WO2021259203A1 - 一种cdk4/6抑制剂的制备方法 - Google Patents

一种cdk4/6抑制剂的制备方法 Download PDF

Info

Publication number
WO2021259203A1
WO2021259203A1 PCT/CN2021/101246 CN2021101246W WO2021259203A1 WO 2021259203 A1 WO2021259203 A1 WO 2021259203A1 CN 2021101246 W CN2021101246 W CN 2021101246W WO 2021259203 A1 WO2021259203 A1 WO 2021259203A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
sma
bis
solvent
palladium dichloride
Prior art date
Application number
PCT/CN2021/101246
Other languages
English (en)
French (fr)
Inventor
刘国峰
王勇
郭猛
张喜全
宋开镇
刘金虎
落俊山
Original Assignee
正大天晴药业集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 正大天晴药业集团股份有限公司 filed Critical 正大天晴药业集团股份有限公司
Priority to EP21828656.5A priority Critical patent/EP4159728A4/en
Priority to US18/011,759 priority patent/US20230331699A1/en
Priority to CN202180041423.6A priority patent/CN115768763A/zh
Publication of WO2021259203A1 publication Critical patent/WO2021259203A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D403/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00
    • C07D403/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings
    • C07D403/04Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, not provided for by group C07D401/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond

Definitions

  • This application belongs to the field of drug synthesis, and relates to a method for preparing a CDK4/6 inhibitor, and specifically to a compound of formula (I): 5-fluoro-4-(3-isopropyl-2-methyl-2H-indazole- 5-yl)-nitrogen-(5-(piperazin-1-yl)pyrazol-2-yl)pyrimidin-2-amine preparation method.
  • CDKs cyclin-dependent kinases
  • the tumor suppressor protein Rb Once the tumor suppressor protein Rb is phosphorylated, it can release its tightly bound transcription factor E2F when it is not phosphorylated. E2F activates further transcription to push the cell cycle through the restriction point (R point) and progress from the G1 phase to the S phase. Entered the cycle of cell proliferation. Therefore, inhibiting CDK4/6 so that it cannot form Cyclin D-CDK4/6 complex can block the progression of the cell cycle from the G1 phase to the S phase, thereby achieving the purpose of inhibiting tumor proliferation.
  • ER+ estrogen receptor positive breast cancer
  • the overactivity of CDK4/6 is very frequent, and CDK4/6 is a key downstream target of ER signaling.
  • Preclinical data show that dual inhibition of CDK4/6 and estrogen receptor (ER) signals has a synergistic effect and can inhibit the growth of estrogen receptor positive (ER+) breast cancer (BC) cells in the G1 phase.
  • WO2016141881 discloses a CDK4/6 inhibitor whose structure is as shown in formula (I).
  • the compound of formula (I) has an IC50 value of less than 1 nM for CDK4/6, and has good tumor suppressive activity against breast cancer.
  • WO2016141881 also discloses a method for preparing the compound of formula (I), and the route is as follows:
  • the purpose of this application is to provide a new preparation method of the compound of formula (I).
  • the reagents used in the method are economical and easy to obtain, the post-processing of the intermediates does not require silica gel column chromatography, the operation is simple, and the reaction time of each step is short. , The product yield is high, the product purity is high, and it is more suitable for industrial production.
  • this application provides a method for preparing a compound of formula (I), including:
  • Step 1 Compound SMA-1 reacts with compound SMA-8 to obtain compound SMA-2;
  • Step 2 Compound SMA-2 reacts with hydrazine hydrate to obtain compound SMA-3;
  • Step 3 Compound SMA-3 undergoes methylation reaction to obtain compound SMA-4;
  • Step 4 Compound SMA-4 is reacted with pinacol diborate to obtain compound SMA-5;
  • Step 5 Compound SMA-5 reacts with compound SMA-9 to obtain compound SMA-6;
  • Step 6 Compound SMA-6 reacts with compound SMA-10 to obtain compound SMA-7;
  • Step 7 The compound SMA-7 is reacted to obtain the compound of formula (I).
  • step 1 above is performed in the presence of a solvent and a base.
  • the solvent in step 1 above is selected from dichloromethane, tetrahydrofuran, dioxane, DMF, DMSO, acetonitrile, diethyl ether, isopropyl ether, methyl tertiary ether, 2-methyltetrahydrofuran, n-hexane and n-hexane.
  • One or two or more mixed solvents in heptane preferably one or two or more mixed solvents among tetrahydrofuran, dioxane and n-heptane; more preferably tetrahydrofuran.
  • the base in step 1 above is selected from n-butyl lithium, tert-butyl lithium, sodium tert-butoxide, potassium tert-butoxide, lithium diisopropylamide, lithium hexamethyldisilazide , Sodium bis(trimethylsilyl)amide, sodium hydrogen and lithium hydroxide; preferably lithium diisopropylamide, n-butyllithium and lithium hexamethyldisilazide; more preferably diisopropyl Lithium amide.
  • the reaction temperature in step 1 above is -75 to -20°C; preferably -75 to -50°C; more preferably -75 to -65°C.
  • the reaction time in step 1 above is 2-10 hours; preferably 2-6 hours; more preferably 3-5 hours.
  • the molar ratio of compound SMA-1 to compound SMA-8 in step 1 above is 1:1 to 2; preferably 1:1 to 1.5; more preferably 1:1 to 1.4. In some specific embodiments, the molar ratio of compound SMA-1 to compound SMA-8 in step 1 above is about 1:1.33.
  • the molar volume ratio of the compound SMA-1 to the solvent in step 1 above is 1 mmol: 0.5 to 1.5 mL; preferably 1 mmol: 1 to 1.5 mL; more preferably 1 mmol: 1 to 1.2 mL. In some specific embodiments, the molar volume ratio of compound SMA-1 to solvent in step 1 is about 1 mmol:1 mL.
  • the molar ratio of compound SMA-1 to base in step 1 above is 1:1-3; preferably 1:1.5-3; more preferably 1:1.5-2.1. In some specific embodiments, the molar ratio of compound SMA-1 to base in step 1 above is 1:2.
  • the above step 1 includes: dissolving compound SMA-1 and compound SMA-8 in a solvent to form a solution, and then adding a base to react to obtain compound SMA-2.
  • the above step 1 further includes: lowering the temperature to -75 to -20°C after forming the solution; preferably -75 to -50°C; more preferably -75 to -65°C. In some embodiments, the above step 1 further includes: the temperature when the alkali is added is -65°C.
  • the above step 1 further includes: reacting for 3 hours after the alkali is added.
  • the above step 1 further includes the step of adding acid treatment to the reaction solution after the reaction is completed.
  • the acid is hydrochloric acid (for example, a 1 mol/L aqueous hydrochloric acid solution).
  • the above step 1 further includes the step of separating SMA-2 after adding acid to the reaction solution.
  • the above step 1 is: SMA-1, SMA-8 and tetrahydrofuran, stir to dissolve and cool to the internal temperature -75 ⁇ -65°C, control the internal temperature below -65°C and add diisopropyl group After the addition of lithium amide, control the internal temperature -75 ⁇ -65°C to react for 3 hours.
  • Add 1 mol/L hydrochloric acid aqueous solution to the reaction solution warm to room temperature after addition, separate the layers, extract the aqueous phase with ethyl acetate, combine the organic phases, wash with water, dry with anhydrous sodium sulfate, filter, and concentrate the filtrate under reduced pressure To dry to get compound SMA-2.
  • step 1 also includes: the compound SMA-11 is reacted with the compound SMA-12 to prepare the compound SMA-8.
  • the above step of preparing compound SMA-8 is performed in the presence of a solvent and a base.
  • the solvent in the step of preparing compound SMA-8 is selected from ethyl acetate, dichloromethane, toluene, chloroform, 1,2-dichloroethane, n-hexane, diethyl ether and methyl tert-butyl ether ; Preferably dichloromethane and methyl tert-butyl ether; more preferably dichloromethane.
  • the base in the step of preparing compound SMA-8 is selected from triethylamine, diisopropylethylamine, pyridine, 4-dimethylaminopyridine (DMAP), 1,8-diazabicyclo Undec-7-ene (DBU) and triethylenediamine; preferably triethylamine and diisopropylethylamine; more preferably triethylamine.
  • the reaction temperature in the step of preparing compound SMA-8 is 0-30°C; preferably 5-25°C; more preferably 15-25°C. In some specific embodiments, the reaction temperature in the step of preparing compound SMA-8 is about 25°C.
  • the reaction time in the step of preparing the compound SMA-8 is 0.5 to 5 hours; preferably 0.5 to 2 hours; more preferably 1 to 2 hours.
  • the molar ratio of compound SMA-11 to compound SMA-12 is 1:1 to 2; preferably 1:1 to 1.5; more preferably 1:1 to 1.2. In some specific embodiments, the molar ratio of compound SMA-11 to compound SMA-12 is 1:1.
  • the molar volume ratio of compound SMA-11 to the solvent is 1 mmol: 0.2-2 mL; preferably 1 mmol: 0.5-2 mL; more preferably 1 mmol: 0.5-1 mL. In some specific embodiments, the molar volume ratio of compound SMA-11 to solvent is about 1 mmol: 0.5 mL.
  • the molar ratio of compound SMA-11 to base is 1:1-3; preferably 1:1.5-3; more preferably 1:1.5-2. In some specific embodiments, the molar ratio of compound SMA-11 to base is about 1:2.
  • compound SMA-12 is first mixed with a solvent (for example, mixed at a temperature of -5 to 5°C), and then a base is added (for example, at a temperature below 5°C) Alkali), and then add SMA-11 (for example, add SMA-11 when the temperature is below 5°C).
  • a solvent for example, mixed at a temperature of -5 to 5°C
  • a base for example, at a temperature below 5°C
  • SMA-11 for example, add SMA-11 when the temperature is below 5°C.
  • the above steps of preparing compound SMA-8 are: dissolving SMA-12 in dichloromethane, maintaining the temperature at -5 to 5°C, adding triethylamine, and maintaining the temperature below 5°C, After the addition, keep the temperature below 5°C and add SMA-11. After the addition, react at room temperature for 1 hour.
  • the above step of preparing compound SMA-8 further includes the step of treating with alkali (for example, sodium bicarbonate) after the reaction is completed.
  • alkali for example, sodium bicarbonate
  • the compound SMA-8 in step 1 above can also be purchased commercially.
  • step 2 above is carried out in the presence of a solvent.
  • the solvent in step 2 above is selected from ethylene glycol, N,N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), diphenyl ether, o-dichlorobenzene, sulfolane, Mesitylene, diethylene glycol dimethyl ether and N-methylpyrrolidone; preferably DMF and ethylene glycol; more preferably ethylene glycol.
  • the above step 2 further includes a step of removing water during the reaction.
  • the above step 2 is: after the compound SMA-2 is reacted with hydrazine hydrate for a period of time, the water is removed, and the reaction is continued.
  • the reaction temperature in step 2 above is 100-200°C; preferably 150-200°C.
