WO2021258794A1 - 电池组以及使用电池组作为电源的装置 - Google Patents

电池组以及使用电池组作为电源的装置 Download PDF

Info

Publication number
WO2021258794A1
WO2021258794A1 PCT/CN2021/082424 CN2021082424W WO2021258794A1 WO 2021258794 A1 WO2021258794 A1 WO 2021258794A1 CN 2021082424 W CN2021082424 W CN 2021082424W WO 2021258794 A1 WO2021258794 A1 WO 2021258794A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
electrical connection
battery pack
battery
connection piece
Prior art date
Application number
PCT/CN2021/082424
Other languages
English (en)
French (fr)
Inventor
汪用广
唐彧
陈兴地
王鹏
季进清
钱木
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP21827814.1A priority Critical patent/EP3979402B1/en
Priority to KR1020227017396A priority patent/KR20230025766A/ko
Priority to JP2022533525A priority patent/JP2023531844A/ja
Publication of WO2021258794A1 publication Critical patent/WO2021258794A1/zh
Priority to US18/087,404 priority patent/US11831036B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/52Removing gases inside the secondary cell, e.g. by absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/258Modular batteries; Casings provided with means for assembling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/262Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks
    • H01M50/264Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders with fastening means, e.g. locks for cells or batteries, e.g. straps, tie rods or peripheral frames
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/296Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by terminals of battery packs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/588Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries outside the batteries, e.g. incorrect connections of terminals or busbars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to the field of battery technology, and in particular to a battery pack and a device using the battery pack as a power source.
  • the battery pack is an important part of the electric vehicle, and the battery pack is used to provide power for the electric vehicle.
  • the battery pack includes at least one battery module, the battery module includes at least one battery cell, and an explosion-proof component is provided on the battery cell.
  • the explosion-proof components When a single battery cell is thermally out of control, the explosion-proof components will turn on, and the entire battery module is prone to short-circuit, which will cause serious safety accidents. This is a problem that needs to be solved urgently.
  • the present disclosure proposes a battery pack and a device using the battery pack as a power source to improve the structure of the battery pack.
  • a battery pack including:
  • the module electrical connection piece is installed on the battery module
  • the first protection component is installed in the box and is configured to protect the electrical connection piece of the module when the jet discharged from the explosion-proof component impacts the electrical connection piece of the module.
  • the first protection component includes a protection paper wrapped around the electrical connection sheet of the module.
  • the first protection component includes a housing, and the module electrical connection piece is located in the housing.
  • the first protection component includes:
  • the first insulator is installed on the side wall and/or the bottom wall of the box body corresponding to the position of the electrical connection piece of the module, and is used for isolating the box body and the electrical connection piece of the module.
  • the battery pack further includes:
  • the second protection component is installed inside the box body and faces the explosion-proof component, and is used to block the impact of the spray discharged from the explosion-proof component on the box body.
  • the second protection component is bent toward the explosion-proof component along the edges on both sides of the connection direction of the explosion-proof component and the electrical connection piece of the module, so as to enclose the explosion-proof component in the second protection. In the space formed by the component and the battery module.
  • the battery pack further includes:
  • the first protection assembly further includes a second insulating member installed on the notch, and used for isolating the module electrical connection sheet from the beam.
  • the battery pack further includes:
  • the pressure plate is fixedly connected with the beam and is used for fixing the battery module.
  • the material of the first protective component is mica.
  • Some embodiments of the present disclosure provide a device using a battery pack as a power source, including the battery pack provided by any technical solution of the present disclosure.
  • the electrical connection piece of the module in the battery pack provided by the above technical solution is provided with a first protection component, and the first protection component can protect the electrical connection piece of the module when the jet discharged from the explosion-proof component impacts the electrical connection piece of the module. Furthermore, the first protection component can effectively reduce the protection failure of the electrical connection piece of the module caused by the ejection of the explosion-proof component, thereby reducing the possibility of electrical connection between the electrical connection piece of the module and the box body, and ultimately reducing the possibility of secondary short circuits in the battery pack. sex.
  • FIG. 1 is a schematic diagram of the structure of an automobile using a battery pack as a power source provided by some embodiments of the present disclosure
  • Figure 2 is a schematic diagram of a secondary short circuit in the battery pack
  • FIG. 3 is an exploded schematic diagram of the battery pack box provided by some embodiments of the disclosure in an open state
  • 4a is a schematic diagram of a three-dimensional structure of a module electrical connection piece of a battery pack provided by some embodiments of the present disclosure
  • Figure 4b is a schematic front view of Figure 4a
  • Figure 4c is an enlarged schematic view of the A-A cross-sectional view of Figure 4b;
  • Fig. 5a is a schematic top view of a battery pack provided by some embodiments of the present disclosure with a cover removed;
  • Figure 5b is a schematic cross-sectional view taken along line B-B of Figure 5a;
  • Fig. 5c is a partial enlarged schematic diagram of C in Fig. 5b;
  • FIG. 6a is another three-dimensional schematic diagram of the battery pack provided by some embodiments of the disclosure with the cover removed;
  • Fig. 6b is a partial enlarged schematic diagram of D in Fig. 6a;
  • FIG. 7 is an exploded schematic diagram of battery packs provided by other embodiments of the present disclosure.
  • FIG. 8 is a schematic diagram of a three-dimensional structure of a second protection component of a battery pack provided by still other embodiments of the present disclosure.
  • Fig. 9a is a schematic diagram of an exploded structure of a battery pack provided by still other embodiments of the present disclosure.
  • FIG. 9b is a schematic top view of the battery pack provided by some embodiments of the disclosure with the cover removed;
  • Fig. 9c is a schematic cross-sectional view taken along E-E of Fig. 9b;
  • FIG. 10 is a schematic diagram of an exploded structure of a battery cell of a battery pack provided by an embodiment of the disclosure.
  • Figure 11 is a schematic diagram of the structure of a laminated electrode assembly
  • Fig. 12 is a schematic diagram of the structure of a wound electrode assembly.
  • the battery cells 21 form a 2-layer 6 ⁇ 2 battery array, where the X axis is the length direction of the battery module 2, that is, the arrangement direction of the 6 battery cells 21.
  • the Y axis is perpendicular to the X axis, and the Y axis represents the width direction of the single-layer battery array, that is, the arrangement direction of the two battery cells 21 in the 6 ⁇ 2 battery array.
  • the Z axis is perpendicular to the plane formed by the X axis and the Y axis, and the Z axis represents the height direction of the battery module 2.
  • the terms “upper” and “lower” are both relative to the Z-axis direction.
  • the length direction of the box 1 coincides with the length direction of the battery pack
  • the width direction of the box 1 coincides with the width direction of the battery pack
  • the height direction of the box 1 coincides with the height direction of the battery pack.
  • the battery module 2 may include one or more battery cell sequences.
  • the battery cell sequence includes at least one battery cell 21.
  • Each battery cell 21 includes a housing 211 (see FIG. 10 for the location of the housing 211) and an explosion-proof assembly 20 mounted on the housing 211 (see FIG. 3 for the location of the explosion-proof assembly 20).
  • the inventor found that when a single battery cell 21 in the battery module 2 is thermally out of control, the high-temperature and high-pressure jet airflow ejected from the explosion-proof assembly 20 of the battery cell 21 will impact the module electrical connector 3, causing the module electrical connector.
  • the insulating sleeve 30 on the surface see Fig.
  • the module electrical connection piece 3 loses its insulation and heat insulation protection. Under high-temperature airflow, the electrical connection piece 3 of the module that has lost its protection will fuse. In this case, if any part of the electrical connection piece 3 of the module is in conductive contact with the box body 1, it will cause a short circuit of all the battery cells 21 between that part and the out-of-control battery cell 21, causing multiple battery cells. If the body 21 fails in a short circuit, the battery module 2 will generate a lot of heat, which poses a very serious safety risk. Therefore, it is very necessary to protect the module electrical connection piece 3 of the battery module 2 in a thermal runaway state. Using the technical solutions provided by the embodiments of the present disclosure can effectively reduce or even avoid the occurrence of short circuits in the large circuit when a single battery cell 21 is thermally out of control.
  • some embodiments of the present disclosure provide a device 100 using a battery pack as a power source, which includes the battery pack provided by any technical solution of the present disclosure.
  • the device may specifically be a transportation device, an energy storage cabinet, etc.
  • the transportation devices are, for example, electric vehicles, ships, drones, etc.
  • the battery pack can be set at the bottom of the car body, using rechargeable batteries.
  • some embodiments of the present disclosure provide a battery pack, which includes a box body 1, a battery module 2, a module electrical connection piece 3, and a first protection component 4.
