CN107857593B - 一种高疏水碳化硅泡沫陶瓷及其制备方法和应用 - Google Patents

一种高疏水碳化硅泡沫陶瓷及其制备方法和应用 Download PDF

Info

Publication number
CN107857593B
CN107857593B CN201711130456.XA CN201711130456A CN107857593B CN 107857593 B CN107857593 B CN 107857593B CN 201711130456 A CN201711130456 A CN 201711130456A CN 107857593 B CN107857593 B CN 107857593B
Authority
CN
China
Prior art keywords
silicon carbide
ceramic
foam
foam ceramic
carbide foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711130456.XA
Other languages
English (en)
Other versions
CN107857593A (zh
Inventor
唐秀之
罗璐蕾
黄小忠
杜作娟
岳建岭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201711130456.XA priority Critical patent/CN107857593B/zh
Publication of CN107857593A publication Critical patent/CN107857593A/zh
Application granted granted Critical
Publication of CN107857593B publication Critical patent/CN107857593B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0251Compounds of Si, Ge, Sn, Pb
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • B01J20/28045Honeycomb or cellular structures; Solid foams or sponges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • B01J20/3289Coatings involving more than one layer of same or different nature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/571Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained from Si-containing polymer precursors or organosilicon monomers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • C04B35/573Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide obtained by reaction sintering or recrystallisation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/06Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances
    • C04B38/0615Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by burning-out added substances by burning natural expanding materials or by sublimating or melting out added substances the burned-out substance being a monolitic element having approximately the same dimensions as the final article, e.g. a porous polyurethane sheet or a prepreg obtained by bonding together resin particles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/52Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/89Coating or impregnation for obtaining at least two superposed coatings having different compositions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Products (AREA)
  • Filtering Materials (AREA)

Abstract

本发明公开了一种高疏水碳化硅泡沫陶瓷及其制备方法和应用,高疏水碳化硅泡沫陶瓷由基底碳化硅泡沫陶瓷及其表面的聚多巴胺和长链烷基胺分子或含氟分子覆层构成;所述聚多巴胺为包覆层的底层,长链烷基胺分子或含氟分子为包覆层的表层。本发明制备的碳化硅泡沫陶瓷具有三维网状连通结构,孔隙率高,尺寸可控,成本低,满足工业化生产要求;采用超支化液态聚碳硅烷为粘结剂来制备碳化硅泡沫陶瓷,实现低温度烧结,陶瓷产率高;本发明采用三维多孔碳化硅泡沫陶瓷,由于其大的表面积和表面粗糙度使得其在吸附过程中具有较好的吸附动力学,可较快的达到吸附平衡,而它的大孔结构和微孔隙可作为储油空间,因而在油吸附剂方面具有非常大的应用前景。