  • the above step 2 is: the compound SMA-2 and hydrazine hydrate are first reacted at a temperature of 180-200°C or under reflux conditions, and then reacted at a temperature of 150°C. Specifically, there is a step of removing water between the two-stage reaction.
  • the reaction time in step 2 above is 2-15 hours; preferably 5-12 hours; more preferably 10-12 hours.
  • the above step 2 is: the compound SMA-2 and hydrazine hydrate are first reacted at a temperature of 180-200° C. or reflux conditions for 2 hours, and then at a temperature of 150° C. for 10 hours. Specifically, there is a step of removing water between the two-stage reaction.
  • the molar ratio of compound SMA-2 to hydrazine hydrate in step 2 above is 1:1-3; preferably 1:1.5-3; more preferably 1:1.5-2.
  • the molar volume ratio of the compound SMA-2 to the solvent in step 2 above is 1 mmol: 0.5 to 1.5 mL; preferably 1 mmol: 1 to 1.5 mL; more preferably 1 mmol: 1 to 1.2 mL.
  • the above step 2 is: SMA-2 and hydrazine hydrate are refluxed in the presence of ethylene glycol for 2 hours, the water in the reaction system is removed, and the reaction is performed at 150° C. for 10 hours to obtain compound SMA-3.
  • the above step 2 further includes the step of adding water to the reaction system to precipitate compound SMA-3 after the reaction is completed. Further, it also includes the step of beating with purified water.
  • step 3 above is performed in the presence of a methylating agent and a solvent.
  • the methylating reagent in step 3 above is selected from the group consisting of methyl iodide, dimethyl sulfate, dimethyl carbonate, methyl p-toluenesulfonate, methyl trifluoromethanesulfonate, tetramethyl fluoride Ammonium, trimethyl phosphate, trimethyloxonium tetrafluoroboric acid and 1-methyl-3-p-tolyltriazide; preferably methyl iodide and trimethyloxonium tetrafluoroboric acid; more preferably trimethyloxonium Onium tetrafluoroborate.
  • the solvent in step 3 above is selected from one or two or more mixed solvents of ethyl acetate, dichloromethane and acetone; preferably one or two of ethyl acetate and dichloromethane Mixed solvents of more than one kind.
  • the solvent in step 3 above is first ethyl acetate and then dichloromethane.
  • the solvent in step 3 above is ethyl acetate.
  • the above step 3 can also be carried out in the presence of a methylating agent, a base and a solvent.
  • the base in step 3 above is selected from potassium carbonate, sodium carbonate, sodium methoxide, sodium ethoxide, potassium bicarbonate, sodium bicarbonate, sodium hydroxide and potassium hydroxide; preferably sodium bicarbonate and hydroxide Sodium; more preferably sodium bicarbonate.
  • the reaction temperature in step 3 above is controlled at 10-30°C; preferably 20-30°C; more preferably 25-30°C.
  • the reaction time in step 3 above is 5-12 hours; preferably 8-12 hours; more preferably 8-10 hours. In some specific embodiments, the reaction time in step 3 above is about 8 hours.
  • the above step 3 is: the compound SMA-3 is reacted with trimethyloxonium tetrafluoroborate to obtain the onium tetrafluoroborate salt of the compound SMA-4, and the onium tetrafluoroborate salt of the compound SMA-4 The reaction is carried out to obtain compound SMA-4.
  • the step of reacting the onium tetrafluoroborate salt of the compound SMA-4 to obtain the compound SMA-4 can be carried out in the presence of a base (for example, sodium bicarbonate).
  • a base for example, sodium bicarbonate
  • the preparation of the onium tetrafluoroborate salt of the above compound SMA-4 is carried out in the presence of a solvent selected from ethyl acetate and acetone; preferably ethyl acetate.
  • the preparation of the onium tetrafluoroborate salt of the above compound SMA-4 is carried out in the presence of a solvent selected from ethyl acetate and acetone; preferably ethyl acetate.
  • the step of reacting the onium tetrafluoroborate salt of the compound SMA-4 to obtain the compound SMA-4 is carried out in the presence of a solvent selected from dichloromethane and ethyl acetate; preferably dichloromethane ; Or preferably ethyl acetate.
  • the above step 3 is: the compound SMA-3 is reacted with trimethyloxonium tetrafluoroborate in the presence of ethyl acetate to obtain the onium tetrafluoroborate salt of the compound SMA-4, and the compound SMA-4 The onium tetrafluoroborate salt is reacted in the presence of dichloromethane and a base to obtain compound SMA-4.
  • the above step 3 is: the compound SMA-3 reacts with trimethyloxonium tetrafluoroborate in the presence of ethyl acetate at a temperature of 25 to 30°C to obtain the onium tetrafluoroborate salt of compound SMA-4 , Separate the onium tetrafluoroborate salt of the compound SMA-4, and react the onium tetrafluoroborate salt of the compound SMA-4 with sodium bicarbonate in the presence of dichloromethane and water to obtain the compound SMA-4.
  • the molar ratio of compound SMA-3 to methylating agent in step 3 is 1:1 to 3; preferably 1:1 to 2; more preferably 1:1 to 1.2.
  • the molar ratio of the compound SMA-3 to the base in the above step 3 is 1:1 to 5; preferably 1:2 to 4; more preferably 1:2.5 to 3.5.
  • step 4 above is carried out in the presence of a catalyst, a base and a solvent.
  • the catalyst in step 4 above is selected from palladium acetate, 1,2-bis(diphenylphosphino)ethane palladium dichloride, 1,3-bis(diphenylphosphino)propane palladium dichloride , 1,4-bis(diphenylphosphino)butane palladium dichloride, bis(triphenylphosphine)palladium dichloride, bis(cyanobenzene)palladium dichloride, 1,1'-bisdiphenyl Phosphine ferrocene palladium dichloride or tris(dibenzylideneacetone) dipalladium; preferably bis(triphenylphosphine) palladium dichloride or 1,1'-bisdiphenylphosphine ferrocene dichloride Palladium; more preferably 1,1'-bisdiphenylphosphine ferrocene palladium dichloride.
  • the base in step 4 above is selected from sodium carbonate, potassium carbonate, cesium carbonate, sodium acetate, potassium acetate, sodium ethoxide, sodium tert-butoxide, potassium tert-butoxide, triethylamine, pyridine, piperidine or N-methylpiperidine; preferably potassium acetate or cesium carbonate; more preferably potassium acetate.
  • the solvent in step 4 above is selected from methanol, ethanol, isopropanol, tetrahydrofuran, dioxane, DMF, DMSO, toluene, ethylbenzene, ethylene glycol dimethyl ether, acetonitrile and water.
  • One or two or more mixed solvents preferably tetrahydrofuran and dioxane; more preferably dioxane.
  • the reaction temperature in step 4 above is 80-120°C; preferably 85-105°C; more preferably 90-105°C. In some specific embodiments, the reaction temperature in step 4 above is 90-95°C.
  • the reaction time in step 4 above is 5-15 hours; preferably 8-12 hours; more preferably 8-10 hours. In some specific embodiments, the reaction time in step 4 above is about 9 hours.
  • the molar ratio of compound SMA-4 to pinacol diborate in step 4 is 1:1 to 3; preferably 1:1 to 2; more preferably 1:1 to 1.5.
  • the molar ratio of the compound SMA-4 to the catalyst in step 4 is 1:0.001 to 0.01; preferably 1:0.002 to 0.008; more preferably 1:0.004 to 0.006.
  • the molar ratio of compound SMA-4 to base in step 4 is 1:1-3; preferably 1:1-2; more preferably 1:1.5-2.
  • the molar volume ratio of the compound SMA-4 to the solvent in step 4 is 1 mmol: 1-2 mL; preferably 1 mmol: 1-1.5 mL; more preferably 1 mmol: 1.2-1.5 mL.
  • the above step 4 is: compound SMA-4 and pinacol biborate in 1,4-dioxane, potassium acetate and 1,1'-bisdiphenylphosphine ferrocene dichloride The reaction is carried out in the presence of palladium to obtain compound SMA-5.
  • the above step 4 is: compound SMA-4 and pinacol biborate in 1,4-dioxane, potassium acetate and 1,1'-bisdiphenylphosphine ferrocene dichloride In the presence of palladium, the reaction temperature is 90-95° C. for 9 hours to obtain compound SMA-5.
  • step 5 above is carried out in the presence of a catalyst, a base and a solvent.
  • the catalyst in step 5 above is selected from palladium acetate, 1,2-bis(diphenylphosphino)ethane palladium dichloride, 1,3-bis(diphenylphosphino)propane palladium dichloride , 1,4-bis(diphenylphosphino)butane palladium dichloride, bis(triphenylphosphine)palladium dichloride, bis(cyanobenzene)palladium dichloride, 1,1'-bisdiphenyl Phosphine ferrocene palladium dichloride or tris(dibenzylideneacetone) dipalladium; preferably bis(triphenylphosphine) palladium dichloride or 1,1'-bisdiphenylphosphine ferrocene dichloride Palladium; more preferably 1,1'-bisdiphenylphosphine ferrocene palladium dichloride.
  • the base in step 5 above is selected from sodium carbonate, potassium carbonate, cesium carbonate, sodium acetate, potassium acetate, sodium ethoxide, sodium tert-butoxide, potassium tert-butoxide, triethylamine, pyridine, piperidine or N-methylpiperidine; preferably cesium carbonate or potassium carbonate; more preferably potassium carbonate.
  • the solvent in step 5 above is selected from methanol, ethanol, isopropanol, tetrahydrofuran, dioxane, DMF, DMSO, toluene, ethylbenzene, ethylene glycol dimethyl ether, acetonitrile and water.
  • One or two or more mixed solvents preferably dioxane and toluene; more preferably dioxane.
  • the reaction temperature in step 5 above is 80-120°C; preferably 85-105°C; more preferably 90-105°C.
  • the reaction time in step 5 above is 5-15 hours; preferably 8-12 hours; more preferably 10-12 hours.
  • the molar ratio of compound SMA-5 to compound SMA-9 in step 5 is 1:1-2; preferably, 1:1-1.5; more preferably, 1:1-1.2.
  • the molar ratio of the compound SMA-5 to the catalyst in step 5 is 1:0.005-0.05; preferably 1:0.01-0.05; more preferably 1:0.01-0.03.
  • the molar ratio of compound SMA-5 to base in step 5 is 1:1-3; preferably 1:1-2; more preferably 1:1.5-2.
  • the molar volume ratio of the compound SMA-5 to the solvent in step 5 is 1 mmol: 0.1-2 mL; preferably 1 mmol: 0.2-1 mL; more preferably 1 mmol: 0.2-0.5 mL.
  • the above step 5 is: compound SMA-5 and compound SMA-9 in the presence of potassium carbonate, water and 1,1'-bisdiphenylphosphine ferrocene palladium dichloride, 90-95
  • the compound SMA-6 was obtained by the reaction at a temperature of °C.
  • the above step 5 further includes the step of adding a mixed solution of ethanol and water for treatment after the reaction is completed. It further includes the step of adding the separated solid after the treatment to the mixed system of water and dichloromethane for treatment. It further includes the step of separating the organic phase after treatment, and treating the organic phase with anhydrous sodium sulfate and activated carbon.
  • the above step 5 further includes the step of purifying compound SMA-6 with ethyl acetate.
  • step 6 above is carried out in the presence of a catalyst, a base and a solvent.
