WO2021259167A1 - 一种电解液侧入射光电催化co2还原反应池 - Google Patents

一种电解液侧入射光电催化co2还原反应池 Download PDF

Info

Publication number
WO2021259167A1
WO2021259167A1 PCT/CN2021/101001 CN2021101001W WO2021259167A1 WO 2021259167 A1 WO2021259167 A1 WO 2021259167A1 CN 2021101001 W CN2021101001 W CN 2021101001W WO 2021259167 A1 WO2021259167 A1 WO 2021259167A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction chamber
working electrode
counter electrode
electrode reaction
cover plate
Prior art date
Application number
PCT/CN2021/101001
Other languages
English (en)
French (fr)
Inventor
郭烈锦
刘亚
王峰
Original Assignee
西安交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西安交通大学 filed Critical 西安交通大学
Publication of WO2021259167A1 publication Critical patent/WO2021259167A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography

Definitions

  • the invention belongs to the field of photoelectrochemical testing, and in particular relates to a reaction device suitable for incident photoelectric catalytic CO 2 reduction on the electrolyte side.
  • Photoelectric catalytic CO 2 reduction technology refers to the technology that synthesizes water and CO 2 into small molecular hydrocarbon fuels driven by solar energy.
  • the reaction can be carried out in an environment of normal temperature and pressure. Since carrier excitation, carrier migration, and surface electrochemical reactions in the reaction system all occur inside or at the interface of the photoelectrode, the photoelectrode is the core component of the entire reaction. According to current research needs, the photoelectrode can be illuminated in two ways: front side (electrolyte side) and back side (electrode side).
  • the incident method on the electrolyte side can more directly generate carriers at the bending position of the energy band on the electrode surface, and then directly participate in the electrochemical reaction through a shorter migration distance.
  • the electrolytic cells for accurate testing of the photoelectric catalytic CO 2 reduction reaction all use ion exchange membranes to isolate the cathode chamber and the anode chamber.
  • the parallel arrangement of the working electrode and the counter electrode is beneficial to the uniformity of the surface potential of the working electrode.
  • the above requirements put forward higher requirements for the design of the photoelectric catalytic CO 2 reduction reaction cell on the electrolyte side.
  • the purpose of the present invention is to provide a reaction device suitable for the incident photoelectric catalytic CO 2 reduction on the electrolyte side, which is arranged in a symmetrical isosceles triangle structure to ensure the parallel arrangement of the working electrode and the counter electrode and the ion exchange membrane to isolate the cathode chamber and Under the premise of the anode chamber, light is incident from the electrolyte side.
  • a photoelectrocatalytic CO 2 reduction reaction cell incident on the electrolyte side comprising: a working electrode cover plate, a working electrode reaction chamber, a counter electrode reaction chamber, a counter electrode cover plate, and a light-passing cover plate;
  • the working electrode cover plate, the working electrode reaction chamber, the counter electrode reaction chamber and the counter electrode cover plate are clamped by bolts;
  • the working electrode reaction chamber and the light-passing cover plate are clamped by bolts.
  • a further improvement of the present invention is that: the working electrode reaction chamber and the counter electrode reaction chamber are both in an isosceles right-angled triangular prism structure;
  • the working electrode reaction chamber includes a first side surface of the working electrode reaction chamber, a second side surface of the working electrode reaction chamber, and a working electrode reaction chamber The third side; the angle between the first side of the working electrode reaction chamber and the second side of the working electrode reaction chamber is 90°;
  • the counter electrode reaction chamber includes the first side of the counter electrode reaction chamber, the second side of the counter electrode reaction chamber, and the opposite The third side of the electrode reaction chamber; the angle between the first side of the counter electrode reaction chamber and the second side of the counter electrode reaction chamber is 90°.
  • a further improvement of the present invention is that: the third side surface of the working electrode reaction chamber and the third side surface of the counter electrode reaction chamber are relatively fastened together;
  • the working electrode cover plate and the light-passing cover plate are respectively fixed on the first side surface of the working electrode reaction chamber and the second side surface of the working electrode reaction chamber of the working electrode reaction chamber;
  • the counter electrode cover plate is fixed on the first side surface of the counter electrode reaction chamber of the counter electrode reaction chamber; the first side surface of the working electrode reaction chamber and the first side surface of the counter electrode reaction chamber are arranged in parallel.
  • the working electrode reaction chamber is hollow to form a first reaction chamber; the top of the working electrode reaction chamber is provided with a first air outlet; the CO 2 gas inlet channel is vertically arranged at the bottom of the working electrode reaction chamber; The electrode channel is obliquely arranged at the bottom of the working electrode reaction chamber; the first air outlet, the reference electrode channel and the CO 2 gas inlet channel are all connected to the first reaction chamber.
  • a further improvement of the present invention lies in: forming a first reaction chamber with a hollow inside the reaction chamber of the counter electrode;
  • the second air outlet is arranged on the top of the counter electrode reaction chamber and communicates with the first reaction chamber.
  • the further improvement of the present invention lies in that the bottom of the counter electrode reaction chamber is also provided with threaded holes for external fixing brackets.
  • a further improvement of the present invention is that: a light-passing hole is provided on the light-passing cover plate.
  • the further improvement of the present invention is that the drilling angle of the light-passing hole and the inclination angle of the light-passing cover plate are 45°.
  • a further improvement of the present invention is that: the first side of the working electrode reaction chamber of the working electrode reaction chamber is placed close to the photoelectrode, and the working electrode cover plate is pressed and sealed and fixed; the first side of the counter electrode reaction chamber of the counter electrode reaction chamber Place the counter electrode tightly, and use the counter electrode cover plate to press and seal and fix; place the ion exchange membrane between the working electrode reaction chamber and the counter electrode reaction chamber and press and seal it; place quartz between the working electrode reaction chamber and the transparent cover plate Glass, and press tightly to seal and fix.
  • the further improvement of the present invention is that the distance from the reference electrode hole in the reference electrode channel to the surface of the working electrode is less than 3 mm.
  • a further improvement of the present invention is that: the CO 2 reduction reaction is carried out in the working electrode reaction chamber, and the water oxidation reaction is carried out in the counter electrode reaction chamber.
  • An ion exchange membrane is placed between the working electrode reaction chamber and the counter electrode reaction chamber to isolate the anode and cathode products and conduct charges.
  • a further improvement of the present invention is that the O-shaped rubber ring groove on the working electrode side is used for sealing the working electrode hole, and the electrode hole is circular with a diameter of 1 cm 2 .
  • the O-shaped rubber ring groove on the side of the light hole is used to seal the light hole and is oval.
  • the O-shaped rubber ring groove on the side of the ion exchange membrane is used to seal the ion exchange membrane.
  • a further improvement of the present invention is that the O-shaped rubber ring groove on the electrode side is used to seal the electrode hole, and the electrode hole is circular with a diameter of 1 cm 2 .
  • the O-shaped rubber ring groove on the side of the ion exchange membrane is used to seal the ion exchange membrane.
  • the present invention has the following beneficial effects:
  • the cross-sections of the working electrode reaction chamber and the counter electrode reaction chamber are isosceles right-angled triangles, so that light is incident on the surface of the working electrode from the electrolyte side.
  • the working electrode, the electrolyte and the counter electrode are arranged in a Z-shape, which realizes the parallel placement of the working electrode and the counter electrode, which is beneficial to the uniform distribution of the surface potential of the working electrode.
  • Figure 1 is a layout diagram of the overall structure of a photoelectric catalytic CO 2 reduction reaction cell suitable for incident on the electrolyte side of the present invention
  • Figure 2 is a schematic diagram of the reaction chamber structure of the working electrode of the present invention.
  • Figure 2 (a) is a left view;
  • Figure 2 (b) is a front view;
  • Figure 2 (c) is a right view;
  • Figure 3 is a schematic view of the structure of the electrode reaction chamber of the present invention.
  • Figure 3 (a) is a left view;
  • Figure 3 (b) is a front view;
  • Figure 3 (c) is a right view;
  • Figure 4 (a) is a schematic diagram of the structure of the working electrode of the present invention
  • Figure 4 (b) is a schematic diagram of the structure of the counter electrode cover plate of the present invention
  • Figure 5 is a schematic diagram of the structure of the light-passing cover of the present invention.
  • Figure 5 (a) is a front view;
  • Figure 5 (b) is a top view;
  • Fig. 6 is the photocurrent density curve collected in Example 1.
  • the present invention provides a photoelectric catalytic CO 2 reduction reaction cell suitable for incident on the electrolyte side, comprising: a working electrode cover plate 1, a working electrode reaction chamber 2, a counter electrode reaction chamber 3, and a counter electrode cover plate 4 ⁇ 5.
  • the working electrode reaction chamber 2 is an isosceles right-angled triangle structure with bolt holes (6, 7, 8, 9), an air outlet 13, a reference electrode channel 14, a CO 2 gas inlet channel 15 ,
  • the diameter of the working electrode hole is 1cm 2
  • the diameter of the O-shaped rubber ring on the working electrode side is 15 mm
  • the light hole is elliptical
  • the diameter of the O-shaped rubber ring on the light hole side is 19 mm
  • the diameter of the O-shaped rubber ring on the ion exchange membrane side is 30 mm.
  • the groove of the rubber ring is semi-elliptical.
  • the cavity of the working electrode reaction chamber 2 includes three openings, which are respectively arranged on three sides, and are correspondingly located at the working electrode side O-shaped rubber ring groove 16, the light hole side O-shaped rubber ring groove 17 and the ion exchange membrane side O -Shaped rubber ring groove 18.
  • the counter electrode reaction chamber 3 is an isosceles right-angled triangle structure with bolt holes (19, 20, 21, 22), an air outlet 23, a threaded hole 24 for the external fixing bracket, and an O-shaped counter electrode side.
  • the diameter of the counter electrode hole is 1cm 2
  • the diameter of the O-shaped rubber ring on the electrode side is 15 mm
  • the diameter of the O-shaped rubber ring on the ion exchange membrane side is 30 mm.
  • the groove of the rubber ring is semi-elliptical.
  • the cavity of the counter electrode reaction chamber 3 includes two openings, which are respectively arranged on two side surfaces and are correspondingly located in the O-shaped rubber ring groove 25 on the counter electrode side and the O-shaped rubber ring groove 26 on the ion exchange membrane side.
  • the working electrode cover plate 1 and the counter electrode cover plate 4 have the same structure, and are provided with four bolt holes (27, 28, 29, 30, 31, 32, 33, 34) respectively.
  • the light-passing cover plate 5 is provided with bolt holes (35, 36, 37) and a light-passing hole 38; the rotating hole angle of the light-passing hole 38 and the inclination angle of the light-passing cover 5 are 45o, which realizes the light from The electrolyte side is incident on the surface of the working electrode.
  • the photoelectrode is placed between the working electrode cover plate 1 and the working electrode reaction chamber 2, the working electrode side O-shaped rubber ring groove 16 is provided with the working electrode side O-shaped rubber ring, and the working electrode reaction chamber 2 and the counter electrode reaction chamber 3 are placed between Ion exchange membrane, the ion exchange membrane side O-shaped rubber ring groove 18 is provided with an ion exchange membrane side O-shaped rubber ring, and the ion exchange membrane side O-shaped rubber ring groove 26 is provided with an ion exchange membrane side O-shaped rubber ring, and the counter electrode reaction chamber 3. Place the counter electrode between 3 and the counter electrode cover plate 4.
  • the counter electrode side O-shaped rubber ring groove 25 is provided with the counter electrode side O-shaped rubber ring; one side of the working electrode is made of conductive material, and the other side is made of semiconductor photocatalytic material. Direct contact with the electrolyte in the working electrode reaction chamber 2.
  • the counter electrode is a platinum sheet.
  • the working electrode cover plate 1, the working electrode reaction chamber 2, the counter electrode reaction chamber 3, and the counter electrode cover plate 4 are connected in series by 4 bolts, and are compressed and sealed.
  • the O-shaped rubber ring groove 17 on the light-passing hole side is provided with an O-shaped rubber ring on the light-passing hole side.
  • a 1mm quartz glass is placed between the working electrode reaction chamber 2 and the light-passing cover 5, and it is tightly sealed by three bolts. The quartz glass seals and isolates the working electrode reaction chamber 2 and the light-passing hole 38.
  • Cuprous oxide is used as the photocathode as the working electrode, and an electrochemical workstation is used to control the electrochemical reaction.
  • the rubber ring is made of nitrile rubber.
  • a quartz glass with a thickness of 1 mm is placed between the light-passing hole and the working electrode reaction chamber 2, and the light-passing cover plate 5 and the working electrode reaction chamber 2 are connected and sealed with bolts.
  • the working electrode is placed between the working electrode cover plate 1 and the working electrode reaction chamber 2, an ion exchange membrane is placed between the working electrode reaction chamber 2 and the counter electrode reaction chamber 3, and the working electrode is placed between the counter electrode reaction chamber 3 and the counter electrode cover plate.
  • Place the counter electrode between 4 connect and seal with bolts.
  • the gas chromatograph is connected to the vent 13 to detect the gas phase products of carbon dioxide reduction.
  • the gas chromatograph is connected to the vent 23 to detect oxygen.
  • the line scan characteristic curve shows that the response of the line scan characteristic curve is normal when the light source is turned on and off, and light can be incident from the electrolyte side.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

一种电解液侧入射光电催化CO 2还原反应池,包括:工作电极盖板(1)、工作电极反应腔(2)、对电极反应腔(3)、对电极盖板(4)和通光盖板(5);工作电极盖板(1)、工作电极反应腔(2)、对电极反应腔(3)和对电极盖板(4)通过螺栓夹紧;工作电极反应腔(2)和通光盖板(5)通过螺栓夹紧。工作电极面积与反应腔体积比非常小,可以达到增加电解液中液相产物的含量的目的,提高液相产物检测精确度。参比电极到工作电极的距离极小,可以降低测试过程中未补偿阻抗。CO 2饱和装置极为靠近工作电极,可以加快CO 2向工作电极的传质。电极与相应反应腔采用了独立的螺栓固定,在更换电解液或者清洗反应腔时可以不必拆卸电极,提高了重复测量时的稳定性。

Description

一种电解液侧入射光电催化CO<sub>2</sub>还原反应池 技术领域
本发明属于光电化学测试领域,特别是涉及一种适用于电解液侧入射光电催化CO 2还原的反应装置。
背景技术
光电催化CO 2还原技术是指在太阳能的驱动下将水和CO 2合成为小分子碳氢燃料的技术。其反应可以在常温常压的环境中进行。由于反应系统内载流子激发、载流子迁移和表面电化学反应均发生在光电极内部或界面,因而光电极是整个反应的核心部件。根据目前的研究需求,光电极的照射方式有正面照射(电解液侧)和背面照射(电极侧)两种方式。而对于光电极来讲,电解液侧的入射方式可以更直接的在电极表面能带弯曲位置生成载流子,然后通过较短的迁移距离直接参与电化学反应。
鉴于反应产物的多样性,光电催化CO 2还原反应的精确测试电解池均采用离子交换膜隔离阴极室和阳极室。另外,由于电解液存在阻抗,工作电极与对电极的平行布置有利于工作电极表面电势的均匀性。上述要求给电解液侧入射光电催化CO 2还原反应池的设计提出了较高要求。而尚没有技术公开的光电催化CO 2还原反应池可同时满足工作电极与对电极的平行布置,以及采用离子交换膜隔离阴极室和阳极室。
公开于本背景技术部分的信息仅仅旨在增加对本发明的总体背景的理解,而不应当被视为承认或以任何形式暗示该信息构成已被本领域一般技术人员所公知的现有技术。
技术问题
本发明的目的在于提供一种适用于电解液侧入射光电催化CO 2还原的反应装置,通过对称的等腰三角形结构布置,在保证工作电极与对电极的平行布置以及离子交换膜隔离阴极室和阳极室的前提下,实现光从电解液侧入射。
技术解决方案
为了实现上述目的,本发明采用如下技术方案:
一种电解液侧入射光电催化CO 2还原反应池,包括:工作电极盖板、工作电极反应腔、对电极反应腔、对电极盖板和通光盖板;
工作电极盖板、工作电极反应腔、对电极反应腔和对电极盖板通过螺栓夹紧;
工作电极反应腔和通光盖板通过螺栓夹紧。
本发明进一步的改进在于:工作电极反应腔和对电极反应腔均呈等腰直角三棱柱结构;工作电极反应腔包括工作电极反应腔第一侧面、工作电极反应腔第二侧面和工作电极反应腔第三侧面;工作电极反应腔第一侧面和工作电极反应腔第二侧面之间的夹角为90°;对电极反应腔包括对电极反应腔第一侧面、对电极反应腔第二侧面和对电极反应腔第三侧面;对电极反应腔第一侧面和对电极反应腔第二侧面之间的夹角为90°。
本发明进一步的改进在于:工作电极反应腔第三侧面和对电极反应腔第三侧面相对紧固在一起;
工作电极盖板和通光盖板分别固定在工作电极反应腔的工作电极反应腔第一侧面、工作电极反应腔第二侧面;
对电极盖板固定在对电极反应腔的对电极反应腔第一侧面;工作电极反应腔第一侧面和对电极反应腔第一侧面平行设置。
本发明进一步的改进在于:工作电极反应腔内部中空形成第一反应腔;工作电极反应腔的顶部设有第一出气孔;CO 2进气通道竖直设置于工作电极反应腔的底部;参比电极通道倾斜设置于工作电极反应腔的底部;第一出气孔、参比电极通道和CO 2进气通道均连通第一反应腔。
本发明进一步的改进在于:对电极反应腔内部中空形成第一反应腔;
第二出气孔设置于对电极反应腔顶部并连通第一反应腔。
本发明进一步的改进在于:对电极反应腔底部还设有外接固定支架螺纹孔。
本发明进一步的改进在于:通光盖板上设有通光孔。
本发明进一步的改进在于:通光孔的钻孔角度与通光盖板倾角为45º。
本发明进一步的改进在于:工作电极反应腔的工作电极反应腔第一侧面侧紧贴放置光电极,并通过工作电极盖板压紧密封固定;对电极反应腔的对电极反应腔第一侧面侧紧贴放置对电极,使用对电极盖板压紧密封固定;工作电极反应腔与对电极反应腔之间放置离子交换膜并压紧密封固定;工作电极反应腔和通光盖板之间放置石英玻璃,并压紧密封固定。
本发明进一步的改进在于:参比电极通道内参比电极孔至工作电极表面距离小于3 mm。
本发明进一步的改进在于:所述工作电极反应腔内进行CO 2还原反应,所述对电极反应腔内进行水氧化反应。所述工作电极反应腔与对电极反应腔之间放置离子交换膜,用于隔离阴、阳极产物并传导电荷。
本发明进一步的改进在于:工作电极侧O型橡胶圈槽用于工作电极孔的密封,电极孔为圆形,直径1cm 2。通光孔侧O型橡胶圈槽用于通光孔的密封,呈椭圆形。离子交换膜侧O型橡胶圈槽用于离子交换膜的密封。
本发明进一步的改进在于:对电极侧O型橡胶圈槽用于对电极孔的密封,电极孔为圆形,直径1cm 2。离子交换膜侧O型橡胶圈槽用于离子交换膜的密封。
有益效果
相对于现有技术,本发明具有以下有益效果:
1、本发明中工作电极反应腔、对电极反应腔截面呈等腰直角三角形,实现了光从电解液侧入射至工作电极表面。
2、本发明中工作电极、电解液和对电极呈Z型布置,实现了工作电极与对电极的平行放置,有利于工作电极表面电势的均匀分布。
附图说明
图1为本发明一种适用于电解液侧入射光电催化CO 2还原反应池的整体结构布局图;
图2为本发明工作电极反应腔结构示意图;其中图2(a)为左视图;图2(b)为正视图;图2(c)为右视图;
图3为本发明对电极反应腔示结构意图;其中图3(a)为左视图;图3(b)为正视图;图3(c)为右视图;
图4(a)为本发明工作电极结构示意图;图4(b)为本发明对电极盖板结构示意图;
图5为本发明通光盖板结构示意图;其中图5(a)为正视图;图5(b)为俯视图;
图6为实施例1采集到光电流密度曲线。
本发明的实施方式
本发明是在解决了切实可行的加工工艺的前提下提出的。以下结合具体的附图对本发明做进一步的详细说明。
参照图1所示,本发明提供一种适用于电解液侧入射光电催化CO 2还原反应池,包括:工作电极盖板1、工作电极反应腔2、对电极反应腔3、对电极盖板4和通光盖板5。
参照图2所示,工作电极反应腔2呈等腰直角三角形结构,其上设有螺栓孔(6、7、8、9)、出气孔13、参比电极通道14、CO 2进气通道15、工作电极侧O型橡胶圈槽16、通光孔侧O型橡胶圈槽17和离子交换膜侧O型橡胶圈槽18。工作电极孔直径为1cm 2,工作电极侧O型橡胶圈直径为15 mm;通光孔呈椭圆形,通光孔侧O型橡胶圈直径为19 mm;离子交换膜侧O型橡胶圈直径为30 mm。橡胶圈凹槽为半椭圆形。
