WO2021258856A1 - 一种光催化剂及其在动力电池光催化环保处理中的应用 - Google Patents

一种光催化剂及其在动力电池光催化环保处理中的应用 Download PDF

Info

Publication number
WO2021258856A1
WO2021258856A1 PCT/CN2021/091554 CN2021091554W WO2021258856A1 WO 2021258856 A1 WO2021258856 A1 WO 2021258856A1 CN 2021091554 W CN2021091554 W CN 2021091554W WO 2021258856 A1 WO2021258856 A1 WO 2021258856A1
Authority
WO
WIPO (PCT)
Prior art keywords
taon
gas
photocatalyst
hollow glass
pass
Prior art date
Application number
PCT/CN2021/091554
Other languages
English (en)
French (fr)
Inventor
余海军
彭挺
谢英豪
张学梅
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to HU2200204A priority Critical patent/HUP2200204A1/hu
Priority to EP21830124.0A priority patent/EP4163010A4/en
Priority to US18/003,314 priority patent/US11826729B2/en
Publication of WO2021258856A1 publication Critical patent/WO2021258856A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/88Handling or mounting catalysts
    • B01D53/885Devices in general for catalytic purification of waste gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/50Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/72Organic compounds not provided for in groups B01D53/48 - B01D53/70, e.g. hydrocarbons
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/007Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by irradiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8668Removing organic compounds not provided for in B01D53/8603 - B01D53/8665
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/08Silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/393Metal or metal oxide crystallite size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/391Physical properties of the active metal ingredient
    • B01J35/394Metal dispersion value, e.g. percentage or fraction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0221Coating of particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/04Mixing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/12Oxidising
    • B01J37/14Oxidising with gases containing free oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/104Silver
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/70Non-metallic catalysts, additives or dopants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2259/00Type of treatment
    • B01D2259/80Employing electric, magnetic, electromagnetic or wave energy, or particle radiation
    • B01D2259/804UV light