  • the catalyst in step 6 above is selected from palladium acetate, 1,2-bis(diphenylphosphino)ethane palladium dichloride, 1,3-bis(diphenylphosphino)propane palladium dichloride , 1,4-bis(diphenylphosphino)butane palladium dichloride, bis(triphenylphosphine)palladium dichloride, bis(cyanobenzene)palladium dichloride, 1,1'-bisdiphenyl Phosphine ferrocene palladium dichloride and tris(dibenzylideneacetone) dipalladium; preferably palladium acetate and tris(dibenzylideneacetone) dipalladium; more preferably palladium acetate.
  • the catalyst in step 6 above is selected from palladium acetate and tris(dibenzylideneacetone) dipalladium, wherein the catalyst needs to be used in the presence of a ligand, and the ligand is selected from 2-bicyclohexylphosphine -2',4',6'-Triisopropylbiphenyl, 2-Biscyclohexylphosphine-2',6'-Dimethoxybiphenyl, 2-Biscyclohexylphosphine-2',6'-Diiso Propoxy-1,1'-biphenyl, 4,5-bisdiphenylphosphine-9,9-dimethylxanthene, 1,1'-binaphthol and 2,2'-bis- (Diphenylphosphino)-1,1'-binaphthalene; preferably 4,5-bisdiphenylphosphine-9,9-dimethylxanthene and 2-bic
  • the above step 6 is performed in the presence of palladium acetate, 2-bicyclohexylphosphine-2',4',6'-triisopropylbiphenyl, a base and a solvent.
  • the base in step 6 above is selected from sodium carbonate, potassium carbonate, cesium carbonate, sodium acetate, potassium acetate, sodium ethoxide, sodium tert-butoxide, potassium tert-butoxide, triethylamine, pyridine, piperidine and N-methylpiperidine; preferably sodium carbonate, potassium carbonate and cesium carbonate; more preferably cesium carbonate.
  • the solvent in step 6 above is selected from dichloromethane, methanol, ethanol, isopropanol, tetrahydrofuran, dioxane, DMF, DMSO, toluene, ethylbenzene, ethylene glycol dimethyl ether, One or two or more mixed solvents of acetonitrile and water; preferably tetrahydrofuran and dioxane; more preferably dioxane.
  • the reaction temperature in step 6 above is 80-150°C; preferably 80-120°C; more preferably 100-120°C. In some specific embodiments, the reaction temperature in step 6 above is about 110°C.
  • the reaction time in step 6 above is 3-10 hours; preferably 3-8 hours; more preferably 4-6 hours. In some specific embodiments, the reaction time in step 6 above is about 5 hours.
  • the molar ratio of compound SMA-6 to compound SMA-10 in the above step 6 is 1:1-2; preferably, 1:1-1.5; more preferably, 1:1-1.2.
  • the molar ratio of compound SMA-6 to catalyst in step 6 is 1:0.01-0.1; preferably 1:0.02-0.06; more preferably 1:0.02-0.04.
  • the molar ratio of compound SMA-6 to ligand in step 6 is 1:0.01-0.1; preferably 1:0.02-0.06; more preferably 1:0.04-0.06.
  • the molar ratio of compound SMA-6 to base in step 6 is 1:1-3; preferably 1:1.5-3; more preferably 1:1.5-2.
  • the molar volume ratio of compound SMA-6 to solvent in step 6 is 1 mmol: 1-8 mL; preferably 1 mmol: 2-6 mL; more preferably 1 mmol: 3-4 mL.
  • the above step 6 is: compound SMA-6 and compound SMA-10 in cesium carbonate, 1,4-dioxane, 2-dicyclohexylphosphine-2',4',6'-tri In the presence of isopropyl biphenyl and palladium acetate, the reaction is carried out at a temperature of 110° C. to obtain compound SMA-7.
  • the above step 6 further includes the step of adding dichloromethane to the reaction system after the reaction is completed. It further includes the steps of adding sodium sulfate and mercapto silica gel, stirring and filtering.
  • the above step 6 further includes the step of pulping compound SMA-7 with ethyl acetate.
  • the compound SMA-10 can be prepared by referring to the method disclosed in the specification of WO2018045993.
  • the compound SMA-10 can also be purchased commercially.
  • step 7 is performed in the presence of acid and solvent.
  • the acid in step 7 is selected from hydrogen chloride
  • the solvent in step 7 is selected from methanol, ethanol and isopropanol; preferably methanol.
  • the acid in step 7 is selected from hydrogen chloride, and the solvent in step 7 is selected from methanol.
  • the protective group of compound SMA-7 is removed to obtain the hydrochloride salt of the compound of formula (I); further, the hydrochloride salt of the compound of formula (I) is neutralized and freed with a base to obtain the compound of formula (I).
  • the base neutralized with the hydrochloride of the compound of formula (I) is selected from an aqueous sodium hydroxide solution, an aqueous potassium hydroxide solution, an aqueous sodium carbonate solution or an aqueous potassium carbonate solution; preferably an aqueous sodium hydroxide solution.
  • the application also provides a preparation method of intermediate SMA-6, which includes:
  • Step 1 Compound SMA-1 reacts with compound SMA-8 to obtain compound SMA-2;
  • Step 2 Compound SMA-2 reacts with hydrazine hydrate to obtain compound SMA-3;
  • Step 3 Compound SMA-3 undergoes methylation reaction to obtain compound SMA-4;
  • Step 4 Compound SMA-4 is reacted with pinacol diborate to obtain compound SMA-5;
  • Step 5 Compound SMA-5 reacts with compound SMA-9 to obtain compound SMA-6.
  • step 1, step 2, step 3, step 4, and step 5 in the preparation method of the intermediate SMA-6 are the same as step 1, step 2 in the preparation method of the compound of formula (I) in this application. , Step 3, Step 4, and Step 5.
  • the application also provides the use of the preparation method of the intermediate SMA-6 in the preparation of the compound of formula (I).
  • This application also provides a method for preparing the intermediate SMA-3, which includes:
  • Step 1 Compound SMA-1 reacts with compound SMA-8 to obtain compound SMA-2;
  • Step 2 Compound SMA-2 reacts with hydrazine hydrate to obtain compound SMA-3.
  • reaction conditions of step 1 and step 2 in the preparation method of the intermediate SMA-3 are as described in step 1 and step 2 in the preparation method of the compound of formula (I) in this application.
  • the application also provides a use of the preparation method of the above-mentioned intermediate SMA-3 in the preparation of the compound of formula (I).
  • the application also provides a preparation method of intermediate SMA-4, which includes:
  • reaction conditions in the preparation method of the intermediate SMA-4 are as described in step 3 in the preparation method of the compound of formula (I) in this application.
  • the preparation method of the intermediate SMA-4 includes: the compound SMA-3 reacts with trimethyloxonium tetrafluoroboric acid to produce the onium salt intermediate compound SMA-3' (the tetrafluoroborate of compound SMA-4 Onium borate), the onium salt intermediate compound SMA-3' is further hydrolyzed to obtain compound SMA-4.
  • the formation of the above-mentioned onium salt intermediate compound SMA-3' is carried out in the presence of a solvent.
  • the solvent generated from the onium salt intermediate compound SMA-3' is selected from ethyl acetate and acetone; ethyl acetate is preferred.
  • reaction temperature for the formation of the onium salt intermediate compound SMA-3' is controlled at 10-30°C; preferably 20-30°C; more preferably 25-30°C.
  • reaction time for the formation of the onium salt intermediate compound SMA-3' is 5-12 hours; preferably 8-12 hours; more preferably 8-10 hours.
  • the molar ratio of compound SMA-3 to trimethyloxonium tetrafluoroboric acid in the formation of the onium salt intermediate compound SMA-3' is 1:1 to 3; preferably 1:1 to 2; more preferably 1:1 ⁇ 1.2.
  • the molar volume ratio of the compound SMA-3 to the solvent in the formation of the onium salt intermediate compound SMA-3' is 1 mmol: 1-5 mL; preferably 1 mmol: 2-4 mL; more preferably 1 mmol: 2-3 mL.
  • the above-mentioned onium salt intermediate compound SMA-3' is hydrolyzed in the presence of a base and a solvent.
  • the base for hydrolysis of the onium salt intermediate compound SMA-3' is selected from potassium carbonate, sodium carbonate, potassium bicarbonate, sodium bicarbonate, sodium hydroxide and potassium hydroxide; preferably sodium bicarbonate and hydroxide Sodium; more preferably sodium bicarbonate.
  • the hydrolyzed base of the onium salt intermediate compound SMA-3' is an aqueous solution.
  • the solvent for the hydrolysis of the above-mentioned onium salt intermediate compound SMA-3' is the same as the solvent generated by the above-mentioned onium salt intermediate.
  • the solvent for the hydrolysis of the onium salt intermediate compound SMA-3' is selected from dichloromethane and ethyl acetate; dichloromethane is preferred.
  • the formation of the above-mentioned onium salt intermediate compound SMA-3' and the solvent required for the hydrolysis are the same or different.
  • the molar ratio of the onium salt intermediate compound SMA-3' to the base is 1:1-5; preferably 1:1-3; more preferably 1:2-3.
  • reaction time for the hydrolysis of the onium salt intermediate compound SMA-3' is 0.5 to 3 hours; preferably 0.5 to 1 hour.
  • the application also provides the use of the preparation method of the above-mentioned intermediate SMA-4 in the preparation of the compound of formula (I).
  • the preparation of the compound of formula (I) in the present application may also include the purification of the crude product.
  • the compound SMA-1, hydrazine hydrate, pinacol diborate, and compound SMA-9 in this application can all be purchased through commercial channels.
  • the metal catalyst used in the preparation process of the compound of formula (I) of the present application has reduced the number of reaction steps and the amount compared with the prior art, which is more economical, and the metal residue in the final product is correspondingly less.
  • LDA lithium diisopropylamide
  • DMF N,N-dimethylformamide
  • DMSO dimethyl sulfoxide
  • DBU 1,8-diazabicyclo eleven Carbon-7-ene
  • DMAP 4-dimethylaminopyridine
  • Pin 2 B 2 refers to pinacol diborate
  • Pd(dppf)Cl 2 refers to 1,1'-bisdiphenylphosphinoferrocene Palladium dichloride
  • TLC refers to thin layer chromatography analysis
  • HPLC high performance liquid chromatography analysis.
  • N,O-dimethylhydroxylamine hydrochloride (5.0kg) to a 100L reaction kettle, add dichloromethane (26L) and stir to dissolve, cool to an internal temperature of -5 ⁇ 5°C, and slowly add triethylamine (10.4kg), control the internal temperature below 5°C during the dripping process. After the addition, control the internal temperature below 5°C to add isobutyryl chloride (SMA-11) (5.46kg) dropwise, drop it off, and stir at room temperature to react for 1 hour.
  • SMA-12 isobutyryl chloride
  • the reaction system was cooled to 20°C, filtered, the filter cake was washed with water 10L ⁇ 2, and the obtained filter cake was dried in a vacuum oven at 60°C for 48 hours to obtain 1.9 kg of the compound of formula (I) with a yield of 83.4% and a purity of 98.9 %.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