Description

一种高疏水碳化硅泡沫陶瓷及其制备方法和应用
技术领域
本发明属于特殊功能材料制备领域,具体涉及一种高疏水碳化硅泡沫陶瓷及其制备方法和应用。
背景技术
碳化硅泡沫陶瓷具有抗高温、耐腐蚀、表面积大、低密度、孔隙率高等优点,广泛应用于高温气体净化、柴油机尾气过滤、熔融金属过滤、保温和隔音等领域。
碳化硅泡沫陶瓷的制备方法多种多样,不同的制备方法可制备出不同气孔率、孔道结构、孔径大小的泡沫陶瓷。泡沫陶瓷制备的关键是形成具备一定孔筋强度的三维立体网络结构。根据使用目的和性能的不同,人们开发了多种成型制备工艺,目前对碳化硅泡沫陶瓷低温烧结成型技术研究不够,烧成泡沫陶瓷所需温度依然较高,可供选择的泡沫模板较少,此外,传统粘结剂聚碳硅烷热分解后体积收缩,产生裂纹,影响了陶瓷的致密度,陶瓷产率较低,现有的碳化硅泡沫陶瓷的制备方法主要有:
(1)反应烧结法:粉末烧结法、固相反应烧结法需要很高的烧结温度(2000℃以上),还需添加助烧剂,因而影响了材料的高温性能,限制了泡沫陶瓷材料的应用。
(2)添加造孔剂法:该方法的缺点是难以制取高气孔率制品,气孔分布均匀性,对造孔剂的分散性要求比较高,在烧结后,造孔剂会留在碳化硅泡沫陶瓷中,会影响其透波性能。
(3)含硅树脂热解法:将有机硅前躯体制成高分子凝胶,脱出凝胶中的有机溶剂后得到泡沫状含硅树脂,经充分预氧化后进行热解即可得到碳化硅泡沫陶瓷,该方法的缺点是由于没有热压过程,初始密度不高,制备的泡沫陶瓷不致密,而且强度低,孔隙体积和尺寸难以控制。
(4)有机泡沫浸渍法:有机泡沫浸渍法中运用较多的有机泡沫体,其弹性和开孔率相对较低,已经成功运用制备泡沫陶瓷的可供选择的泡沫模板较少,而泡沫模板的物理特性将直接影响泡沫陶瓷的机械性能。
近年来,由于油污染事故频繁发生,使得清理原油泄漏成为一项全球性挑战,传统的解决方法如重力分离,撇渣,浮选等可以有效地实现油水分离,但其低效率和高成本限制了其广泛应用。制备疏水亲油材料和过滤膜具有低成本和使用方便等优势,可被推广应用于实际生产,但其仍存在以下问题:①在分离过程中同时吸附油和水,表现出低的分离选择性和分离效率;②长期的使用,使得油或油脂造成细孔堵塞和材料表面污染,造成材料吸附容量以及流体流量显著降低。
发明内容
本发明的目的在于提供一种高疏水碳化硅泡沫陶瓷及其制备方法和应用,通过所述方法制备得到的碳化硅泡沫陶瓷孔隙率高、密度低和具有疏水亲油特性,可应用于吸附高粘度油类。
为了实现上述目的,本发明提供一种高疏水碳化硅泡沫陶瓷,其由基底碳化硅泡沫陶瓷及其表面的聚多巴胺和长链烷基胺分子或含氟分子包覆层构成;所述聚多巴胺为包覆层的底层,长链烷基胺分子或含氟分子为包覆层的表层。
本发明提供一种高疏水碳化硅泡沫陶瓷的制备方法,包括以下步骤:
(1)按质量分数分别称取碳化硅微粉20~30wt%、超支化液态聚碳硅烷20~30wt%和溶剂40~60wt%,将各组份搅拌均匀获得陶瓷浆料,将待包覆的密胺泡沫塑料均匀浸渍浆料,取出后挤出多余浆料得到泡沫预制体;
(2)将步骤(1)制备的泡沫预制体置于室温风干,然后于160~250℃的空气气氛中进行固化交联30~120min;
(3)在惰性气氛下,于1200~1500℃,对步骤(2)中固化后的泡沫预制体进行陶瓷化处理,得到碳化硅泡沫陶瓷;