Definitions

  • the invention belongs to the field of catalysts, and specifically relates to a photocatalyst and its application in the photocatalytic environmental protection treatment of a power battery.
  • Lithium battery electrolyte is the carrier of ion transmission in the battery. Generally composed of lithium salt and organic solvent. The electrolyte conducts ions between the positive and negative electrodes of the lithium battery.
  • the electrolyte is prepared from raw materials such as high-purity organic solvents, electrolyte lithium salts and necessary additives under certain conditions and in certain proportions.
  • Lithium battery electrolyte is a liquid in which the electrolyte is dissolved in an organic solvent.
  • the electrolyte is usually lithium perchlorate, lithium hexafluorophosphate, or the like.
  • the organic solvent is usually a carbonate-based liquid organic substance.
  • the electrolyte is an organic and volatile liquid, and it is obviously corrosive. Inhalation for a long time will cause serious damage to the respiratory tract.
  • Lithium-ion batteries must be collected and properly disposed of during the recycling process, and the volatilization of electrolyte must be strictly controlled to avoid harm to human health and the ecological environment.
  • the traditional method of treating the electrolyte is to place the lithium-ion battery in a pyrolysis furnace, so that the electrolyte and other organic matter are pyrolyzed at the same time.
  • the traditional recycling methods such as "A Lithium Battery Oxygen-Free Pyrolysis Recovery and Separation Process” (CN201810712762.2)
  • CN201810712762.2 cannot treat the electrolyte separately, and the diaphragm is also removed by pyrolysis during pyrolysis, so that the diaphragm cannot be effectively recovered.
  • the resource recovery rate is low and the limitations are obvious.
  • the use of current catalysts to catalyze and degrade the electrolyte also has the problems of low catalytic conversion efficiency, high catalyst cost and low degradation rate.
  • the purpose of the present invention is to provide a photocatalyst and its application in power battery photocatalysis and environmental protection treatment.
  • the power battery photocatalyst prepared by the present invention uses TaON and hollow glass beads to compound, and the hollow glass beads have a better light effect.
  • the permeability of the catalyst will not cause mutual shielding between the catalysts, which enables the photocatalyst filled in the reactor to be fully excited, which can effectively increase the utilization rate of light, thereby increasing the efficiency of catalytic conversion.
  • a photocatalyst is obtained by supporting Ag-TaON on hollow glass beads; the mass ratio of Ag-TaON and hollow glass beads is 1: (5-10).
  • the particle diameter of the hollow glass microspheres is 10 ⁇ m-10 mm.
  • the chemical composition of the hollow glass microspheres in mass ratio is: 45-90% SiO 2 , 5-50% Al 2 O 3 , 4-10% K 2 O, 1-10% CaO and 0-12 %B 2 O 3 .
  • a method for preparing a photocatalyst includes the following steps:
  • the solvent in step (1) is water and methanol; the mass ratio of TaON, water and methanol is 1: (20-60): (15-40).
  • the soluble silver salt in step (1) is an AgNO 3 solution.
  • the concentration of the AgNO 3 solution is 0.5-1 mol ⁇ L -1 .
  • the illumination in step (1) is a high-pressure mercury lamp
  • the atmosphere is a nitrogen atmosphere
  • the time is 10-30 min.
  • the concentration of the sodium tripolyphosphate solution in step (2) is 0.1-1 mol ⁇ L -1 .
  • the rotation speed of the stirring in step (2) is 400-800 r/min, and the time is 20-60 min.
  • the sintering temperature in step (2) is 200° C.-300° C.
  • the atmosphere is a nitrogen atmosphere
  • the time is 1-2 hours.
  • the TaON is prepared by the following steps:
  • step (3) Cool down, pass in inert gas, then pass in reactant gas B, increase the temperature, and keep the temperature for reaction to obtain TaON;
  • the reactant gas A in step (2) is a mixture of O 2 and N 2 ;
  • the reaction gas B is a mixed gas of NH 3 and N 2.
  • the specific pretreatment process described in step (1) push the corundum porcelain boat containing tantalum foil into the middle heating section of the tube furnace, seal it with a flange, and use 2-30 mL ⁇ min -1 at room temperature Flow the inert gas for 20-120min; switch the gas path to pass the pretreatment gas at a flow rate of 2-30mL ⁇ min -1 , and then heat up to 250°C-350°C at a rate of 2-8°C ⁇ min -1, keep warm 30-150min.
  • the pretreatment gas is a mixed gas of H 2 and N 2 ; the H 2 concentration is 5%-10%.
  • the temperature reduction in step (2) and step (3) is to lower the temperature to normal temperature.
  • the inert gas in step (2) and step (3) is at least one of pure N 2 , Ar or He.
  • the flow rate of the inert gas introduced in step (2) and step (3) is 2-30 mL ⁇ min -1 , and the time is 20-120 min.
  • the O 2 concentration is 5%-10%.
  • the flow rate of the reactant gas A in step (2) is 2-30 mL ⁇ min -1 .
  • the temperature raised in step (2) is 500°C-600°C, and the rate of temperature rise is 2-8°C ⁇ min -1 .
  • the heat preservation reaction time in step (2) is 30-150 min.
  • the NH 3 concentration is 5%-10%.
  • the flow rate of the reactant gas A in step (3) is 2-30 mL ⁇ min -1 .
  • the temperature raised in step (3) is 800°C-900°C, and the rate of temperature rise is 2-8°C ⁇ min -1 .
  • the heat preservation reaction time in step (3) is 180-300 min.
  • a photocatalytic environmental protection treatment method for power batteries includes the following steps:
  • the cleaning solution in step (2) is at least one of NaOH, Ca(OH) 2 or KOH.
  • the concentration of the cleaning solution in step (2) is 0.1-1 mol ⁇ L -1 .
  • the light source in step (2) is ultraviolet light.
  • a reactor equipped with a photocatalyst is installed on the roof of the factory building for the purpose of daylighting.
  • the sunlight can excite the catalyst to generate a photo-generated charge to carry out catalytic oxidation and crack materials such as polyethylene and polypropylene into small molecules.
  • the loading rate of the reactor in step (2) is 30%-100%.
  • the present invention uses Ag-TaON and hollow glass microbeads to compound.
  • the hollow glass microbeads have better light permeability and will not cause mutual shielding between the catalysts, which makes the photocatalyst filled in the reactor energy Being fully excited, it can effectively increase the utilization rate of light, thereby increasing the catalytic conversion efficiency of the photocatalyst.
  • the catalyst of the present invention is combined with Ag by light deposition. Compared with the traditional chemical reduction method, smaller Ag particles can be obtained, so that Ag has a greater degree of dispersion, which improves the atom utilization rate and reduces the amount of Ag. The amount of catalyst is lower.
  • the present invention adopts Ag-TaON as the photocatalyst, the light response range of TaON can cover part of visible light, the introduction of Ag can play a role in enriching electrons, and the Ag-TaON catalyst can carry out photocatalytic reaction under the action of visible light.
  • the present invention uses Ag-TaON as the photocatalyst, and uses the photocatalytic technology to degrade the electrolyte.
  • the electrolyte is passed into the photocatalytic reactor after fluorine removal by the alkali solution, and the organic matter in the electrolyte is directly removed under the action of photocatalysis.
  • Catalytic oxidation into CO 2 and H 2 O, the treatment process does not require additional agents, the treatment process is environmentally friendly, safe, and low-cost.
  • the treated tail gas is non-toxic and harmless, and can be directly discharged.
  • Figure 1 is an SEM image of Ag-TaON powder in Example 2 of the present invention.
  • Example 2 is an SEM image of the photocatalyst prepared in Example 2 of the present invention.
  • Fig. 3 is an XRD pattern of Ag-TaON powder in Example 2 of the present invention.
  • the raw materials, reagents or devices used in the following examples can be obtained from conventional commercial channels, or can be obtained by existing known methods.
  • a photocatalyst is obtained by supporting Ag-TaON on hollow glass beads; the mass ratio of Ag-TaON to hollow glass beads is 1:5.
  • a preparation method of a power battery photocatalyst includes the following steps:
  • a photocatalytic environmental protection treatment method for power batteries includes the following steps:
  • a photocatalyst is obtained by supporting Ag-TaON on hollow glass beads; the mass ratio of Ag-TaON to hollow glass beads is 1:8.
  • a method for preparing a photocatalyst includes the following steps:
  • a photocatalytic environmental protection treatment method for power batteries includes the following steps:
  • a photocatalyst is obtained by supporting Ag-TaON on hollow glass beads; the mass ratio of Ag-TaON to hollow glass beads is 1:8.
  • a method for preparing a photocatalyst includes the following steps:
  • a photocatalytic environmental protection treatment method for power batteries includes the following steps:
  • a catalytic electrolyte method for TaON catalyst includes the following steps:
  • Ta 2 O 5 in a tube furnace and heat it in an ammonia gas at 800°C for 4 hours to obtain TaON, which is ground into powder to obtain TaON catalyst;
  • a catalytic electrolyte method for Ag-TaON catalyst includes the following steps:
  • Example 2 and Comparative Example 1 and Comparative Example 2 were used to perform photodegradation of the electrolyte, and the obtained product was detected by gas chromatography.
  • the results are shown in Table 1. It can be seen from Table 1 that the catalyst in Comparative Example 1 has no Ag, and the electrolyte conversion rate is 73.2%, while the electrolyte conversion rate in Example 2 is 96.2%.
  • the electrolyte conversion rate in Example 2 is higher than that in Comparative Example 1.
  • the catalytic performance of Example 2 is higher than that of Comparative Example 1.
  • the conversion rate of the electrolyte in Comparative Example 1 was maintained at 62.3%, while the conversion rate of the electrolyte in Example 2 was 95.6%.
  • Example 2 The stability of the catalyst in Example 2 was better than that in Comparative Example 1. This fully reflects the role of Ag in improving the catalytic efficiency.
  • the catalyst in Comparative Example 2 was reduced by sodium borohydride to obtain the Ag-TaON catalyst and the Ag-TaON catalyst in Example 2 was obtained by the light deposition method.
  • the content of Ag in the catalyst in Comparative Example 2 is the same as in Example 2, the conversion rate of Comparative Example 2 is only 85.3% for the same amount of Ag. After 300 cycles of testing, the conversion rate is only 67.7%, so its performance is far lower than the implementation.
  • Example 2 This shows that the performance of the catalyst obtained by the reduction method of the present invention is better than that of the traditional method.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Toxicology (AREA)
  • Biomedical Technology (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Electromagnetism (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种光催化剂及其在动力电池光催化环保处理中的应用,所述光催化剂是由Ag-TaON负载在空心玻璃微珠上得到;所述Ag-TaON和空心玻璃微珠的质量比为1:(5-10)。本发明采用Ag-TaON和空心玻璃微珠进行复合,空心玻璃微珠对光有更好的透过性,不会造成催化剂之间的相互遮挡,这使得反应器内部填充的光催化剂被充分激发,能有效提高光的利用率,从而提高光催化剂的催化转化效率。

Description

一种光催化剂及其在动力电池光催化环保处理中的应用 技术领域
本发明属于催化剂领域,具体涉及一种光催化剂及其在动力电池光催化环保处理中的应用。
背景技术
锂电池电解液是电池中离子传输的载体。一般由锂盐和有机溶剂组成。电解液在锂电池的正、负极之间起到传导离子的作用。电解液由高纯度的有机溶剂、电解质锂盐和必要的添加剂等原料,在一定条件下、按一定比例配制而成。
锂电池电解液为电解质溶于有机溶剂的液体。电解质通常为高氯酸锂、六氟磷酸锂等。有机溶剂通常为碳酸酯类液态有机物。电解液为有机易挥发性液体,而且有明显的腐蚀性,长时间吸入会对呼吸道产生严重损害。锂离子电池回收处理时须收集妥善处理,严格控制电解液的挥发逸散,避免对人体健康和生态环境造成危害。
传统处理电解液的方法是将锂离子电池置于热解炉中,使电解液与其他有机物同时被热解。然而,传统的回收方式,如《一种锂电池无氧裂解回收分选工艺》(CN201810712762.2),不能单独处理电解液,热解时隔膜也一并被热解去除导致隔膜不能有效回收,资源回收率低,局限性明显。使用目前的催化剂去催化降解电解液还存在催化转化效率低、催化剂成本高和降解率低的问题。
发明内容
本发明的目的是提供一种光催化剂及其在动力电池光催化环保处理中的应用,本发明制备的动力电池光催化剂采用TaON和空心玻璃微珠进行复合,空心玻璃微珠对光有更好的透过性,不会造成催化剂之间的相互遮挡,这使得反应器内部填充的光催化剂能被充分激发,能有效提高光的利用率,从而提高催化转化效率。
为了实现上述目的,本发明采取以下技术方案:
一种光催化剂,是由Ag-TaON负载在空心玻璃微珠上得到;所述Ag-TaON和空心玻璃微珠的质量比为1:(5-10)。
优选地,所述空心玻璃微珠的粒径为10μm-10mm。
优选地,所述空心玻璃微珠的化学组成按质量比为:45-90%SiO 2、5-50%Al 2O 3、4-10%K 2O、1-10%CaO和0-12%B 2O 3
一种光催化剂的制备方法,包括以下步骤:
(1)将TaON研磨成粉末,再分散在溶剂中,加入可溶性银盐搅拌,光照,离心,洗涤,即得Ag-TaON催化剂;
(2)将Ag-TaON催化剂分散在三聚磷酸钠溶液中,加入空心玻璃微珠,搅拌,烘干,烧结,得到Ag-TaON负载在空心玻璃微珠表面上的所述光催化剂。
优选地,步骤(1)中所述溶剂为水和甲醇;所述TaON、水和甲醇的质量比为1:(20-60):(15-40)。
优选地,步骤(1)中所述可溶性银盐为AgNO 3溶液。
更优选地,所述AgNO 3溶液的浓度为0.5-1mol·L -1
优选地,步骤(1)中所述光照使用的是高压汞灯,气氛为氮气氛围,时间为10-30min。
优选地,步骤(2)中所述三聚磷酸钠溶液的浓度为0.1-1mol·L -1
优选地,步骤(2)中所述搅拌的转速为400-800r/min,时间为20-60min。
优选地,步骤(2)所述烧结的温度为200℃-300℃,气氛为氮气气氛,时间为1-2小时。
优选地,所述TaON是由以下步骤制备得到:
(1)将钽箔进行预处理;
(2)降温,通入惰性气体,再通入反应气A,升温,保温反应,得到Ta 2O 5
(3)降温,通入惰性气体,再通入反应气B,升温,保温反应,得到TaON;步骤(2)中所述反应气A为O 2和N 2的混合气;步骤(3)中所述反应气B为NH 3和N 2的混合气。
优选地,步骤(1)所述预处理的具体过程:将盛有钽箔的刚玉瓷舟推入管式炉的中间加热区段,用法兰密闭,常温下以2-30mL·min -1的流速通入惰性气体20-120min;再切换气路以2-30mL·min -1的流速通入预处理气,再以2-8℃·min -1的速率升温至250℃-350℃,保温30-150min。
更优选地,所述预处理气为H 2和N 2的混合气;所述H 2浓度为5%-10%。
优选地,步骤(2)和步骤(3)中所述降温是将温度降至常温。
优选地,步骤(2)和步骤(3)中所述惰性气体为纯N 2、Ar或He中的至少一种。
优选地,步骤(2)和步骤(3)中所述通入惰性气体的流速为2-30mL·min -1,时间为20-120min。
优选地,所述O 2的浓度为5%-10%。
优选地,步骤(2)中所述通入反应气A的流速为2-30mL·min -1
优选地,步骤(2)中所述升温的温度为500℃-600℃,升温的速率为2-8℃·min -1
优选地,步骤(2)中所述保温反应的时间为30-150min。
优选地,所述NH 3浓度为5%-10%。
优选地,步骤(3)中所述通入反应气A的流速为2-30mL·min -1
优选地,步骤(3)中所述升温的温度为800℃-900℃,升温的速率为2-8℃·min -1
优选地,步骤(3)中所述保温反应的时间为180-300min。
一种动力电池的光催化环保处理方法,包括以下步骤:
(1)将废旧锂电池拆解,热解,得到夹杂电解液的气体;
(2)将夹杂电解液的气体通入清洗液,再通入装有光催化剂的反应器中,用光源照射进行光催化,降解为CO 2和H 2O。
优选地,步骤(2)中所述清洗液为NaOH、Ca(OH) 2或KOH中的至少一种。
优选地,步骤(2)中所述清洗液的浓度为0.1-1mol·L -1
优选地,步骤(2)中所述光源为紫外光。
装有光催化剂的反应器安装在厂房屋顶目的是采光,太阳光能激发催化剂产生光生电荷从而进行催化氧化作用,将聚乙烯和聚丙烯等材料裂解成小分子。
优选地,步骤(2)中所述反应器的装载率为30%-100%。
有益效果
1.本发明采用Ag-TaON和空心玻璃微珠进行复合,空心玻璃微珠对光有更好的透过性,不会造成催化剂之间的相互遮挡,这使得反应器内部填充的光催化剂能被充分激发,能有效提高光的利用率,从而提高光催化剂的催化转化效率。
2.本发明的催化剂采用光沉积的方式与Ag结合,相比于传统化学还原法,能得到更小的Ag颗粒,使Ag有着更大的分散度,提高了原子利用率,减少了Ag的用量,催化剂成本更低。
3.本发明采用Ag-TaON作为光催化剂,TaON光响应范围能覆盖部分可见光,Ag的引入能起到富集电子作用,Ag-TaON催化剂能在可见光的作用下进行光催化反应。
4.本发明采用Ag-TaON作为光催化剂,采用光催化技术对电解液进行降解,电解液经过碱液除氟后通入光催化反应器,在光催化的作用下直接将电解液中的有机物催化氧化成CO 2和H 2O,处理过程无需外加其他药剂,处理过程环保、安全、低成本,处理后的尾气无毒无害,可直接排放。
附图说明
图1为本发明的实施例2中Ag-TaON粉末的SEM图;
图2为本发明的实施例2制备的光催化剂的SEM图;
图3为本发明的实施例2中Ag-TaON粉末的XRD图。
具体实施方式
为了让本领域技术人员更加清楚明白本发明所述技术方案,现列举以下实施例进行说明。需要指出的是,以下实施例对本发明要求的保护范围不构成限制作用。
以下实施例中所用的原料、试剂或装置如无特殊说明,均可从常规商业途径得到,或者可以通过现有已知方法得到。
实施例1
一种光催化剂,是由Ag-TaON负载在空心玻璃微珠上得到;Ag-TaON和空心玻璃微珠的质量比为1:5。
一种动力电池光催化剂的制备方法,包括以下步骤:
(1)将盛有钽箔的刚玉瓷舟推入管式炉的中间加热区段,用法兰密闭,在环境温度下以流速2mL·min -1通入纯N 2 20min,再切换气路以流速2mL·min -1通入H 2和N 2的混合气,H 2浓度为5%,同时开启控温程序以2℃·min -1的速率将温度升至250℃,保温30min;
(2)将温度降至环境温度,切换气路以流速2mL·min -1通入纯N 2 20min,再切换气路以流速2mL·min -1通入O 2和N 2的混合气,O 2浓度为5%,同时开启控温程序以2℃·min -1的速率升温,升至500℃,保温30min,得到Ta 2O 5
(3)将温度降至环境温度,切换气路以流速2mL·min -1通入纯N 2 20min,再切换气路以流速2mL·min -1通入NH 3和N 2的混合气,NH 3浓度为5%,同时开启控温程序以2℃·min -1的速率升温升至800℃,保温180min,得到TaON;
(4)将温度降至环境温度,取出TaON,研磨成粉末,按比例TaON:水:甲醇=1g:20mL:15mL加入磁子在磁力剧烈搅拌(转速800r/min)下形成分散体系,将此分散体系置于氮气氛围中,再按负载量0.5%加入0.5mol·L -1AgNO 3溶液,再搅拌5min,用高压汞灯照射10min后,离心,洗涤,即得Ag-TaON催化剂;
(5)将Ag-TaON催化剂分散在0.1mol·L -1的三聚磷酸钠溶液中,Ag-TaON:空心玻璃微珠按重量比为1:5加入200目空心玻璃微珠,搅拌(转速400r/min)20min,烘干,在氮气分下200℃烧结1小时,得到Ag-TaON负载在空心玻璃微珠表面上的光催化剂。
一种动力电池的光催化环保处理方法,包括以下步骤:
(1)将废旧锂电池拆解,热解,得到夹杂电解液的气体;
(2)将夹杂电解液的气体通入0.1mol·L -1NaOH溶液,再通入装有光催化剂的反应器中,用紫外灯照射,进行光催化降解电解质,得到的产物为CO 2和H 2O。
实施例2
一种光催化剂,是由Ag-TaON负载在空心玻璃微珠上得到;Ag-TaON和空心玻璃微珠的质量比为1:8。
一种光催化剂的制备方法,包括以下步骤:
(1)将盛有钽箔的刚玉瓷舟推入管式炉的中间加热区段,用法兰密闭,在环境温度下以流速15mL·min -1通入纯Ar 70min,再切换气路以流速15mL·min -1通入H 2和N 2的混合气,H 2浓度为8%,同时开启控温程序以5℃·min -1的速率将温度升至300℃,保温90min;
(2)将温度降至环境温度,切换气路以流速15mL·min -1并在70min内通入纯Ar,再切换气路以流速15mL·min -1通入O 2和N 2的混合气,O 2浓度为8%,同时开启控温程序以5℃·min -1的速率升温,升至550℃,保温90min,得到Ta 2O 5
(3)将温度降至环境温度,切换气路以流速15mL·min -1并在70min内通入纯Ar,再切换气路以流速15mL·min -1通入NH 3和N 2的混合气,NH 3浓度为8%,同时开启控温程序以5℃·min -1的速率升温升至850℃,保温240min,得到TaON;
(4)将温度降至环境温度,取出TaON,研磨成粉末,按TaON:水:甲醇=1g:40mL:25mL的比例加入磁子在磁力剧烈搅拌(转速1200r/min)下形成分散体系,将此分散体系置于氮气氛围中,再按负载量0.7%加入0.8mol·L -1AgNO 3溶液,再搅拌5min,用高压汞灯照射20min后,离心,洗涤,即得Ag-TaON催化剂;
(5)将Ag-TaON催化剂分散在0.5mol·L -1的三聚磷酸钠溶液中,按Ag-TaON和空心玻璃微珠的重量比为1:8加入300目空心玻璃微珠,搅拌(转速600r/min)40min,烘干,在氮气分下250℃烧1.5小时,得到Ag-TaON负载在空心玻璃微珠上的动力电池光催化剂。
一种动力电池的光催化环保处理方法,包括以下步骤:
(1)将废旧锂电池拆解,热解,得到夹杂电解液的气体;
(2)将夹杂电解液的气体通入0.2mol·L -1NaOH溶液,再通入装有光催化剂的反应器中,用紫外灯照射,进行光催化降解电解质,得到的产物为CO 2和H 2O。
实施例3
一种光催化剂,是由Ag-TaON负载在空心玻璃微珠上得到;Ag-TaON和空心玻璃微珠的质量比为1:8。
一种光催化剂的制备方法,包括以下步骤:
(1)将盛有钽箔的刚玉瓷舟推入管式炉的中间加热区段,用法兰密闭,在环境温度下以流速15mL·min -1通入纯Ar 70min,再切换气路以流速15mL·min -1通入H 2和N 2的混合气,H 2浓度为8%,同时开启控温程序以5℃·min -1的速率将温度升至300℃,保温90min;
(2)将温度降至环境温度,切换气路以流速15mL·min -1并在70min内通入纯Ar,再切换气路以流速15mL·min -1通入O 2和N 2的混合气,O 2浓度为8%,同时开启控温程序以5℃·min -1的速率升温,升至550℃,保温90min,得到Ta 2O 5
(3)将温度降至环境温度,切换气路以流速15mL·min -1并在70min内通入纯Ar,再切换气路以流速15mL·min -1通入NH 3和N 2的混合气,NH 3浓度为8%,同时开启控温程序以5℃·min -1的速率升温升至850℃,保温240min,得到TaON;
(4)将温度降至环境温度,取出TaON,研磨成粉末,按TaON:水:甲醇=1g:40mL:25mL的比例加入磁子在磁力剧烈搅拌(转速1200r/min)下形成分散体系,将此分散体系置于氮气氛围中,再按负载量0.7%加入0.8mol·L -1AgNO 3溶液,再搅拌5min,用高压汞灯照射20min后,离心,洗涤,即得Ag-TaON催化剂;
(5)将Ag-TaON催化剂分散在0.5mol·L -1的三聚磷酸钠溶液中,Ag-TaON和空心玻璃微珠按重量比为1:8加入300目空心玻璃微珠,搅拌(转速600r/min)40min,烘干,在氮气分下250℃烧1.5小时,得到Ag-TaON负载在空心玻璃微珠表面上的动力电池光催化剂。
一种动力电池的光催化环保处理方法,包括以下步骤:
(1)将废旧锂电池拆解,热解,得到夹杂电解液的气体;
(2)将夹杂电解液的气体通入0.2mol·L -1NaOH溶液,再通入装有光催化剂的反应器中,用紫外灯照射,进行光催化降解电解质,得到的产物为CO 2和H 2O。
对比例1
一种TaON催化剂的催化电解液方法,包括以下步骤:
(1)将Ta 2O 5置于管式炉中,在氨气分中以800℃保温4小时得TaON,研磨成粉末后得到TaON催化剂;
(2)将TaON和空心玻璃微珠加入三聚磷酸钠溶液,搅拌、分散、烘干,200℃烧结,所得催化剂在石英反应器中光催化降解电解液。
对比例2
一种Ag-TaON催化剂的催化电解液方法,包括以下步骤:
(1)将Ta 2O 5置于管式炉中,在氨气分中以800℃保温4小时得TaON,研磨成粉末后,以0.7%的负载量,加入硝酸银溶液,以硼氢化钠还原,得到Ag-TaON;
(2)将Ag-TaON和空心玻璃微珠加入三聚磷酸钠溶液,搅拌、分散、烘干,200℃烧 结,所得催化剂在石英反应器中光催化降解电解液。
降解效果对比:
分别以实施例2和对比例1、对比例2进行电解液的光降解,得到的产物通过气相色谱进行检测,结果见表1。由表1可知,对比例1中的催化剂没有Ag,电解液转化率为73.2%,而实施例2中电解液转化率为96.2%,实施例2电解液转化率要高于对比例1,说明实施例2的催化性能高于对比例1中催化剂。经过300次循环测试后,对比例1中的电解液转化率保持在62.3%,而实施例2中电解液转化率为95.6%,实施例2催化剂的稳定性优于对比例1。这充分体现了Ag提高了催化效率的作用。对比例2中催化剂通过硼氢化钠还原得到Ag-TaON催化剂和实施例2中通过光沉积法得到的Ag-TaON催化剂。虽然对比例2和实施例2中催化剂Ag的含量一致,但同样的Ag量,对比例2的转化率只有85.3%,经过300循环试验后,转化率只有67.7%,因此其性能远低于实施例2。由此说明,本发明的还原方法得到的催化剂性能优于传统方法。
表1实施例2与对比例1、对比例2的电解液的光降解性能对比
  降解率 循环性能(300次转化率)
对比例1 73.2% 62.3%
对比例2 85.3% 67.7%
实施例2 96.2% 95.6%
以上对本发明提供的一种光催化剂及其在动力电池光催化环保处理中的应用进行了详细的介绍,本文中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,包括最佳方式,并且也使得本领域的任何技术人员都能够实践本发明,包括制造和使用任何装置或系统,和实施任何结合的方法。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。本发明专利保护的范围通过权利要求来限定,并可包括本领域技术人员能够想到的其他实施例。如果这些其他实施例具有不是不同于权利要求文字表述的结构要素,或者如果它们包括与权利要求的文字表述无实质差异的等同结构要素,那么这些其他实施例也应包含在权利要求的范围内。