涉及一种CDK4/6抑制剂的制备方法,具体涉及式(I)化合物:5-氟-4-(3-异丙基-2-甲基-2H-吲唑-5-基)-氮-(5-(哌嗪-1-基)吡唑-2-基)嘧啶-2-胺的制备方法。提供的制备方法起始原料和试剂均廉价易得,总反应步骤也大大缩短,反应时间缩短,总收率提高,关键中间体和终产物的纯度均较高,非常适用于工业化生产。

Description

一种CDK4/6抑制剂的制备方法
相关申请的引用
本申请要求于2020年06月22日向中华人民共和国国家知识产权局提交的第202010571393.7号中国发明专利申请的权益和优先权,在此将其全部内容以援引的方式整体并入本文中。
技术领域
本申请属于药物合成领域,涉及一种CDK4/6抑制剂的制备方法,具体涉及式(I)化合物:5-氟-4-(3-异丙基-2-甲基-2H-吲唑-5-基)-氮-(5-(哌嗪-1-基)吡唑-2-基)嘧啶-2-胺的制备方法。
背景技术
细胞周期的调控主要受一系列丝氨酸/苏氨酸激酶的影响,这类丝氨酸/苏氨酸激酶又被称作细胞周期蛋白依赖性激酶(CDK),他们通过与其相对应的调节亚基周期素(cyclins)相结合,推动细胞周期的进行、遗传信息的转录和细胞的正常分裂增殖。CDK4/6是细胞周期的关键调节因子,能够触发细胞周期从生长期(G1期)向DNA复制期(S1期)转变。在细胞增殖过程中,细胞周期素D(Cyclin D)与CDK4/6形成的复合物能够磷酸化视网膜母细胞瘤蛋白(Rb)。肿瘤抑制蛋白Rb一旦发生磷酸化,可释放其在未被磷酸化的状态下紧密结合的转录因子E2F,E2F激活进一步转录推动细胞周期通过限制点(R点)并从G1期进展到S期,进入了细胞增殖的周期。因此,抑制CDK4/6使之无法形成Cyclin D-CDK4/6复合物,就能够阻滞细胞周期自G1期向S期的进程,从而达到抑制肿瘤增殖的目的。在雌激素受体阳性(ER+)乳腺癌(BC)中,CDK4/6的过度活跃非常频繁,而CDK4/6是ER信号的关键下游靶标。临床前数据表明,CDK4/6和雌激素受体(ER)信号双重抑制具有协同作用,并能够抑制G1期雌激素受体阳性(ER+)乳腺癌(BC)细胞的生长。
WO2016141881公开了一种CDK4/6抑制剂,其结构如式(I)所示,式(I)化合物对CDK4/6的IC50值小于1nM,对乳腺癌具有较好的肿瘤抑制活性,
Figure PCTCN2021101246-appb-000001
WO2016141881还公开了式(I)化合物的制备方法,路线如下:
Figure PCTCN2021101246-appb-000002
上述式(I)化合物的制备工艺有诸多缺点,包括:
(i)中间体化合物(2)、化合物(3)、化合物(4)、化合物(5)、化合物(6)及化合物(7)粗品均为油状化合物,需通过硅胶柱层析纯化才能投入下一步反应,不适用于工业化生产。
(ii)中间体化合物(5)、化合物(6)、化合物(7)、化合物(8)和化合物(9)的制备过程均用到金属催化剂,工艺成本高,后处理复杂,不适用于工业化生产。
(iii)化合物(8)发生还原反应时,由于结构中含有较多可与金属配位的N原子,使还原反应时间较长,也不适用于工业化生产。
发明内容
本申请的目的在于提供一种式(I)化合物新的制备方法,该方法所用试剂经济易得,所生成的中间体后处理无需用到硅胶柱层析,操作简便,且各步反应时间短,产物收率高,产物纯度高,更适用于工业化生产。
一方面,本申请提供了一种式(I)化合物的制备方法,包括:
步骤1:化合物SMA-1与化合物SMA-8发生反应得到化合物SMA-2;
步骤2:化合物SMA-2与水合肼发生反应得到化合物SMA-3;
步骤3:化合物SMA-3发生甲基化反应得到化合物SMA-4;
步骤4:化合物SMA-4与联硼酸频那醇酯发生反应得到化合物SMA-5;
步骤5:化合物SMA-5与化合物SMA-9发生反应得到化合物SMA-6;
步骤6:化合物SMA-6与化合物SMA-10发生反应得到化合物SMA-7;
步骤7:化合物SMA-7进行反应得到式(I)化合物。
Figure PCTCN2021101246-appb-000003
在一些实施方案中,上述步骤1在溶剂和碱的存在下进行。
在一些实施方案中,上述步骤1中的溶剂选自二氯甲烷、四氢呋喃、二氧六环、DMF、DMSO、乙腈、乙醚、异丙醚、甲叔醚、2-甲基四氢呋喃、正己烷和正庚烷中的一种或两种及以上混合溶剂;优选为四氢呋喃、二氧六环和正庚烷中的一种或两种及以上混合溶剂;进一步优选为四氢呋喃。
在一些实施方案中,上述步骤1中的碱选自正丁基锂、叔丁基锂、叔丁醇钠、叔丁醇钾、二异丙基氨基锂、六甲基二硅基胺基锂、二(三甲基硅基)氨基钠、钠氢和氢氧化锂;优选为二异丙基氨基锂、正丁基锂和六甲基二硅基胺基锂;进一步优选为二异丙基氨基锂。
在一些实施方案中,上述步骤1的反应温度为-75~-20℃;优选为-75~-50℃;进一步优选为-75~-65℃。
在一些实施方案中,上述步骤1的反应时间为2~10小时;优选为2~6小时;进一步优选为3~5小时。
在一些实施方案中,上述步骤1中化合物SMA-1与化合物SMA-8的摩尔比为1:1~2;优选为1:1~1.5;进一步优选为1:1~1.4。在一些具体实施方案中,上述步骤1中化合物SMA-1与化合物SMA-8的摩尔比约为1:1.33。
在一些实施方案中,上述步骤1中化合物SMA-1与溶剂的摩尔体积比为1mmol:0.5~1.5mL;优选为1mmol:1~1.5mL;进一步优选为1mmol:1~1.2mL。在一些具体实施方案中,上述步骤1中化合物SMA-1与溶剂的摩尔体积比约为1mmol:1mL。
在一些实施方案中,上述步骤1中化合物SMA-1与碱的摩尔比为1:1~3;优选为1:1.5~3;进一步优选为1:1.5~2.1。在一些具体实施方案中,上述步骤1中化合物SMA-1与碱的摩尔比为1:2。
在一些实施方案中,上述步骤1包括:化合物SMA-1和化合物SMA-8溶于溶剂中形成溶液,然后加入碱进行反应得到化合物SMA-2。
在一些实施方案中,上述步骤1还包括:形成溶液后降低温度至-75~-20℃;优选为-75~-50℃;进一步优选为-75~-65℃。在一些实施方案中,上述步骤1还包括:加入碱时的温度为-65℃。
在一些实施方案中,上述步骤1还包括:加入完毕碱之后反应3小时。
在一些实施方案中,上述步骤1还包括:反应完毕后,向反应液中加入酸处理的步骤。在一些具体的实施方案中,所述酸是盐酸(例如1mol/L的盐酸水溶液)。
在一些实施方案中,上述步骤1还包括:向反应液中加入酸处理后,将SMA-2分离的步骤。
在一些具体的实施方案中,上述步骤1为:SMA-1、SMA-8和四氢呋喃,搅拌溶清并降温至内温-75~-65℃,控制内温-65℃以下加入二异丙基氨基锂,加完后控制内温-75~-65℃反应3小时。向反应液中加入1mol/L的盐酸水溶液,加完后升至室温,分液,水相用乙酸乙酯萃取,合并有机相,用水洗涤,用无水硫酸钠干燥,过滤,滤液减压浓缩至干得化合物SMA-2。
本申请中,上述步骤1还包括:化合物SMA-11与化合物SMA-12反应制备得到化合物SMA-8。
Figure PCTCN2021101246-appb-000004
在一些实施方案中,上述制备化合物SMA-8的步骤在溶剂和碱的存在下进行。
在一些实施方案中,上述制备化合物SMA-8的步骤的溶剂选自乙酸乙酯、二氯甲烷、甲苯、氯仿、1,2-二氯乙烷、正己烷、乙醚和甲基叔丁基醚;优选为二氯甲烷和甲基叔丁基醚;进一步优选为二氯甲烷。
在一些实施方案中,上述制备化合物SMA-8的步骤的碱选自三乙胺、二异丙基乙胺、吡啶、4-二甲氨基吡啶(DMAP)、1,8-二氮杂二环十一碳-7-烯(DBU)和三亚乙基二胺;优选为三乙胺和二异丙基乙胺;进一步优选为三乙胺。
在一些实施方案中,上述制备化合物SMA-8的步骤的反应温度为0~30℃;优选为5~25℃;进一步优选15~25℃。在一些具体的实施方案中,上述制备化合物SMA-8的步骤的反应温度约为25℃。
在一些实施方案中,上述制备化合物SMA-8的步骤的反应时间为0.5~5小时;优选为0.5~2小时;进一步优选为1~2小时。
在一些实施方案中,上述制备化合物SMA-8的步骤中,化合物SMA-11与化合物SMA-12的摩尔比为1:1~2;优选为1:1~1.5;进一步优选为1:1~1.2。在一些具体实施方案中,化合物SMA-11与化合物SMA-12的摩尔比为1:1。
在一些实施方案中,上述制备化合物SMA-8的步骤中,化合物SMA-11与溶剂的摩尔体积比为1mmol:0.2~2mL;优选为1mmol:0.5~2mL;进一步优选为1mmol:0.5~1mL。在一些具体实施方案中,化合物SMA-11与溶剂的摩尔体积比约为1mmol:0.5mL。
在一些实施方案中,上述制备化合物SMA-8的步骤中,化合物SMA-11与碱的摩尔比为1:1~3;优选为1:1.5~3;进一步优选为1:1.5~2。在一些具体实施方案中,化合物SMA-11与碱的摩尔比约为1:2。
在一些实施方案中,上述制备化合物SMA-8的步骤中,化合物SMA-12先与溶剂混合(例如温度在-5~5℃条件下混合),然后再加入碱(例如温度在5℃以下加入碱),随后再加入SMA-11(例如温度在5℃以下加入SMA-11)。
在一些实施方案中,上述制备化合物SMA-8的步骤为:将SMA-12溶于二氯甲烷中,使温度维持在-5~5℃,加入三乙胺,并维持温度在5℃以下,加毕,维持温度5℃以下加入SMA-11,加完后室温反应1小时。
在一些实施方案中,上述制备化合物SMA-8的步骤还包括:反应结束后,用碱(例如碳酸氢钠)处理的步骤。
本申请中,上述步骤1中化合物SMA-8还可通过商业途径购买得到。
在一些实施方案中,上述步骤2在溶剂存在下进行。
在一些实施方案中,上述步骤2中的溶剂选自乙二醇、N,N-二甲基甲酰胺(DMF)、二甲亚砜(DMSO)、二苯醚、邻二氯苯、环丁砜、三甲苯、二乙二醇二甲醚和N-甲基吡咯烷酮;优选为DMF和乙二醇;进一步优选为乙二醇。
在一些实施方案中,上述步骤2还包括反应过程中将水除去的步骤。
在一些实施方案中,上述步骤2为:化合物SMA-2与水合肼反应一段时间后,将水除去,再继续反应。
在一些实施方案中,上述步骤2的反应温度为100~200℃;优选为150~200℃。
在一些实施方案中,上述步骤2为:化合物SMA-2与水合肼先在温度为180~200℃条件下或者回流条件反应,后在温度为150℃条件下反应。具体地,在两段反应之间存在将水除去的步骤。在一些实施方案中,上述步骤2的反应时间为2~15小时;优选为5~12小时;进一步优选为10~12小时。
在一些实施方案中,上述步骤2为:化合物SMA-2与水合肼先在温度为180~200℃条件下或者回流条件反应2小时,后在温度为150℃条件下反应10小时。具体地,在两段反应之间存在将水除去的步骤。
在一些实施方案中,上述步骤2中化合物SMA-2与水合肼的摩尔比为1:1~3;优选为1:1.5~3;进一步优选为1:1.5~2。
在一些实施方案中,上述步骤2中化合物SMA-2与溶剂的摩尔体积比为1mmol:0.5~1.5mL;优选为1mmol:1~1.5mL;进一步优选为1mmol:1~1.2mL。
在一些实施方案中,上述步骤2为:SMA-2和水合肼在乙二醇的存在下回流反应2小时,将反应体系中的水除去,150℃反应10小时,得到化合物SMA-3。
在一些实施方案中,上述步骤2还包括反应结束后,向反应体系中加水析出化合物SMA-3的步骤。进一步的,还包括用纯化水打浆处理的步骤。
在一些实施方案中,上述步骤3在甲基化试剂和溶剂的存在下进行。
在一些实施方案中,上述步骤3中的甲基化试剂选自碘甲烷、硫酸二甲酯、碳酸二甲酯、对甲苯磺酸甲酯、三氟甲磺酸甲酯、四甲基氟化铵、磷酸三甲酯、三甲基氧鎓四氟硼酸和1-甲基-3-对甲苯基三氮;优选为碘甲烷和三甲基氧鎓四氟硼酸;进一步优选为三甲基氧鎓四氟硼酸。
在一些实施方案中,上述步骤3中的溶剂选自乙酸乙酯、二氯甲烷和丙酮中的一种或两种及以上混合溶剂;优选为乙酸乙酯和二氯甲烷中的一种或两种及以上混合溶剂。在一些具体实施方案中,上述步骤3中的溶剂先用乙酸乙酯,后用二氯甲烷。在一些具体的实施方案中,上述步骤3中的溶剂为乙酸乙酯。
在一些实施方案中,上述步骤3还可在甲基化试剂、碱和溶剂存在下进行。
在一些实施方案中,上述步骤3中的碱选自碳酸钾、碳酸钠、甲醇钠、乙醇钠、碳酸氢钾、碳酸氢钠、氢氧化钠和氢氧化钾;优选为碳酸氢钠和氢氧化钠;进一步优选为碳酸氢钠。
在一些实施方案中,上述步骤3的反应温度控制在10~30℃;优选为20~30℃;进一步优选为25~30℃。
在一些实施方案中,上述步骤3的反应时间为5~12小时;优选为8~12小时;进一步优选为8~10小时。在一些具体实施方案中,上述步骤3的反应时间约为8小时。
在一些实施方案中,上述步骤3为:化合物SMA-3与三甲基氧鎓四氟硼酸反应得到化合物SMA-4的四氟硼酸鎓盐,将所述化合物SMA-4的四氟硼酸鎓盐进行反应得到化合物SMA-4。
在一些实施方案中,上述化合物SMA-4的四氟硼酸鎓盐进行反应得到化合物SMA-4步骤可以在碱(例如碳酸氢钠)的存在下进行。
在一些实施方案中,上述化合物SMA-4的四氟硼酸鎓盐的制备在溶剂的存在下进行,所述溶剂选自乙酸乙酯和丙酮;优选为乙酸乙酯。
在一些实施方案中,上述化合物SMA-4的四氟硼酸鎓盐的制备在溶剂的存在下进行,所述溶剂选自乙酸乙酯和丙酮;优选为乙酸乙酯。
在一些实施方案中,上述化合物SMA-4的四氟硼酸鎓盐进行反应得到化合物SMA-4的步骤在溶剂存在下进行,所述溶剂选自二氯甲烷和乙酸乙酯;优选为二氯甲烷;或优选乙酸乙酯。
在一些实施方案中,上述步骤3为:化合物SMA-3与三甲基氧鎓四氟硼酸在乙酸乙酯存在下反应得到化合物SMA-4的四氟硼酸鎓盐,将所述化合物SMA-4的四氟硼酸鎓盐在二氯甲烷和碱的存在下进行反应得到化合物SMA-4。
在一些实施方案中,上述步骤3为:化合物SMA-3与三甲基氧鎓四氟硼酸在乙酸乙酯存在下,25~30℃温度条件下反应得到化合物SMA-4的四氟硼酸鎓盐,分离化合物SMA-4的四氟硼酸鎓盐,将所述化合物SMA-4的四氟硼酸鎓盐在二氯甲烷和水的存在下,与碳酸氢钠进行反应得到化合物SMA-4。
在一些实施方案中,上述步骤3中化合物SMA-3与甲基化试剂的摩尔比为1:1~3;优选为1:1~2;进一步优选为1:1~1.2。
在一些实施方案中,上述步骤3中化合物SMA-3与碱的摩尔比为1:1~5;优选为1:2~4;进一步优选为1:2.5~3.5。
在一些实施方案中,上述步骤4在催化剂、碱和溶剂的存在下进行。
在一些实施方案中,上述步骤4中催化剂选自醋酸钯、1,2-双(二苯膦基)乙烷二氯化钯、1,3-双(二苯膦基)丙烷二氯化钯、1,4-双(二苯膦基)丁烷二氯化钯、二(三苯基膦)二氯化钯、二(氰基苯)二氯化钯、1,1'-双二苯基膦二茂铁二氯化钯或三(二亚苄基丙酮)二钯;优选为二(三苯基膦)二氯化钯或1,1'-双二苯基膦二茂铁二氯化钯;进一步优选为1,1'-双二苯基膦二茂铁二氯化钯。
在一些实施方案中,上述步骤4中碱选自碳酸钠、碳酸钾、碳酸铯、醋酸钠、醋酸钾、乙醇钠、叔丁醇钠、叔丁醇钾、三乙胺、吡啶、哌啶或N-甲基哌啶;优选为醋酸钾或碳酸铯;进一步优选为醋酸钾。
在一些实施方案中,上述步骤4中溶剂选自甲醇、乙醇、异丙醇、四氢呋喃、二氧六环、DMF、DMSO、甲苯、乙基苯、乙二醇二甲醚、乙腈和水中的一种或两种及以上混合溶剂;优选为四氢呋喃和二氧六环;进一步优选为二氧六环。
在一些实施方案中,上述步骤4的反应温度为80~120℃;优选为85~105℃;进一步优选为90~105℃。在一些具体实施方案中,上述步骤4的反应温度为90~95℃。
在一些实施方案中,上述步骤4的反应时间为5~15小时;优选为8~12小时;进一步优选为8~10小时。在一些具体实施方案中,上述步骤4的反应时间约为9小时。
在一些实施方案中,上述步骤4中化合物SMA-4与联硼酸频那醇酯的摩尔比为1:1~3;优选为1:1~2;进一步优选为1:1~1.5。
在一些实施方案中,上述步骤4中化合物SMA-4与催化剂的摩尔比为1:0.001~0.01;优选为1:0.002~0.008;进一步优选为1:0.004~0.006。
在一些实施方案中,上述步骤4中化合物SMA-4与碱的摩尔比为1:1~3;优选为1:1~2;进一步优选为1:1.5~2。
在一些实施方案中,上述步骤4中化合物SMA-4与溶剂的摩尔体积比为1mmol:1~2mL;优选为1mmol:1~1.5mL;进一步优选为1mmol:1.2~1.5mL。
在一些实施方案中,上述步骤4为:化合物SMA-4与联硼酸频那醇酯在1,4-二氧六环、醋酸钾和1,1'-双二苯基膦二茂铁二氯化钯的存在下进行反应得到化合物SMA-5。
在一些实施方案中,上述步骤4为:化合物SMA-4与联硼酸频那醇酯在1,4-二氧六环、醋酸钾和1,1'-双二苯基膦二茂铁二氯化钯的存在下,90~95℃反应温度下反应9小时,得到化合物SMA-5。
在一些实施方案中,上述步骤5在催化剂、碱和溶剂的存在下进行。
在一些实施方案中,上述步骤5中催化剂选自醋酸钯、1,2-双(二苯膦基)乙烷二氯化钯、1,3-双(二苯膦基)丙烷二氯化钯、1,4-双(二苯膦基)丁烷二氯化钯、二(三苯基膦)二氯化钯、二(氰基苯)二氯化钯、1,1'-双二苯基膦二茂铁二氯化钯或三(二亚苄基丙酮)二钯;优选为二(三苯基膦)二氯化钯或1,1'-双二苯基膦二茂铁二氯化钯;进一步优选为1,1'-双二苯基膦二茂铁二氯化钯。
在一些实施方案中,上述步骤5中碱选自碳酸钠、碳酸钾、碳酸铯、醋酸钠、醋酸钾、乙醇钠、叔丁醇钠、叔丁醇钾、三乙胺、吡啶、哌啶或N-甲基哌啶;优选为碳酸铯或碳酸钾;进一步优选为碳酸钾。
在一些实施方案中,上述步骤5中溶剂选自甲醇、乙醇、异丙醇、四氢呋喃、二氧六环、DMF、DMSO、甲苯、乙基苯、乙二醇二甲醚、乙腈和水中的一种或两种及以上混合溶剂;优选为二氧六环和甲苯;进一步优选为二氧六环。
在一些实施方案中,上述步骤5的反应温度为80~120℃;优选为85~105℃;进一步优选为90~105℃。
在一些实施方案中,上述步骤5的反应时间为5~15小时;优选为8~12小时;进一步优选为10~12小时。
在一些实施方案中,上述步骤5中化合物SMA-5与化合物SMA-9的摩尔比为1:1~2;优选为1:1~1.5;进一步优选为1:1~1.2。
在一些实施方案中,上述步骤5中化合物SMA-5与催化剂的摩尔比为1:0.005~0.05;优选为1:0.01~0.05;进一步优选为1:0.01~0.03。
在一些实施方案中,上述步骤5中化合物SMA-5与碱的摩尔比为1:1~3;优选为1:1~2;进一步优选为1:1.5~2。
在一些实施方案中,上述步骤5中化合物SMA-5与溶剂的摩尔体积比为1mmol:0.1~2mL;优选为1mmol:0.2~1mL;进一步优选为1mmol:0.2~0.5mL。
在一些实施方案中,上述步骤5为:化合物SMA-5与化合物SMA-9在碳酸钾、水和1,1'-双二苯基膦二茂铁二氯化钯的存在下,90~95℃温度条件下反应得到化合物SMA-6。
在一些实施方案中,上述步骤5还包括:反应结束后,加入乙醇和水的混合溶液处理的步骤。进一步还包括将处理后分离的固体加入到水和二氯甲烷的混合体系中处理的步骤。进一步还包括处理后分离有机相,并将有机相用无水硫酸钠和活性炭处理的步骤。
在一些实施方案中,上述步骤5还包括:将化合物SMA-6用乙酸乙酯纯化的步骤。
在一些实施方案中,上述步骤6在催化剂、碱和溶剂的存在下进行。
在一些实施方案中,上述步骤6中催化剂选自醋酸钯、1,2-双(二苯膦基)乙烷二氯化钯、1,3-双(二苯膦基)丙烷二氯化钯、1,4-双(二苯膦基)丁烷二氯化钯、二(三苯基膦)二氯化钯、二(氰基苯)二氯化钯、1,1'-双二苯基膦二茂铁二氯化钯和三(二亚苄基丙酮)二钯;优选为醋酸钯和三(二亚苄基丙酮)二钯;进一步优选为醋酸钯。
在一些实施方案中,上述步骤6中催化剂选自醋酸钯和三(二亚苄基丙酮)二钯,其中所述催化剂需在配体存在下使用,所述配体选自2-双环己基膦-2’,4’,6’-三异丙基联苯、2-双环己基膦-2’,6’-二甲氧基联苯、2-双环己基膦-2’,6’-二异丙氧基-1,1’-联苯、4,5-双二苯基膦-9,9-二甲基氧杂蒽、1,1’-联二萘酚和2,2'-双-(二苯膦基)-1,1'-联萘;优选为4,5-双二苯基膦-9,9-二甲基氧杂蒽和2-双环己基膦-2’,4’,6’-三异丙基联苯;进一步优选为2-双环己基膦-2’,4’,6’-三异丙基联苯。
在一些实施方案中,上述步骤6在醋酸钯、2-双环己基膦-2’,4’,6’-三异丙基联苯、碱和溶剂的存在下进行。
在一些实施方案中,上述步骤6中碱选自碳酸钠、碳酸钾、碳酸铯、醋酸钠、醋酸钾、乙醇钠、叔丁醇钠、叔丁醇钾、三乙胺、吡啶、哌啶和N-甲基哌啶;优选为碳酸钠、碳酸钾和碳酸铯;进一步优选为碳酸铯。
在一些实施方案中,上述步骤6中溶剂选自二氯甲烷、甲醇、乙醇、异丙醇、四氢呋喃、二氧六环、DMF、DMSO、、甲苯、乙基苯、乙二醇二甲醚、乙腈和水中的一种或两种及以上混合溶剂;优选为四氢呋喃和二氧六环;进一步优选为二氧六环。
在一些实施方案中,上述步骤6的反应温度为80~150℃;优选为80~120℃;进一步优选为100~120℃。在一些具体实施方案中,上述步骤6的反应温度约为110℃。
在一些实施方案中,上述步骤6的反应时间为3~10小时;优选为3~8小时;进一步优选为4~6小时。在一些具体实施方案中,上述步骤6的反应时间约为5小时。
在一些实施方案中,上述步骤6中化合物SMA-6与化合物SMA-10的摩尔比为1:1~2;优选为1:1~1.5;进一步优选为1:1~1.2。
在一些实施方案中,上述步骤6中化合物SMA-6与催化剂的摩尔比为1:0.01~0.1;优 选为1:0.02~0.06;进一步优选为1:0.02~0.04。
在一些实施方案中,上述步骤6中化合物SMA-6与与配体的摩尔比为1:0.01~0.1;优选为1:0.02~0.06;进一步优选为1:0.04~0.06。
在一些实施方案中,上述步骤6中化合物SMA-6与与碱的摩尔比为1:1~3;优选为1:1.5~3;进一步优选为1:1.5~2。
在一些实施方案中,上述步骤6中化合物SMA-6与与溶剂的摩尔体积比为1mmol:1~8mL;优选为1mmol:2~6mL;进一步优选为1mmol:3~4mL。
在一些实施方案中,上述步骤6为:化合物SMA-6和化合物SMA-10在碳酸铯、1,4-二氧六环、2-二环己基膦-2',4',6'-三异丙基联苯和醋酸钯的存在下,110℃温度条件下进行反应得到化合物SMA-7。
在一些实施方案中,上述步骤6还包括:反应完毕后,向反应体系中加入二氯甲烷的步骤。进一步包括加入硫酸钠和巯基硅胶搅拌,过滤的步骤。
在一些实施方案中,上述步骤6还包括:将化合物SMA-7用乙酸乙酯打浆处理的步骤。
本申请中,化合物SMA-10可参考WO2018045993说明书公开的方法制备得到。
本申请中,化合物SMA-10也可通过商业途径购买得到。
在一些实施方案中,步骤7在酸和溶剂存在下进行。
在一些实施方案中,步骤7中的酸选自氯化氢,步骤7中的溶剂选自甲醇、乙醇和异丙醇;优选为甲醇。
在一些具体的实施方案中,步骤7中的酸选自氯化氢,步骤7中的溶剂选自甲醇。步骤7中化合物SMA-7脱除保护基后先得到式(I)化合物的盐酸盐;进一步的,式(I)化合物的盐酸盐与碱中和游离得到式(I)化合物。在一些实施方案中,与所述式(I)化合物盐酸盐中和的碱选自氢氧化钠水溶液、氢氧化钾水溶液、碳酸钠水溶液或碳酸钾水溶液;优选为氢氧化钠水溶液。
本申请中,化合物SMA-7发生脱保护反应得到式(I)化合物还可参照WO201614188实施例3中公开的方法制备。
本申请还提供一种中间体SMA-6的制备方法,包括:
步骤1:化合物SMA-1与化合物SMA-8发生反应得到化合物SMA-2;
步骤2:化合物SMA-2与水合肼发生反应得到化合物SMA-3;
步骤3:化合物SMA-3发生甲基化反应得到化合物SMA-4;
步骤4:化合物SMA-4与联硼酸频那醇酯发生反应得到化合物SMA-5;
步骤5:化合物SMA-5与化合物SMA-9发生反应得到化合物SMA-6。
Figure PCTCN2021101246-appb-000005
在一些实施方案中,上述中间体SMA-6的制备方法中步骤1、步骤2、步骤3、步骤4和步骤5的反应条件如本申请中式(I)化合物的制备方法中步骤1、步骤2、步骤3、步骤4和步骤5所描述。
本申请还提供一种中间体SMA-6的制备方法在式(I)化合物制备中的用途。
本申请还提供一种中间体SMA-3的制备方法,包括:
步骤1:化合物SMA-1与化合物SMA-8发生反应得到化合物SMA-2;
步骤2:化合物SMA-2与水合肼发生反应得到化合物SMA-3。
Figure PCTCN2021101246-appb-000006
在一些实施方案中,上述中间体SMA-3的制备方法中步骤1和步骤2的反应条件如本申请中式(I)化合物的制备方法中步骤1和步骤2所描述。
本申请还提供一种上述中间体SMA-3的制备方法在式(I)化合物制备中的用途。
本申请还提供一种中间体SMA-4的制备方法,包括:
化合物SMA-3发生甲基化反应得到化合物SMA-4。
Figure PCTCN2021101246-appb-000007
在一些实施方案中,上述中间体SMA-4的制备方法中的反应条件如本申请中式(I)化合物的制备方法中步骤3所描述。
在一个具体的实施方案中,中间体SMA-4的制备方法包括:化合物SMA-3与三甲基氧鎓四氟硼酸反应生成鎓盐中间体化合物SMA-3'(化合物SMA-4的四氟硼酸鎓盐),鎓盐中间体化合物SMA-3'进一步水解得到化合物SMA-4。
Figure PCTCN2021101246-appb-000008
在一些实施方案中,上述鎓盐中间体化合物SMA-3'的生成在溶剂存在下进行。
在一些实施方案中,上述鎓盐中间体化合物SMA-3'生成的溶剂选自乙酸乙酯和丙酮;优选乙酸乙酯。
在一些实施方案中,上述鎓盐中间体化合物SMA-3'生成的反应温度控制在10~30℃;优选20~30℃;进一步优选25~30℃。
在一些实施方案中,上述鎓盐中间体化合物SMA-3'生成的反应时间为5~12小时;优选8~12小时;进一步优选8~10小时。
在一些实施方案中,上述鎓盐中间体化合物SMA-3'生成中化合物SMA-3与三甲基氧鎓四氟硼酸的摩尔比为1:1~3;优选1:1~2;进一步优选1:1~1.2。
在一些实施方案中,上述鎓盐中间体化合物SMA-3'生成中化合物SMA-3与溶剂的摩尔体积比为1mmol:1~5mL;优选1mmol:2~4mL;进一步优选1mmol:2~3mL。
在一些实施方案中,上述鎓盐中间体化合物SMA-3'的水解在碱和溶剂的存在下进行。
在一些实施方案中,上述鎓盐中间体化合物SMA-3'水解的碱选自碳酸钾、碳酸钠、碳酸氢钾、碳酸氢钠、氢氧化钠和氢氧化钾;优选碳酸氢钠和氢氧化钠;进一步优选碳酸氢钠。
在一些实施方案中,上述鎓盐中间体化合物SMA-3'水解的碱为其水溶液。
在一些实施方案中,上述鎓盐中间体化合物SMA-3'水解的溶剂与上述鎓盐中间体生成的溶剂相同。
在一些实施方案中,上述鎓盐中间体化合物SMA-3'水解的溶剂选自二氯甲烷和乙酸乙酯;优选二氯甲烷。
在一些实施方案中,上述鎓盐中间体化合物SMA-3'的生成和水解所需溶剂相同或不同。
在一些实施方案中,上述鎓盐中间体化合物SMA-3'与碱的摩尔比为1:1~5;优选1:1~3;进一步优选1:2~3。
在一些实施方案中,上述鎓盐中间体化合物SMA-3'水解的反应时间为0.5~3小时;优选0.5~1小时。
本申请还提供上述中间体SMA-4的制备方法在式(I)化合物制备中的用途。
本申请式(I)化合物的制备还可包括粗品的精制。
本申请中化合物SMA-1、水合肼、联硼酸频那醇酯、化合物SMA-9均可通过市售途径购买得到。
本申请提供的式(I)化合物及其中间体的制备方法具有如下优点:
(i)本申请制备中间体后处理均未使用硅胶柱层析,后处理操作简便,经济易得。
(ii)本申请式(I)化合物的制备过程中所使用的金属催化剂无论是反应步骤数还是用量均比现有技术减少,更加经济,且终产物中的金属残留也相应较少。
(iii)本申请式(I)化合物的制备相比现有技术,减少了烯丙基还原的步骤,大大缩短了反应时间,且避免了铑催化剂的使用,更经济环保。
(iv)本申请式(I)化合物的制备起始原料和试剂均廉价易得,总反应步骤也大大缩短,反应时间缩短,总收率提高,关键中间体和终产物的纯度均较高,非常适用于工业化生产。
本申请中,LDA是指二异丙基氨基锂;DMF是指N,N-二甲基甲酰胺;DMSO是指二甲基亚砜;DBU是指1,8-二氮杂二环十一碳-7-烯;DMAP是指4-二甲氨基吡啶;Pin 2B 2是指联硼酸频那醇酯;Pd(dppf)Cl 2是指1,1'-双二苯基膦二茂铁二氯化钯;TLC是指薄层色谱分析;HPLC是指高效液相色谱分析。
具体实施方式
下面的具体实施例,其目的是使本领域的技术人员能更清楚地理解和实施本申请。它们不应该被认为是对本申请的限制,而只是本申请的示例性说明和典型代表。
本申请具体实施方式的化学反应是在合适的溶剂中完成的,所述的溶剂须适合于本申请的化学变化及其所需的试剂和物料。为了获得本申请的化合物,有时需要本领域技术人员在 已有实施方式的基础上对合成步骤或者反应流程进行修改或选择。
本申请所使用的所有溶剂是市售的,无需进一步纯化即可使用。
化合物SMA-8的制备
Figure PCTCN2021101246-appb-000009
向100L反应釜中加入N,O-二甲基盐酸羟胺(SMA-12)(5.0kg),加入二氯甲烷(26L)搅拌溶解,降温至内温-5~5℃,缓慢加入三乙胺(10.4kg),滴加过程中控内温5℃以下,加毕,控内温5℃以下滴加异丁酰氯(SMA-11)(5.46kg),滴闭,室温搅拌反应1小时。TLC检测原料异丁酰氯反应完全,将反应液缓慢倒入饱和碳酸氢钠水溶液(77L)中,分液,有机相依次用1mol/L盐酸(26L)和10%氯化钠水溶液(26L)洗涤,无水硫酸钠干燥,过滤,减压浓缩得化合物SMA-8共5.5kg,产率81.8%。
式(I)化合物的制备
Figure PCTCN2021101246-appb-000010
化合物SMA-2的制备
向100L的不锈钢反应釜中分别加入对氟溴苯(SMA-1)(4kg)、N,O-二甲基异丁酰胺(SMA-8)(4.0kg)和四氢呋喃(23.2L),搅拌溶清并降温至内温-75~-65℃,控制内温-65℃以下缓慢滴加LDA(2mol/L,23.2L),滴毕,控制内温-75~-65℃搅拌反应3小时。向反应液中滴加1mol/L的盐酸水溶液(46L),滴毕,缓慢升至室温,分液,水相用乙酸乙酯(15L)萃取,合并有机相,用水(10L×3)洗涤,用无水硫酸钠干燥,过滤,滤液减压浓缩至干得化合物SMA-2共6.18kg,产率85.7%。
化合物SMA-3的制备
向50L反应釜中分别加入化合物SMA-2(6.0kg)、乙二醇(23L),和80%水合肼(2.4kg),加毕,搅拌回流反应2小时。将反应体系中的水除去,150℃反应10小时。缓慢降至室温,加纯化水23L,搅拌析晶1小时,过滤,滤饼加25L纯化水打浆,过滤,50℃鼓风干燥,得化合物SMA-3共3.2kg,收率70%。
化合物SMA-4的制备
向50L反应釜中加入化合物SMA-3(3kg)和乙酸乙酯(30L),氮气保护下加入三甲基氧鎓四氟硼酸(2.06kg),加毕,25~30℃搅拌反应8小时,甩滤,滤饼用40L正己烷打浆3小时,甩滤,鼓风干燥得化合物SMA-4的四氟硼酸鎓盐(SMA-3')共3.3kg,收率77.1%。
向5L烧杯中加入上述化合物SMA-4的四氟硼酸鎓盐(135g),再分别加入1L饱和NaHCO 3溶液和1L二氯甲烷,搅拌0.5小时,分液,500mL饱和NaCl溶液洗涤一次,分液,有机相浓缩至干得到化合物SMA-4,备用。
化合物SMA-5的制备
向1L的四口瓶中加入上述得到的化合物SMA-4,1,4-二氧六环(500mL),联硼酸频那醇酯(151g)和乙酸钾(78g),脱气并用氮气置换三次,氮气保护下加入Pd(dppf)Cl 2CH 2Cl 2(1.5g),加毕,升温至内温90~95℃搅拌反应9小时。降至室温过滤,1,4-二氧六环(50mL)淋洗,得到含化合物SMA-5的滤液备用。
化合物SMA-6的制备
将含有化合物SMA-5的滤液转移到1L的四口瓶中,依次加入2,4-二氯-5-氟嘧啶(SMA-9)(68g)、碳酸钾(111g),搅拌下加入纯化水100mL,脱气并用氮气置换三次,氮气保护下加入Pd(dppf)Cl 2CH 2Cl 2(3.3g),加毕,升温至内温90~95℃搅拌反应12小时,降至室温,浓缩,500mL乙醇水溶液(乙醇/水=1/1)打浆1小时,过滤,固体加入到500mL水和300mL二氯甲烷的混合体系中,搅拌溶解,分液,水相用二氯甲烷萃取(100mL*2),合并有机相,加无水Na 2SO 4和3%活性炭脱水干燥脱色0.5小时,过滤,浓缩至干,得粗品75 g,粗品用乙酸乙酯(200mL)打浆0.5小时,过滤,晾干得化合物SMA-6纯品60g,纯度99.1%,产率50.1%。
化合物SMA-7的制备
将化合物SMA-6(1.70kg)、化合物SMA-10(1.57kg)、碳酸铯(3.61kg)、1,4-二氧六环(17L)、2-二环己基膦-2',4',6'-三异丙基联苯(158.39g)、醋酸钯(37.30g)依次加入50L反应釜,氮气保护,110℃搅拌5小时,降温,向反应混合物中加入二氯甲烷20L并搅拌30分钟。将混合物通过硅藻土过滤,水洗两次,加入硫酸钠和巯基硅胶(5%)搅拌过滤,滤液再加5%巯基硅胶搅拌过滤,滤液浓缩至干,加入乙酸乙酯(17L)打浆2小时,抽滤,干燥,得到化合物SMA-7,直接用于下一步反应。
式(I)化合物的制备
向甲醇(12.5L)溶液中通入氯化氢气体1.9kg,得到4M氯化氢/甲醇溶液。在20℃下将甲醇12.5L、化合物SMA-7依次加入反应釜,得到悬浊液。然后将4M氯化氢/甲醇溶液12.5L加入50L反应釜,将体系温度升至50℃,10分钟后有固体析出,且有大量气体生成,将反应体系在50℃下搅拌17.5小时。TLC监测显示反应已完成。将反应混合物冷却至20℃后过滤,滤饼用甲醇5L洗涤,所得滤饼于50℃真空烘箱中干燥42小时,得到式(I)化合物的盐酸盐粗品,直接进行下一步反应。
在20℃下,将式(I)化合物的盐酸盐粗品2.60kg、乙醇7.8L依次加入50L反应釜,得到的浑浊液加热至75℃,将5%氢氧化钠水溶液12.4L滴加至反应釜,调节pH约为11,反应体系冷却至68℃,约5分钟后固体开始析出。将反应体系加热至75℃且在此温度下搅拌1小时。将反应体系冷却至20℃,过滤,滤饼用水10L×2洗涤,所得的滤饼于60℃真空烘箱中干燥48小时,得到式(I)化合物1.9kg,收率为83.4%,纯度为98.9%。

Claims (11)

  1. 式(I)化合物的制备方法,包括:
    步骤1:化合物SMA-1与化合物SMA-8发生反应得到化合物SMA-2;
    步骤2:化合物SMA-2与水合肼发生反应得到化合物SMA-3;
    步骤3:化合物SMA-3发生甲基化反应得到化合物SMA-4;
    步骤4:化合物SMA-4与联硼酸频那醇酯发生反应得到化合物SMA-5;
    步骤5:化合物SMA-5与化合物SMA-9发生反应得到化合物SMA-6;
    步骤6:化合物SMA-6与化合物SMA-10发生反应得到化合物SMA-7;
    步骤7:化合物SMA-7进行反应得到式(I)化合物;
    Figure PCTCN2021101246-appb-100001
  2. 权利要求1所述式(I)化合物的制备方法,其中,步骤1在溶剂和碱的存在下进行;所述溶剂选自二氯甲烷、四氢呋喃、二氧六环、DMF、DMSO、乙腈、乙醚、异丙醚、甲叔醚、2-甲基四氢呋喃、正己烷和正庚烷中的一种或两种及以上混合溶剂;优选为四氢呋喃、二氧六环和正庚烷中的一种或两种及以上混合溶剂;进一步优选为四氢呋喃;
    所述碱选自正丁基锂、叔丁基锂、叔丁醇钠、叔丁醇钾、二异丙基氨基锂、六甲基二硅基 胺基锂、二(三甲基硅基)氨基钠、钠氢和氢氧化锂;优选为二异丙基氨基锂、正丁基锂和六甲基二硅基胺基锂;进一步优选为二异丙基氨基锂。
  3. 权利要求2所述式(I)化合物的制备方法,其中,化合物SMA-1与化合物SMA-8的摩尔比为1:1~2;优选为1:1~1.5;进一步优选为1:1~1.4。
  4. 权利要求2所述式(I)化合物的制备方法,其中,化合物SMA-1与溶剂的摩尔体积比为1mmol:0.5~1.5mL;优选为1mmol:1~1.5mL;进一步优选为1mmol:1~1.2mL。
  5. 权利要求1所述式(I)化合物的制备方法,其中,步骤2在溶剂存在下进行;所述溶剂选自乙二醇、N,N-二甲基甲酰胺(DMF)、二甲亚砜(DMSO)、二苯醚、邻二氯苯、环丁砜、三甲苯、二乙二醇二甲醚和N-甲基吡咯烷酮;优选为DMF和乙二醇;进一步优选为乙二醇。
  6. 权利要求1所述式(I)化合物的制备方法,其中,步骤3在甲基化试剂和溶剂的存在下进行;所述甲基化试剂选自碘甲烷、硫酸二甲酯、碳酸二甲酯、对甲苯磺酸甲酯、三氟甲磺酸甲酯、四甲基氟化铵、磷酸三甲酯、三甲基氧鎓四氟硼酸和1-甲基-3-对甲苯基三氮;优选为碘甲烷和三甲基氧鎓四氟硼酸;进一步优选为三甲基氧鎓四氟硼酸;
    所述溶剂选自乙酸乙酯、二氯甲烷和丙酮中的一种或两种及以上混合溶剂;优选为乙酸乙酯和二氯甲烷中的一种或两种及以上混合溶剂。
  7. 权利要求1所述式(I)化合物的制备方法,其中,步骤4在催化剂、碱和溶剂的存在下进行;所述催化剂选自醋酸钯、1,2-双(二苯膦基)乙烷二氯化钯、1,3-双(二苯膦基)丙烷二氯化钯、1,4-双(二苯膦基)丁烷二氯化钯、二(三苯基膦)二氯化钯、二(氰基苯)二氯化钯、1,1'-双二苯基膦二茂铁二氯化钯或三(二亚苄基丙酮)二钯;优选为二(三苯基膦)二氯化钯或1,1'-双二苯基膦二茂铁二氯化钯;进一步优选为1,1'-双二苯基膦二茂铁二氯化钯;
    所述碱选自碳酸钠、碳酸钾、碳酸铯、醋酸钠、醋酸钾、乙醇钠、叔丁醇钠、叔丁醇钾、三乙胺、吡啶、哌啶或N-甲基哌啶;优选为醋酸钾或碳酸铯;进一步优选为醋酸钾;
    所述溶剂选自甲醇、乙醇、异丙醇、四氢呋喃、二氧六环、DMF、DMSO、甲苯、乙基苯、乙二醇二甲醚、乙腈和水中的一种或两种及以上混合溶剂;优选为四氢呋喃和二氧六环;进一步优选为二氧六环。
  8. 权利要求1所述式(I)化合物的制备方法,其中,步骤5在催化剂、碱和溶剂的存在下进行;所述催化剂选自醋酸钯、1,2-双(二苯膦基)乙烷二氯化钯、1,3-双(二苯膦基)丙烷二氯化钯、1,4-双(二苯膦基)丁烷二氯化钯、二(三苯基膦)二氯化钯、二(氰基苯)二氯 化钯、1,1'-双二苯基膦二茂铁二氯化钯或三(二亚苄基丙酮)二钯;优选为二(三苯基膦)二氯化钯或1,1'-双二苯基膦二茂铁二氯化钯;进一步优选为1,1'-双二苯基膦二茂铁二氯化钯;
    所述碱选自碳酸钠、碳酸钾、碳酸铯、醋酸钠、醋酸钾、乙醇钠、叔丁醇钠、叔丁醇钾、三乙胺、吡啶、哌啶或N-甲基哌啶;优选为碳酸铯或碳酸钾;进一步优选为碳酸钾;
    所述溶剂选自甲醇、乙醇、异丙醇、四氢呋喃、二氧六环、DMF、DMSO、甲苯、乙基苯、乙二醇二甲醚、乙腈和水中的一种或两种及以上混合溶剂;优选为二氧六环和甲苯;进一步优选为二氧六环。
  9. 权利要求1所述式(I)化合物的制备方法,其中,步骤6在催化剂、碱和溶剂的存在下进行;所述催化剂选自醋酸钯、1,2-双(二苯膦基)乙烷二氯化钯、1,3-双(二苯膦基)丙烷二氯化钯、1,4-双(二苯膦基)丁烷二氯化钯、二(三苯基膦)二氯化钯、二(氰基苯)二氯化钯、1,1'-双二苯基膦二茂铁二氯化钯和三(二亚苄基丙酮)二钯;优选为醋酸钯和三(二亚苄基丙酮)二钯;进一步优选为醋酸钯;
    所述碱选自碳酸钠、碳酸钾、碳酸铯、醋酸钠、醋酸钾、乙醇钠、叔丁醇钠、叔丁醇钾、三乙胺、吡啶、哌啶和N-甲基哌啶;优选为碳酸钠、碳酸钾和碳酸铯;进一步优选为碳酸铯;
    所述溶剂选自二氯甲烷、甲醇、乙醇、异丙醇、四氢呋喃、二氧六环、DMF、DMSO、、甲苯、乙基苯、乙二醇二甲醚、乙腈和水中的一种或两种及以上混合溶剂;优选为四氢呋喃和二氧六环;进一步优选为二氧六环。
  10. 中间体SMA-6的制备方法,包括:
    步骤1:化合物SMA-1与化合物SMA-8发生反应得到化合物SMA-2;
    步骤2:化合物SMA-2与水合肼发生反应得到化合物SMA-3;
    步骤3:化合物SMA-3发生甲基化反应得到化合物SMA-4;
    步骤4:化合物SMA-4与联硼酸频那醇酯发生反应得到化合物SMA-5;
    步骤5:化合物SMA-5与化合物SMA-9发生反应得到化合物SMA-6;
    Figure PCTCN2021101246-appb-100002
  11. 权利要求10所述中间体SMA-6的制备方法在式(I)化合物制备中的用途,
    Figure PCTCN2021101246-appb-100003
PCT/CN2021/101246 2020-06-22 2021-06-21 一种cdk4/6抑制剂的制备方法 WO2021259203A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21828656.5A EP4159728A4 (en) 2020-06-22 2021-06-21 METHOD FOR PREPARING A CDK4/6 INHIBITOR
US18/011,759 US20230331699A1 (en) 2020-06-22 2021-06-21 Preparation method for cdk4/6 inhibitor
CN202180041423.6A CN115768763A (zh) 2020-06-22 2021-06-21 一种cdk4/6抑制剂的制备方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010571393 2020-06-22
CN202010571393.7 2020-06-22

Publications (1)

Publication Number Publication Date
WO2021259203A1 true WO2021259203A1 (zh) 2021-12-30

Family

ID=79281957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101246 WO2021259203A1 (zh) 2020-06-22 2021-06-21 一种cdk4/6抑制剂的制备方法

Country Status (4)

Country Link
US (1) US20230331699A1 (zh)
EP (1) EP4159728A4 (zh)
CN (1) CN115768763A (zh)
WO (1) WO2021259203A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115057845A (zh) * 2022-06-14 2022-09-16 山东罗欣药业集团恒欣药业有限公司 一种阿贝西利的制备方法
CN115636826A (zh) * 2022-10-31 2023-01-24 常州英诺升康生物医药科技有限公司 一种cdk抑制剂的制备方法
WO2023237055A1 (zh) * 2022-06-09 2023-12-14 正大天晴药业集团股份有限公司 一种cdk4/6抑制剂治疗去分化脂肪肉瘤的用途
WO2024032751A1 (zh) * 2022-08-12 2024-02-15 正大天晴药业集团股份有限公司 一种取代的2-氢-吡唑衍生物的晶型及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010075074A1 (en) * 2008-12-22 2010-07-01 Eli Lilly And Company Protein kinase inhibitors
WO2016014188A1 (en) 2014-07-25 2016-01-28 Raytheon Company Electronically reconfigurable, piecewise-linear, scalable analog monopulse feeding network
WO2016141881A1 (zh) 2015-03-11 2016-09-15 南京明德新药研发股份有限公司 作为抗癌药物的取代的2-氢-吡唑衍生物
WO2018045993A1 (zh) 2016-09-09 2018-03-15 正大天晴药业集团股份有限公司 一种取代的2-氢-吡唑衍生物的晶型、盐型及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060160864A1 (en) * 2003-02-07 2006-07-20 Mitsuru Shiraishi Acrylamide derivative, process for producing the same, and use
WO2009144554A1 (en) * 2008-05-28 2009-12-03 Pfizer, Inc. Pyrazolospiroketone acetyl-c0a carboxylase inhibitors
CA3088381A1 (en) * 2018-01-29 2019-08-01 Beta Pharma, Inc. 2h-indazole derivatives as cdk4 and cdk6 inhibitors and therapeutic uses thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010075074A1 (en) * 2008-12-22 2010-07-01 Eli Lilly And Company Protein kinase inhibitors
WO2016014188A1 (en) 2014-07-25 2016-01-28 Raytheon Company Electronically reconfigurable, piecewise-linear, scalable analog monopulse feeding network
WO2016141881A1 (zh) 2015-03-11 2016-09-15 南京明德新药研发股份有限公司 作为抗癌药物的取代的2-氢-吡唑衍生物
WO2018045993A1 (zh) 2016-09-09 2018-03-15 正大天晴药业集团股份有限公司 一种取代的2-氢-吡唑衍生物的晶型、盐型及其制备方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023237055A1 (zh) * 2022-06-09 2023-12-14 正大天晴药业集团股份有限公司 一种cdk4/6抑制剂治疗去分化脂肪肉瘤的用途
CN115057845A (zh) * 2022-06-14 2022-09-16 山东罗欣药业集团恒欣药业有限公司 一种阿贝西利的制备方法
CN115057845B (zh) * 2022-06-14 2024-05-03 山东罗欣药业集团恒欣药业有限公司 一种阿贝西利的制备方法
WO2024032751A1 (zh) * 2022-08-12 2024-02-15 正大天晴药业集团股份有限公司 一种取代的2-氢-吡唑衍生物的晶型及其制备方法
CN115636826A (zh) * 2022-10-31 2023-01-24 常州英诺升康生物医药科技有限公司 一种cdk抑制剂的制备方法

Also Published As

Publication number Publication date
CN115768763A (zh) 2023-03-07
EP4159728A4 (en) 2024-06-26
EP4159728A1 (en) 2023-04-05
US20230331699A1 (en) 2023-10-19

Similar Documents

Publication Publication Date Title
WO2021259203A1 (zh) 一种cdk4/6抑制剂的制备方法
AU2018383864B2 (en) Method for synthesis of Roxadustat and intermediate compounds thereof
CA3115570C (en) Process for the preparation of a pde4 inhibitor
CN110698461B (zh) 第三代egfr抑制剂的制备方法
EP3103789B1 (en) Method for producing (r)-1,1,3-trimethyl-4-aminoindane
CN106831737B (zh) 维帕他韦及其衍生物的制备
CN111961034A (zh) 用作ret激酶抑制剂的化合物及其应用
EP3988545A1 (en) Methods for preparing cdk4/6 inhibitor and salt and intermediate thereof
CN109651371B (zh) 一种盐酸伐昔洛韦的制备方法
CN102875537A (zh) 一种新的抗血栓药物的制备方法
CN101600716A (zh) 用于制备9-羟基-3-(2-氯乙基)-2-甲基-4H-吡啶并[1,2-a]嘧啶-4-酮盐酸盐的改进方法
CN112047888A (zh) 一种合成恩杂鲁胺的方法
CN106146502A (zh) 艾代拉里斯的合成方法及制备中间体
WO2022012630A1 (zh) C-核苷化合物的合成方法
CN111606889B (zh) 4-(1-环丙基-1h-吲哚-3-基)-n-苯基嘧啶-2-胺衍生物的制备方法
CN109867673B (zh) 一种合成帕布昔利布的方法
CN113880834B (zh) N-(苯基磺酰基)苯甲酰胺类化合物及其中间体的合成方法
CN110551123A (zh) 一种5-(叔丁氧羰基)-2-甲基-4,5,6,7-四氢-2h-吡唑并[4,3-c]吡啶-7-羧酸的制备方法
CN107814757B (zh) 一种合成多取代吡咯衍生物的方法
KR20140042805A (ko) 카스포펀진 합성을 위한 중간체 및 그 제조 방법
CA2634513A1 (en) Novel intermediate compounds and processes for their preparation
CN105555748B (zh) 一种异丙基苯酚衍生物及其制备方法
CN107382983B (zh) 一种治疗白血病药物的合成方法
CN113896732A (zh) 抗癌药物卡马替尼的制备方法及其应用
WO2008032702A1 (fr) Composé de fluorobore ayant un noyau aromatique ou sel de celui-ci, et procédé de fabrication du composé ayant un noyau aromatique fusionné à un éther cyclique à l'aide de celui-ci

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828656

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021828656

Country of ref document: EP

Effective date: 20221222

NENP Non-entry into the national phase

Ref country code: DE