(4)将步骤(3)中的碳化硅泡沫陶瓷加入多巴胺盐酸盐的Tris-HCl缓冲溶液,搅拌,在35~50℃下聚合10~12h,然后将所得产物清洗、过滤和干燥后,得到聚多巴胺包覆碳化硅泡沫陶瓷,即PDA-SCF;
(5)将步骤(4)中的PDA-SCF加入长链烷基胺分子或含氟分子的溶液中,充分搅拌,将所得产物清洗、过滤和干燥后,得到高疏水碳化硅泡沫陶瓷。
优选的,所述步骤(1)中陶瓷浆料各组分质量分数为:碳化硅微粉12~28wt%、超支化液态聚碳硅烷12~28wt%和溶剂50~60wt%。
所述步骤(1)中溶剂为正己烷或四氢呋喃中的一种,溶剂的质量浓度>95%。
所述碳化硅微粉为β-SiC微粉,粒度为0.5~10μm。
所述超支化液态聚碳硅烷结构中含有Si-H键和C=C等不饱和键,超支化液态聚碳硅烷粘度为100~500cPa·s。
所述密胺泡沫塑料是以C-N结构为主的缩聚高分子,开孔率≥99%,孔径为100~200μm。
所述步骤(3)中利用管式炉对固化后的泡沫预制体进行陶瓷化处理,采用分段加热模式,第一阶段:从室温升至200℃,升温速率为2~5℃/min;第二阶段:温度从200℃升至1000℃,升温速率为5℃/min;第三阶段:温度从1000℃升至1200~1500℃,升温速率为2~10℃/min,然后保温1~2h。
所述步骤(4)中的多巴胺盐酸盐的Tris-HCl缓冲溶液的浓度为0.01~10mg/ml。
优选的,所述Tris-HCl缓冲溶液的pH值为7.0~8.6。
所述步骤(5)中长链烷基胺分子或含氟分子的溶液的浓度为5~10mg/ml。
优选的,所述长链烷基胺分子或含氟分子为十八胺、十六胺、1H,1H,2H,2H-全氟癸基硫醇中的一种。
所述步骤(3)中的惰性气氛为氮气、氩气或氦气中的一种。
本发明还提供了一种高疏水碳化硅泡沫陶瓷的应用,将其应用于吸附高粘度油类。
蜜胺泡沫是以三聚氰胺为原料经过特殊发泡工艺制备而成的,是一种具有三维多孔结构的新型泡沫塑料,其有如下几个特征:(1)具有均匀的三维网络结构,其孔隙率超过99%;(2)超高的孔隙率和柔韧性的网络使蜜胺泡沫具有高的比表面积;(3)蜜胺泡沫以“C-N”结构为主,具有良好的热稳定性,能长期在200℃以下的温度范围内保持自身原有的性能。
超支化液态聚碳硅烷是一种新型低粘度、高储存稳定性的可交联的液体聚碳硅烷。该结构中同时含有Si-H键和C=C等不饱和键,在一定条件下可自交联固化,具有较高的陶瓷产率。
本发明以高孔隙率的蜜胺泡沫为三维多孔泡沫骨架,保证了泡沫陶瓷的高开孔率,再通过有机模板法与先驱体转换法结合将超支化液态聚碳硅烷为粘结剂的陶瓷浆料均匀地负载到蜜胺泡沫上,由于蜜胺泡沫的良好的热稳定性,在固化交联时,不会破坏泡沫陶瓷的结构,通过低温烧结法制备碳化硅泡沫陶瓷,然后在弱碱性下,通过原位聚合在碳化硅泡沫陶瓷表面沉积一层聚多巴胺,然后在聚多巴胺表面修饰一层长链烷基胺分子或含氟分子,通过共价固化含氨基结构可降低材料的表面能,增强其疏水亲油性能。
与现有技术相比,本发明的技术效果是:
(a)本发明利用密胺泡沫为模板,制备的碳化硅泡沫陶瓷具有三维网状连通结构,孔隙率高,残炭率高,热稳定性好,尺寸可控,工艺简单,成本低,满足工业化生产要求。