Claims (10)

  1. 一种光催化剂,其特征在于,是由Ag-TaON负载在空心玻璃微珠上得到;所述Ag-TaON和空心玻璃微珠的质量比为1:(5-10)。
  2. 根据权利要求1所述的光催化剂,其特征在于,所述空心玻璃微珠的粒径为10μm-10mm。
  3. 权利要求1或2任一项所述的光催化剂的制备方法,其特征在于,包括以下步骤:
    (1)将TaON研磨成粉末,再分散在溶剂中,加入可溶性银盐搅拌,光照,离心,洗涤,即得Ag-TaON催化剂;
    (2)将Ag-TaON催化剂分散在三聚磷酸钠溶液中,加入空心玻璃微珠,搅拌,烧结,得到Ag-TaON负载在空心玻璃微珠上的所述光催化剂。
  4. 根据权利要求3所述的制备方法,其特征在于,步骤(1)中所述溶剂为水和甲醇;所述TaON、水和甲醇的质量比为1:(20-60):(15-40);所述可溶性银盐为AgNO 3溶液。
  5. 根据权利要求3所述的制备方法,其特征在于,步骤(2)所述烧结的温度为200℃-300℃,气氛为氮气气氛,时间为1-2小时。
  6. 根据权利要求3所述的制备方法,其特征在于,所述TaON是由以下步骤制备得到:
    (1)将钽箔进行预处理;
    (2)降温,通入惰性气体,再通入反应气A,升温,保温反应,得到Ta 2O 5
    (3)降温,通入惰性气体,再通入反应气B,升温,保温反应,得到TaON;步骤(2)中所述反应气A为O 2和N 2的混合气;步骤(3)中所述反应气B为NH 3和N 2的混合气。
  7. 根据权利要求6所述的制备方法,其特征在于,步骤(1)所述预处理的具体过程:将盛有钽箔的刚玉瓷舟推入管式炉的中间加热区段,用法兰密闭,常温下以2-30mL·min -1的流速通入惰性气体20-120min;再切换气路以2-30mL·min -1的流速通入预处理气,再以2-8℃·min -1的速率升温升至250℃-350℃,保温30-150min;所述预处理气为H 2和N 2的混合气。
  8. 根据权利要求6所述的制备方法,其特征在于,步骤(2)和步骤(3)中所述惰性气体为纯N 2、Ar或He中的至少一种。
  9. 一种动力电池的光催化环保处理方法,其特征在于,包括以下步骤:
    (1)将废旧锂电池拆解,热解,得到夹杂电解液的气体;
    (2)将夹杂电解液的气体通入清洗液,再通入装有权利要求1或2所述光催化剂的反应器中,用光源照射进行光催化,降解为CO 2和H 2O。
  10. 根据权利要求9所述的动力电池的光催化环保处理方法,其特征在于,所述清洗液为NaOH、Ca(OH) 2或KOH中的至少一种。
PCT/CN2021/091554 2020-06-24 2021-04-30 一种光催化剂及其在动力电池光催化环保处理中的应用 WO2021258856A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
HU2200204A HUP2200204A1 (hu) 2020-06-24 2021-04-30 Fotokatalizátor és alkalmazása akkumulátor környezetbarát fotokatalitikus kezelésében
EP21830124.0A EP4163010A4 (en) 2020-06-24 2021-04-30 PHOTOCATALYST AND USE THEREOF IN THE PHOTOCATALYTIC ENVIRONMENTALLY FRIENDLY TREATMENT OF POWER BATTERIES
US18/003,314 US11826729B2 (en) 2020-06-24 2021-04-30 Photocatalyst and application thereof in environmentally friendly photocatalytic treatment of power battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010589960.1A CN111804323B (zh) 2020-06-24 2020-06-24 一种光催化剂及其在动力电池光催化环保处理中的应用
CN202010589960.1 2020-06-24

Publications (1)

Publication Number Publication Date
WO2021258856A1 true WO2021258856A1 (zh) 2021-12-30

Family

ID=72855155

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/091554 WO2021258856A1 (zh) 2020-06-24 2021-04-30 一种光催化剂及其在动力电池光催化环保处理中的应用

Country Status (6)

Country Link
US (1) US11826729B2 (zh)
EP (1) EP4163010A4 (zh)
CN (1) CN111804323B (zh)
CL (1) CL2022003735A1 (zh)
HU (1) HUP2200204A1 (zh)
WO (1) WO2021258856A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111804323B (zh) 2020-06-24 2022-03-15 广东邦普循环科技有限公司 一种光催化剂及其在动力电池光催化环保处理中的应用
CN113540605B (zh) * 2021-07-16 2022-07-12 南昌航空大学 一种退役旧锂电池热解尾气无害化处理方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103990488A (zh) * 2014-06-11 2014-08-20 哈尔滨工业大学 两步法制备Cu2O/TaON复合光催化材料
JP2016203031A (ja) * 2015-04-15 2016-12-08 国立大学法人 東京大学 光触媒およびその製造方法
CN106794459A (zh) * 2014-11-21 2017-05-31 三菱化学株式会社 复合光催化剂的制造方法以及复合光催化剂
CN108940249A (zh) * 2018-06-29 2018-12-07 西安建筑科技大学 一种复合光催化剂、制备方法及其应用
CN111804323A (zh) * 2020-06-24 2020-10-23 广东邦普循环科技有限公司 一种光催化剂及其在动力电池光催化环保处理中的应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5632863A (en) * 1994-11-22 1997-05-27 Meador; W. R. Battery pyrolysis process
WO2015151775A1 (ja) * 2014-03-31 2015-10-08 富士フイルム株式会社 水分解用光電極、水分解装置
WO2016022820A2 (en) * 2014-08-08 2016-02-11 Massachusetts Institute Of Technology Recycling car batteries for perovskite solar cells
CN108927401B (zh) 2018-06-14 2022-08-19 河南巨峰环保科技有限公司 一种锂电池无氧裂解后破碎回收工艺
CN209133644U (zh) * 2018-12-25 2019-07-19 哈尔滨巴特瑞资源再生科技有限公司 一种锂电池电解液去除设备
EP4319915A1 (en) * 2021-05-06 2024-02-14 Global Advanced Metals USA, Inc. Tantalum nitride doped with one or more metals, a catalyst, methods for water splitting using the catalyst, and methods to make same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103990488A (zh) * 2014-06-11 2014-08-20 哈尔滨工业大学 两步法制备Cu2O/TaON复合光催化材料
CN106794459A (zh) * 2014-11-21 2017-05-31 三菱化学株式会社 复合光催化剂的制造方法以及复合光催化剂
JP2016203031A (ja) * 2015-04-15 2016-12-08 国立大学法人 東京大学 光触媒およびその製造方法
CN108940249A (zh) * 2018-06-29 2018-12-07 西安建筑科技大学 一种复合光催化剂、制备方法及其应用
CN111804323A (zh) * 2020-06-24 2020-10-23 广东邦普循环科技有限公司 一种光催化剂及其在动力电池光催化环保处理中的应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HSIEH, J.H. ; CHANG, C.C. ; CHANG, Y.K. ; CHERNG, J.S.: "Photocatalytic and antibacterial properties of TaON-Ag nanocomposite thin films", THIN SOLID FILMS, ELSEVIER, AMSTERDAM, NL, vol. 518, no. 24, 1 October 2010 (2010-10-01), AMSTERDAM, NL , pages 7263 - 7266, XP027288370, ISSN: 0040-6090 *
See also references of EP4163010A4

Also Published As

Publication number Publication date
CN111804323B (zh) 2022-03-15
HUP2200204A1 (hu) 2022-08-28
CL2022003735A1 (es) 2023-04-28
US11826729B2 (en) 2023-11-28
CN111804323A (zh) 2020-10-23
EP4163010A4 (en) 2023-12-20
EP4163010A1 (en) 2023-04-12
US20230191371A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
WO2021258856A1 (zh) 一种光催化剂及其在动力电池光催化环保处理中的应用
CN108607526A (zh) 一种利用粉煤灰制备SiO2凝胶复合氧化亚铜吸附剂的方法
CN113289647B (zh) 一种生物炭掺杂BiOBrxCl1-x光催化剂、制备方法及应用
WO2022047813A1 (zh) 基于多元素共掺杂TiO2纳米光催化材料的有机废水处理方法
CN109292895B (zh) 一种光催化剂Li2SnO3的制备方法及运用
CN113262808A (zh) 室温高效去除甲醛的水溶性石墨相氮化碳纳米片催化剂及其制备方法
Liu et al. MOF-derived B, N co-doped porous carbons as metal-free catalysts for highly efficient nitro aromatics reduction
CN111974404A (zh) 光助BiFe1-xCuxO3活化过一硫酸盐处理水体残留环丙沙星的方法
CN110605138B (zh) 一种钽氧氮/泡沫镍光催化接触氧化膜的制备方法和应用
CN111514880A (zh) 一种多孔氮化碳/钒酸铕z型光催化剂的制备方法及应用
CN112121866A (zh) 一种光催化剂及其制备方法
CN115259131A (zh) 一种利用污泥制备多功能生物炭的绿色方法及该生物炭的应用
CN108160038B (zh) 一种氮掺杂的碳-镁复合纳米片的制备方法及应用
CN113522346A (zh) 一种赤泥基分子筛负载的二氧化钛/三氧化二铁复合光催化材料及制备方法和应用
CN114762826A (zh) 高指数晶面Cu2O光催化剂的制备方法及其应用
CN113976107B (zh) 一种利用有机废液制备Mn基复合催化剂的方法及其分解室内甲醛的应用
CN107973367B (zh) 一种Fe掺杂包裹型TiO2光催化剂降解废水的工艺
CN104276635B (zh) 光电催化氧化用负载型y型分子筛膜阳极材料的制备方法
CN106362800A (zh) 一种石墨烯掺杂氧化锌光催化剂
CN113976158B (zh) 一种负载钴氧化物的自掺氮多孔碳催化剂及其制备方法与应用
CN114950484A (zh) 一种可见光下光催化的Janus硫化镉异质结的制备方法与应用
CN109589963B (zh) 一种铌酸锂型氧化物/凹凸棒石非线性光学复合光催化材料及其制备方法与应用
CN114160129A (zh) 二氧化钛/多孔碳负载型复合光催化剂的制备方法
CN110075879B (zh) 碳包覆四氧化三铁磁性微球修饰碘氧化铋复合光催化材料及其制备方法与应用
CN109331803B (zh) 二氧化钛-石墨烯复合材料及其在光触媒纳米溶胶中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21830124

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021830124

Country of ref document: EP

Effective date: 20230105

NENP Non-entry into the national phase

Ref country code: DE