  • the box body 1 includes a box cover 12 and a lower box body 13.
  • the box body 1 adopts a rectangular-like structure.
  • the inner side wall of the box body 1 includes four side walls, which are two first side walls 141 oppositely arranged along the Y direction and a second side wall 142 oppositely arranged along the X direction.
  • the first side wall 141 and the second side wall 142 are fixedly connected.
  • the lower box body 13 and the box cover 12 are enclosed to form an accommodating cavity 11, and the battery module 2 is installed in the accommodating cavity 11 of the box 1.
  • the box body 1 and the battery module 2 are detachably connected or fixed by glue.
  • the battery module 2 includes one or more battery cell sequences.
  • the electrical connection mode between each battery cell sequence is set as series, parallel or hybrid as required to achieve the electrical performance required by the battery pack.
  • two rows of battery cell sequences 21 are arranged in the box along the width direction of the battery pack (ie, the Y-axis direction). In practical applications, three rows or more can also be arranged. According to needs, in actual use, in the height direction of the battery pack, that is, in the Z axis direction in FIG. 3, one or more battery cell sequences can also be provided.
  • the module electrical connection piece 3 is installed inside the box body 1, and the module electrical connection piece 3 is used to output the electric energy of the battery module 2 to the outside of the box body 1 of the battery pack. Specifically, one end of the module electrical connection piece 3 is electrically connected to the output end electrical connection piece 22 of the battery module 2, and the other end of the module electrical connection piece 3 is electrically connected to an electrical appliance located outside the box 11 of the battery pack.
  • the electrical appliances located outside the cabinet 1 are also called external electrical appliances. External electrical appliances are, for example, controllers, motors, electric control boxes, etc.
  • the module electrical connection piece 3 is bent and includes a first section of connection piece 31 and a second section of connection piece 32 that are connected as a whole.
  • the ends of the first-stage connecting piece 31 and the second-stage connecting piece 32 are both provided with connecting ends 33, one of the connecting ends 33 is used for electrical connection with the output terminal electrical connecting piece 22 of the battery module 2, and the other connecting end 33 is used for To be electrically connected with external electrical appliances.
  • the first protection component 4 is configured to protect the electrical connection piece 3 of the module when the jet discharged from the explosion-proof component 20 impacts the electrical connection piece 3 of the module.
  • the so-called protective effect refers to reducing the phenomenon that the electrical connection piece 3 of the module is electrically connected to the box body 1 when it is melted or deformed due to the impact of the high temperature and high pressure spray. That is, the first protection assembly 4 is configured to insulate and isolate the box body 1 and the module electrical connection piece 3 under high temperature and high pressure conditions.
  • the ejecta refers to the high-temperature and high-pressure airflow generated inside the battery when the battery cell 21 fails thermally, and even the airflow with spark flame and electrolyte, which are ejected when the explosion-proof valve is opened.
  • the material of the first protection component 4 is mica.
  • the first protective component 4 uses mica paper, a relatively thin mica board or other structures.
  • the first protection component 4 includes multiple scattered pieces, multiple pieces spliced with each other, or a whole piece. Mica can resist high temperature and play a good protective role against thermal shock.
  • the material of the first protection component 4 is suitable for various implementations of the first protection component 4 described later.
  • the first protection assembly 4 includes a housing 41, and the module electrical connection piece 3 is located in the housing 41.
  • the housing 41 has a variety of structural forms, such as a single flat plate, which is only arranged on the most severely impacted surface of the module electrical connection sheet 3, or an "L"-shaped or "U”-shaped protective structure formed by a combination of multiple plates.
  • a housing 41 is provided on the outside of the surface of the module electrical connection piece 3 facing the ejected material to protect the module electrical connection piece 3.
  • the shell 41 can also wrap the surface of the module electrical connection piece 3 as much as possible to achieve comprehensive protection.
  • the material of the shell 41 is, for example, mica or other materials with similar properties.
  • the thickness of the housing 41 may be different. For example, in areas where the impact is strong, the thickness of the housing 41 is large. In areas where the impact is not too strong, the thickness of the housing 41 is thin.
  • the above structure can achieve more targeted protection, and can reduce the required material of the housing 41 and reduce the manufacturing cost.
  • an insulating sleeve 30 made of polyolefin material is originally provided on the outside of the electrical connection sheet 3 of the module.
  • the insulating sleeve 30 outside the electrical connection piece 3 of the module can be retained or removed.
  • the insulating sleeve 30 outside the electrical connection sheet 3 of the module is retained, and the housing 41 is directly wrapped on the outside of the insulating sleeve 30.
  • the explosion-proof components 20 of the plurality of battery cells 21 and the module electrical connection pieces 3 are all located in the box. Once a battery cell 21 is thermally out of control, the jet flow generated inside the battery cell 21 is discharged through the explosion-proof assembly 20 of the battery cell 21, and then the high temperature and high pressure jet flow will impact the module electrical connector 3.
  • a first protection component 4 which can protect the module electrical connection piece 3, and reduce or even prevent the jet flow from causing the module electrical connection piece 3 to melt and deform and fail.
  • the material of the module electrical connection sheet 3 is usually aluminum, and the melting point of aluminum is 660°C. When the jet airflow is strong, the temperature of the jet airflow may far exceed the melting point of aluminum, which may cause the module electrical connection piece 3 to melt and splash.
  • the first protective component 4 includes a protective paper 40 wrapped around the electrical connection sheet 3 of the module.
  • the protective paper 40 completely wraps the electrical connection sheet 3 of the module, and the protective paper 40 overlaps some areas. The overlapping parts of the protective paper 40 can be glued together.
  • the protective paper 40 is provided, the insulating sleeve 30 outside the electrical connection piece 3 of the module can be retained or removed. In the situation illustrated in FIGS. 5 a to 5 c, the insulating sleeve 30 outside the electrical connection sheet 3 of the module is retained, and the protective paper 40 is directly wrapped on the outside of the insulating sleeve 30.
  • the protective paper 40 Since the protective paper 40 has a better protective effect, when the high temperature and high pressure spray impacts, the spray will impact the surface of the protective paper 40. As long as the protective paper 40 does not break, the insulating sleeve 30 located inside the protective paper 40 can always be avoided. The wrinkle and peeling caused by the impact of the high temperature and high pressure jet can better protect the module electrical connection piece 3 and prevent the battery cell 21 from being easily short-circuited due to thermal runaway of the battery cell 21.
  • the protective paper 40 may wrap the key area of the electrical connection sheet 3 of the module that is impacted, and the key area is obtained according to the experimental test. Or, the protective paper 40 wraps the surface of the electrical connection piece 3 of the module as much as possible.
  • the material of the protective paper 40 is, for example, mica paper or other materials that can resist high-temperature impact.
  • the number of wrapping layers of the protective paper 40 can be one or several layers. Different package thicknesses can also be set in different regions. For example, in areas where the impact is strong, the number of layers of the wrapped protective paper 40 is large, and the final package thickness is thick; or the thicker protective paper 40 is directly used. In areas where the impact is not too strong, the number of layers of the wrapped protective paper 40 is small, and the final package thickness is thin; or the thinner protective paper 40 is directly used.
  • the first protection assembly 4 includes a first insulating member 42, which is mounted on the side wall 14 and/ Or bottom wall 15, please refer to Figure 3 for the marked position of bottom wall 15.
  • the first insulating member 42 is used to block at least a part of the side wall 14 of the box body 1 to isolate the box body 1 and the module electrical connection piece 3.
  • the first insulating member 42 plays a protective role by blocking the box body 1.
  • the side wall 14 corresponding to the position of the box 1 and the module electrical connection piece 3 refers to the first side wall 141 and the second side wall 142 corresponding to the module electrical connection piece in the box 1.
  • the bottom wall 15 corresponding to the position of the box 1 and the module electrical connection piece 3 refers to the bottom wall 15 below the position of the module electrical connection piece 3 of the box 1.
  • the electrical connection piece 3 of the module may be fused under the high temperature and high pressure jet flow discharged from the explosion-proof component 20 and then electrically connected to the side wall 14 and the bottom wall 15 of the box 1 and short-circuited. Therefore, a first insulating member 42 is provided at the above position. .
  • a first insulating member 42 is provided on at least one of the side wall 14 and the bottom wall 15 corresponding to the position of the box body 1 and the module electrical connection piece 3.
  • the first insulator 42 can function to insulate and isolate the box body 1 and the module electrical connection piece 3, reducing or even preventing the short-circuit phenomenon of the entire battery module caused by the thermal runaway of the battery cells 21.
  • the first insulating member 42 is, for example, a mica board or a material with similar properties.
  • the first insulating member 42 may be provided with multiple pieces, some of which are fixed to the side wall 14 of the box body 1, and some are fixed to the bottom wall 15 of the box body 1.