(b)本发明采用超支化液态聚碳硅烷为粘结剂来制备碳化硅泡沫陶瓷,实现低温度烧结,所得碳化硅泡沫陶瓷陶瓷产率高达82%,相较于传统的以固态聚碳硅烷(PCS)为粘结剂所制备出的陶瓷产率约为49%的泡沫陶瓷有显著的提高,强度最高可达1.5MPa,密度为0.3~0.5g/cm3
(c)本发明采用三维多孔碳化硅泡沫陶瓷,高疏水材料由于具有疏水亲油特性,使得其可广泛应用于水油分离领域,由于其大的表面积和表面粗糙度使得其在吸附过程中具有较好的吸附动力学,可较快的达到吸附平衡,而它的大孔结构和微孔隙可作为储油空间,因而在油吸附剂方面具有非常大的应用前景。
附图说明
图1为本发明实施例1的碳化硅泡沫陶瓷的微观形貌图。
图2为本发明实施例1的高疏水碳化硅泡沫陶瓷处理前后对比示意图。
图3为本发明实施例2的碳化硅泡沫陶瓷的微观形貌图。
图4为本发明实施例3的碳化硅泡沫陶瓷的微观形貌图。
图5为本发明实施例4的碳化硅泡沫陶瓷的表面示意图。
图6为本发明高疏水碳化硅泡沫陶瓷吸附甲基硅油的表面示意图。
图7为本发明高疏水碳化硅泡沫陶瓷吸附500cp粘度甲基硅油示意图。
图8为本发明高疏水碳化硅泡沫陶瓷吸附5000cp高粘度甲基硅油示意图。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
以下是发明人在试验中的部分实施例:
实施例1
(1)按质量分数为20wt%、20wt%、60wt%称取碳化硅微粉、超支化液态聚碳硅烷和正己烷,碳化硅微粉的平均粒度为3μm,将所述原料均匀混合,超声震荡10min后获得陶瓷浆料,将密胺泡沫塑料裁剪成2*2*1cm的规格浸入浆料,反复挤压排除空气,待均匀浸渍后取出,采用滚压的方式挤出多余浆料得到泡沫预制体;
(2)将预制体室温风干48h使溶剂缓慢挥发防止泡沫变形,再置于250℃烘箱内在空气气氛中固化交联,固化时间40min;
(3)将固化后的泡沫预制件置于管式炉内,通入氮气进行气体保护,采用分段加热模式对固化后的泡沫预制体进行陶瓷化处理,第一阶段:从室温升至200℃,升温速率为2℃/min;第二阶段:温度从200℃升至1000℃,升温速率为5℃/min;第三阶段:温度从1000℃升至1250℃,升温速率为10℃/min,然后保温2h,随炉冷却至室温得到碳化硅泡沫陶瓷,所述碳化硅泡沫陶瓷的密度为0.492g/cm3、抗压强度1.19MPa,其微观形貌如图1所示,泡沫陶瓷基本维持三维多孔的结构,孔隙大小在70~100um之间,SiC微粉粘结较好,骨架较为完整,陶瓷缺陷较少,力学性能提升;
(4)将上述碳化硅泡沫陶瓷加入多巴胺盐酸盐的Tris-HCl缓冲溶液(1mg/ml),搅拌,在40℃下聚合11h,然后将所得材料用水清洗,过滤,60℃干燥,得到聚多巴胺包覆碳化硅泡沫陶瓷,即PDA-SCF;
(5)将PDA-SCF加入十八胺溶液中(8mg/ml),室温搅拌24h,所得材料用乙醇清洗,过滤,60℃干燥,得到高疏水碳化硅泡沫陶瓷(C18-PDA-SCF),图2为所得高疏水碳化硅泡沫陶瓷与处理前碳化硅泡沫陶瓷表面示意对比图,在表面处理前,除了一些不明显的沟槽外,碳化硅骨架相对光滑,而用聚多巴胺接枝十八胺的方法处理后的高疏水泡沫陶瓷可观察到表面覆盖有粒径为500~600nm的纳米粒子,这种纳米粒子结构正是实现超疏水表面的必备条件之一。
