CN214472946U - 一种用于多气氛控制的氢扩散电解池 - Google Patents

一种用于多气氛控制的氢扩散电解池 Download PDF

Info

Publication number
CN214472946U
CN214472946U CN202023276408.1U CN202023276408U CN214472946U CN 214472946 U CN214472946 U CN 214472946U CN 202023276408 U CN202023276408 U CN 202023276408U CN 214472946 U CN214472946 U CN 214472946U
Authority
CN
China
Prior art keywords
electrolytic
cell
atmosphere
hydrogen diffusion
clamp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202023276408.1U
Other languages
English (en)
Inventor
王龙
罗晓芳
洪志浩
巩保平
冯勇进
王晓宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southwestern Institute of Physics
Original Assignee
Southwestern Institute of Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southwestern Institute of Physics filed Critical Southwestern Institute of Physics
Priority to CN202023276408.1U priority Critical patent/CN214472946U/zh
Application granted granted Critical
Publication of CN214472946U publication Critical patent/CN214472946U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本实用新型公开了一种用于多气氛控制的氢扩散电解池,包括:两个相同的单电解池和螺杆,每个单电解池包括:电解槽、气氛进气口、参比电极插口、内置对电极、夹具、阳极端、插孔、基座、置气通气口,进水口和出水口;电解槽为内双层结构,基座和夹具分别位于电解槽的两侧,气氛进气口、参比电极插口、置气通气口分别设于电解槽的顶面上,进水口和出水口分别设于电解槽的前侧面和后侧面上,内置对电极设于基座内部;两个单电解池上的夹具的侧面相对设置,且两者形成间隙;螺杆与插孔固定连接;阳极端设于间隙中,样品置入阳极端中,样品的中心位于两个单电解池的水平轴线上。本实用新型实现了多气氛环境下金属材料的电化学渗氢测试。

Description

一种用于多气氛控制的氢扩散电解池
技术领域
本实用新型属于电化学氢渗透测量技术领域,具体涉及一种用于多气氛控制的氢扩散电解池。
背景技术
随着人类对能源需求的增加,核聚变能的发展越来越受到人们的关注。氚增殖包层是实现聚变反应堆氚增殖、维持氚自持的核心部件,通过Li6与中子反应在线产氚,是涉氚量最大、材料服役环境极为严苛的区域。特别是氚增殖包层中优选的结构材料—低活性铁素体马氏体(RAFM,Reduced Activation Ferritic/Martensitic)钢,面对原子半径小、反应活性高的燃料氚,加之14.1MeV中子辐照、锂腐蚀、高温、高热负荷(大于0.5MW/m2)等服役环境,面临着严重的氢及其同位素渗透问题。
评价服役环境下结构材料的氢渗透性能则对于结构材料的研究和开发具有重要的科学意义和实用价值。液相电化学氢渗透测量技术由于设备简单、密封性好、成本低且操作方便,在测定氢渗透性能方面被广泛应用。然而针对多气氛环境体系,如氦冷固态包层中冷却气体为He+0.1%H,市场现有电解池无法在双气氛或多气氛下对结构材料进行氢渗透测试,多气氛电化学渗氢方法还不成熟。
实用新型内容
本实用新型的目的在于提供一种用于多气氛控制的氢扩散电解池,本实用新型利用四个螺杆连接两个单电解池并通过螺栓固定,样品密封性高,实现了多气氛环境下金属材料的电化学渗氢测试。
实现本实用新型目的的技术方案:
一种用于多气氛控制的氢扩散电解池,所述电解池包括两个相同的单电解池和螺杆,每个单电解池包括:电解槽、气氛进气口、参比电极插口、内置对电极、夹具、阳极端、插孔、基座、置气通气口,进水口和出水口;电解槽为内双层结构,包括间隔设置的内层和外层;基座和夹具分别与电解槽同轴设置并位于电解槽的两侧,基座和夹具分别与电解槽可拆卸连接;气氛进气口、参比电极插口、置气通气口分别设于电解槽的顶面上,并与电解槽的内层贯通;进水口和出水口分别设于电解槽的前侧面和后侧面上,并与电解槽的外层贯通;内置对电极设于基座内部;基座靠近电解槽的一侧均匀设有插孔,夹具上对应插孔的位置设有通孔,插孔和通孔分别与螺杆相配合;
两个单电解池对称同轴设置,两个单电解池上的夹具的侧面相对设置,且两者形成间隙;螺杆贯穿插孔和通孔,与插孔固定连接;阳极端设于两个单电解池上的夹具形成的间隙中,样品置入阳极端中,样品的中心位于两个单电解池的水平轴线上。
进一步地,所述单电解池还包括垫圈,垫圈设于夹具与样品之间,垫圈的两面分别与夹具和样品顶紧。
进一步地,所述单电解池还包括内置鲁金毛细管、气氛进气接管、置气通气接管,内置鲁金毛细管接入参比电极插口中,气氛进气接管接入气氛进气口中,置气通气接管接入置气通气口中。
进一步地,所述置气通气接管为F型内插支管。
进一步地,所述电解槽为玻璃材质,基座为聚丙烯材质,夹具为聚四氟乙烯材质,垫圈为橡胶材质,螺杆为不锈钢材质。
进一步地,所述内置对电极为铂网,面积为2cm×2cm。
进一步地,所述样品为低活化铁素体/马氏体钢或不锈钢。
进一步地,所述夹具的内径为
Figure BDA0002874386340000031
进一步地,所述气氛进气口和置气通气口均为磨砂口。
本实用新型的有益技术效果在于:
本实用新型提供的一种用于多气氛控制的氢扩散电解池,用于电化学渗氢测试,利用四个螺杆连接两个单电解池并通过螺栓固定,样品密封性高,数据稳定性好,同时设置的三个通气口和进、出水口,实现了多气氛、水浴加热条件下样品的电化学渗氢测试,提高了电化学渗氢设备利用率。
附图说明
图1为本实用新型所提供的一种用于多气氛控制的氢扩散电解池的结构示意图;
图2为本实用新型所提供的一种用于多气氛控制的氢扩散电解池中单电池的俯视图;
图3为本实用新型所提供的一种用于多气氛控制的氢扩散电解池中单电池的侧视图;
图4为本实用新型所提供的一种用于多气氛控制的氢扩散电解池中置气通气口连接置气通气接管的结构示意图;
图5为本实用新型所提供的一种用于多气氛控制的氢扩散电解池应用测试示意图。
图中:1、气氛进气口;2、参比电极插口;3、内置对电极;4、夹具;5、垫圈;6、阳极端;7、插孔;8、基座;9、内置鲁金毛细管;10、气氛进气接管;11、置气通气口;12、进水口;13、出水口;14、置气通气接管。
具体实施方式
下面结合附图和实施例对本实用新型作进一步详细说明。
实施例1