  • the connection between the first insulating member 42 and the box body 1 may be pasted or similar.
  • the first protection component can simultaneously use two or three of the housing 41, the protection paper 40 and the first insulator 42 to achieve multiple protections and prevent short circuits that may still occur when some protections fail. Phenomenon.
  • the battery pack further includes a second protection component 10 installed inside the box 1 and facing the explosion-proof component 20 to block the discharge of the explosion-proof component 20 The impact of the spray on the box 1.
  • an exhaust channel S is formed between the second protection assembly 10, the battery module 2, and the first side wall 141 of the box body 1.
  • FIG. The location of the air channel S.
  • the flow direction of the air flow in the exhaust passage S is shown by arrow P1, and is shown in Fig. 7 or Fig. 9a.
  • the second protection assembly 10 faces the explosion-proof assembly 20 of each battery cell 21.
  • the high-temperature and high-pressure jet sprayed from the explosion-proof component 20 of the battery cell 21 directly impacts the second protective component 10, which can prevent the jet from directly impacting the cabinet 1 and causing damage to the cabinet 1; in addition, the second protective component 10 plays a role of guiding the jet ejected through the explosion-proof assembly 20, so that most of the jet airflow can be discharged along the exhaust passage S formed by the second shield assembly 10 and the battery module 2, thereby improving the exhaust efficiency.
  • the jet airflow emitted by the explosion-proof component 10 is concentrated, and the concentrated airflow will cause more damage to the module electrical connections 3 located on both sides of the exhaust channel S. Strong impact.
  • the first protective component 4 introduced above can effectively reduce or even prevent secondary short circuits in the battery module.
  • the first protective component 4 is required to be able to withstand the instantaneous high temperature above 1000°C and the continuous high temperature 800°C. Materials, such as mica or other materials with this property.
  • the second protection component 10 is bent toward the explosion-proof component 20 along the edges of the two sides along the connection direction of the explosion-proof component 20 and the module electrical connection sheet 3, so as to enclose the explosion-proof component 20 in In the space formed by the second protective component 10 and the battery module 2, the space is the exhaust passage S. Please refer to Figure 9c for the label of the exhaust passage S. This reduces or even prevents the explosion-proof component 20 from burning the thermally failed battery cells. The possibility of the battery around the body 21; in addition, it also reduces or even prevents the bus bar 23 of the battery cell 21 from melting and splashing under the action of the explosion-proof assembly 20 spray to contact the box body 1 to cause a short circuit.
  • the upper and lower edges of the second protection assembly 10 are bent, and are bent toward the side where the explosion-proof assembly 20 is located.
  • the second protection component 10 is roughly "C"-shaped, so that the section of the exhaust passage S corresponding to the second protection component 10 is roughly closed at the top and bottom ends. At this time, a thermally runaway battery cell 21 appears. The ejection from the explosion-proof assembly 20 can only be discharged from both ends of the exhaust passage S in the longitudinal direction.
  • the second protective component 10 plays a comprehensive protective role, it further restricts the flow direction of the air flow, which makes the air flow stronger, and the jet will electrically connect the modules located on both sides of the exhaust channel S The impact of film 3 is stronger. If the first protection component 4 introduced above is not provided, in this case, the module electrical connection piece 3 is more likely to fail and deform under the impact of the jet. After the first protection component 4 described above is provided, the possibility of failure and deformation of the module electrical connection piece 3 under the impact of the jet can be effectively reduced or even prevented under the premise that the second protection component 10 is provided, and the short-circuit phenomenon is further avoided. occur.
  • the thickness of the second protection component 10 can be set in the range of 0.5 mm to 3 mm, and the overlap width of the second protection component 10 and the parts connected to it is 3 mm to 10 mm. This design can avoid thermal runaway sprays.
  • the hot air flow/flame is baked to the side of the battery cell 21 with the largest area.
  • plastic rivets are used to rivet the second protective assembly 10 and its connected components (such as the beam 5 described later).
  • the second protection component 10 can avoid the short circuit between the battery cell 21 and the box body that may be caused by the use of metal connectors, and on the other hand, On the one hand, it can ensure a good connection between the second protection component 10 and the box, and prevent the ejection of the explosion-proof valve after the battery is thermally out of control from causing the position of the second protection component 10 to shift, thereby affecting the second protection component 10 to play a protective role.
  • the second protection component 10 is made of mica board and a material with similar performance. Please refer to FIG. 6a, FIG. 6b, FIG. 7 and FIG. 9a together.
  • the battery pack further includes a beam 5.
  • the surface of the battery cell 21 where the explosion-proof assembly 20 is provided is parallel to the beam 5, and the second protection member 10 described above is provided between the surface of the battery cell 21 where the explosion-proof assembly 20 is provided and the beam 5.
  • the second insulating portion 102 of the second protection assembly 10 is attached to and fixed to the largest side of the beam 5, which can simplify the difficulty of fixing the second protection assembly 10.
  • the beam 5 has a gap 51 through which the module electrical connection piece 3 passes, and the module electrical connection piece 3 is used for electrical connection with external electrical appliances.
  • the first protection assembly 4 further includes a second insulating member 43 installed on the notch 51, and the second insulating member 43 is used to isolate the module electrical connection sheet 3 and the beam 5.
  • a second insulating member 43 is also provided at the notch 51 of the beam 5, and the second insulating member 43 insulates and isolates the beam 5 and the module electrical connection sheet 3.
  • the second insulating member 43 includes, for example, a first mica board 431 and a second mica board 432.
  • the notch 51 is substantially in an “L” shape, and the notch 51 includes a side surface 52 and a bottom surface 53.
  • the module electrical connection piece 3 is placed on the bottom surface 53 of the notch 51 or has a certain gap with the bottom surface 53 of the notch 51.
  • the side surface 52 of the notch 51 is fixed with a first mica plate 431, and the bottom surface 53 of the notch 51 is fixed with a second mica plate 432.
  • the fixing method of the first mica board 431 and the second mica board 432 may be pasting.
  • the battery pack further includes a pressing plate 6 for fixing the battery module 2.
  • the pressure plate 6 is installed and fixed to the beam 5.
  • the beam 5 also functions to divide the internal space of the box 1, so as to prevent the battery module in a certain space from being affected by thermal control. Battery modules in other spaces may cause serious safety accidents.
  • the second protection component 10 is fixedly connected to at least one of the pressure plate 6, the beam 5, and the box body 1.
  • the second protective component 10 includes a first insulating part 101, a second insulating part 102, and a third insulating part 103.
  • the three parts are independent and not connected to each other.
  • the first insulating part 101 may be fixedly connected to the pressing plate 6; the second insulating part 102 may be fixedly connected to the beam 5.
  • the third insulating portion 103 may be fixedly connected to the bottom wall of the box 1.
  • the first insulating part 101, the second insulating part 102, and the third insulating part 103 can be fixed to the box body 1 in other ways, such as glueing, locking bolts, or designing a slot.
  • the second protection component 10 adopts a split structure design and is connected with the box body 1, which can save installation space while making the installation and positioning of the second protection component 10 easier.
  • the first insulating portion 101, the second insulating portion 102, and the third insulating portion 103 all adopt a long strip structure, so that the second protective component 10 is well matched with peripheral parts.
  • the second protection component 10 adopts an integral structure.
  • the first insulating part 101, the second insulating part 102 and the third insulating part 103 are integrated, and the second protective assembly can be realized by connecting any one of the three to the pressure plate 6, the beam 5 or the box 1 installation.
  • a high-voltage connector 7 is provided on the second side wall 142 of the box 1, and the position of the high-voltage connector 7 is shown in Figure 9a.
  • the module electrical connection piece 3 electrically connects the module electrical connection piece 3 with external electrical appliances through a high-voltage connector 7 installed on the wall of the box.
  • a battery pack explosion-proof valve 9 is provided on the second side wall 142 of the box body 1.
  • the battery cell 21 includes a housing 211, an electrode assembly 212 provided inside the housing 211, a connector 213 provided at an end of the electrode assembly 212, and a cover plate 214 connected to the housing 211.
  • the cover plate 214 is provided with an electrode terminal 215 and an explosion-proof assembly 20.
  • the manufacturing method of the electrode assembly 212 includes a laminated type and a winding type.
  • the laminated electrode assembly cuts the positive pole piece 212a, the negative pole piece 212b, and the separator 212c into a predetermined size, and then laminates the positive pole piece 212a, the separator 212c, and the negative pole piece 212b to form an electrode assembly 212.
  • the wound electrode assembly is formed by winding a positive pole piece 212a, a negative pole piece 212b, and a separator 212c.
  • the surface with the largest area of the laminated electrode assembly and the wound electrode assembly is the surface with the largest amount of expansion and deformation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Mounting, Suspending (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

一种电池组以及使用电池组作为电源的装置(100),涉及电池技术领域,用以优化电池组的性能。电池组包括箱体(1)、电池模块(2)、模块电连接片(3)以及第一防护组件(4)。电池模块(2)安装于箱体(1)内;电池模块(2)包括防爆组件(20)。模块电连接片(3)安装于电池模块(2)。第一防护组件(4)安装于箱体(1)内且被构造为在防爆组件(20)排出的喷射物冲击模块电连接片(3)时,对模块电连接片(3)起到防护作用。降低了电池组出现二次短路的几率。

Description

电池组以及使用电池组作为电源的装置
本申请是以CN申请号为202010580242.8,申请日为2020年06月23日的申请为 基础,并主张其优先权,该CN申请的公开内容在此作为整体引入本申请中。
技术领域
本公开涉及电池技术领域,具体涉及一种电池组以及使用电池组作为电源的装置。
背景技术
电池组是电动汽车的重要组成部分,电池组用于为电动汽车提供动力。电池组包括至少一个电池模块,电池模块包括至少一个电池单体,电池单体上设置有防爆组件。当单个电池单体发生热失控时防爆组件会开启,整个电池模块很容易出现短路的现象,进而引发严重的安全事故,这是亟需解决的问题。
发明内容
本公开提出一种电池组以及使用电池组作为电源的装置,用以改进电池组的结构。
本公开一些实施例提供一种电池组,包括:
箱体;
电池模块,安装于所述箱体内;所述电池模块包括防爆组件;
模块电连接片,安装于所述电池模块;
第一防护组件,安装于所述箱体内,且被构造为在防爆组件排出的喷射物冲击所述模块电连接片时,对所述模块电连接片起到防护作用。
在一些实施例中,所述第一防护组件包括包裹于所述模块电连接片的防护纸。
在一些实施例中,所述第一防护组件包括壳体,所述模块电连接片位于所述壳体内。
在一些实施例中,所述第一防护组件包括:
第一绝缘件,安装于所述箱体与所述模块电连接片位置对应的侧壁和/或底壁,用于隔离所述箱体与所述模块电连接片。
在一些实施例中,电池组还包括:
第二防护组件,安装于所述箱体内部,且朝向所述防爆组件,用于阻挡所述防爆组件排出的喷射物对所述箱体造成的冲击。
在一些实施例中,所述第二防护组件沿所述防爆组件与所述模块电连接片连线方向上的两侧边缘朝向所述防爆组件弯折,以将防爆组件围合于第二防护组件与电池模块形成的空间内。
在一些实施例中,电池组还包括:
梁,具有缺口,所述模块电连接片穿过所述缺口,用于与外部电器电连接;
所述第一防护组件还包括安装于所述缺口上的第二绝缘件,用于隔离所述模块电连接片与所述梁。
在一些实施例中,电池组还包括:
压板,与所述梁固定连接,用于固定所述电池模块。
在一些实施例中,所述第一防护组件的材料为云母。
本公开一些实施例提供一种使用电池组作为电源的装置,包括本公开任一技术方案所提供的电池组。
上述技术方案提供的电池组中的模块电连接片上设置有第一防护组件,第一防护组件可以在防爆组件排出的喷射物冲击模块电连接片时,对模块电连接片起到防护作用。进一步地,第一防护组件能够有效降低因防爆组件排出的喷射物造成模块电连接片防护失效,进而降低模块电连接片与箱体电连接的可能性,最终降低电池组出现二次短路的可能性。
附图说明
图1为本公开一些实施例提供的使用电池组作为电源的汽车结构示意图;
图2为电池组出现二次短路的示意图;
图3为本公开一些实施例提供的电池组箱体打开状态的爆炸示意图;
图4a为本公开一些实施例提供的电池组的模块电连接片立体结构示意图;
图4b为图4a的主视示意图;
图4c为图4b的A-A剖视放大示意图;
图5a为本公开一些实施例提供的电池组去除箱盖的俯视示意图;
图5b为图5a的B-B剖视示意图;
图5c为图5b的C局部放大示意图;
图6a为本公开一些实施例提供的电池组去除箱盖的另一立体示意图;
图6b为图6a的D局部放大示意图;
图7为本公开另一些实施例提供的电池组爆炸示意图;
图8为本公开又一些实施例提供的电池组的第二防护组件立体结构示意图;
图9a为本公开又一些实施例提供的电池组分解结构示意图;
图9b为本公开一些实施例提供的电池组去除箱盖的俯视示意图;
图9c为图9b的E-E剖视示意图;
图10为本公开实施例提供的电池组的电池单体分解结构示意图;
图11为叠片式电极组件的结构示意图;
图12为卷绕式电极组件的结构示意图。
具体实施方式
下面结合图1~图12对本公开提供的技术方案进行更为详细的阐述。
为了更加清楚地描述本公开各实施例的技术方案,在图3中建立了坐标系,后续关于电池组的各个方位的描述基于该坐标系进行。参见图3,电池单体21形成2层6×2的电池阵列,其中X轴为电池模块2的长度方向,即6个电池单体21的排列方向。Y轴与X轴垂直,Y轴表示单层电池陈列的宽度方向,即6×2的电池阵列中2个电池单体21的排列方向。Z轴垂直于X轴和Y轴形成的平面,Z轴表示电池模块2的高度方向。本公开一些实施例的描述中,术语“上”、“下”、均是相对于Z轴方向而言。箱体1的长度方向与电池组的长度方向一致,箱体1的宽度方向与电池组的宽度方向一致,箱体1的高度方向与电池组的高度方向一致。
在本公开一些实施例的描述中,需要理解的是,术语“高”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为便于描述本公开和简化描述,而不是指示或暗指所指的装置或元件必须具有特定的方位、为特定的方位构造和操作,因而不能理解为对本公开保护内容的限制。
参见图2,电池模块2可以包括一个或者多个电池单体序列。电池单体序列包括至少一个电池单体21。各电池单体21均包括外壳211(外壳211的位置请参见图10)以及安装于外壳211的防爆组件20(防爆组件20的位置请参见图3)。发明人发现:当电池模块2中某单个电池单体21发生热失控时,经由电池单体21的防爆组件20 喷出的高温高压喷射物气流会冲击模块电连接片3,造成模块电连接片3表面的绝缘套管30(绝缘套管30的位置请参见图4a)发生皱裂失效,模块电连接片3失去绝缘绝热保护。在高温气流下,失去保护的模块电连接片3会熔断。在此情况下,如果该模块电连接片3的任何一处再与箱体1导电接触,则会造成该处与失控电池单体21之间的所有电池单体21短路,引起多个电池单体21短路失效,电池模块2会大量发热,产生十分严重的安全风险。因此,对电池模块2的模块电连接片3进行热失控状态下的防护是十分必要的。采用本公开实施例提供的技术方案,可在单个电池单体21发生热失控时,有效减少甚至避免大回路出现短路的情况的发生。
参见图1,本公开一些实施例提供一种使用电池组作为电源的装置100,其包括本公开任一技术方案提供的电池组。装置具体可以为交通装置、储能电柜等。交通装置比如为电动汽车、轮船、无人机等。电池组可以设置在车体底部,采用可充电电池。
参见图3至图4c,本公开一些实施例提供一种电池组,包括箱体1、电池模块2、模块电连接片3以及第一防护组件4。
参见图3,在一些实施例中,箱体1包括箱盖12以及下箱体13。箱体1采用类似矩形的结构,箱体1的内侧壁包括四个,分别为沿着Y方向相对设置的两个第一侧壁141、沿着X方向相对设置的第二侧壁142。第一侧壁141与第二侧壁142固定连接。
下箱体13与箱盖12围合形成容置腔11,电池模块2安装于箱体1的容置腔11中。箱体1与电池模块2之间可拆卸连接或者通过胶固定。采用上述实现方式,使得电池模块2与箱体1的连接稳固可靠,这提高了电池组的安全性和可靠性。
电池模块2包括一个或者多个电池单体序列。各个电池单体序列之间的电连接方式根据需要设置为串联、并联或者混联,以实现电池组所需要的电学性能。继续参见图3,沿电池组的宽度方向(即Y轴方向)箱体内设置了两排电池单体序列21,实际应用中,也可以设置三排或者更多数量。根据需要,实际使用中在电池组的高度方向,即图3中的Z轴方向上,也可以设置一层或者多层电池单体序列。
模块电连接片3安装在箱体1内部,模块电连接片3用于将电池模块2的电能输出至电池组的箱体1外部。具体地,模块电连接片3的一端与电池模块2的输出端电连接片22电连接,模块电连接片3的另一端与位于电池组的箱体11外部的电器电连接。位于箱体1外部的电器也称为外部电器。外部电器比如为控制器、电机、电控箱等。
参见图3至图4b,模块电连接片3为弯折的,其包括连接成一体的第一段连接片31和第二段连接片32。第一段连接片31和第二段连接片32的端部都设置有连接端33,其中一个连接端33用于与电池模块2的输出端电连接片22电连接,另一个连接端33用于与外部电器电连接。
第一防护组件4被构造为在防爆组件20排出的喷射物冲击模块电连接片3时,对模块电连接片3起到防护作用。所谓的防护作用是指减少模块电连接片3因受到高温高压喷射物冲击而出现融化、变形情况下,与箱体1电连接的现象。意即,第一防护组件4被构造为在高温高压条件下绝缘隔离箱体1和模块电连接片3。喷射物是指电池单体21热失效时,电池内部产生的高温高压气流、甚至带有火星火焰的气流和电解液,其在防爆阀开启时被喷出。
在一些实施例中,第一防护组件4的材料为云母。第一防护组件4采用云母纸、比较薄的云母板或者其他结构。第一防护组件4包括分散的多块,相互拼接的多块,或者一整块。云母能够抵抗高温,并对热冲击起到良好的防护作用。第一防护组件4的材料适用于后文介绍的第一防护组件4的各种实现方式。
参见图4a至图4c,在一些实施例中,第一防护组件4包括壳体41,模块电连接片3位于壳体41内。此处,模块电连接片3大部分区域位于壳体41内即可起到防护作用。壳体41有多种结构形式,比如为单一的平板,仅设置在模块电连接片3受到冲击最强烈的一个面,或者多块板组合形成的“L”型、“U”型防护结构。在模块电连接片3正对着喷射物的表面外侧设置壳体41,以对模块电连接片3起到防护作用。
壳体41当然也可以尽量多地包裹住模块电连接片3的表面,实现全面保护。壳体41的材质比如为云母或者具有类似性能的其他材料。在模块电连接片3的不同区域,壳体41厚度可以不相同。比如在冲击强烈的区域,壳体41的厚度大。在冲击不太强烈的区域,壳体41的厚度薄。上述结构,可以实现更有针对性的防护,且可以减少所需要的壳体41材料,降低制造成本。需要说明的是,模块电连接片3外部原本设置有聚烯烃材质的绝缘套30。在设置壳体41的情况下,模块电连接片3外部的绝缘套30可以保留,也可以去除。在图4a至图4c示意的情形中,保留了模块电连接片3外部的绝缘套30,壳体41直接包裹在绝缘套30的外部。
下面介绍本公开实施例提供的电池组的防护过程:多个电池单体21的防爆组件20与模块电连接片3都位于箱体内。一旦某个电池单体21发生热失控,该电池单体21内部产生的喷射物气流通过该电池单体21的防爆组件20排出,而后该高温高压的 喷射物气流会冲击模块电连接片3。上述技术方案,设置有第一防护组件4,第一防护组件4能够对模块电连接片3起到防护作用,降低甚至防止喷射物气流造成模块电连接片3融化、变形失效。需要说明的是,模块电连接片3材质通常为铝,铝的熔点为660℃。当喷射物气流很强时,喷射物气流的温度可能远远超过铝的熔点,进而会造成模块电连接片3融化飞溅。
参见图5a至图5c,在另一些实施例中,第一防护组件4包括包裹于模块电连接片3的防护纸40。防护纸40整个包裹住模块电连接片3,并且防护纸40部分区域搭接在一起。防护纸40的搭接部分可以采用胶粘贴在一起。需要说明的是,在设置防护纸40的情况下,模块电连接片3外部的绝缘套30可以保留,也可以去除。在图5a至图5c示意的情形中,保留了模块电连接片3外部的绝缘套30,防护纸40直接包裹在绝缘套30的外部。由于防护纸40具有较好的防护效果,在高温高压喷射物冲击时,喷射物向冲击到防护纸40表面,只要防护纸40不出现破裂现象,位于防护纸40内部的绝缘套30始终可以避免被高温高压喷射物冲击造成的皱裂、脱落,进而更好的实现对模块电连接片3的保护,防止电池单体21热失控造成的整个电池模块很容易出现短路。
在其他实施例中,防护纸40可以包裹住模块电连接片3被冲击的重点区域,重点区域根据试验测试得到。或者,防护纸40尽量多的包裹住模块电连接片3的表面。防护纸40的材质比如为云母纸或者具有能够抵抗高温冲击的其他材料。防护纸40的包裹层数可以为一层、数层。还可以分区域设置不同的包裹厚度。比如在冲击强烈的区域,包裹的防护纸40的层数多、最终形成的包裹厚度厚;或者直接采用更厚的防护纸40。在冲击不太强烈的区域,包裹的防护纸40的层数少、最终形成的包裹厚度薄;或者直接采用更薄的防护纸40。
在另一些实施例中,参见图6a和图6b,第一防护组件4包括第一绝缘件42,第一绝缘件42安装于箱体1与模块电连接片3位置对应的侧壁14和/或底壁15,底壁15的标注位置请参见图3。第一绝缘件42用于挡住箱体1的至少部分侧壁14,以隔离箱体1与模块电连接片3。第一绝缘件42通过挡住箱体1,起到防护作用。
参见图6a和图6b,箱体1与模块电连接片3位置对应的侧壁14是指箱体1内的模块电连接片对应的第一侧壁141和第二侧壁142。所谓箱体1与模块电连接片3位置对应的底壁15是指箱体1的模块电连接片3所在位置的下方的底壁15。模块电连接片3在防爆组件20排出的高温高压的喷射物气流下可能熔断进而与箱体1中的侧 壁14和底壁15电连接而短路,所以在上述位置设置了第一绝缘件42。上述技术方案,在箱体1与模块电连接片3位置对应的侧壁14和底壁15至少其中之一上设置有第一绝缘件42。第一绝缘件42能够起到绝缘隔离箱体1和模块电连接片3的作用,降低甚至防止电池单体21热失控造成的整个电池模块出现短路现象。
第一绝缘件42比如采用云母板,或者具有类似性能的材料。第一绝缘件42可以设置多块,其中一些与箱体1的侧壁14固定,另一些与箱体1的底壁15固定。第一绝缘件42与箱体1的连接方式可以为粘贴或者类似方式。
需要说明的是,第一防护组件可以同时采用壳体41、防护纸40和第一绝缘件42中的两种或三种,以实现多重防护,防止当某些防护失效时仍可能出现的短路现象。
参见图7至图9c,在另一些实施例中,电池组还包括第二防护组件10,第二防护组件10安装于箱体1内部,且朝向防爆组件20,用于阻挡防爆组件20排出的喷射物对箱体1造成的冲击。
参见图7或者图9c,设置第二防护组件10之后,在第二防护组件10、电池模块2、箱体1的第一侧壁141之间形成了排气通道S,图9c中示意了排气通道S的位置。排气通道S内的气流流动方向参见箭头P1所示,参见图7或者图9a。第二防护组件10正对着各个电池单体21的防爆组件20。电池单体21的防爆组件20喷出的高温高压喷射物喷出后直接冲击在第二防护组件10上,这样可以防止喷射物直接冲击箱体1造成箱体1损伤;另外,第二防护组件10对经由防爆组件20喷出的喷射物起到导流作用,使得大部分喷射物气流能够沿着第二防护组件10与电池模块2形成的排气通道S排出,提高了排气效率。但从另一方面来说,由于第二防护组件10的存在,防爆组件10喷出的喷射物气流被汇聚,汇聚的气流将会对位于排气通道S两侧的模块电连接片3产生更强的冲击。此时,在模块电连接片3上设置防护就显得更为重要,当采用相关技术的方案仅设置绝缘套管30时,绝缘套管30的标注请参见图4a,绝缘套管30容易在冲击下发生皱裂,脱落,进而极易使得整个电池模块发生短路。而设置上文介绍的第一防护组件4能够有效降低甚至防止电池模块出现二次短路现象,为保证良好的防护效果,第一防护组件4要求采用能够抵抗瞬时高温1000℃以上,持续高温800℃的材料,例如云母或其他具有该性能的材料。
第二防护组件10的结构形式有多种,采用分体式、整体式均可。后文会详细这两种情况。参见图7,在一些实施例中,第二防护组件10沿防爆组件20与模块电连接片3连线方向上的两侧边缘呈朝向防爆组件20弯折状,以将防爆组件20围合于第 二防护组件10与电池模块2形成的空间内,该空间为排气通道S,排气通道S的标注请参见图9c,这样减低甚至防止了防爆组件20喷射物烧到热失效的电池单体21周围电池的可能性;另外,还降低甚至防止了电池单体21的汇流排23在防爆组件20喷射物作用下融化飞溅与箱体1接触造成短路。
参照图7、图8、图9a或者图9c,安装到位后,第二防护组件10的上下边缘是弯折的,且朝着防爆组件20所在的一侧弯折。第二防护组件10大致呈“C”形的,这样使得排气通道S对应第二防护组件10的那一段在顶、底两端大致为封闭式的,此时出现热失控的电池单体21的防爆组件20喷出的喷射物只能从排气通道S的长度方向的两端排出去。也就是说,第二防护组件10在起到全面防护作用的同时,进一步限制了气流的流动方向,这使得气流强度变得更强,喷射物将对位于排气通道S两侧的模块电连接片3的冲击更强烈。如果不设置上文介绍的第一防护组件4,在这种情况下,模块电连接片3更容易在喷射物的冲击下失效变形。设置上文介绍的第一防护组件4后,则可有效降低甚至防止在设置第二防护组件10前提下模块电连接片3在喷射物的冲击下失效变形的可能性,进一步避免了短路现象的发生。
为实现良好的防护效果,第二防护组件10厚度可以设置在0.5mm~3mm的范围内,第二防护组件10与其相连接的部件的搭接宽度为3mm~10mm,如此设计能够避免热失控喷出的热气流/火焰烘烤到电池单体21面积最大的侧面。同时,采用塑料铆钉将第二防护组件10与其相连接的部件(比如后文介绍的梁5)进行铆接,一方面能够避免使用金属连接件可能造成的电池单体21与箱体的短路,另一方面能够保证第二防护组件10与箱体的良好连接,避免电池热失控后防爆阀排出的喷射物使得第二防护组件10位置偏移,进而影响第二防护组件10起到防护作用。
在一些实施例中,为保证第二防护组件的良好防护效果,第二防护组件10采用云母板以及具有类似性能的材质。下面请一并参考图6a、图6b、图7和图9a,在这些实施例中,电池组还包括梁5。电池单体21设置防爆组件20的面与梁5平行,且电池单体21的设置防爆组件20的面与梁5之间设置有上文介绍的第二防护构件10。设置梁5之后,第二防护组件10的第二绝缘部102与梁5的最大侧面贴合固定,这样可以简化第二防护组件10的固定难度。梁5具有缺口51,模块电连接片3穿过缺口51,模块电连接片3用于与外部电器电连接。第一防护组件4还包括安装于缺口51上的第二绝缘件43,第二绝缘件43用于隔离模块电连接片3与梁5。
参见图6b、图7,在梁5的缺口51处还设置有第二绝缘件43,第二绝缘件43将 梁5和模块电连接片3绝缘隔离。第二绝缘件43比如包括第一云母板431和第二云母板432。缺口51大致为“L”形,缺口51包括侧面52和底面53。模块电连接片3放置于缺口51的底面53或者与缺口51的底面53具有一定的缝隙。缺口51的侧面52固定有第一云母板431,缺口51的底面53固定有第二云母板432。第一云母板431、第二云母板432的固定方式可以为粘贴。
参见图7和图9a,在这些实施例中,电池组还包括压板6,用于固定电池模块2。压板6安装固定于梁5,梁5除了起到安装压板6的作用外,还起到分割箱体1内部空间的作用,这样一来可以防止某一空间内的电池模块发生热控后影响到其他空间的电池模块,进而造成严重安全事故。
参见图7,在一些实施例中,第二防护组件10与压板6、梁5、箱体1三者至少其中之一固定连接。第二防护组件10包括第一绝缘部101、第二绝缘部102和第三绝缘部103,在一个实施例中,三部分是独立的,相互不连接。具体地,第一绝缘部101可以与压板6固定连接;第二绝缘部102可以与梁5固定连接。第三绝缘部103可以与箱体1的底壁固定连接。第一绝缘部101、第二绝缘部102和第三绝缘部103可以胶粘,锁螺栓,或设计卡槽等其它方式固定于箱体1。第二防护组件10采用分体式结构设计,并与箱体1连接,能够在节省安装空间的同时使得第二防护组件10更容易安装定位。第一绝缘部101、第二绝缘部102和第三绝缘部103都采用长条状结构,以使得第二防护组件10与周边零件配合良好。
当然,参考图8,在另一些实施例中,第二防护组件10采用整体式结构。第一绝缘部101、第二绝缘部102和第三绝缘部103三者是一体的,可以通过将三者中的任意一者与压板6、梁5或箱体1连接进而实现第二防护组件的安装。
参见图9a至图9c,在另一些实施例中,为方便电池模块与外部电器连接,箱体1的第二侧壁142上设置有高压连接器7,高压连接器7的位置参见图9a。模块电连接片3通过安装在箱壁上的高压连接器7将模块电连接片3与外部电器电连接。继续参见图9a,在另一些实施例中,箱体1的第二侧壁142上设置有电池组防爆阀9。
参见图10至图12,下面介绍上述各实施例中电池单体21可采用的结构。
参见图10,电池单体21包括外壳211、设于外壳211内部的电极组件212、设于电极组件212端部的连接件213、以及连接外壳211的盖板214。盖板214设有电极端子215以及防爆组件20。
电极组件212的制作方式包括叠片式和卷绕式。如图11所示,叠片式电极组件 是将正极极片212a、负极极片212b、隔膜212c裁成规定尺寸的大小,随后将正极极片212a、隔膜212c、负极极片212b层叠成电极组件212。如图12所示,卷绕式电极组件是将正极极片212a、负极极片212b、隔膜212c卷绕成形。叠片式电极组件、卷绕式电极组件的面积最大的表面为膨胀变形量最大的表面。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开保护范围的限制。
最后应当说明的是:以上实施例仅用以说明本公开的技术方案而非对其限制;尽管参照较佳实施例对本公开进行了详细的说明,所属领域的普通技术人员应当理解:依然可以对本公开的具体实施方式进行修改或者对部分技术特征进行等同替换;而不脱离本公开技术方案的精神,其均应涵盖在本公开请求保护的技术方案范围当中。

Claims (10)

  1. 一种电池组,包括:
    箱体(1);
    电池模块(2),安装于所述箱体(1)内;所述电池模块(2)包括防爆组件(20);
    模块电连接片(3),安装于所述电池模块(2);
    第一防护组件(4),安装于所述箱体(1)内,且被构造为在防爆组件(20)排出的喷射物冲击所述模块电连接片(3)时,对所述模块电连接片(3)起到防护作用。
  2. 根据权利要求1所述的电池组,其中,所述第一防护组件(4)包括包裹于所述模块电连接片(3)的防护纸(40)。
  3. 根据权利要求1或者2所述的电池组,其中,所述第一防护组件(4)包括壳体(41),所述模块电连接片(3)位于所述壳体(41)内。
  4. 根据权利要求1~3任一所述的电池组,其中,所述第一防护组件(4)包括:
    第一绝缘件(42),安装于所述箱体(1)与所述模块电连接片(3)位置对应的侧壁和/或底壁,用于隔离所述箱体(1)与所述模块电连接片(3)。
  5. 根据权利要求1~4任一所述的电池组,还包括:
    第二防护组件(10),安装于所述箱体(1)内部,且朝向所述防爆组件(20),用于阻挡所述防爆组件(20)排出的喷射物对所述箱体(1)造成的冲击。
  6. 根据权利要求5所述的电池组,其中,所述第二防护组件(10)沿所述防爆组件(20)与所述模块电连接片(3)连线方向上的两侧边缘朝向所述防爆组件(20)弯折,以将防爆组件(20)围合于第二防护组件(10)与电池模块(2)形成的空间内。
  7. 根据权利要求6所述的电池组,还包括:
    梁(5),具有缺口(51),所述模块电连接片(3)穿过所述缺口(51),用于与外部电器电连接;
    所述第一防护组件(4)还包括安装于所述缺口(51)上的第二绝缘件(43),用于隔离所述模块电连接片(3)与所述梁(5)。
  8. 根据权利要求7所述的电池组,还包括:
    压板(6),与所述梁(5)固定连接,用于固定所述电池模块(2)。
  9. 根据权利要求1~8任一所述的电池组,其中,所述第一防护组件(4)的材 料为云母。
  10. 一种使用电池组作为电源的装置,包括权利要求1~9任一所述的电池组。
PCT/CN2021/082424 2020-06-23 2021-03-23 电池组以及使用电池组作为电源的装置 WO2021258794A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21827814.1A EP3979402B1 (en) 2020-06-23 2021-03-23 Battery pack, and device using same as power source
KR1020227017396A KR20230025766A (ko) 2020-06-23 2021-03-23 배터리 팩 및 배터리 팩을 전원으로 사용하는 장치
JP2022533525A JP2023531844A (ja) 2020-06-23 2021-03-23 電池パック及び該電池パックを電源として用いた装置
US18/087,404 US11831036B2 (en) 2020-06-23 2022-12-22 Battery pack and apparatus using battery pack as power supply

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010580242.8A CN112332032B (zh) 2020-06-23 2020-06-23 电池组以及使用电池组作为电源的装置
CN202010580242.8 2020-06-23

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/087,404 Continuation US11831036B2 (en) 2020-06-23 2022-12-22 Battery pack and apparatus using battery pack as power supply

Publications (1)

Publication Number Publication Date
WO2021258794A1 true WO2021258794A1 (zh) 2021-12-30

Family

ID=74304222

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082424 WO2021258794A1 (zh) 2020-06-23 2021-03-23 电池组以及使用电池组作为电源的装置

Country Status (6)

Country Link
US (1) US11831036B2 (zh)
EP (1) EP3979402B1 (zh)
JP (1) JP2023531844A (zh)
KR (1) KR20230025766A (zh)
CN (1) CN112332032B (zh)
WO (1) WO2021258794A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112332032B (zh) 2020-06-23 2024-02-23 宁德时代新能源科技股份有限公司 电池组以及使用电池组作为电源的装置
DE102021206828A1 (de) * 2021-06-30 2023-01-05 Robert Bosch Gesellschaft mit beschränkter Haftung Akkupack
CN115207541B (zh) * 2022-08-04 2024-04-12 湖北洲辉汽车零部件有限公司 一种新能源汽车电池箱

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207896195U (zh) * 2018-03-16 2018-09-21 宁德时代新能源科技股份有限公司 电池模组
CN110277533A (zh) * 2018-03-16 2019-09-24 宁德时代新能源科技股份有限公司 电池模组
CN209730091U (zh) * 2019-04-30 2019-12-03 宁德时代新能源科技股份有限公司 电池模组以及电池包
CN110767855A (zh) * 2019-10-31 2020-02-07 章春元 一种防止热蔓延的电池模组及其制备方法
CN210092179U (zh) * 2019-07-26 2020-02-18 宁德时代新能源科技股份有限公司 电池模组、电池包和车辆
CN112332032A (zh) * 2020-06-23 2021-02-05 宁德时代新能源科技股份有限公司 电池组以及使用电池组作为电源的装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101657394B1 (ko) * 2015-02-03 2016-09-13 삼성에스디아이 주식회사 배터리 모듈
EP3304619B1 (en) * 2015-08-31 2019-04-03 BYD Company Limited Battery connector, battery module and electric vehicle
CN207409556U (zh) * 2017-10-31 2018-05-25 宁德时代新能源科技股份有限公司 电池模组
CN207800740U (zh) * 2018-02-07 2018-08-31 宁德时代新能源科技股份有限公司 电池模组
CN209249548U (zh) * 2018-12-30 2019-08-13 宁德时代新能源科技股份有限公司 一种电池模块及电池包
JP7311611B2 (ja) * 2019-01-09 2023-07-19 ビーワイディー カンパニー リミテッド 電池パック、車両及びエネルギー蓄積装置
CN209730085U (zh) * 2019-04-30 2019-12-03 宁德时代新能源科技股份有限公司 电池模组
CN111864292A (zh) 2019-04-30 2020-10-30 宁德时代新能源科技股份有限公司 电池模组以及电池包
CN209709060U (zh) * 2019-05-29 2019-11-29 宁德时代新能源科技股份有限公司 电池模块和电池包
CN210467893U (zh) * 2019-08-07 2020-05-05 江苏时代新能源科技有限公司 二次电池及电池包
CN210403871U (zh) * 2019-11-15 2020-04-24 深圳市亿诚鑫科技有限公司 防爆电池模组

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207896195U (zh) * 2018-03-16 2018-09-21 宁德时代新能源科技股份有限公司 电池模组
CN110277533A (zh) * 2018-03-16 2019-09-24 宁德时代新能源科技股份有限公司 电池模组
CN209730091U (zh) * 2019-04-30 2019-12-03 宁德时代新能源科技股份有限公司 电池模组以及电池包
CN210092179U (zh) * 2019-07-26 2020-02-18 宁德时代新能源科技股份有限公司 电池模组、电池包和车辆
CN110767855A (zh) * 2019-10-31 2020-02-07 章春元 一种防止热蔓延的电池模组及其制备方法
CN112332032A (zh) * 2020-06-23 2021-02-05 宁德时代新能源科技股份有限公司 电池组以及使用电池组作为电源的装置

Also Published As

Publication number Publication date
CN112332032A (zh) 2021-02-05
EP3979402A4 (en) 2022-11-30
JP2023531844A (ja) 2023-07-26
EP3979402B1 (en) 2024-04-10
EP3979402A1 (en) 2022-04-06
KR20230025766A (ko) 2023-02-23
US11831036B2 (en) 2023-11-28
US20230134692A1 (en) 2023-05-04
CN112332032B (zh) 2024-02-23

Similar Documents

Publication Publication Date Title
WO2021258794A1 (zh) 电池组以及使用电池组作为电源的装置
CN111952515B (zh) 电池、用电装置、制备电池的方法及装置
US11909065B2 (en) Cover plate assembly, battery cell, battery module, battery pack, and apparatus
JP5256231B2 (ja) 2次電池及び2次電池モジュール
US20220285795A1 (en) Secondary battery, battery module, and device using secondary battery as power supply
CN214589171U (zh) 电池及用电装置
US20220216574A1 (en) Secondary battery, battery module, and device using battery as power supply
CN113013503A (zh) 电池及用电装置
US20200014001A1 (en) Battery pack
JP7186274B2 (ja) 電池モジュールおよび電池パック
WO2016067487A1 (ja) 電源装置
CN116315414A (zh) 电池单体、电池及用电设备
WO2022082398A1 (zh) 电池、用电装置、制造电池的方法及装置
EP4009434B1 (en) Battery and power utilization device
KR20220103629A (ko) 전지 모듈 및 이를 포함하는 전지팩
JP2023524298A (ja) 電池モジュールおよびこれを含む電池パック
JP2023540109A (ja) 電池モジュールおよびそれを含む電池パック
KR20220144714A (ko) 전지팩 및 이를 포함하는 디바이스
WO2023070399A1 (zh) 电池、用电装置及电池的制造方法
CN219476922U (zh) 电池模组及电池包
CN218448372U (zh) 极片组件、电极组件、电池单体、电池和用电设备
CN219180740U (zh) 电池、电池包和车辆
CN217934018U (zh) 软包电池和电池包
WO2024109266A1 (zh) 电池和电子设备
KR20220140244A (ko) 전지팩 및 이를 포함하는 디바이스

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021827814

Country of ref document: EP

Effective date: 20211231

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21827814

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022533525

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE