WO2021259388A1 - 一种用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法及其应用 - Google Patents

一种用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法及其应用 Download PDF

Info

Publication number
WO2021259388A1
WO2021259388A1 PCT/CN2021/114388 CN2021114388W WO2021259388A1 WO 2021259388 A1 WO2021259388 A1 WO 2021259388A1 CN 2021114388 W CN2021114388 W CN 2021114388W WO 2021259388 A1 WO2021259388 A1 WO 2021259388A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
thermal conductivity
oxygen content
carbon
high thermal
Prior art date
Application number
PCT/CN2021/114388
Other languages
English (en)
French (fr)
Inventor
伍尚华
杨平
李建斌
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2021259388A1 publication Critical patent/WO2021259388A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • C04B35/593Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride obtained by pressure sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/5001Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials with carbon or carbonisable materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient

Definitions

  • the invention belongs to the technical field of ceramics, and more specifically, relates to a method and application for preparing silicon nitride ceramics with low oxygen content and high thermal conductivity by coating with carbon.
  • the common ceramic substrate materials on the market are mainly beryllium oxide, aluminum oxide and aluminum nitride.
  • Beryllium oxide ceramic substrate has high thermal conductivity, but beryllium oxide powder is highly toxic and difficult to promote and apply;
  • alumina ceramic substrate has high mechanical strength and high chemical stability, but has low thermal conductivity and high thermal expansion coefficient, which is easy to be in repeated temperature cycles. Internal stress is generated, which greatly increases the probability of failure, and it is difficult to meet the requirements of advanced ceramic substrate materials; aluminum nitride ceramic substrates have high thermal conductivity but poor mechanical properties, which will seriously affect the reliability of ceramic substrate materials.
  • silicon nitride Compared with other ceramic materials, as a structural ceramic material with the best overall performance, silicon nitride has obvious advantages, especially the high temperature resistance shown by silicon nitride ceramic materials under high temperature conditions, chemical inertness to metals, and ultra-high Mechanical properties such as hardness and fracture toughness.
  • silicon nitride ceramics have high theoretical thermal conductivity.
  • the thermal conductivity of silicon nitride ceramics is not the same in the experimental preparation of silicon nitride ceramics. Not ideal, much lower than the theoretical value.
  • researchers’ previous theoretical research on the thermal conductivity of silicon nitride ceramics found that lattice oxygen is the most important factor affecting the thermal conductivity of silicon nitride ceramics. According to the defect equation, SiO 2 ⁇ Si Si +2O c +V Si , the dissolving of oxygen atoms in the silicon nitride lattice will produce silicon voids (V Si ).
  • the silicon voids will serve as phonon scattering centers, increasing the phonon conduction resistance and greatly Reduce the thermal conductivity of silicon nitride ceramics.
  • the surface of silicon nitride powder is often oxidized to produce silicon dioxide, and the oxygen atoms in silicon dioxide will inevitably merge into the silicon nitride crystal lattice during the silicon nitride liquid phase sintering process, forming silicon gaps, which have a scattering effect on phonons. . Therefore, trying to reduce the oxygen content of silicon nitride powder is the most effective way to improve the thermal conductivity of silicon nitride ceramics.
  • the purpose of the present invention is to provide a method for preparing silicon nitride ceramics with low oxygen content and high thermal conductivity by coating with carbon.
  • the carbon-coated silicon nitride powder is used to control the temperature during the sintering process to reduce the silicon dioxide by the carbon layer coated on the surface of the silicon nitride, thereby reducing the overall oxygen content of the silicon nitride powder, thereby increasing the thermal conductivity of the silicon nitride ceramic .
  • Another object of the present invention is to provide a silicon nitride ceramic with low oxygen content and high thermal conductivity prepared by the above method.
  • a method for preparing silicon nitride ceramics with low oxygen content and high thermal conductivity by coating with carbon includes the following specific steps:
  • the specific steps of polydopamine-coated silicon nitride powder are as follows: take 1 L of deionized water, add 1 to 2 g of buffer (Tris-HCl), use NaOH to adjust the pH of the solution to 8 to 11, and add 10 to sequentially. 20g silicon nitride powder, 0.1 ⁇ 2g dopamine hydrochloride (dopamine cannot be obtained directly, it needs to be obtained by chemical reaction of dopamine hydrochloride), stir for 12 ⁇ 48h to polymerize dopamine to form polydopamine, dry and filter to obtain polydopamine package Coated silicon nitride powder.
  • the purity of the dopamine hydrochloride in step S1 is more than 97%.
  • the mass ratio of dopamine hydrochloride to silicon nitride powder in step S1 is (0.01-0.1):1.
  • the pretreated silicon nitride powder and the sintering aid are uniformly mixed through a mechanical ball milling process.
  • the ball mill is a planetary ball mill or a drum ball mill.
  • the sintering aid described in step S2 is one of Y 2 O 3 , Sc 2 O 3 , Sm 2 O 3 , Lu 2 O 3 , Er 2 O 3 , MgO, Mg 2 Si, and MgSiN 2 above.
  • the mass ratio of the polydopamine-coated silicon nitride powder and the sintering aid described in step S2 is (89-97): (3-21); more preferably, (94-97): (3 ⁇ 6).
  • the particle size of the silicon nitride powder described in step S1 is 0.5-3 ⁇ m, the purity is more than 99%, and the content of ⁇ -Si 3 N 4 is greater than 90%; the particle size of the sintering aid in step S2 is 0.3 ⁇ 3 ⁇ m, purity of 99% or more.
  • the carbonization time in step S3 is 1 to 4 hours.
  • the relative density of the silicon nitride ceramic with low oxygen content and high thermal conductivity described in step S4 is 95-100%.
  • the protective atmosphere in step S4 is nitrogen or argon.
  • the heating rate is 1-30°C/min
  • the reduction reaction time is 4-7h
  • the sintering time is 4-6h.
  • the sintering is hot pressing sintering, air pressure sintering, normal pressure protective atmosphere sintering or microwave heating sintering.
  • a silicon nitride ceramic with low oxygen content and high thermal conductivity which is prepared by the method.
  • the invention uses silicon nitride powder as a raw material to pretreat the silicon nitride powder and implement carbon coating.
  • the carbon source used for carbon coating is dopamine.
  • Dopamine can be polymerized on the surface of any material to form a polydopamine film and adhere firmly to the surface of the material. Based on the above principles, using dopamine as a carbon source, polydopamine is polymerized on the surface of silicon nitride to generate polydopamine-coated silicon nitride powder, and finally the polydopamine is carbonized to obtain carbon-coated silicon nitride powder.
  • silicon nitride powder has an oxide layer of silicon dioxide on the surface, and the oxygen atoms in silicon dioxide will inevitably merge into the silicon nitride lattice during the silicon nitride liquid phase sintering process to form silicon voids. It has a scattering effect on phonons, resulting in low thermal conductivity of silicon nitride.
  • a carbon source is coated on the surface of silicon nitride powder, and the carbon source is carbonized by high-temperature pyrolysis to form a core-shell structure carbon-silicon nitride powder.
  • the inventor found through research that under the premise of ensuring the density of the silicon nitride ceramic, reducing the oxygen content in the silicon nitride powder and the sintering aid is a key factor for improving the thermal conductivity of the silicon nitride ceramic. Therefore, the inventor proposed for the first time that the carbon layer distribution and the carbon layer structure can be precisely controlled by the method of carbon-coated silicon nitride powder. In the material preparation process, supplemented with a suitable temperature, the carbon layer can fully reduce the silicon dioxide on the silicon nitride surface, reduce the overall oxygen content of the silicon nitride powder, thereby reducing the lattice oxygen impurities in the silicon nitride, and further reducing the sound of the silicon gap. The scattering effect of the particles ultimately achieves the purpose of improving the thermal conductivity of silicon nitride ceramics.
  • the present invention has the following beneficial effects:
  • the present invention can precisely control the distribution of the carbon layer and precisely adjust the structure of the carbon layer, which can effectively reduce the silicon dioxide on the surface of the silicon nitride, reduce the oxygen content of the silicon nitride powder, and ease the nitriding Phonon scattering in the silicon lattice improves the thermal conductivity of silicon nitride ceramics.
  • the prepared silicon nitride ceramic has a density higher than 98.5%, for example, up to 99.6%, and has high thermal conductivity, and its thermal conductivity can reach more than 80W/(m ⁇ K), such as 85W/(m ⁇ K) .
  • the carbon layer can fully reduce the silicon dioxide on the surface of the silicon nitride, reduce the overall oxygen content of the silicon nitride powder, thereby reducing the lattice oxygen impurities in the silicon nitride, and further reducing the sound of the silicon gap.
  • the scattering effect of the ions finally realizes the purpose of improving the thermal conductivity of silicon nitride ceramics.
  • the method of the present invention can adjust the morphology of the carbon layer, while other existing technologies mainly use mechanical ball milling or other mixing methods to mix the carbon source into the silicon nitride powder.
  • the carbon source distribution has obvious randomness, and the carbon layer shape The appearance cannot be controlled, resulting in a limited reduction effect, insignificant reduction in oxygen content of silicon nitride powder, and unsatisfactory improvement in thermal conductivity.
  • Fig. 1 is a schematic diagram of the core-shell structure of carbon-coated silicon nitride powder of the present invention.
  • the silicon nitride powder described in the embodiment of the present invention has a particle size of 0.5-3 ⁇ m, a purity of more than 99%, and a content of ⁇ -Si 3 N 4 greater than 90% (commercial silicon nitride powder often contains ⁇ -Si 3 N 4 And ⁇ -Si 3 N 4 crystal structures); the particle size of the sintering aid in step S2 ranges from 0.3 to 3 ⁇ m, and the purity is more than 99%.
  • the Archimedes drainage method is used to test the density of the sample. Using laser pulse (LFA447, NETZSCH Instruments Co. Ltd, Selb, Germany) test, the sample size is 10mm ⁇ 10mm ⁇ 2mm.
  • Oxygen content of silicon nitride lattice Take 1g of sintered silicon nitride ceramic, add 50ml methanol, ball mill with tungsten carbide for 10min; sieve 500 mesh, dry at 60°C for 12h; take the dried silicon nitride powder and place Soak in HF (60%) heated in a water bath at 60°C for 3 hours, and then soak in H 2 SO 4 (50%) heated in a water bath at 120°C for 12 hours; after acid treatment, rinse with deionized water for 3 times and place at 110 Under the condition of °C, dry for 12h and sieved with 100 mesh; finally, the oxygen content of silicon nitride crystal lattice was measured with a gas thermal extraction analyzer (Model TC-436, LECO Co., St Joseph, MI).
  • the obtained silicon nitride has a density of 99.4%, a lattice oxygen content of 0.085wt.%, and a thermal conductivity of 76W/(m ⁇ K).
  • Fig. 1 is a schematic diagram of the core-shell structure of carbon-coated silicon nitride powder of the present invention. It can be seen from Fig. 1 that the carbon-coated silicon nitride powder has a core-shell structure, the inner layer is silicon nitride powder, and the outer layer is a coated carbon layer formed after carbonization of polydopamine.
  • Example 2 The difference from Example 1 is that the content of dopamine hydrochloride in the prepared dopamine solution is increased from 1 g to 2 g.
  • the silicon nitride prepared by the above has a density of 99.6%, a lattice oxygen content of 0.064wt.%, and a thermal conductivity of 85W/(m ⁇ K).
  • Example 1 As the content of dopamine hydrochloride increases, the thickness of the coated polydopamine layer increases, and the thickness of the carbon layer formed after the final carbonization also increases.
  • Example 2 The difference from Example 1 is that the carbon source (starch), silicon nitride powder, and sintering aid are ball-milled and mixed without coating.
  • silicon nitride powder Take 20g of silicon nitride powder, add 3wt.% Y 2 O 3 as a sintering aid, 1wt.% starch, and perform ball milling at a speed of 200 rpm and ball milling for 2 hours; place 16 g of the sieved mixed powder into graphite
  • the mold is kept at 600°C and a vacuum of 5Pa for 4 hours; in a N 2 atmosphere, the axial pressure is maintained at 20 MPa, and the temperature is increased to 1400°C for 4 hours; in a N 2 atmosphere, the axial pressure is increased To 50MPa, the temperature was increased to 1750°C; the temperature was kept for 5 hours; finally, it was cooled to room temperature with the furnace to obtain silicon nitride.
  • the obtained silicon nitride has a density of up to 99.9%, a lattice oxygen content of 0.187wt.%, and a thermal conductivity of up to 64W/(m ⁇ K).
  • Example 1 The difference from Example 1 is that no carbon source is added.
  • the obtained silicon nitride has a density of 99.2%, a lattice oxygen content of 0.406wt.%, and a thermal conductivity of 53W/(m ⁇ K).
  • Table 1 shows the performance parameters of silicon nitride ceramics prepared in the examples and comparative examples
  • Table 1 shows the performance parameters of the silicon nitride ceramics prepared in Example 1-2 and Comparative Example 1-2. It can be seen from Table 1: (1) The introduction of carbon sources (such as ball milling and carbon coating), reducing the silicon dioxide layer on the surface of silicon nitride by carbon, can reduce the oxygen content of the silicon nitride lattice and increase the silicon nitride ceramics Thermal conductivity; (2) Compared with the method of mixing the carbon source with ball milling, the carbon coating method can accurately control the distribution of the carbon source and has a better reduction effect. The oxygen content of the silicon nitride lattice is reduced more significantly.
  • carbon sources such as ball milling and carbon coating
  • the prepared nitride Silicon ceramics have higher thermal conductivity; (3) By adjusting the coating thickness of the carbon layer, the reduction effect can be accurately controlled, further reducing the oxygen content of the silicon nitride lattice, and improving the thermal conductivity of silicon nitride ceramics.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

本发明属于陶瓷技术领域,公开了一种用碳包覆制备制备低氧含量、高热导的氮化硅陶瓷的方法及其应用,该方法是将聚多巴胺包覆的的氮化硅粉末与烧结助剂混合,获得混合粉末置于石墨模具,在真空气氛下加热至600~800℃碳化,形成核壳结构的碳-氮化硅粉末,然后加以20~30MPa轴向压力,在保护气氛下,加热至1200~1500℃还原反应,再升温至1600~2000℃烧结,制得氮化硅陶瓷。本发明可精确控制碳层分布和精准调节碳层结构,有效还原氮化硅表面二氧化硅,降低氮化硅粉末氧含量,提高氮化硅陶瓷热导率。该氮化硅陶瓷的致密度高于98.5%,其热导率可达80W/(m·K)以上。

Description

一种用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法及其应用 技术领域
本发明属陶瓷技术领域,更具体地,涉及一种用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法及其应用。
背景技术
随着科学技术的快速发展,电子元件设计趋于小型化、大功率、集成化等。尺寸缩小,功率增大则意味着电子元件内部将发热严重,需要及时依靠陶瓷基板向外部散热,才能有效维持电子元件的性能和寿命。性能优异的陶瓷基板材料除了拥有高热导率,还需具备良好的抗弯强度和断裂韧性等。氮化硅陶瓷具有高硬度、高强度、抗热振性能优异等特点,是综合性能最好的结构陶瓷材料。此外,研究发现氮化硅陶瓷材料理论热导率可达200~320W/(m·K)。因此氮化硅陶瓷是目前先进陶瓷基板的最优候选材料。
目前市面上常见的陶瓷基板材料主要为氧化铍、三氧化铝和氮化铝。氧化铍陶瓷基板具备高热导,但氧化铍粉末有剧毒,难以推广应用;三氧化铝陶瓷基板机械强度高、化学稳定性高,但热导率低并且热膨胀系数高,在反复温度循环中易产生内应力,大大增加失效的概率,难以满足先进陶瓷基板材料的使用要求;氮化铝陶瓷基板具备高热导率,但是机械性能不佳,将严重影响陶瓷基板材料的可靠性。与其他陶瓷材料相比,作为综合性能最优的结构陶瓷材料,氮化硅具有明显优势,尤其是高温条件下氮化硅陶瓷材料表现出的耐高温性能、对金属的化学惰性、超高的硬度和断裂韧性等力学性能。
研究表明,氮化硅陶瓷具有高的理论热导率,但由于缺陷、杂质、显微结构以及制备工艺等条件的影响,在实验制备氮化硅陶瓷过程中,氮化硅陶瓷热导率并不理想,远低于理论值。研究者对氮化硅陶瓷热导的前期理论研究发现,晶格氧是影响氮化硅陶瓷热导率最重要的因素。根据缺陷方程,SiO 2→Si Si+2O c+V Si,氧原子溶于氮化硅晶格会产生硅空隙(V Si),硅空隙将作为声子散射中心,增加声子传导阻力,大幅降低氮化硅陶瓷热导率。氮化硅粉末表面常被氧化,生成二氧化硅,而二氧化硅中氧原子在氮化硅液相烧结过程中会不可避免融入氮化硅晶格,形成硅空隙,对声子产生散射作 用。因此,设法降低氮化硅粉末氧含量,是提高氮化硅陶瓷热导率最有效的方法。
发明内容
为了解决上述现有技术中存在的不足之处,本发明的目的在于提供一种用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法。该通过碳包覆氮化硅粉末,在烧结过程中控制温度使氮化硅表面包覆的碳层还原二氧化硅,降低氮化硅粉末整体氧含量,进而提高氮化硅陶瓷的热导率。
本发明的另一目的在于提供一种方法上述方法制得的低氧含量、高热导的氮化硅陶瓷。
本发明的目的通过下述技术方案来实现:
一种用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法,包括如下具体步骤:
S1.在去离子水中加入缓冲液Tris-HCl,调节溶液pH值至8~11,将氮化硅粉末和盐酸多巴胺混合搅拌后,干燥过滤,得到聚多巴胺包覆的氮化硅粉末;
S2.将聚多巴胺包覆的氮化硅粉末与烧结助剂混合,获得混合粉末;
S3.将混合粉末置于石墨模具,在真空气氛下加热至600~800℃碳化,使聚多巴胺高温热解碳化,形成核壳结构的碳-氮化硅粉末;
S4.然后加以20~30MPa轴向压力,在保护气氛下,加热至1200~1500℃,使碳-氮化硅粉末中的碳层与氮化硅表面的二氧化硅发生还原反应;将轴向压力升高至30~50MPa,再升温至1600~2000℃烧结,得到低氧含量、高热导的氮化硅陶瓷。
优选地,聚多巴胺包覆的氮化硅粉末的具体步骤如下:取1L去离子水,加入1~2g缓冲液(Tris-HCl),使用NaOH调节溶液pH值至8~11,依次加入10~20g氮化硅粉末,0.1~2g盐酸多巴胺(多巴胺无法直接获得,需通过盐酸多巴胺发生化学反应而获得),搅拌12~48h,使多巴胺发生聚合反应生成聚多巴胺,干燥过滤即可得到聚多巴胺包覆的氮化硅粉末。
优选地,步骤S1中所述盐酸多巴胺的纯度为97%以上。
优选地,步骤S1中所述的盐酸多巴胺与氮化硅粉末的质量比为(0.01~ 0.1):1。
通过机械球磨工艺将预处理后的氮化硅粉末与烧结助剂混合均匀,优选地,球磨机为行星式球磨机或滚筒式球磨机。
优选地,步骤S2中所述的烧结助剂为Y 2O 3、Sc 2O 3、Sm 2O 3、Lu 2O 3、Er 2O 3、MgO、Mg 2Si、MgSiN 2中的一种以上。
优选地,步骤S2中所述的聚多巴胺包覆的氮化硅粉末和烧结助剂的质量比(89~97):(3~21);更为优选地,(94~97):(3~6)。
优选地,步骤S1中所述的氮化硅粉末的粒径为0.5~3μm,纯度为99%以上,α-Si 3N 4含量大于90%;步骤S2中所述烧结助剂的粒径为0.3~3μm,纯度为99%以上。
优选地,步骤S3中所述碳化的时间为1~4h。
优选地,步骤S4中所述的低氧含量、高热导的氮化硅陶瓷的相对密度为95~100%。
优选地,步骤S4中所述保护气氛为氮气或氩气。
优选地,步骤S4中所述升温速率均为1~30℃/min,所述还原反应的时间为4~7h;所述烧结的时间为4~6h。
优选地,所述烧结为热压烧结、气压烧结、常压保护气氛烧结或微波加热烧结。
一种低氧含量、高热导的氮化硅陶瓷,所述氮化硅陶瓷是由所述的方法制得。
本发明以氮化硅粉末为原料,对氮化硅粉末进行预处理,实施碳包覆。碳包覆所使用的碳源为多巴胺,多巴胺可在任何物质表面聚合成聚多巴胺膜,并牢固黏附于该物质表面。基于上述原理,利用多巴胺作为碳源,在氮化硅表面聚合生成聚多巴胺,可以生成聚多巴胺包覆的氮化硅粉末,最后将聚多巴胺碳化得到碳包覆的氮化硅粉末。
本发明的原理如下:通常氮化硅粉末表面有二氧化硅的氧化层,而二氧化硅中氧原子在氮化硅液相烧结过程中会不可避免融入氮化硅晶格,形成硅空隙,对声子产生散射作用,导致氮化硅具有低的热导率。本发明通过在氮化硅粉末表面包覆碳源,利用高温热解将碳源碳化,形成核壳结构碳-氮化硅 粉末。然后通过控制温度,使碳层与氮化硅表面二氧化硅发生下列化学反应,有利于还原氮化硅表面的二氧化硅,降低粉末氧含量,从而降低氮化硅晶格氧含量,减小声子散射几率,提高氮化硅陶瓷的热导率。其原理如式(1)-(4)所示:
3SiO 2(s)+2N 2(g)+6C(s)=Si 3N 4(S)++CO(g)       式(1)
SiO 2(s)+C(g)=SiO(g)+CO(g)      式(2)
SiO 2(s)+CO(g)=SiO(g)+CO 2(g)       式(3)
3SiO(g)+2N 2(g)+3CO(g)=Si 3N 4(s)+3CO 2(g)        式(4)
本发明人通过研究发现,在保证氮化硅陶瓷致密度的前提下,降低氮化硅粉末和烧结助剂中氧含量,是提高氮化硅陶瓷热导率的关键因素。因此,本发明人首次提出,通过碳包覆氮化硅粉末的方法,可精确控制碳层分布和精准调节碳层结构。在材料制备过程中辅以合适的温度,使碳层充分还原氮化硅表面二氧化硅,降低氮化硅粉末整体氧含量,从而减少氮化硅中晶格氧杂质,进一步降低硅空隙对声子的散射作用,最终实现提高氮化硅陶瓷热导率的目的。
与现有技术相比,本发明具有以下有益效果:
1.本发明通过碳包覆氮化硅粉末的方法,可精确控制碳层分布和精准调节碳层结构,可有效还原氮化硅表面二氧化硅,降低氮化硅粉末氧含量,缓和氮化硅晶格中声子散射作用,提高氮化硅陶瓷热导率。且所制备的氮化硅陶瓷致密度高于98.5%,例如可达99.6%,并具有高热导率,其热导率可达80W/(m·K)以上,例如85W/(m·K)。在材料制备过程中辅以合适的温度,使碳层充分还原氮化硅表面二氧化硅,降低氮化硅粉末整体氧含量,从而减少氮化硅中晶格氧杂质,进一步降低硅空隙对声子的散射作用,最终实现提高氮化硅陶瓷热导率的目的。
2.本发明的方法可调节碳层形貌,而现有的其他技术主要通过机械球磨或其他混合方法将碳源混合进氮化硅粉末,碳源分布存在明显的随机性,且碳层形貌无法调控,导致最终的还原效果有限,氮化硅粉末氧含量降低效果不明显,热导率提升的不理想。
附图说明
图1为本发明的碳包覆氮化硅粉末核壳结构示意图。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
本发明实施例中所述的氮化硅粉末的粒径为0.5~3μm,纯度为99%以上,α-Si 3N 4含量大于90%(商用氮化硅粉末常包含α-Si 3N 4和β-Si 3N 4两种结晶结构);步骤S2中所述烧结助剂的粒径范围为0.3~3μm,纯度为99%以上。
实施例1
1.制备:
(1)取1L去离子水,加入1g缓冲液(Tris-HC1),使用NaOH调节溶液pH值至9,依次加入20g氮化硅粉末,1g盐酸多巴胺,搅拌24h后,干燥过滤,得到聚多巴胺包覆的氮化硅粉末;
(2)称量18g聚多巴胺包覆的氮化硅粉末,加入3wt.%Y 2O 3作为烧结助剂,进行球磨混料,转速为200转/min,球磨时间2h;将过筛后的混合粉末16g置于石墨模具,在600℃,真空度为5Pa条件下保温4h;在N 2气氛下,轴向压力保持20MPa,升温至1400℃,保温4h;在N 2气氛下,轴向压力升高至50MPa,升温至1750℃;保温5h;最后随炉冷却至室温,制得低氧含量、高热导的氮化硅陶瓷。
2.性能测试:
采用阿基米德排水法,测试试样密度。采用激光脉冲(LFA447,NETZSCH Instruments Co.Ltd,Selb,Germany)测试,试样尺寸长宽高分别为10mm×10mm×2mm。
氮化硅晶格氧含量:取1g烧结后的氮化硅陶瓷,加入50ml甲醇,用碳化钨球磨10min;500目过筛,置于60℃干燥12h;取干燥后的氮化硅粉末置于水浴加热60℃的HF(60%)中浸泡3h,然后再置于水浴加热120℃的H 2SO 4 (50%)中浸泡12h;酸处理后,用去离子水清洗3遍,置于110℃条件下,干燥12h,100目过筛;最后使用气体热萃取分析仪测试氮化硅晶格氧含量(Model TC-436,LECO Co.,St Joseph,MI)。
所得氮化硅的致密度可达99.4%,晶格氧含量为0.085wt.%,热导率可达76W/(m·K)。
图1为本发明的碳包覆氮化硅粉末核壳结构示意图。从图1中可知碳包覆氮化硅粉末为核壳结构,内层是氮化硅粉末,外层为聚多巴胺碳化后形成的包覆碳层。
实施例2
与实施例1不同之处在于:制备多巴胺溶液中盐酸多巴胺含量由1g升高至2g。
1.取1L去离子水,加入1g缓冲液(Tris-HC1),使用NaOH调节溶液pH值至9,依次加入20g氮化硅粉末,2g盐酸多巴胺,搅拌24h后,干燥过滤即可得到聚多巴胺包覆的氮化硅粉末;
2.称量18g聚多巴胺包覆的氮化硅粉末,加入3wt.%Y 2O 3作为烧结助剂,进行球磨混料,转速为200转/min,球磨2h;将过筛后的混合粉末16g置于石墨模具,在600℃,真空度为5Pa条件下保温4h;在N 2气氛条件下,轴向压力保持20MPa,升温至1400℃,保温4h;在N 2气氛条件下,轴向压力升高至50MPa,升温至1750℃;保温5h;最后随炉冷却至室温,制得低氧含量、高热导的氮化硅。
由以上制备的氮化硅致密度可达99.6%,晶格氧含量为0.064wt.%,热导率可达85W/(m·K)。与实施例1相比,随着盐酸多巴胺含量升高,所包覆聚多巴胺层厚增加,最终碳化后形成的碳层厚度也随之增加。
对比例1
与实施例1不同之处在于:将碳源(淀粉)与氮化硅粉末、烧结助剂球磨混料,未进行包覆。
取20g氮化硅粉末加入3wt.%Y 2O 3作为烧结助剂,1wt.%淀粉,进行球磨混料,转速为200转/min,球磨2h;将过筛后的混合粉末16g置于石墨模具,在600℃,真空度为5Pa条件下保温4h;在N 2气氛条件下,轴向压力保持20MPa,升高温度至1400℃,保温4h;在N 2气氛条件下,轴向压力升高至50MPa,温度升高至1750℃;保温5h;最后随炉冷却至室温,制得氮化硅。
所得氮化硅的致密度可达99.9%,晶格氧含量为0.187wt.%,热导率可达64W/(m·K)。
对比例2
与实施例1不同之处在于:未加入碳源。
取20g氮化硅粉末加入3wt.%Y 2O 3作为烧结助剂,进行球磨混料,转速为200转/min,球磨时间2h;将过筛后的混合粉末16g置于石墨模具,在N 2气氛条件下,轴向压力升高至50MPa,升温至1750℃;保温5h;最后随炉冷却至室温,制得氮化硅。
所得氮化硅的致密度可达99.2%,晶格氧含量为0.406wt.%,热导率可达53W/(m·K)。
表1为实施例与对比例所制备的氮化硅陶瓷的性能参数
  碳引入形式 氮化硅晶格氧含量 致密度 热导率
实施例1 碳包覆 0.085wt.% 99.4% 76W/(m·K)
实施例2 碳包覆 0.064wt.% 99.6% 85W/(m·K)
对比例1 球磨混入 0.187wt.% 99.9% 64W/(m·K)
对比例2 未引入碳层 0.406wt.% 99.2% 53W/(m·K)
表1为实施例1-2与对比例1-2所制备的氮化硅陶瓷的性能参数。从表1中可知:(1)引入碳源(例如:球磨混入和碳包覆),通过碳还原氮化硅表 面二氧化硅层,可降低氮化硅晶格氧含量,提高氮化硅陶瓷热导率;(2)与球磨混入碳源的方法相比,碳包覆方法可精确控制碳源分布,具有更好的还原效果,氮化硅晶格氧含量降低更明显,制备的氮化硅陶瓷热导率更高;(3)通过调控碳层包覆厚度,可精确控制还原效果,进一步降低氮化硅晶格氧含量,提高氮化硅陶瓷热导率。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法,其特征在于,包括如下具体步骤:
    S1.在去离子水中加入缓冲液Tris-HC1,调节溶液pH值至8~11,将氮化硅粉末和盐酸多巴胺混合搅拌后,过滤干燥,得到聚多巴胺包覆的氮化硅粉末;
    S2.将聚多巴胺包覆的氮化硅粉末与烧结助剂混合,获得混合粉末;
    S3.将混合粉末置于石墨模具,在真空气氛下加热至600~800℃碳化,使聚多巴胺高温热解碳化,形成核壳结构的碳-氮化硅粉末;
    S4.然后加以20~30MPa轴向压力,在保护气氛下,加热至1200~1500℃,使碳-氮化硅粉末中的碳层与氮化硅表面的二氧化硅发生还原反应;将轴向压力升高至30~50MPa,再升温至1600~2000℃烧结,得到低氧含量、高热导的氮化硅陶瓷。
  2. 根据权利要求1所述的用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法,其特征在于,步骤S1中所述盐酸多巴胺的纯度为97%以上;所述的盐酸多巴胺与氮化硅粉末的质量比为(0.01~0.1):1。
  3. 根据权利要求1所述的用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法,其特征在于,步骤S2中所述的烧结助剂Y 2O 3、Sc 2O 3、Sm 2O 3、Lu 2O 3、Er 2O 3、MgO、Mg 2Si、MgSiN 2中的一种以上。
  4. 根据权利要求1所述的用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法,其特征在于,步骤S2中所述的聚多巴胺包覆的氮化硅粉末和烧结助剂的质量比为(89~97):(3~21)。
  5. 根据权利要求1所述的用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法,其特征在于,步骤S1中所述的氮化硅粉末的粒径为0.5~3μm,纯度为99%以上,α-Si 3N 4含量大于90%;步骤S2中所述烧结助剂的粒径为0.3~3μm,纯度为99%以上。
  6. 根据权利要求1所述的用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法,其特征在于,步骤S3中所述碳化的时间为1~4h。
  7. 根据权利要求1所述的用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法,其特征在于,步骤S4中所述的低氧含量、高热导的氮化硅陶瓷的相 对密度为95~100%。
  8. 根据权利要求1所述的用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法,其特征在于,步骤S4中所述保护气氛为氮气或氩气;所述升温速率均为1~30℃/min;所述还原反应的时间为4~7h,所述烧结的时间为4~6h。
  9. 根据权利要求1所述的用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法,其特征在于,所述烧结为热压烧结、气压烧结、常压保护气氛烧结或微波加热烧结。
  10. 一种低氧含量、高热导的氮化硅陶瓷,其特征在于,所述氮化硅陶瓷是由权利要求1-9任一项所述的用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法制得。
PCT/CN2021/114388 2020-06-24 2021-08-24 一种用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法及其应用 WO2021259388A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010588120.3 2020-06-24
CN202010588120.3A CN111875387A (zh) 2020-06-24 2020-06-24 一种用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法及其应用

Publications (1)

Publication Number Publication Date
WO2021259388A1 true WO2021259388A1 (zh) 2021-12-30

Family

ID=73156885

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/114388 WO2021259388A1 (zh) 2020-06-24 2021-08-24 一种用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法及其应用

Country Status (2)

Country Link
CN (1) CN111875387A (zh)
WO (1) WO2021259388A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115254163A (zh) * 2022-07-04 2022-11-01 大连科利德光电子材料有限公司 一种催化剂及其制备方法和在六氟丁二烯制备过程中的应用
CN117229067A (zh) * 2023-11-14 2023-12-15 中南大学 一种低压氮化-包埋制备氮化硅陶瓷的方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111875387A (zh) * 2020-06-24 2020-11-03 广东工业大学 一种用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法及其应用
CN113800918B (zh) * 2021-09-18 2022-12-09 湖南工业大学 一种痕量原位碳诱导的Si3N4导热陶瓷材料及制备方法
CN114195552B (zh) * 2021-12-27 2022-09-23 杭州电子科技大学 氮化硅陶瓷球表面嫁接氮掺杂碳量子点的成膜方法
CN114716252B (zh) * 2022-04-27 2023-05-09 中国科学院上海硅酸盐研究所 一种易烧结高纯氮化硅粉体的制备方法
CN116446192B (zh) * 2023-05-06 2024-04-02 扬州诺得利纺织科技有限公司 一种发热保暖面料及其制备方法
CN117164332A (zh) * 2023-08-29 2023-12-05 地大(武汉)资产经营有限公司 一种生物质基粘结剂改性陶瓷泥料的方法
CN117550901B (zh) * 2023-11-13 2024-05-14 中国人民解放军国防科技大学 一种采用核壳结构Si3N4@MgSiN2粉体制备高导热高强度氮化硅陶瓷的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1810720A (zh) * 2006-02-24 2006-08-02 中国科学院上海硅酸盐研究所 一种高热导氮化硅陶瓷的制备方法
CN106340399A (zh) * 2016-08-27 2017-01-18 大连理工大学 一种功能化聚多巴胺衍生炭层包覆碳基底的制备方法及应用
CN108504057A (zh) * 2018-03-29 2018-09-07 北京大学深圳研究生院 一种形状记忆复合材料及其制备方法
CN110856432A (zh) * 2019-10-24 2020-02-28 北京航空航天大学 一种制备碳包覆锰氧化合物电磁吸波材料的方法
CN111170745A (zh) * 2020-01-09 2020-05-19 北京科技大学 一种高导热氮化硅基板的制备方法
CN111875387A (zh) * 2020-06-24 2020-11-03 广东工业大学 一种用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法及其应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109694253B (zh) * 2017-10-24 2020-08-18 中国科学院上海硅酸盐研究所 一种通过碳掺杂提高常压烧结氮化硅陶瓷热导率的方法
CN107857593B (zh) * 2017-11-15 2020-11-06 中南大学 一种高疏水碳化硅泡沫陶瓷及其制备方法和应用
CN108689715B (zh) * 2018-04-18 2021-01-15 山东国瓷功能材料股份有限公司 一种氮化铝粉体及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1810720A (zh) * 2006-02-24 2006-08-02 中国科学院上海硅酸盐研究所 一种高热导氮化硅陶瓷的制备方法
CN106340399A (zh) * 2016-08-27 2017-01-18 大连理工大学 一种功能化聚多巴胺衍生炭层包覆碳基底的制备方法及应用
CN108504057A (zh) * 2018-03-29 2018-09-07 北京大学深圳研究生院 一种形状记忆复合材料及其制备方法
CN110856432A (zh) * 2019-10-24 2020-02-28 北京航空航天大学 一种制备碳包覆锰氧化合物电磁吸波材料的方法
CN111170745A (zh) * 2020-01-09 2020-05-19 北京科技大学 一种高导热氮化硅基板的制备方法
CN111875387A (zh) * 2020-06-24 2020-11-03 广东工业大学 一种用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法及其应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DAI JIANQING, MA TIAN, ZHANG LIMING, HUANG YONG: "Effect of Powder Surface Oxygen Content on Microstructure of GPS Silicon Nitride Ceramics", RARE METAL MATERIALS AND ENGINEERING, vol. 34, no. 2, 28 February 2005 (2005-02-28), pages 189 - 193, XP055883013, ISSN: 1002-185X *
LI BIN, FENG YUYAN, LI GUANGQI, CHEN HAIYANG, CHEN JUNHONG, HOU XINMEI: "Preparation of high-purity α-Si3N4 nano-powder by precursor-carbothermal reduction and nitridation", CERAMICS INTERNATIONAL, vol. 45, no. 5, 1 April 2019 (2019-04-01), NL, pages 6355 - 6339, XP055883006, ISSN: 0272-8842, DOI: 10.1016/j.ceramint.2018.12.118 *
LI YINSHENG, KIM HA-NEUL, WU HAIBO, KIM MI-JU, KO JAE-WOONG, PARK YOUNG-JO, HUANG ZHENGREN, KIM HAI-DOO: "Enhanced thermal conductivity in Si3N4 ceramic by addition of a small amount of carbon", JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, vol. 39, no. 2-3, 1 February 2019 (2019-02-01), pages 157 - 164, XP055883003, ISSN: 0955-2219, DOI: 10.1016/j.jeurceramsoc.2018.10.006 *
WANG TIAN;LONG SI-YUAN;WANG PENG: "High-thermal Conductivity of Si3N4 Ceramics: Research Status and Development Tendency", JOURNAL OF FUNCTIONAL MATERIALS, no. 8, 30 April 2015 (2015-04-30), pages 8009 - 8012+8017, XP055883023, ISSN: 1001-9731, DOI: 10.3969/j.issn.1001-9731.2015.08.002 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115254163A (zh) * 2022-07-04 2022-11-01 大连科利德光电子材料有限公司 一种催化剂及其制备方法和在六氟丁二烯制备过程中的应用
CN117229067A (zh) * 2023-11-14 2023-12-15 中南大学 一种低压氮化-包埋制备氮化硅陶瓷的方法
CN117229067B (zh) * 2023-11-14 2024-02-23 中南大学 一种低压氮化-包埋制备氮化硅陶瓷的方法

Also Published As

Publication number Publication date
CN111875387A (zh) 2020-11-03

Similar Documents

Publication Publication Date Title
WO2021259388A1 (zh) 一种用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法及其应用
Liu et al. Preparation and oxidation protection of CVD SiC/a-BC/SiC coatings for 3D C/SiC composites
CN100355701C (zh) 一种高热导氮化硅陶瓷的制备方法
CN109400167B (zh) 一种具有致密连接层的SiC陶瓷及其制备方法和应用
CN100432016C (zh) 一种制备氮化铝/氮化硼复相陶瓷的方法
WO2022166598A1 (zh) 一种氮化硅基复相导电陶瓷的制备方法
CN109868118B (zh) 一种具有高热导率的氮化铝-氧化铝核壳结构的制备方法
WO2006005267A1 (fr) Materiau composite ceramique en ti2aln renforce a durcissement par phase dispersee de al2o3
CN115557792B (zh) 具有优异力学性能的高导热氮化硅陶瓷材料及制备方法
CN112159237A (zh) 一种高导热氮化硅陶瓷材料及其制备方法
CN115180960B (zh) 一种氮化硅陶瓷烧结体及其制备方法
CN114573357A (zh) 一种SiC纳米线增强SiC陶瓷基复合材料及其制备方法
CN111196727B (zh) 一种高热导率氮化硅陶瓷材料及其制备方法
CN115536403A (zh) 一种高韧氮化硅陶瓷材料及其制备方法
CN102603344B (zh) 一种碳化硅晶须增韧二硼化锆陶瓷的制备工艺
CN111285692A (zh) 一种高导热Si3N4陶瓷及其制备方法
Ye et al. Synthesis of 30 wt% BAS/Si3N4 composite by spark plasma sintering
CN111302809A (zh) 一种高热导率、高强度氮化硅陶瓷材料及其制备方法
TW200521103A (en) High thermally conductive aluminum nitride sintered product
CN113831115A (zh) 具有优异高温相稳定性和抗高温水蒸气腐蚀能力的镱钬双硅酸盐固溶体陶瓷材料及制备方法
CN108503370A (zh) 一种单相氮化硅陶瓷及其sps制备工艺
CN111196730A (zh) 一种高热导率氮化硅陶瓷材料及其制备方法
CN107399972A (zh) 一种基于sps方法制备透明氮化铝陶瓷的方法
JP5161060B2 (ja) 耐熱性黒色部材およびその製造方法
Lu et al. Enhanced thermal conductivity in Si3N4 ceramics by carbonizing polydopamine coatings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829565

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829565

Country of ref document: EP

Kind code of ref document: A1