工作电极反应腔2的腔体包括三个开口,分别设置于三个侧面上,且对应位于工作电极侧O型橡胶圈槽16、通光孔侧O型橡胶圈槽17和离子交换膜侧O型橡胶圈槽18中。
参照图3所示,对电极反应腔3呈等腰直角三角形结构,其上设有螺栓孔(19、20、21、22)、出气孔23和外接固定支架螺纹孔24、对电极侧O型橡胶圈槽25和离子交换膜侧O型橡胶圈槽26。对电极孔直径为1cm 2,对电极侧O型橡胶圈为15 mm;离子交换膜侧O型橡胶圈直径为30 mm。橡胶圈凹槽为半椭圆形。
对电极反应腔3的腔体包括两个开口,分别设置于两个侧面上,且对应位于对电极侧O型橡胶圈槽25和离子交换膜侧O型橡胶圈槽26中。
参照图4所示,工作电极盖板1和对电极盖板4结构相同,分别设有四个螺栓孔(27、28、29、30、31、32、33、34)。
参照图5所示,通光盖板5上设有螺栓孔(35、36、37)和通光孔38;通光孔38转孔角度与通光盖板5倾角为45º,实现了光从电解液侧入射至工作电极表面。
工作电极盖板1与工作电极反应腔2之间放置光电极,工作电极侧O型橡胶圈槽16中设置工作电极侧O型橡胶圈,工作电极反应腔2与对电极反应腔3之间放置离子交换膜,离子交换膜侧O型橡胶圈槽18中设置离子交换膜侧O型橡胶圈,离子交换膜侧O型橡胶圈槽26中设置离子交换膜侧O型橡胶圈,对电极反应腔3与对电极盖板4之间放置对电极,对电极侧O型橡胶圈槽25中设置对电极侧O型橡胶圈;工作电极的一侧为导电材料,另一侧为半导体光催化材料并与工作电极反应腔2中电解液直接接触。对电极为铂片。工作电极盖板1、工作电极反应腔2、对电极反应腔3和对电极盖板4由4个螺栓依次串接,压紧密封。
通光孔侧O型橡胶圈槽17中设置通光孔侧O型橡胶圈,工作电极反应腔2和通光盖板5之间放置1mm的石英玻璃,并由3个螺栓压紧密封。石英玻璃将工作电极反应腔2和通光孔38密封隔离。
实施例1
按照上述结构,绘制三维结构图,然后采用3D打印机加工树脂材质的反应器。使用氧化亚铜作光阴极作为工作电极,并采用电化学工作站控制电化学反应。在所有的所有橡胶圈槽内放置橡胶圈,橡胶圈选用丁腈橡胶材质。首先,在通光孔与工作电极反应腔2之间放置厚度为1mm的石英玻璃,用螺栓将通光盖板5和工作电极反应腔2连接并密封。然后,在工作电极盖板1和工作电极反应腔2之间放置工作电极,在工作电极反应腔2和对电极反应腔3之间放置离子交换膜,在对电极反应腔3和对电极盖板4之间放置对电极,用螺栓连接并密封。接下来,在参比电极通道14内放置Ag/AgCl电极,并用中空1/4-28 UNF堵头的挤压力密封;在CO 2进气通道15内放置外径6 mm的玻璃通气管,并用2分管螺纹紧固密封。出气孔13外接气相色谱,检测二氧化碳还原气相产物。出气孔23外接气相色谱,检测氧气。然后采用斩波方式测试光电化学线扫描特性曲线,结果如图6所示。线扫描特性曲线表明打开和关闭光源时,线扫描特性曲线响应正常,可以实现光从电解液侧入射。
由技术常识可知,本发明可以通过其它的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同于本发明的范围内的改变均被本发明包含。

Claims (10)

  1. 一种电解液侧入射光电催化CO 2还原反应池,其特征在于,包括:工作电极盖板(1)、三棱柱结构工作电极反应腔(2)、三棱柱结构对电极反应腔(3)、对电极盖板(4)和通光盖板(5);
    工作电极盖板(1)、工作电极反应腔(2)、对电极反应腔(3)和对电极盖板(4)通过螺栓夹紧;
    工作电极反应腔(2)和通光盖板(5)通过螺栓夹紧。
  2. 根据权利要求1所述的一种电解液侧入射光电催化CO 2还原反应池,其特征在于,工作电极反应腔(2)和对电极反应腔(3)均呈等腰直角三棱柱结构;工作电极反应腔(2)包括工作电极反应腔第一侧面、工作电极反应腔第二侧面和工作电极反应腔第三侧面;工作电极反应腔第一侧面和工作电极反应腔第二侧面之间的夹角为90°;对电极反应腔(3)包括对电极反应腔第一侧面、对电极反应腔第二侧面和对电极反应腔第三侧面;对电极反应腔第一侧面和对电极反应腔第二侧面之间的夹角为90°。
  3. 根据权利要求2所述的一种电解液侧入射光电催化CO 2还原反应池,其特征在于,工作电极反应腔第三侧面和对电极反应腔第三侧面相对紧固在一起;
    工作电极盖板(1)和通光盖板(5)分别固定在工作电极反应腔(2)的工作电极反应腔第一侧面、工作电极反应腔第二侧面;
    对电极盖板(4)固定在对电极反应腔(3)的对电极反应腔第一侧面;工作电极反应腔第一侧面和对电极反应腔第一侧面平行设置。
  4. 根据权利要求1所述的一种电解液侧入射光电催化CO 2还原反应池,其特征在于,工作电极反应腔(2)内部中空形成第一反应腔;工作电极反应腔(2)的顶部设有第一出气孔(13);CO 2进气通道(15)竖直设置于工作电极反应腔(2)的底部;参比电极通道(14)倾斜设置于工作电极反应腔(2)的底部;第一出气孔(13)、参比电极通道(14)和CO 2进气通道(15)均连通第一反应腔。
  5. 根据权利要求1所述的一种电解液侧入射光电催化CO 2还原反应池,其特征在于,对电极反应腔(3)内部中空形成第一反应腔;
    第二出气孔(23)设置于对电极反应腔(3)顶部并连通第一反应腔。
  6. 根据权利要求1所述的一种电解液侧入射光电催化CO 2还原反应池,其特征在于,对电极反应腔(3)底部还设有外接固定支架螺纹孔(24)。
  7. 根据权利要求1所述的一种电解液侧入射光电催化CO 2还原反应池,其特征在于,通光盖板(5)上设有通光孔(38)。
  8. 根据权利要求7所述的一种电解液侧入射光电催化CO 2还原反应池,其特征在于,通光孔(38)的钻孔角度与通光盖板(5)倾角为45º。
  9. 根据权利要求2所述的一种电解液侧入射光电催化CO 2还原反应池,其特征在于,工作电极反应腔(2)的工作电极反应腔第一侧面侧紧贴放置光电极,并通过工作电极盖板(1)压紧密封固定;对电极反应腔(3)的对电极反应腔第一侧面侧紧贴放置对电极,使用对电极盖板(4)压紧密封固定;工作电极反应腔与对电极反应腔之间放置离子交换膜并压紧密封固定;工作电极反应腔(2)和通光盖板(5)之间放置石英玻璃,并压紧密封固定。
  10. 根据权利要求4所述的一种电解液侧入射光电催化CO 2还原反应池,其特征在于,参比电极通道(14)内参比电极孔至工作电极表面距离小于3 mm。
PCT/CN2021/101001 2020-06-22 2021-06-18 一种电解液侧入射光电催化co2还原反应池 WO2021259167A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010576037.4A CN111893508B (zh) 2020-06-22 2020-06-22 一种电解液侧入射光电催化co2还原反应池
CN202010576037.4 2020-06-22

Publications (1)

Publication Number Publication Date
WO2021259167A1 true WO2021259167A1 (zh) 2021-12-30

Family

ID=73207775

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/101001 WO2021259167A1 (zh) 2020-06-22 2021-06-18 一种电解液侧入射光电催化co2还原反应池

Country Status (2)

Country Link
CN (1) CN111893508B (zh)
WO (1) WO2021259167A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111893508B (zh) * 2020-06-22 2021-05-28 西安交通大学 一种电解液侧入射光电催化co2还原反应池
CN113176311B (zh) * 2021-03-29 2023-03-28 西安交通大学 一种高聚光分频式原位光电化学扰流反应池测试系统
CN113884446B (zh) * 2021-09-27 2024-04-26 西南石油大学 一种可用于超快光谱工况实验的三相反应池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104483443A (zh) * 2014-12-15 2015-04-01 天津大学 光电催化二氧化碳还原反应分析检测系统及其使用方法
CN104492253A (zh) * 2014-12-15 2015-04-08 天津大学 光电催化二氧化碳还原反应装置和应用
CN204294115U (zh) * 2014-12-01 2015-04-29 上海师范大学 全天候光电催化二氧化碳还原反应装置
JP2018043193A (ja) * 2016-09-14 2018-03-22 株式会社東芝 光透過性酸素発生触媒およびその製造方法、ならびにそれを利用した化学反応装置
CN111893508A (zh) * 2020-06-22 2020-11-06 西安交通大学 一种电解液侧入射光电催化co2还原反应池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103175876B (zh) * 2011-12-22 2014-09-17 中国科学院大连化学物理研究所 一种光谱电化学原位池及其应用
CN103995032B (zh) * 2014-04-21 2016-05-04 南通大学 一种用弹簧片作引线光电化学电解池结构
CN104502388B (zh) * 2014-11-19 2017-02-22 华中科技大学 基于扫描电化学显微镜的光电化学动力学测试系统及方法
CN204389460U (zh) * 2014-12-15 2015-06-10 天津大学 光电催化二氧化碳还原反应分析检测系统
CN207204066U (zh) * 2017-05-31 2018-04-10 西安科技大学 一种电化学/光电化学反应装置
CN111220673B (zh) * 2018-11-25 2021-06-11 中国科学院大连化学物理研究所 一种原位穆斯堡尔谱的电化学测试装置及应用
CN212674759U (zh) * 2020-01-09 2021-03-09 北京化工大学 一种光电催化和光电转化的原位光谱反应池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204294115U (zh) * 2014-12-01 2015-04-29 上海师范大学 全天候光电催化二氧化碳还原反应装置
CN104483443A (zh) * 2014-12-15 2015-04-01 天津大学 光电催化二氧化碳还原反应分析检测系统及其使用方法
CN104492253A (zh) * 2014-12-15 2015-04-08 天津大学 光电催化二氧化碳还原反应装置和应用
JP2018043193A (ja) * 2016-09-14 2018-03-22 株式会社東芝 光透過性酸素発生触媒およびその製造方法、ならびにそれを利用した化学反応装置
CN111893508A (zh) * 2020-06-22 2020-11-06 西安交通大学 一种电解液侧入射光电催化co2还原反应池

Also Published As

Publication number Publication date
CN111893508A (zh) 2020-11-06
CN111893508B (zh) 2021-05-28

Similar Documents

Publication Publication Date Title
WO2021259167A1 (zh) 一种电解液侧入射光电催化co2还原反应池
CN108193225A (zh) 一种膜电极构型co2电还原电解池
CN103884728B (zh) 一种用于电催化反应的同步辐射原位检测装置
CN111910211B (zh) 一种连续流动光电催化co2还原反应系统
CN110585998A (zh) 一种光热催化二氧化碳反应检测装置与方法
CN107138111A (zh) 一种二氧化碳催化还原反应装置
CN112285173A (zh) 一种光/电化学原位拉曼检测的方法及相关装置
CN107138112A (zh) 一种多功能光电化学双室反应器及其应用
CN113957466B (zh) 光电催化反应用流动式电解池
CN112924511B (zh) 一种基于原子力显微镜和扫描电化学显微镜的光电化学池
CN212542504U (zh) 一种无隔膜微生物燃料电池装置
CN112630273A (zh) 一种多气氛环境下电化学渗氢电解池及其应用方法
Zhu et al. A fuel-free self-powered sensor based on photoelectrochemical water/oxygen circulation for ultra-selective detection of levofloxacin
CN103163198B (zh) 一种液体浓度检测装置及使用其检测液体浓度的方法
CN210052797U (zh) 一种用于测试燃料电池的单电池
CN111896518A (zh) 电催化co2还原合成碳氢燃料的原位拉曼检测电化学池
CN201648379U (zh) 单池电解协助发酵产氢装置
CN114923964B (zh) 一种电化学原位x射线谱学电解池及其测试方法和应用
CN214472946U (zh) 一种用于多气氛控制的氢扩散电解池
CN201218769Y (zh) 一种燃料电池膜电极检漏仪
CN210560795U (zh) 一种氢气生成装置
CN216870446U (zh) 一种用于电催化产氢无膜流动池设备
CN111058051A (zh) 一种常温常压电化学氮肥生产系统
CN203448089U (zh) 一种电极可拆卸的多电极多通路光电反应装置
CN220040329U (zh) 有色无机膜的传质性能检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829458

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829458

Country of ref document: EP

Kind code of ref document: A1