实施例2
(1)按质量分数为12wt%、28wt%、60wt%称取碳化硅微粉、超支化液态聚碳硅烷和正己烷,碳化硅微粉的平均粒度为3μm,将所述原料均匀混合,超声震荡10min后获得陶瓷浆料,将密胺泡沫塑料裁剪成2*2*1cm的规格浸入浆料,反复挤压排除空气,待均匀浸渍后取出,采用滚压的方式挤出多余浆料得到泡沫预制体;
(2)将预制体室温风干24h使溶剂缓慢挥发防止泡沫变形,再置于220℃烘箱内在空气气氛中固化交联,固化时间60min;
(3)将固化后的泡沫预制件置于管式炉内,通入氮气进行气体保护,采用分段加热模式对固化后的泡沫预制体进行陶瓷化处理,第一阶段:从室温升至200℃,升温速率为2℃/min;第二阶段:温度从200℃升至1000℃,升温速率为5℃/min;第三阶段:温度从1000℃升至1250℃,升温速率为5℃/min,然后保温2h,随炉冷却至室温得到碳化硅泡沫陶瓷,所述碳化硅泡沫陶瓷的密度为0.514g/cm3,抗压强度为0.90MPa,其微观形貌如图3所示,泡沫陶瓷基本维持三维多孔的结构,孔隙大小在70~100um之间。可能由于超支化液态聚碳硅烷(LPCS)含量过高,导致更多的小分子气体大量逃逸,导致泡沫陶瓷断裂缺陷严重,使连续的泡沫陶瓷的力学性能降低;
(4)将上述碳化硅泡沫陶瓷加入多巴胺盐酸盐的Tris-HCl缓冲溶液(0.5mg/ml),搅拌,在35℃下聚合12h,然后将所得材料用水清洗,过滤,60℃干燥,得到聚多巴胺包覆碳化硅泡沫陶瓷,即PDA-SCF;
(5)将PDA-SCF加入十六胺溶液中(5mg/ml),室温搅拌24h,所得材料用乙醇清洗,过滤,60℃干燥,得到高疏水碳化硅泡沫陶瓷(C16-PDA-SCF)。
实施例3
(1)按质量分数为28wt%、12wt%、60wt%称取碳化硅微粉、超支化液态聚碳硅烷和正己烷,碳化硅微粉的平均粒度为3μm,将所述原料均匀混合,超声震荡10min后获得陶瓷浆料,将密胺泡沫塑料裁剪成2*2*1cm的规格浸入浆料,反复挤压排除空气,待均匀浸渍后取出,采用滚压的方式挤出多余浆料得到泡沫预制体;
(2)将预制体室温风干36h使溶剂缓慢挥发防止泡沫变形,再置于180℃烘箱内在空气气氛中固化交联,固化时间90min;
(3)将固化后的泡沫预制件置于管式炉内,通入氮气进行气体保护,采用分段加热模式对固化后的泡沫预制体进行陶瓷化处理,第一阶段:从室温升至200℃,升温速率为2℃/min;第二阶段:温度从200℃升至1000℃,升温速率为5℃/min;第三阶段:温度从1000℃升至1250℃,升温速率为5℃/min,然后保温2h,随炉冷却至室温得到碳化硅泡沫陶瓷,所述碳化硅泡沫陶瓷的密度为0.506g/cm3、抗压强度0.56MPa,其微观形貌如图4所示,泡沫陶瓷基本维持三维多孔的结构,孔隙大小在70~100um之间,可能由于SiC微粉含量过高而粘结剂超支化液态聚碳硅烷含量少,导致微粉难以粘结成型,颗粒间隙较大,导致泡沫陶瓷收缩严重,使连续的泡沫陶瓷的力学性能降低;
(4)将上述碳化硅泡沫陶瓷加入多巴胺盐酸盐的Tris-HCl缓冲溶液(5mg/ml),搅拌,在50℃下聚合10h,然后将所得材料用水清洗,过滤,60℃干燥,得到聚多巴胺包覆碳化硅泡沫陶瓷,即PDA-SCF;
(5)将PDA-SCF加入1H,1H,2H,2H-全氟癸基硫醇溶液中(10mg/ml),室温搅拌24h,所得材料用乙醇清洗,过滤,60℃干燥,得到高疏水碳化硅泡沫陶瓷。
实施例4
(1)按质量分数为20wt%、20wt%、60wt%称取碳化硅微粉、超支化液态聚碳硅烷和正己烷,碳化硅微粉的平均粒度为0.5μm,将所述原料均匀混合,超声震荡10min后获得陶瓷浆料,将密胺泡沫塑料裁剪成2*2*1cm的规格浸入浆料,反复挤压排除空气,待均匀浸渍后取出,采用滚压的方式挤出多余浆料得到泡沫预制体;
(2)将预制体室温风干48h使溶剂缓慢挥发防止泡沫变形,再置于220℃烘箱内在空气气氛中固化交联,固化时间60min;
(3)将固化后的泡沫预制件置于管式炉内,通入氮气进行气体保护,采用分段加热模式对固化后的泡沫预制体进行陶瓷化处理,第一阶段:从室温升至200℃,升温速率为5℃/min;第二阶段:温度从200℃升至1000℃,升温速率为5℃/min;第三阶段:温度从1000℃升至1550℃,升温速率为10℃/min,然后保温2h,随炉冷却至室温得到碳化硅泡沫陶瓷,所述碳化硅泡沫陶瓷的密度为0.391g/cm3、抗压强度1.50MPa,其表面形貌如图5所示,泡沫陶瓷中原位生成大量SiC纳米线,对泡沫陶瓷有较大增强作用,力学性能提升;
(4)将上述碳化硅泡沫陶瓷加入多巴胺盐酸盐的Tris-HCl缓冲溶液(2mg/ml),搅拌,在35℃下聚合12h。所得材料用水清洗,过滤,60℃干燥,得到PDA-SCF;
(5)将上述PDA-SCF加入十八胺溶液中(6mg/ml),室温搅拌24h、所得材料用乙醇清洗,过滤,60℃干燥,得到高疏水碳化硅泡沫陶瓷(C18-PDA-SCF)。
应用例1
将本发明实施例1所得的高疏水碳化硅泡沫陶瓷(C18-PDA-SCF)应用于吸附原油,当其吸附甲基硅油时,高疏水碳化硅泡沫陶瓷的表面示意图如图6所示。
图7为将实施例1所得高疏水碳化硅泡沫陶瓷吸附500cp粘度甲基硅油示意图,从图可以看出,本发明高疏水碳化硅泡沫陶瓷对甲基硅油具有很好的吸附性能,当把粘度为500cp的甲基硅油滴加到碳化硅泡沫陶瓷表面,2s后甲基硅油完全被吸附。图8为所述高疏水碳化硅泡沫陶瓷吸附5000cp高粘度甲基硅油示意图,从图可以看出,当把粘度为5000cp的甲基硅油滴加到碳化硅泡沫陶瓷表面,22s后甲基硅油完全被吸附,其吸附效果比俞书宏教授课题组最新的吸附报导的室温下吸附原油所需8min有显著的提升(Joule-heatedgraphene-wrapped sponge enables fast clean-up of viscous crude-oilspill.Nature Nanotechnology,2017,12(5):434),且不用外加焦耳热驱动吸附。同时本发明所采用的碳化硅泡沫陶瓷基体相对于其他油水分离领域里用有机泡沫作基体的吸收材料来说具有显而易见的抗腐蚀,耐极端环境,重复利用前景好等特点。
这是由于本发明采用三维多孔碳化硅泡沫陶瓷,由于其大的表面积和表面粗糙度使得其在吸附过程中具有较好的吸附动力学,可较快的达到吸附平衡,而它的大孔结构和微孔隙可作为储油空间,具有疏水亲油特性,使得其可广泛应用于水油分离领域。

Claims (8)

1.一种高疏水碳化硅泡沫陶瓷的制备方法,包括以下步骤:
(1) 按质量分数分别称取碳化硅微粉20~30wt%、超支化液态聚碳硅烷20~30wt%和溶剂40~60wt%,将各组份搅拌均匀获得陶瓷浆料,将待包覆的密胺泡沫塑料均匀浸渍浆料,取出后挤出多余浆料得到泡沫预制体;
(2) 将步骤(1)中的泡沫预制体置于室温风干,然后于160~250℃的空气气氛中进行固化交联30~120min;
(3) 在惰性气氛下,于1200~1500℃,对步骤(2)中固化后的泡沫预制体进行陶瓷化处理,得到碳化硅泡沫陶瓷;
(4) 将步骤(3)中碳化硅泡沫陶瓷加入多巴胺盐酸盐的Tris-HCl缓冲溶液,搅拌,在35~50℃下聚合10~12h,然后将所得产物清洗、过滤和干燥后,得到聚多巴胺包覆碳化硅泡沫陶瓷,即PDA-SCF;
(5) 将步骤(4)中的PDA-SCF加入长链烷基胺分子或含氟分子的溶液中,充分搅拌,将所得产物清洗、过滤和干燥后,得到高疏水碳化硅泡沫陶瓷;
所得到高疏水碳化硅泡沫陶瓷由基底碳化硅泡沫陶瓷及其表面的聚多巴胺和长链烷基胺分子或含氟分子包覆层构成;所述聚多巴胺为包覆层的底层,长链烷基胺分子或含氟分子为包覆层的表层。
2.根据权利要求1所述的高疏水碳化硅泡沫陶瓷的制备方法,其特征在于,所述步骤(1)中,溶剂为正己烷或四氢呋喃中的一种,所述溶剂的质量浓度>95%;
所述碳化硅微粉为β-SiC微粉,粒度为0.5~10μm;
所述超支化液态聚碳硅烷结构中含有Si-H键和C=C不饱和键,超支化液态聚碳硅烷粘度为100~500 cPa·s;
所述密胺泡沫塑料是以C-N结构为主的缩聚高分子,开孔率≥99%,孔径为100~200μm。
3.根据权利要求1所述的高疏水碳化硅泡沫陶瓷的制备方法,其特征在于,所述步骤(3)中利用管式炉对固化后的泡沫预制体进行陶瓷化处理,采用分段加热模式,第一阶段:从室温升至200℃,升温速率为2~5℃/min;第二阶段:温度从200℃升至1000℃,升温速率为5℃/min;第三阶段:温度从1000℃升至1200~1500℃,升温速率为2~10℃/min,然后保温1~2h。
4.根据权利要求1所述的高疏水碳化硅泡沫陶瓷的制备方法,其特征在于,所述步骤(4)中多巴胺盐酸盐的Tris-HCl缓冲溶液的浓度为0.01~10mg/ml。
5.根据权利要求1所述的高疏水碳化硅泡沫陶瓷的制备方法,其特征在于,所述Tris-HCl缓冲溶液的p H值为7.0~8. 6。
6.根据权利要求1所述的高疏水碳化硅泡沫陶瓷的制备方法,其特征在于,所述长链烷基胺分子或含氟分子为十八胺、十六胺、1H,1H,2H,2H-全氟癸基硫醇中的一种,长链烷基胺分子或含氟分子的溶液的浓度为5~10mg/ml。
7.根据权利要求1所述的高疏水碳化硅泡沫陶瓷的制备方法,其特征在于,所述惰性气氛为氮气、氩气或氦气中的一种。
8.根据权利要求1所述的高疏水碳化硅泡沫陶瓷的制备方法制备得到的高疏水碳化硅泡沫陶瓷在吸附高粘度油类中的应用。
CN201711130456.XA 2017-11-15 2017-11-15 一种高疏水碳化硅泡沫陶瓷及其制备方法和应用 Active CN107857593B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711130456.XA CN107857593B (zh) 2017-11-15 2017-11-15 一种高疏水碳化硅泡沫陶瓷及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711130456.XA CN107857593B (zh) 2017-11-15 2017-11-15 一种高疏水碳化硅泡沫陶瓷及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN107857593A CN107857593A (zh) 2018-03-30
CN107857593B true CN107857593B (zh) 2020-11-06

Family

ID=61701967

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711130456.XA Active CN107857593B (zh) 2017-11-15 2017-11-15 一种高疏水碳化硅泡沫陶瓷及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN107857593B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108435209B (zh) * 2018-04-08 2020-10-23 南昌大学 一种疏水强酸性炭材料的制备方法
CN108586795A (zh) * 2018-05-09 2018-09-28 天津工业大学 一种超疏水三维海绵的快速制备方法及其油水分离应用
CN110143809A (zh) * 2019-04-18 2019-08-20 浙江金海环境技术股份有限公司 疏水疏油的泡沫陶瓷过滤器及其制备方法
CN110642233B (zh) * 2019-10-31 2022-09-02 哈尔滨工业大学 一种c掺杂氮化硼纳米管与碲化铋复合薄膜的制备方法
CN111875387A (zh) * 2020-06-24 2020-11-03 广东工业大学 一种用碳包覆制备低氧含量、高热导的氮化硅陶瓷的方法及其应用
CN112011384A (zh) * 2020-09-01 2020-12-01 安徽省路驰环保科技有限公司 含改性纳米六方氮化硼的减摩剂及其制备方法和润滑油
CN112645712A (zh) * 2020-12-24 2021-04-13 西安鑫垚陶瓷复合材料有限公司 疏水化陶瓷粉、碳陶复合材料表面防护涂料及其制备方法
CN116854483B (zh) * 2023-07-10 2024-04-26 江西萍乡龙发实业股份有限公司 一种碳化硅微粉的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102503425A (zh) * 2011-10-12 2012-06-20 厦门大学 一种碳化硅/碳化锆复相陶瓷的制备方法
CN103011887A (zh) * 2011-09-28 2013-04-03 贵州师范大学 碳化硅泡沫陶瓷及其制备方法
CN105566675A (zh) * 2015-12-18 2016-05-11 浙江理工大学 一种超疏水海绵的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110221084A1 (en) * 2010-03-10 2011-09-15 Trex Enerprises Corp. Honeycomb composite silicon carbide mirrors and structures

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103011887A (zh) * 2011-09-28 2013-04-03 贵州师范大学 碳化硅泡沫陶瓷及其制备方法
CN102503425A (zh) * 2011-10-12 2012-06-20 厦门大学 一种碳化硅/碳化锆复相陶瓷的制备方法
CN105566675A (zh) * 2015-12-18 2016-05-11 浙江理工大学 一种超疏水海绵的制备方法

Also Published As

Publication number Publication date
CN107857593A (zh) 2018-03-30

Similar Documents

Publication Publication Date Title
CN107857593B (zh) 一种高疏水碳化硅泡沫陶瓷及其制备方法和应用
Zhou et al. One-pot synthesis of robust superhydrophobic, functionalized graphene/polyurethane sponge for effective continuous oil–water separation
Vakifahmetoglu et al. Porous polymer derived ceramics
Yang et al. Nitrogen-rich and fire-resistant carbon aerogels for the removal of oil contaminants from water
Fukushima et al. Silicon carbide-based foams from direct blowing of polycarbosilane
Luo et al. Bio-inspired modification of silicon carbide foams for oil/water separation and rapid power-free absorption towards highly viscous oils
Tian et al. Effects of heating rate on the structure and properties of SiOC ceramic foams derived from silicone resin
JP5731492B2 (ja) 蒸着コーティングを用いて製造された疎水性材料及びその応用
CN103272484B (zh) 一种高度疏水微孔膜的制备方法
Wu et al. A review of three-dimensional graphene networks for use in thermally conductive polymer composites: construction and applications
Song et al. Processing of microcellular silicon carbide ceramics with a duplex pore structure
CN102247764A (zh) 一种碳/石墨/多孔基体复合膜及其制备方法和应用
Tian et al. Structure and mechanical properties of porous silicon oxycarbide ceramics derived from silicone resin with different filler content
CN110981533A (zh) 一种有机泡沫浸渍法制备多孔陶瓷的工艺
CN110980705B (zh) 一种双功能石墨烯气凝胶、其制备方法及应用
CN105801163A (zh) 低温固相烧成碳化硅泡沫陶瓷及其制备方法
Fukushima Microstructural control of macroporous silicon carbide
CN108456321B (zh) 一种多孔中空聚合物纳米网络及其制备方法和应用
CN115491020A (zh) 一种Janus型复合泡沫光热功能材料及其制备方法和应用
CN111154336B (zh) 一种多孔聚酰亚胺墨水及其制备方法以及一种直书写3d打印制备多孔聚酰亚胺的方法
Tian et al. Effects of inert filler addition on the structure and properties of porous SiOC ceramics derived from silicone resin
CN113336942B (zh) 3d打印在交联型聚酰亚胺中的应用、多孔聚酰亚胺的制备、聚酰亚胺复合材料的制备
Wang et al. Fabrication of stainless steel foams using polymeric sponge impregnation technology
CN111484351A (zh) 一种轻质多孔陶瓷空心微球的制备方法和应用
CN106589969B (zh) 含硅芳炔树脂碳泡沫材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant