WO2022082398A1 - 电池、用电装置、制造电池的方法及装置 - Google Patents

电池、用电装置、制造电池的方法及装置 Download PDF

Info

Publication number
WO2022082398A1
WO2022082398A1 PCT/CN2020/122001 CN2020122001W WO2022082398A1 WO 2022082398 A1 WO2022082398 A1 WO 2022082398A1 CN 2020122001 W CN2020122001 W CN 2020122001W WO 2022082398 A1 WO2022082398 A1 WO 2022082398A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
battery cells
pressure relief
relief mechanism
fire
Prior art date
Application number
PCT/CN2020/122001
Other languages
English (en)
French (fr)
Inventor
吴凯
黄小腾
汪文礼
洪家荣
杨海奇
胡浪超
Original Assignee
江苏时代新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏时代新能源科技有限公司 filed Critical 江苏时代新能源科技有限公司
Priority to EP20957981.2A priority Critical patent/EP4075589A4/en
Priority to KR1020237004283A priority patent/KR20230034400A/ko
Priority to PCT/CN2020/122001 priority patent/WO2022082398A1/zh
Priority to JP2023509570A priority patent/JP2023542807A/ja
Publication of WO2022082398A1 publication Critical patent/WO2022082398A1/zh
Priority to US17/842,555 priority patent/US20220311086A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/375Vent means sensitive to or responsive to temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/588Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries outside the batteries, e.g. incorrect connections of terminals or busbars
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/20Fuel cells in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular, to a battery, an electrical device, and a method and device for manufacturing a battery.
  • the present application provides a battery, an electrical device, a method and device for manufacturing the battery, which can reduce safety accidents caused by thermal runaway of the battery.
  • a first aspect of the present application provides a battery, comprising:
  • a plurality of battery cells configured to be electrically connected by a bussing member
  • the battery cell includes a pressure relief mechanism for actuating to relieve the internal pressure when the internal pressure or temperature of the battery cell reaches a threshold;
  • An insulating member for covering the bussing member to prevent at least one of the battery cells from short-circuiting by discharge from the battery cells when the pressure relief mechanism is actuated.
  • a plurality of the insulating parts and the bussing parts are provided, and each of the insulating parts covers at least one of the bussing parts.
  • the plurality of battery cells are stacked to form a battery module; the insulating member is configured to cover the busbar member located on the adjacent battery modules.
  • the insulating member has a thickness of 0.5-3 mm.
  • a fire fighting pipe is further included for containing a fire fighting medium, the fire fighting pipe is configured to discharge the fire fighting medium to the battery cell when the pressure relief mechanism is actuated; the insulating member, for preventing the fire fighting medium from short-circuiting at least one of the battery cells when the pressure relief mechanism is actuated.
  • the fire duct includes a first region corresponding to the pressure relief mechanism and a second region located on the periphery of the first region, the first region for actuation of the pressure relief mechanism The second area is used to remain intact when the pressure relief mechanism is actuated to allow the fire fighting medium to flow from the second area to the first area.
  • a protective member is further included, disposed between the fire duct and the battery cell to protect the second area.
  • the protective member includes a third area and a fourth area
  • the third area is used to protect the second area of the fire duct when the pressure relief mechanism is actuated
  • the first area Four zones are used to enable emissions from the battery cells to pass through the fourth zone to disrupt the first zone when the pressure relief mechanism is actuated.
  • the guard member is configured to form a first groove that accommodates the fire protection conduit, the first groove for collecting flow into the battery cell when the pressure relief mechanism is actuated The fire fighting medium in the body.
  • the fourth region is provided on the bottom wall of the first groove in a region corresponding to the first region.
  • it further includes: an isolation part for installing the bus part.
  • the isolation member has an escape area configured to expose at least a portion of the bus member to electrically connect the bus member to the battery cells.
  • the isolation member is provided with a second groove, and the guard member is provided in the second groove.
  • a powered device configured to receive power supplied from the above-described battery.
  • a method of manufacturing a battery comprising:
  • the battery cells include a pressure relief mechanism for actuating to relieve the internal pressure when the internal pressure or temperature of the battery cells reaches a threshold;
  • An insulating member covers the bus member to prevent emissions from the battery cells from short-circuiting at least one of the battery cells when the pressure relief mechanism is actuated.
  • a device for manufacturing a battery comprising:
  • a first means for providing a plurality of battery cells wherein the battery cells include a pressure relief mechanism for actuating to relieve the battery cells when the internal pressure or temperature of the battery cells reaches a threshold value release the internal pressure;
  • a second device for electrically connecting the plurality of battery cells through the busbar
  • the battery provided by the embodiment of the present application, by disposing an insulating member to cover the busbar, it is possible to prevent the discharge from the battery cell pressure relief mechanism from being sputtered onto the busbar or other conductive objects when the battery is thermally out of control, thereby reducing the cost of the battery.
  • the probability of short-circuit or high-voltage ignition of small battery cells improves the safety of the battery during use.
  • FIG. 1-A is a schematic structural diagram of an electrical device according to an embodiment of the present application.
  • FIG. 1-B is a schematic structural diagram of a battery according to an embodiment of the present application.
  • 1-C is a schematic structural diagram of a battery module according to an embodiment of the present application.
  • 1-D is a schematic structural diagram of a battery cell according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of the interior of a battery case according to an embodiment of the present application.
  • FIG. 3 is an exploded schematic diagram of the structure shown in FIG. 2 according to an embodiment of the present application.
  • FIG. 4 is an exploded schematic diagram of another internal structure of a battery case according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of the interior of still another battery case according to an embodiment of the present application.
  • FIG. 6 is an exploded schematic diagram of the structure shown in FIG. 5 according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of the isolation component and the protective component shown in FIG. 6 according to an embodiment of the present application.
  • FIG. 8 is a partial enlarged view of part A in FIG. 7 according to an embodiment of the present application.
  • FIG. 9 is a flowchart of a method for manufacturing a battery according to an embodiment of the present application.
  • FIG. 10 is a block diagram of an apparatus for manufacturing a battery according to an embodiment of the present application.
  • a physical connection can be a fixed connection, such as a fixed connection through a fastener, such as a fixed connection through screws, bolts or other fasteners; a physical connection can also be a detachable connection, such as Mutual snap connection or snap connection; the physical connection can also be an integral connection, for example, welding, bonding or integrally forming a connection for connection.
  • it may be directly connected, that is, physically connected, or indirectly connected through at least one intermediate element.
  • the signal connection can also refer to the signal connection through a media medium, such as radio waves, in addition to the signal connection through the circuit.
  • the coordinate system in FIG. 1-D defines the various orientation directions of the battery
  • the x-direction represents the length direction of the battery cell 400
  • the y direction is perpendicular to the x direction in the horizontal plane, indicating the width direction of the battery cell 400
  • the z direction is perpendicular to the x direction and the y direction, indicating the height direction of the battery.
  • a rechargeable battery may be called a secondary battery or a power battery.
  • a widely used rechargeable battery is a lithium battery, such as a lithium-sulfur battery, a sodium-lithium-ion battery or a magnesium-ion battery, but not limited thereto.
  • the rechargeable batteries may be collectively referred to as batteries herein.
  • the safety feature of the battery is an important feature to measure the battery, and it is necessary to ensure the safety of the battery as much as possible during use or charging.
  • a battery is generally composed of a plurality of battery cells connected and combined.
  • the battery cells are subject to external short circuit, overcharge, needle stick, flat plate impact, etc., the battery cells are prone to thermal runaway.
  • the thermal runaway of the battery cell occurs, emissions will be generated inside the battery cell, and the emissions include high-temperature flue gas (in severe cases, open fire) and volatile high-temperature electrolyte and other substances. These emissions are in the process of discharging. Thermal diffusion will occur, resulting in thermal runaway of other battery cells, and even accidents such as explosions.
  • the emissions from battery cells improved in this application include, but are not limited to: electrolyte, dissolved or split positive and negative electrode sheets, fragments of separators, high-temperature and high-pressure gas generated by reflection, and flames. ,and many more.
  • the present application intends to provide a battery, which can prevent the high-temperature discharge ejected from the battery cell from being sputtered on the confluence component when the battery cell is thermally out of control, and reduce the problems of short circuit and high-voltage ignition of the battery cell happened. Therefore, the battery of the present application can not only control the thermal runaway of the battery cells in time to prevent them from further generating heat and high-temperature emissions, but also prevent the above-mentioned high-temperature emissions from splashing on the confluence components, reducing the occurrence of battery cells. Short circuit and high voltage ignition conditions.
  • the batteries in the embodiments of the present application can be applied to various electrical devices that can provide power sources with electrical energy.
  • the electrical device here can be, but not limited to, an electric vehicle, an electric train, an electric bicycle, a golf cart, a drone, or a ship.
  • the electric device may be a device powered only by a battery, or may be a hybrid device.
  • the battery provides electrical energy for the electric device, and drives the electric device to travel through the motor.
  • the electrical device can be a car
  • the car can be a fuel car, a gas car or a new energy car
  • the new energy car can be It is a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the car includes a battery 200 , a controller 210 and a motor 220 .
  • the battery 200 is used for supplying power to the controller 210 and the motor 220 as the operating power and driving power of the vehicle.
  • the battery 200 is used for the starting, navigation and running of the vehicle for working power requirements.
  • the battery 200 supplies power to the controller 210, the controller 210 controls the battery 200 to supply power to the motor 220, and the motor 220 receives and uses the power of the battery 200 as a driving power source for the vehicle, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle.
  • the battery 200 may include a plurality of battery modules 300 connected to each other. As shown in FIG. 1-B, the battery 200 includes a first casing 201, a second casing 202 and a plurality of A plurality of battery modules 300 , wherein the first casing 201 and the second casing 202 are fastened to each other, and the plurality of battery modules 300 are arranged in the space enclosed by the first casing 201 and the second casing 202 .
  • the battery module 300 includes a plurality of battery cells 400, and the plurality of battery cells 400 can be connected in series, in parallel or in a mixed connection to achieve a larger current or voltage, wherein the mixed connection is Refers to a combination of series and parallel. Continuing to refer to FIG.
  • the battery cells 400 can be placed upright, the height direction of the battery cells 400 is consistent with the z direction, the length direction of the battery cells 400 is consistent with the x direction, and a plurality of battery cells 400 along its width
  • the directions are arranged side by side in the y direction; or, the battery cells 400 can be laid flat, the width direction of the battery cells 400 is consistent with the z direction, the length direction of the battery cells 400 is consistent with the x direction, and the plurality of battery cells 400 are along the z direction
  • At least one layer may be stacked, each layer including a plurality of battery cells 400 spaced along the x-direction.
  • the battery cell 400 includes a housing 40, an electrode assembly 30, and an end cap assembly 10.
  • the end cap assembly 10 includes an end cap plate 10' that is connected to the housing 40 (eg, welding) to form the outer shell of the battery cell 400 , the electrode assembly 30 is disposed in the casing 40 , and the casing 40 is filled with electrolyte.
  • the battery cells 400 may be in the shape of a cube, a rectangular parallelepiped or a cylinder.
  • the electrode assembly 30 can be provided in a single or multiple. As shown in Figures 1-D, at least two independently wound electrode assemblies 30 may also be provided in the battery.
  • the electrode assembly 30 can be formed by winding or stacking the first pole piece, the second pole piece and the separator between the adjacent first pole pieces and the second pole piece together, wherein the separator is interposed between the adjacent first pole pieces and the second pole piece. An insulator between the first pole piece and the second pole piece.
  • the main body portion has two opposite end surfaces.
  • the first pole piece is exemplified as a positive electrode piece
  • the second pole piece is a negative electrode piece for description.
  • the positive active material is coated on the coated area of the positive electrode sheet, and the negative active material is coated on the coated area of the negative electrode sheet.
  • a plurality of uncoated regions extending from the coated regions of the body portion are stacked as tabs.
  • the electrode assembly includes two tabs 301 , namely a positive tab and a negative tab.
  • the positive tabs extend from the coated areas of the positive tabs, and the negative tabs extend from the coated areas of the negative tabs.
  • the end cap assembly 10 is arranged on the top of the electrode assembly 30. As shown in FIG. 1-D, the end cap assembly 10 includes an end cap plate 10' and two electrode terminals 5, and the two electrode terminals 5 are respectively a positive terminal and a negative terminal. Each electrode terminal 5 is provided with a corresponding connecting member 20 , and the connecting member 20 is located between the end cap plate 10 ′ and the electrode assembly 30 .
  • the tab 301 of the electrode assembly 30 in FIG. 1-D is at the top, the positive tab is connected to the positive terminal through one connecting member 20 , and the negative tab is connected to the negative terminal through another connecting member 20 .
  • the battery cell 400 may include two end cap assemblies 10 , which are respectively disposed on both ends of the casing 40 , and each end cap assembly 10 is provided with an electrode terminal 5 .
  • An explosion-proof member can also be provided on the end cover plate 10', when there is too much gas in the battery cell 400, the gas in the battery cell 400 is released in time to avoid explosion.
  • the end cover plate 10' is provided with an exhaust hole, and the exhaust hole can be arranged in the middle position of the end cover plate 10' along the length direction.
  • the explosion-proof component includes a pressure relief mechanism 6, and the pressure relief mechanism 6 is arranged on the exhaust hole. Under normal conditions, the pressure relief mechanism 6 is sealed and installed in the exhaust hole. When the battery expands, the air pressure in the outer casing rises beyond the preset value. When the value is reached, the pressure relief mechanism 6 is actuated to open, and the gas is released through the pressure relief mechanism 6 to the outside.
  • the pressure relief mechanism 6 refers to an element or component that can be actuated to release the internal pressure and/or internal substances when the internal pressure or internal temperature of the battery cell 400 reaches a predetermined threshold.
  • the pressure relief mechanism 6 may specifically take the form of an explosion-proof valve, an air valve, a pressure relief valve or a safety valve, etc., and may specifically adopt a pressure-sensitive or temperature-sensitive element or structure, that is, when the internal pressure or temperature of the battery cell 400 is When the predetermined threshold value is reached, the pressure relief mechanism 6 performs an action or the weak structure provided in the pressure relief mechanism 6 is destroyed, thereby forming an opening or a channel for releasing the internal pressure.
  • the threshold referred to in this application can be a pressure threshold or a temperature threshold, and the design of the threshold varies according to different design requirements, for example, it can be based on the internal pressure or internal temperature of the battery cell 400 that is considered to be dangerous or at risk of runaway design or determine the threshold. And, the threshold value may depend on, for example, the materials used for one or more of the positive electrode sheet, the negative electrode sheet, the electrolyte and the separator in the battery cell 400 .
  • the “actuation” mentioned in this application means that the pressure relief mechanism 6 is actuated or activated to a certain state, so that the internal pressure of the battery cell 400 can be released.
  • the action produced by the pressure relief mechanism 6 may include, but is not limited to, at least a portion of the pressure relief mechanism 6 is ruptured, broken, torn or opened, and the like.
  • the emissions from the battery cells 400 mentioned in this application include, but are not limited to: electrolyte, dissolved or split positive and negative electrode sheets, fragments of separators, high-temperature and high-pressure gas generated by the reaction, flames, etc. .
  • the high-temperature and high-pressure discharge is discharged toward the direction of the battery cell 400 where the pressure relief mechanism 6 is provided, and may be discharged more specifically in the direction of the area where the pressure relief mechanism 6 is actuated, and the power and destructive power of such discharge may be very high. large, and may even be enough to break through one or more structures such as the cover in that direction.
  • the end cap plate 10 ′ is provided with through holes for injecting electrolyte into the battery cells 400 , and the through holes can be round holes, elliptical holes, polygonal holes or other holes. shape of the hole, and can extend along the height direction of the end cap plate 10'.
  • the end cover plate 10' is provided with a liquid injection member 2 for closing the through hole.
  • the battery 200 provided by the embodiment of the present application includes a plurality of battery cells 400 , a bus component 500 and an insulating component 600 , wherein the plurality of battery cells 400 are configured to be electrically connected through the bus component 500 .
  • the battery cell 400 further includes a pressure relief mechanism 6, which is used for actuating to release the internal pressure when the internal pressure or temperature of the battery cell 400 reaches a threshold value; the insulating part 600 is used for covering the bus part 500, To prevent the discharge from the battery cells 400 from short-circuiting the at least one battery cell 400 when the pressure relief mechanism 6 is actuated.
  • the bus component 500 can be electrically connected to the plurality of battery cells 400 by welding or bolting.
  • the plurality of battery cells 400 are configured to be electrically connected through the bus component 500, and the bus component 500 is used to transmit the current generated by the battery cells 400, so that the series connection between the plurality of battery cells 400 can be realized. and/or in parallel.
  • each battery cell 400 includes a pressure relief mechanism 6 , and the pressure relief mechanism 6 is used to actuate when the internal pressure or temperature of the battery cell 400 reaches a threshold, so as to release the internal pressure of the battery cell 400 . pressure.
  • the arrangement position and structural form of the pressure relief mechanism 6 have been described in detail in the above embodiments.
  • the pressure relief mechanism 6 is provided at the exhaust hole of the end cover plate 10'.
  • the pressure relief mechanism 6 In a normal state, the pressure relief mechanism 6 is sealed and installed at the exhaust hole; when the battery cell 400 expands and the pressure or temperature in the outer casing rises beyond the threshold, the pressure relief mechanism 6 will be actuated to open, and the battery cell will be opened. High-temperature emissions such as gas inside 400 will be released from the pressure relief mechanism 6, so that the pressure inside the battery cell 400 can be released to avoid dangerous accidents such as explosions.
  • the confluence component 500 can be isolated and wrapped, so as to prevent the failure of one or some battery cells 400 from the pressure relief mechanism 6
  • part of the discharge is sputtered onto the confluence component 500 , causing the positive and negative electrodes of some battery cells 400 to directly contact and short-circuit, thereby reducing the occurrence of short-circuit or high-voltage ignition of the battery 200 .
  • the battery module 300 inside the battery 200 includes a plurality of battery cells 400, each battery cell 400 is provided with two electrode terminals 5, and the two electrodes
  • the terminals 5 are respectively a positive terminal and a negative terminal, wherein the positive terminal is connected to the positive tab of the electrode assembly 30 , and the negative terminal is connected to the negative tab of the electrode assembly 30 .
  • the function of the bus component 500 is to connect the electrode terminals 5 on the adjacent battery cells 400 to realize the series or parallel connection of the plurality of battery cells 400 .
  • a bus component 500 is connected to the electrode terminals 5 of two adjacent battery cells 400, if the connected electrode terminals 5 on the above two battery cells 400 are both positive terminals, or both When it is the negative terminal, the bus component 500 realizes the parallel connection of the two battery cells 400 . If the electrode terminals 5 on the above two battery cells 400 are connected, one is a positive terminal and the other is a negative terminal, the bus component 500 realizes the series connection of the two battery cells 400 .
  • the two electrode terminals 5 may be located on the same side of the battery cell 400 , they may also be located on both sides of the battery cell 400 . Therefore, the bus components 500 may be located on the same side of the battery cells 400 , or may be located on both sides of the battery cells 400 .
  • the insulating member 600 provided in the embodiment of the present application is mainly used to cover the side of the battery cell 400 with the pressure relief mechanism 6 .
  • the confluence member 500 on the side of the pressure relief mechanism 6 is prevented from being directly sputtered onto the confluence member 500 near the pressure relief mechanism 6 .
  • the electrode terminal 5 can be arranged on the side without the pressure relief mechanism 6.
  • the insulating member 600 can also cover the side without the pressure relief mechanism 6.
  • the confluence part 500 on one side of the mechanism 6 is used to prevent the discharge from flowing along the battery cells 400 to the above confluence part 500 , so as to achieve the purpose of covering the confluence part 500 completely.
  • a battery module 300 generally includes a plurality of battery cells 400 , therefore, there may also be a plurality of bus components 500 connecting the above-mentioned plurality of battery cells 400 .
  • one electrode terminal 5 on one battery cell 400 is connected to one electrode terminal 5 on the adjacent battery cell 400 through a busbar 500 , that is, for one battery 200 , , which contains a plurality of bus components 500 .
  • each insulating member 600 covers at least one bus member 500 .
  • the insulating member 600 may be arranged in a long strip shape, and one insulating member 600 covers the plurality of bus members 500 on the plurality of battery cells 400 arranged in the same row along the y direction. ; Similarly, the insulating member 600 may also be arranged in a shape that can cover multiple rows of bus members 500 . That is to say, the length of the insulating member 600 may be the same as the length of the combination of the plurality of battery cells 400 in the same row. The function of covering the confluence component 500 and preventing the short circuit of the battery cells caused by the discharge flow released by the pressure relief mechanism 6 is sufficient.
  • the length and width of the insulating component 600 are not specifically limited in this embodiment of the present application.
  • the insulating member 600 may be provided in an integrated structure to cover all the bus members 500 on the plurality of battery cells 400 .
  • the plurality of battery cells 400 may be in one battery module 300 or may be in multiple battery modules 300 , which is not particularly limited in this embodiment of the present application.
  • the insulating member 600 In practical applications, in order to avoid the blocking of the pressure relief mechanism 6 by the insulating member 600 , thus causing the pressure relief mechanism to fail to actuate, the insulating member 600 needs to avoid the pressure relief mechanism 6 on the battery cell 400 to ensure the pressure relief mechanism 6 can be actuated normally. For example, when the insulating members 600 are elongated, the distance between adjacent insulating members should be sufficient to avoid the pressure relief mechanism 6 on the battery cells 400 .
  • a first avoidance hole 610 needs to be provided on the insulating member 600 to avoid the pressure relief mechanism 6 , so that the discharge from the pressure relief mechanism 6 can be discharged from the first escape hole 610 .
  • the number of the first avoidance holes 610 should be the same as the number of the pressure relief mechanisms 6 , the position of the first avoidance holes 610 is opposite to the position of the pressure relief mechanism 6 , and the shape of the first avoidance holes 610 can be the same as that of the pressure relief mechanism 6 .
  • the shape of 6 is the same, or slightly larger than the shape of the pressure relief mechanism 6 to ensure that the discharge from the pressure relief mechanism 6 is not blocked.
  • a plurality of battery cells 400 are stacked to form a battery module 300 , and the insulating member 600 is configured to cover the bus member 500 located on the adjacent battery modules 300 .
  • the bus component 500 connecting the two electrode terminals 5 on adjacent battery modules 300 is perpendicular to the arrangement direction of other bus components 500 , and the bus component 500 can be covered by two insulating components 600 .
  • the bus part 500 may also be covered by an insulating part 600 with a larger width, which is not particularly limited in this embodiment of the present application.
  • the battery 200 may further include an isolation member 700 , and the isolation member 700 is used to install the bus member 500 .
  • the isolation member 700 is disposed on the battery cell 400
  • the confluence member 500 is disposed on the side of the isolation member 700 away from the battery cell 400
  • the isolation member 700 also has an escape area 720 , as shown in FIG.
  • the area 720 is configured to expose at least part of the bus part 500 , that is, the avoidance area 720 is a through hole, so that the bus part 500 is electrically connected with the battery cell 400 , specifically, the bus part 500 is connected with the electrode terminal 5 of the battery cell 400 .
  • the avoidance area 720 is a through hole matching the shape of the electrode terminal 5 , and the electrode terminal 5 can be connected to the bus component 500 through the through hole, so as to save the space inside the battery 200 and make the isolation component 700
  • the connection with the battery cell 400 is tighter, and the structure of the entire battery 200 is more compact.
  • the isolation member 700 in order to prevent the isolation member 700 from blocking the pressure relief mechanism 6, the isolation member 700 is provided with a second avoidance hole 710 to avoid the pressure relief mechanism 6, so that the discharge from the pressure relief mechanism 6 can be discharged from the pressure relief mechanism 6.
  • the second escape hole 710 and the first escape hole 610 are discharged.
  • the position of the second avoidance hole 710 is opposite to the position of the first avoidance hole 610 and the position of the pressure relief mechanism 6 , the number of the second avoidance hole 710 is the same as that of the pressure relief mechanism 6 , the first avoidance hole 610
  • the shape of the pressure relief mechanism 6 may be the same as that of the pressure relief mechanism 6 , or slightly larger than the shape of the pressure relief mechanism 6 to ensure that the discharge from the pressure relief mechanism 6 is not blocked.
  • the shape of the second avoidance hole 710 may be the same as the shape of the first avoidance hole 610 to facilitate processing and installation and positioning.
  • the isolation member 700 may be a wire harness isolation plate assembly, and the wire harness isolation plate assembly may form an integral structure with the busbar member 500 through a hot pressing process, and the isolation member 700 may be close to the size of the battery module 300
  • the one-piece structure is used to electrically connect all the battery cells 400 in the battery module 300 .
  • the confluence component 500 is installed on the isolation component 700 .
  • the confluence component 500 can be provided with an escape area 720 connected to the electrode terminal 5 , and on the other hand, confluence can be avoided.
  • the component 500 is in contact with other components on the battery cell 400 to avoid interference during the current transfer process.
  • the insulating member 600 also needs to block the escape area. 720 , that is, the avoidance area 720 is shielded while shielding the bus component 500 .
  • blocking the confluence component 500 and the avoidance area 720 refers to covering the confluence component 500 and the avoidance area 720 .
  • the insulating member 600 needs to avoid the second avoidance hole 710 while covering the confluence member 500 and the avoidance area 720 to ensure that the discharge released by the pressure relief mechanism 6 can be ejected smoothly.
  • the insulating component 600 may be directly connected to the isolation component 700 outside the avoidance area 720, and the connection method may be a sticking type, welding type, coating type, coating type or One or more of the spray type.
  • the insulating component 600 may be at least one of the following: epoxy resin film, mica paper, electrophoretic film, asbestos layer, ceramic layer, silicon oxide film, silicon nitride film, aluminum oxide Film, aluminum nitride film, polyimide film, polyethylene film, polyvinylidene fluoride film and teflon film.
  • the thickness of the insulating member 600 may be set according to the actual situation, for example, the thickness of the insulating member 600 may be 0.5-3 mm.
  • the thickness of the insulating member 600 is required to be thin enough under the condition of sufficient corrosion resistance, that is, under the condition of not being corroded by high temperature and high pressure discharges, so as to save the space inside the battery 200 and improve the energy density of the battery , the specific thickness of the insulating member 600 is not particularly limited in this embodiment of the present application.
  • the high-temperature and high-pressure emissions discharged from the battery cells 400 are mainly discharged in the direction of the pressure relief mechanism 6, and specifically in the direction of the area where the pressure relief mechanism 6 is actuated. And the destructive force may be large enough to break through one or more structures in that direction, causing safety problems. In addition, after thermal runaway occurs inside the battery cell 400 , high voltage and high heat inside the battery cell 400 may continue to be generated, resulting in continuous safety hazards.
  • a fire protection system can be installed in the box of the battery 200 , and the fire protection pipeline 800 of the fire protection system is arranged above the side of the battery cell 400 with the pressure relief mechanism.
  • the fire fighting pipeline 800 is used to contain the fire fighting medium, and the fire fighting pipeline 800 is configured to discharge the fire fighting medium to the battery cells 400 when the pressure relief mechanism 6 is actuated, so that the discharge from the pressure relief mechanism 6 can be cooled and reduced
  • the fire-fighting medium can further flow into the battery cell 400 through the actuated pressure relief mechanism 6 , thereby further cooling the battery cell 400 and enhancing the safety of the battery 200 .
  • the pressure relief mechanism 6 when the pressure relief mechanism 6 is actuated, the discharge from the battery cells 400 can damage the fire fighting pipeline 800 , so that the fire fighting medium in the fire fighting pipeline 800 is discharged.
  • the insulating member 600 is also used to prevent the fire-fighting medium flowing out of the fire-fighting pipe 800 from short-circuiting the at least one battery cell 400 when the pressure relief mechanism 6 is actuated. That is to say, the insulating member 600 provided in the embodiment of the present application can not only prevent the short circuit of the battery cells 400 caused by the discharge from the pressure relief mechanism 6 , but also prevent the battery cells 400 from being short-circuited by the fire-fighting medium discharged from the fire-fighting pipe 800 . short circuit.
  • the fire-fighting pipe 800 is arranged at a position opposite to the pressure relief mechanism 6 .
  • the isolation member 700 is provided on the upper part of the pressure relief mechanism 6, the discharge from the pressure relief mechanism 6 can be discharged from the second escape hole 710 of the isolation member 700. Therefore, the fire fighting pipeline 800 is provided with A position opposite to the second escape hole 710 at the upper part of the isolation member 700 . In order to realize the opposite of the fire fighting pipeline 800 and the pressure relief mechanism 6 .
  • the fire fighting pipeline 800 includes a first area corresponding to the pressure relief mechanism 6 and a second area located on the outer periphery of the first area, and the first area is used to be destroyed when the pressure relief mechanism 6 is actuated to make the fire fighting medium Draining, the second zone serves to remain intact when the pressure relief mechanism 6 is actuated to enable the flow of fire fighting medium from the second zone to the first zone.
  • the fire fighting duct 800 is configured to destroy the first area by the discharge from the battery cells 400 when the pressure relief mechanism 6 is actuated, so that the fire fighting medium is discharged from the first area and via the pressure relief mechanism 6 into the interior of the battery cell 400 .
  • the above-mentioned high-temperature and high-pressure discharges may be
  • the first area of the fire fighting pipeline 800 will be sprayed through, so that the fire fighting medium flows out of the fire fighting pipeline 800 and flows into the battery cell 400 through the pressure relief mechanism 6 , thereby implementing fire fighting inside the battery cell 400 .
  • the first area of the fire fighting pipeline 800 is sprayed through the high temperature and high pressure discharge from the inside of the battery cells 400 , so that accurate fire fighting of the faulty battery cells 400 can be achieved. Since only the first area of the fire fighting pipeline 800 opposite to the faulty battery cell 400 is sprayed through, while the second area remains intact, the fire fighting medium can flow out to the first area in a concentrated manner to achieve better fire fighting effect.
  • the fire-fighting medium discharged from the fire-fighting pipeline 800 can enter the battery cell 400 from the pressure relief mechanism 6 , the above-mentioned precise fire-fighting method in the embodiment of the present application can improve the utilization rate of the fire-fighting medium and achieve Better firefighting effect.
  • the first area in order to facilitate the first area of the fire fighting pipeline 800 to be sprayed through, the first area may be a first weak area, and the first weak area is used to be destroyed by the discharge when the pressure relief mechanism 6 is actuated, thereby It is beneficial for the fire-fighting medium to be discharged from the first weak area to achieve the purpose of fire-fighting.
  • the first weak area may be weak in structure, for example, the thickness of the first weak area is thinner than that of other parts of the fire fighting pipeline 800; or, the first weak area may also be in material Weakness, for example, the material of the first weak area may be a material that is conducive to being damaged by the high temperature and high pressure discharges ejected from the battery cell 400; lower.
  • This embodiment of the present application does not make any special limitation on this.
  • the fire fighting medium can be a fluid, which can be a liquid or a gas.
  • the fire fighting pipeline 800 may not contain any substance; and in the case where the pressure relief mechanism 6 is actuated, the fire fighting medium 800 can be accommodated in the fire fighting pipeline 800, for example, it can be The entry of the fire fighting medium into the fire fighting pipeline 800 is controlled by the switch valve.
  • the fire fighting pipeline 800 may always contain a fire fighting medium, and the fire fighting medium may also be used to adjust the temperature of the battery cells 400 . Adjusting the temperature refers to heating or cooling the plurality of battery cells 400 .
  • the fire duct 800 is used to contain a cooling fluid to reduce the temperature of the plurality of battery cells 400.
  • the fire duct 800 may also be referred to as a cooling component, a cooling system or a cooling system Pipes, etc.
  • the fire-fighting medium contained in it can also be called cooling medium or cooling fluid, more specifically, it can be called cooling liquid or cooling gas.
  • the fire fighting medium can be circulated for better temperature regulation.
  • the fire-fighting medium can be water, a mixture of water and glycol, or air, or the like.
  • the fire fighting pipeline 800 may be a long pipe, and the cross-sectional shape of the fire fighting pipeline 800 may be various shapes such as a square, a circle, and a semicircle, which are not particularly limited in the embodiment of the present application.
  • the size of the fire-fighting pipe 800 may be determined according to the actual size of the battery, which is not particularly limited in this embodiment of the present application.
  • a plurality of battery cells 400 need to be arranged inside a battery 200 , and the plurality of battery cells 400 can be connected in series, parallel or mixed to form a battery module 300 .
  • a plurality of battery cells 400 are set as at least one battery module 300 , each battery module 300 includes at least one battery cell 400 , and the pressure relief mechanism 6 of the battery cell 400 in each battery module 300 Both are set opposite to a fire pipeline 800 .
  • One battery module 300 corresponds to one fire fighting pipeline 800 , and the pressure relief mechanisms of the battery cells 400 inside the battery module 300 are all opposite to the same fire fighting pipeline 800 , so that the same fire fighting pipeline 800 can be used for the same fire protection pipeline 800 .
  • a plurality of battery cells 400 are used for fire fighting, so that the number of fire fighting pipes 800 can be saved and costs can be saved.
  • the battery 200 provided in the embodiment of the present application further includes a protective component 900 , and the protective component 900 is disposed between the fire fighting pipeline 800 and the battery cell 400 to protect the second area and avoid the leakage from the pressure relief mechanism 6 .
  • the discharge destroys the second area, thereby preventing the fire-fighting medium in the fire-fighting pipeline 800 from flowing out of the battery cells 400 through the second area and failing to achieve a good fire-fighting effect.
  • the protective component 900 includes a third area 910 and a fourth area 920.
  • the third area 910 is used to protect the second area of the fire pipeline 800 when the pressure relief mechanism 6 is actuated
  • the fourth area 920 is used to The pressure relief mechanism 6, when actuated, enables emissions from the battery cells 400 to pass through the fourth region 920 to disrupt the first region.
  • the third area 910 is a protective area
  • the fourth area 920 is a second weak area.
  • the second weak area is beneficial for the high-temperature and high-pressure discharge from the battery cells 400 to spray through the protective component 900 more quickly. , and then spray through the fire fighting pipeline 800, thereby improving the timeliness of fire fighting.
  • the protection area and the weak area at the same time, the directional discharge of the fire-fighting medium in the fire-fighting pipeline 800 toward the pressure relief mechanism 6 of the battery cell 400 can be realized, which is beneficial to efficiently solve the safety problem of thermally runaway cells, rapidly cool the temperature, and improve the battery life during use. safety performance.
  • the second weak region may be weak in structure, for example, the thickness of the second weak region is thinner than that of the third region 910; or, the second weak region may also be weak in material
  • the material of the second weak area may be a material that is conducive to being damaged by high temperature and high pressure discharges ejected from the inside of the battery cells 400 ; or the strength of the second weak area may be lower than that of the third area 910 ; or, the second weak area is a through hole penetrating through the protective member 900 .
  • This embodiment of the present application does not make any special limitation on this.
  • the protective member 900 is configured to form a first groove 930 for accommodating the fire fighting pipe 800 , and the first groove 930 is used for collecting the flow of the battery when the pressure relief mechanism 6 is actuated. Fire fighting medium within the unit 400.
  • the fourth region is provided on the bottom wall of the first groove 930 in the region corresponding to the first region.
  • the spraying of fire-fighting medium from the fire-fighting pipeline 800 is generally performed at the same time as the discharge of the discharge from the pressure relief mechanism 6, so the fire-fighting medium sprayed from the fire-fighting pipeline 800 is likely to splash. , so as to flow out from the outside of the pressure relief mechanism 6, resulting in waste.
  • the first groove 930 is provided, and the first groove 930 collects the fire fighting medium sprayed from the fire fighting pipe 800, so that the fire fighting medium that does not flow into the battery cell 400 from the pressure relief mechanism 6 can be temporarily stored In the first groove 930, and flow into the pressure relief mechanism 6 from the first groove 930 when conditions permit, for example, the above conditions refer to when the pressure relief mechanism 6 has no discharge, or is discharged When the speed is reduced, etc., this embodiment of the present application does not make any special limitation on this.
  • the guard member 900 is installed on the isolation member 700 .
  • the protective component 900 can be fixed on the isolating component 700 in different ways.
  • the protective component 900 can be fastened to the isolating component 700 by snaps, or can be fixed on the isolating component 700 by gluing or welding.
  • it can also be integrally formed with the isolation member 700 by means of integral molding, which is not particularly limited in this embodiment of the present application.
  • a second groove can be provided on the isolation member 700, and the protective member 900 can be installed in the second groove.
  • the position and size of the second groove can be adjusted according to the protection It is set according to the actual situation of the component 900, and the comparison of the embodiments of the present application is not particularly limited.
  • the arrangement direction of the fire duct 800 and the protective member 900 will be described based on the arrangement direction of the plurality of battery cells 400 in the battery module 300 .
  • the fire fighting pipe 800 is arranged on the protective member 900 , and the fire fighting pipe 800 is located between two adjacent insulating members 600 .
  • one battery module 300 includes a plurality of battery cells 400 arranged in a predetermined direction, and the length direction of the fire duct 800 is consistent with the arrangement direction of the plurality of battery cells 400 . So that the pressure relief mechanism 6 of each battery cell 400 is opposite to the fire fighting pipe 800 , that is, one fire fighting pipe 800 provides fire fighting service for a plurality of battery cells 400 in one battery module 300 .
  • the longitudinal direction of the fire duct 800 is consistent with the arrangement direction of the plurality of battery cells 400
  • the longitudinal direction of the protective member 900 is also consistent with the alignment direction of the plurality of battery cells 400.
  • the present application also provides an electrical device configured to receive power provided from the above-mentioned battery.
  • an electrical device configured to receive power provided from the above-mentioned battery.
  • the specific structural form and working principle of the battery 200 have been described in detail in the above-mentioned embodiments, which will not be repeated in this embodiment.
  • the battery is provided with insulating parts, and the insulating parts are used to cover the bus parts, so that the discharge from one or some faulty battery cells can be prevented from being released.
  • the material is discharged, part of the discharged material is sputtered onto conductive objects such as bus components, thereby reducing the probability of short-circuiting or high-voltage ignition of the battery cells.
  • the present application also provides a method of manufacturing a battery.
  • a method of manufacturing a battery according to the present application is shown, and the method of manufacturing a battery may include the following steps.
  • Step S910 providing a plurality of battery cells, wherein the battery cells include a pressure relief mechanism, and the pressure relief mechanism is used to actuate to release the internal pressure when the internal pressure or temperature of the battery cells reaches a threshold value.
  • Step S920 the plurality of battery cells are electrically connected through the bus components.
  • Step S930 covering the busbar with the insulating member to prevent the discharge from the battery cells from short-circuiting at least one battery cell when the pressure relief mechanism is actuated.
  • the pressure relief mechanism 6 needs to be prepared on the battery cells 400 , and the electrode terminals 5 of the plurality of battery cells 400 are electrically connected by preparing the bus parts 500 .
  • the insulating member 600 also needs to be prepared, and the insulating member 600 is covered on the confluence member 500. Specifically, one or more of sticking, welding, coating, coating or spraying In this way, the insulating member 600 is covered on the bus member 500 .
  • the battery 200 also includes other components, which can be manufactured by corresponding methods to finally obtain the desired battery 200 .
  • any method that can manufacture related components and connect related components falls within the protection scope of the embodiments of the present application, and the embodiments of the present application will not be described in detail here.
  • the present application also provides an apparatus for manufacturing a battery.
  • a block diagram of an apparatus for manufacturing a battery according to an embodiment of the present application is shown.
  • the apparatus 1000 for manufacturing a battery may include: a first apparatus 1010 , a second apparatus 1020 and a third apparatus 1030 .
  • the first device 1010 is configured to provide a plurality of battery cells; wherein the battery cells include a pressure relief mechanism, and the pressure relief mechanism is actuated to release the internal pressure when the internal pressure or temperature of the battery cells reaches a threshold value.
  • the second device 1020 is used to electrically connect a plurality of battery cells through the busbar.
  • Third means 1030 for covering the busbar with an insulating member to prevent the discharge from the battery cells from short-circuiting at least one of the battery cells when the pressure relief mechanism is actuated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)
  • Gas Exhaust Devices For Batteries (AREA)

Abstract

本申请涉及一种电池、用电装置、制造电池的方法及装置,其中,电池包括:多个电池单体,多个电池单体被构造成通过汇流部件电连接;电池单体包括泄压机构,泄压机构用于在电池单体的内部压力或温度达到阈值时致动以泄放内部压力;绝缘部件,用于覆盖汇流部件,以防止在泄压机构致动时来自电池单体的排放物将至少一个电池单体短路。通过绝缘部件来覆盖汇流部件,可以防止从某一个或某一些发生故障的电池单体释放排放物时,部分排放物溅射到汇流部件等导电物体上,从而可以减小电池单体发生短路或者高压打火的概率。

Description

电池、用电装置、制造电池的方法及装置 技术领域
本申请涉及电池技术领域,尤其是涉及一种电池、用电装置、制造电池的方法及装置。
背景技术
近年来,新能源汽车的出现对于社会发展和环境保护均起到了巨大的推动作用,电池作为一种重要的动力新能源,在新能源汽车领域中被广泛应用。
目前,电池在使用过程中发生热失控而自燃是引起新能源汽车安全事故的一大因素。电池中的某一个电池单体在发生热失控时,会从电池单体中喷射出高温排放物,该高温排放物飞溅到周围的电池单体,引发严重的安全事故。
发明内容
本申请提供一种电池、用电装置、制造电池的方法及装置,可以减少由于电池热失控而引发的安全事故。
本申请的第一方面提供一种电池,包括:
多个电池单体,所述多个电池单体被构造成通过汇流部件电连接;
所述电池单体包括泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;
绝缘部件,用于覆盖所述汇流部件,以防止在所述泄压机构致动时来自所述电池单体的排放物将至少一个所述电池单体短路。
在一些实施例中,所述绝缘部件和所述汇流部件均设置有多个,每 个所述绝缘部件覆盖至少一个所述汇流部件。
在一些实施例中,所述多个电池单体堆叠形成电池模组;所述绝缘部件被配置为覆盖位于相邻所述电池模组上的汇流部件。
在一些实施例中,所述绝缘部件的厚度为0.5-3毫米。
在一些实施例中,还包括消防管道,用于容纳消防介质,所述消防管道被配置为在所述泄压机构致动时向所述电池单体排出所述消防介质;所述绝缘部件,用于防止在所述泄压机构致动时所述消防介质将至少一个所述电池单体短路。
在一些实施例中,所述消防管道包括与所述泄压机构对应的第一区域以及位于所述第一区域外周的第二区域,所述第一区域用于在所述泄压机构致动时被破坏以使所述消防介质排出,所述第二区域用于在所述泄压机构致动时保持完整以使所述消防介质能够从所述第二区域流向所述第一区域。
在一些实施例中,还包括防护部件,设置于所述消防管道和所述电池单体之间以保护所述第二区域。
在一些实施例中,所述防护部件包括第三区域和第四区域,所述第三区域用于在所述泄压机构致动时保护所述消防管道的所述第二区域,所述第四区域用于在所述泄压机构致动时使得来自所述电池单体的排放物能够通过所述第四区域破坏所述第一区域。
在一些实施例中,所述防护部件被配置为形成容纳所述消防管道的第一凹槽,所述第一凹槽用于在所述泄压机构致动时收集用于流入所述电池单体内的所述消防介质。
在一些实施例中,在所述第一凹槽的底壁上与所述第一区域对应的区域设置有所述第四区域。
在一些实施例中,还包括:隔离部件,所述隔离部件用于安装所述汇流部件。
在一些实施例中,所述隔离部件具有避让区,所述避让区被配置为暴 露至少部分所述汇流部件,以使所述汇流部件与所述电池单体电连接。
在一些实施例中,所述隔离部件设置有第二凹槽,所述防护部件设置在所述第二凹槽内。
根据本申请的第二方面,提供了一种用电装置,所述用电装置被配置为接收从上述的电池提供的电力。
根据本申请的第三方面,提供了一种制造电池的方法,包括:
提供多个电池单体,其中,所述电池单体包括泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;
将所述多个电池单体通过汇流部件电连接;
将绝缘部件覆盖所述汇流部件,以防止在所述泄压机构致动时来自所述电池单体的排放物将至少一个所述电池单体短路。
根据本申请的第四方面,提供了一种制造电池的装置,包括:
第一装置,用于提供多个电池单体,其中,所述电池单体包括泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;
第二装置,用于将所述多个电池单体通过汇流部件电连接;
第三装置,用于将绝缘部件覆盖所述汇流部件,以防止在所述泄压机构致动时来自所述电池单体的排放物将至少一个所述电池单体短路。
根据本申请实施例提供的电池,通过设置绝缘部件来覆盖汇流部件,可以防止电池热失控时从电池单体泄压机构释放的排放物溅射到汇流部件或其他导电的物体上,从而可以减小电池单体发生短路或者高压打火的概率,提升电池使用过程当中的安全性。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下 面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1-A为本申请实施例的一种用电装置的结构示意图。
图1-B为本申请实施例的一种电池的结构示意图。
图1-C为本申请实施例的一种电池模块的结构示意图。
图1-D为本申请实施例的一种电池单体的结构示意图。
图2为本申请实施例的一种电池壳体内部的结构示意图。
图3为本申请实施例的图2所示结构的分解示意图。
图4为本申请实施例的另一种电池壳体内部结构的分解示意图。
图5为本申请实施例的再一种电池壳体内部的结构示意图。
图6为本申请实施例的图5所示结构的分解示意图。
图7为本申请实施例的图6中所示的隔离部件和防护部件的结构示意图。
图8为本申请实施例的图7中A处的局部放大图。
图9为本申请实施例的一种制造电池的方法的流程图。
图10为本申请实施例的一种制造电池的装置的方框图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,为本申请的较佳实施例,并非依此限制本申请的保护范围,故:凡依本申请的结构、形状、原理所做的等效变化,均应涵盖于本申请的保护范围之内。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语“实施例”并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
此外,本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序,可以明示或者隐含地包括一个或者更多个该特征。
在本申请的描述中,除非另有说明,“多个”的含义是指两个以上(包括两个),同理,“多组”指的是两组以上(包括两组)。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,机械结构的“相连”或“连接”可以是指物理上的连接,例如,物理上的连接可以是固定连接,例如通过固定件固定连接,例如通过螺丝、螺栓或其它固定件固定连接;物理上的连接也可以是可拆卸连接,例如相互卡接或卡合连接;物理上的连接也可以是一体地连接,例如,焊接、粘接或一体成型形成连接进行连接。电路结构的“相连”或“连接”除了可以是指物理上的连接,还可以是指电连接或信号连接,例 如,可以是直接相连,即物理连接,也可以通过中间至少一个元件间接相连,只要达到电路相通即可,还可以是两个元件内部的连通;信号连接除了可以通过电路进行信号连接外,也可以是指通过媒体介质进行信号连接,例如,无线电波。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请实施例中的具体含义。
为了在以下实施例中清楚地描述各个方位,可以使用一些方位用词,例如,如图1-D中的坐标系统对电池的各个方位方向进行了定义,x方向表示电池单体400的长度方向,y方向在水平面内与x方向垂直,表示电池单体400的宽度方向,z方向垂直于x方向和y方向,表示电池的高度方向。此外,上述描述的x方向、y方向以及z方向等用于说明本实施例的电池的各构件的操作和构造的指示方向的表述不是绝对的而是相对的,且尽管当电池的各构件处于图中所示的位置时这些指示是恰当的,但是当这些位置改变时,这些方向应有不同的解释,以对应所述改变。
基于相同的方位理解,在本申请的描述中,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
可充电电池可以称为二次电池或动力电池,目前,使用比较广泛的可充电电池为锂电池,例如,锂硫电池、钠锂离子电池或镁离子电池,但不局限于此。为描述方便,本文中可以将可充电电池统称为电池。
电池的安全特性是衡量电池的一个重要特性,在使用或充电时需要尽可能保证电池的安全性。
电池一般由多个电池单体连接组合而成,当电池单体发生外部短路、 过充、针刺、平板冲击等等情况时,电池单体容易发生热失控。在电池单体发生热失控的时候,该电池单体内部会产生排放物,该排放物包含高温烟气(严重者产生明火)和挥发的高温电解液等物质,这些排放物在排放的过程中会发生热扩散,从而导致其他电池单体发生热失控,甚至还会引发爆炸等事故。可以理解的是,本申请中所提高的来自电池单体的排放物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离膜的碎片、反映产生的高温高压气体、火焰,等等。
申请人发现,当某一个电池单体发生热失控的时候,会引起周围的电池单体短路或者高压打火等问题。
针对该问题,发明人经过研究发现,电池单体热失控下的短路和高压打火等问题是由于从电池内部排出的排放物与汇流部件接触而造成的。
鉴于此,本申请欲提供一种电池,可以在电池单体发生热失控时,防止从该电池单体喷出的高温排放物溅射到汇流部件上,减少电池单体短路和高压打火问题的发生。因此,本申请的电池,不仅能够及时对电池单体的热失控情况进行控制,防止其进一步产生热量和高温排放物,还能避免上述高温排放物飞溅到汇流部件上,减少了电池单体发生短路和高压打火的情况。
本申请实施例中的电池可应用于各种能够以电能提供动力来源的用电装置。此处的用电装置可以但并非仅限于电动汽车、电动列车、电动自行车、高尔夫球车、无人机或轮船等。并且,用电装置可为仅使用电池提供动力的装置,也可为混合动力型装置。电池为用电装置提供电能,并通过电机带动电动装置行进。
例如,如图1-A所示,为本申请一实施例的一种用电装置的结构示意图,用电装置可以为汽车,汽车可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。汽车包括电池200、控制器210和马达220。电池200用于向控制器210和马达220供电,作为汽车的操作电源和驱动电源,例如,电池200用于汽车的启动、导航和 运行时的工作用电需求。例如,电池200向控制器210供电,控制器210控制电池200向马达220供电,马达220接收并使用电池200的电力作为汽车的驱动电源,替代或部分地替代燃油或天然气为汽车提供驱动动力。
为了使得电池达到较高的功能以满足使用需求,电池200可以包括相互连接的多个电池模块300,如图1-B所示,电池200包括第一壳体201、第二壳体202和多个电池模块300,其中,第一壳体201和第二壳体202相互扣合,多个电池模块300排布在第一壳体201和第二壳体202围合形成的空间内。
如图1-C所示,电池模块300包括多个电池单体400,多个电池单体400可以通过串联、并联或混联的方式连接以实现较大的电流或电压,其中,混联是指串联和并联的组合。继续参考图1-C所示,电池单体400可立放,电池单体400的高度方向与z向一致,电池单体400的长度方向与x向一致,多个电池单体400沿其宽度方向并排设置在y向上;或者,电池单体400可以平放,电池单体400的宽度方向与z向一致,电池单体400的长度方向与x向一致,多个电池单体400沿z向可以堆叠至少一层,每一层包括沿x向间隔设置的多个电池单体400。
为了使本领域技术人员清楚地了解本申请的改进点,首先对电池单体400的整体结构进行说明。
如图1-D所示,电池单体400包括壳体40、电极组件30和端盖组件10,端盖组件10包括端盖板10’,端盖板10’与壳体40连接(例如,焊接)形成电池单体400的外壳,电极组件30设置在壳体40内,且壳体40内填充电解液。电池单体400可为立方体形、长方体形或圆柱体形。
根据实际使用需求,电极组件30可设置为单个,或多个。如图1-D所示,也可在电池内设置至少两个独立卷绕的电极组件30。电极组件30可通过将第一极片、第二极片以及位于相邻第一极片和第二极片之间的隔膜一同卷绕或堆叠而形成主体部,其中,隔膜是介于相邻第一极片和第二极片之间 的绝缘体。主体部具有相对的两个端面。在本实施例中,示例性地以第一极片为正极片,第二极片为负极片进行说明。正极活性物质被涂覆在正极片的涂覆区上,而负极活性物质被涂覆到负极片的涂覆区上。由主体部的涂覆区延伸出的多个未涂覆区层叠作为极耳。电极组件包括两个极耳301,即正极耳和负极耳。正极耳从正极片的涂覆区延伸出,而负极耳从负极片的涂覆区延伸出。
端盖组件10设在电极组件30顶部,如图1-D所示,端盖组件10包括端盖板10’和两个电极端子5,两个电极端子5分别为正极端子和负极端子,每个电极端子5对应设置一个连接构件20,连接构件20位于端盖板10’与电极组件30之间。
例如,图1-D中电极组件30的极耳301位于顶部,正极极耳通过一个连接构件20与正极端子连接,负极极耳通过另一个连接构件20与负极端子连接。可选的,电池单体400可以包括两个端盖组件10,分别设置于壳体40的两端,每个端盖组件10上设置一个电极端子5。
端盖板10’上还可设置防爆构件,当电池单体400内气体太多时及时释放电池单体400内的气体,避免发生爆炸。
端盖板10’上设有排气孔,排气孔可设在端盖板10’沿长度方向的中间位置。防爆构件包括泄压机构6,泄压机构6设在排气孔上,在正常状态下,泄压机构6密封安装于排气孔,在电池发生膨胀使外壳内的气压升高至超出预设值时,泄压机构6致动开启,气体通过泄压机构6向外释放。
泄压机构6是指在电池单体400的内部压力或内部温度达到预定阈值时能够致动以泄放内部压力和/或内部物质的元件或部件。泄压机构6具体可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏或温敏的元件或构造,即,当电池单体400的内部压力或温度达到预定阈值时,泄压机构6执行动作或者泄压机构6中设有的薄弱结构被破坏,从而形成可供内部压力泄放的开口或通道。本申请中所称的阈值可以是压力阈值或 温度阈值,该阈值的设计根据设计需求的不同而不同,例如可根据被认为是存在危险或失控风险的电池单体400的内部压力或内部温度值而设计或确定该阈值。并且,该阈值例如可能取决于电池单体400中的正极极片、负极极片、电解液和隔离膜中的一种或几种所用的材料。
本申请中所提到的“致动”是指泄压机构6产生动作或被激活至一定的状态,从而使得电池单体400的内部压力得以被泄放。泄压机构6产生的动作可以包括但不限于:泄压机构6中的至少一部分破裂、破碎、被撕裂或者打开,等等。泄压机构6在致动时,电池单体400的内部的高温高压物质作为排放物会从致动的部位向外排出。以此方式能够在可控压力或温度的情况下使电池单体400发生泄压,从而避免潜在的更严重的事故发生。本申请中所提到的来自电池单体400的排放物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离膜的碎片、反应产生的高温高压气体、火焰,等等。高温高压的排放物朝向电池单体400的设置泄压机构6的方向排放,并且可更具体地沿朝向泄压机构6致动的区域的方向排放,这种排放物的威力和破坏力可能很大,甚至可能足以冲破在该方向上的诸如盖体等的一个或多个结构。
在一些实施例中,如图1-D所示,端盖板10’上设有用于向电池单体400内注入电解液的通孔,通孔可采用圆孔、椭圆孔、多边形孔或其它形状的孔,并可沿端盖板10’的高度方向延伸。端盖板10’上设有用于将通孔封闭的注液构件2。
如图2和图3所示,本申请实施例提供的电池200,包括多个电池单体400、汇流部件500和绝缘部件600,其中,多个电池单体400被构造成通过汇流部件500电连接,电池单体400还包括泄压机构6,泄压机构6用于在电池单体400的内部压力或温度达到阈值时致动以泄放内部压力;绝缘部件600用于覆盖汇流部件500,以防止在泄压机构6致动时来自电池单体400的排放物将至少一个电池单体400短路。
在实际应用中,汇流部件500可以通过焊接或者螺栓连接的方式实现与多个电池单体400的电连接。在本申请实施例中,多个电池单体400被构造成通过汇流部件500电连接,汇流部件500用于传递电池单体400产生的电流,从而可以实现多个电池单体400之间的串联和/或并联。
本申请实施例中,每个电池单体400均包括泄压机构6,泄压机构6用于在电池单体400的内部压力或者温度达到阈值时致动,以泄放电池单体400内部的压力。其中,泄压机构6的设置位置以及结构形式已经在上述实施例中进行了详细描述。
如上所述,泄压机构6设置在端盖板10’的排气孔处。在正常状态下,泄压机构6密封安装于排气孔处;在电池单体400发生膨胀使外壳内的压力或温度升高到超出阈值时,泄压机构6会致动开启,电池单体400内部的气体等高温排放物会从泄压机构6处向外释放,从而可以泄放电池单体400内部的压力,避免爆炸等危险事故的发生。
本申请实施例中,通过设置覆盖汇流部件500的绝缘部件600,可以对汇流部件500起到隔离和包裹的作用,从而防止在某一个或某一些电池单体400发生故障进而从泄压机构6向外释放排放物时,部分排放物溅射到汇流部件500上造成某些电池单体400的正负极直接接触而短路,从而减少电池200发生短路或者高压打火的情况。
如图1-B、1-C和1-D所示,电池200内部的电池模组300包括多个电池单体400,每个电池单体400上设置有两个电极端子5,两个电极端子5分别为正极端子和负极端子,其中,正极端子与电极组件30的正极极耳连接,负极端子与电极组件30的负极极耳连接。
如图3所示,在电池200中,汇流部件500的作用就是连接相邻的电池单体400上的电极端子5,以实现多个电池单体400的串联或并联。
继续参考图3,一个汇流部件500连接相邻的两个电池单体400的电极端子5,如果连接的上述的两个电池单体400上的电极端子5都是正极端 子的时候,或者,都是负极端子的时候,汇流部件500实现的是两个电池单体400的并联。如果连接的上述的两个电池单体400上的电极端子5,一个是正极端子,另一个是负极端子的时候,汇流部件500实现的是两个电池单体400的串联。
在实际应用中,由于两个电极端子5可以位于电池单体400的同一侧,也可以位于电池单体400的两侧。因此,汇流部件500有可能位于电池单体400的同一侧,也有可能位于电池单体400的两侧。
在本申请中,由于电极端子5设置在电池单体400具有泄压机构6的一侧,因此,对于本申请实施例提供的绝缘部件600而言,其主要用于覆盖位于泄压机构6一侧的汇流部件500,从而防止从泄压机构6向外释放的排放物,直接溅射到泄压机构6附近的汇流部件500上。
当然,在实际应用中,电极端子5可以设置在没有泄压机构6的一侧,此时为了进一步降低电池单体400发生短路或者高压打火的概率,绝缘部件600也可以覆盖位于没有泄压机构6的一侧的汇流部件500,以防止排放物顺着电池单体400流至上述汇流部件500上,以达到全面覆盖汇流部件500的目的。
对于一个电池模组300而言,一般包括多个电池单体400,因此,连接上述多个电池单体400的汇流部件500也会有多个。如图3所示,其中一个电池单体400上的一个电极端子5,与相邻的电池单体400上的一个电极端子5通过一个汇流部件500连接,也就是说,对一个电池200而言,里面含有多个汇流部件500。
在本申请实施例中,绝缘部件600也设置有多个,每个绝缘部件600覆盖至少一个汇流部件500。
可选的,本申请实施例中,如图3所示,绝缘部件600可以设置成长条状,一个绝缘部件600覆盖同一列沿y方向排列的多个电池单体400上的多个汇流部件500;同理,绝缘部件600还可以被设置成可以覆盖多列的汇 流部件500的形状。也就是说,绝缘部件600的长度可以与同一列多个电池单体400组合的长度相同,绝缘部件600的宽度可以是一个汇流部件500的宽度,也可以是一个电池单体400的宽度,只要能实现覆盖汇流部件500,防止泄压机构6释放的排放物流造成电池单体短路的功能即可,本申请实施例对于绝缘部件600的长度和宽度不作具体限定。
可选的,本申请实施例中,如图4所示,绝缘部件600可以设置成一体式结构,以覆盖多个电池单体400上的所有汇流部件500。其中,多个电池单体400可以是一个电池模组300中的,也可以是多个电池模组300中的,本申请实施例对此不作特殊限定。
在实际应用中,为避免绝缘部件600对泄压机构6的阻挡,进而造成泄压机构无法致动的情况,绝缘部件600需要避让电池单体400上的泄压机构6,以确保泄压机构6可以正常致动。例如,当绝缘部件600为长条状,相邻的绝缘部件之间的间距应该足以避让电池单体400上的泄压机构6。
然而,如果绝缘部件600的宽度过宽以致于遮挡了泄压机构6,或者,绝缘部件600设置成了一体式结构,则需要在绝缘部件600上设置第一避让孔610,以避让泄压机构6,从而使得从泄压机构6处排放的排放物可以从第一避让孔610处排出。
在实际应用中,第一避让孔610的数量要与泄压机构6的数量相同,第一避让孔610的位置与泄压机构6的位置相对,第一避让孔610的形状可以与泄压机构6的形状相同,或者略微大于泄压机构6的形状,以确保从泄压机构6处排放的排放物没有阻挡。
在实际应用中,多个电池单体400堆叠形成电池模组300,绝缘部件600被配置为覆盖位于相邻电池模组300上的汇流部件500。如图3所示,连接相邻的电池模组300上的两个电极端子5的汇流部件500,与其他的汇流部件500的摆设方向垂直,可以通过两个绝缘部件600覆盖此汇流部件500。也可以通过一个宽度较大的绝缘部件600来覆盖此汇流部件500,本申请实 施例对此不作特殊限定。
在实际应用中,电池200还可以包括隔离部件700,隔离部件700用于安装汇流部件500。如图3所示,隔离部件700设置在电池单体400上,汇流部件500设置在隔离部件700远离电池单体400的一面,且隔离部件700还具有避让区720,如图4所示,避让区720被配置为暴露至少部分汇流部件500,即避让区720为通孔,以使汇流部件500与电池单体400电连接,确切地说,汇流部件500与电池单体400的电极端子5连接。
本申请实施例中,避让区720是一个与电极端子5的形状匹配的通孔,电极端子5可以通过通孔与汇流部件500连接,从而有利于节省电池200内部的空间,且使得隔离部件700与电池单体400的连接更紧密,整个电池200结构更紧凑。
本申请实施例中,为了避免隔离部件700遮挡泄压机构6,隔离部件700上设置有第二避让孔710,以避让泄压机构6,从而使得从泄压机构6处排放的排放物可以从第二避让孔710以及第一避让孔610处排出。
在实际应用中,第二避让孔710的位置与第一避让孔610的位置、泄压机构6的位置相对,第二避让孔710的数量与泄压机构6的数量相同,第一避让孔610的形状可以与泄压机构6的形状相同,或者略微大于泄压机构6的形状,以确保从泄压机构6处排出的排放物没有阻挡。并且,第二避让孔710的形状可以与第一避让孔610的形状相同,以便于加工以及安装定位。
在本申请实施例中,隔离部件700可以为线束隔离板组件,该线束隔离板组件可以与汇流部件500通过热压工艺形成一体式结构,且隔离部件700可以是与电池模组300尺寸接近的一体式结构,以将电池模组300中的电池单体400全部电连接。
在本申请实施例中,如图3和图4所示,汇流部件500安装于隔离部件700,一方面能够为汇流部件500提供与电极端子5连接的避让区720,另一方面还能避免汇流部件500与电池单体400上的其他部件接触,避免电流 传递过程中的干扰。
进一步地,为了防止从泄压机构6排出的排放物从避让区720处流向电池单体400,以致于将至少一个电池单体400短路,在申请实施例中,绝缘部件600还需要遮挡避让区720,即在遮挡汇流部件500的同时,遮挡避让区720。
在实际应用中,遮挡汇流部件500和避让区720,指的是覆盖汇流部件500和避让区720。并且,绝缘部件600在覆盖汇流部件500和避让区720的同时,需要避让第二避让孔710,以保证泄压机构6释放的排放物可以顺利喷出。
可选的,在实际应用中,为了覆盖汇流部件500,绝缘部件600可以直接与避让区720外侧的隔离部件700连接,且连接的方式可以是粘贴式、焊接式、镀膜式、涂覆式或喷涂式中的一种或多种。
可选的,本申请实施例中,绝缘部件600可以为如下中的至少一种:环氧树脂膜、云母纸、电泳膜、石棉层、陶瓷层、氧化硅膜、氮化硅膜、氧化铝膜、氮化铝膜、聚酰亚胺膜、聚乙烯膜、聚偏二氟乙烯膜和聚四氟乙烯膜。
在实际应用中,绝缘部件600的厚度可以根据实际情况进行设置,例如,绝缘部件600的厚度可以为0.5-3毫米等。其中,绝缘部件600的厚度要求在满足足够的耐腐蚀性的情况下,即在不被高温高压的排放物腐蚀穿的情况下,要足够薄,以节约电池200内部的空间,提高电池能量密度,本申请实施例对于绝缘部件600的具体厚度不作特殊限定。
在实际应用中,从电池单体400排出的高温高压排放物主要朝着泄压机构6的方向排出,并且具体地沿朝向泄压机构6致动的区域的方向排放,这种排放物的威力和破坏力可能很大,甚至可能足以冲破在该方向上的一个或多个结构,造成安全问题。另外,电池单体400内部发生热失控后电池单体400内部的高压和高热可能会持续产生,导致持续的安全隐患。
针对上述问题,本申请实施例中,如图6所示,可以在电池200的箱体内设置消防系统,消防系统的消防管道800设置在电池单体400的具有泄压机构的一侧的上方。消防管道800用于容纳消防介质,消防管道800被配置为在泄压机构6致动时向电池单体400排出消防介质,从而可以对从泄压机构6排出的排放物进行降温,降低排放物的危险性;消防介质还可以进一步通过致动后的泄压机构6流入到电池单体400内部,从而进一步对电池单体400降温,增强电池200的安全性。另外,还可以利用泄压机构6致动时,从电池单体400内排出的排放物破坏该消防管道800,以使得消防管道800内的消防介质排出。
本申请实施例中,绝缘部件600还用于防止在泄压机构6致动时从消防管道800流出的消防介质将至少一个电池单体400短路。也就是说,本申请实施例提供的绝缘部件600不仅可以防止从泄压机构6排出的排放物引起的电池单体400短路,还可以防止从消防管道800排出的消防介质引起的电池单体400的短路。
在实际应用中,为了便于从消防管道800中排出的消防介质直接从泄压机构6进入到电池单体400内部,消防管道800设置在与泄压机构6相对的位置。在本申请实施例中,由于在泄压机构6上部设置有隔离部件700,从泄压机构6处排放的排放物可以从隔离部件700的第二避让孔710处排出,因此,消防管道800设置在隔离部件700上部与第二避让孔710相对的位置。以实现消防管道800与泄压机构6的相对。
本申请实施例中,消防管道800包括与泄压机构6对应的第一区域以及位于第一区域外周的第二区域,第一区域用于在泄压机构6致动时被破坏以使消防介质排出,第二区域用于在泄压机构6致动时保持完整以使消防介质能够从第二区域流向第一区域。
在本申请实施例中,消防管道800被设置为在泄压机构6致动时被来自电池单体400的排放物破坏第一区域,以使消防介质从第一区域排出并经 由泄压机构6进入电池单体400内部。即当电池出现故障,电池内部的气压升高至超出预设值,以致电池单体400内部的高温高压物质作为排放物从泄压机构6的致动部位排出时,上述高温高压排放物有可能会喷穿消防管道800的第一区域,从而使得消防介质从消防管道800中流出,并通过泄压机构6流入到电池单体400内部,从而对电池单体400内部实行消防。
本申请实施例中,通过借助从电池单体400内部喷出的高温高压排放物来喷穿消防管道800的第一区域,从而可以实现对故障电池单体400的精准消防。由于只有与故障电池单体400相对的消防管道800的第一区域被喷穿,而第二区域保持完整,从而可以使得消防介质集中性地朝第一区域流出,以达到更好地消防效果。
在实际应用中,由于从消防管道800排出的消防介质可以从泄压机构6进入到电池单体400内部,因此,本申请实施例上述的精准消防的方式,可以提高消防介质的利用率,达到更好的消防效果。
在本申请实施例中,为了便于消防管道800的第一区域被喷穿,第一区域可以为第一薄弱区域,第一薄弱区域用于在泄压机构6致动时被排放物破坏,从而有利于消防介质从该第一薄弱区域排出,达到消防的目的。
本申请实施例中,通过在消防管道800上设置第一薄弱区域,有利于从电池单体400内部喷出的高温高压排放物更快地喷穿消防管道800,从而提高消防的时效性。
在本申请实施例中,第一薄弱区域可以是在结构上的薄弱,例如,第一薄弱区域的厚度比消防管道800其他部位的厚度薄;或者,第一薄弱区域也可以是在材质上的薄弱,例如,第一薄弱区域的材质可以是有利于被从电池单体400内部喷出的高温高压排放物破坏的材质;或者也可以是第一薄弱区域的强度比消防管道800其他部位的强度更低。本申请实施例对此不作特殊限定。
在实际应用中,消防介质可以为流体,该流体可以是液体或气体。在 泄压机构6未破坏该消防管道800的情况下,该消防管道800中可以不容纳任何物质;而在泄压机构6致动的情况下,使得消防管道800中容纳消防介质,例如,可以通过开关阀门控制消防介质进入至消防管道800中。或者,在泄压机构6未被破坏的情况下,该消防管道800中也可以始终容纳有消防介质,该消防介质还可以用于调节电池单体400的温度。调节温度是指给多个电池单体400加热或者冷却。在给电池单体400冷却或降温的情况下,该消防管道800用于容纳冷却流体以给多个电池单体400降低温度,此时,消防管道800也可以称为冷却部件、冷却系统或冷却管道等,其容纳的消防介质也可以称为冷却介质或冷却流体,更具体的,可以称为冷却液或冷却气体。可选的,消防介质可以是循环流动的,以达到更好的温度调节的效果。可选的,消防介质可以为水、水和乙二醇的混合液或者空气等。
在本申请实施例中,消防管道800可以为长条形管道,且消防管道800的横截面形状可以为方形、圆形、半圆形等多种形状,本申请实施例对此不作特殊限定。消防管道800的尺寸可以根据实际的电池的尺寸确定,本申请实施例对此不作特殊限定。
在实际应用中,通常在一个电池200的内部需要设置多个电池单体400,且多个电池单体400可以通过串联、并联或混联的方式连接形成电池模块300。
本申请实施例中,多个电池单体400被设置为至少一个电池模块300,每个电池模块300包括至少一个电池单体400,每个电池模块300中的电池单体400的泄压机构6均与一个消防管道800相对设置。
一个电池模块300对应一个消防管道800,此电池模块300内部的电池单体400的泄压机构均与这同一个消防管道800相对,从而可以通过同一个消防管道800对同一个电池模块300内的多个电池单体400实行消防,从而可以节约消防管道800的数量,节约成本。
如图7所示,本申请实施例提供的电池200,还包括防护部件900,防护部件900设置于消防管道800和电池单体400之间以保护第二区域,避免 从泄压机构6排出的排放物破坏第二区域,进而避免消防管路800内的消防介质通过第二区域流向电池单体400外而无法实现良好的消防效果。
本申请实施例中,防护部件900包括第三区域910和第四区域920,第三区域910用于在泄压机构6致动时保护消防管道800的第二区域,第四区域920用于在泄压机构6致动时使得来自电池单体400的排放物能够通过第四区域920破坏第一区域。
在实际应用中,第三区域910为防护区域,第四区域920为第二薄弱区域,第二薄弱区域有利于从电池单体400内部喷出的高温高压排放物更快地喷穿防护部件900,进而喷穿消防管道800,从而提高消防的时效性。通过同时设置防护区域和薄弱区域可以实现消防管道800内消防介质朝向电池单体400的泄压机构6的定向排放,有利于高效解决热失控电芯的安全问题,快速降温,提高电池使用过程中的安全性能。
在本申请实施例中,第二薄弱区域可以是在结构上的薄弱,例如,第二薄弱区域的厚度比第三区域910的厚度薄;或者,第二薄弱区域也可以是在材质上的薄弱,例如,第二薄弱区域的材质可以是有利于被从电池单体400内部喷出的高温高压排放物破坏的材质;或者也可以是第二薄弱区域的强度比第三区域910的强度更低;或者,第二薄弱区域为贯穿防护部件900的通孔。本申请实施例对此不作特殊限定。
本申请实施例中,如图8所示,防护部件900被配置为形成容纳消防管道800的第一凹槽930,第一凹槽930用于在泄压机构6致动时收集用于流入电池单体400内的消防介质。其中,第四区域设置在第一凹槽930的底壁上的与第一区域对应的区域。
需要说明的是,在实际应用中,从消防管道800喷出消防介质一般是与从泄压机构6排出排放物是同时进行的,因此从消防管道800喷出的消防介质很有可能会发生溅射,从而从泄压机构6的外侧流出,造成浪费。本申请实施例通过设置第一凹槽930,并通过第一凹槽930收集从消防管道800 喷出的消防介质,以便于没有从泄压机构6流入电池单体400内部的消防介质可以暂时存储在第一凹槽930内,并在条件允许的时候从第一凹槽930流入到泄压机构6中,例如,上述的条件指的是泄压机构6没有排放物排出时,或者是排出的速度减低时等,本申请实施例对此不作特殊限定。
本申请实施例提供的电池200中,通过在防护部件900上设置第一凹槽930,可以使得从消防管道800排出的消防介质更多地从泄压机构6进入到电池单体400内部,进而提高消防介质的利用率,达到更好的消防效果。
在实际应用中,防护部件900是安装在隔离部件700上的。并且可以通过不同的方式将防护部件900固定在隔离部件700上,例如,防护部件900可以通过卡扣卡接在隔离部件700上,也可以通过胶粘或者焊接的方式固定在隔离部件700上,或者,也可以通过一体成型的方式与隔离部件700一体成型,本申请实施例对此不作特殊限定。
在将防护部件900安装在隔离部件700上的时候,可以在隔离部件700上设置第二凹槽,并将防护部件900安装在第二凹槽内,第二凹槽的位置和大小可以根据防护部件900的实际情况来设置,本申请实施例对比不作特殊限定。
下面以电池模块300中的多个电池单体400的排列方向,对消防管道800和防护部件900的排列方向进行说明。
如图6所示,消防管道800设置在防护部件900上,消防管道800位于相邻的两个绝缘部件600之间。在本申请实施例中,一个电池模块300包括沿预定方向排列的多个电池单体400,消防管道800的长度方向与多个电池单体400的排列方向一致。以使每个电池单体400的泄压机构6与该消防管道800相对,即一个消防管道800为一个电池模块300中的多个电池单体400提供消防服务。
在上述实施例中,消防管道800的长度方向与多个电池单体400的排列方向一致,防护部件900的长度方向也与多个电池单体400的排列方向一 致。并且,消防管道800上的第一区域有多个,防护部件900上的第四区域920也有多个,且第一区域、第四区域920的数量与泄压机构6的数量相同。
另一方面,本申请还提供了一种用电装置,该用电装置被配置为接收从上述的电池提供的电力。其中,电池200的具体结构形式和工作原理已经在上述实施例中进行了详细说明,本实施例对此不再赘述。
综上,本申请实施例提供的用电装置,通过设置上述的电池,电池通过设置绝缘部件,并通过绝缘部件来覆盖汇流部件,可以防止从某一个或某一些发生故障的电池单体释放排放物时,部分排放物溅射到汇流部件等导电物体上,从而可以减小电池单体发生短路或者高压打火的概率。
另一方面,本申请还提供了一种制造电池的方法。参照图9,示出了根据本申请的一种制造电池的方法,该制造电池的方法可以包括以下步骤。
步骤S910,提供多个电池单体,其中,电池单体包括泄压机构,泄压机构用于在电池单体的内部压力或温度达到阈值时致动以泄放内部压力。
步骤S920,将多个电池单体通过汇流部件电连接。
步骤S930,将绝缘部件覆盖汇流部件,以防止在泄压机构致动时来自电池单体的排放物将至少一个电池单体短路。
参照电池部分的实施例可以知道,需要在电池单体400上制备泄压机构6,并且通过制备汇流部件500将多个电池单体400的电极端子5电连接起来。
本申请实施例中,还需要制备绝缘部件600,将绝缘部件600覆盖在汇流部件500上,具体的,可以通过粘贴式、焊接式、镀膜式、涂覆式或喷涂式中的一种或多种来将绝缘部件600覆盖在汇流部件500上。
参照电池200部分的实施例可知,电池200还包括其他部件,可以通过相应的方法制造这些部件,以最终获得需要的电池200。在实际应用中,任何可以制造相关部件和连接相关部件的方法均落入本申请实施例的保护范围内,本申请实施例在此不再冗述。
另一方面,本申请还提供了一种制造电池的装置。参照图10,示出了根据本申请实施例的一种制造电池的装置的方框图。如图10所示,该制造电池的装置1000可以包括:第一装置1010、第二装置1020和第三装置1030。
第一装置1010,用于构提供多个电池单体;其中,电池单体包括泄压机构,泄压机构用于在电池单体的内部压力或温度达到阈值时致动以泄放内部压力。
第二装置1020,用于将多个电池单体通过汇流部件电连接。
第三装置1030,用于将绝缘部件覆盖汇流部件,以防止在泄压机构致动时来自电池单体的排放物将至少一个电池单体短路。
上述中各制造电池的装置的具体细节已经在对应的电池实施例中进行了详细的描述,因此此处不再赘述。
本申请上述各保护主题以及各实施例中的特征之间可以相互借鉴,在结构允许的情况下,本领域技术人员也可对不同实施例中的技术特征灵活组合,以形成更多的实施例。
以上对本申请所提供的一种电池及用电装置进行了详细介绍。本文中应用了具体的实施例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。

Claims (17)

  1. 一种电池,其中,包括:
    多个电池单体,所述多个电池单体被构造成通过汇流部件电连接;
    所述电池单体包括泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;
    绝缘部件,用于覆盖所述汇流部件,以防止在所述泄压机构致动时来自所述电池单体的排放物将至少一个所述电池单体短路。
  2. 根据权利要求1所述的电池,其中,所述绝缘部件和所述汇流部件均设置有多个,每个所述绝缘部件覆盖至少一个所述汇流部件。
  3. 根据权利要求2所述的电池,其中,所述绝缘部件被配置为覆盖位于所述泄压机构一侧的多个所述汇流部件。
  4. 根据权利要求1-3任一项所述的电池,其中,所述多个电池单体堆叠形成电池模组;
    所述绝缘部件被配置为覆盖位于相邻所述电池模组上的汇流部件。
  5. 根据权利要求1-4任一项所述的电池,其中,所述绝缘部件的厚度为0.5-3毫米。
  6. 根据权利要求1-5任一项所述的电池,其中,还包括消防管道,用于容纳消防介质,所述消防管道被配置为在所述泄压机构致动时向所述电池单体排出所述消防介质;所述绝缘部件,用于防止在所述泄压机构致动时所述消防介质将至少一个所述电池单体短路。
  7. 根据权利要求6所述的电池,其中,所述消防管道包括与所述泄压机构对应的第一区域以及位于所述第一区域外周的第二区域,所述第一区域用于在所述泄压机构致动时被破坏以使所述消防介质排出,所述第二区域用于在所述泄压机构致动时保持完整以使所述消防介质能够从所述第二区域流向所述第一区域。
  8. 根据其权利要求7所述的电池,其中,还包括防护部件,设置于所述消防管道和所述电池单体之间以保护所述第二区域。
  9. 根据权利要求8所述的电池,其中,所述防护部件包括第三区域和第四区域,所述第三区域用于在所述泄压机构致动时保护所述消防管道的所述第二区域,所述第四区域用于在所述泄压机构致动时使得来自所述电池单体的排放物能够通过所述第四区域破坏所述第一区域。
  10. 根据权利要求9所述的电池,其中,所述防护部件被配置为形成容纳所述消防管道的第一凹槽,所述第一凹槽用于在所述泄压机构致动时收集用于流入所述电池单体内的所述消防介质。
  11. 根据权利要求10所述的电池,其中,在所述第一凹槽的底壁上与所述第一区域对应的区域设置有所述第四区域。
  12. 根据权利要求8-11任一项所述的电池,其中,还包括:隔离部件,所述隔离部件用于安装所述汇流部件。
  13. 根据权利要求12所述的电池,其中,所述隔离部件具有避让区,所述避让区被配置为暴露至少部分所述汇流部件,以使所述汇流部件与所述电池单体电连接。
  14. 根据权利要求12或13所述的电池,其中,所述隔离部件设置有第二凹槽,所述防护部件设置在所述第二凹槽内。
  15. 一种用电装置,其中,所述用电装置被配置为接收从权利要求1-14任一项所述的电池提供的电力。
  16. 一种制造电池的方法,包括:
    提供多个电池单体,其中,所述电池单体包括泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;
    将所述多个电池单体通过汇流部件电连接;
    将绝缘部件覆盖所述汇流部件,以防止在所述泄压机构致动时来自所述电池单体的排放物将至少一个所述电池单体短路。
  17. 一种制造电池的装置,包括:
    第一装置,用于提供多个电池单体,其中,所述电池单体包括泄压机构,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;
    第二装置,用于将所述多个电池单体通过汇流部件电连接;
    第三装置,用于将绝缘部件覆盖所述汇流部件,以防止在所述泄压机构致动时来自所述电池单体的排放物将至少一个所述电池单体短路。
PCT/CN2020/122001 2020-10-19 2020-10-19 电池、用电装置、制造电池的方法及装置 WO2022082398A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP20957981.2A EP4075589A4 (en) 2020-10-19 2020-10-19 BATTERY, ELECTRICAL DEVICE AND METHOD AND DEVICE FOR MAKING BATTERY
KR1020237004283A KR20230034400A (ko) 2020-10-19 2020-10-19 전지, 전기 장치, 전지 제조 방법 및 장치
PCT/CN2020/122001 WO2022082398A1 (zh) 2020-10-19 2020-10-19 电池、用电装置、制造电池的方法及装置
JP2023509570A JP2023542807A (ja) 2020-10-19 2020-10-19 電池、電気装置、電池の製造方法および装置
US17/842,555 US20220311086A1 (en) 2020-10-19 2022-06-16 Battery, electric apparatus, and method and apparatus for manufacturing battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/122001 WO2022082398A1 (zh) 2020-10-19 2020-10-19 电池、用电装置、制造电池的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/842,555 Continuation US20220311086A1 (en) 2020-10-19 2022-06-16 Battery, electric apparatus, and method and apparatus for manufacturing battery

Publications (1)

Publication Number Publication Date
WO2022082398A1 true WO2022082398A1 (zh) 2022-04-28

Family

ID=81289530

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/122001 WO2022082398A1 (zh) 2020-10-19 2020-10-19 电池、用电装置、制造电池的方法及装置

Country Status (5)

Country Link
US (1) US20220311086A1 (zh)
EP (1) EP4075589A4 (zh)
JP (1) JP2023542807A (zh)
KR (1) KR20230034400A (zh)
WO (1) WO2022082398A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102646202B1 (ko) 2020-10-19 2024-03-12 지앙수 컨템포러리 엠퍼렉스 테크놀로지 리미티드 배터리, 전기 장치, 배터리를 제조하는 방법과 장치
WO2022082397A1 (zh) * 2020-10-19 2022-04-28 江苏时代新能源科技有限公司 一种电池、用电装置及制备电池的方法、设备
JP7457872B2 (ja) 2020-10-19 2024-03-28 ジアンス・コンテンポラリー・アンプレックス・テクノロジー・リミテッド 電池、電気装置、電池の製造方法および装置
CN117352947B (zh) * 2023-12-04 2024-04-16 宁德时代新能源科技股份有限公司 一种电池及用电装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013017204A1 (de) * 2011-08-02 2013-02-07 Daimler Ag Hochvolt-batterie für fahrzeuganwendungen
CN108075086A (zh) * 2016-11-14 2018-05-25 安徽新能科技有限公司 减弱电池模块中的爆炸传播
CN209071461U (zh) * 2018-12-28 2019-07-05 宁德时代新能源科技股份有限公司 热管理装置及电池包
CN209104233U (zh) * 2018-12-28 2019-07-12 宁德时代新能源科技股份有限公司 一种电池包的喷淋管路组件及电池包
CN209592146U (zh) * 2019-04-19 2019-11-05 宁德时代新能源科技股份有限公司 电池模组
CN209662489U (zh) * 2018-12-28 2019-11-22 宁德时代新能源科技股份有限公司 一种电池包的喷淋管路组件、电池包
CN210535738U (zh) * 2019-10-31 2020-05-15 上海蔚来汽车有限公司 电池模组的隔热组件
CN111584792A (zh) * 2020-04-21 2020-08-25 重庆金康动力新能源有限公司 一种电池模组
CN111725454A (zh) * 2020-06-12 2020-09-29 上汽通用汽车有限公司 电池模组及电池包总成

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207977389U (zh) * 2018-01-29 2018-10-16 浙江美都海创锂电科技有限公司 一种安全防爆方形电池模块
CN210403875U (zh) * 2019-08-29 2020-04-24 惠州比亚迪实业有限公司 电池模组、动力电池包和车辆
CN210723159U (zh) * 2019-11-13 2020-06-09 苏州宇量电池有限公司 一种灭火动力电池模组及电池包

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013017204A1 (de) * 2011-08-02 2013-02-07 Daimler Ag Hochvolt-batterie für fahrzeuganwendungen
CN108075086A (zh) * 2016-11-14 2018-05-25 安徽新能科技有限公司 减弱电池模块中的爆炸传播
CN209071461U (zh) * 2018-12-28 2019-07-05 宁德时代新能源科技股份有限公司 热管理装置及电池包
CN209104233U (zh) * 2018-12-28 2019-07-12 宁德时代新能源科技股份有限公司 一种电池包的喷淋管路组件及电池包
CN209662489U (zh) * 2018-12-28 2019-11-22 宁德时代新能源科技股份有限公司 一种电池包的喷淋管路组件、电池包
CN209592146U (zh) * 2019-04-19 2019-11-05 宁德时代新能源科技股份有限公司 电池模组
CN210535738U (zh) * 2019-10-31 2020-05-15 上海蔚来汽车有限公司 电池模组的隔热组件
CN111584792A (zh) * 2020-04-21 2020-08-25 重庆金康动力新能源有限公司 一种电池模组
CN111725454A (zh) * 2020-06-12 2020-09-29 上汽通用汽车有限公司 电池模组及电池包总成

Also Published As

Publication number Publication date
EP4075589A1 (en) 2022-10-19
US20220311086A1 (en) 2022-09-29
JP2023542807A (ja) 2023-10-12
EP4075589A4 (en) 2023-05-03
KR20230034400A (ko) 2023-03-09

Similar Documents

Publication Publication Date Title
CN111952515B (zh) 电池、用电装置、制备电池的方法及装置
WO2022082398A1 (zh) 电池、用电装置、制造电池的方法及装置
CN112086604B (zh) 电池、用电设备、制备电池的方法和装置
WO2022006894A1 (zh) 电池及其相关装置、制备方法和制备设备
US11631919B2 (en) Battery, power consumption device, method and device for preparing a battery
US11784371B2 (en) Box of battery, battery, power consumption device, and method and device for producing battery
WO2022082396A1 (zh) 电池、用电装置、制备电池的方法及装置
WO2022120851A1 (zh) 端盖组件、电池单体及其制造方法、电池及用电装置
WO2022082389A1 (zh) 电池、用电设备、制备电池的方法和装置
US20220320673A1 (en) Battery, power consumption device, method and device for producing battery
WO2023141774A1 (zh) 电池、用电设备、制造电池的方法和设备
WO2023133735A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2022082393A1 (zh) 用于电池的箱体、电池、用电装置、制备电池的方法和设备
WO2022082397A1 (zh) 一种电池、用电装置及制备电池的方法、设备
EP4016714B1 (en) Case body for battery, battery and electric device
EP4016713B1 (en) Box body for battery, battery and power consuming device
WO2022082392A1 (zh) 电池、用电设备、制备电池的方法和设备
CN217485679U (zh) 电池包和用电设备
WO2024000176A1 (zh) 电池单体、电池及用电装置
WO2023028748A1 (zh) 电池、用电装置以及制备电池的方法和装置
RU2805991C1 (ru) Батарея и связанное с ней устройство, способ ее изготовления и устройство для ее изготовления
WO2023133755A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023133784A1 (zh) 电池、用电设备、制备电池的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957981

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020957981

Country of ref document: EP

Effective date: 20220714

ENP Entry into the national phase

Ref document number: 20237004283

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023509570

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202317031618

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE