl group, a hydroxyl group, an amino group, a sulfonic acid group, etc. ) Acrylate monomers (for example, (meth) acrylic acid, methylol (meth) acrylate, hydroxyalkyl (meth) acrylate, allyl acrylate, etc.).
  • the content of the fluorine-containing compound is preferably 30% by mass or more, more preferably 40% by mass or more, and particularly preferably 50% by mass or more with respect to 100% by mass of the total solid content of the active energy ray-curable composition.
  • the upper limit is preferably 95% by mass or less, more preferably 90% by mass or less, and particularly preferably 80% by mass or less.
  • fluorine-containing monomers and fluorine-containing oligomers are preferably used. Since the fluorine-containing monomer and the fluorine-containing oligomer have a polymerizable functional group in the molecule, they contribute to the formation of a dense cross-linked structure of the low refractive index layer and can have a low refractive index.
  • the transparent conductive film which uses the hard coat film of this embodiment as a base film is preferably used as one of the constituent members of the touch panel.
  • the resistive touch panel usually has a configuration in which an upper electrode and a lower electrode are arranged via a spacer.
  • the transparent conductive film using the hard coat film of this embodiment as a base film has an upper electrode and a lower electrode. It can be used for either one or both of the electrodes.
  • the capacitive touch panel is usually composed of patterned X electrodes and Y electrodes, but the transparent conductive film using the hard coat film of this embodiment as a base film is composed of X electrodes and Y electrodes. It can be used for either one or both.
  • the transparent conductive film used for the touch panel is required to have good transparency and workability (sliding property and blocking resistance), but the transparent conductive film using the hard coat film of this embodiment as a base film. Can sufficiently satisfy the above characteristics.
  • the refractive index of the substrate film was measured at 589 nm using an Abbe refractometer according to JIS K7105 (1981).
  • Measurement device Transmission electron microscope (H-7100FA type, manufactured by Hitachi, Ltd.) ⁇ Measurement conditions: Acceleration voltage 100kV ⁇ Sample preparation: Freezing ultrathin section method ⁇ Magnification: 300,000 times
  • di is the equivalent circular diameter of the particle (the diameter of a circle having the same area as the cross-sectional area of the particle), and N is the number.
  • a black adhesive tape (Nitto Denko “Vinyl Tape No. 21 Tokuhaba Black”) is applied to the surface of the first hard coat layer of the hard coat film, and the reflection color of the second hard coat layer surface is set to three wavelengths in the dark room. It observed visually under the fluorescent lamp and performed on the following references
  • the hard coat film is cut to produce two sheet pieces (20 cm ⁇ 15 cm). The two sheets are superposed such that the first hard coat layer surface and the second hard coat layer surface face each other. Next, a sample in which two sheet pieces are overlapped is sandwiched between glass plates, and a weight of about 3 kg is placed thereon and left in an atmosphere of 50 ° C. and 90% (RH) for 48 hours. Next, the overlapping surface was visually observed to confirm the occurrence of Newton rings, and then both were peeled off and evaluated according to the following criteria.
  • A Newton rings are not generated before peeling, and light peeling is performed without making a peeling sound at the time of peeling.
  • B Some Newton rings are generated before peeling, and peeling is performed while making a small peeling sound during peeling.
  • C Newton rings are generated on the entire surface before peeling, and are peeled off with a loud peeling sound during peeling.
  • Pencil hardness of the first and second hard coat layers The surface of the first hard coat layer and the surface of the first hard coat layer of the hard coat film are based on JIS K5600-5-4 (1999), respectively. It was measured. The load is 750 g, and the speed is 30 mm / min. As the measuring device, a surface hardness tester (HEIDON; type 14DR) manufactured by Shinto Kagaku Co., Ltd. was used. The environment at the time of measurement is 23 ° C. ⁇ 2 ° C. and relative humidity 55% ⁇ 5%.
  • C A pattern part can be visually recognized.
  • Resin layer forming coating solution a In terms of solid content, Tg (glass transition temperature) of 120 ° C. is 26% by mass of polyester resin a, Tg is 80 ° C. of polyester resin b is 54% by mass, melamine-based crosslinking agent is 18% by mass, and particles are 2% by mass. % Was mixed to prepare an aqueous dispersion coating solution.
  • Polyester resin a polyester resin obtained by copolymerizing 43 mol% of 2,6-naphthalenedicarboxylic acid, 7 mol% of 5-sodium sulfoisophthalic acid, and 50 mol% of a diol component containing ethylene glycol; polyester resin b; Polyester resin and melamine-based crosslinking agent obtained by copolymerization of 38 mol% terephthalic acid, 12 mol% trimellitic acid, and 50 mol% diol component containing ethylene glycol; "Nikarac MW12LF” manufactured by Sanwa Chemical Co., Ltd. ⁇ Particles: colloidal silica with an average particle size of 0.19 ⁇ m
  • aqueous dispersion coating solution was prepared by mixing 80% by mass of the following acrylic resin, 18% by mass of the melamine-based crosslinking agent, and 2% by mass of the particles in a solid content mass ratio.
  • Acrylic resin (acrylic resin consisting of the following copolymer composition) Methyl methacrylate 63% by weight Ethyl acrylate 35% by weight Acrylic acid 1% by weight N-methylolacrylamide 1% by weight ⁇ Melamine-based cross-linking agent; “Nicarac MW12LF” manufactured by Sanwa Chemical Co., Ltd. ⁇ Particles: colloidal silica with an average particle size of 0.19 ⁇ m
  • ⁇ Surface treatment silica particle dispersion> 150 parts by mass of colloidal silica (“organosilica sol IPA-ST-ZL” manufactured by Nissan Chemical Industries, Ltd.) is mixed with 13.7 parts by mass of methacryloxypropyltrimethoxysilane and 1.7 parts by mass of a 10% by mass formic acid aqueous solution. , And stirred at 70 ° C. for 1 hour.
  • colloidal silica (“organosilica sol IPA-ST-ZL” manufactured by Nissan Chemical Industries, Ltd.)
  • Example 1 A hard coat film was prepared in the following manner.
  • a resin layer was in-line coated on both sides of a polyethylene terephthalate film (PET film) having a refractive index of 1.65 and a thickness of 100 ⁇ m within the PET film manufacturing process. That is, the coating liquid a for forming a resin layer is applied to both surfaces of a PET film uniaxially stretched in the longitudinal direction by a bar coating method, dried at 100 ° C., then biaxially stretched in the width direction, and heated at 230 ° C. for 20 seconds. The PET film in which the resin layer was laminated
  • the following active energy ray-curable composition a is applied by a gravure coating method on a resin layer on one side of a PET film having a resin layer laminated on both sides, dried at 90 ° C., and then irradiated with ultraviolet rays 400 mJ / cm 2 . And cured to form a first hard coat layer.
  • the first hard coat layer had a thickness of 2.6 ⁇ m and a refractive index of 1.51.
  • the second hard coat is applied to the resin layer on the other side of the PET film (the side opposite to the side on which the first hard coat layer is laminated) using the active energy ray-curable composition a in the same manner as described above.
  • a layer was formed to prepare a hard coat film.
  • the second hard coat layer had a thickness of 2.6 ⁇ m and a refractive index of 1.51.
  • Example 2 A hard coat film was produced in the same manner as in Example 1 except that the second hard coat layer was changed to the following active energy ray-curable composition b.
  • the second hard coat layer had a thickness of 2.6 ⁇ m and a refractive index of 1.52.
  • Example 3 A hard coat film was produced in the same manner as in Example 1 except that the active energy ray-curable composition for forming the first and second hard coat layers was changed to the following active energy ray-curable composition c. .
  • the first and second hard coat layers each had a thickness of 2.6 ⁇ m and a refractive index of 1.51.
  • Example 4 A hard coat film was produced in the same manner as in Example 3 except that the second hard coat layer was changed to the active energy ray-curable composition b.
  • the second hard coat layer had a thickness of 2.6 ⁇ m and a refractive index of 1.52.
  • Example 5 A hard coat film was produced in the same manner as in Example 1 except that the active energy ray-curable composition for forming the first and second hard coat layers was changed to the following active energy ray-curable composition d. .
  • the first and second hard coat layers each had a thickness of 2.6 ⁇ m and a refractive index of 1.51.
  • Example 6 A hard coat film was produced in the same manner as in Example 5 except that the second hard coat layer was changed to the active energy ray-curable composition b.
  • the second hard coat layer had a thickness of 2.6 ⁇ m and a refractive index of 1.52.
  • Example 7 A hard coat film was produced in the same manner as in Example 1 except that the active energy ray-curable composition for forming the first and second hard coat layers was changed to the following active energy ray-curable composition e. .
  • the first and second hard coat layers each had a thickness of 2.6 ⁇ m and a refractive index of 1.51.
  • ⁇ Active energy ray-curable composition e 50 parts by mass of dipentaerythritol hexaacrylate, 37 parts by mass of an acrylate compound (“Aronix M111” manufactured by Toa Gosei Co., Ltd.), 8 parts by mass of the surface-treated silica particle dispersion D in terms of solid content, a photopolymerization initiator (Ciba 5 parts by mass of “Irgacure 184” manufactured by Specialty Chemicals Co., Ltd. was mixed with an organic solvent (methyl ethyl ketone).
  • Example 8 A hard coat film was produced in the same manner as in Example 7 except that the second hard coat layer was changed to the active energy ray-curable composition b.
  • the second hard coat layer had a thickness of 2.6 ⁇ m and a refractive index of 1.52.
  • Example 9 A hard coat film was produced in the same manner as in Example 1 except that the active energy ray-curable composition for forming the first and second hard coat layers was changed to the following active energy ray-curable composition f. .
  • the first and second hard coat layers each had a thickness of 2.6 ⁇ m and a refractive index of 1.51.
  • Example 10 A hard coat film was produced in the same manner as in Example 9 except that the second hard coat layer was changed to the active energy ray-curable composition b.
  • the second hard coat layer had a thickness of 2.6 ⁇ m and a refractive index of 1.52.
  • Example 1 A hard coat film was produced in the same manner as in Example 1 except that the active energy ray-curable composition for forming the first and second hard coat layers was changed to the following active energy ray-curable composition g. .
  • the first and second hard coat layers each had a thickness of 2.6 ⁇ m and a refractive index of 1.51.
  • organic solvent a mixed solvent of methyl ethyl ketone and cyclohexanone having a mass ratio of 8: 2.
  • Comparative Example 2 A hard coat film was produced in the same manner as in Comparative Example 1 except that the second hard coat layer was changed to the active energy ray-curable composition b.
  • the second hard coat layer had a thickness of 2.6 ⁇ m and a refractive index of 1.52.
  • Example 3 A hard coat film was produced in the same manner as in Example 1 except that the active energy ray-curable composition for forming the first and second hard coat layers was changed to the following active energy ray-curable composition h. .
  • the first and second hard coat layers each had a thickness of 2.6 ⁇ m and a refractive index of 1.52.
  • Comparative Example 4 A hard coat film was produced in the same manner as in Comparative Example 3 except that the second hard coat layer was changed to the active energy ray-curable composition b.
  • the second hard coat layer had a thickness of 2.6 ⁇ m and a refractive index of 1.52.
  • Example 11 A hard coat film was produced in the same manner as in Example 1 except that the active energy ray-curable composition for forming the first and second hard coat layers was changed to the following active energy ray-curable composition i. .
  • the first and second hard coat layers each had a thickness of 2.6 ⁇ m and a refractive index of 1.51.
  • Example 12 A hard coat film was produced in the same manner as in Example 1 except that the active energy ray-curable composition for forming the first and second hard coat layers was changed to the following active energy ray-curable composition j. .
  • the first and second hard coat layers each had a thickness of 2.6 ⁇ m and a refractive index of 1.51.
  • Example 13 A hard coat film was produced in the same manner as in Example 1 except that the active energy ray-curable composition for forming the first and second hard coat layers was changed to the following active energy ray-curable composition k. .
  • the first and second hard coat layers each had a thickness of 2.6 ⁇ m and a refractive index of 1.51.
  • ⁇ Active energy ray-curable composition k 50 parts by mass of dipentaerythritol hexaacrylate, 35 parts by mass of an acrylate compound (“Aronix M111” manufactured by Toa Gosei Co., Ltd.), 10 parts by mass of the surface-treated silica particle dispersion A in terms of solid content, a photopolymerization initiator (Ciba 5 parts by mass of “Irgacure 184” manufactured by Specialty Chemicals Co., Ltd. was mixed with an organic solvent (methyl ethyl ketone).
  • Example 14 A hard coat film was produced in the same manner as in Example 1 except that the active energy ray-curable composition for forming the first and second hard coat layers was changed to the following active energy ray-curable composition l. .
  • the first and second hard coat layers each had a thickness of 2.6 ⁇ m and a refractive index of 1.51.
  • ⁇ Active energy ray-curable composition l 50 parts by mass of dipentaerythritol hexaacrylate, 33 parts by mass of an acrylate compound (“Aronix M111” manufactured by Toa Gosei Co., Ltd.), 12 parts by mass of the surface-treated silica particle dispersion A in terms of solid content, a photopolymerization initiator (Ciba 5 parts by mass of “Irgacure 184” manufactured by Specialty Chemicals Co., Ltd. was mixed with an organic solvent (methyl ethyl ketone).
  • Example 5 A hard coat film was produced in the same manner as in Example 1 except that the active energy ray-curable composition for forming the first and second hard coat layers was changed to the following active energy ray-curable composition m. .
  • the first and second hard coat layers each had a thickness of 2.6 ⁇ m and a refractive index of 1.51.
  • Example 6 A hard coat film was produced in the same manner as in Example 1 except that the active energy ray-curable composition for forming the first and second hard coat layers was changed to the following active energy ray-curable composition n. .
  • the first and second hard coat layers each had a thickness of 2.6 ⁇ m and a refractive index of 1.51.
  • first and second hard coat layers were laminated on the above resin layer-laminated PET film in the same manner as in Comparative Example 5 to produce a hard coat film.
  • the first and second hard coat layers each had a thickness of 2.6 ⁇ m and a refractive index of 1.51.
  • Example 15 to 24 An ITO film as a transparent conductive film was laminated on the surface of the second hard coat layer of each of the hard coat films of Examples 1 to 10 by a sputtering method to produce a transparent conductive film. The slipperiness and blocking resistance of these transparent conductive films were evaluated. The results are shown in Table 4.
  • the evaluation of the slipperiness and blocking resistance of the transparent conductive film was conducted in the above-mentioned "(14) Evaluation of slipperiness” and "(15) Evaluation of blocking resistance” and the surface of the first hard coat layer was transparent. Evaluation was performed in the same manner except that the layers were overlapped so that the surface of the conductive film faced.
  • the transparent conductive films of Examples 15 to 24 were all good in slipping property and blocking resistance.
  • Examples 25 to 29 The following high refractive index layer and low refractive index layer were laminated in this order on the surface of the second hard coat layer of the hard coat films of Examples 2, 4, 6, 8, and 10, and then on the low refractive index layer.
  • the following transparent conductive film was formed to produce a transparent conductive film for a capacitive touch panel.
  • ⁇ Lamination of low refractive index layer> The following active energy ray-curable composition for forming a low refractive index layer is applied by a gravure coating method, dried at 90 ° C., and then cured by irradiation with ultraviolet rays of 400 mJ / cm 2 to form a low refractive index layer having a thickness of 40 nm. Formed.
  • the refractive index of this low refractive index layer was 1.40.
  • Di- ( ⁇ -fluoroacrylic acid) -2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-heptadecafluorononylethylene glycol It was prepared by dispersing or dissolving 87 parts by mass, 10 parts by mass of dipentaerythritol hexaacrylate, and 3 parts by mass of a photopolymerization initiator (“Irgacure 184” manufactured by Ciba Specialty Chemicals Co., Ltd.) in an organic solvent (methyl ethyl ketone).
  • An ITO film was laminated by a sputtering method so as to have a thickness of 25 nm, and a transparent conductive film was formed by pattern processing (etching treatment) into a lattice pattern.
  • the evaluation of the slipperiness and blocking resistance of the transparent conductive film was conducted in the above-mentioned "(14) Evaluation of slipperiness” and "(15) Evaluation of blocking resistance” and the surface of the first hard coat layer was transparent. Evaluation was performed in the same manner except that the layers were overlapped so that the surface of the conductive film faced.
  • Examples 31 to 40 As shown below, five types of coating liquids for forming a resin layer having different wetting tensions were prepared.
  • Polyester resin c a polyester resin composed of 43 mol% of 2,6-naphthalenedicarboxylic acid / 5 mol% of 5-sodium sulfoisophthalic acid / 45 mol% of ethylene glycol / 5 mol% of diethylene glycol.
  • Polyester resin d polyester resin composed of terephthalic acid 38 mol% / trimellitic acid 12 mol% / ethylene glycol 45 mol% / diethylene glycol 5 mol%.
  • Particles colloidal silica having an average particle size of 0.19 ⁇ m.
  • Epoxy-based crosslinking agent 1,3-bis (N, N-diglycidylamine) cyclohexane surfactant, polyoxyethylene lauryl ether particle, colloidal silica having an average particle size of 0.19 ⁇ m.
  • polyester resin f a polyester resin composed of terephthalic acid 30 mol% / isophthalic acid 15 mol% / 5-sodium sulfoisophthalic acid 5 mol% / ethylene glycol 30 mol% / 1,4-butanediol 20 mol%.
  • Acrylic resin b acrylic resin composed of 75 mol% of methyl methacrylate / 22 mol% of ethyl acrylate / 1 mol% of acrylic acid / 2 mol% of N-methylolacrylamide ⁇ Melamine cross-linking agent; manufactured by Sanwa Chemical Co., Ltd. "Nikarak MW12LF" -Surfactant; Polyoxyethylene lauryl ether-Particles; Colloidal silica having an average particle size of 0.19 ⁇ m.
  • Polyester copolymer g A polyester copolymer composed of terephthalic acid 32 mol% / isophthalic acid 12 mol% / 5-sodium sulfoisophthalic acid 6 mol% / ethylene glycol 46 mol% / diethylene glycol 4 mol%.
  • Acrylic resin c an acrylic copolymer composed of 70 mol% methyl methacrylate / 22 mol% ethyl acrylate / 4 mol% N-methylolacrylamide / 4 mol% N, N-dimethylacrylamide.
  • Melamine-based cross-linking agent “Nicarac MW12LF” manufactured by Sanwa Chemical Co., Ltd. -Surfactant; Polyoxyethylene lauryl ether-Particles; Colloidal silica having an average particle size of 0.19 ⁇ m.
  • a coating liquid was prepared by mixing 85% by mass of urethane resin, 5% by mass of epoxy-based crosslinking agent, 9% by mass of surfactant, and 1% by mass of particles in a solid content mass ratio.
  • -Urethane resin "Hydran AP-20" manufactured by Dainippon Ink & Chemicals, Inc. ⁇ Epoxy-based cross-linking agent; triethylene glycol diglycidyl ether ⁇ surfactant; polyoxyethylene lauryl ether ⁇ particles;
  • a hard coat film was prepared in the following manner.
  • a resin layer was in-line coated on both sides of a polyethylene terephthalate film (PET film) having a refractive index of 1.65 and a thickness of 100 ⁇ m within the PET film manufacturing process. That is, the resin layer forming coating solution c is applied to both surfaces of a PET film uniaxially stretched in the longitudinal direction by a bar coating method, dried at 100 ° C., then biaxially stretched in the width direction and heated at 230 ° C. for 20 seconds. The PET film in which the resin layer was laminated
  • PET film polyethylene terephthalate film having a refractive index of 1.65 and a thickness of 100 ⁇ m within the PET film manufacturing process. That is, the resin layer forming coating solution c is applied to both surfaces of a PET film uniaxially stretched in the longitudinal direction by a bar coating method, dried at 100 ° C.,
  • the active energy ray-curable composition a used in Example 1 was applied by the gravure coating method on the resin layer on one side of the PET film having the resin layers laminated on both sides, dried at 90 ° C., and then irradiated with ultraviolet rays 400 mJ. / Cm 2 was irradiated and cured to form a first hard coat layer.
  • the thickness of the first hard coat layer was 1.6 ⁇ m.
  • the active energy ray-curable composition b used in Example 2 is formed in the same manner as above on the resin layer on the other side of the PET film (the side opposite to the side on which the first hard coat layer is laminated).
  • a second hard coat layer was formed to produce a hard coat film.
  • the thickness of this second hard coat layer was 1.6 ⁇ m.
  • Examples 32 to 35 A hard coat film was produced in the same manner as in Example 31 except that the resin layer forming coating solution was changed as shown in Table 6.
  • Examples 36 to 40 A hard coat film was produced in the same manner as in Examples 31 to 35 except that the thickness of the first hard coat layer was changed to 2.6 ⁇ m and the thickness of the second hard coat layer was changed to 2.6 ⁇ m. .
  • Particles are likely to be unevenly distributed in the vicinity of the surface, and as a result, protrusions made of particles are efficiently formed. Moreover, by making the thickness of the first hard coat layer less than 2 ⁇ m, the haze value becomes smaller and the transparency is improved.
  • Protrusion 11 Protrusion 20 Horizontal straight line 30 Vertical straight line

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

Provided is a hard coat film characterized by the following: a first hard coat layer containing particles is provided on at least one surface of a base film; protrusions formed by the particles are present on the surface of the first hard coat layer at a density of 300-4000 per 100 μm2; the center line average roughness (Ra1) of the surface of the first hard coat layer is under 30 nm and the haze value is less than 1.5%. The hard coat film has high transparency, good slipperiness and anti-blocking properties.

Description

ハードコートフィルムおよび透明導電性フィルムHard coat film and transparent conductive film
 本発明は、透明性が高く、かつ滑り性と耐ブロッキング性の良好なハードコートフィルムに関し、詳細には透明導電性フィルムに好適なハードコートフィルムに関する。 The present invention relates to a hard coat film having high transparency and good slipperiness and blocking resistance, and more particularly to a hard coat film suitable for a transparent conductive film.
 基材フィルムにハードコート層が積層されたハードコートフィルムは、ディスプレイやタッチパネルの表面保護として、あるいはタッチパネル用電極フィルム(タッチパネル用透明導電性フィルム)のベースフィルムとして用いられている。これらの用途に使用されるハードコートフィルムは、透明性が高く、かつ滑り性と耐ブロッキング性が良好であることが要求される。 A hard coat film in which a hard coat layer is laminated on a base film is used as a surface film for a display or a touch panel, or as a base film for an electrode film for a touch panel (transparent conductive film for a touch panel). The hard coat film used for these uses is required to have high transparency and good slipping and blocking resistance.
 ハードコートフィルムあるいはポリエステルフィルムの滑り性や耐ブロッキング性を改良するために、表面に突起を設けることが提案されている(特許文献1、2) It has been proposed to provide protrusions on the surface in order to improve the slipperiness and blocking resistance of the hard coat film or polyester film (Patent Documents 1 and 2).
特開平7-314628号公報JP-A-7-314628 特開2000-211082号公報Japanese Patent Laid-Open No. 2000-211082
 しかしながら、上記特許文献に開示されている技術では、透明性、滑り性および耐ブロッキング性を同時に十分に満足させるまでには至っていない。 However, the techniques disclosed in the above-mentioned patent documents have not yet fully satisfied transparency, slipperiness and blocking resistance.
 従って、本発明の目的は、上記従来技術の課題に鑑み、透明性が高く、かつ滑り性と耐ブロッキング性の良好なハードコートフィルムを提供することにある。本発明の他の目的は、透明導電性フィルムに好適なハードコートフィルムを提供することにある。 Accordingly, an object of the present invention is to provide a hard coat film having high transparency and good slipping and blocking resistance in view of the above-mentioned problems of the prior art. Another object of the present invention is to provide a hard coat film suitable for a transparent conductive film.
 本発明の上記目的は、以下の1)~15)のいずれかの構成によって達成される。 The above object of the present invention is achieved by any one of the following configurations 1) to 15).
1)基材フィルムの少なくとも一方の面に、粒子を含有する第1ハードコート層を備え、第1ハードコート層の表面に前記粒子からなる突起が100μm当たり300~4000個の密度で存在しており、第1ハードコート層の表面の中心線平均粗さ(Ra1)が30nm未満であり、ヘイズ値が1.5%未満であることを特徴とするハードコートフィルム。 1) A first hard coat layer containing particles is provided on at least one surface of the base film, and protrusions made of the particles are present on the surface of the first hard coat layer at a density of 300 to 4000 per 100 μm 2. A hard coat film having a center line average roughness (Ra1) of a surface of the first hard coat layer of less than 30 nm and a haze value of less than 1.5%.
2)前記粒子の平均粒子径(r)が0.05~0.5μmである、1)に記載のハードコートフィルム。 2) The hard coat film according to 1), wherein the average particle diameter (r) of the particles is 0.05 to 0.5 μm.
3)第1ハードコート層の厚み(d)に対する前記粒子の平均粒子径(r)の比率(r/d)が0.01~0.30である、1)または2)に記載のハードコートフィルム。 3) The hard coat according to 1) or 2), wherein the ratio (r / d) of the average particle diameter (r) of the particles to the thickness (d) of the first hard coat layer is 0.01 to 0.30. the film.
4)前記突起の平均直径が0.03~0.3μmであり、前記突起の平均高さが0.03~0.3μmである、1)~3)のいずれかに記載のハードコートフィルム。 4) The hard coat film according to any one of 1) to 3), wherein an average diameter of the protrusions is 0.03 to 0.3 μm, and an average height of the protrusions is 0.03 to 0.3 μm.
5)前記突起の平均間隔が0.10~0.70μmである、前記1)~4)のいずれかに記載のハードコートフィルム。 5) The hard coat film according to any one of 1) to 4), wherein an average interval between the protrusions is 0.10 to 0.70 μm.
6)第1ハードコート層の厚み(d)が0.5μm以上10μm未満である、1)~5)のいずれかに記載のハードコートフィルム。 6) The hard coat film according to any one of 1) to 5), wherein the thickness (d) of the first hard coat layer is 0.5 μm or more and less than 10 μm.
7)基材フィルムと第1ハードコート層との間に樹脂層を有し、前記樹脂層は、その厚みが0.005~0.3μmで、かつ平均粒子径が樹脂層の厚みの1.3倍以上である粒子を含有する、1)~6)のいずれかに記載のハードコートフィルム。 7) A resin layer is provided between the base film and the first hard coat layer, and the resin layer has a thickness of 0.005 to 0.3 μm and an average particle diameter of 1. The hard coat film according to any one of 1) to 6), which contains particles that are three times or more.
8)基材フィルムがポリエチレンテレフタレートフィルムであり、基材フィルムと第1ハードコート層との間に、屈折率が1.55~1.61である樹脂層を有する、1)~7)のいずれかに記載のハードコートフィルム。 8) The base film is a polyethylene terephthalate film, and has a resin layer having a refractive index of 1.55 to 1.61 between the base film and the first hard coat layer. Hard coat film according to crab.
9)基材フィルムと第1ハードコート層との間に、ぬれ張力が52mN/m以下である樹脂層を有する、1)~8)のいずれかに記載のハードコートフィルム。 9) The hard coat film according to any one of 1) to 8), which has a resin layer having a wetting tension of 52 mN / m or less between the base film and the first hard coat layer.
10)第1ハードコート層の厚みが2μm未満である、9)に記載のハードコートフィルム。 10) The hard coat film according to 9), wherein the thickness of the first hard coat layer is less than 2 μm.
11)第1ハードコート層に含有される粒子が、粒子の表面自由エネルギーを小さくするための表面処理が施された無機粒子、および粒子の表面が疎水化処理された無機粒子からなる群の中から選ばれる少なくとも1種である、1)~10)のいずれかに記載のハードコートフィルム。 11) Among the group consisting of particles contained in the first hard coat layer are inorganic particles that have been subjected to a surface treatment for reducing the surface free energy of the particles, and inorganic particles that have been subjected to a hydrophobic treatment on the surface of the particles. The hard coat film according to any one of 1) to 10), which is at least one selected from the group consisting of:
12)前記粒子の表面自由エネルギーを小さくするための表面処理が施された無機粒子を得るための表面処理が下記(I)または(II)である、11)に記載のハードコートフィルム。
(I)下記の一般式(1)で示されるフッ素原子を有するオルガノシラン化合物、該オルガノシランの加水分解物、および該オルガノシランの加水分解物の部分縮合物からなる群の中から選ばれる少なくとも1つの化合物で表面処理する。
 C2n+1-(CH-Si(Q)     ・・・・一般式(1)
(一般式(1)において、nは1~10の整数、mは1~5の整数を表す。Qは炭素数1~5のアルコキシ基またはハロゲン原子を表す。)
 (II)下記一般式(2)で示される化合物で処理し、更に下記一般式(3)で示されるフッ素化合物で表面処理する。
 B-R-SiR (OR3-n      ・・・・一般式(2)
 D-R-Rf              ・・・・一般式(3)
(一般式(2)および(3)において、BおよびDはそれぞれ独立に反応性部位を表し、RおよびRはそれぞれ独立に炭素数1から3のアルキレン基、あるいは前記アルキレン基から導出されるエステル構造を表し、RおよびRはそれぞれ独立に水素あるいは炭素数が1から4のアルキル基を表し、Rfはフルオロアルキル基を表し、nは0から2の整数を表す。)
12) The hard coat film according to 11), wherein the surface treatment for obtaining inorganic particles subjected to a surface treatment for reducing the surface free energy of the particles is the following (I) or (II).
(I) At least selected from the group consisting of an organosilane compound having a fluorine atom represented by the following general formula (1), a hydrolyzate of the organosilane, and a partial condensate of the hydrolyzate of the organosilane Surface treatment with one compound.
C n F 2n + 1 — (CH 2 ) m —Si (Q) 3 ... General formula (1)
(In general formula (1), n represents an integer of 1 to 10, m represents an integer of 1 to 5. Q represents an alkoxy group having 1 to 5 carbon atoms or a halogen atom.)
(II) Treatment with a compound represented by the following general formula (2), and further surface treatment with a fluorine compound represented by the following general formula (3).
BR 4 —SiR 5 n (OR 6 ) 3-n ... General formula (2)
DR 7 -Rf 2 ... General formula (3)
(In the general formulas (2) and (3), B and D each independently represent a reactive site, and R 4 and R 7 are each independently derived from an alkylene group having 1 to 3 carbon atoms, or the alkylene group. R 5 and R 6 each independently represent hydrogen or an alkyl group having 1 to 4 carbon atoms, Rf 2 represents a fluoroalkyl group, and n represents an integer of 0 to 2.)
13)前記粒子の表面が疎水化処理された無機粒子を得るための疎水化処理に用いられる疎水性化合物が、炭素数4以上のフルオロアルキル基と反応性部位とを有するフッ素化合物、炭素数8以上の炭化水素基と反応性部位とを有する長鎖炭化水素化合物、およびシロキサン基と反応性部位とを有するシリコーン化合物からなる群の中から選ばれる少なくとも1つの化合物である、11)に記載のハードコートフィルム。 13) The hydrophobic compound used in the hydrophobization treatment for obtaining inorganic particles having the surface of the particles hydrophobized is a fluorine compound having a fluoroalkyl group having 4 or more carbon atoms and a reactive site, carbon number 8 11) The long-chain hydrocarbon compound having the above hydrocarbon group and reactive site, and at least one compound selected from the group consisting of a silicone compound having a siloxane group and reactive site. Hard coat film.
14)第1ハードコート層に含有される粒子がシリカ粒子である、1)~13)のいずれかに記載のハードコートフィルム。 14) The hard coat film according to any one of 1) to 13), wherein the particles contained in the first hard coat layer are silica particles.
15)前記基材フィルムの第1ハードコート層が設けられた面とは反対面に第2ハードコート層を備え、第2ハードコート層の表面には粒子からなる突起が実質的に存在せず、かつ第2ハードコート層の表面の中心線平均粗さ(Ra2)が25nm以下である、1)~14)のいずれかに記載のハードコートフィルム。 15) A second hard coat layer is provided on the surface of the base film opposite to the surface on which the first hard coat layer is provided, and the surface of the second hard coat layer is substantially free of protrusions made of particles. The hard coat film according to any one of 1) to 14), wherein the center line average roughness (Ra2) of the surface of the second hard coat layer is 25 nm or less.
16)上記1)~15)のいずれかに記載のハードコートフィルムの少なくとも一方の面に透明導電膜を備える透明導電性フィルム。 16) A transparent conductive film comprising a transparent conductive film on at least one surface of the hard coat film according to any one of 1) to 15) above.
 本発明によれば、透明性が高く、かつ滑り性と耐ブロッキング性の良好なハードコートフィルムを提供することができる。本発明のハードコートフィルムは透明導電性フィルムのベースフィルムに好適である。 According to the present invention, it is possible to provide a hard coat film having high transparency and good slipperiness and blocking resistance. The hard coat film of the present invention is suitable for a base film of a transparent conductive film.
図1は、走査型電子顕微鏡で観察された第1ハードコート層表面の観察図の一例である。FIG. 1 is an example of an observation view of the surface of the first hard coat layer observed with a scanning electron microscope. 図2は、第1ハードコート層表面の突起の平面形状を模式的に表した図である。FIG. 2 is a diagram schematically showing the planar shape of the protrusions on the surface of the first hard coat layer. 図3は、図1の第1ハードコート層表面を模式的に表した模式図である。FIG. 3 is a schematic view schematically showing the surface of the first hard coat layer in FIG. 図4は、図3の一部を省略した模式図である。FIG. 4 is a schematic diagram in which a part of FIG. 3 is omitted.
 本発明の一実施態様に係るハードコートフィルムは、基材フィルムの少なくとも一方の面に第1ハードコート層を有する。この第1ハードコート層は粒子を含有し、第1ハードコート層の表面に粒子による突起(以下、単に「突起」ということがある)を100μm当たり300~4000個有する。この第1ハードコート層表面の中心線平均粗さ(Ra1)が30nm未満である。このような本実施態様のハードコートフィルムは、ヘイズ値が1.5%未満である。 The hard coat film which concerns on one embodiment of this invention has a 1st hard coat layer in the at least one surface of a base film. The first hard coat layer contains particles, protrusions due to particles on the surface of the first hard coat layer (hereinafter, simply will be referred to as "projections") are perforated 300-4000 per 100 [mu] m 2 of. The center line average roughness (Ra1) of the surface of the first hard coat layer is less than 30 nm. Such a hard coat film of this embodiment has a haze value of less than 1.5%.
 第1ハードコート層の表面に突起を第1ハードコート層表面の単位面積(100μm)当たり300~4000個有することにより、滑り性および耐ブロッキング性が良好となる。 By having 300 to 4000 protrusions per unit area (100 μm 2 ) of the surface of the first hard coat layer on the surface of the first hard coat layer, the slipping property and the blocking resistance are improved.
 突起の個数密度の範囲は、100μm当たり400~3500個の範囲が好ましく、500~3000個の範囲がより好ましく、600~3000個の範囲がさらに好ましく、特に700~2500個の範囲が好ましい。 The range of the number density of protrusions is preferably in the range of 400 to 3,500 per 100 μm 2 , more preferably in the range of 500 to 3000, still more preferably in the range of 600 to 3000, and particularly preferably in the range of 700 to 2500.
 粒子の個数密度が100μm当たり300個未満となると、滑り性や耐ブロッキング性が低下する。一方、粒子の個数密度が100μm当たり4000個を越えると、第1ハードコート層表面の平滑性が低下し、ヘイズ値が大きくなり、ハードコートフィルムの透明性が低下する。 When the number density of the particles is less than 300 per 100 μm 2 , the slipperiness and blocking resistance are lowered. On the other hand, when the number density of particles exceeds 4000 per 100 μm 2 , the smoothness of the surface of the first hard coat layer is lowered, the haze value is increased, and the transparency of the hard coat film is lowered.
 本実施態様のハードコートフィルムは、上記したように第1ハードコート層表面に比較的多くの突起を有しながら、第1ハードコート層表面は比較的平滑でかつハードコートフィルムのヘイズ値が小さいことが特徴の1つである。具体的には、本実施態様における第1ハードコート層表面の中心線平均粗さ(Ra1)は30nm未満であり、かつハードコートフィルムのヘイズ値は1.5%未満であることが重要である。 The hard coat film of this embodiment has a relatively large number of protrusions on the surface of the first hard coat layer as described above, while the surface of the first hard coat layer is relatively smooth and the haze value of the hard coat film is small. This is one of the features. Specifically, it is important that the center line average roughness (Ra1) on the surface of the first hard coat layer in this embodiment is less than 30 nm, and the haze value of the hard coat film is less than 1.5%. .
 第1ハードコート層表面の中心線平均粗さ(Ra1)は、25nm以下が好ましく、20nm以下がより好ましく、18nm以下が特に好ましい。下限の中心線平均粗さ(Ra1)は、滑り性および耐ブロッキング性を確保するという観点から5nm以上が好ましく、7nm以上がより好ましく、9nm以上が特に好ましい。 The center line average roughness (Ra1) of the first hard coat layer surface is preferably 25 nm or less, more preferably 20 nm or less, and particularly preferably 18 nm or less. The lower limit center line average roughness (Ra1) is preferably 5 nm or more, more preferably 7 nm or more, and particularly preferably 9 nm or more from the viewpoint of ensuring slipperiness and blocking resistance.
 第1ハードコート層表面の中心線平均粗さ(Ra1)が30nm以上となると平滑性が低下し、ハードコートフィルムの透明性が低下する。すなわち、ハードコートフィルムのヘイズ値が大きくなる。 When the center line average roughness (Ra1) on the surface of the first hard coat layer is 30 nm or more, the smoothness is lowered and the transparency of the hard coat film is lowered. That is, the haze value of the hard coat film is increased.
 本実施態様のハードコートフィルムは、高い透明性を実現するという観点からヘイズ値が1.5%未満であることが重要である。本実施態様のハードコートフィルムのヘイズ値は、さらに1.1%以下が好ましく、1.0%以下がより好ましい。下限のヘイズ値は小さいほど好ましいが、現実的には0.01%程度である。 It is important that the hard coat film of the present embodiment has a haze value of less than 1.5% from the viewpoint of realizing high transparency. The haze value of the hard coat film of this embodiment is preferably 1.1% or less, more preferably 1.0% or less. The lower haze value is preferably as small as possible, but practically about 0.01%.
 第1ハードコート層表面に突起を100μm当たり300~4000個有し、かつ第1ハードコート層表面の中心線平均粗さ(Ra1)を30nm未満とし、かつハードコートフィルムのヘイズ値を1.5%未満とするには、第1ハードコート層に平均粒子径(r)が0.05~0.5μmである粒子を含有させて、この粒子を第1ハードコート層の表面近傍に比較的多く存在させることにより第1ハードコート層表面に突起を形成させることが好ましい。 The surface of the first hard coat layer has 300 to 4000 protrusions per 100 μm 2 , the center line average roughness (Ra1) of the first hard coat layer surface is less than 30 nm, and the haze value of the hard coat film is 1. In order to make it less than 5%, particles having an average particle diameter (r) of 0.05 to 0.5 μm are contained in the first hard coat layer, and these particles are relatively placed in the vicinity of the surface of the first hard coat layer. It is preferable that protrusions be formed on the surface of the first hard coat layer by making it exist in large quantities.
 更に、第1ハードコート層に含有される粒子の平均粒子径(r)(μm)と第1ハードコート層の厚み(d)(μm)の比率(r/d)が0.01~0.30であることが好ましい。これによって、第1ハードコート層表面の中心線平均粗さ(Ra1)が小さくなり、ハードコートフィルムのヘイズ値も小さくなる。 Further, the ratio (r / d) of the average particle diameter (r) (μm) of the particles contained in the first hard coat layer to the thickness (d) (μm) of the first hard coat layer is 0.01 to 0.00. 30 is preferable. Thereby, the center line average roughness (Ra1) on the surface of the first hard coat layer is reduced, and the haze value of the hard coat film is also reduced.
 以下、ハードコートフィルムを構成する各構成要素について詳細に説明する。 Hereinafter, each component constituting the hard coat film will be described in detail.
[基材フィルム]
 基材フィルムには、プラスチックフィルムが好ましく用いられる。基材フィルムを構成する材質としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)などのポリエステル、ポリイミド、ポリフェニレンスルフィド、アラミド、ポリプロピレン、ポリエチレン、ポリ乳酸、ポリ塩化ビニル、ポリカーボネート、ポリメタクリル酸メチル、脂環式アクリル樹脂、シクロオレフィン樹脂、トリアセチルセルロース、およびこれら樹脂を混合および/または共重合したものが挙げられる。これらの樹脂を未延伸にて、または一軸延伸もしくは二軸延伸してフィルムとしたものを基材フィルムとして適用することができる。
[Base film]
A plastic film is preferably used for the base film. Examples of the material constituting the base film include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate (PEN), polyimide, polyphenylene sulfide, aramid, polypropylene, polyethylene, polylactic acid, polyvinyl chloride, polycarbonate, and polymethacrylic. Examples include methyl acid, alicyclic acrylic resin, cycloolefin resin, triacetyl cellulose, and those obtained by mixing and / or copolymerizing these resins. A film obtained by unstretching these resins, or uniaxially stretching or biaxially stretching into a film can be applied as a base film.
 上記した基材フィルムの中でも、ポリエステルフィルムは透明性、寸法安定性、機械的特性、耐熱性、電気的特性、耐薬品性などに優れており、特にポリエチレンテレフタレートフィルム(PETフィルム)が好ましく用いられる。 Among the substrate films described above, the polyester film is excellent in transparency, dimensional stability, mechanical properties, heat resistance, electrical properties, chemical resistance, and the like, and a polyethylene terephthalate film (PET film) is particularly preferably used. .
 基材フィルムの厚みの範囲は、20~300μmの範囲が適当であり、30~200μmの範囲が好ましく、50~150μmの範囲がより好ましい。 The range of the thickness of the base film is suitably 20 to 300 μm, preferably 30 to 200 μm, and more preferably 50 to 150 μm.
 基材フィルムは、少なくとも第1ハードコート層が積層される面に以下に示すような樹脂層を有していることが好ましい。つまり、基材フィルムと第1ハードコート層との間に以下に示す樹脂層を有していることが好ましい。 The base film preferably has at least a resin layer as shown below on the surface on which the first hard coat layer is laminated. That is, it is preferable to have the resin layer shown below between a base film and a 1st hard-coat layer.
[樹脂層]
 基材フィルムと第1ハードコート層の密着性を強化するために、基材フィルムは少なくとも第1ハードコート層が積層される面に樹脂層が設けられていることが好ましい。
[Resin layer]
In order to reinforce the adhesion between the base film and the first hard coat layer, the base film is preferably provided with a resin layer on at least the surface on which the first hard coat layer is laminated.
 樹脂層は、樹脂を主成分として含有する層である。具体的には、樹脂層は、樹脂を樹脂層の固形分総量100質量%に対して50質量%以上含有する層である。樹脂層を形成する樹脂としては、ポリエステル樹脂、アクリル樹脂、ウレタン樹脂、ポリカーボネート樹脂、エポキシ樹脂、アルキッド樹脂、尿素樹脂等が挙げられる。これらの樹脂は単独あるいは複数種併用することができる。 The resin layer is a layer containing a resin as a main component. Specifically, the resin layer is a layer containing 50% by mass or more of resin with respect to 100% by mass of the total solid content of the resin layer. Examples of the resin forming the resin layer include polyester resin, acrylic resin, urethane resin, polycarbonate resin, epoxy resin, alkyd resin, urea resin, and the like. These resins can be used alone or in combination.
 樹脂層は、基材フィルムと第1ハードコート層との間に介在し、基材フィルムと第1ハードコート層との密着性を向上させるという観点から、樹脂としてポリエステル樹脂、アクリル樹脂およびポリウレタン樹脂からなる群の中から選ばれる少なくとも1種を含有することが好ましい。特に、樹脂層は樹脂として少なくともポリエステル樹脂を含有することが好ましい。 The resin layer is interposed between the base film and the first hard coat layer, and from the viewpoint of improving the adhesion between the base film and the first hard coat layer, the resin is a polyester resin, an acrylic resin, and a polyurethane resin. It is preferable to contain at least one selected from the group consisting of In particular, the resin layer preferably contains at least a polyester resin as a resin.
 樹脂層における樹脂の含有量は、樹脂層の固形分総量100質量%に対して60質量%以が好ましく、70質量%以上がより好ましく、特に80質量%以上が好ましい。上限に関しては、樹脂層における樹脂の含有量は95質量%以下が好ましく、90質量%以下がより好ましい。 The resin content in the resin layer is preferably 60% by mass or more, more preferably 70% by mass or more, and particularly preferably 80% by mass or more with respect to 100% by mass of the total solid content of the resin layer. Regarding the upper limit, the resin content in the resin layer is preferably 95% by mass or less, and more preferably 90% by mass or less.
 また、樹脂層は2層構成にて形成されていてもよい。2層構成の場合は、基材フィルム側から順にポリエステル樹脂を主成分とする第1樹脂層とアクリル樹脂を主成分とする第2樹脂層で構成されることが好ましい。2層構成について詳細は後述する。 Further, the resin layer may be formed in a two-layer configuration. In the case of a two-layer structure, it is preferable that a first resin layer mainly composed of a polyester resin and a second resin layer mainly composed of an acrylic resin are sequentially formed from the base film side. Details of the two-layer configuration will be described later.
 樹脂層は、ハードコートフィルムの製造工程における適度な滑り性や巻き取り性を確保するという観点から、粒子を含有することが好ましい。 The resin layer preferably contains particles from the viewpoint of ensuring appropriate slipping and winding properties in the manufacturing process of the hard coat film.
 樹脂層に含有される粒子としては特に限定されないが、シリカ粒子、酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、ゼオライト粒子などの無機粒子や、アクリル粒子、シリコーン粒子、ポリイミド粒子、テフロン(登録商標)粒子、架橋ポリエステル粒子、架橋ポリスチレン粒子、架橋重合体粒子、コアシェル粒子などの有機粒子が挙げられる。これらの中でもシリカ粒子が好ましく、特にコロイダルシリカが好ましい。 The particles contained in the resin layer are not particularly limited, but inorganic particles such as silica particles, titanium oxide, aluminum oxide, zirconium oxide, calcium carbonate, zeolite particles, acrylic particles, silicone particles, polyimide particles, Teflon (registered trademark) ) Organic particles such as particles, crosslinked polyester particles, crosslinked polystyrene particles, crosslinked polymer particles, and core-shell particles. Among these, silica particles are preferable, and colloidal silica is particularly preferable.
 樹脂層に含有される粒子は、その平均粒子径が樹脂層の厚みより大きいことが好ましい。具体的には、平均粒子径は樹脂層の厚みの1.3倍以上が好ましく、1.5倍以上がより好ましく、2.0倍以上が特に好ましい。上限は20倍以下が好ましく、15倍以下がより好ましく、10倍以下が特に好ましい。 The particles contained in the resin layer preferably have an average particle size larger than the thickness of the resin layer. Specifically, the average particle diameter is preferably 1.3 times or more of the thickness of the resin layer, more preferably 1.5 times or more, and particularly preferably 2.0 times or more. The upper limit is preferably 20 times or less, more preferably 15 times or less, and particularly preferably 10 times or less.
 このような平均粒子径が樹脂層の厚みより大きい粒子を含有する樹脂層に、第1ハードコート層を直接に積層することにより、滑り性および耐ブロッキング性が更に向上する。 The slip property and the blocking resistance are further improved by directly laminating the first hard coat layer on the resin layer containing particles having an average particle diameter larger than the thickness of the resin layer.
 樹脂層に含有される粒子の平均粒子径は樹脂層の厚み設計に応じて適宜選択されるが、具体的には平均粒子径の範囲は0.02~1μmの範囲であることが好ましく、0.05~0.7μmの範囲がより好ましく、特に0.1~0.5μmの範囲が好ましい。平均粒子径が0.02μm未満であると滑り性や耐ブロッキング性が低下することがある。平均粒子径が1μmを越えると粒子が脱落したり、透明性が低下したり、あるいは外観が悪化することがある。 The average particle size of the particles contained in the resin layer is appropriately selected according to the thickness design of the resin layer. Specifically, the range of the average particle size is preferably in the range of 0.02 to 1 μm. A range of 0.05 to 0.7 μm is more preferable, and a range of 0.1 to 0.5 μm is particularly preferable. If the average particle size is less than 0.02 μm, the slipperiness and blocking resistance may be lowered. If the average particle diameter exceeds 1 μm, the particles may fall off, the transparency may be lowered, or the appearance may be deteriorated.
 樹脂層の厚みの範囲は、0.005~0.3μmの範囲であることが好ましい。樹脂層の厚みが0.005μm未満の場合は、基材フィルムと第1ハードコート層との密着性が低下する。また、樹脂層の厚みが0.3μmより大きくなると第1ハードコート層を積層した後の耐ブロッキング性が低下することがある。樹脂層の厚みは、さらに0.01μm以上が好ましく、0.015μm以上がより好ましく、特に0.02μm以上が好ましい。上限に関し、樹脂層の厚みは0.25μm以下が好ましく、0.2μm以下が好ましく、特に0.15μm以下が好ましい。樹脂層が複数存在する場合は、全ての樹脂層の厚みを合計した値が上記厚みの条件を充足することが好ましい。 The thickness range of the resin layer is preferably in the range of 0.005 to 0.3 μm. When the thickness of the resin layer is less than 0.005 μm, the adhesion between the base film and the first hard coat layer is lowered. Moreover, when the thickness of the resin layer is larger than 0.3 μm, the blocking resistance after the first hard coat layer is laminated may be lowered. The thickness of the resin layer is further preferably 0.01 μm or more, more preferably 0.015 μm or more, and particularly preferably 0.02 μm or more. Regarding the upper limit, the thickness of the resin layer is preferably 0.25 μm or less, preferably 0.2 μm or less, particularly preferably 0.15 μm or less. When there are a plurality of resin layers, it is preferable that the total thickness of all the resin layers satisfies the above thickness condition.
 樹脂層における粒子の含有量の範囲は、樹脂層の固形分総量100質量%に対して0.05~10質量%の範囲が好ましく、0.1~8質量%の範囲がより好ましく、特に0.5~5質量%の範囲が好ましい。樹脂層における粒子の含有量が0.05質量%未満であると、良好な滑り性や耐ブロッキング性が得られないことがあり、粒子の含有量が10質量%を越えると、透明性が低下したり、第1ハードコート層の塗布性が悪化したり、基材フィルムと第1ハードコート層との密着性が低下することがある。 The range of the content of the particles in the resin layer is preferably in the range of 0.05 to 10% by mass, more preferably in the range of 0.1 to 8% by mass, particularly 0% to 100% by mass of the total solid content of the resin layer. The range of 5 to 5% by mass is preferable. When the content of the particles in the resin layer is less than 0.05% by mass, good slipping property and blocking resistance may not be obtained. When the content of the particles exceeds 10% by mass, the transparency is lowered. Or the applicability of the first hard coat layer may deteriorate, or the adhesion between the base film and the first hard coat layer may be reduced.
 樹脂層は、さらに架橋剤を含有することが好ましい。樹脂層は上述の樹脂と架橋剤を含有する熱硬化層であることが好ましい。樹脂層をこのような熱硬化層とすることにより、基材フィルムと第1ハードコート層との密着性をさらに向上させることができる。樹脂層を熱硬化するときの条件(加熱温度、時間)は特に限定されないが、加熱温度は70℃以上が好ましく、100℃以上がより好ましく、150℃以上が特に好ましく、200℃以上が最も好ましい。上限に関し、加熱温度は300℃以下が好ましい。加熱時間の範囲は5~300秒の範囲が好ましく、10~200秒の範囲がより好ましい。 The resin layer preferably further contains a crosslinking agent. The resin layer is preferably a thermosetting layer containing the above-described resin and a crosslinking agent. By using such a thermosetting layer as the resin layer, the adhesion between the base film and the first hard coat layer can be further improved. The conditions (heating temperature, time) for thermosetting the resin layer are not particularly limited, but the heating temperature is preferably 70 ° C or higher, more preferably 100 ° C or higher, particularly preferably 150 ° C or higher, and most preferably 200 ° C or higher. . Regarding the upper limit, the heating temperature is preferably 300 ° C. or lower. The range of the heating time is preferably 5 to 300 seconds, and more preferably 10 to 200 seconds.
 上記架橋剤としては、例えばメラミン系架橋剤、オキサゾリン系架橋剤、カルボジイミド系架橋剤、イソシアネート系架橋剤、アジリジン系架橋剤、エポキシ系架橋剤、メチロール化あるいはアルキロール化した尿素系架橋剤、アクリルアミド系架橋剤、ポリアミド系樹脂、アミドエポキシ化合物、各種シランカップリング剤、各種チタネート系カップリング剤などが挙げられる。これらの中でも、ラミン系架橋剤、オキサゾリン系架橋剤、カルボジイミド系架橋剤、イソシアネート系架橋剤、アジリジン系架橋剤が好ましく、特にメラミン系架橋剤が好ましい。 Examples of the crosslinking agent include melamine crosslinking agent, oxazoline crosslinking agent, carbodiimide crosslinking agent, isocyanate crosslinking agent, aziridine crosslinking agent, epoxy crosslinking agent, methylolated or alkylolized urea crosslinking agent, acrylamide Examples thereof include system crosslinking agents, polyamide resins, amide epoxy compounds, various silane coupling agents, and various titanate coupling agents. Among these, laminic crosslinking agents, oxazoline crosslinking agents, carbodiimide crosslinking agents, isocyanate crosslinking agents, and aziridine crosslinking agents are preferable, and melamine crosslinking agents are particularly preferable.
 メラミン系架橋剤としては、例えばイミノ基型メチル化メラミン樹脂、メチロール基型メラミン樹脂、メチロール基型メチル化メラミン樹脂、完全アルキル型メチル化メラミン樹脂などが挙げられる。これらの中でも、イミノ基型メラミン樹脂、メチロール化メラミン樹脂が好ましく用いられる。 Examples of the melamine-based crosslinking agent include imino group type methylated melamine resin, methylol group type melamine resin, methylol group type methylated melamine resin, and fully alkyl type methylated melamine resin. Among these, imino group type melamine resins and methylolated melamine resins are preferably used.
 樹脂層における架橋剤の含有量の範囲は、樹脂層の固形分総量100質量%に対して0.5~40質量%の範囲が好ましく、1~30質量%の範囲がより好ましく、特に2~20質量%の範囲が好ましい。 The range of the content of the crosslinking agent in the resin layer is preferably in the range of 0.5 to 40% by mass, more preferably in the range of 1 to 30% by mass, especially 2 to 2% with respect to 100% by mass of the total solid content of the resin layer. A range of 20% by weight is preferred.
 基材フィルム上に樹脂層を介して第1ハードコート層を積層して得られるハードコートフィルムの反射色はニュートラルな無色の色相が好ましい。この観点から、基材フィルムとしてポリエチレンテレフタレートフィルム(PETフィルム)を用いた場合、樹脂層の屈折率の範囲は1.55~1.61の範囲が好ましく、1.56~1.60の範囲がより好ましく、1.57~1.59の範囲が特に好ましい。 The reflection color of the hard coat film obtained by laminating the first hard coat layer on the base film via the resin layer is preferably a neutral colorless hue. From this viewpoint, when a polyethylene terephthalate film (PET film) is used as the base film, the range of the refractive index of the resin layer is preferably 1.55 to 1.61, and more preferably 1.56 to 1.60. A range of 1.57 to 1.59 is more preferable.
 ポリエチレンテレフタレートフィルム(PETフィルム)の屈折率は一般に1.62~1.70程度であり、樹脂層の屈折率を上記の範囲(1.55~1.61)とすることにより、ハードコートフィルムの反射色をニュートラルな無色に近づけることができる。つまり、PETフィルムの屈折率(np)と樹脂層の屈折率(nr)との差(np-nr)は、0.02~0.1の範囲であることが好ましく、0.03~0.09の範囲であることがより好ましく、0.04~0.08の範囲であることが特に好ましい。 The refractive index of a polyethylene terephthalate film (PET film) is generally about 1.62 to 1.70, and by adjusting the refractive index of the resin layer to the above range (1.55 to 1.61), The reflected color can be close to neutral and colorless. That is, the difference (np−nr) between the refractive index (np) of the PET film and the refractive index (nr) of the resin layer is preferably in the range of 0.02 to 0.1, preferably 0.03 to 0.00. The range of 09 is more preferable, and the range of 0.04 to 0.08 is particularly preferable.
 樹脂層の屈折率を1.55~1.61とするには、樹脂として分子中にナフタレン環を含むポリエステル樹脂を用いることが好ましい。ナフタレン環を含むポリエステル樹脂は、例えば、共重合成分として1,4-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸などの多価カルボン酸を使用することによって合成することができる。 In order to set the refractive index of the resin layer to 1.55 to 1.61, it is preferable to use a polyester resin containing a naphthalene ring in the molecule as the resin. A polyester resin containing a naphthalene ring can be synthesized, for example, by using a polyvalent carboxylic acid such as 1,4-naphthalenedicarboxylic acid or 2,6-naphthalenedicarboxylic acid as a copolymerization component.
 樹脂層における分子中にナフタレン環を含むポリエステル樹脂の含有量の範囲は、全樹脂総量100質量%に対して5~70質量%の範囲が好ましく、10~60質量%の範囲がより好ましい。 The range of the content of the polyester resin containing a naphthalene ring in the molecule in the resin layer is preferably 5 to 70% by mass, more preferably 10 to 60% by mass with respect to 100% by mass of the total resin.
 樹脂層は、基材フィルム上にウェットコーティング法で塗布し、熱硬化して積層されることが好ましい。さらに基材フィルムの製造工程内で樹脂層をウェットコーティング法で塗布する、いわゆるインラインコーティング法によって塗布し、熱硬化して積層されることが好ましい。ウェットコーティング法としては、例えばリバースコート法、スプレーコート法、バーコート法、グラビアコート法、ロッドコート法、ダイコート法等が挙げられる。 It is preferable that the resin layer is applied on the base film by a wet coating method, and is thermoset and laminated. Furthermore, it is preferable that the resin layer is applied by a wet coating method in the manufacturing process of the base film, which is applied by a so-called in-line coating method, and is thermally cured and laminated. Examples of the wet coating method include a reverse coating method, a spray coating method, a bar coating method, a gravure coating method, a rod coating method, and a die coating method.
 前述したように、樹脂層は2層構成のものを採用することができる。かかる2層構成の樹脂層は、1つの塗布液を1回塗布し、その乾燥過程で自己相分離を生起させて形成されることが好ましい。つまり、第1樹脂層の主成分(ポリエステル樹脂)と第2樹脂層の主成分(アクリル樹脂)とを含有する塗布液を塗布し、その乾燥過程でそれぞれの成分の自己相分離を利用して第1樹脂層と第2樹脂層を形成する方法を採用することが好ましい。 As described above, a resin layer having a two-layer structure can be adopted. Such a two-layered resin layer is preferably formed by applying one coating solution once and causing self-phase separation in the drying process. That is, a coating liquid containing the main component (polyester resin) of the first resin layer and the main component (acrylic resin) of the second resin layer is applied, and self-phase separation of each component is utilized in the drying process. It is preferable to employ a method of forming the first resin layer and the second resin layer.
 この相分離方法を実施するに際し、第1樹脂層の主成分(ポリエステル樹脂)と第2樹脂層の主成分(アクリル樹脂)との表面エネルギー差を大きくすることが好ましい。つまり、表面エネルギーの高いポリエステル樹脂と表面エネルギーの低いアクリル樹脂を用いることが好ましい。特に、ポリエステル樹脂の表面エネルギーを高くするために、スルホン酸基を有するポリエステル樹脂を用いることが好ましい。 In carrying out this phase separation method, it is preferable to increase the surface energy difference between the main component (polyester resin) of the first resin layer and the main component (acrylic resin) of the second resin layer. That is, it is preferable to use a polyester resin having a high surface energy and an acrylic resin having a low surface energy. In particular, it is preferable to use a polyester resin having a sulfonic acid group in order to increase the surface energy of the polyester resin.
 樹脂層が2層構成の場合、基材フィルムと第1ハードコート層との密着性を強化し、ハードコートフィルムの反射色をニュートラルな無色に近づけるという観点から、第1樹脂層の厚みが第2樹脂層の厚みより大きいことが好ましい。第1樹脂層の厚みは第2樹脂層の厚みの1.5倍以上が好ましく、2.0倍以上がより好ましく、特に3.0倍以上が好ましい。 When the resin layer has a two-layer configuration, the thickness of the first resin layer is set from the viewpoint of enhancing the adhesion between the base film and the first hard coat layer and making the reflected color of the hard coat film close to neutral and colorless. It is preferable to be larger than the thickness of the two resin layers. The thickness of the first resin layer is preferably 1.5 times or more, more preferably 2.0 times or more, and particularly preferably 3.0 times or more the thickness of the second resin layer.
 第1樹脂層の厚みの範囲は、具体的には0.02~0.2μmの範囲が好ましく、0.03~0.15μmの範囲がより好ましく、特に0.05~0.12μmの範囲が好ましい。第2樹脂層の厚みの範囲は0.005~0.1μmの範囲が好ましく、0.01~0.07μmの範囲がより好ましく、特に0.01~0.05μmの範囲が好ましい。 Specifically, the thickness range of the first resin layer is preferably 0.02 to 0.2 μm, more preferably 0.03 to 0.15 μm, and particularly preferably 0.05 to 0.12 μm. preferable. The thickness of the second resin layer is preferably in the range of 0.005 to 0.1 μm, more preferably in the range of 0.01 to 0.07 μm, and particularly preferably in the range of 0.01 to 0.05 μm.
 基材フィルムと第1ハードコート層との間に設けられる樹脂層は、その表面のぬれ張力が52mN/m以下であることが好ましい。つまり、本発明では、第1ハードコート層が塗工される樹脂層表面のぬれ張力が52mN/m以下であることが好ましい。このような樹脂層上に直接に第1ハードコート層を積層することにより、第1ハードコート層表面に粒子による突起が形成されやすくなり、その結果滑り性および耐ブロッキング性が更に向上する。ここで、ぬれ張力は、JIS-K-6768に規定される物性値である。 The resin layer provided between the base film and the first hard coat layer preferably has a surface wetting tension of 52 mN / m or less. That is, in the present invention, it is preferable that the wetting tension on the surface of the resin layer to which the first hard coat layer is applied is 52 mN / m or less. By laminating the first hard coat layer directly on such a resin layer, it becomes easy to form protrusions due to particles on the surface of the first hard coat layer, and as a result, the slipping property and the blocking resistance are further improved. Here, the wetting tension is a physical property value defined in JIS-K-6768.
 上記の基材フィルムと第1ハードコート層との間にぬれ張力が52mN/m以下である樹脂層を設ける態様は、第1ハードコート層の厚みが比較的小さい場合に有効である。第1ハードコート層の厚みが小さくなると、第1ハードコート層に含有される粒子の絶対量も小さくなる。しかし、ぬれ張力が52mN/m以下である樹脂層上に第1ハードコート層を積層することにより、第1ハードコート層に含有される粒子が表面近傍に偏在しやすくなり、その結果効率よく突起を形成することができるようになる。この態様は、第1ハードコート層の厚みが2μm未満の場合に有効であり、更に第1ハードコート層の厚みが1.7μm以下の場合に特に有効である。 A mode in which a resin layer having a wetting tension of 52 mN / m or less is provided between the base film and the first hard coat layer is effective when the thickness of the first hard coat layer is relatively small. When the thickness of the first hard coat layer is reduced, the absolute amount of particles contained in the first hard coat layer is also reduced. However, by laminating the first hard coat layer on the resin layer having a wetting tension of 52 mN / m or less, the particles contained in the first hard coat layer are likely to be unevenly distributed near the surface. Can be formed. This aspect is effective when the thickness of the first hard coat layer is less than 2 μm, and is particularly effective when the thickness of the first hard coat layer is 1.7 μm or less.
 上記の観点から、樹脂層表面のぬれ張力は、更に50mN/m以下が好ましい。一方、基材フィルムと第1ハードコート層との密着性を確保するという観点から、樹脂層表面のぬれ張力の下限は、35mN/m以上が好ましく、37mN/m以上がより好ましく、40mN/m以上が特に好ましい。樹脂層表面のぬれ張力が35mN/m未満となると、第1ハードコート層の密着性が低下することがある。 From the above viewpoint, the wetting tension on the surface of the resin layer is preferably 50 mN / m or less. On the other hand, from the viewpoint of ensuring adhesion between the base film and the first hard coat layer, the lower limit of the wetting tension on the surface of the resin layer is preferably 35 mN / m or more, more preferably 37 mN / m or more, and 40 mN / m. The above is particularly preferable. If the wetting tension on the surface of the resin layer is less than 35 mN / m, the adhesion of the first hard coat layer may be lowered.
 樹脂層表面のぬれ張力を52mN/m以下に制御し、かつ基材フィルムと第1ハードコート層との密着性を向上させるという観点から、樹脂層に含有させる樹脂としては、ポリエステル樹脂、アクリル樹脂およびポリウレタン樹脂からなる群の中から選ばれる少なくとも1種を用いることが好ましい。これらの樹脂の中でも更にポリエステル樹脂および/またはアクリル樹脂を用いることが好ましく、特に樹脂として少なくともポリエステル樹脂を用いることが好ましい。 From the viewpoint of controlling the wetting tension on the surface of the resin layer to 52 mN / m or less and improving the adhesion between the base film and the first hard coat layer, the resin to be contained in the resin layer is a polyester resin or an acrylic resin. It is preferable to use at least one selected from the group consisting of polyurethane resins. Among these resins, it is preferable to use a polyester resin and / or an acrylic resin, and it is particularly preferable to use at least a polyester resin as the resin.
 また樹脂層表面のぬれ張力は、上記した架橋剤の種類や含有量を調整することによっても制御することができる。例えば、架橋剤の含有量が多くなると樹脂層表面のぬれ張力は小さくなる傾向にあり、逆に架橋剤の含有量が少なくなると樹脂層表面のぬれ張力は大きくなる傾向にある。 Also, the wetting tension on the surface of the resin layer can be controlled by adjusting the type and content of the crosslinking agent described above. For example, when the content of the crosslinking agent increases, the wetting tension on the surface of the resin layer tends to decrease. Conversely, when the content of the crosslinking agent decreases, the wetting tension on the surface of the resin layer tends to increase.
[第1ハードコート層]
 第1ハードコート層は粒子を含有し、その粒子による突起が第1ハードコート層表面に形成されている。第1ハードコート層表面における突起の個数密度は、第1ハードコート層表面の単位面積(100μm)当たり300~4000個である。さらに突起の個数密度の範囲は、100μm当たり400~3500個の範囲が好ましく、500~3000個の範囲がより好ましく、600~3000個の範囲がさらに好ましく、特に700~2500個の範囲が好ましい。
[First hard coat layer]
The first hard coat layer contains particles, and protrusions due to the particles are formed on the surface of the first hard coat layer. The number density of protrusions on the surface of the first hard coat layer is 300 to 4000 per unit area (100 μm 2 ) of the surface of the first hard coat layer. Further, the range of the number density of the protrusions is preferably in the range of 400 to 3,500 per 100 μm 2 , more preferably in the range of 500 to 3000, further preferably in the range of 600 to 3000, and particularly preferably in the range of 700 to 2500. .
 第1ハードコート層に含有される粒子の平均粒子径(r)の範囲は、0.05~0.5μmの範囲が好ましく、0.06~0.4μmの範囲がより好ましく、特に0.07~0.3μmの範囲が好ましい。 The range of the average particle diameter (r) of the particles contained in the first hard coat layer is preferably in the range of 0.05 to 0.5 μm, more preferably in the range of 0.06 to 0.4 μm, particularly 0.07. A range of ˜0.3 μm is preferred.
 第1ハードコート層に含有される粒子の平均粒子径(r)が0.05μm未満であると、第1ハードコート層表面に十分な大きさの突起が形成されず、滑り性および耐ブロッキング性が十分に改良されないことがある。平均粒子径(r)が0.5μmを越えると、第1ハードコート層表面の平滑性が低下し、中心線平均粗さ(Ra1)が30nm以上となったり、ハードコートフィルムのヘイズ値が1.5%以上となり透明性が低下するなどの不都合が生じることがある。 When the average particle diameter (r) of the particles contained in the first hard coat layer is less than 0.05 μm, a sufficiently large protrusion is not formed on the surface of the first hard coat layer, and slipping and blocking resistance are prevented. May not be improved sufficiently. When the average particle diameter (r) exceeds 0.5 μm, the smoothness of the surface of the first hard coat layer is lowered, the center line average roughness (Ra1) is 30 nm or more, or the haze value of the hard coat film is 1. .5% or more may cause inconvenience such as a decrease in transparency.
 第1ハードコート層に含有される粒子の平均粒子径(r)は、第1ハードコート層の厚み(d)に対して十分に小さいことが好ましい。つまり、粒子の平均粒子径(r)と第1ハードコート層の厚み(d)の比率は、0.01~0.30の範囲が好ましい。このような粒子を第1ハードコート層の表面近傍に比較的多く存在させて第1ハードコート層表面に、上記したように比較的多くの突起を形成させることが好ましい。これによって、第1ハードコート層表面の平滑性を低下させずに、滑り性と耐ブロッキング性を向上させることができる。 It is preferable that the average particle diameter (r) of the particles contained in the first hard coat layer is sufficiently smaller than the thickness (d) of the first hard coat layer. That is, the ratio between the average particle diameter (r) of the particles and the thickness (d) of the first hard coat layer is preferably in the range of 0.01 to 0.30. It is preferable that a relatively large amount of such particles be present near the surface of the first hard coat layer to form a relatively large number of protrusions on the surface of the first hard coat layer as described above. This can improve slipperiness and blocking resistance without reducing the smoothness of the surface of the first hard coat layer.
 第1ハードコート層に含有される粒子の平均粒子径(r)と第1ハードコート層の厚み(d)の比率(r/d)の範囲は、更に、0.01~0.20の範囲が好ましく、0.01~0.15の範囲がより好ましく、0.02~0.10の範囲が特に好ましく、0.02~0.08の範囲が最も好ましい。 The range of the ratio (r / d) of the average particle diameter (r) of the particles contained in the first hard coat layer to the thickness (d) of the first hard coat layer is further in the range of 0.01 to 0.20. The range of 0.01 to 0.15 is more preferable, the range of 0.02 to 0.10 is particularly preferable, and the range of 0.02 to 0.08 is most preferable.
 上述したような粒子によって第1ハードコート層表面に形成される突起の平均直径の範囲は、0.03~0.3μmの範囲が好ましい。さらに、突起の平均直径の範囲は0.04~0.25μmの範囲が好ましく、0.05~0.2μmの範囲が好ましい。これによって、透明性を低下させずに滑り性および耐ブロッキング性を向上させることができる。 The range of the average diameter of the protrusions formed on the surface of the first hard coat layer by the particles as described above is preferably in the range of 0.03 to 0.3 μm. Further, the range of the average diameter of the protrusions is preferably in the range of 0.04 to 0.25 μm, and more preferably in the range of 0.05 to 0.2 μm. Thereby, slipperiness and blocking resistance can be improved without reducing transparency.
 突起の平均高さの範囲は、0.03~0.3μmの範囲が好ましい。さらに突起の平均高さの範囲は、0.04~0.25μmの範囲が好ましく、0.05~0.2μmの範囲が好ましい。これによって、透明性を低下させずに滑り性および耐ブロッキング性を向上させることができる。 The average height of the protrusions is preferably in the range of 0.03 to 0.3 μm. Further, the range of the average height of the protrusions is preferably in the range of 0.04 to 0.25 μm, and more preferably in the range of 0.05 to 0.2 μm. Thereby, slipperiness and blocking resistance can be improved without reducing transparency.
 第1ハードコート層の表面に形成される突起の形状は特に限定されないが、円形もしくは円形に近い平面形状を有することが好ましい。ここで、突起の平面形状は、第1ハードコート層の表面を走査型電子顕微鏡(SEM)で観察したときの平面形状を指す。 The shape of the protrusion formed on the surface of the first hard coat layer is not particularly limited, but preferably has a circular shape or a planar shape close to a circular shape. Here, the planar shape of the protrusion refers to the planar shape when the surface of the first hard coat layer is observed with a scanning electron microscope (SEM).
 図1は、第1ハードコート層の走査型電子顕微鏡による表面写真の一例である。第1ハードコート層の表面には、粒子による突起11が形成されている。 FIG. 1 is an example of a surface photograph of the first hard coat layer by a scanning electron microscope. Projections 11 made of particles are formed on the surface of the first hard coat layer.
 図2は、第1ハードコート層表面の突起の平面形状を模式的に表した図である。 FIG. 2 is a diagram schematically showing the planar shape of the protrusions on the surface of the first hard coat layer.
 突起の平面形状が円形に近いとは、図2に示す模式図において、突起11の最大径(Lmax)を表す線分と中心Lcで直交する突起11の径(Lmin)と、突起11の最大径(Lmax)との比率(Lmin/Lmax)が、0.65以上であることを意味する。 In the schematic diagram shown in FIG. 2, the planar shape of the protrusion means that the diameter (Lmin) of the protrusion 11 orthogonal to the line segment representing the maximum diameter (Lmax) of the protrusion 11 and the center Lc, and the maximum of the protrusion 11. It means that the ratio (Lmin / Lmax) to the diameter (Lmax) is 0.65 or more.
 上記の比率(Lmin/Lmax)は、0.70以上が好ましく、0.80以上がより好ましく、特に0.85以上が好ましい。上限は1.0である。 The ratio (Lmin / Lmax) is preferably 0.70 or more, more preferably 0.80 or more, and particularly preferably 0.85 or more. The upper limit is 1.0.
 図1の表面写真における突起の平面形状はいずれも、円形もしくは上記定義による「円形に近い」形状である。 1 All the planar shapes of the protrusions in the surface photograph of FIG. 1 are circular or “near circular” as defined above.
 本明細書において、突起の直径とは、図2に示す最大径(Lmax)を意味する。突起の平均直径は、図1に示すような第1ハードコート層の走査型電子顕微鏡による表面写真から求めることができる。 In the present specification, the diameter of the protrusion means the maximum diameter (Lmax) shown in FIG. The average diameter of the protrusions can be obtained from a surface photograph of the first hard coat layer as shown in FIG. 1 using a scanning electron microscope.
 本明細書において、突起の高さとは、突起の頂点から第1ハードコート層表面までの長さを意味する。突起の平均高さは、第1ハードコート層の透過型電子顕微鏡(TEM)で撮影された断面写真から測定することができる。 In the present specification, the height of the protrusion means the length from the top of the protrusion to the surface of the first hard coat layer. The average height of the protrusions can be measured from a cross-sectional photograph taken with a transmission electron microscope (TEM) of the first hard coat layer.
 第1ハードコート層の表面における突起の平均間隔の範囲は、0.10~0.70μmの範囲が好ましく、0.15~0.50μmの範囲がより好ましく、特に0.20~0.40μmの範囲が好ましい。これによって、透明性を低下させずに滑り性および耐ブロッキング性を向上させることができる。 The range of the average spacing of the protrusions on the surface of the first hard coat layer is preferably in the range of 0.10 to 0.70 μm, more preferably in the range of 0.15 to 0.50 μm, particularly 0.20 to 0.40 μm. A range is preferred. Thereby, slipperiness and blocking resistance can be improved without reducing transparency.
 突起の平均間隔は、第1ハードコート層の走査型電子顕微鏡による表面写真から求めることができる。図3は、第1ハードコート層の走査型電子顕微鏡による表面写真を模式化した図である。図3を用いて突起の平均間隔の測定方法を説明する。 The average interval between the protrusions can be obtained from a surface photograph of the first hard coat layer by a scanning electron microscope. FIG. 3 is a diagram schematically showing a surface photograph of the first hard coat layer by a scanning electron microscope. A method for measuring the average interval between the protrusions will be described with reference to FIG.
 先ず、横方向に一本の直線20を引き、更に横方向の直線20に直交する縦方向の直線30を引く。次に、横方向の直線20に乗っている(すなわち、直線20に接触する)突起の全てについて、隣接する突起との間隔を測定する。同様の操作を縦方向の直線30についても行う。このようにして得られた全ての突起の間隔(距離)を平均する。 First, a single straight line 20 is drawn in the horizontal direction, and a vertical straight line 30 orthogonal to the horizontal straight line 20 is drawn. Next, with respect to all the protrusions riding on the horizontal straight line 20 (that is, in contact with the straight line 20), the distance between the adjacent protrusions is measured. A similar operation is performed on the vertical straight line 30. The intervals (distances) of all the protrusions thus obtained are averaged.
 突起の平均間隔の測定方法について、図4を用いて詳細に説明する。 The method for measuring the average interval between the protrusions will be described in detail with reference to FIG.
 図4は、図3における横方向の直線20または縦方向の直線30に乗っている突起のみを選択し編集したものである。図4において、横方向の直線20に乗っている突起は、符号1~5で示す5個である。隣接する突起の間隔とは、例えば突起1と該突起1に隣接する突起2との距離Pである。同様に、突起2と突起3の間隔、突起3と突起4の間隔、突起4と突起5の間隔を計測して、横方向の直線20に乗っている全ての粒子について隣接する突起間の間隔を計測する。 FIG. 4 is a diagram in which only the projections on the horizontal straight line 20 or the vertical straight line 30 in FIG. 3 are selected and edited. In FIG. 4, the number of protrusions riding on the horizontal straight line 20 is five as indicated by reference numerals 1 to 5. The interval between adjacent protrusions is, for example, the distance P between the protrusion 1 and the protrusion 2 adjacent to the protrusion 1. Similarly, by measuring the distance between the protrusion 2 and the protrusion 3, the distance between the protrusion 3 and the protrusion 4, and the distance between the protrusion 4 and the protrusion 5, the distance between adjacent protrusions for all particles on the horizontal straight line 20 is measured. Measure.
 同様にして、縦方向の直線30に乗っている全ての突起についても隣接する突起間の間隔を計測する。 Similarly, for all the protrusions on the straight line 30 in the vertical direction, the interval between adjacent protrusions is measured.
 上記の操作を、横方向の直線の位置および縦方向の直線の位置をそれぞれ3回変更して実施し、得られた全ての突起間隔を平均したものを突起の平均間隔とする。 The above operation is performed by changing the position of the straight line in the horizontal direction and the position of the straight line in the vertical direction three times, and the average of all the obtained protrusion intervals is taken as the average interval of the protrusions.
 図1に示されているように、第1ハードコート層表面における個々の突起は、それぞれ1個の粒子によって形成されていることが好ましい。これによって、第1ハードコート層表面の中心線平均粗さ(Ra1)を30nm未満に調整すること、およびハードコートフィルムのヘイズ値を1.5%未満に調整することが容易になる。複数の粒子が凝集した状態で突起を形成すると、第1ハードコート層表面の中心線平均粗さ(Ra1)やハードコートフィルムのヘイズ値が大きくなる傾向にあり、好ましくない。 As shown in FIG. 1, each protrusion on the surface of the first hard coat layer is preferably formed by one particle. This makes it easy to adjust the center line average roughness (Ra1) of the first hard coat layer surface to less than 30 nm and to adjust the haze value of the hard coat film to less than 1.5%. If protrusions are formed in a state where a plurality of particles are aggregated, the center line average roughness (Ra1) on the surface of the first hard coat layer and the haze value of the hard coat film tend to increase, such being undesirable.
 第1ハードコート層における粒子の含有量の範囲は、第1ハードコート層の固形分総量100質量%に対して2.5~17質量%の範囲が好ましく、3~15質量%の範囲がより好ましく、特に4~12質量%の範囲が好ましい。 The range of the content of the particles in the first hard coat layer is preferably 2.5 to 17% by mass, more preferably 3 to 15% by mass with respect to 100% by mass of the total solid content of the first hard coat layer. The range of 4 to 12% by mass is particularly preferable.
 前述したように、第1ハードコート層の厚み(d)に対して平均粒子径(r)が十分に小さい粒子を第1ハードコート層に含有させて、粒子を第1ハードコート層の表面近傍に比較的多く存在させて第1ハードコート層表面に比較的多くの突起を形成させることが好ましい。 As described above, particles having an average particle diameter (r) sufficiently smaller than the thickness (d) of the first hard coat layer are contained in the first hard coat layer, and the particles are in the vicinity of the surface of the first hard coat layer. It is preferable that a relatively large number of protrusions be formed on the surface of the first hard coat layer.
 粒子を第1ハードコート層の表面近傍に存在させるには、第1ハードコート層の形成過程で粒子を表面近傍に移動(浮上)させる必要がある。これは、例えば、粒子の表面自由エネルギーを小さくするための表面処理が施された粒子、あるいは粒子の表面を疎水化するための疎水化処理が施された粒子を用いることによって可能となる。これらの処理が施される粒子としては無機粒子が好ましく、特にシリカ粒子が好ましい。 In order for the particles to be present in the vicinity of the surface of the first hard coat layer, it is necessary to move (float) the particles in the vicinity of the surface in the process of forming the first hard coat layer. This can be achieved, for example, by using particles that have been subjected to a surface treatment for reducing the surface free energy of the particles, or particles that have been subjected to a hydrophobic treatment for hydrophobizing the surface of the particles. As the particles to be subjected to these treatments, inorganic particles are preferable, and silica particles are particularly preferable.
 第1ハードコート層に含有される粒子としては、無機粒子が好ましく用いられる。無機粒子としては、Si,Na,K,Ca,およびMgから選択される元素を含む無機粒子が好ましく挙げられる。さらに好ましくは、シリカ粒子(SiO)、アルカリ金属フッ化物(NaF,KFなど)、およびアルカリ土類金属フッ化物(CaF、MgFなど)から選ばれる化合物を含む無機粒子が挙げられるが、耐久性などの点からシリカ粒子が特に好ましい。 As particles contained in the first hard coat layer, inorganic particles are preferably used. Inorganic particles are preferably inorganic particles containing an element selected from Si, Na, K, Ca, and Mg. More preferably, inorganic particles containing a compound selected from silica particles (SiO 2 ), alkali metal fluorides (NaF, KF, etc.), and alkaline earth metal fluorides (CaF 2 , MgF 2, etc.) can be mentioned, Silica particles are particularly preferable from the viewpoint of durability.
 上記の粒子の表面自由エネルギーを小さくするための表面処理としては、下記の一般式(1)で示されるフッ素原子を有するオルガノシラン化合物、該オルガノシランの加水分解物、および該オルガノシランの加水分解物の部分縮合物からなる群の中から選ばれる少なくとも1つの化合物で表面処理する方法が挙げられる。 The surface treatment for reducing the surface free energy of the particles includes an organosilane compound having a fluorine atom represented by the following general formula (1), a hydrolyzate of the organosilane, and a hydrolysis of the organosilane. And a surface treatment with at least one compound selected from the group consisting of partial condensates.
 C2n+1-(CH-Si(Q)
  ・・・・一般式(1)
C n F 2n + 1 — (CH 2 ) m —Si (Q) 3
.... General formula (1)
 (一般式(1)において、nは1~10の整数、mは1~5の整数を表す。Qは炭素数1~5のアルコキシ基またはハロゲン原子を表す。) (In the general formula (1), n represents an integer of 1 to 10, m represents an integer of 1 to 5. Q represents an alkoxy group having 1 to 5 carbon atoms or a halogen atom.)
 一般式(1)の化合物として、具体的には下記の化合物を例示することができる。
 CCHCHSi(OCH
 C13CHCHSi(OCH
 C17CHCHSi(OCH
 C13CHCHCHSi(OCH
 C13CHCHCHCHSi(OCH
 C13CHCHSi(OC
 C17CHCHCHSi(OC
 C13CHCHCHCHSi(OC
 C13CHCHSiCl
 C13CHCHSiBr
 C13CHCHCHSiCl
 C13CHCHSi(OCH)Cl
Specific examples of the compound of the general formula (1) include the following compounds.
C 4 F 9 CH 2 CH 2 Si (OCH 3) 3
C 6 F 13 CH 2 CH 2 Si (OCH 3 ) 3
C 8 F 17 CH 2 CH 2 Si (OCH 3) 3
C 6 F 13 CH 2 CH 2 CH 2 Si (OCH 3) 3
C 6 F 13 CH 2 CH 2 CH 2 CH 2 Si (OCH 3) 3
C 6 F 13 CH 2 CH 2 Si (OC 2 H 5) 3
C 8 F 17 CH 2 CH 2 CH 2 Si (OC 2 H 5) 3
C 6 F 13 CH 2 CH 2 CH 2 CH 2 Si (OC 2 H 5 ) 3
C 6 F 13 CH 2 CH 2 SiCl 3
C 6 F 13 CH 2 CH 2 SiBr 3
C 6 F 13 CH 2 CH 2 CH 2 SiCl 3
C 6 F 13 CH 2 CH 2 Si (OCH 3 ) Cl 2
 また、無機粒子の表面自由エネルギーを小さくするための他の表面処理として、下記一般式(2)で示される化合物で処理し、更に下記一般式(3)で示されるフッ素化合物で表面処理する方法が挙げられる。 Further, as another surface treatment for reducing the surface free energy of the inorganic particles, a method of treating with a compound represented by the following general formula (2) and further treating with a fluorine compound represented by the following general formula (3) Is mentioned.
 B-R-SiR (OR3-n
  ・・・・一般式(2)
BR 4 —SiR 5 n (OR 6 ) 3-n
.... General formula (2)
 D-R-Rf
  ・・・・一般式(3)
DR 7 -Rf 2
.... General formula (3)
 (一般式(2)および(3)において、BおよびDはそれぞれ独立に反応性部位を表し、RおよびRはそれぞれ独立に炭素数1から3のアルキレン基、あるいは前記アルキレン基から導出されるエステル構造を表し、RおよびRはそれぞれ独立に水素あるいは炭素数が1から4のアルキル基を表し、Rfはフルオロアルキル基を表し、nは0から2の整数を表す。) (In the general formulas (2) and (3), B and D each independently represent a reactive site, and R 4 and R 7 are each independently derived from an alkylene group having 1 to 3 carbon atoms, or the alkylene group. R 5 and R 6 each independently represent hydrogen or an alkyl group having 1 to 4 carbon atoms, Rf 2 represents a fluoroalkyl group, and n represents an integer of 0 to 2.)
 BおよびDで表される反応性部位としては、例えばビニル基、アリル基、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基、エポキシ基、カルボキシル基、水酸基などが挙げられる。 Examples of the reactive site represented by B and D include a vinyl group, an allyl group, an acryloyl group, a methacryloyl group, an acryloyloxy group, a methacryloyloxy group, an epoxy group, a carboxyl group, and a hydroxyl group.
 一般式(2)の具体例としては、アクリロキシエチルトリメトキシシラン、アクリロキシプロピルトリメトキシシラン、アクリロキシブチルトリメトキシシラン、アクリロキシペンチルトリメトキシシラン、アクリロキシヘキシルトリメトキシシラン、アクリロキシヘプチルトリメトキシシラン、メタクリロキシエチルトリメトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシブチルトリメトキシシラン、メタクリロキシヘキシルトリメトキシシラン、メタクリロキシヘプチルトリメトキシシラン、メタクリロキシプロピルメチルジメトキシシラン、メタクリロキシプロピルメチルジメトキシシラン及びこれら化合物中のメトキシ基が他のアルコキシル基あるいは水酸基に置換された化合物を含むものなどが挙げられる。 Specific examples of the general formula (2) include acryloxyethyltrimethoxysilane, acryloxypropyltrimethoxysilane, acryloxybutyltrimethoxysilane, acryloxypentyltrimethoxysilane, acryloxyhexyltrimethoxysilane, acryloxyheptyltri Methoxysilane, methacryloxyethyltrimethoxysilane, methacryloxypropyltrimethoxysilane, methacryloxybutyltrimethoxysilane, methacryloxyhexyltrimethoxysilane, methacryloxyheptyltrimethoxysilane, methacryloxypropylmethyldimethoxysilane, methacryloxypropylmethyldimethoxy Examples include silane and compounds in which the methoxy group in these compounds is substituted with other alkoxyl groups or hydroxyl groups. It is.
 一般式(3)の具体例としては、2,2,2-トリフルオロエチルアクリレート、2,2,3,3,3-ペンタフロオロプロピルアクリレート、2-パーフルオロブチルエチルアクリレート、3-パーフルオロブチル-2-ヒドロキシプロピルアクリレート、2-パーフルオロヘキシルエチルアクリレート、3-パーフルオロヘキシル-2-ヒドロキシプロピルアクリレート、パーフルオロオクチルメチルアクリレート、2-パーフルオロオクチルエチルアクリレート、3-パーフルオロオクチル-2-ヒドロキシプロピルアクリレート、2-パーフルオロデシルエチルアクリレート、2-パーフルオロ-3-メチルブチルエチルアクリレート、3-パーフルオロ-3-メトキシブチル-2-ヒドロキシプロピルアクリレート、2-パーフルオロ-5-メチルヘキシルエチルアクリレート、3-パーフルオロ-5-メチルヘキシル-2-ヒドロキシプロピルアクリレート、2-パーフルオロ-7-メチルオクチル-2-ヒドロキシプロピルアクリレート、テトラフルオロプロピルアクリレート、オクタフルオロペンチルアクリレート、ドデカフルオロヘプチルアクリレート、ヘキサデカフルオロノニルアクリレート、ヘキサフルオロブチルアクリレート、2,2,2-トリフルオロエチルメタクリレート、2,2,3,3,3-ペンタフルオロプロピルメタクリレート、2-パーフルオロブチルエチルメタクリレート、3-パーフルオロブチル-2-ヒドロキシプロピルメタクリレート、パーフルオロオクチルメチルメタクリレート、2-パーフルオロオクチルエチルメタクリレート、3-パーフルオロオクチル-2-ヒドロキシプロピルメタクリレート、2-パーフルオロデシルエチルメタクリレート、2-パーフルオロ-3-メチルブチルエチルメタクリレート、3-パーフルオロ-3-メチルブチル-2-ヒドロキシプロピルメタクリレート、2-パーフルオロ-5-メチルヘキシルエチルメタクリレート、3-パーフルオロ-5-メチルヘキシル-2-ヒドロキシプロピルメタクリレート、2-パーフルオロ-7-メチルオクチルエチルメタクリレート、3-パーフルオロ-7-メチルオクチルエチルメタクリレート、テトラフルオロプロピルメタクリレート、オクタフルオロペンチルメタクリレート、オクタフルオロペンチルメタクリレート、ドデカフルオロヘプチルメタクリレート、ヘキサデカフルオロノニルメタクリレート、1-トリフルオロメチルトリフルオロエチルメタクリレート、ヘキサフルオロブチルメタクリレートなどが挙げられる。 Specific examples of the general formula (3) include 2,2,2-trifluoroethyl acrylate, 2,2,3,3,3-pentafluoropropyl acrylate, 2-perfluorobutylethyl acrylate, 3-perfluoro Butyl-2-hydroxypropyl acrylate, 2-perfluorohexylethyl acrylate, 3-perfluorohexyl-2-hydroxypropyl acrylate, perfluorooctylmethyl acrylate, 2-perfluorooctylethyl acrylate, 3-perfluorooctyl-2- Hydroxypropyl acrylate, 2-perfluorodecylethyl acrylate, 2-perfluoro-3-methylbutylethyl acrylate, 3-perfluoro-3-methoxybutyl-2-hydroxypropyl acrylate, 2-perf Oro-5-methylhexyl ethyl acrylate, 3-perfluoro-5-methylhexyl-2-hydroxypropyl acrylate, 2-perfluoro-7-methyloctyl-2-hydroxypropyl acrylate, tetrafluoropropyl acrylate, octafluoropentyl acrylate , Dodecafluoroheptyl acrylate, hexadecafluorononyl acrylate, hexafluorobutyl acrylate, 2,2,2-trifluoroethyl methacrylate, 2,2,3,3,3-pentafluoropropyl methacrylate, 2-perfluorobutylethyl methacrylate , 3-perfluorobutyl-2-hydroxypropyl methacrylate, perfluorooctylmethyl methacrylate, 2-perfluorooctylethyl methacrylate 3-perfluorooctyl-2-hydroxypropyl methacrylate, 2-perfluorodecylethyl methacrylate, 2-perfluoro-3-methylbutylethyl methacrylate, 3-perfluoro-3-methylbutyl-2-hydroxypropyl methacrylate, 2 -Perfluoro-5-methylhexylethyl methacrylate, 3-perfluoro-5-methylhexyl-2-hydroxypropyl methacrylate, 2-perfluoro-7-methyloctylethyl methacrylate, 3-perfluoro-7-methyloctylethyl methacrylate , Tetrafluoropropyl methacrylate, octafluoropentyl methacrylate, octafluoropentyl methacrylate, dodecafluoroheptyl methacrylate, hexadecafluorononi And methyl methacrylate, 1-trifluoromethyl trifluoroethyl methacrylate, hexafluorobutyl methacrylate and the like.
 前述した粒子表面に疎水化処理を施すための疎水性化合物としては、例えば分子中に疎水基と反応性部位とを有する化合物が挙げられる。疎水性化合物の疎水基は、一般に疎水的な機能を有すれば特に限定されないが、疎水基の具体例としては、例えば炭素数4以上のフルオロアルキル基、炭素数8以上の炭化水素基、及びシロキサン基からなる群より選ばれる少なくとも1つの官能基が例示される。 Examples of the hydrophobic compound for subjecting the particle surface to a hydrophobic treatment include compounds having a hydrophobic group and a reactive site in the molecule. The hydrophobic group of the hydrophobic compound is not particularly limited as long as it generally has a hydrophobic function, but specific examples of the hydrophobic group include, for example, a fluoroalkyl group having 4 or more carbon atoms, a hydrocarbon group having 8 or more carbon atoms, and Examples include at least one functional group selected from the group consisting of siloxane groups.
 上記の反応性部位としては、光または熱などのエネルギーを受けて発生したラジカルなどにより化学反応する部位であり、具体例としては、ビニル基、アリル基、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基、エポキシ基、カルボキシル基、水酸基などの光または熱などのエネルギーを受けて化学反応する反応性部位を有することがより好ましい。 The reactive site is a site that chemically reacts with radicals generated by receiving energy such as light or heat. Specific examples include vinyl group, allyl group, acryloyl group, methacryloyl group, acryloyloxy group, It is more preferable to have a reactive site that undergoes a chemical reaction upon receiving energy such as light or heat, such as a methacryloyloxy group, an epoxy group, a carboxyl group, or a hydroxyl group.
 つまり、粒子表面に疎水化処理を施すための疎水性化合物としては、炭素数4以上のフルオロアルキル基と反応性部位とを有する化合物(フッ素化合物)、炭素数8以上の炭化水素基と反応性部位とを有する化合物(長鎖炭化水素化合物)、およびシロキサン基と反応性部位とを有する化合物(シリコーン化合物)からなる群の中から選ばれる少なくとも1種を用いることが好ましい。 That is, as a hydrophobic compound for subjecting the particle surface to a hydrophobization treatment, a compound having a fluoroalkyl group having 4 or more carbon atoms and a reactive site (fluorine compound), a hydrocarbon group having 8 or more carbon atoms and reactivity. It is preferable to use at least one selected from the group consisting of a compound having a moiety (long chain hydrocarbon compound) and a compound having a siloxane group and a reactive moiety (silicone compound).
 長鎖炭化水素化合物は、分子中に疎水基である炭素数8以上の炭化水素基と、反応性部位とを有する化合物を表す。炭素数8以上の炭化水素基は、炭素数が8以上30以下であることが好ましい。また炭素数8以上の炭化水素基は、直鎖構造、分岐構造、脂環構造を問わず選択することができる。長鎖炭化水素化合物としてより好ましくは、炭素数10以上22以下の直鎖状のアルキルアルコール、アルキルエポキシド、アルキルアクリレート、アルキルメタクリレート、アルキルカルボキシレート(酸無水物及びエステル類を含む)、などを用いることができる。 The long-chain hydrocarbon compound represents a compound having a hydrocarbon group having 8 or more carbon atoms which is a hydrophobic group in the molecule and a reactive site. The hydrocarbon group having 8 or more carbon atoms preferably has 8 to 30 carbon atoms. The hydrocarbon group having 8 or more carbon atoms can be selected regardless of a linear structure, a branched structure, or an alicyclic structure. More preferably, a linear alkyl alcohol having 10 to 22 carbon atoms, an alkyl epoxide, an alkyl acrylate, an alkyl methacrylate, an alkyl carboxylate (including acid anhydrides and esters), etc. are used as the long-chain hydrocarbon compound. be able to.
 長鎖炭化水素化合物の具体例としては、オクタノール、ヘキサンジオール、ヘプタンジオール、オクタンジオール、ステアリルアルコール、などの多価アルコール、オクチルアクリレート、オクチルメタクリレート、2-ヒドロキシオクチルアクリレート、2-ヒドロキシオクチルメタクリレート、などのアクリレート(メタクリレート)、オクチルトリメトキシシランなどのアクリルシラン、などが挙げられる。 Specific examples of the long-chain hydrocarbon compound include polyhydric alcohols such as octanol, hexanediol, heptanediol, octanediol, stearyl alcohol, octyl acrylate, octyl methacrylate, 2-hydroxyoctyl acrylate, 2-hydroxyoctyl methacrylate, etc. Acrylate (methacrylate), acrylic silane such as octyltrimethoxysilane, and the like.
 シリコーン化合物としては、分子中に疎水基であるシロキサン基と、反応性部位とを有する化合物が挙げられる。シリコーン化合物の反応性部位は、アクリロイルオキシ基やメタクリロイルオキシ基が好ましく用いられる。 Examples of the silicone compound include compounds having a siloxane group that is a hydrophobic group in the molecule and a reactive site. As the reactive site of the silicone compound, an acryloyloxy group or a methacryloyloxy group is preferably used.
 またシロキサン基としては、下記一般式(4)で示されるポリシロキサン基が好ましく用いられる。 As the siloxane group, a polysiloxane group represented by the following general formula (4) is preferably used.
 -(Si(R)(R)-O)
  ・・・・一般式(4)
-(Si (R 8 ) (R 9 ) -O) m-
.... General formula (4)
 (一般式(4)において、RおよびRはそれぞれ独立に炭素数1~6のアルキル基、フェニル基、3-アクリロキシ-2-ヒドロキシプロピル-オキシプロピル基、2-アクリロキシ-3-ヒドロキシプロピル-オキシプロピル基、末端にアクリロイルオキシ基やメタクリロイルオキシ基を有するポリエチレングリコールプロピルエーテル基、あるいは末端ヒドロキシ基を有するポリエチレングリコールプロピルエーテル基を示し、mは10~200の整数を表す。) (In the general formula (4), R 8 and R 9 are each independently an alkyl group having 1 to 6 carbon atoms, a phenyl group, a 3-acryloxy-2-hydroxypropyl-oxypropyl group, a 2-acryloxy-3-hydroxypropyl group. -Represents an oxypropyl group, a polyethylene glycol propyl ether group having a terminal acryloyloxy group or methacryloyloxy group, or a polyethylene glycol propyl ether group having a terminal hydroxy group, and m represents an integer of 10 to 200.)
 疎水基として一般式(4)で表されるポリシロキサン基を有するシリコーン化合物の具体例は、下記一般式(5)で表されるジメチルシロキサン基と、さらに反応性部位とを有する化合物が挙げられる。一般式(5)のジメチルシロキサン基と、さらに反応性部位とを有するシリコーン化合物の具体例として、X-22-164B,X-22-164C,X-22-5002、X-22-174D、X-22-167B(以上商品名、信越化学工業株式会社製)などが挙げられる。 Specific examples of the silicone compound having a polysiloxane group represented by the general formula (4) as a hydrophobic group include compounds having a dimethylsiloxane group represented by the following general formula (5) and a reactive site. . Specific examples of the silicone compound having a dimethylsiloxane group of the general formula (5) and a reactive site include X-22-164B, X-22-164C, X-22-5002, X-22-174D, X -22-167B (trade name, manufactured by Shin-Etsu Chemical Co., Ltd.).
Figure JPOXMLDOC01-appb-C000001
  ・・・・一般式(5)
Figure JPOXMLDOC01-appb-C000001
.... General formula (5)
 (式中、Rは炭素数1以上7以下のアルキルを表し、kは0または1の整数を表し、mは10~200の整数を表す。) (In the formula, R represents alkyl having 1 to 7 carbon atoms, k represents an integer of 0 or 1, and m represents an integer of 10 to 200.)
 また、疎水基として一般式(4)で表されるポリシロキサン基と反応性部位とを有するシリコーン化合物の別の具体例は、一般式(6)で表される、3-アクリロキシ-2-ヒドロキシプロピル-オキシプロピル基とメチル基とを有する化合物、一般式(7)で表される、2-アクリロキシ-3-ヒドロキシプロピル-オキシプロピル基とメチル基とを有する化合物を例示することができる。 Another specific example of the silicone compound having a polysiloxane group represented by the general formula (4) as a hydrophobic group and a reactive site is 3-acryloxy-2-hydroxy represented by the general formula (6). Examples thereof include compounds having a propyl-oxypropyl group and a methyl group, and compounds having a 2-acryloxy-3-hydroxypropyl-oxypropyl group and a methyl group represented by the general formula (7).
Figure JPOXMLDOC01-appb-C000002
 
        
           ・・・・一般式(6)
Figure JPOXMLDOC01-appb-C000002


.... General formula (6)
Figure JPOXMLDOC01-appb-C000003
 
        
           ・・・・一般式(7)
Figure JPOXMLDOC01-appb-C000003


.... General formula (7)
 (一般式(6)および(7)において、Rは炭素数1以上7以下のアルキルを表し、kは0または1の整数を表し、mは10~200のいずれかの整数を表す。) (In the general formulas (6) and (7), R represents an alkyl having 1 to 7 carbon atoms, k represents an integer of 0 or 1, and m represents an integer of 10 to 200.)
 さらに疎水基として一般式(4)で表されるポリシロキサン基と反応性部位とを有するシリコーン化合物の別の具体例は、一般式(8)で表される、末端にアクリロイルオキシ基やメタクリロイルオキシ基を有するポリエチレングリコールプロピルエーテル基とメチル基とを有する化合物、一般式(9)で表される、末端にヒドロキシ基を有するポリエチレングリコールプロピルエーテル基とメチル基とを有する化合物を例示できる。 Furthermore, another specific example of the silicone compound having a polysiloxane group represented by the general formula (4) and a reactive site as a hydrophobic group is an acryloyloxy group or methacryloyloxy at the terminal represented by the general formula (8). Examples thereof include a compound having a polyethylene glycol propyl ether group having a group and a methyl group, and a compound having a polyethylene glycol propyl ether group having a hydroxy group at the terminal and a methyl group, represented by the general formula (9).
Figure JPOXMLDOC01-appb-C000004
  ・・・・一般式(8)
Figure JPOXMLDOC01-appb-C000004
.... General formula (8)
Figure JPOXMLDOC01-appb-C000005
 
        
           ・・・・一般式(9)
Figure JPOXMLDOC01-appb-C000005


.... General formula (9)
 (一般式(8)および(9)において、Rは炭素数1以上7以下のアルキルを表し、kは0または1の整数を表し、xは1~10の整数を表し、mは10~200の整数を表す。) (In the general formulas (8) and (9), R represents alkyl having 1 to 7 carbon atoms, k represents an integer of 0 or 1, x represents an integer of 1 to 10, and m represents 10 to 200. Represents an integer.)
 炭素数4以上のフルオロアルキル基と反応性部位とを有するフッ素化合物について説明する。ここで、フルオロアルキル基は、直鎖構造または分岐構造のいずれであってもよい。またフルオロアルキル基としては、炭素数4以上8以下であることが好ましい。このようなフッ素化合物としては、フルオロアルキルアルコール、フルオロアルキルエポキシド、フルオロアルキルハライド、フルオロアルキルアクリレート、フルオロアルキルメタクリレート、フルオロアルキルカルボキシレート(酸無水物及びエステル類を含む)、などを用いることができる。これらの中でも、フルオロアルキルアクリレート、フルオロアルキルメタクリレートが好ましく、例えば、前述の一般式(3)で例示された化合物中から炭素数4以上のフルオロアルキル基を有する化合物を用いることができる。 The fluorine compound having a fluoroalkyl group having 4 or more carbon atoms and a reactive site will be described. Here, the fluoroalkyl group may have a linear structure or a branched structure. The fluoroalkyl group preferably has 4 to 8 carbon atoms. As such a fluorine compound, fluoroalkyl alcohol, fluoroalkyl epoxide, fluoroalkyl halide, fluoroalkyl acrylate, fluoroalkyl methacrylate, fluoroalkyl carboxylate (including acid anhydrides and esters), and the like can be used. Among these, fluoroalkyl acrylate and fluoroalkyl methacrylate are preferable. For example, a compound having a fluoroalkyl group having 4 or more carbon atoms can be used from the compounds exemplified in the general formula (3).
 フッ素化合物中のフルオロアルキル基の数は必ずしも一つである必要はなく、フッ素化合物は複数のフルオロアルキル基を有してもよい。 The number of fluoroalkyl groups in the fluorine compound is not necessarily one, and the fluorine compound may have a plurality of fluoroalkyl groups.
 第1ハードコート層は、ハードコートフィルム表面に傷が発生するのを抑制するために硬度が高いことが好ましく、JIS K5600-5-4(1999年)で定義される鉛筆硬度がH以上であるものが好ましい。なお、鉛筆硬度の上限は9H程度である。 The first hard coat layer preferably has a high hardness in order to suppress the occurrence of scratches on the hard coat film surface, and the pencil hardness defined by JIS K5600-5-4 (1999) is H or more. Those are preferred. The upper limit of pencil hardness is about 9H.
 第1ハードコート層は、樹脂として熱硬化性樹脂あるいは活性エネルギー線硬化性樹脂を含むことが好ましく、特に活性エネルギー線硬化性樹脂を含むことが好ましい。ここで、活性エネルギー線硬化性樹脂とは、紫外線や電子線等の活性エネルギー線によって重合されて硬化する樹脂を意味する。 The first hard coat layer preferably contains a thermosetting resin or an active energy ray curable resin as a resin, and particularly preferably contains an active energy ray curable resin. Here, the active energy ray-curable resin means a resin that is polymerized and cured by active energy rays such as ultraviolet rays and electron beams.
 活性エネルギー線硬化性樹脂を得るための重合性化合物としては、アクリロイル基、メタクリロイル基、アクリロイルオキシ基、メタクリロイルオキシ基、ビニル基、アリル基等の重合性官能基を有する化合物(モノマーやオリゴマー)が挙げられる。 As a polymerizable compound for obtaining an active energy ray-curable resin, a compound (monomer or oligomer) having a polymerizable functional group such as acryloyl group, methacryloyl group, acryloyloxy group, methacryloyloxy group, vinyl group, and allyl group. Can be mentioned.
 第1ハードコート層は、上記重合性化合物を含有する活性エネルギー線硬化性組成物をウェットコーティング法により塗布し、必要に応じて乾燥した後、活性エネルギー線を照射して硬化することにより形成されたものであることが好ましい。 The first hard coat layer is formed by applying the active energy ray-curable composition containing the polymerizable compound by a wet coating method, drying it as necessary, and then irradiating the active energy ray to cure. It is preferable that
 以下に、重合性化合物(モノマーやオリゴマー)を例示するが、これらの化合物に限定されない。尚、以下の説明において、「・・・(メタ)アクリレート」なる表現は、「・・・アクリレート」と「・・・メタクリレート」との2つの化合物を含む。 Examples of polymerizable compounds (monomers and oligomers) are shown below, but are not limited to these compounds. In the following description, the expression “... (Meth) acrylate” includes two compounds “... acrylate” and “... methacrylate”.
 モノマーとしては、例えばメチル(メタ)アクリレート、ラウリル(メタ)アクリレート、エトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシ(メタ)アクリレート等の単官能アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリペンタエリスリトールトリ(メタ)アクリレート、トリペンタエリスリトールヘキサ(メタ)トリアクリレート、トリメチロールプロパン(メタ)アクリル酸安息香酸エステル、トリメチロールプロパン安息香酸エステル等の多官能アクリレート、グリセリンジ(メタ)アクリレートヘキサメチレンジイソシアネート、ペンタエリスリトールトリ(メタ)アクリレートヘキサメチレンジイソシアネート等のウレタンアクリレート等を挙げることができる。 Examples of the monomer include methyl (meth) acrylate, lauryl (meth) acrylate, ethoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, phenoxyethyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, isobornyl ( Monofunctional acrylates such as (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 2-hydroxy-3-phenoxy (meth) acrylate, neopentyl glycol di (meth) acrylate, 1, 6-hexanediol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, pentaerythrito Rutetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tripentaerythritol tri (meth) acrylate Polyfunctional acrylate such as tripentaerythritol hexa (meth) triacrylate, trimethylolpropane (meth) acrylic acid benzoate, trimethylolpropane benzoate, glycerin di (meth) acrylate hexamethylene diisocyanate, pentaerythritol tri (meth) ) Urethane acrylates such as acrylate hexamethylene diisocyanate.
 上記したモノマーの中でも、1分子中に重合性官能基を3個以上有する多官能モノマーが好ましく用いられる。 Among the monomers described above, polyfunctional monomers having 3 or more polymerizable functional groups in one molecule are preferably used.
 オリゴマーとしては、例えばポリエステル(メタ)アクリレート、ポリウレタン(メタ)アクリレート、エポキシ(メタ)アクリレート、ポリエーテル(メタ)アクリレート、アルキット(メタ)アクリレート、メラミン(メタ)アクリレート、シリコーン(メタ)アクリレート等を挙げることができる。 Examples of the oligomer include polyester (meth) acrylate, polyurethane (meth) acrylate, epoxy (meth) acrylate, polyether (meth) acrylate, alkit (meth) acrylate, melamine (meth) acrylate, and silicone (meth) acrylate. be able to.
 上記オリゴマーの中でも、1分子中に重合性官能基を3個以上有する多官能のウレタン(メタ)アクリレートオリゴマーが好ましく用いられる。かかる多官能のウレタン(メタ)アクリレートオリゴマーは、市販されているものを使用することができる。例えば、共栄社化学(株)製のウレタンアクリレートAHシリーズ、ウレタンアクリレートATシリーズ、ウレタンアクリレートUAシリーズ、根上工業(株)製のUN-3320シリーズ、UN-900シリーズ、新中村化学工業(株)製のNKオリゴUシリーズ、ダイセル・ユーシービー社製のEbecryl1290シリーズなどが挙げられる。 Among the above oligomers, polyfunctional urethane (meth) acrylate oligomers having 3 or more polymerizable functional groups in one molecule are preferably used. As such a polyfunctional urethane (meth) acrylate oligomer, a commercially available product can be used. For example, urethane acrylate AH series, urethane acrylate AT series, urethane acrylate AT series, urethane acrylate UA series manufactured by Kyoeisha Chemical Co., Ltd., UN-3320 series, UN-900 series manufactured by Negami Kogyo Co., Ltd. NK Oligo U series, Ebecryl 1290 series manufactured by Daicel UCB, and the like.
 活性エネルギー線硬化性組成物における重合性化合物の含有量は、活性エネルギー線硬化性組成物の固形分総量100質量%に対して、50質量%以上であることが好ましく、55質量%以上であることがより好ましく、更に60質量%以上であることが好ましく、特に70質量%以上であることが好ましい。上限は97質量%以下好ましく、95質量%以下がより好ましい。 The content of the polymerizable compound in the active energy ray-curable composition is preferably 50% by mass or more and 55% by mass or more with respect to 100% by mass of the total solid content of the active energy ray-curable composition. More preferably, it is more preferably 60% by mass or more, and particularly preferably 70% by mass or more. The upper limit is preferably 97% by mass or less, and more preferably 95% by mass or less.
 活性エネルギー線として紫外線を用いる場合は、活性エネルギー線硬化性組成物は光重合開始剤を含むことが好ましい。かかる光重合開始剤の具体例としては、例えばアセトフェノン、2,2-ジエトキシアセトフェノン、p-ジメチルアセトフェノン、p-ジメチルアミノプロピオフェノン、ベンゾフェノン、2-クロロベンゾフェノン、4,4’-ジクロロベンゾフェノン、4,4’-ビスジエチルアミノベンゾフェノン、ミヒラーケトン、ベンジル、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、メチルベンゾイルフォルメート、p-イソプロピル-α-ヒドロキシイソブチルフェノン、α-ヒドロキシイソブチルフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトンなどのカルボニル化合物、テトラメチルチウラムモノスルフィド、テトラメチルチウラムジスルフィド、チオキサントン、2-クロロチオキサントン、2-メチルチオキサントンなどの硫黄化合物などを用いることができる。これらの光重合開始剤は単独で使用してもよいし、2種以上組み合せて用いてもよい。 When ultraviolet rays are used as the active energy ray, the active energy ray curable composition preferably contains a photopolymerization initiator. Specific examples of the photopolymerization initiator include acetophenone, 2,2-diethoxyacetophenone, p-dimethylacetophenone, p-dimethylaminopropiophenone, benzophenone, 2-chlorobenzophenone, 4,4′-dichlorobenzophenone, 4,4′-bisdiethylaminobenzophenone, Michler's ketone, benzyl, benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, methyl benzoylformate, p-isopropyl-α-hydroxyisobutylphenone, α-hydroxyisobutylphenone, 2, Carbonyl compounds such as 2-dimethoxy-2-phenylacetophenone and 1-hydroxycyclohexyl phenyl ketone, tetramethylthiuram monosulfide, teto Sulfur compounds such as lamethylthiuram disulfide, thioxanthone, 2-chlorothioxanthone, and 2-methylthioxanthone can be used. These photopolymerization initiators may be used alone or in combination of two or more.
 また、光重合開始剤は一般に市販されており、それらを使用することができる。例えば、チバ・スペシャルティ・ケミカルズ(株)製のイルガキュア(登録商標)184、イルガキュア907、イルガキュア379、イルガキュア819、イルガキュア127、イルガキュア500、イルガキュア754、イルガキュア250、イルガキュア1800、イルガキュア1870、イルガキュアOXE01、DAROCUR TPO、DAROCUR1173等、日本シイベルヘグナー(株)製のSpeedcureMBB、SpeedcurePBZ、SpeedcureITX、SpeedcureCTX、SpeedcureEDB、Esacure ONE、Esacure KIP150、Esacure KTO46等、日本化薬(株)製のKAYACURE DETX-S、KAYACURE CTX、KAYACURE BMS、KAYACURE DMBI等が挙げられる。 In addition, photopolymerization initiators are generally commercially available and can be used. For example, Irgacure (registered trademark) 184, Irgacure 907, Irgacure 379, Irgacure 819, Irgacure 127, Irgacure 500, Irgacure 754, Irgacure 250, Irgacure 1800, Irgacure 1870, Irgacure OXEDA, ROCIA OXEDA, manufactured by Ciba Specialty Chemicals Co., Ltd. TPO, DAROCUR1173, etc., Speedcure MBB, Speedcure PBZ, Speedcure ITX, SpeedKet CTX, Speedcure EDB, Escure I ONE, Ecure I KIP150, YAC RE BMS, KAYACURE DMBI, and the like.
 上記光重合開始剤の含有量の範囲は、活性エネルギー線硬化性組成物の固形分総量100質量%に対して0.1~10質量%の範囲が適当であり、0.5~8質量%の範囲が好ましい。 The range of the content of the photopolymerization initiator is suitably in the range of 0.1 to 10% by mass with respect to 100% by mass of the total solid content of the active energy ray-curable composition, and 0.5 to 8% by mass. The range of is preferable.
 活性エネルギー線硬化性組成物は、更に各種添加剤、例えば、酸化防止剤、紫外線吸収剤、レベリング剤、粒子分散剤、有機系帯電防止剤、滑剤、着色剤、顔料等を含有することができる。 The active energy ray-curable composition can further contain various additives such as an antioxidant, an ultraviolet absorber, a leveling agent, a particle dispersant, an organic antistatic agent, a lubricant, a colorant, and a pigment. .
 活性エネルギー線硬化性組成物は、第1ハードコート層表面に突起を形成するための粒子を含有する。かかる粒子としては、前述した表面処理あるいは疎水化処理が施された粒子が好ましく用いられる。活性エネルギー線硬化性組成物における粒子の含有量の範囲は、活性エネルギー線硬化性組成物の固形分総量100質量%に対して2.5~17質量%の範囲が好ましく、3~15質量%の範囲がより好ましく、特に4~12質量%の範囲が好ましい。 The active energy ray-curable composition contains particles for forming protrusions on the surface of the first hard coat layer. As such particles, particles that have been subjected to the above-described surface treatment or hydrophobic treatment are preferably used. The range of the content of particles in the active energy ray-curable composition is preferably 2.5 to 17% by mass with respect to 100% by mass of the total solid content of the active energy ray-curable composition, and preferably 3 to 15% by mass. Is more preferable, and a range of 4 to 12% by mass is particularly preferable.
 第1ハードコート層の屈折率の範囲は、1.48~1.54の範囲であることが好ましく、1.50~1.54の範囲がより好ましい。上述した活性エネルギー線硬化性組成物をウェットコーティング法により塗布し、必要に応じて乾燥した後、活性エネルギー線を照射して硬化することにより第1ハードコート層を形成することにより、屈折率が1.48~1.54の範囲の第1ハードコート層を得ることができる。 The refractive index range of the first hard coat layer is preferably from 1.48 to 1.54, more preferably from 1.50 to 1.54. The active energy ray-curable composition described above is applied by a wet coating method, dried as necessary, and then irradiated with active energy rays to form a first hard coat layer, whereby the refractive index is reduced. A first hard coat layer in the range of 1.48 to 1.54 can be obtained.
 第1ハードコート層の厚みの範囲は、0.5μm以上10μm未満の範囲が適当であるが、0.8μm以上7μm以下の範囲が好ましく、1μm以上5μm以下の範囲がより好ましく、特に1μm以上3μm以下が好ましい。 The range of the thickness of the first hard coat layer is suitably from 0.5 μm to less than 10 μm, preferably from 0.8 μm to 7 μm, more preferably from 1 μm to 5 μm, particularly from 1 μm to 3 μm. The following is preferred.
 第1ハードコート層の厚みが0.5μm未満となると第1ハードコート層の硬度が低下し、傷が入りやすくなる。また、第1ハードコート層の厚みが10μm以上となると、滑り性や耐ブロッキング性が低下したり、カールが大きくなったり、透過率が低下するなどの不都合が生じる場合がある。 When the thickness of the first hard coat layer is less than 0.5 μm, the hardness of the first hard coat layer is lowered and scratches are easily formed. On the other hand, when the thickness of the first hard coat layer is 10 μm or more, inconveniences such as slipperiness and blocking resistance may decrease, curl may increase, and transmittance may decrease.
[ハードコートフィルム] 
 ハードコートフィルムは、基材フィルムの少なくとも一方の面に第1ハードコート層を有する。ハードコートフィルムは、基材フィルムの片面のみに第1ハードコート層を有していてもよいし、基材フィルムの両面に第1ハードコート層を有していてもよい。
[Hard coat film]
The hard coat film has a first hard coat layer on at least one surface of the base film. The hard coat film may have a first hard coat layer only on one side of the base film, or may have a first hard coat layer on both sides of the base film.
 また、ハードコートフィルムの他の好ましい態様として、基材フィルムの一方の面に第1ハードコート層を有し、基材フィルムの他方の面に(つまり、基材フィルムの第1ハードコート層が設けられた面とは反対面に)第2ハードコート層を有するハードコートフィルムが挙げられる。 Further, as another preferred embodiment of the hard coat film, the first hard coat layer is provided on one side of the base film, and the first hard coat layer of the base film is provided on the other side of the base film (that is, Examples thereof include a hard coat film having a second hard coat layer (on the side opposite to the provided surface).
 なお、基材フィルムの他方の面に積層される第2ハードコート層が、基材フィルムの一方の面に積層される第1ハードコート層と全く同一の構成を採る場合(即ち、基材フィルムの両面に第1ハードコート層をそれぞれ積層する場合)であっても、一方の面の第1ハードコート層と区別するために第2ハードコート層と言うことがある。 In addition, when the 2nd hard coat layer laminated | stacked on the other surface of a base film takes the completely same structure as the 1st hard coat layer laminated | stacked on one side of a base film (namely, base film) Even when the first hard coat layer is laminated on both sides of the first hard coat layer, it may be referred to as a second hard coat layer in order to distinguish it from the first hard coat layer on one side.
[第2ハードコート層]
 以下、基材フィルムの他方の面に設けられる第2ハードコート層について説明する。
[Second hard coat layer]
Hereinafter, the 2nd hard-coat layer provided in the other surface of a base film is demonstrated.
 第2ハードコート層は、ハードコートフィルム表面に傷が発生するのを抑制するために硬度が高いことが好ましく、JIS K5600-5-4(1999年)で定義される鉛筆硬度がH以上であることが好ましく、2H以上がより好ましい。なお、鉛筆硬度の上限は9H程度である。 The second hard coat layer preferably has a high hardness in order to suppress the occurrence of scratches on the hard coat film surface, and the pencil hardness defined by JIS K5600-5-4 (1999) is H or more. It is preferable and 2H or more is more preferable. The upper limit of pencil hardness is about 9H.
 第2ハードコート層の表面は比較的平滑でクリアーであることが好ましい。例えば、第2ハードコート層の表面の中心線平均粗さ(Ra2)は、25nm以下が好ましく、20nm以下がより好ましく、特に15nm以下が好ましい。下限は特に限定されないが、現実的には1nm程度である。 The surface of the second hard coat layer is preferably relatively smooth and clear. For example, the center line average roughness (Ra2) of the surface of the second hard coat layer is preferably 25 nm or less, more preferably 20 nm or less, and particularly preferably 15 nm or less. The lower limit is not particularly limited, but is practically about 1 nm.
 第2ハードコート層は、第2ハードコート層表面の中心線平均粗さ(Ra2)を25nm以下とするために、第2ハードコート層は平均粒子径が0.5μmより大きい粒子を実質的に含有しないことが好ましい。ここで、第2ハードコート層が、平均粒子径が0.5μmより大きい粒子を実質的に含有しないとは、第2ハードコート層を形成するための塗布液(例えば、活性エネルギー線硬化性組成物)に平均粒子径が0.5μmより大きい粒子を意図的に添加しないことを意味する。 Since the second hard coat layer has a center line average roughness (Ra2) of the second hard coat layer surface of 25 nm or less, the second hard coat layer substantially contains particles having an average particle diameter of more than 0.5 μm. It is preferable not to contain. Here, the fact that the second hard coat layer does not substantially contain particles having an average particle size larger than 0.5 μm means that the coating liquid for forming the second hard coat layer (for example, active energy ray-curable composition) Means that particles having an average particle size of more than 0.5 μm are not intentionally added to the product.
 第2ハードコート層の表面は、比較的平滑でクリアーであることが好ましい。従って、第2ハードコート層の表面には粒子による突起は実質的に存在しないことが好ましい。ここで、第2ハードコート層の表面に粒子による突起は実質的に存在しないとは、第2ハードコート層表面の単位面積(100μm)当たりの突起の個数が100個以下であることを意味する。好ましくは、第2ハードコート層表面の単位面積(100μm)当たりの突起の個数は50個以下であり、より好ましくは30個以下であり、特に0個が好ましい。 The surface of the second hard coat layer is preferably relatively smooth and clear. Accordingly, it is preferable that substantially no protrusions due to particles exist on the surface of the second hard coat layer. Here, the fact that there are substantially no protrusions due to particles on the surface of the second hard coat layer means that the number of protrusions per unit area (100 μm 2 ) on the surface of the second hard coat layer is 100 or less. To do. Preferably, the number of protrusions per unit area (100 μm 2 ) on the surface of the second hard coat layer is 50 or less, more preferably 30 or less, and particularly preferably 0.
 第2ハードコート層は、平均粒子径が0.5μm以下の粒子を含有することができるが、上記の観点から第2ハードコート層に含有される粒子の平均粒子径を調整することが好ましい。 The second hard coat layer can contain particles having an average particle size of 0.5 μm or less, but it is preferable to adjust the average particle size of the particles contained in the second hard coat layer from the above viewpoint.
 第2ハードコート層に粒子を含有させる場合は、粒子の平均粒子径は0.2μm以下が好ましく、0.1μm以下がより好ましい。このような粒子の含有量の範囲は、第2ハードコート層の固形分総量100質量%に対して0.1~15質量%の範囲が適当であり、0.5~10質量%の範囲がより好ましく、特に1~8質量%の範囲が好ましい。 When the particles are contained in the second hard coat layer, the average particle diameter of the particles is preferably 0.2 μm or less, and more preferably 0.1 μm or less. The range of the content of such particles is suitably in the range of 0.1 to 15% by mass with respect to 100% by mass of the total solid content of the second hard coat layer, and in the range of 0.5 to 10% by mass. More preferably, the range of 1 to 8% by mass is particularly preferable.
 第2ハードコート層は、樹脂として熱硬化性樹脂あるいは活性エネルギー線硬化性樹脂を含むことが好ましく、特に活性エネルギー線硬化性樹脂を含むことが好ましい。ここで、活性エネルギー線硬化性樹脂とは、紫外線や電子線等の活性エネルギー線によって重合されて硬化された樹脂を意味する。 The second hard coat layer preferably contains a thermosetting resin or an active energy ray curable resin as the resin, and particularly preferably contains an active energy ray curable resin. Here, the active energy ray-curable resin means a resin that is polymerized and cured by active energy rays such as ultraviolet rays and electron beams.
 活性エネルギー線硬化性樹脂を得るための重合性化合物としては、前述の第1ハードコート層の中で説明したものと同様のものを用いることができる。 As the polymerizable compound for obtaining the active energy ray-curable resin, the same compounds as those described in the first hard coat layer can be used.
 第2ハードコート層は、第1ハードコート層と同様に重合性化合物を含有する活性エネルギー線硬化性組成物をウェットコーティング法により塗布し、必要に応じて乾燥した後、活性エネルギー線を照射して硬化することにより形成されたものであることが好ましい。 As with the first hard coat layer, the second hard coat layer is coated with an active energy ray-curable composition containing a polymerizable compound by a wet coating method, dried as necessary, and then irradiated with active energy rays. It is preferably formed by curing.
 第2ハードコート層の屈折率の範囲は、1.48~1.54の範囲であることが好ましく、1.50~1.54の範囲がより好ましい。第2ハードコート層を、上述した活性エネルギー線硬化性組成物をウェットコーティング法により塗布し、必要に応じて乾燥した後、活性エネルギー線を照射して硬化することにより形成することにより、屈折率が1.48~1.54の範囲の第2ハードコート層を得ることができる。 The refractive index range of the second hard coat layer is preferably in the range of 1.48 to 1.54, more preferably in the range of 1.50 to 1.54. The second hard coat layer is formed by applying the active energy ray-curable composition described above by a wet coating method, drying it as necessary, and then irradiating and curing with an active energy ray, whereby the refractive index. Can be obtained in the range of 1.48 to 1.54.
 第2ハードコート層の厚みの範囲は、0.5μm以上10μm未満の範囲が適当であるが、0.8μm以上7μm以下の範囲が好ましく、1μm以上5μm以下の範囲がより好ましく、特に1μm以上3μm以下が好ましい。 The range of the thickness of the second hard coat layer is suitably from 0.5 μm to less than 10 μm, preferably from 0.8 μm to 7 μm, more preferably from 1 μm to 5 μm, particularly from 1 μm to 3 μm. The following is preferred.
 第2ハードコート層の厚みが0.5μm未満となると第2ハードコート層の硬度が低下し、傷が入りやすくなる。また、第2ハードコート層の厚みが10μm以上となると、滑り性や耐ブロッキング性が低下したり、カールが大きくなったり、透過率が低下するなどの不都合が生じる場合がある。 When the thickness of the second hard coat layer is less than 0.5 μm, the hardness of the second hard coat layer is lowered and scratches are easily formed. On the other hand, when the thickness of the second hard coat layer is 10 μm or more, inconveniences such as slipperiness and blocking resistance decrease, curl increase, and transmittance may decrease.
 基材フィルムと第2ハードコート層との密着性を強化するために、前述の樹脂層を基材フィルムと第2ハードコート層との間に介在させることが好ましい。 In order to reinforce the adhesion between the base film and the second hard coat layer, it is preferable to interpose the aforementioned resin layer between the base film and the second hard coat layer.
[透明導電性フィルム]
 本実施態様のハードコートフィルムは、透明導電性フィルムのベースフィルムとして好適である。つまり、本実施態様のハードコートフィルムをベースフィルムとして用いた透明導電性フィルムは、本実施態様のハードコートフィルムの少なくとも一方の面に透明導電膜が積層されたものである。
[Transparent conductive film]
The hard coat film of this embodiment is suitable as a base film of a transparent conductive film. That is, the transparent conductive film using the hard coat film of this embodiment as a base film is obtained by laminating a transparent conductive film on at least one surface of the hard coat film of this embodiment.
 透明導電膜は、ハードコートフィルムのどちらか一方の面のみに積層されていてもよいし、両方の面に積層されていてもよい。 The transparent conductive film may be laminated on only one side of the hard coat film, or may be laminated on both sides.
 本発明のハードコートフィルムをベースフィルムとして用いた透明導電性フィルムの構成例の幾つかを以下に例示するが、本発明はこれらに限定されない。 Some examples of the configuration of the transparent conductive film using the hard coat film of the present invention as a base film are exemplified below, but the present invention is not limited thereto.
i)第1ハードコート層/樹脂層/基材フィルム/樹脂層/第1ハードコート層/透明導電膜 i) First hard coat layer / resin layer / base film / resin layer / first hard coat layer / transparent conductive film
ii)透明導電膜/第1ハードコート層/樹脂層/基材フィルム/樹脂層/第1ハードコート層/透明導電膜 ii) Transparent conductive film / first hard coat layer / resin layer / base film / resin layer / first hard coat layer / transparent conductive film
iii)第1ハードコート層/樹脂層/基材フィルム/樹脂層/第2ハードコート層/透明導電膜 iii) First hard coat layer / resin layer / base film / resin layer / second hard coat layer / transparent conductive film
iv)透明導電膜/第1ハードコート層/樹脂層/基材フィルム/樹脂層/第2ハードコート層 iv) Transparent conductive film / first hard coat layer / resin layer / base film / resin layer / second hard coat layer
v)透明導電膜/第1ハードコート層/樹脂層/基材フィルム/樹脂層/第2ハードコート層/透明導電膜 v) Transparent conductive film / first hard coat layer / resin layer / base film / resin layer / second hard coat layer / transparent conductive film
 上記の構成例の中でも、i)もしくはiii)が好ましい。つまり、透明導電膜の積層工程や加工工程におけるハードコートフィルムの滑り性や耐ブロッキング性を確保するという観点から、一方の第1ハードコート層には透明導電膜は積層せず露出させておくことが好ましい。 Among the above configuration examples, i) or iii) is preferable. In other words, from the viewpoint of ensuring the slipperiness and blocking resistance of the hard coat film in the lamination step and processing step of the transparent conductive film, the first hard coat layer should be exposed without being laminated. Is preferred.
 また更に、透明導電膜を積層する面のハードコート層は比較的平滑でクリアーであることが好ましい。従って、iii)の構成例において、第2ハードコート層の表面の中心線平均粗さ(Ra2)は25nm以下が好ましく、20nm以下がより好ましく、特に15nm以下が好ましい。上記したように透明導電膜の積層する面のハードコート層(例えば第2ハードコート層)の表面が比較的平滑でクリアーであることにより、透明導電性フィルムの透明性が向上するので好ましい。 Furthermore, it is preferable that the hard coat layer on the surface on which the transparent conductive film is laminated is relatively smooth and clear. Therefore, in the configuration example of iii), the center line average roughness (Ra2) of the surface of the second hard coat layer is preferably 25 nm or less, more preferably 20 nm or less, and particularly preferably 15 nm or less. As described above, since the surface of the hard coat layer (for example, the second hard coat layer) on which the transparent conductive film is laminated is relatively smooth and clear, the transparency of the transparent conductive film is improved, which is preferable.
[透明導電膜]
 透明導電性層を形成する材料としては、例えば、酸化錫、酸化インジウム、酸化アンチモン、酸化亜鉛、ITO(酸化インジウム錫)、ATO(酸化アンチモン錫)等の金属酸化物、金属ナノワイヤー(例えば銀ナノワイヤー)、カーボンナオチューブが挙げられる。これらの中でも、ITOが好ましく用いられる。
[Transparent conductive film]
Examples of the material for forming the transparent conductive layer include tin oxide, indium oxide, antimony oxide, zinc oxide, ITO (indium tin oxide), metal oxide such as ATO (antimony tin oxide), and metal nanowires (for example, silver Nanowire) and carbon naotube. Among these, ITO is preferably used.
 透明導電膜の厚みは、表面抵抗値を10Ω/□以下の良好な導電性を確保するという観点から、10nm以上であることが好ましく、15nm以上であることがより好ましく、特に20nm以上であることが好ましい。一方、透明導電膜の厚みが大きくなりすぎると、色味(着色)が強くなったり、透明性が低下するという不都合が生じることがあるので、透明導電膜の厚みの上限は、60nm以下が好ましく、50nm以下がより好ましく、特に40nm以下が好ましい。 The thickness of the transparent conductive film is preferably 10 nm or more, more preferably 15 nm or more, and particularly preferably 20 nm or more, from the viewpoint of ensuring good conductivity with a surface resistance value of 10 3 Ω / □ or less. Preferably there is. On the other hand, if the thickness of the transparent conductive film is too large, the color (coloring) may become inconvenient or the transparency may be lowered. Therefore, the upper limit of the thickness of the transparent conductive film is preferably 60 nm or less. 50 nm or less is more preferable, and 40 nm or less is particularly preferable.
 透明導電膜の形成方法としては特に限定されず、従来公知の方法を用いることができる。具体的には、真空蒸着法、スパッタリング法、イオンプレーティング法等のドライ製膜法(気相製膜法)、あるいはウェットコーティング法が挙げられる。 The method for forming the transparent conductive film is not particularly limited, and a conventionally known method can be used. Specifically, a dry film forming method (vapor phase film forming method) such as a vacuum vapor deposition method, a sputtering method, an ion plating method, or a wet coating method can be used.
 上記のようにして製膜された透明導電膜はパターン化されていてもよい。パターン化は、透明導電性フィルムが適用される用途に応じて、各種のパターンを形成することができる。なお、透明導電膜のパターン化により、パターン部と非パターン部が形成されるが、パターン部の形状としては、例えば、ストライプ状、格子状等が挙げられる。 The transparent conductive film formed as described above may be patterned. The patterning can form various patterns depending on the application to which the transparent conductive film is applied. In addition, although a pattern part and a non-pattern part are formed by patterning of a transparent conductive film, as a shape of a pattern part, stripe shape, a lattice shape, etc. are mentioned, for example.
 透明導電膜のパターン化は、一般的にはエッチングによって行われる。例えば、透明導電膜上にパターン状のエッチングレジスト膜を、フォトリソグラフィ法、レーザー露光法、あるいは印刷法により形成した後エッチング処理することにより、透明導電膜がパターン化される。透明導電膜がパターン化された後、エッチングレジスト膜がアルカリ水溶液で剥離除去される。 The patterning of the transparent conductive film is generally performed by etching. For example, a transparent conductive film is patterned by forming a patterned etching resist film on the transparent conductive film by a photolithography method, a laser exposure method, or a printing method and then performing an etching process. After the transparent conductive film is patterned, the etching resist film is peeled off with an alkaline aqueous solution.
 エッチング液としては、従来から公知のものが用いられる。例えば、塩化水素、臭化水素、硫酸、硝酸、リン酸等の無機酸、酢酸等の有機酸、およびこれらの混合物、ならびにそれらの水溶液が用いられる。 A conventionally well-known thing is used as an etching liquid. For example, inorganic acids such as hydrogen chloride, hydrogen bromide, sulfuric acid, nitric acid and phosphoric acid, organic acids such as acetic acid, and mixtures thereof, and aqueous solutions thereof are used.
 エッチングレジスト膜の剥離除去に用いられるアルカリ水溶液としては、1~5質量%の水酸化ナトリウム水溶液や水酸化カリウム水溶液等が挙げられる。 Examples of the alkaline aqueous solution used for stripping and removing the etching resist film include 1 to 5% by mass of a sodium hydroxide aqueous solution and a potassium hydroxide aqueous solution.
[屈折率調整層]
 上記透明導電性フィルムの構成例において、透明導電膜は第1ハードコート層あるいは第2ハードコート層の上に直接に積層されてもよいが、透明導電膜と第1ハードコート層あるいは第2ハードコート層との間に屈折率調整層を介在させることが好ましい。以下、屈折率調整層について説明する。
[Refractive index adjusting layer]
In the configuration example of the transparent conductive film, the transparent conductive film may be directly laminated on the first hard coat layer or the second hard coat layer. However, the transparent conductive film and the first hard coat layer or the second hard coat layer may be laminated. It is preferable to interpose a refractive index adjusting layer between the coat layer. Hereinafter, the refractive index adjustment layer will be described.
 屈折率調整層は、1層のみで構成されてもよいし、2層以上の積層構成であってもよい。屈折率調整層は、その上に積層される透明導電膜の反射色や透過色を調整するための機能、あるいはパターン化された透明導電膜のパターン部が視認される、いわゆる「骨見え」を抑制するための機能を有する層である。 The refractive index adjusting layer may be composed of only one layer or may be a laminated structure of two or more layers. The refractive index adjustment layer has a function for adjusting the reflection color and transmission color of the transparent conductive film laminated thereon, or a so-called “bone appearance” in which the patterned portion of the patterned transparent conductive film is visually recognized. It is a layer having a function to suppress.
 屈折率調整層の構成としては、例えば、屈折率(n1)が1.60~1.80の高屈折率層の1層構成、屈折率(n2)が1.30~1.53の低屈折率層の1層構成、あるいは上記高屈折率層と低屈折率層との積層構成(低屈折率層が透明導電膜側に配置)などが挙げられる。 As the configuration of the refractive index adjustment layer, for example, a single layer configuration of a high refractive index layer having a refractive index (n1) of 1.60 to 1.80, and a low refractive index having a refractive index (n2) of 1.30 to 1.53. One layer structure of the refractive index layer, or a laminated structure of the high refractive index layer and the low refractive index layer (the low refractive index layer is disposed on the transparent conductive film side), and the like.
 上記高屈折率層の屈折率(n1)の範囲は、さらに1.63~1.78の範囲が好ましく、1.65~1.75の範囲がより好ましい。上記低屈折率層の屈折率(n2)は、さらに1.30~1.50の範囲が好ましく、1.30~1.48の範囲がより好ましく、1.33~1.46の範囲が特に好ましい。 The range of the refractive index (n1) of the high refractive index layer is further preferably in the range of 1.63 to 1.78, and more preferably in the range of 1.65 to 1.75. The refractive index (n2) of the low refractive index layer is further preferably in the range of 1.30 to 1.50, more preferably in the range of 1.30 to 1.48, and particularly preferably in the range of 1.33 to 1.46. preferable.
 屈折率調整層の厚み(複数層の積層構成の場合は合計厚みを指す)は、200nm以下が好ましく、150nm以下がより好ましく、120nm以下が特に好ましく、100nm以下が最も好ましい。下限の厚みは30nm以上が好ましく、40nm以上がより好ましく、50nm以上が特に好ましく、60nm以上が最も好ましい。 The thickness of the refractive index adjusting layer (referring to the total thickness in the case of a multilayer structure) is preferably 200 nm or less, more preferably 150 nm or less, particularly preferably 120 nm or less, and most preferably 100 nm or less. The lower limit thickness is preferably 30 nm or more, more preferably 40 nm or more, particularly preferably 50 nm or more, and most preferably 60 nm or more.
 透明導電膜がパターン化されている場合は、「骨見え」を抑制するという観点から、屈折率調整層は高屈折率層と低屈折率層との積層構成であることが好ましい。この場合、高屈折率層の光学厚みと低屈折率層の光学厚みの合計(nm)が、(1/4)λ(nm)を満足することが好ましい。ここで、光学厚み(nm)とは屈折率と実際の層の厚み(nm)の積であり、λは可視光領域の波長範囲である380~780(nm)である。 When the transparent conductive film is patterned, the refractive index adjusting layer is preferably a laminated structure of a high refractive index layer and a low refractive index layer from the viewpoint of suppressing “bone appearance”. In this case, it is preferable that the sum (nm) of the optical thickness of the high refractive index layer and the optical thickness of the low refractive index layer satisfies (1/4) λ (nm). Here, the optical thickness (nm) is the product of the refractive index and the actual layer thickness (nm), and λ is 380 to 780 (nm) which is the wavelength range of the visible light region.
 本明細書において、高屈折率層の光学厚み(nm)と低屈折率層の光学厚み(nm)の合計が(1/4)λ(nm)を満足するとは、以下の式1を満足することである。尚、式中、n1は高屈折率層の屈折率、d1は高屈折率層の厚み(nm)、n2は低屈折率層の屈折率、d2は低屈折率層の厚み(nm)を表す。 In this specification, when the total of the optical thickness (nm) of the high refractive index layer and the optical thickness (nm) of the low refractive index layer satisfies (1/4) λ (nm), the following formula 1 is satisfied. That is. In the formula, n1 represents the refractive index of the high refractive index layer, d1 represents the thickness (nm) of the high refractive index layer, n2 represents the refractive index of the low refractive index layer, and d2 represents the thickness (nm) of the low refractive index layer. .
(380nm/4)≦(n1×d1)+(n2×d2)≦(780nm/4)
     95nm≦(n1×d1)+(n2×d2)≦195nm ・・・(式1)
(380 nm / 4) ≦ (n1 × d1) + (n2 × d2) ≦ (780 nm / 4)
95 nm ≦ (n1 × d1) + (n2 × d2) ≦ 195 nm (Formula 1)
 つまり、高屈折率層の光学厚み(n1×d1)と低屈折率層の光学厚み(n2×d2)との合計は、95nm以上195nm以下であることが好ましい。 That is, the total of the optical thickness (n1 × d1) of the high refractive index layer and the optical thickness (n2 × d2) of the low refractive index layer is preferably 95 nm or more and 195 nm or less.
 さらに、高屈折率層の光学厚みと低屈折率層の光学厚みの合計の範囲は95~163nmの範囲がより好ましく、95~150nmの範囲が特に好ましく、特に100~140nmの範囲が最も好ましい。 Furthermore, the total range of the optical thickness of the high refractive index layer and the optical thickness of the low refractive index layer is more preferably 95 to 163 nm, particularly preferably 95 to 150 nm, and most preferably 100 to 140 nm.
 高屈折率層は、例えば屈折率が1.65以上の金属酸化物微粒子を含有する活性エネルギー線硬化性組成物をウェットコーティング法により塗布し、必要に応じて乾燥した後、活性エネルギー線を照射して硬化することにより形成することができる。ここで活性エネルギー線硬化性組成物は、前述の第1ハードコート層で説明した重合性化合物および光重合開始剤を含有する組成物である。 For the high refractive index layer, for example, an active energy ray-curable composition containing metal oxide fine particles having a refractive index of 1.65 or more is applied by a wet coating method, dried as necessary, and then irradiated with active energy rays. Then, it can be formed by curing. Here, the active energy ray-curable composition is a composition containing the polymerizable compound and the photopolymerization initiator described in the first hard coat layer.
 金属酸化物微粒子としては、チタン、ジルコニウム、亜鉛、錫、アンチモン、セリウム、鉄、インジウム等の金属酸化物粒子が挙げられる。金属酸化物微粒子の具体例としては、例えば、酸化チタン、酸化ジルコニウム、酸化亜鉛、酸化錫、酸化アンチモン、酸化セリウム、酸化鉄、アンチモン酸亜鉛、酸化錫ドープ酸化インジウム(ITO)、アンチモンドープ酸化錫(ATO)、リンドープ酸化錫、アルミニウムドープ酸化亜鉛、ガリウムドープ酸化亜鉛、フッ素ドープ酸化錫等が挙げられ、これらの金属酸化物微粒子は単独で用いてもよいし、複数併用してもよい。上記金属酸化物微粒子の中でも、特に酸化チタンおよび酸化ジルコニウムが、透明性を低下させずに屈折率を高めることができるので好ましい。 Examples of the metal oxide fine particles include metal oxide particles such as titanium, zirconium, zinc, tin, antimony, cerium, iron, and indium. Specific examples of the metal oxide fine particles include, for example, titanium oxide, zirconium oxide, zinc oxide, tin oxide, antimony oxide, cerium oxide, iron oxide, zinc antimonate, tin oxide-doped indium oxide (ITO), and antimony-doped tin oxide. (ATO), phosphorus-doped tin oxide, aluminum-doped zinc oxide, gallium-doped zinc oxide, fluorine-doped tin oxide, and the like. These metal oxide fine particles may be used alone or in combination. Among the metal oxide fine particles, titanium oxide and zirconium oxide are particularly preferable because they can increase the refractive index without reducing transparency.
 活性エネルギー線硬化性組成物における金属酸化物微粒子の含有量は、活性エネルギー線硬化性組成物の固形分総量100質量%に対して30質量%以上が好ましく、40質量%以上がより好ましく、50質量%以上が特に好ましい。上限は70質量%以下が好ましく、60質量%以下が好ましい。 The content of the metal oxide fine particles in the active energy ray-curable composition is preferably 30% by mass or more, more preferably 40% by mass or more, with respect to 100% by mass of the total solid content of the active energy ray-curable composition. A mass% or more is particularly preferred. The upper limit is preferably 70% by mass or less, and preferably 60% by mass or less.
 低屈折率層は、例えば、低屈折率材料として低屈折率無機粒子および/または含フッ素化合物を含有する活性エネルギー線硬化性組成物をウェットコーティング法により塗布し、必要に応じて乾燥した後、活性エネルギー線を照射して硬化することにより形成することができる。ここで活性エネルギー線硬化性組成物は、前述の第1ハードコート層で説明した重合性化合物および光重合開始剤を含有する組成物である。 The low refractive index layer is, for example, coated with an active energy ray-curable composition containing low refractive index inorganic particles and / or a fluorine-containing compound as a low refractive index material by a wet coating method and, if necessary, dried. It can be formed by irradiating with active energy rays and curing. Here, the active energy ray-curable composition is a composition containing the polymerizable compound and the photopolymerization initiator described in the first hard coat layer.
 低屈折率無機粒子としては、シリカやフッ化マグネシウム等の無機粒子が好ましい。さらにこれらの無機粒子は中空状や多孔質のものが好ましい。このような低屈折率無機粒子の含有量は、活性エネルギー線硬化性組成物の固形分総量100質量%に対して10質量%以上が好ましく、20質量%以上がより好ましく、特に30質量%以上が好ましい。上限は70質量%以下が好ましく、60質量%以下が好ましく、特に50質量%以下が好ましい。 As the low refractive index inorganic particles, inorganic particles such as silica and magnesium fluoride are preferable. Further, these inorganic particles are preferably hollow or porous. The content of such low refractive index inorganic particles is preferably 10% by mass or more, more preferably 20% by mass or more, and particularly preferably 30% by mass or more with respect to 100% by mass of the total solid content of the active energy ray-curable composition. Is preferred. The upper limit is preferably 70% by mass or less, preferably 60% by mass or less, and particularly preferably 50% by mass or less.
 含フッ素化合物としては、含フッ素モノマー、含フッ素オリゴマー、含フッ素高分子化合物が挙げられる。ここで、含フッ素モノマーあるいは含フッ素オリゴマーは、分子中に前述の重合性官能基(炭素-炭素二重結合基を含む官能基)とフッ素原子とを有するモノマーあるいはオリゴマーである。 Examples of the fluorine-containing compound include fluorine-containing monomers, fluorine-containing oligomers, and fluorine-containing polymer compounds. Here, the fluorine-containing monomer or fluorine-containing oligomer is a monomer or oligomer having in the molecule thereof the aforementioned polymerizable functional group (functional group containing a carbon-carbon double bond group) and a fluorine atom.
 含フッ素モノマー、含フッ素オリゴマーとしては、例えば、2,2,2-トリフルオロエチル(メタ)アクリレート、2,2,3,3,3-ペンタフルオロプロピル(メタ)アクリレート、2-(パーフルオロブチル)エチル(メタ)アクリレート、2-(パーフルオロヘキシル)エチル(メタ)アクリレート、2-(パーフルオロオクチル)エチル(メタ)アクリレート、2-(パーフルオロデシル)エチル(メタ)アクリレート、βー(パーフロロオクチル)エチル(メタ)アクリレートなどのフッ素含有(メタ)アクリル酸エステル類、 ジ-(α-フルオロアクリル酸)-2,2,2-トリフルオロエチルエチレングリコール、ジ-(α-フルオロアクリル酸)-2,2,3,3,3-ペンタフルオロプロピルエチレングリコール、ジ-(α-フルオロアクリル酸)-2,2,3,3,4,4,4-ヘプタフルオロブチルエチレングリコール、ジ-(α-フルオロアクリル酸)-2,2,3,3,4,4,5,5,5-ノナフルオロペンチルエチレングリコール、ジ-(α-フルオロアクリル酸)-2,2,3,3,4,4,5,5,6,6,6-ウンデカフルオロヘキシルエチレングリコール、ジ-(α-フルオロアクリル酸)-2,2,3,3,4,4,5,5,6,6,7,7,7-トリデカフルオロヘプチルエチレングリコール、ジ-(α-フルオロアクリル酸)-2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-ペンタデカフルオロオクチルエチレングリコール、ジ-(α-フルオロアクリル酸)-3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロオクチルエチレングリコール、ジ-(α-フルオロアクリル酸)-2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-ヘプタデカフルオロノニルエチレングリコールなどのジ-(α-フルオロアクリル酸)フルオロアルキルエステル類が挙げられる。 Examples of fluorine-containing monomers and fluorine-containing oligomers include 2,2,2-trifluoroethyl (meth) acrylate, 2,2,3,3,3-pentafluoropropyl (meth) acrylate, and 2- (perfluorobutyl). ) Ethyl (meth) acrylate, 2- (perfluorohexyl) ethyl (meth) acrylate, 2- (perfluorooctyl) ethyl (meth) acrylate, 2- (perfluorodecyl) ethyl (meth) acrylate, β- (per Fluorine-containing (meth) acrylic acid esters such as fluorooctyl) ethyl (meth) acrylate, di- (α-fluoroacrylic acid) -2,2,2-trifluoroethylethylene glycol, di- (α-fluoroacrylic acid) ) -2,2,3,3,3-pentafluoropropylethylene glycol, -(Α-fluoroacrylic acid) -2,2,3,3,4,4,4-heptafluorobutylethylene glycol, di- (α-fluoroacrylic acid) -2,2,3,3,4,4 , 5,5,5-nonafluoropentylethylene glycol, di- (α-fluoroacrylic acid) -2,2,3,3,4,4,5,5,6,6,6-undecafluorohexylethylene Glycol, di- (α-fluoroacrylic acid) -2,2,3,3,4,4,5,5,6,6,7,7,7-tridecafluoroheptylethylene glycol, di- (α- Fluoroacrylic acid) -2,2,3,3,4,4,5,5,6,6,7,7,8,8,8-pentadecafluorooctylethylene glycol, di- (α-fluoroacrylic acid) ) -3, 3, 4, 4, 5, 5, 6, 6, 7, 7, 8, , 8-tridecafluorooctylethylene glycol, di- (α-fluoroacrylic acid) -2,2,3,3,4,4,5,5,6,6,7,7,8,8,9, And di- (α-fluoroacrylic acid) fluoroalkyl esters such as 9,9-heptadecafluorononylethylene glycol.
 含フッ素高分子化合物としては、例えば、含フッ素モノマーと架橋性基付与のためのモノマーを構成単位とする含フッ素共重合体が挙げられる。含フッ素モノマー単位の具体例としては、例えばフルオロオレフィン類(例えばフルオロエチレン、ビニリデンフルオライド、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロ-2,2-ジメチル-1,3-ジオキソール等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例えばビスコート6FM(大阪有機化学製)やM-2020(ダイキン製)等)、完全または部分フッ素化ビニルエーテル類等である。架橋性基付与のためのモノマーとしてはグリシジルメタクリレートのように分子内にあらかじめ架橋性官能基を有する(メタ)アクリレートモノマーの他、カルボキシル基やヒドロキシル基、アミノ基、スルホン酸基等を有する(メタ)アクリレートモノマー(例えば(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキシアルキル(メタ)アクリレート、アリルアクリレート等)が挙げられる。 Examples of the fluorine-containing polymer compound include a fluorine-containing copolymer having a fluorine-containing monomer and a monomer for imparting a crosslinkable group as structural units. Specific examples of the fluorine-containing monomer unit include, for example, fluoroolefins (for example, fluoroethylene, vinylidene fluoride, tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoro-2,2-dimethyl-1,3-dioxole, etc. ), (Meth) acrylic acid partial or fully fluorinated alkyl ester derivatives (for example, Biscoat 6FM (manufactured by Osaka Organic Chemical), M-2020 (manufactured by Daikin), etc.), fully or partially fluorinated vinyl ethers, and the like. As a monomer for imparting a crosslinkable group, in addition to a (meth) acrylate monomer having a crosslinkable functional group in the molecule in advance such as glycidyl methacrylate, it has a carboxyl group, a hydroxyl group, an amino group, a sulfonic acid group, etc. ) Acrylate monomers (for example, (meth) acrylic acid, methylol (meth) acrylate, hydroxyalkyl (meth) acrylate, allyl acrylate, etc.).
 含フッ素化合物の含有量は活性エネルギー線硬化性組成物の固形分総量100質量%に対して、30質量%以上が好ましく、40質量%以上がより好ましく、50質量%以上が特に好ましい。上限は95質量%以下が好ましく、90質量%以下がより好ましく、80質量%以下が特に好ましい。 The content of the fluorine-containing compound is preferably 30% by mass or more, more preferably 40% by mass or more, and particularly preferably 50% by mass or more with respect to 100% by mass of the total solid content of the active energy ray-curable composition. The upper limit is preferably 95% by mass or less, more preferably 90% by mass or less, and particularly preferably 80% by mass or less.
 含フッ素化合物の中でも、含フッ素モノマー、含フッ素オリゴマーが好ましく用いられる。含フッ素モノマーおよび含フッ素オリゴマーは、分子中に重合性官能基を有しているので、低屈折率層の緻密な架橋構造の形成に寄与するとともに低屈折率化することができる。 Of the fluorine-containing compounds, fluorine-containing monomers and fluorine-containing oligomers are preferably used. Since the fluorine-containing monomer and the fluorine-containing oligomer have a polymerizable functional group in the molecule, they contribute to the formation of a dense cross-linked structure of the low refractive index layer and can have a low refractive index.
[タッチパネル]
 本実施態様のハードコートフィルムをベースフィルムとする透明導電性フィルムは、タッチパネルの構成部材の1つとして好ましく用いられる。
[Touch panel]
The transparent conductive film which uses the hard coat film of this embodiment as a base film is preferably used as one of the constituent members of the touch panel.
 抵抗膜式タッチパネルは、通常、上部電極と下部電極がスペーサーを介して配置された構成となっているが、本実施態様のハードコートフィルムをベースフィルムとする透明導電性フィルムは、上部電極および下部電極のどちらか一方あるいは両方に用いることができる。 The resistive touch panel usually has a configuration in which an upper electrode and a lower electrode are arranged via a spacer. However, the transparent conductive film using the hard coat film of this embodiment as a base film has an upper electrode and a lower electrode. It can be used for either one or both of the electrodes.
 また、静電容量式タッチパネルは、通常、パターン化されたX電極とY電極で構成されるが、本実施態様のハードコートフィルムをベースフィルムとする透明導電性フィルムは、X電極およびY電極のどちらか一方あるいは両方に用いることができる。 In addition, the capacitive touch panel is usually composed of patterned X electrodes and Y electrodes, but the transparent conductive film using the hard coat film of this embodiment as a base film is composed of X electrodes and Y electrodes. It can be used for either one or both.
 タッチパネルに使用される透明導電性フィルムは、透明性および加工性(滑り性や耐ブロッキング性)が良好なことが要求されるが、本実施態様のハードコートフィルムをベースフィルムとする透明導電性フィルムは、上記特性を十分に満足することができる。 The transparent conductive film used for the touch panel is required to have good transparency and workability (sliding property and blocking resistance), but the transparent conductive film using the hard coat film of this embodiment as a base film. Can sufficiently satisfy the above characteristics.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。尚、本実施例における、測定方法および評価方法を以下に示す。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. In addition, the measuring method and evaluation method in a present Example are shown below.
(1)各層の屈折率の測定
 それぞれの塗布液をシリコンウエハー上にスピンコーターにて塗工形成した塗膜(乾燥厚み約2μm)について、25℃の温度条件下で位相差測定装置(ニコン(株)製:NPDM-1000)で589nmの屈折率を測定した。
(1) Refractive index measurement of each layer About a coating film (dry thickness of about 2 μm) formed by coating each coating solution on a silicon wafer with a spin coater, a phase difference measuring device (Nikon ( The refractive index of 589 nm was measured by NPDM-1000).
 また、基材フィルム(PETフィルム)の屈折率は、JIS K7105(1981)に準じて、アッベ屈折率計で589nmの屈折率を測定した。 The refractive index of the substrate film (PET film) was measured at 589 nm using an Abbe refractometer according to JIS K7105 (1981).
(2)樹脂層の厚みの測定
 樹脂層が積層された基材フィルムの断面を超薄切片に切り出し、RuO染色、OsO 染色、あるいは両者の二重染色による染色超薄切片法により、TEM(透過型電子顕微鏡)で断面構造が目視可能な以下の条件にて観察し、その断面写真から樹脂層の厚みを測定する。尚、測定個所は粒子が存在しない部分である。なお、5箇所を測定して、その平均値を樹脂層の厚みとした。
(2) the cross section of the measurement resin layer base film laminated in the thickness of the resin layer was cut into ultra thin sections, RuO 4 staining, OsO 4 staining, or staining with double staining of both the ultramicrotomy, TEM The cross-sectional structure is observed under the following conditions with a transmission electron microscope, and the thickness of the resin layer is measured from the cross-sectional photograph. The measurement location is a portion where no particles exist. In addition, five places were measured and the average value was made into the thickness of the resin layer.
・測定装置:透過型電子顕微鏡(日立(株)製 H-7100FA型)
・測定条件:加速電圧 100kV
・試料調整:凍結超薄切片法
・倍率:30万倍
・ Measurement device: Transmission electron microscope (H-7100FA type, manufactured by Hitachi, Ltd.)
・ Measurement conditions: Acceleration voltage 100kV
・ Sample preparation: Freezing ultrathin section method ・ Magnification: 300,000 times
(3)第1および第2ハードコート層、高屈折率層、低屈折率層の厚みの測定
 ハードコートフィルムの断面を超薄切片に切り出し、TEM(透過型電子顕微鏡)で加速電圧100kVにて観察(1~30万倍の倍率で観察)し、その断面写真から厚みを測定する。尚、第1ハードコート層のように表面に突起を有する層については、突起が存在しない部分における厚みである。厚みの測定は5箇所で行い、その平均値を厚みとした。
(3) Measurement of the thickness of the first and second hard coat layers, the high refractive index layer, and the low refractive index layer A cross section of the hard coat film was cut into ultra-thin sections, and an acceleration voltage of 100 kV with a TEM (transmission electron microscope). Observe (observe at a magnification of 1 to 300,000 times) and measure the thickness from the cross-sectional photograph. In addition, about the layer which has a processus | protrusion on the surface like a 1st hard-coat layer, it is the thickness in the part in which a processus | protrusion does not exist. The thickness was measured at five locations, and the average value was taken as the thickness.
(4)第1ハードコート層に含有される粒子の平均粒子径の測定
 第1ハードコート層の断面をTEM(透過型電子顕微鏡)で観察(約1万~10万倍)し、その断面写真から、無作為に選択した30個の粒子のそれぞれの最大長さを計測し、それらを平均した値を平均粒子径とした。
(4) Measurement of average particle diameter of particles contained in first hard coat layer The cross section of the first hard coat layer was observed with a TEM (transmission electron microscope) (approximately 10,000 to 100,000 times), and the cross-sectional photograph thereof Thus, the maximum length of each of 30 randomly selected particles was measured, and the average value of these was taken as the average particle size.
(5)樹脂層に含有される粒子の平均粒子径の測定
 基材フィルムに積層された樹脂層表面を、SEM(走査型電子顕微鏡)を用いて倍率一万倍で観察し、粒子の画像(粒子によってできる光の濃淡)をイメージアナライザー(たとえばケンブリッジインストルメント製QTM900)に結び付け、観察箇所を変えてデータを取り込み、合計粒子数5000個以上となったところで次の数値処理を行ない、それによって求めた数平均径dを平均粒径(直径)とした。
(5) Measurement of average particle diameter of particles contained in resin layer The surface of the resin layer laminated on the base film was observed at a magnification of 10,000 times using an SEM (scanning electron microscope), and an image of particles ( The light intensity produced by the particles is connected to an image analyzer (for example, QTM900 manufactured by Cambridge Instrument), data is acquired by changing the observation location, and when the total number of particles reaches 5000 or more, the following numerical processing is performed, thereby obtaining The number average diameter d was defined as the average particle diameter (diameter).
 d=Σdi /N D = Σdi / N
 ここでdi は粒子の等価円直径(粒子の断面積と同じ面積を持つ円の直径)、Nは個数である。 Where di is the equivalent circular diameter of the particle (the diameter of a circle having the same area as the cross-sectional area of the particle), and N is the number.
(6)第1および第2ハードコート層の表面の中心線平均粗さ(Ra1、Ra2)の測定
 JIS B0601(1982)に基づき、触針式表面粗さ測定器SE-3400((株)小坂研究所製)を用いて測定した。
(6) Measurement of centerline average roughness (Ra1, Ra2) of the surface of the first and second hard coat layers Based on JIS B0601 (1982), stylus type surface roughness measuring instrument SE-3400 (Kosaka Co., Ltd.) Measured using a laboratory.
<測定条件>
送り速さ;0.5mm/s
評価長さ;8mm
カットオフ値λc;0.08mm 
<Measurement conditions>
Feeding speed: 0.5mm / s
Evaluation length: 8mm
Cut-off value λc; 0.08mm
(7)第1ハードコート層表面における突起個数の計測
 ハードコートフィルムのカットサンプル(20cm×15cm)を用意し、このカットサンプルの第1ハードコート層の表面をSEM(走査型電子顕微鏡)にて5箇所撮影(約1万~10万倍)し、5つの画像(表面写真)を作製する。次に、5つの画像それぞれについて、画像の1μm四方(面積1μm)もしくは2μm四方(面積4μm)の範囲に存在する突起の個数を計測し、面積100μm当たりの個数に換算し、平均した。尚、突起個数を計測する面積は、撮影倍率に応じて適宜変更する。
(7) Measurement of the number of protrusions on the surface of the first hard coat layer A cut sample (20 cm × 15 cm) of the hard coat film is prepared, and the surface of the first hard coat layer of the cut sample is measured with an SEM (scanning electron microscope). Photograph five points (approximately 10,000 to 100,000 times) and make five images (surface photographs). Next, for each of the five images, the number of protrusions existing in the range of 1 μm square (area 1 μm 2 ) or 2 μm square (area 4 μm 2 ) of the image was measured, converted into the number per 100 μm 2 area, and averaged. . The area for measuring the number of protrusions is appropriately changed according to the photographing magnification.
(8)第1ハードコート層表面における突起の平均直径の測定
 ハードコートフィルムの第1ハードコート層の表面をSEM(走査型電子顕微鏡)にて撮影(約1万~10万倍)して画像(表面写真)を作成する。次に、この画像の中から無作為に選択した30個の突起の直径(最大長さ)を測定し、平均した。
(8) Measurement of the average diameter of the protrusions on the surface of the first hard coat layer The surface of the first hard coat layer of the hard coat film was photographed with an SEM (scanning electron microscope) (approximately 10,000 to 100,000 times) and imaged Create a (surface photo). Next, the diameter (maximum length) of 30 protrusions randomly selected from the image was measured and averaged.
(9)第1ハードコート層表面における突起の平均高さの測定
 ハードコートフィルムのカットサンプル(20cm×15cm)を用意し、このカットサンプルの第1ハードコート層の断面をSEM(走査型電子顕微鏡)にて5箇所撮影(約1万~10万倍)し、5つの断面写真を作製する。次に、5つの断面写真に存在する全ての突起の高さを測定し、平均した。
(9) Measurement of average height of protrusions on the surface of the first hard coat layer A cut sample (20 cm × 15 cm) of a hard coat film is prepared, and a cross section of the first hard coat layer of this cut sample is taken with an SEM (scanning electron microscope). ) At 5 locations (approximately 10,000 to 100,000 times) to produce 5 cross-sectional photographs. Next, the heights of all the protrusions present in the five cross-sectional photographs were measured and averaged.
(10)突起の平均間隔
 ハードコートフィルムの第1ハードコート層の表面をSEM(走査型電子顕微鏡)にて撮影(約1万~10万倍)し、画像(表面写真)を作製する。この画像に横方向と縦方向に直交するそれぞれ1本ずつの直線を引く。次に、横方向の1本の直線上に乗っている(直線に接触する)突起の全てについて、隣接する突起との間隔を測定する。同様の操作を縦方向の1本の直線についても行う。この操作を、横方向の直線の位置および縦方向の直線の位置をそれぞれ3回変更して実施し、得られた全ての突起間隔を平均する。
(10) Average spacing of protrusions The surface of the first hard coat layer of the hard coat film is photographed (approximately 10,000 to 100,000 times) with an SEM (scanning electron microscope) to produce an image (surface photograph). One straight line perpendicular to the horizontal and vertical directions is drawn on this image. Next, with respect to all the protrusions riding on (in contact with) the straight line in the horizontal direction, the distance from the adjacent protrusion is measured. The same operation is performed for one vertical straight line. This operation is performed by changing the position of the straight line in the horizontal direction and the position of the straight line in the vertical direction three times, and averages all the obtained protrusion intervals.
(11)ハードコートフィルムの測定
 JIS K 7136(2000)に基づき、日本電色工業(株)製の濁度計「NDH-2000」を用いて測定した。測定に際し、ハードコートフィルムの第1ハードコート層の反対面(すなわち第2ハードコート層が設けられている面)の表面に光が入射するように配置する。
(11) Measurement of hard coat film Based on JIS K 7136 (2000), it was measured using a turbidimeter “NDH-2000” manufactured by Nippon Denshoku Industries Co., Ltd. In measurement, the hard coat film is arranged so that light is incident on the surface of the opposite surface of the first hard coat layer (that is, the surface on which the second hard coat layer is provided).
(12)ハードコートフィルムの全光線透過率
 JIS-K7361(1997年)に基づき、濁度計NDH2000(日本電色工業(株)製)を用いて測定した。
(12) Total light transmittance of hard coat film Based on JIS-K7361 (1997), it was measured using a turbidimeter NDH2000 (manufactured by Nippon Denshoku Industries Co., Ltd.).
(13)ハードコートフィルムの反射色の目視評価
 ハードコートフィルムの第2ハードコート層の面に黒粘着テープ(日東電工製“ビニルテープNo.21 トクハバ 黒”)を貼り付け、第1ハードコート層の面の反射色を暗室三波長蛍光灯下にて目視にて観察し、以下の基準で行った。
(13) Visual evaluation of reflection color of hard coat film A black adhesive tape (Nitto Denko “Vinyl Tape No. 21 Tokuhaba Black”) was applied to the surface of the second hard coat layer of the hard coat film, and the first hard coat layer The reflection color of this surface was visually observed under a darkroom three-wavelength fluorescent lamp, and the following criteria were used.
 同様に、ハードコートフィルムの第1ハードコート層の面に黒粘着テープ(日東電工製“ビニルテープNo.21 トクハバ 黒”)を貼り付け、第2ハードコート層の面の反射色を暗室三波長蛍光灯下にて目視にて観察し、以下の基準で行った。
A:反射色がニュートラルでほぼ無色である。
C:反射色が着色を呈している。
Similarly, a black adhesive tape (Nitto Denko “Vinyl Tape No. 21 Tokuhaba Black”) is applied to the surface of the first hard coat layer of the hard coat film, and the reflection color of the second hard coat layer surface is set to three wavelengths in the dark room. It observed visually under the fluorescent lamp and performed on the following references | standards.
A: The reflection color is neutral and almost colorless.
C: The reflected color is colored.
(14)滑り性の評価
 ハードコートフィルムを切断して2枚のシート片(20cm×15cm)を作製した。2枚のシート片の第1ハードコート層の面と第2ハードコート層の面が向き合うように2枚のシート片を僅かにずらして重ね合わせて平滑な台上の置き、下方のシート片を指で台上に固定し、上方のシート片を手で滑らせる方法で滑り性の良否判定を行った。測定環境は23℃、55%RHである。
A:上方のシート片の滑り性が良好である。
B:上方のシート片の滑り性は劣るが比較的良好である。
C:上方のシート片が滑らない。
(14) Evaluation of slipperiness The hard coat film was cut to produce two sheet pieces (20 cm × 15 cm). Place the two sheet pieces slightly on top of each other so that the first hard coat layer surface and the second hard coat layer surface of the two sheet pieces face each other, and place them on a smooth table. The quality of the slipperiness was determined by a method of fixing the upper sheet piece with a finger and sliding the upper sheet piece by hand. The measurement environment is 23 ° C. and 55% RH.
A: The slipperiness of the upper sheet piece is good.
B: The slipperiness of the upper sheet piece is inferior but relatively good.
C: The upper sheet piece does not slip.
(15)耐ブロッキング性の評価
 ハードコートフィルムを切断して2枚のシート片(20cm×15cm)を作製する。この2枚のシートの第1ハードコート層面と第2ハードコート層面とが向き合うようにして重ね合わせる。次に、2枚のシート片を重ね合わせた試料をガラス板で挟み込み、約3kgの重りを載せて、50℃、90%(RH)の雰囲気下に48時間放置する。次に、重ね合わせ面を目視により観察しニュートンリングの発生状況を確認した後、両者を剥離し、以下の基準で評価した。
(15) Evaluation of blocking resistance The hard coat film is cut to produce two sheet pieces (20 cm × 15 cm). The two sheets are superposed such that the first hard coat layer surface and the second hard coat layer surface face each other. Next, a sample in which two sheet pieces are overlapped is sandwiched between glass plates, and a weight of about 3 kg is placed thereon and left in an atmosphere of 50 ° C. and 90% (RH) for 48 hours. Next, the overlapping surface was visually observed to confirm the occurrence of Newton rings, and then both were peeled off and evaluated according to the following criteria.
A:剥離前はニュートンリングが発生しておらず、剥離時には剥離音を立てずに軽く剥離される。
B:剥離前は一部ニュートンリングが発生しており、剥離時には小さな剥離音を立てながら剥離される。
C:剥離前は全面にニュートンリングが発生しており、剥離時には大きな剥離音を立てて剥離される。
A: Newton rings are not generated before peeling, and light peeling is performed without making a peeling sound at the time of peeling.
B: Some Newton rings are generated before peeling, and peeling is performed while making a small peeling sound during peeling.
C: Newton rings are generated on the entire surface before peeling, and are peeled off with a loud peeling sound during peeling.
(16)第1および第2ハードコート層の鉛筆硬度
 ハードコートフィルムの第1ハードコート層の表面と第1ハードコート層の表面について、それぞれJIS K5600-5-4(1999年)に準拠して測定した。荷重は750g、速度は30mm/minである。測定装置は、新東科学(株)製の表面性硬度計(HEIDON;タイプ14DR)を用いた。測定時の環境は、23℃±2℃、相対湿度55%±5%である。
(16) Pencil hardness of the first and second hard coat layers The surface of the first hard coat layer and the surface of the first hard coat layer of the hard coat film are based on JIS K5600-5-4 (1999), respectively. It was measured. The load is 750 g, and the speed is 30 mm / min. As the measuring device, a surface hardness tester (HEIDON; type 14DR) manufactured by Shinto Kagaku Co., Ltd. was used. The environment at the time of measurement is 23 ° C. ± 2 ° C. and relative humidity 55% ± 5%.
(17)透明導電膜パターンの視認性
 黒い板の上にサンプルを置き、目視により透明導電膜のパターン部が視認できるかどうか以下の基準で評価した。
(17) Visibility of transparent conductive film pattern A sample was placed on a black plate, and whether or not the pattern portion of the transparent conductive film could be visually confirmed was evaluated according to the following criteria.
A:パターン部が視認できない。
C:パターン部が視認できる。
A: A pattern part cannot be visually recognized.
C: A pattern part can be visually recognized.
(18)樹脂層のぬれ張力の測定
 樹脂層が積層された基材フィルムを常態(23℃、相対湿度50%)の雰囲気下で6時間シーズニングして、同雰囲気下でJIS-K-6768(1999)に準拠して測定した。
(18) Measurement of the wetting tension of the resin layer The base film on which the resin layer was laminated was seasoned for 6 hours in an ordinary atmosphere (23 ° C., relative humidity 50%), and JIS-K-6768 ( 1999).
<樹脂層形成用塗布液>
(樹脂層形成用塗布液a)
 固形分質量比で、Tg(ガラス転移温度)が120℃のポリエステル樹脂aを26質量%、Tgが80℃のポリエステル樹脂bを54質量%、メラミン系架橋剤を18質量%、粒子を2質量%混合して水分散塗布液を調製した。
<Resin layer forming coating solution>
(Resin layer forming coating solution a)
In terms of solid content, Tg (glass transition temperature) of 120 ° C. is 26% by mass of polyester resin a, Tg is 80 ° C. of polyester resin b is 54% by mass, melamine-based crosslinking agent is 18% by mass, and particles are 2% by mass. % Was mixed to prepare an aqueous dispersion coating solution.
・ポリエステル樹脂a;2,6-ナフタレンジカルボン酸43モル%、5-ナトリウムスルホイソフタル酸7モル%、エチレングリコールを含むジオール成分50モル%を共重合して得られたポリエステル樹脂
・ポリエステル樹脂b;テレフタル酸38モル%、トリメリット酸12モル%、エチレングリコールを含むジオール成分50モル%を共重合して得られたポリエステル樹脂
・メラミン系架橋剤;三和ケミカル(株)製の「ニカラック MW12LF」
・粒子;平均粒子径0.19μmのコロイダルシリカ
Polyester resin a; polyester resin obtained by copolymerizing 43 mol% of 2,6-naphthalenedicarboxylic acid, 7 mol% of 5-sodium sulfoisophthalic acid, and 50 mol% of a diol component containing ethylene glycol; polyester resin b; Polyester resin and melamine-based crosslinking agent obtained by copolymerization of 38 mol% terephthalic acid, 12 mol% trimellitic acid, and 50 mol% diol component containing ethylene glycol; "Nikarac MW12LF" manufactured by Sanwa Chemical Co., Ltd.
・ Particles: colloidal silica with an average particle size of 0.19 μm
(樹脂層形成用塗布液b)
 固形分質量比で、下記のアクリル樹脂を80質量%、メラミン系架橋剤を18質量%、粒子を2質量%混合して水分散塗布液を調製した。
(Resin layer forming coating solution b)
An aqueous dispersion coating solution was prepared by mixing 80% by mass of the following acrylic resin, 18% by mass of the melamine-based crosslinking agent, and 2% by mass of the particles in a solid content mass ratio.
・アクリル樹脂(下記の共重合組成からなるアクリル樹脂)
メチルメタクリレート    63重量%
エチルアクリレート     35重量%
アクリル酸          1重量%
N-メチロールアクリルアミド 1重量%
・メラミン系架橋剤;三和ケミカル(株)製の「ニカラック MW12LF」
・粒子;平均粒子径0.19μmのコロイダルシリカ
・ Acrylic resin (acrylic resin consisting of the following copolymer composition)
Methyl methacrylate 63% by weight
Ethyl acrylate 35% by weight
Acrylic acid 1% by weight
N-methylolacrylamide 1% by weight
・ Melamine-based cross-linking agent; “Nicarac MW12LF” manufactured by Sanwa Chemical Co., Ltd.
・ Particles: colloidal silica with an average particle size of 0.19 μm
<表面処理シリカ粒子分散液>
(表面処理シリカ粒子分散液A)
 コロイダルシリカ(日産化学工業株式会社製の「オルガノシリカゾル IPA-ST-ZL」)150質量部に、メタクリロキシプロピルトリメトキシシラン13.7質量部と10質量%蟻酸水溶液1.7質量部を混合し、70℃にて1時間撹拌した。次いで、フッ素化合物(HC=CH-COO-CH-(CFF)13.8質量部および2,2-アゾビスイソブチロニトリル0.57質量部を加えた後、60分間90℃にて加熱撹拌して分散液を得た。
<Surface treatment silica particle dispersion>
(Surface treatment silica particle dispersion A)
150 parts by mass of colloidal silica (“organosilica sol IPA-ST-ZL” manufactured by Nissan Chemical Industries, Ltd.) is mixed with 13.7 parts by mass of methacryloxypropyltrimethoxysilane and 1.7 parts by mass of a 10% by mass formic acid aqueous solution. , And stirred at 70 ° C. for 1 hour. Then, after adding 13.8 parts by mass of a fluorine compound (H 2 C═CH—COO—CH 2 — (CF 2 ) 8 F) and 0.57 parts by mass of 2,2-azobisisobutyronitrile, A dispersion was obtained by heating and stirring at 90 ° C. for minutes.
(表面処理シリカ粒子分散液B)
 コロイダルシリカ(日産化学工業株式会社製の「オルガノシリカゾル IPA-ST-ZL」)150質量部に、メタクリロキシプロピルトリメトキシシラン13.7質量部と10質量%蟻酸水溶液1.7質量部を混合し、70℃にて1時間撹拌した。次いで、疎水性化合物としてフッ素化合物(HC=CH-COO-CH-(CFF)を9質量部とシリコーン化合物(大日本インキ化学工業株式会社製の「PC-4131」)を4.8質量部、および2,2-アゾビスイソブチロニトリルを0.57質量部加えた後、60分間90℃にて加熱撹拌して分散液を得た。
(Surface treatment silica particle dispersion B)
150 parts by mass of colloidal silica (“organosilica sol IPA-ST-ZL” manufactured by Nissan Chemical Industries, Ltd.) is mixed with 13.7 parts by mass of methacryloxypropyltrimethoxysilane and 1.7 parts by mass of a 10% by mass formic acid aqueous solution. , And stirred at 70 ° C. for 1 hour. Next, 9 parts by mass of a fluorine compound (H 2 C═CH—COO—CH 2 — (CF 2 ) 8 F) as a hydrophobic compound and a silicone compound (“PC-4131” manufactured by Dainippon Ink & Chemicals, Inc.) 4.8 parts by mass and 0.57 parts by mass of 2,2-azobisisobutyronitrile were added, followed by heating and stirring at 90 ° C. for 60 minutes to obtain a dispersion.
(表面処理シリカ粒子分散液C)
 コロイダルシリカ(日産化学工業株式会社製の「オルガノシリカゾル IPA-ST-ZL」)330質量部に、アクリロイルオキシプロピルトリメトキシシラン(信越化学工業(株)製)8質量部、トリデカフルオロオクチルトリメトキシシラン(GE東芝シリコーン(株)製)2質量部、及びジイソプロポキシアルミニウムエチルアセテート1.5質量部加え混合した後に、イオン交換水9質量を加えた。60℃で8時間反応させた後に室温まで冷却し、アセチルアセトン1.8質量部を添加した。次に、この分散液にシクロヘキサノンを添加しながら、圧力20kPaで減圧蒸留による溶媒置換を行って分散液を得た。
(Surface treatment silica particle dispersion C)
Colloidal silica (“organosilica sol IPA-ST-ZL” manufactured by Nissan Chemical Industries, Ltd.) 330 parts by mass, acryloyloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd.) 8 parts by mass, tridecafluorooctyltrimethoxy After adding 2 parts by mass of silane (manufactured by GE Toshiba Silicone Co., Ltd.) and 1.5 parts by mass of diisopropoxyaluminum ethyl acetate, 9 masses of ion-exchanged water was added. After making it react at 60 degreeC for 8 hours, it cooled to room temperature and added 1.8 mass parts of acetylacetone. Next, while adding cyclohexanone to this dispersion, solvent displacement was performed by distillation under reduced pressure at a pressure of 20 kPa to obtain a dispersion.
(表面処理シリカ粒子分散液D)
 コロイダルシリカ(日産化学工業株式会社製の「オルガノシリカゾル MEK-ST-2040」)150質量部に、メタクリロキシプロピルトリメトキシシラン13.7質量部と10質量%蟻酸水溶液1.7質量部を混合し、70℃にて1時間撹拌した。次いで、フッ素化合物(HC=CH-COO-CH-(CFF)13.8質量部および2,2-アゾビスイソブチロニトリル0.57質量部を加えた後、60分間90℃にて加熱撹拌して分散液を得た。
(Surface treatment silica particle dispersion D)
150 parts by mass of colloidal silica (“organosilica sol MEK-ST-2040” manufactured by Nissan Chemical Industries, Ltd.) was mixed with 13.7 parts by mass of methacryloxypropyltrimethoxysilane and 1.7 parts by mass of 10% by mass formic acid aqueous solution. , And stirred at 70 ° C. for 1 hour. Then, after adding 13.8 parts by mass of a fluorine compound (H 2 C═CH—COO—CH 2 — (CF 2 ) 8 F) and 0.57 parts by mass of 2,2-azobisisobutyronitrile, A dispersion was obtained by heating and stirring at 90 ° C. for minutes.
(表面処理シリカ粒子分散液E)
 コロイダルシリカ(日産化学工業株式会社製の「オルガノシリカゾル MEK-ST-L」)150質量部に、メタクリロキシプロピルトリメトキシシラン13.7質量部と10質量%蟻酸水溶液1.7質量部を混合し、70℃にて1時間撹拌した。次いで、フッ素化合物(HC=CH-COO-CH-(CFF)13.8質量部および2,2-アゾビスイソブチロニトリル0.57質量部を加えた後、60分間90℃にて加熱撹拌して分散液を得た。
(Surface treatment silica particle dispersion E)
150 parts by mass of colloidal silica (“organosilica sol MEK-ST-L” manufactured by Nissan Chemical Industries, Ltd.) is mixed with 13.7 parts by mass of methacryloxypropyltrimethoxysilane and 1.7 parts by mass of a 10% by mass formic acid aqueous solution. , And stirred at 70 ° C. for 1 hour. Then, after adding 13.8 parts by mass of a fluorine compound (H 2 C═CH—COO—CH 2 — (CF 2 ) 8 F) and 0.57 parts by mass of 2,2-azobisisobutyronitrile, A dispersion was obtained by heating and stirring at 90 ° C. for minutes.
[実施例1]
 下記の要領でハードコートフィルムを作製した。
[Example 1]
A hard coat film was prepared in the following manner.
<樹脂層積層PETフィルムの作製>
 屈折率1.65で厚み100μmのポリエチレンテレフタレートフィルム(PETフィルム)の両面に、それぞれ樹脂層をPETフィルムの製造工程内でインラインコーティングした。つまり、長手方向に一軸延伸されたPETフィルムの両面にそれぞれ樹脂層形成用塗布液aをバーコート法で塗布し100℃で乾燥後、引き続き幅方向に二軸延伸し、230℃で20秒間加熱処理を施し熱硬化させて、両面に樹脂層が積層されたPETフィルムを作製した。PETフィルムの両面に積層された樹脂層はそれぞれ、屈折率が1.59で、厚みが0.09μmであった。
<Production of resin layer laminated PET film>
A resin layer was in-line coated on both sides of a polyethylene terephthalate film (PET film) having a refractive index of 1.65 and a thickness of 100 μm within the PET film manufacturing process. That is, the coating liquid a for forming a resin layer is applied to both surfaces of a PET film uniaxially stretched in the longitudinal direction by a bar coating method, dried at 100 ° C., then biaxially stretched in the width direction, and heated at 230 ° C. for 20 seconds. The PET film in which the resin layer was laminated | stacked on both surfaces was processed and heat-cured. Each of the resin layers laminated on both sides of the PET film had a refractive index of 1.59 and a thickness of 0.09 μm.
<第1および第2ハードコート層の積層>
 両面に樹脂層が積層されたPETフィルムの一方の面の樹脂層上に下記の活性エネルギー線硬化性組成物aをグラビアコート法で塗布し、90℃で乾燥後、紫外線400mJ/cmを照射し硬化させて、第1ハードコート層を形成した。この第1ハードコート層は、厚みが2.6μm、屈折率が1.51であった。
<Lamination of first and second hard coat layers>
The following active energy ray-curable composition a is applied by a gravure coating method on a resin layer on one side of a PET film having a resin layer laminated on both sides, dried at 90 ° C., and then irradiated with ultraviolet rays 400 mJ / cm 2 . And cured to form a first hard coat layer. The first hard coat layer had a thickness of 2.6 μm and a refractive index of 1.51.
 次いで、PETフィルムの他方の面(第1ハードコート層が積層された面とは反対面)の樹脂層上にも活性エネルギー線硬化性組成物aを用いて上記と同様にして第2ハードコート層を形成して、ハードコートフィルムを作製した。この第2ハードコート層は、厚みが2.6μm、屈折率が1.51であった。 Next, the second hard coat is applied to the resin layer on the other side of the PET film (the side opposite to the side on which the first hard coat layer is laminated) using the active energy ray-curable composition a in the same manner as described above. A layer was formed to prepare a hard coat film. The second hard coat layer had a thickness of 2.6 μm and a refractive index of 1.51.
<活性エネルギー線硬化性組成物a>
 ジペンタエリスリトールヘキサアクリレート50質量部、アクリレート化合物(東亜合成株式会社製の「アロニックスM111」)37質量部、表面処理シリカ粒子分散液Aを固形分換算で8質量部、光重合開始剤(チバ・スペシャルティ・ケミカルズ(株)製「イルガキュア184」)5質量部を有機溶剤(メチルエチルケトン)に混合して調製した。
<Active energy ray-curable composition a>
50 parts by mass of dipentaerythritol hexaacrylate, 37 parts by mass of an acrylate compound (“Aronix M111” manufactured by Toa Gosei Co., Ltd.), 8 parts by mass of the surface-treated silica particle dispersion A in terms of solid content, a photopolymerization initiator (Ciba 5 parts by mass of “Irgacure 184” manufactured by Specialty Chemicals Co., Ltd. was mixed with an organic solvent (methyl ethyl ketone).
[実施例2]
 第2ハードコート層を下記の活性エネルギー線硬化性組成物bに変更する以外は、実施例1と同様にしてハードコートフィルムを作製した。この第2ハードコート層の厚みは2.6μmで、屈折率は1.52であった。
[Example 2]
A hard coat film was produced in the same manner as in Example 1 except that the second hard coat layer was changed to the following active energy ray-curable composition b. The second hard coat layer had a thickness of 2.6 μm and a refractive index of 1.52.
<活性エネルギー線硬化性組成物b>
 ジペンタエリスリトールヘキサアクリレート48質量部、ウレタンアクリレートオリゴマー(根上工業(株)の「UN-901T」;分子中に重合性官能基を9個含む)47質量部、光重合開始剤(チバ・スペシャルティ・ケミカルズ(株)製「イルガキュア184」)5質量部を有機溶剤(メチルエチルケトン)に分散・溶解して調製した。
<Active energy ray-curable composition b>
48 parts by mass of dipentaerythritol hexaacrylate, urethane acrylate oligomer (“UN-901T” from Negami Kogyo Co., Ltd .; containing 9 polymerizable functional groups in the molecule), photopolymerization initiator (Ciba Specialty) 5 parts by mass of “Irgacure 184” manufactured by Chemicals Co., Ltd. was dispersed and dissolved in an organic solvent (methyl ethyl ketone).
[実施例3]
 第1および第2ハードコート層を形成するための活性エネルギー線硬化性組成物を下記の活性エネルギー線硬化性組成物cに変更する以外は、実施例1と同様にしてハードコートフィルムを作製した。第1および第2ハードコート層の厚みはそれぞれ2.6μmで、屈折率はそれぞれ1.51であった。
[Example 3]
A hard coat film was produced in the same manner as in Example 1 except that the active energy ray-curable composition for forming the first and second hard coat layers was changed to the following active energy ray-curable composition c. . The first and second hard coat layers each had a thickness of 2.6 μm and a refractive index of 1.51.
<活性エネルギー線硬化性組成物c>
 ジペンタエリスリトールヘキサアクリレート87質量部、表面処理シリカ粒子分散液Bを固形分換算で8質量部、光重合開始剤(チバ・スペシャルティ・ケミカルズ(株)製「イルガキュア184」)5質量部を有機溶剤(メチルエチルケトン)に混合して調製した。
<Active energy ray-curable composition c>
87 parts by mass of dipentaerythritol hexaacrylate, 8 parts by mass of the surface-treated silica particle dispersion B in terms of solid content, and 5 parts by mass of a photopolymerization initiator (“Irgacure 184” manufactured by Ciba Specialty Chemicals Co., Ltd.) are organic solvents. (Methyl ethyl ketone) was prepared by mixing.
[実施例4]
 第2ハードコート層を上記の活性エネルギー線硬化性組成物bに変更する以外は、実施例3と同様にしてハードコートフィルムを作製した。この第2ハードコート層の厚みは2.6μmで、屈折率は1.52であった。
[Example 4]
A hard coat film was produced in the same manner as in Example 3 except that the second hard coat layer was changed to the active energy ray-curable composition b. The second hard coat layer had a thickness of 2.6 μm and a refractive index of 1.52.
[実施例5]
 第1および第2ハードコート層を形成するための活性エネルギー線硬化性組成物を下記の活性エネルギー線硬化性組成物dに変更する以外は、実施例1と同様にしてハードコートフィルムを作製した。第1および第2ハードコート層の厚みはそれぞれ2.6μmで、屈折率はそれぞれ1.51であった。
[Example 5]
A hard coat film was produced in the same manner as in Example 1 except that the active energy ray-curable composition for forming the first and second hard coat layers was changed to the following active energy ray-curable composition d. . The first and second hard coat layers each had a thickness of 2.6 μm and a refractive index of 1.51.
<活性エネルギー線硬化性組成物d>
 ジペンタエリスリトールヘキサアクリレート87質量部、表面処理シリカ粒子分散液Cを固形分換算で8質量部、光重合開始剤(チバ・スペシャルティ・ケミカルズ(株)製「イルガキュア184」)5質量部を有機溶剤(メチルエチルケトンとシクロヘキサノンの質量比は8:2の混合溶剤)に分散・溶解して調製した。
<Active energy ray-curable composition d>
87 parts by mass of dipentaerythritol hexaacrylate, 8 parts by mass of the surface-treated silica particle dispersion C in terms of solid content, and 5 parts by mass of a photopolymerization initiator (“Irgacure 184” manufactured by Ciba Specialty Chemicals Co., Ltd.) are organic solvents. It was prepared by dispersing and dissolving in (a mixed solvent of methyl ethyl ketone and cyclohexanone having a mass ratio of 8: 2).
[実施例6]
 第2ハードコート層を上記の活性エネルギー線硬化性組成物bに変更する以外は、実施例5と同様にしてハードコートフィルムを作製した。この第2ハードコート層の厚みは2.6μmで、屈折率は1.52であった。
[Example 6]
A hard coat film was produced in the same manner as in Example 5 except that the second hard coat layer was changed to the active energy ray-curable composition b. The second hard coat layer had a thickness of 2.6 μm and a refractive index of 1.52.
[実施例7]
 第1および第2ハードコート層を形成するための活性エネルギー線硬化性組成物を下記の活性エネルギー線硬化性組成物eに変更する以外は、実施例1と同様にしてハードコートフィルムを作製した。第1および第2ハードコート層の厚みはそれぞれ2.6μmで、屈折率はそれぞれ1.51であった。
[Example 7]
A hard coat film was produced in the same manner as in Example 1 except that the active energy ray-curable composition for forming the first and second hard coat layers was changed to the following active energy ray-curable composition e. . The first and second hard coat layers each had a thickness of 2.6 μm and a refractive index of 1.51.
<活性エネルギー線硬化性組成物e>
 ジペンタエリスリトールヘキサアクリレート50質量部、アクリレート化合物(東亜合成株式会社製の「アロニックスM111」)37質量部、表面処理シリカ粒子分散液Dを固形分換算で8質量部、光重合開始剤(チバ・スペシャルティ・ケミカルズ(株)製「イルガキュア184」)5質量部を有機溶剤(メチルエチルケトン)に混合して調製した。
<Active energy ray-curable composition e>
50 parts by mass of dipentaerythritol hexaacrylate, 37 parts by mass of an acrylate compound (“Aronix M111” manufactured by Toa Gosei Co., Ltd.), 8 parts by mass of the surface-treated silica particle dispersion D in terms of solid content, a photopolymerization initiator (Ciba 5 parts by mass of “Irgacure 184” manufactured by Specialty Chemicals Co., Ltd. was mixed with an organic solvent (methyl ethyl ketone).
[実施例8]
 第2ハードコート層を上記の活性エネルギー線硬化性組成物bに変更する以外は、実施例7と同様にしてハードコートフィルムを作製した。この第2ハードコート層の厚みは2.6μmで、屈折率は1.52であった。
[Example 8]
A hard coat film was produced in the same manner as in Example 7 except that the second hard coat layer was changed to the active energy ray-curable composition b. The second hard coat layer had a thickness of 2.6 μm and a refractive index of 1.52.
[実施例9]
 第1および第2ハードコート層を形成するための活性エネルギー線硬化性組成物を下記の活性エネルギー線硬化性組成物fに変更する以外は、実施例1と同様にしてハードコートフィルムを作製した。第1および第2ハードコート層の厚みはそれぞれ2.6μmで、屈折率はそれぞれ1.51であった。
[Example 9]
A hard coat film was produced in the same manner as in Example 1 except that the active energy ray-curable composition for forming the first and second hard coat layers was changed to the following active energy ray-curable composition f. . The first and second hard coat layers each had a thickness of 2.6 μm and a refractive index of 1.51.
<活性エネルギー線硬化性組成物f>
 ジペンタエリスリトールヘキサアクリレート50質量部、アクリレート化合物(東亜合成株式会社製の「アロニックスM111」)37質量部、表面処理シリカ粒子分散液Eを固形分換算で8質量部、光重合開始剤(チバ・スペシャルティ・ケミカルズ(株)製「イルガキュア184」)5質量部を有機溶剤(メチルエチルケトン)に混合して調製した。
<Active energy ray-curable composition f>
50 parts by mass of dipentaerythritol hexaacrylate, 37 parts by mass of an acrylate compound (“Aronix M111” manufactured by Toa Gosei Co., Ltd.), 8 parts by mass of the surface-treated silica particle dispersion E in terms of solid content, a photopolymerization initiator (Ciba 5 parts by mass of “Irgacure 184” manufactured by Specialty Chemicals Co., Ltd. was mixed with an organic solvent (methyl ethyl ketone).
[実施例10]
 第2ハードコート層を上記の活性エネルギー線硬化性組成物bに変更する以外は、実施例9と同様にしてハードコートフィルムを作製した。この第2ハードコート層の厚みは2.6μmで、屈折率は1.52であった。
[Example 10]
A hard coat film was produced in the same manner as in Example 9 except that the second hard coat layer was changed to the active energy ray-curable composition b. The second hard coat layer had a thickness of 2.6 μm and a refractive index of 1.52.
[比較例1]
 第1および第2ハードコート層を形成するための活性エネルギー線硬化性組成物を下記の活性エネルギー線硬化性組成物gに変更する以外は、実施例1と同様にしてハードコートフィルムを作製した。第1および第2ハードコート層の厚みはそれぞれ2.6μmで、屈折率はそれぞれ1.51であった。
[Comparative Example 1]
A hard coat film was produced in the same manner as in Example 1 except that the active energy ray-curable composition for forming the first and second hard coat layers was changed to the following active energy ray-curable composition g. . The first and second hard coat layers each had a thickness of 2.6 μm and a refractive index of 1.51.
<活性エネルギー線硬化性組成物g>
 ジペンタエリスリトールヘキサアクリレート87質量部、シリカ粒子(日産化学工業株式会社製の「オルガノシリカゾル IPA-ST-ZL」)を固形分換算で8質量部、光重合開始剤(チバ・スペシャルティ・ケミカルズ(株)製「イルガキュア184」)5質量部を有機溶剤(メチルエチルケトンとシクロヘキサノンの質量比は8:2の混合溶剤)に分散・溶解して調製した。
<Active energy ray-curable composition g>
87 parts by mass of dipentaerythritol hexaacrylate, silica particles (“organosilica sol IPA-ST-ZL” manufactured by Nissan Chemical Industries, Ltd.) 8 parts by mass in terms of solid content, photopolymerization initiator (Ciba Specialty Chemicals Co., Ltd.) ) "Irgacure 184") 5 parts by mass was prepared by dispersing and dissolving in an organic solvent (a mixed solvent of methyl ethyl ketone and cyclohexanone having a mass ratio of 8: 2).
[比較例2]
 第2ハードコート層を上記の活性エネルギー線硬化性組成物bに変更する以外は、比較例1と同様にしてハードコートフィルムを作製した。この第2ハードコート層の厚みは2.6μmで、屈折率は1.52であった。
[Comparative Example 2]
A hard coat film was produced in the same manner as in Comparative Example 1 except that the second hard coat layer was changed to the active energy ray-curable composition b. The second hard coat layer had a thickness of 2.6 μm and a refractive index of 1.52.
[比較例3]
 第1および第2ハードコート層を形成するための活性エネルギー線硬化性組成物を下記の活性エネルギー線硬化性組成物hに変更する以外は、実施例1と同様にしてハードコートフィルムを作製した。第1および第2ハードコート層の厚みはそれぞれ2.6μmで、屈折率はそれぞれ1.52であった。
[Comparative Example 3]
A hard coat film was produced in the same manner as in Example 1 except that the active energy ray-curable composition for forming the first and second hard coat layers was changed to the following active energy ray-curable composition h. . The first and second hard coat layers each had a thickness of 2.6 μm and a refractive index of 1.52.
<活性エネルギー線硬化性組成物h>
 ジペンタエリスリトールヘキサアクリレート87質量部、ポリメチルメタクリレート粒子(綜研化学(株)製の「MX-150H」)を固形分換算で8質量部、光重合開始剤(チバ・スペシャルティ・ケミカルズ(株)製「イルガキュア184」)5質量部を有機溶剤(メチルエチルケトンとシクロヘキサノンの質量比は8:2の混合溶剤)に分散・溶解して調製した。
<Active energy ray-curable composition h>
87 parts by mass of dipentaerythritol hexaacrylate, 8 parts by mass of polymethyl methacrylate particles (“MX-150H” manufactured by Soken Chemical Co., Ltd.) in terms of solid content, photopolymerization initiator (Ciba Specialty Chemicals Co., Ltd.) "Irgacure 184") was prepared by dispersing and dissolving 5 parts by mass in an organic solvent (a mixed solvent of methyl ethyl ketone and cyclohexanone having a mass ratio of 8: 2).
[比較例4]
 第2ハードコート層を上記の活性エネルギー線硬化性組成物bに変更する以外は、比較例3と同様にしてハードコートフィルムを作製した。この第2ハードコート層の厚みは2.6μmで、屈折率は1.52であった。
[Comparative Example 4]
A hard coat film was produced in the same manner as in Comparative Example 3 except that the second hard coat layer was changed to the active energy ray-curable composition b. The second hard coat layer had a thickness of 2.6 μm and a refractive index of 1.52.
[実施例11]
 第1および第2ハードコート層を形成するための活性エネルギー線硬化性組成物を下記の活性エネルギー線硬化性組成物iに変更する以外は、実施例1と同様にしてハードコートフィルムを作製した。第1および第2ハードコート層の厚みはそれぞれ2.6μmで、屈折率はそれぞれ1.51であった。
[Example 11]
A hard coat film was produced in the same manner as in Example 1 except that the active energy ray-curable composition for forming the first and second hard coat layers was changed to the following active energy ray-curable composition i. . The first and second hard coat layers each had a thickness of 2.6 μm and a refractive index of 1.51.
<活性エネルギー線硬化性組成物i>
 ジペンタエリスリトールヘキサアクリレート54質量部、アクリレート化合物(東亜合成株式会社製の「アロニックスM111」)37質量部、表面処理シリカ粒子分散液Aを固形分換算で4質量部、光重合開始剤(チバ・スペシャルティ・ケミカルズ(株)製「イルガキュア184」)5質量部を有機溶剤(メチルエチルケトン)に混合して調製した。
<Active energy ray-curable composition i>
54 parts by mass of dipentaerythritol hexaacrylate, 37 parts by mass of an acrylate compound (“Aronix M111” manufactured by Toa Gosei Co., Ltd.), 4 parts by mass of the surface-treated silica particle dispersion A in terms of solid content, a photopolymerization initiator (Ciba 5 parts by mass of “Irgacure 184” manufactured by Specialty Chemicals Co., Ltd. was mixed with an organic solvent (methyl ethyl ketone).
[実施例12]
 第1および第2ハードコート層を形成するための活性エネルギー線硬化性組成物を下記の活性エネルギー線硬化性組成物jに変更する以外は、実施例1と同様にしてハードコートフィルムを作製した。第1および第2ハードコート層の厚みはそれぞれ2.6μmで、屈折率はそれぞれ1.51であった。
[Example 12]
A hard coat film was produced in the same manner as in Example 1 except that the active energy ray-curable composition for forming the first and second hard coat layers was changed to the following active energy ray-curable composition j. . The first and second hard coat layers each had a thickness of 2.6 μm and a refractive index of 1.51.
<活性エネルギー線硬化性組成物j>
 ジペンタエリスリトールヘキサアクリレート52質量部、アクリレート化合物(東亜合成株式会社製の「アロニックスM111」)37質量部、表面処理シリカ粒子分散液Aを固形分換算で6質量部、光重合開始剤(チバ・スペシャルティ・ケミカルズ(株)製「イルガキュア184」)5質量部を有機溶剤(メチルエチルケトン)に混合して調製した。
<Active energy ray-curable composition j>
52 parts by mass of dipentaerythritol hexaacrylate, 37 parts by mass of an acrylate compound (“Aronix M111” manufactured by Toa Gosei Co., Ltd.), 6 parts by mass of the surface-treated silica particle dispersion A in terms of solid content, a photopolymerization initiator (Ciba 5 parts by mass of “Irgacure 184” manufactured by Specialty Chemicals Co., Ltd. was mixed with an organic solvent (methyl ethyl ketone).
[実施例13]
 第1および第2ハードコート層を形成するための活性エネルギー線硬化性組成物を下記の活性エネルギー線硬化性組成物kに変更する以外は、実施例1と同様にしてハードコートフィルムを作製した。第1および第2ハードコート層の厚みはそれぞれ2.6μmで、屈折率はそれぞれ1.51であった。
[Example 13]
A hard coat film was produced in the same manner as in Example 1 except that the active energy ray-curable composition for forming the first and second hard coat layers was changed to the following active energy ray-curable composition k. . The first and second hard coat layers each had a thickness of 2.6 μm and a refractive index of 1.51.
<活性エネルギー線硬化性組成物k>
 ジペンタエリスリトールヘキサアクリレート50質量部、アクリレート化合物(東亜合成株式会社製の「アロニックスM111」)35質量部、表面処理シリカ粒子分散液Aを固形分換算で10質量部、光重合開始剤(チバ・スペシャルティ・ケミカルズ(株)製「イルガキュア184」)5質量部を有機溶剤(メチルエチルケトン)に混合して調製した。
<Active energy ray-curable composition k>
50 parts by mass of dipentaerythritol hexaacrylate, 35 parts by mass of an acrylate compound (“Aronix M111” manufactured by Toa Gosei Co., Ltd.), 10 parts by mass of the surface-treated silica particle dispersion A in terms of solid content, a photopolymerization initiator (Ciba 5 parts by mass of “Irgacure 184” manufactured by Specialty Chemicals Co., Ltd. was mixed with an organic solvent (methyl ethyl ketone).
[実施例14]
 第1および第2ハードコート層を形成するための活性エネルギー線硬化性組成物を下記の活性エネルギー線硬化性組成物lに変更する以外は、実施例1と同様にしてハードコートフィルムを作製した。第1および第2ハードコート層の厚みはそれぞれ2.6μmで、屈折率はそれぞれ1.51であった。
[Example 14]
A hard coat film was produced in the same manner as in Example 1 except that the active energy ray-curable composition for forming the first and second hard coat layers was changed to the following active energy ray-curable composition l. . The first and second hard coat layers each had a thickness of 2.6 μm and a refractive index of 1.51.
<活性エネルギー線硬化性組成物l>
 ジペンタエリスリトールヘキサアクリレート50質量部、アクリレート化合物(東亜合成株式会社製の「アロニックスM111」)33質量部、表面処理シリカ粒子分散液Aを固形分換算で12質量部、光重合開始剤(チバ・スペシャルティ・ケミカルズ(株)製「イルガキュア184」)5質量部を有機溶剤(メチルエチルケトン)に混合して調製した。
<Active energy ray-curable composition l>
50 parts by mass of dipentaerythritol hexaacrylate, 33 parts by mass of an acrylate compound (“Aronix M111” manufactured by Toa Gosei Co., Ltd.), 12 parts by mass of the surface-treated silica particle dispersion A in terms of solid content, a photopolymerization initiator (Ciba 5 parts by mass of “Irgacure 184” manufactured by Specialty Chemicals Co., Ltd. was mixed with an organic solvent (methyl ethyl ketone).
[比較例5]
 第1および第2ハードコート層を形成するための活性エネルギー線硬化性組成物を下記の活性エネルギー線硬化性組成物mに変更する以外は、実施例1と同様にしてハードコートフィルムを作製した。第1および第2ハードコート層の厚みはそれぞれ2.6μmで、屈折率はそれぞれ1.51であった。
[Comparative Example 5]
A hard coat film was produced in the same manner as in Example 1 except that the active energy ray-curable composition for forming the first and second hard coat layers was changed to the following active energy ray-curable composition m. . The first and second hard coat layers each had a thickness of 2.6 μm and a refractive index of 1.51.
<活性エネルギー線硬化性組成物m>
 ジペンタエリスリトールヘキサアクリレート56質量部、アクリレート化合物(東亜合成株式会社製の「アロニックスM111」)37質量部、表面処理シリカ粒子分散液Aを固形分換算で2質量部、光重合開始剤(チバ・スペシャルティ・ケミカルズ(株)製「イルガキュア184」)5質量部を有機溶剤(メチルエチルケトン)に混合して調製した。
<Active energy ray-curable composition m>
56 parts by mass of dipentaerythritol hexaacrylate, 37 parts by mass of an acrylate compound (“Aronix M111” manufactured by Toa Gosei Co., Ltd.), 2 parts by mass of the surface-treated silica particle dispersion A in terms of solid content, a photopolymerization initiator (Ciba 5 parts by mass of “Irgacure 184” manufactured by Specialty Chemicals Co., Ltd. was mixed with an organic solvent (methyl ethyl ketone).
[比較例6]
 第1および第2ハードコート層を形成するための活性エネルギー線硬化性組成物を下記の活性エネルギー線硬化性組成物nに変更する以外は、実施例1と同様にしてハードコートフィルムを作製した。第1および第2ハードコート層の厚みはそれぞれ2.6μmで、屈折率はそれぞれ1.51であった。
[Comparative Example 6]
A hard coat film was produced in the same manner as in Example 1 except that the active energy ray-curable composition for forming the first and second hard coat layers was changed to the following active energy ray-curable composition n. . The first and second hard coat layers each had a thickness of 2.6 μm and a refractive index of 1.51.
<活性エネルギー線硬化性組成物n>
 ジペンタエリスリトールヘキサアクリレート45質量部、アクリレート化合物(東亜合成株式会社製の「アロニックスM111」)30質量部、表面処理シリカ粒子分散液Aを固形分換算で20質量部、光重合開始剤(チバ・スペシャルティ・ケミカルズ(株)製「イルガキュア184」)5質量部を有機溶剤(メチルエチルケトン)に混合して調製した。
<Active energy ray-curable composition n>
45 parts by mass of dipentaerythritol hexaacrylate, 30 parts by mass of an acrylate compound (“Aronix M111” manufactured by Toa Gosei Co., Ltd.), 20 parts by mass of the surface-treated silica particle dispersion A in terms of solid content, a photopolymerization initiator (Ciba 5 parts by mass of “Irgacure 184” manufactured by Specialty Chemicals Co., Ltd. was mixed with an organic solvent (methyl ethyl ketone).
[比較例7]
 実施例1の樹脂層積層PETフィルムの作製において、樹脂層形成用塗布液を樹脂層形成用塗布液bに変更する以外は、実施例1と同様にして両面に樹脂層が積層されたPETフィルムを作製した。PETフィルムの両面に積層された樹脂層はそれぞれ、屈折率が1.52で、厚みが0.09μmであった。
[Comparative Example 7]
In the production of the resin layer laminated PET film of Example 1, a PET film having resin layers laminated on both sides in the same manner as in Example 1 except that the resin layer forming coating solution is changed to the resin layer forming coating solution b. Was made. Each of the resin layers laminated on both sides of the PET film had a refractive index of 1.52 and a thickness of 0.09 μm.
<第1および第2ハードコート層の積層>
 上記の樹脂層積層PETフィルムに、比較例5と同様にして第1および第2ハードコート層を積層して、ハードコートフィルムを作製した。第1および第2ハードコート層の厚みはそれぞれ2.6μmで、屈折率はそれぞれ1.51であった。
<Lamination of first and second hard coat layers>
The first and second hard coat layers were laminated on the above resin layer-laminated PET film in the same manner as in Comparative Example 5 to produce a hard coat film. The first and second hard coat layers each had a thickness of 2.6 μm and a refractive index of 1.51.
[ハードコートフィルムの評価]
 上記で得られた実施例および比較例のハードコートフィルムについて、第1および第2ハードコート層の構成を表1に示し、これらのハードコートフィルムの評価結果を表2に示す。
[Evaluation of hard coat film]
About the hard coat film of the Example obtained by the above and the comparative example, the structure of a 1st and 2nd hard coat layer is shown in Table 1, and the evaluation result of these hard coat films is shown in Table 2.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 また、上記実施例および比較例の中の代表的なサンプルについて、第1ハードコート層の表面における突起の平均直径、平均高さおよび平均間隔を測定した。その結果を表3に示す。 Moreover, the average diameter, average height, and average interval of the protrusions on the surface of the first hard coat layer were measured for representative samples in the above examples and comparative examples. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 上記結果から、実施例1~14においては、第1ハードコート層表面に突起が単位面積(100μm)当たり300~10000個形成されているので、滑り性および耐ブロッキング性が良好であるといえる。また、第1および第2ハードコート層の中心線平均粗さ(Ra1、Ra2)が30nm未満であり、ハードコートフィルムのヘイズ値が1.5%未満と小さくなっており、透明性が良好であるので、全光線透過率が高いといえる。 From the above results, in Examples 1 to 14, since 300 to 10000 protrusions per unit area (100 μm 2 ) are formed on the surface of the first hard coat layer, it can be said that the slipping property and the blocking resistance are good. . Further, the center line average roughness (Ra1, Ra2) of the first and second hard coat layers is less than 30 nm, the haze value of the hard coat film is less than 1.5%, and the transparency is good. Therefore, it can be said that the total light transmittance is high.
[実施例15~24]
 実施例1~10のハードコートフィルムの第2ハードコート層の面に、透明導電膜としてITO膜を厚みが25nmとなるようにスパッタリング法で積層して、透明導電性フィルムを作製した。これらの透明導電性フィルムについて滑り性と耐ブロッキング性を評価した。その結果を表4に示す。
[Examples 15 to 24]
An ITO film as a transparent conductive film was laminated on the surface of the second hard coat layer of each of the hard coat films of Examples 1 to 10 by a sputtering method to produce a transparent conductive film. The slipperiness and blocking resistance of these transparent conductive films were evaluated. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 尚、透明導電性フィルムの滑り性および耐ブロッキング性の評価は、前述の「(14)滑り性の評価」および「(15)耐ブロッキング性の評価」において、第1ハードコート層の面と透明導電膜の面とが向き合うように重ねるように変更した以外は同様にして評価した。 Incidentally, the evaluation of the slipperiness and blocking resistance of the transparent conductive film was conducted in the above-mentioned "(14) Evaluation of slipperiness" and "(15) Evaluation of blocking resistance" and the surface of the first hard coat layer was transparent. Evaluation was performed in the same manner except that the layers were overlapped so that the surface of the conductive film faced.
 実施例15~24の透明導電性フィルムはいずれも、滑り性および耐ブロッキング性とも良好であった。 The transparent conductive films of Examples 15 to 24 were all good in slipping property and blocking resistance.
[実施例25~29]
 実施例2、4、6、8および10のハードコートフィルムの第2ハードコート層の面に、下記の高屈折率層と低屈折率層をこの順に積層し、次いで低屈折率層の上に下記の透明導電膜を形成して、静電容量式タッチパネル用の透明導電性フィルムを作製した。
[Examples 25 to 29]
The following high refractive index layer and low refractive index layer were laminated in this order on the surface of the second hard coat layer of the hard coat films of Examples 2, 4, 6, 8, and 10, and then on the low refractive index layer. The following transparent conductive film was formed to produce a transparent conductive film for a capacitive touch panel.
<高屈折率層の積層>
 下記の高屈折率層形成用の活性エネルギー線硬化性組成物をグラビアコート法により塗布し、90℃で乾燥後、紫外線400mJ/cmを照射して硬化させて厚みが50nmの高屈折率層を形成した。この高屈折率層の屈折率は1.68であった。
<Lamination of high refractive index layer>
The following active energy ray-curable composition for forming a high refractive index layer is applied by a gravure coating method, dried at 90 ° C., and then cured by irradiation with ultraviolet rays of 400 mJ / cm 2 to have a thickness of 50 nm. Formed. The refractive index of this high refractive index layer was 1.68.
(高屈折率層形成用の活性エネルギー線硬化性組成物)
 ジペンタエリスリトールヘキサアクリレート21質量部、ウレタンアクリレートオリゴマー(根上工業(株)の「UN-901T」;分子中に重合性官能基を9個含む)21質量部、酸化ジルコニウム55質量部、および光重合開始剤(チバ・スペシャルティ・ケミカルズ(株)製「イルガキュア184」)3質量部を有機溶剤(プロピレングリコールモノメチルエータル)に分散あるいは溶解して調製した。
(Active energy ray-curable composition for forming a high refractive index layer)
21 parts by mass of dipentaerythritol hexaacrylate, 21 parts by mass of urethane acrylate oligomer (“UN-901T” from Negami Kogyo Co., Ltd .; containing 9 polymerizable functional groups in the molecule), 55 parts by mass of zirconium oxide, and photopolymerization It was prepared by dispersing or dissolving 3 parts by mass of an initiator (“Irgacure 184” manufactured by Ciba Specialty Chemicals Co., Ltd.) in an organic solvent (propylene glycol monomethyl ether).
<低屈折率層の積層>
 下記の低屈折率層形成用の活性エネルギー線硬化性組成物をグラビアコート法により塗布し、90℃で乾燥後、紫外線400mJ/cmを照射して硬化させて厚みが40nmの低屈折率層を形成した。この低屈折率層の屈折率は1.40であった。
<Lamination of low refractive index layer>
The following active energy ray-curable composition for forming a low refractive index layer is applied by a gravure coating method, dried at 90 ° C., and then cured by irradiation with ultraviolet rays of 400 mJ / cm 2 to form a low refractive index layer having a thickness of 40 nm. Formed. The refractive index of this low refractive index layer was 1.40.
(低屈折率層形成用の活性エネルギー線硬化性組成物)
 ジ-(α-フルオロアクリル酸)-2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-ヘプタデカフルオロノニルエチレングリコール87質量部、ジペンタエリスリトールヘキサアクリレート10質量部、光重合開始剤(チバ・スペシャルティ・ケミカルズ(株)製「イルガキュア184」)3質量部を有機溶剤(メチルエチルケトン)に分散あるいは溶解して調製した。
(Active energy ray-curable composition for forming a low refractive index layer)
Di- (α-fluoroacrylic acid) -2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,9-heptadecafluorononylethylene glycol It was prepared by dispersing or dissolving 87 parts by mass, 10 parts by mass of dipentaerythritol hexaacrylate, and 3 parts by mass of a photopolymerization initiator (“Irgacure 184” manufactured by Ciba Specialty Chemicals Co., Ltd.) in an organic solvent (methyl ethyl ketone).
<透明導電膜の積層>
 ITO膜を厚みが25nmとなるようにスパッタリング法で積層し、格子状パターンにパターン加工(エッチング処理)して透明導電膜を形成した。
<Lamination of transparent conductive film>
An ITO film was laminated by a sputtering method so as to have a thickness of 25 nm, and a transparent conductive film was formed by pattern processing (etching treatment) into a lattice pattern.
[評価]
 実施例25~29の透明導電性フィルムについて、滑り性、耐ブロッキング性および透明導電膜パターンの視認性を評価した。その結果を表5に示す。
[Evaluation]
For the transparent conductive films of Examples 25 to 29, the slipperiness, blocking resistance, and visibility of the transparent conductive film pattern were evaluated. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 尚、透明導電性フィルムの滑り性および耐ブロッキング性の評価は、前述の「(14)滑り性の評価」および「(15)耐ブロッキング性の評価」において、第1ハードコート層の面と透明導電膜の面とが向き合うように重ねるように変更した以外は同様にして評価した。 Incidentally, the evaluation of the slipperiness and blocking resistance of the transparent conductive film was conducted in the above-mentioned "(14) Evaluation of slipperiness" and "(15) Evaluation of blocking resistance" and the surface of the first hard coat layer was transparent. Evaluation was performed in the same manner except that the layers were overlapped so that the surface of the conductive film faced.
 実施例25~29の透明導電性フィルムはいずれも、良好な滑り性、耐ブロッキング性および透明導電膜パターンの視認性を示した。 All of the transparent conductive films of Examples 25 to 29 showed good slipperiness, blocking resistance, and visibility of the transparent conductive film pattern.
[実施例31~40]
 以下に示すように、ぬれ張力の異なる5種類の樹脂層形成用塗布液を用意した。
[Examples 31 to 40]
As shown below, five types of coating liquids for forming a resin layer having different wetting tensions were prepared.
(樹脂層形成用塗布液c;ぬれ張力42mN/m)
 固形分質量比で、下記のポリエステル樹脂cを27質量%、ポリエステル樹脂dを54質量%、メラミン系架橋剤を18質量%、粒子を1質量%混合して水分散塗布液を調製した。
・ポリエステル樹脂c;2,6-ナフタレンジカルボン酸43モル%/5-ナトリウムスルホイソフタル酸7モル%/エチレングリコール45モル%/ジエチレングリコール5モル%で構成されているポリエステル樹脂。
・ポリエステル樹脂d;テレフタル酸38モル%/トリメリット酸12モル%/エチレングリコール45モル%/ジエチレングリコール5モル%で構成されているポリエステル樹脂。
・メラミン系架橋剤;三和ケミカル(株)製の「ニカラック MW12LF」
・粒子;平均粒子径0.19μmのコロイダルシリカ。
(Resin layer forming coating solution c; wetting tension 42 mN / m)
In the solid content mass ratio, 27% by mass of the following polyester resin c, 54% by mass of the polyester resin d, 18% by mass of the melamine-based crosslinking agent, and 1% by mass of the particles were mixed to prepare an aqueous dispersion coating solution.
Polyester resin c: a polyester resin composed of 43 mol% of 2,6-naphthalenedicarboxylic acid / 5 mol% of 5-sodium sulfoisophthalic acid / 45 mol% of ethylene glycol / 5 mol% of diethylene glycol.
Polyester resin d: polyester resin composed of terephthalic acid 38 mol% / trimellitic acid 12 mol% / ethylene glycol 45 mol% / diethylene glycol 5 mol%.
・ Melamine-based cross-linking agent; “Nicarac MW12LF” manufactured by Sanwa Chemical Co., Ltd.
Particles: colloidal silica having an average particle size of 0.19 μm.
 (樹脂層形成用塗布液d;ぬれ張力44mN/m)
 固形分質量比で、下記のポリエステル樹脂eを42質量%、アクリル樹脂aを42質量%、エポキシ系架橋剤を6質量%、界面活性剤を9質量%、粒子を1質量%混合して水分散塗布液を調製した。
・ポリエステル樹脂e;テレフタル酸35モル%/イソフタル酸11モル%/5-ナトリウムスルホイソフタル酸4モル%/エチレングリコール45モル%/ジエチレングリコール4モル%/ポリエチレングリコール(繰り返し単位数n=23)1モル%で構成されているポリエステル樹脂。
・アクリル樹脂a;メチルメタクリレート75モル%/エチルアクリレート18モル%/N-メチロールアクリルアミド4モル%/メトキシポリエチレングリコール(繰り返し単位数n=10)メタクリレート3モル%で構成されているアクリル樹脂。
・エポキシ系架橋剤;1,3-ビス(N,N-ジグリシジルアミン)シクロヘキサン
・界面活性剤;ポリオキシエチレンラウリルエーテル
・粒子;平均粒子径0.19μmのコロイダルシリカ。
(Resin layer forming coating solution d; wetting tension 44 mN / m)
In terms of solid content, 42% by mass of the following polyester resin e, 42% by mass of acrylic resin a, 6% by mass of the epoxy-based crosslinking agent, 9% by mass of the surfactant, and 1% by mass of the particles are mixed to form water. A dispersion coating solution was prepared.
Polyester resin e: terephthalic acid 35 mol% / isophthalic acid 11 mol% / 5-sodium sulfoisophthalic acid 4 mol% / ethylene glycol 45 mol% / diethylene glycol 4 mol% / polyethylene glycol (number of repeating units n = 23) 1 mol % Polyester resin.
Acrylic resin a: acrylic resin composed of 75 mol% of methyl methacrylate / 18 mol% of ethyl acrylate / 4 mol% of N-methylol acrylamide / methoxypolyethylene glycol (number of repeating units n = 10) 3 mol% of methacrylate.
Epoxy-based crosslinking agent; 1,3-bis (N, N-diglycidylamine) cyclohexane surfactant, polyoxyethylene lauryl ether particle, colloidal silica having an average particle size of 0.19 μm.
 (樹脂層形成用塗布液e;ぬれ張力48mN/m)
 固形分質量比で、下記のポリエステル樹脂fを40質量%、アクリル樹脂bを40質量%、メラミン系架橋剤を10質量%、界面活性剤を9質量%、粒子を1質量%混合して水分散塗布液を調製した。
・ポリエステル樹脂f;テレフタル酸30モル%/イソフタル酸15モル%/5-ナトリウムスルホイソフタル酸5モル%/エチレングリコール30モル%/1,4-ブタンジオール20モル%で構成されているポリエステル樹脂。
・アクリル樹脂b;メチルメタクリレート75モル%/エチルアクリレート22モル%/アクリル酸1モル%/N-メチロールアクリルアミド2モル%で構成されているアクリル樹脂
・メラミン系架橋剤;三和ケミカル(株)製の「ニカラック MW12LF」
・界面活性剤;ポリオキシエチレンラウリルエーテル
・粒子;平均粒子径0.19μmのコロイダルシリカ。
(Resin layer forming coating solution e; wetting tension 48 mN / m)
The following polyester resin f is 40% by mass, acrylic resin b is 40% by mass, melamine-based cross-linking agent is 10% by mass, surfactant is 9% by mass, and particles are 1% by mass in terms of solid content by mass. A dispersion coating solution was prepared.
Polyester resin f: a polyester resin composed of terephthalic acid 30 mol% / isophthalic acid 15 mol% / 5-sodium sulfoisophthalic acid 5 mol% / ethylene glycol 30 mol% / 1,4-butanediol 20 mol%.
・ Acrylic resin b: acrylic resin composed of 75 mol% of methyl methacrylate / 22 mol% of ethyl acrylate / 1 mol% of acrylic acid / 2 mol% of N-methylolacrylamide ・ Melamine cross-linking agent; manufactured by Sanwa Chemical Co., Ltd. "Nikarak MW12LF"
-Surfactant; Polyoxyethylene lauryl ether-Particles; Colloidal silica having an average particle size of 0.19 μm.
 (樹脂層形成用塗布液f;ぬれ張力51mN/m)
 固形分質量比で、下記のポリエステル樹脂gを45質量%、アクリル樹脂cを45質量%、メラミン系架橋剤を5質量%、界面活性剤を4質量%、粒子を1質量%混合して水分散塗布液を調製した。
・ポリエステル共重合体g:テレフタル酸32モル%/イソフタル酸12モル%/5-ナトリウムスルホイソフタル酸6モル%/エチレングリコール46モル%/ジエチレングリコール4モル%で構成されているポリエステル共重合体。
・アクリル樹脂c:メチルメタクリレート70モル%/エチルアクリレート22モル%/N-メチロールアクリルアミド4モル%/N,N-ジメチルアクリルアミド4モル%で構成されているアクリル共重合体。
・メラミン系架橋剤;三和ケミカル(株)製の「ニカラック MW12LF」
・界面活性剤;ポリオキシエチレンラウリルエーテル
・粒子;平均粒子径0.19μmのコロイダルシリカ。
(Resin layer forming coating solution f; wetting tension 51 mN / m)
The following polyester resin g is 45% by mass, acrylic resin c is 45% by mass, melamine-based crosslinking agent is 5% by mass, surfactant is 4% by mass, and particles are 1% by mass in terms of solid content by mass. A dispersion coating solution was prepared.
Polyester copolymer g: A polyester copolymer composed of terephthalic acid 32 mol% / isophthalic acid 12 mol% / 5-sodium sulfoisophthalic acid 6 mol% / ethylene glycol 46 mol% / diethylene glycol 4 mol%.
Acrylic resin c: an acrylic copolymer composed of 70 mol% methyl methacrylate / 22 mol% ethyl acrylate / 4 mol% N-methylolacrylamide / 4 mol% N, N-dimethylacrylamide.
・ Melamine-based cross-linking agent; “Nicarac MW12LF” manufactured by Sanwa Chemical Co., Ltd.
-Surfactant; Polyoxyethylene lauryl ether-Particles; Colloidal silica having an average particle size of 0.19 μm.
 (樹脂層形成用塗布液g;ぬれ張力53mN/m)
 固形分質量比で、ウレタン樹脂を85質量%、エポキシ系架橋剤を5質量%、界面活性剤を9質量%、粒子を1質量%混合して塗布液を調製した。
・ウレタン樹脂;大日本インキ化学工業(株)製の「ハイドランAP-20」
・エポキシ系架橋剤;トリエチレングリコールジグリシジルエーテル
・界面活性剤;ポリオキシエチレンラウリルエーテル
・粒子;平均粒子径0.19μmのコロイダルシリカ。
(Resin layer forming coating solution g; wetting tension 53 mN / m)
A coating liquid was prepared by mixing 85% by mass of urethane resin, 5% by mass of epoxy-based crosslinking agent, 9% by mass of surfactant, and 1% by mass of particles in a solid content mass ratio.
-Urethane resin: "Hydran AP-20" manufactured by Dainippon Ink & Chemicals, Inc.
・ Epoxy-based cross-linking agent; triethylene glycol diglycidyl ether ・ surfactant; polyoxyethylene lauryl ether ・ particles;
[実施例31]
 下記の要領でハードコートフィルムを作製した。
[Example 31]
A hard coat film was prepared in the following manner.
<樹脂層積層PETフィルムの作製>
 屈折率1.65で厚み100μmのポリエチレンテレフタレートフィルム(PETフィルム)の両面に、それぞれ樹脂層をPETフィルムの製造工程内でインラインコーティングした。つまり、長手方向に一軸延伸されたPETフィルムの両面にそれぞれ樹脂層形成用塗布液cをバーコート法で塗布し100℃で乾燥後、引き続き幅方向に二軸延伸し、230℃で20秒間加熱処理を施し熱硬化させて、両面に樹脂層が積層されたPETフィルムを作製した。PETフィルムの両面に積層された樹脂層の厚みはそれぞれ0.08μmであった。
<Production of resin layer laminated PET film>
A resin layer was in-line coated on both sides of a polyethylene terephthalate film (PET film) having a refractive index of 1.65 and a thickness of 100 μm within the PET film manufacturing process. That is, the resin layer forming coating solution c is applied to both surfaces of a PET film uniaxially stretched in the longitudinal direction by a bar coating method, dried at 100 ° C., then biaxially stretched in the width direction and heated at 230 ° C. for 20 seconds. The PET film in which the resin layer was laminated | stacked on both surfaces was processed and heat-cured. The thickness of the resin layer laminated | stacked on both surfaces of PET film was 0.08 micrometer, respectively.
<第1および第2ハードコート層の積層>
 両面に樹脂層が積層されたPETフィルムの一方の面の樹脂層上に、実施例1で用いた活性エネルギー線硬化性組成物aをグラビアコート法で塗布し、90℃で乾燥後、紫外線400mJ/cmを照射し硬化させて、第1ハードコート層を形成した。この第1ハードコート層の厚みは、1.6μmであった。
<Lamination of first and second hard coat layers>
The active energy ray-curable composition a used in Example 1 was applied by the gravure coating method on the resin layer on one side of the PET film having the resin layers laminated on both sides, dried at 90 ° C., and then irradiated with ultraviolet rays 400 mJ. / Cm 2 was irradiated and cured to form a first hard coat layer. The thickness of the first hard coat layer was 1.6 μm.
 次いで、PETフィルムの他方の面(第1ハードコート層が積層された面とは反対面)の樹脂層上に、実施例2で用いた活性エネルギー線硬化性組成物bを上記と同様にして第2ハードコート層を形成して、ハードコートフィルムを作製した。この第2ハードコート層の厚みは1.6μmであった。 Next, the active energy ray-curable composition b used in Example 2 is formed in the same manner as above on the resin layer on the other side of the PET film (the side opposite to the side on which the first hard coat layer is laminated). A second hard coat layer was formed to produce a hard coat film. The thickness of this second hard coat layer was 1.6 μm.
[実施例32~35]
 樹脂層形成用塗布液を表6のように変更する以外は、実施例31と同様にしてハードコートフィルムを作製した。
[Examples 32 to 35]
A hard coat film was produced in the same manner as in Example 31 except that the resin layer forming coating solution was changed as shown in Table 6.
[実施例36~40]
 第1ハードコート層の厚みを2.6μmに変更すること、および第2ハードコート層の厚みを2.6μmに変更すること以外は、実施例31~35と同様にしてハードコートフィルムを作製した。
[Examples 36 to 40]
A hard coat film was produced in the same manner as in Examples 31 to 35 except that the thickness of the first hard coat layer was changed to 2.6 μm and the thickness of the second hard coat layer was changed to 2.6 μm. .
[ハードコートフィルムの評価]
 上記で得られた実施例31~40のハードコートフィルムについて、第1および第2ハードコート層の構成を表6に示し、これらのハードコートフィルムの評価結果を表7に示す。
[Evaluation of hard coat film]
For the hard coat films of Examples 31 to 40 obtained above, the structures of the first and second hard coat layers are shown in Table 6, and the evaluation results of these hard coat films are shown in Table 7.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 上記結果から、ぬれ張力が52mN/m以下である樹脂層上に直接に第1ハードコート層を積層することにより、第1ハードコート層表面に粒子による突起が形成されやすいことが分かる(単位面積当たりの突起個数が多くなることが分かる)。そして、樹脂層表面のぬれ張力の影響は、第1ハードコート層の厚みが2μm未満の場合に顕著になることが分かる。つまり、ぬれ張力が52mN/m以下である樹脂層上に直接に第1ハードコート層を積層する態様は、第1ハードコート層の厚みが2μm未満の場合に、第1ハードコート層に含有される粒子が表面近傍に偏在しやすく、その結果、効率よく粒子による突起が形成される。また、第1ハードコート層の厚みを2μm未満とすることにより、ヘイズ値がより小さくなり透明性が向上する。 From the above results, it can be seen that by laminating the first hard coat layer directly on the resin layer having a wetting tension of 52 mN / m or less, protrusions due to particles are easily formed on the surface of the first hard coat layer (unit area) It can be seen that the number of projections per hit increases.) And it turns out that the influence of the wetting tension | tensile_strength of the resin layer surface becomes remarkable when the thickness of a 1st hard-coat layer is less than 2 micrometers. That is, the aspect in which the first hard coat layer is directly laminated on the resin layer having a wetting tension of 52 mN / m or less is contained in the first hard coat layer when the thickness of the first hard coat layer is less than 2 μm. Particles are likely to be unevenly distributed in the vicinity of the surface, and as a result, protrusions made of particles are efficiently formed. Moreover, by making the thickness of the first hard coat layer less than 2 μm, the haze value becomes smaller and the transparency is improved.
1~5 突起
11 突起
20 横方向の直線
30 縦方向の直線
1 to 5 Protrusion 11 Protrusion 20 Horizontal straight line 30 Vertical straight line

Claims (17)

  1.  基材フィルムの少なくとも一方の面に、粒子を含有する第1ハードコート層を備え、第1ハードコート層の表面に前記粒子からなる突起が100μm当たり300~4000個の密度で存在しており、第1ハードコート層の表面の中心線平均粗さ(Ra1)が30nm未満であり、ヘイズ値が1.5%未満であることを特徴とするハードコートフィルム。 A first hard coat layer containing particles is provided on at least one surface of the base film, and protrusions made of the particles are present on the surface of the first hard coat layer at a density of 300 to 4000 per 100 μm 2 The hard coat film characterized by having a center line average roughness (Ra1) of the surface of the first hard coat layer of less than 30 nm and a haze value of less than 1.5%.
  2.  前記粒子の平均粒子径(r)が0.05~0.5μmである、請求項1に記載のハードコートフィルム。 2. The hard coat film according to claim 1, wherein an average particle diameter (r) of the particles is 0.05 to 0.5 μm.
  3.  第1ハードコート層の厚み(d)に対する前記粒子の平均粒子径(r)の比率(r/d)が0.01~0.30である、請求項1または2に記載のハードコートフィルム。 3. The hard coat film according to claim 1, wherein the ratio (r / d) of the average particle diameter (r) of the particles to the thickness (d) of the first hard coat layer is 0.01 to 0.30.
  4.  前記突起の平均直径が0.03~0.3μmであり、前記突起の平均高さが0.03~0.3μmである、請求項1~3のいずれかに記載のハードコートフィルム。 4. The hard coat film according to claim 1, wherein an average diameter of the protrusions is 0.03 to 0.3 μm, and an average height of the protrusions is 0.03 to 0.3 μm.
  5.  前記突起の平均間隔が0.10~0.70μmである、請求項1~4のいずれかに記載のハードコートフィルム。 The hard coat film according to any one of claims 1 to 4, wherein an average interval between the protrusions is 0.10 to 0.70 µm.
  6.  第1ハードコート層の厚み(d)が0.5μm以上10μm未満である、請求項1~5のいずれかに記載のハードコートフィルム。 The hard coat film according to claim 1, wherein the thickness (d) of the first hard coat layer is 0.5 μm or more and less than 10 μm.
  7.  前記基材フィルムと第1ハードコート層との間に厚みが0.005~0.3μmである樹脂層を備え、該樹脂層が、厚みの1.3倍以上の平均粒子径を有する粒子を含有する、請求項1~6のいずれかに記載のハードコートフィルム。 A resin layer having a thickness of 0.005 to 0.3 μm is provided between the base film and the first hard coat layer, and the resin layer has particles having an average particle diameter of 1.3 times or more of the thickness. The hard coat film according to any one of claims 1 to 6, which is contained.
  8.  前記基材フィルムがポリエチレンテレフタレートからなり、前記基材フィルムと第1ハードコート層との間に屈折率が1.55~1.61の樹脂層を備えている、請求項1~7のいずれかに記載のハードコートフィルム。 The base film is made of polyethylene terephthalate, and a resin layer having a refractive index of 1.55 to 1.61 is provided between the base film and the first hard coat layer. Hard coat film as described in 2.
  9.  前記基材フィルムと第1ハードコート層との間に、ぬれ張力が52mN/m以下である樹脂層を備えている、請求項1~8のいずれかに記載のハードコートフィルム。 The hard coat film according to any one of claims 1 to 8, further comprising a resin layer having a wetting tension of 52 mN / m or less between the base film and the first hard coat layer.
  10.  第1ハードコート層の厚みが2μm未満である、請求項9に記載のハードコートフィルム。 The hard coat film according to claim 9, wherein the first hard coat layer has a thickness of less than 2 μm.
  11.  第1ハードコート層に含有される前記粒子が無機物からなり、該粒子の表面に対し表面自由エネルギーを小さくするための処理または疎水化処理が施されている、請求項1~10のいずれかに記載のハードコートフィルム。 The particle according to any one of claims 1 to 10, wherein the particles contained in the first hard coat layer are made of an inorganic substance, and the surface of the particles is subjected to a treatment for reducing surface free energy or a hydrophobic treatment. The hard coat film as described.
  12.  第1ハードコート層に含有される前記粒子の表面に対し、一般式1(C2n+1-(CH-Si(Q))で示されるオルガノシラン化合物、該オルガノシラン化合物の加水分解物、または該加水分解物の部分縮合物を用いて、表面自由エネルギーを小さくする処理が施されている、請求項11に記載のハードコートフィルム。
     但し、一般式1において、nは1~10の整数、mは1~5の整数を表し、Qは炭素数1~5のアルコキシ基またはハロゲン原子を表す。
    An organosilane compound represented by the general formula 1 (C n F 2n + 1 — (CH 2 ) m —Si (Q) 3 ) is added to the surface of the particles contained in the first hard coat layer. The hard coat film according to claim 11, wherein a treatment for reducing surface free energy is performed using a decomposition product or a partial condensate of the hydrolysis product.
    In general formula 1, n represents an integer of 1 to 10, m represents an integer of 1 to 5, and Q represents an alkoxy group having 1 to 5 carbon atoms or a halogen atom.
  13.  第1ハードコート層に含有される前記粒子の表面が、一般式2(B-R-SiR (OR3-n)で示される化合物を用いて処理された後に、一般式3(D-R-Rf)で示されるフッ素化合物を用いて処理されることにより疎水化されている、請求項11に記載のハードコートフィルム。
     但し、一般式2および3において、BおよびDはそれぞれ独立に反応性部位を表し、RおよびRはそれぞれ独立に炭素数1~3のアルキレン基、または該アルキレン基から導出されるエステル構造を表し、RおよびRはそれぞれ独立に水素または炭素数1~4のアルキル基を表し、Rfはフルオロアルキル基を表し、nは0~2の整数を表す。
    After the surface of the particles contained in the first hard coat layer is treated with a compound represented by the general formula 2 (BR 4 —SiR 5 n (OR 6 ) 3-n ), the general formula 3 The hard coat film according to claim 11, which has been hydrophobized by treatment with a fluorine compound represented by (DR 7 -Rf 2 ).
    However, in the general formulas 2 and 3, B and D each independently represent a reactive site, and R 4 and R 7 each independently represent an alkylene group having 1 to 3 carbon atoms or an ester structure derived from the alkylene group R 5 and R 6 each independently represent hydrogen or an alkyl group having 1 to 4 carbon atoms, Rf 2 represents a fluoroalkyl group, and n represents an integer of 0 to 2.
  14.  第1ハードコート層に含有される前記粒子の表面が、炭素数4以上のフルオロアルキル基と反応性部位とを有するフッ素化合物、炭素数8以上の炭化水素基と反応性部位とを有する長鎖炭化水素化合物、またはシロキサン基と反応性部位とを有するシリコーン化合物を用いて処理されることにより疎水化されている、請求項11に記載のハードコートフィルム。 The surface of the particle contained in the first hard coat layer has a fluorine compound having a fluoroalkyl group having 4 or more carbon atoms and a reactive site, a long chain having a hydrocarbon group having 8 or more carbon atoms and a reactive site. The hard coat film according to claim 11, which is hydrophobized by being treated with a hydrocarbon compound or a silicone compound having a siloxane group and a reactive site.
  15.  第1ハードコート層に含有される前記粒子がシリカ粒子である、請求項1~14のいずれかに記載のハードコートフィルム。 The hard coat film according to any one of claims 1 to 14, wherein the particles contained in the first hard coat layer are silica particles.
  16.  前記基材フィルムの第1ハードコート層が設けられた面とは反対面に第2ハードコート層を備え、第2ハードコート層の表面には粒子からなる突起が実質的に存在せず、かつ第2ハードコート層の表面の中心線平均粗さ(Ra2)が25nm以下である、請求項1~15のいずれかに記載のハードコートフィルム。 The base film is provided with a second hard coat layer on the surface opposite to the surface on which the first hard coat layer is provided, the surface of the second hard coat layer is substantially free of protrusions made of particles, and The hard coat film according to any one of claims 1 to 15, wherein the center line average roughness (Ra2) of the surface of the second hard coat layer is 25 nm or less.
  17.  請求項1~16のいずれかに記載のハードコートフィルムの少なくとも一方の面に透明導電膜を備える透明導電性フィルム。 A transparent conductive film comprising a transparent conductive film on at least one surface of the hard coat film according to any one of claims 1 to 16.
PCT/JP2013/079968 2012-11-27 2013-11-06 Hard coat film and transparent conducting film WO2014084008A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2013555666A JP5528645B1 (en) 2012-11-27 2013-11-06 Hard coat film and transparent conductive film
KR1020157010588A KR101563564B1 (en) 2012-11-27 2013-11-06 Hard coat film and transparent conducting film
CN201380061679.9A CN104822522B (en) 2012-11-27 2013-11-06 Hard coat film and transparent and electrically conductive film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012258350 2012-11-27
JP2012-258350 2012-11-27

Publications (1)

Publication Number Publication Date
WO2014084008A1 true WO2014084008A1 (en) 2014-06-05

Family

ID=50827654

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/079968 WO2014084008A1 (en) 2012-11-27 2013-11-06 Hard coat film and transparent conducting film

Country Status (5)

Country Link
JP (1) JP5528645B1 (en)
KR (1) KR101563564B1 (en)
CN (1) CN104822522B (en)
TW (1) TWI608937B (en)
WO (1) WO2014084008A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096297A (en) * 2013-11-15 2015-05-21 リンテック株式会社 Hard coat film, transparent electroconductive film and capacitance touch panel
JP2015201165A (en) * 2014-03-31 2015-11-12 積水ナノコートテクノロジー株式会社 Light transmissive conductive film and touch panel having the same
JP2016085424A (en) * 2014-10-29 2016-05-19 富士フイルム株式会社 Optical film, polarizing plate, image display device, and production method of optical film
JP2016110831A (en) * 2014-12-05 2016-06-20 日東電工株式会社 Transparent conductive film and touch sensor using the same
JP2016165824A (en) * 2015-03-09 2016-09-15 リンテック株式会社 Window film, and method for producing window film
JP2017139061A (en) * 2016-02-01 2017-08-10 日東電工株式会社 Transparent conductive film
JP2017222106A (en) * 2016-06-16 2017-12-21 株式会社トッパンTomoegawaオプティカルフィルム Transparent conductive film and production method of the same, touch panel including transparent conductive film
JP2018044151A (en) * 2016-09-07 2018-03-22 東山フイルム株式会社 Hard coat film for transparent conductive film
JPWO2018100929A1 (en) * 2016-12-01 2018-11-29 Dic株式会社 Active energy ray-curable composition and film using the same
CN115850803A (en) * 2022-11-27 2023-03-28 合肥乐凯科技产业有限公司 Antifogging and antidazzling hardened film
WO2024070442A1 (en) * 2022-09-26 2024-04-04 富士フイルム株式会社 Film, laminated film, and film production method

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6094226B2 (en) * 2013-01-09 2017-03-15 Dic株式会社 Protective adhesive film, screen panel and touch panel
TWI676185B (en) * 2014-12-09 2019-11-01 日商琳得科股份有限公司 Transparent conductive film and its producing method thereof
WO2017138482A1 (en) * 2016-02-10 2017-08-17 日立化成株式会社 Conductive particles, insulated coated conductive particles, anisotropic conductive adhesive, connected structure and method for producing conductive particles
JP7141237B2 (en) * 2018-04-27 2022-09-22 日東電工株式会社 HARD COAT FILM, TRANSPARENT CONDUCTIVE FILM, TRANSPARENT CONDUCTIVE FILM LAMINATE AND IMAGE DISPLAY DEVICE
CN110504047B (en) * 2018-05-16 2021-06-29 南昌欧菲显示科技有限公司 Transparent conductive film and touch screen
JP6462941B1 (en) * 2018-05-28 2019-01-30 グンゼ株式会社 Cover film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052517A (en) * 1998-08-04 2000-02-22 Unitika Ltd Multilayer biaxially oriented polyester film
JP2000211082A (en) * 1999-01-21 2000-08-02 Teijin Ltd Easy slip composite polyester film
JP2008001050A (en) * 2006-06-26 2008-01-10 Toray Ind Inc Laminated polyester film for electronic paper, electronic paper using the same, and manufacturing method of elecronic paper using the same
JP2011230442A (en) * 2010-04-30 2011-11-17 Mitsubishi Plastics Inc Laminated polyester film
JP2012027401A (en) * 2010-07-27 2012-02-09 Panasonic Electric Works Co Ltd Hard coat film and antireflection film

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3248333B2 (en) * 1994-02-25 2002-01-21 東レ株式会社 Laminated polyester film
JP2974576B2 (en) * 1994-05-25 1999-11-10 リンテック株式会社 Slippery hard coat film and method for producing the same
DE60128508D1 (en) * 2000-03-28 2007-07-05 Toyo Boseki Transparent conductive film, transparent conductive sheet and touch-sensitive panel
JP4986100B2 (en) * 2003-12-25 2012-07-25 東洋紡績株式会社 Transparent conductive film, transparent conductive sheet and touch panel
JP5239247B2 (en) * 2007-07-31 2013-07-17 大日本印刷株式会社 Curable resin composition for hard coat layer and hard coat film
WO2009022639A1 (en) * 2007-08-10 2009-02-19 Dai Nippon Printing Co., Ltd. Hard coat film
KR20120003448A (en) * 2009-03-31 2012-01-10 데이진 가부시키가이샤 Transparent conductive laminate and transparent touch panel
KR20100112740A (en) * 2009-04-10 2010-10-20 도레이첨단소재 주식회사 Low reflection film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052517A (en) * 1998-08-04 2000-02-22 Unitika Ltd Multilayer biaxially oriented polyester film
JP2000211082A (en) * 1999-01-21 2000-08-02 Teijin Ltd Easy slip composite polyester film
JP2008001050A (en) * 2006-06-26 2008-01-10 Toray Ind Inc Laminated polyester film for electronic paper, electronic paper using the same, and manufacturing method of elecronic paper using the same
JP2011230442A (en) * 2010-04-30 2011-11-17 Mitsubishi Plastics Inc Laminated polyester film
JP2012027401A (en) * 2010-07-27 2012-02-09 Panasonic Electric Works Co Ltd Hard coat film and antireflection film

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015096297A (en) * 2013-11-15 2015-05-21 リンテック株式会社 Hard coat film, transparent electroconductive film and capacitance touch panel
JP2015201165A (en) * 2014-03-31 2015-11-12 積水ナノコートテクノロジー株式会社 Light transmissive conductive film and touch panel having the same
JP2016085424A (en) * 2014-10-29 2016-05-19 富士フイルム株式会社 Optical film, polarizing plate, image display device, and production method of optical film
US10217543B2 (en) 2014-12-05 2019-02-26 Nitto Denko Corporation Transparent electroconductive film and touch sensor in which same is used
JP2016110831A (en) * 2014-12-05 2016-06-20 日東電工株式会社 Transparent conductive film and touch sensor using the same
KR20170086611A (en) * 2014-12-05 2017-07-26 닛토덴코 가부시키가이샤 Transparent electroconductive film and touch sensor in which same is used
TWI683323B (en) * 2014-12-05 2020-01-21 日商日東電工股份有限公司 Transparent conductive film and touch sensor using the same
KR102021214B1 (en) * 2014-12-05 2019-09-11 닛토덴코 가부시키가이샤 Transparent electroconductive film and touch sensor in which same is used
JP2016165824A (en) * 2015-03-09 2016-09-15 リンテック株式会社 Window film, and method for producing window film
JP2017139061A (en) * 2016-02-01 2017-08-10 日東電工株式会社 Transparent conductive film
JP2017222106A (en) * 2016-06-16 2017-12-21 株式会社トッパンTomoegawaオプティカルフィルム Transparent conductive film and production method of the same, touch panel including transparent conductive film
JP2018044151A (en) * 2016-09-07 2018-03-22 東山フイルム株式会社 Hard coat film for transparent conductive film
JPWO2018100929A1 (en) * 2016-12-01 2018-11-29 Dic株式会社 Active energy ray-curable composition and film using the same
WO2024070442A1 (en) * 2022-09-26 2024-04-04 富士フイルム株式会社 Film, laminated film, and film production method
CN115850803A (en) * 2022-11-27 2023-03-28 合肥乐凯科技产业有限公司 Antifogging and antidazzling hardened film
CN115850803B (en) * 2022-11-27 2024-02-13 合肥乐凯科技产业有限公司 Antifog anti-dazzle hardening film

Also Published As

Publication number Publication date
JPWO2014084008A1 (en) 2017-01-05
CN104822522B (en) 2017-03-08
KR101563564B1 (en) 2015-10-27
CN104822522A (en) 2015-08-05
TWI608937B (en) 2017-12-21
JP5528645B1 (en) 2014-06-25
KR20150048927A (en) 2015-05-07
TW201425035A (en) 2014-07-01

Similar Documents

Publication Publication Date Title
JP5528645B1 (en) Hard coat film and transparent conductive film
KR101524580B1 (en) Transparent conductive film, touch panel, and display device
KR101282073B1 (en) Optical laminate comprising low-refractive index layer
KR20080045226A (en) Nano-structured thin film with reduced light reflection
JP2011039332A (en) Optical film, method for manufacturing the same, polarizing plate and image display device
JP2007168429A (en) Antireflection film, its manufacturing method and polarizing plate using the same, and display device
JP2015176465A (en) Base film of transparent conductive film for touch panel, and the transparent conductive film for the touch panel
JP5821099B2 (en) Base film for transparent conductive film for touch panel and transparent conductive film for touch panel
WO2006106756A1 (en) Optical layered product
JP2006293329A (en) Anti-reflection film, manufacturing method thereof, polarizing plate using the anti-reflection film, and image display device using the anti-reflection film or polarizing plate
JP6103306B2 (en) Laminated film and transparent conductive film
JP5835517B1 (en) Hard coat film and transparent conductive film
JP2007108726A (en) Anti-reflection film, polarizing plate and image display device
JP2006208991A (en) Antireflection film, polarizing plate and image display device
JP2008024874A (en) Curable composition, antireflection film, and polarizing plate and image display device, using the same
JP2007264603A (en) Optical film, production process thereof, antireflection film, polarizing plate, and display device
JP2007106930A (en) Film forming composition, antireflection film, polarizing plate and image display device
US20090067046A1 (en) Antireflection film, polarizing plate and image display
JP2007256925A (en) Optical film, antireflection film, polarizing plate, display apparatus and method for manufacturing optical film
JP5155545B2 (en) Antireflection film, method for producing the same, polarizing plate using the antireflection film, and image display device
JP2007065634A (en) Method of manufacturing optical film, optical film, antireflection film and polarizing plate and image display device using such optical film or antireflection film
JP2007108512A (en) Antireflection film, and polarizing plate and image display device using the same
JP4934381B2 (en) Antireflection film, polarizing plate and image display device using the antireflection film, and method for producing the antireflection film
JP5227508B2 (en) Curable composition, antireflection film, and polarizing plate and image display device using the antireflection film
JP2008106101A (en) Curable resin composition, cured product, antireflection film, polarizing plate, image display device, fluoroolefin copolymer and method for producing the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2013555666

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13859587

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20157010588

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13859587

Country of ref document: EP

Kind code of ref document: A1