如图1-4所示,本实用新型提供的一种用于多气氛控制的氢扩散电解池,包括两个相同的单电解池和螺杆,每个单电解池包括:电解槽、气氛进气口1、参比电极插口2、内置对电极3、夹具4、垫圈5、阳极端6、插孔7、基座8、内置鲁金毛细管9、气氛进气接管10、置气通气口11、进水口12、出水口13和置气通气接管14。
如图1所示,电解槽为玻璃材质的内双层结构,包括间隔设置的内层和外层。基座8为聚丙烯材质,位于电解槽的一侧,夹具4为聚四氟乙烯材质,位于电解槽的另一侧,基座8和夹具4均与电解槽同轴设置,基座8与电解槽可拆卸连接,夹具4与电解槽可拆卸连接。
如图1-4所示,气氛进气口1、参比电极插口2、置气通气口11分别设于电解槽的顶面上,并与电解槽的内层贯通;内置鲁金毛细管9接入参比电极插口2中,气氛进气接管10接入气氛进气口1中,F型置气通气接管14接入置气通气口11中。气氛进气口1和置气通气口11均为磨砂口。
如图2-3所示,进水口12设于电解槽的前侧面上,出水口13设于电解槽的后侧面上,进水口12和出水口13分别与电解槽的内层和外层形成的间隙贯。
如图1所示,内置对电极3为铂网,面积为2cm×2cm。将铂网安装于基座8内部,作为电解的阴极端。
如图1所示,基座8靠近电解槽的一侧均匀设有四个插孔7,夹具4上对应插孔7的位置设有四个通孔,插孔7和通孔分别与螺杆相配合。两个单电解池对称同轴设置,两个单电解池上的夹具4的远离电解槽的侧面相对,且两者形成间隙;夹具4的内径为25mm。四个螺杆分别贯穿对应的插孔7和通孔,通过四个螺栓分别将四个螺杆与对应的插孔7固定连接,其中螺杆为不锈钢材质。
如图1所示,将阳极端6设于两个单电解池上的夹具4形成的间隙中,将样品置入阳极端6中,样品为CLF-1钢,尺寸直径为29mm,厚度在0.5mm。样品的中心位于两个单电解池的水平轴线上。在夹具4与样品之间分别放置两个橡胶垫圈5,并且在螺栓与螺杆拧紧后,垫圈5的两面分别与夹具4和样品顶紧,将样品紧密至于两个单电解池上的夹具4形成的间隙中,使得样品完全密封在两个单电解池中间。
实施例2
如图5所示,本实用新型提供的一种用于多气氛控制的氢扩散电解池的应用,包括以下步骤:
步骤(1)、对样品6进行双面抛光,样品抛光至粗糙度为1μm。利用磁控溅射仪,将样品背面镀一层Pd膜,背底抽到3×10-3Pa,溅射功率为80W,溅射气压0.5Pa,溅射时间5min。
步骤(2)、将镀膜后的样品6置入渗氢电解池的阳极端,试样两面用橡胶垫圈5紧固到电解池中间夹具4形成的间隙中,并旋紧与基座8的插孔7对应的四个螺栓,将样品完全固定且密封于电解池中间。
步骤(3)、如图5所示,将外部循环恒温水浴装置接入渗氢电解池各进水口12、出水口13,调节外置循环恒温水浴装置的温度,将温度设置为30℃,开始对循环水进行加热,当循环水达到30℃时,开启水循环,使渗氢电解池水浴加热至30℃。
步骤(4)、待温度稳定后将1mol/L KOH溶液置入两个单电解池中,两侧电解池的参比电极插口2中通过内置鲁金毛细管9均插入氧化汞参比电极,其中参比电极穿入橡胶塞后连接保证其密闭性。
步骤(5)、如图1所示,将氢气通过气氛进气接管10接入单电解池气氛进气口1,通过氢气瓶进气阀调节氢气压力1MPa。如图4所示,将氦气通过F型置气通气接管14接入置气通气口11,F型置气通气接管14左端置气,通过氦气瓶进气阀调节氦气压力0.1MPa,右侧通气管密封,排除电解液中的氧等气体。
步骤(6)、如图5所示,将渗氢电解池与CS2350H双恒电位仪连接,双恒电位仪主单元采用恒电位测试模式,从单元采用恒电流模式,主从单元的阳极、对电极、参比电极线分别与样品、内置铂电极、参比电极连接。
步骤(7)、将样品镀钯侧单电解池接入双恒电位仪主单元,另一侧接入从单元,主单元电位设置为0.3mV(相对于参比电极),保持在一定的测试压力,待主单元背底电流密度低于0.1μA/cm2,利用Devanthan-Stachurski双电解槽电化学渗氢试验方法对样品进行测试,从单元恒电流设置为0.38mA/cm2,获得多气氛下样品的氢扩散渗透曲线。
利用公式
Figure BDA0002874386340000061
计算CLF-1钢的氢扩散系数,其中,D为氢扩散系数,L为样品厚度,tlag为迟滞时间。
在本实施例中,tlag=(5794-2318)s=3476s,L=0.482mm,经计算,氢扩散系数D=1.11×10-7cm2/s。
上面结合附图和实施例对本实用新型作了详细说明,但是本实用新型并不限于上述实施例,在本领域普通技术人员所具备的知识范围内,还可以在不脱离本实用新型宗旨的前提下作出各种变化。本实用新型中未作详细描述的内容均可以采用现有技术。

Claims (9)

1.一种用于多气氛控制的氢扩散电解池,其特征在于,所述电解池包括两个相同的单电解池和螺杆,每个单电解池包括:电解槽、气氛进气口(1)、参比电极插口(2)、内置对电极(3)、夹具(4)、阳极端(6)、插孔(7)、基座(8)、置气通气口(11),进水口(12)和出水口(13);电解槽为内双层结构,包括间隔设置的内层和外层;基座(8)和夹具(4)分别与电解槽同轴设置并位于电解槽的两侧,基座(8)和夹具(4)分别与电解槽可拆卸连接;气氛进气口(1)、参比电极插口(2)、置气通气口(11)分别设于电解槽的顶面上,并与电解槽的内层贯通;进水口(12)和出水口(13)分别设于电解槽的前侧面和后侧面上,并与电解槽的外层贯通;内置对电极(3)设于基座(8)内部;基座(8)靠近电解槽的一侧均匀设有插孔(7),夹具(4)上对应插孔(7)的位置设有通孔,插孔(7)和通孔分别与螺杆相配合;
两个单电解池对称同轴设置,两个单电解池上的夹具(4)的侧面相对设置,且两者形成间隙;螺杆贯穿插孔(7)和通孔,与插孔(7)固定连接;阳极端(6)设于两个单电解池上的夹具(4)形成的间隙中,样品置入阳极端(6)中,样品的中心位于两个单电解池的水平轴线上。
2.根据权利要求1所述的一种用于多气氛控制的氢扩散电解池,其特征在于,所述单电解池还包括垫圈(5),垫圈(5)设于夹具(4)与样品之间,垫圈(5)的两面分别与夹具(4)和样品顶紧。
3.根据权利要求1所述的一种用于多气氛控制的氢扩散电解池,其特征在于,所述单电解池还包括内置鲁金毛细管(9)、气氛进气接管(10)、置气通气接管(14),内置鲁金毛细管(9)接入参比电极插口(2)中,气氛进气接管(10)接入气氛进气口(1)中,置气通气接管(14)接入置气通气口(11)中。
4.根据权利要求3所述的一种用于多气氛控制的氢扩散电解池,其特征在于,所述置气通气接管(14)为F型内插支管。
5.根据权利要求2所述的一种用于多气氛控制的氢扩散电解池,其特征在于,所述电解槽为玻璃材质,基座(8)为聚丙烯材质,夹具(4)为聚四氟乙烯材质,垫圈(5)为橡胶材质,螺杆为不锈钢材质。
6.根据权利要求1所述的一种用于多气氛控制的氢扩散电解池,其特征在于,所述内置对电极(3)为铂网,面积为2cm×2cm。
7.根据权利要求1所述的一种用于多气氛控制的氢扩散电解池,其特征在于,所述样品为低活化铁素体/马氏体钢或不锈钢。
8.根据权利要求1所述的一种用于多气氛控制的氢扩散电解池,其特征在于,所述夹具(4)的内径为
Figure FDA0002874386330000021
9.根据权利要求1所述的一种用于多气氛控制的氢扩散电解池,其特征在于,所述气氛进气口(1)和置气通气口(11)均为磨砂口。
CN202023276408.1U 2020-12-30 2020-12-30 一种用于多气氛控制的氢扩散电解池 Active CN214472946U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202023276408.1U CN214472946U (zh) 2020-12-30 2020-12-30 一种用于多气氛控制的氢扩散电解池

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202023276408.1U CN214472946U (zh) 2020-12-30 2020-12-30 一种用于多气氛控制的氢扩散电解池

Publications (1)

Publication Number Publication Date
CN214472946U true CN214472946U (zh) 2021-10-22

Family

ID=78136040

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202023276408.1U Active CN214472946U (zh) 2020-12-30 2020-12-30 一种用于多气氛控制的氢扩散电解池

Country Status (1)

Country Link
CN (1) CN214472946U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630273A (zh) * 2020-12-30 2021-04-09 核工业西南物理研究院 一种多气氛环境下电化学渗氢电解池及其应用方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112630273A (zh) * 2020-12-30 2021-04-09 核工业西南物理研究院 一种多气氛环境下电化学渗氢电解池及其应用方法

Similar Documents

Publication Publication Date Title
CN108193225A (zh) 一种膜电极构型co2电还原电解池
CN109856037B (zh) 一种金属双极板长期稳定性的测定方法
CN112630273A (zh) 一种多气氛环境下电化学渗氢电解池及其应用方法
Ressel et al. Performance of a vanadium redox flow battery with tubular cell design
CN214472946U (zh) 一种用于多气氛控制的氢扩散电解池
CN107014884A (zh) 一种用于固体聚合物电解质体系的原位测试夹具及系统
CN218951505U (zh) 一种电解小室、电解槽及水电解制氢系统
CN112098298A (zh) 一种测试燃料电池碳纸各向异性渗透率的装置及方法
CN110887765A (zh) 一种模拟深海环境用电化学渗氢试验电解槽及应用方法
WO2021259167A1 (zh) 一种电解液侧入射光电催化co2还原反应池
CN110687019B (zh) 一种用于高温环境下电化学氢渗透测量的装置及方法
CN206848208U (zh) 一种用于固体聚合物电解质体系的原位测试夹具及系统
CN207423874U (zh) 一种阴极析氢电位测试装置
CN113933366A (zh) 一种燃料电池双极板电化学测试装置
CN214894731U (zh) 一种测试燃料电池碳纸各向异性渗透率的装置
CN101655540B (zh) 直接甲醇燃料电池测试装置
CN112129671B (zh) 一种测量固体钢高温下氢扩散系数的方法
CN220040319U (zh) 用于pem水电解膜电极电荷转移阻抗分离测量装置
CN218905041U (zh) 一种燃料电池双极板耐腐蚀性能测试夹具
CN212207608U (zh) 一种燃料电池膜电极组的测试治具
CN216847410U (zh) 质子交换膜燃料电池金属双极板电化学耐腐蚀性测试装置
CN220508985U (zh) 一种燃料电池测试夹具
CN219810887U (zh) 一种用于测析氢半电压装置的工作电极及测析氢半电压装置
CN219136945U (zh) 一种电解水制氢的测试装置
CN103887550B (zh) 污泥作为燃料固体氧化物燃料电池的制备方法

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant