WO2022120851A1 - 端盖组件、电池单体及其制造方法、电池及用电装置 - Google Patents

端盖组件、电池单体及其制造方法、电池及用电装置 Download PDF

Info

Publication number
WO2022120851A1
WO2022120851A1 PCT/CN2020/135949 CN2020135949W WO2022120851A1 WO 2022120851 A1 WO2022120851 A1 WO 2022120851A1 CN 2020135949 W CN2020135949 W CN 2020135949W WO 2022120851 A1 WO2022120851 A1 WO 2022120851A1
Authority
WO
WIPO (PCT)
Prior art keywords
end cap
adapter
battery cell
explosion
proof mechanism
Prior art date
Application number
PCT/CN2020/135949
Other languages
English (en)
French (fr)
Inventor
苏华圣
邢承友
康文龙
李全坤
王鹏
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202080102986.7A priority Critical patent/CN115868074A/zh
Priority to EP20964784.1A priority patent/EP4071897A4/en
Priority to PCT/CN2020/135949 priority patent/WO2022120851A1/zh
Priority to US17/842,775 priority patent/US11688907B2/en
Publication of WO2022120851A1 publication Critical patent/WO2022120851A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/152Lids or covers characterised by their shape for cells having curved cross-section, e.g. round or elliptic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/14Primary casings; Jackets or wrappings for protecting against damage caused by external factors
    • H01M50/143Fireproof; Explosion-proof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/533Electrode connections inside a battery casing characterised by the shape of the leads or tabs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • Embodiments of the present application relate to the field of batteries, and in particular, to an end cap assembly, a battery cell and a method for manufacturing the same, a battery, and an electrical device.
  • the safety of the battery is an important factor to measure the performance of the battery.
  • the battery cells used to make up the battery in the prior art generally include a casing with openings at both ends, an end cap for closing the opening on the casing, and a battery located on the end cap.
  • the electrode terminal and the adapter located on the side of the end cover close to the casing, the adapter is used to electrically connect the electrode terminal and the electrode assembly.
  • an explosion-proof mechanism is generally provided on the end cap. pressure to prevent the battery cells from exploding under thermal runaway conditions.
  • the present application provides an end cap assembly, a battery cell and a method for manufacturing the same, a battery and an electrical device, which can reduce the possibility that the adapter plate blocks the explosion-proof mechanism and ensure that the battery cell is in a thermal runaway condition. Under the normal operation of the explosion-proof mechanism, improve the safety of the use of battery cells.
  • a first aspect of the present application provides an end cap assembly for a battery cell, comprising:
  • An end cover is used to close the casing of the battery cell, and an explosion-proof mechanism is provided on the end cover, and the explosion-proof mechanism can be actuated to discharge the battery cell when the battery cell is thermally out of control. internal pressure;
  • An adapter is used to electrically connect the electrode assembly of the battery cell and the electrode terminal of the battery cell, and the orthographic projection of the adapter on the first surface of the end cover is where the explosion-proof mechanism is located.
  • the orthographic projections of the first surface of the end cap at least partially overlap, and the first surface is the surface of the end cap facing the housing.
  • a support is provided between the adapter and the end cover, the support is made of a high temperature resistant material, and the orthographic projection of the adapter on the first surface and the support are The orthographic projections on the first surface at least partially overlap, so that when the battery cell is thermally out of control, the support member can support the adapter, so as to prevent the adapter from blocking the explosion-proof mechanism.
  • the support member made of high temperature resistant material is not easily melted and deformed when the battery cell undergoes thermal runaway, so that when the adapter member is deformed under the condition of thermal runaway, the adapter member is blocked by the support member and will not be deformed. Therefore, when thermal runaway occurs, the high temperature and high pressure discharge in the battery cell can activate the explosion-proof mechanism and discharge through the explosion-proof mechanism, reducing the possibility of the battery cell burning or even exploding It improves the safety of the battery cell during use.
  • the support has a melting point greater than 300°C.
  • the maximum temperature of its internal discharge is within 300°C, and the support will not be deformed due to melting at this time, so that the adapter can be stably supported during thermal runaway. Ensure the normal exhaust of the explosion-proof mechanism.
  • the support member is an insulating material.
  • the support will not cause a short circuit problem during use.
  • the support member includes a support block disposed between the adapter member and the end cap.
  • the orthographic projection of the support block on the first surface is staggered from the orthographic projection of the explosion-proof mechanism on the first surface.
  • an isolation member is provided between the adapter and the end cap, the isolation member is used to insulate the adapter and the end cover, and the support block is fixed to the isolation member superior.
  • the isolation component can not only achieve insulation between the adapter and the end cap, but also fix the position of the support block, preventing the support block from being displaced and failing to form a good support for the adapter.
  • the isolation member is provided with an accommodating groove, and the support block is provided in the accommodating groove.
  • one side of the accommodating groove is provided with an opening for placing the support block.
  • the opening faces the end cover, one end of the support block abuts on the bottom wall of the accommodating groove, and the other end abuts on the end cover;
  • the opening faces the adapter, one end of the support block abuts on the bottom wall of the accommodating groove, and the other end abuts on the adapter.
  • the side wall of the accommodating slot limits the position of the support block in the direction perpendicular to the first surface, so that the support block can always be located at the position corresponding to the adapter;
  • the setting of the bottom wall and the end cover or the adapter piece against each other can prevent the support block from falling from the opening of the accommodating slot, which makes it difficult to support the adapter piece during thermal runaway.
  • the isolation member is made of a high temperature resistant insulating material.
  • the isolation component is not easily melted during thermal runaway, and it not only plays an insulating role, but also plays a role of supporting the adapter, thereby preventing the adapter from blocking the explosion-proof mechanism.
  • the support block and the isolation member are made of the same material and are integrally formed.
  • the support block and the isolation member are processed and formed together, which greatly improves the processing efficiency of the end cap assembly and saves the manufacturing cost of the end cap assembly.
  • the adapter includes a first connection segment, a second connection segment and a third connection segment, the first connection segment is connected to the electrode terminal of the battery cell, and the third connection segment for connecting with the electrode assembly inside the casing of the battery cell, and the second connecting section connects the first connecting section and the third connecting section;
  • the orthographic projection of the first connection segment on the first surface does not coincide with the orthographic projection of the explosion-proof mechanism on the first surface
  • the orthographic projection of the third connection segment on the first surface At least partially coincident with the orthographic projection of the support member on the first surface, so that when the battery cell is thermally runaway, the support member can support the third connection segment to prevent the third connection segment plugs the explosion-proof mechanism.
  • the adapter directly supports the third connecting section, so that there is always a gap between the first connecting section and the third connecting section, so that the discharges of the battery cells can pass through when thermal runaway occurs, and the supporting member Within the height range between the first connecting section and the third connecting section, the space inside the casing will not be occupied additionally, thereby reducing the volume of the battery cell and improving the energy density of the battery cell.
  • the adapter is provided with a through hole opposite to the explosion-proof mechanism for the discharge generated when the battery cell is thermally out of control to pass through.
  • the discharge inside the battery cell can reach the explosion-proof mechanism through the through hole, and be discharged through the explosion-proof mechanism, which further ensures smooth exhaust inside and outside the battery cell.
  • a battery cell including an electrode assembly, a housing, and the end cap assembly described in the foregoing embodiments;
  • the casing is a hollow cavity with an opening, the electrode assembly is accommodated in the cavity, and the end cap assembly covers the opening of the casing.
  • the high-temperature and high-pressure discharge in the battery cell can activate the explosion-proof mechanism and discharge through the explosion-proof mechanism, preventing the battery cell from burning or even exploding, and ensuring the safety of the battery cell during use sex
  • a battery including two or more battery cells of the above-mentioned embodiments.
  • the high-temperature and high-pressure discharge inside it can activate the explosion-proof mechanism and discharge through the explosion-proof mechanism, preventing heat spread from affecting other battery cells, and preventing the battery Combustion or even explosion occurs to ensure the safety of the battery during use.
  • an electrical device including the battery cells of the above embodiments, and the battery cells are used to provide electrical energy.
  • a fifth aspect of the present application provides a method for manufacturing an end cap assembly.
  • the manufactured end cap assembly is used for a battery cell, including:
  • End caps are provided for sealing the housing of the battery cells, the end caps are provided with an explosion-proof mechanism that can be actuated to discharge the battery in the event of thermal runaway of the battery cells single pressure;
  • An adapter is provided, and the adapter is used to electrically connect the electrode assembly of the battery cell and the electrode terminal of the battery cell, and the orthographic projection of the adapter on the first surface of the end cover is the same as that of the battery cell.
  • the orthographic projections of the explosion-proof mechanism on the first surface of the end cover at least partially overlap, and the first surface is the surface of the end cover facing the housing;
  • a support is provided, the support is located between the adapter and the end cap, the support is made of a high temperature resistant insulating material, and the orthographic projection of the adapter on the first surface is at least Partly coincides with the orthographic projection of the support member on the first surface, so that when the battery cell is thermally out of control, the support member can support the adapter, so as to prevent the adapter from blocking the Explosion-proof mechanism.
  • a sixth aspect of the present application provides a method for manufacturing a battery cell, comprising:
  • the housing being a hollow cavity having an opening
  • End caps are provided, the end caps are used to seal the housing of the battery cells, and an explosion-proof mechanism is provided on the end caps, and the explosion-proof mechanism can be actuated to release all the battery cells in the event of thermal runaway of the battery cells. the internal pressure of the battery cell;
  • An adapter is provided, and the adapter is used to electrically connect the electrode assembly of the battery cell and the electrode terminal of the battery cell, and the orthographic projection of the adapter on the first surface of the end cover is the same as that of the battery cell.
  • the orthographic projections of the explosion-proof mechanism on the first surface of the end cover at least partially overlap, and the first surface is the surface of the end cover facing the housing;
  • a support is provided, the support is located between the adapter and the end cap, the support is made of a high temperature resistant insulating material, and the orthographic projection of the adapter on the first surface is at least Partly coincides with the orthographic projection of the support member on the first surface, so that when the battery cell is thermally out of control, the support member can support the adapter, so as to prevent the adapter from blocking the Explosion-proof mechanism.
  • FIG. 1 is a schematic diagram of an electrical device according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an exploded structure of a battery according to an embodiment of the present application.
  • FIG. 3 is a partially exploded schematic diagram of a battery cell according to an embodiment of the present application.
  • FIG. 4 is an exploded schematic view of an end cap assembly according to an embodiment of the present application.
  • FIG. 5 is a top view of an end cap assembly according to an embodiment of the present application.
  • FIG. 6 is a schematic cross-sectional view of the end cap assembly according to an embodiment of the present application along the A-A plane in FIG. 5 .
  • FIG. 7 is an exploded schematic view of an end cap assembly according to another embodiment of the present application.
  • FIG. 8 is a schematic cross-sectional view of an end cap assembly according to another embodiment of the present application along the direction indicated by the A-A plane in FIG. 5 .
  • FIG. 9 is a schematic cross-sectional view of an end cap assembly according to another embodiment of the present application along the direction indicated by the B-B plane in FIG. 5 .
  • FIG. 10 is a manufacturing flow chart of the end cap assembly in an embodiment of the present application.
  • FIG. 11 is a manufacturing flow chart of a battery cell in an embodiment of the present application.
  • a physical connection can be a fixed connection, such as a fixed connection through a fastener, such as a fixed connection through screws, bolts or other fasteners; a physical connection can also be a detachable connection, such as Mutual snap connection or snap connection; the physical connection can also be an integral connection, for example, welding, bonding or integrally forming a connection for connection.
  • it may be directly connected, that is, physically connected, or indirectly connected through at least one intermediate element.
  • the signal connection can also refer to the signal connection through a media medium, such as radio waves, in addition to the signal connection through the circuit.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the batteries mentioned in this application may include battery modules or battery packs, etc.
  • the battery modules and battery packs and the like may be collectively referred to as batteries herein.
  • Batteries typically include a case for enclosing one or more battery cells. The box can prevent liquids or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, etc., which are not limited in the embodiments of the present application.
  • the battery cell may be in the form of a cylinder, a flat body, a rectangular parallelepiped, or other shapes, which are not limited in the embodiments of the present application.
  • the battery cells are generally divided into three types according to the packaging method: cylindrical battery cells, square-shaped battery cells, and soft-pack battery cells, which are not limited in the embodiments of the present application.
  • the battery cell includes an outer casing, an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive electrode piece, a negative electrode piece and a separator.
  • the battery cell mainly relies on the movement of metal ions between the positive pole piece and the negative pole piece to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the current collector without the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer, The current collector not coated with the positive electrode active material layer was used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium, or lithium manganate.
  • the negative pole piece includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the current collector without the negative electrode active material layer is protruded from the current collector that has been coated with the negative electrode active material layer, The current collector not coated with the negative electrode active material layer was used as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive tabs is multiple and stacked together, and the number of negative tabs is multiple and stacked together.
  • the material of the separator can be PP or PE, etc.
  • the electrode assembly may be a wound structure or a laminated structure, and the embodiment of the present application is not limited thereto.
  • the shell includes a shell and an end cover assembly.
  • the shell is a hollow cavity structure, and the shell has an opening. After the electrode assembly is loaded into the shell from the opening, the opening is closed by the end cover assembly to seal the shell and prevent gaseous and liquid state. Or solid substances circulate between the inside and the outside of the casing, affecting the performance of the battery cells.
  • the end cap assembly is provided with an electrode terminal.
  • the electrode terminal extends from the inside of the end cap assembly to the outside, and includes a positive terminal and a negative terminal.
  • the positive terminal is electrically connected to the positive tab through an adapter, that is, one end of the adapter is connected to the On the electrode terminal, the other end is connected to the positive electrode tab;
  • the negative electrode terminal is electrically connected to the negative electrode tab through an adaptor, that is, one end of the adaptor is connected to the negative electrode terminal, and the other end is connected to the negative electrode tab, so as to realize Conduction of internal and external currents in battery cells.
  • the battery cell is prone to thermal runaway.
  • thermal runaway occurs, the battery cell will release The discharge includes one or more of high temperature flue gas, volatile high temperature electrolyte, dissolved or split positive and negative pole pieces, fragments of separator, high temperature and high pressure gas produced by the reaction, flame, etc. If these emissions are not discharged in time, the temperature and pressure inside the battery cells will continue to rise, and even explosion accidents will occur.
  • An explosion-proof mechanism refers to an element or component that can be actuated to release the internal pressure and/or internal substances of the battery cell when the internal pressure or internal temperature of the battery cell reaches a predetermined threshold.
  • the explosion-proof mechanism can specifically take the form of an explosion-proof valve, such as an air valve, a pressure relief valve or a safety valve, etc., and can specifically adopt a pressure-sensitive or temperature-sensitive element or structure, that is, when the internal pressure or temperature of the battery cell reaches a predetermined threshold value
  • the explosion-proof mechanism performs an action or the weak structure provided in the explosion-proof mechanism is damaged, an opening or channel for releasing the internal pressure is formed.
  • the threshold referred to in this application may be a pressure threshold or a temperature threshold, and the design of the threshold varies according to different design requirements. Design or determine this threshold. And, the threshold value may depend on, for example, the materials used for one or more of the positive electrode sheet, the negative electrode sheet, the electrolyte and the separator in the battery cell.
  • the "actuating" mentioned in this application means that the explosion-proof mechanism is actuated or activated to a certain state, so that the internal pressure of the battery cell can be released.
  • Actions produced by the explosion-proof mechanism may include, but are not limited to, at least a portion of the explosion-proof mechanism being ruptured, shattered, torn, or opened, and the like.
  • an embodiment of the present application provides an end cap assembly for a battery cell.
  • the support member is located between the adapter and the explosion-proof mechanism, and the support member adopts a resistant It is made of high temperature material, so that it is not easy to melt and deform when the battery cell is thermally out of control, and supports the adapter when the adapter is deformed, reducing the possibility of the adapter blocking the explosion-proof mechanism, so that the explosion-proof mechanism can be used in the battery.
  • the cell is thermally out of control, it is activated to an actuated state to discharge the emissions inside the battery cell, thereby reducing the possibility of the battery cell exploding and improving the safety of the battery cell during use.
  • the battery cells in the embodiments of the present application can be applied to various batteries, and the batteries can also be applied to various devices using batteries, such as mobile phones, portable devices, notebook computers, battery cars, electric toys, electric tools, and electric vehicles. , ships and spacecraft, etc.
  • spacecraft include aircraft, rockets, space shuttles, spacecraft, etc., but are not limited thereto.
  • the electrical device is an automobile as an example for illustration.
  • the automobile can be a fuel car, a gas car or a new energy car. It can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the car includes a battery 200 , a controller 210 and a motor 220 .
  • the battery 200 is used for supplying power to the controller 210 and the motor 220 as the operating power and driving power of the vehicle.
  • the battery 200 is used for starting, navigating and running the vehicle.
  • the battery 200 supplies power to the controller 210, the controller 210 controls the battery 200 to supply power to the motor 220, and the motor 220 receives and uses the power of the battery 200 as a driving power source for the vehicle, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle.
  • the battery 200 may include a plurality of battery cells 100, wherein the plurality of battery cells 100 may be connected in series or in parallel or in a mixed connection, and a mixed connection refers to a mixture of series and parallel connections.
  • a plurality of battery cells 100 may be connected in series or in parallel or mixed to form a battery module, and then a plurality of battery modules may be connected in series or in parallel or mixed to form a battery 200 . That is to say, the plurality of battery cells 100 may directly form the battery 200 , or may form a battery module first, and then the battery module may form the battery 200 .
  • the battery 200 may include more than two battery cells 100 .
  • each battery module can be connected in series, parallel or mixed to achieve a larger current or voltage.
  • the first box body 201, the second box body 202 and the third box body 203 may be metal or plastic, for example, the first box body 201, the second box body 202 and the third box body 203 are all aluminum or Aluminum alloy.
  • the plurality of battery cells 100 are placed in a vertical direction and arranged in a space enclosed by the first case 201 , the second case 202 and the third case 203 .
  • the first case body 201 , the second case body 202 are all connected to the third case body 203 in a sealed manner.
  • the structure of the box body is not limited to this, and other methods are also possible.
  • the structures of two openings are buckled with each other to form a closed space to accommodate the battery cells 100 .
  • FIG. 3 it is a schematic diagram of a partially exploded structure of a battery cell 100 disclosed in an embodiment of the present application, wherein the battery cell 100 may be a secondary battery or a primary battery, such as a lithium-ion secondary battery, a lithium-ion Primary battery, lithium sulfur battery, sodium lithium ion battery or magnesium ion battery, but not limited thereto.
  • the battery cell 100 may be in the form of a cylinder, a flat body, a rectangular parallelepiped, or other shapes. In this example of the present application, the battery cell 100 is a cylinder as an example for description.
  • the battery cell 100 includes a case 10 and an electrode assembly 20 placed in the case 10.
  • the case 10 may be made of metal material or plastic, and optionally, the case 10 may be made of aluminum or aluminum alloy.
  • the housing 10 has an opening, and the opening can be located on the end surface of the housing 10 .
  • the housing 10 includes two openings, and the two openings are respectively located on the two end surfaces of the cylindrical housing 10 , that is, the two openings of the housing 10 .
  • Each end face does not have an end wall, so that the inside and outside of the casing 10 communicate with each other, so that the electrode assembly 20 can be loaded into the casing 10 from any opening.
  • the electrode assembly 20 is formed by laminating or winding a positive pole piece, a negative pole piece and a separator, and the separator is sandwiched between the positive pole piece and the negative pole piece.
  • the negative electrode tabs are respectively facing one of the openings, and the opening is covered with an end cap assembly 30.
  • the end cap assembly 30 is sealed and combined with the casing 10 at the opening of the casing 10 to form a hollow cavity, and the electrode assembly 20 is placed in the casing. After 10, the casing 10 is filled with electrolyte and sealed.
  • FIG. 4 is a schematic exploded structural diagram of the end cap assembly 30 in FIG.
  • the electrode terminal 32 on the end cap assembly 30 corresponding to the positive tab of the electrode assembly 20 is the positive terminal
  • the electrode terminal 32 on the end cap assembly 30 corresponding to the negative tab of the electrode assembly 20 is the negative terminal.
  • the positive tab is electrically connected to the positive terminal
  • the negative tab of the electrode assembly 20 is electrically connected to the negative terminal.
  • the end cap 31 is basically in the shape of a flat plate, which has a first surface 31a and a second surface 31b, the first surface 31a is the surface facing the housing 10, the second surface 31b is the surface facing away from the housing 10, the isolation member 34, the electrode Both the terminal 32 and the adapter 35 are located on the side where the first surface 31a is located.
  • the end cover 31 can be made of metal or plastic.
  • the end cover 31 is made of aluminum or aluminum alloy, and is sealed and connected to the opening of the housing 10 by welding.
  • the end cover 31 is provided with two penetrating terminal holes, the isolation member 34 and the adapter 35 are both provided with through holes corresponding to the terminal holes, and the two electrode terminals 32 pass through the through holes and the terminal holes.
  • the second surface is riveted with a riveting block 37 , and an insulating member 39 is sandwiched between the riveting block 37 and the end cover 31 for insulation between the electrode terminal 32 and the end cover 31 .
  • a sealing ring 38 is provided between the outer wall of the electrode terminal 32 and the inner wall of the terminal hole. By compressing the sealing ring 38, the sealing of the terminal hole can be achieved, and at the same time, the electrode terminal 32 and the terminal hole can be combined more firmly.
  • the end cover 31 is provided with an explosion-proof mechanism 33, which can be actuated to release the internal pressure of the battery cell 100 when the battery cell 100 is thermally out of control.
  • the explosion-proof mechanism 33 may be a weak area of the end cover 31, It is also possible that the end cover 31 is provided with an explosion-proof through hole 331, the explosion-proof disc 332 is arranged on the end cover 31 and seals the explosion-proof through hole 331, and the explosion-proof disc 332 can be destroyed by the discharge generated inside the battery cell 100 during thermal runaway. .
  • the strength of the weak area or rupture disk 332 may be reduced by reducing the thickness of the weak area or rupture disk 332 so that the weak area or rupture disk 332 is more susceptible to damage by emissions than other areas of the end cap 31 .
  • a patch 333 is provided on the second surface of the explosion-proof mechanism 33 close to the end cover 31 .
  • the patch 333 covers the explosion-proof through hole 331 to prevent the explosion-proof disc 332 from being damaged by external force.
  • the exhaust inside the 100 is jacked open for the exhaust to flow out.
  • the isolation member 34 is disposed on the first surface 31a of the end cap 31 and is made of insulating material, generally made of plastic, plastic and other materials, so as to separate the end cap 31 from the electrode assembly 20 and reduce the risk of short circuit.
  • the isolation member 34 A discharge port 341 for the discharge material to pass through is opened on the top, and the discharge port 341 is arranged opposite to the explosion-proof mechanism 33 .
  • the adapter 35 is located between the electrode assembly 20 and the isolation member 34, one end of which is connected to the electrode terminal 32, and the other end is used to connect with the positive electrode tab or the negative electrode tab of the electrode assembly 20, for realizing Electrical connection between electrode assembly 20 and electrode terminal 32 .
  • the orthographic projection of the adapter 35 on the first surface of the end cap 31 generally at least partially coincides with the orthographic projection of the explosion-proof mechanism 33 on the first surface of the end cap 31 .
  • the electrode assembly 20 will be short-circuited and a large amount of gas and heat will be generated. This situation is called thermal runaway of the battery cell 100 . .
  • thermal runaway after the high temperature and high pressure discharges in the battery cells 100 accumulate in the casing to a certain extent, the explosion-proof mechanism 33 will be destroyed and discharged from the explosion-proof mechanism 33 , that is, the explosion-proof mechanism 33 will be activated.
  • the explosion-proof mechanism 33 is actuated so as to avoid the continuous accumulation of emissions and the occurrence of accidents such as combustion and explosion.
  • the adapter 35 since the temperature and air pressure inside the battery cell 100 are increased under the condition of thermal runaway, the adapter 35 is deformed toward the end cap 31, and the isolation member 34 will melt and become soft at this time, making it difficult to support the rotation.
  • the connecting piece 35 causes the connecting piece 35 to continue to deform and then abuts on the explosion-proof mechanism 33, thereby blocking the explosion-proof mechanism 33, making the explosion-proof mechanism 33 difficult to be destroyed by the discharge of the battery cell 100 and releasing the pressure of the battery cell 100. , resulting in an explosion risk.
  • a support member 36 is provided between the adapter 35 and the end cover 31 , and the support member 36 is made of a high temperature resistant material, such as ceramics, mica, High temperature resistant resin, etc., the support member 36 can be annular, U-shaped, prismatic, cylindrical or special-shaped, which is not limited herein.
  • the number of the support members 36 can be one or more, as long as the orthographic projection of the adapter 35 on the first surface and the orthographic projection of the support member 36 on the first surface at least partially overlap, so that the battery cells 100 are heated.
  • the support member 36 can support the adapter member 35 to prevent the adapter member 35 from blocking the explosion-proof mechanism 33 .
  • the melting point of the support member 36 is greater than 300° C., so as to ensure that the support member 36 will not be melted and deformed by the exhaust during thermal runaway, so that when the adapter member 35 is deformed, the adapter member 35 will not be deformed. Therefore, when thermal runaway occurs, the high temperature and high pressure discharge in the battery cell 100 can actuate the explosion-proof mechanism 33 and discharge through the explosion-proof mechanism 33 to prevent the battery cell The 100 burns or even explodes, which improves the safety of the battery cell 100 during use.
  • the support member 36 is supported by an insulating material, so as to avoid the problem of short circuit caused by the support member 36 during use.
  • the support member 36 includes a support block, and the support block is arranged between the adapter member 35 and the end cover 31.
  • the support blocks are arranged in two groups, and each group includes two arcs.
  • a strip-shaped support block, the orthographic projection of the support block on the first surface and the orthographic projection of the explosion-proof mechanism 33 on the first surface are staggered, so as to ensure that the explosion-proof mechanism 33 can be destroyed in the event of thermal runaway to discharge gas, for example, it can be
  • the support block is fixed on the isolation member 34 to prevent the support block from being displaced and failing to form a good support for the adapter 35 or affecting the actuation of the explosion-proof mechanism 33 .
  • the specific fixing method of the support block will be described in the following embodiments.
  • the isolation member 34 is provided with an accommodating groove 40, the support block is disposed in the accommodating groove 40, and one side of the accommodating groove 40 has an opening, so that the supporting block can be put in from the opening, That is, a part of the support block is not wrapped by the groove wall of the accommodating groove 40 . In this case, the positioning of the support block is facilitated.
  • FIGS. 4 , 5 and 6 the opening of the accommodating groove 40 faces the end cover 31 , one end of the support block abuts on the bottom wall of the accommodating groove 40 , and the other end abuts on the end cover 31 , as shown in FIG. 5 .
  • a schematic top view of the end cap assembly 30 FIG. 6 shows a schematic cross-sectional view when the opening of the accommodating groove 40 faces the end cap 31 .
  • FIG. 7 the state in which the support block is located on the side of the isolation member 34 close to the adapter 35 is illustrated in the form of an exploded schematic view of the end cap assembly 30 , and the opening of the accommodating slot 40 is facing For the adapter 35 , one end of the support block abuts on the bottom wall of the accommodating slot 40 , and the other end abuts on the adapter 35 .
  • the above two opening modes of the accommodating groove 40 enable the side wall of the accommodating groove 40 to limit the position of the support block in the direction perpendicular to the first surface, so that the support block can always be located at the position corresponding to the adapter 35, Under the condition of not restricting the actuation of the explosion-proof mechanism 33, a stable support is formed for the adapter 35; and the two ends of the support block are respectively abutted by the bottom wall of the accommodating slot 40 and the end cover 31 or the adapter 35. It is possible to prevent the support block from falling from the opening of the accommodating slot 40 , which makes it difficult to support the adapter 35 in the event of thermal runaway.
  • the support block is pasted and fixed on the isolation member 34
  • the support block can be pasted on the side of the isolation member 34 facing the end cover 31 , or on the side of the isolation member 34 facing the adapter 35 .
  • FIG. 8 shows a state in which the support block is pasted and fixed on the side of the isolation member 34 facing the adapter 35 .
  • the support block can also be fixed on the isolation member 34 by means of injection molding.
  • the isolation member 34 is made of a high-temperature-resistant insulating material, such as ceramics, mica, high-temperature-resistant resin, etc.
  • the isolation member 34 can be made of the same material as that of the support block or the same
  • the support block can be fixed on the isolation member 34 by the fixing method of the support block in any of the above-mentioned embodiments.
  • the isolation member 34 is not easily melted when the thermal runaway occurs, and it not only plays an insulating role, but also plays a role of insulation.
  • the function of supporting the adapter 35 further reduces the possibility of the adapter 35 blocking the explosion-proof mechanism 33 .
  • the support block and the isolation member 34 are made of the same material, both of which are high temperature resistant materials, in order to facilitate processing and assembly, the support block and the isolation member 34 can be integrally formed, thereby greatly improving the performance.
  • the processing efficiency of the end cap assembly 30 saves the manufacturing cost of the end cap assembly 30 .
  • the adapter 35 includes a first connection segment 351 , a second connection segment 352 and a third connection segment 353 .
  • the first connection segment 351 is connected to the electrode terminal 32 of the battery cell 100 .
  • the three connecting sections 353 are used to connect with the electrode assemblies 20 inside the casing 10 of the battery cell 100 , and the second connecting section 352 connects the first connecting section 351 and the third connecting section 353 , for example, the first connecting section 351 , the second connecting section 352
  • the connecting segment 352 and the third connecting segment 353 may be formed by bending the same elastic metal sheet.
  • the orthographic projection of the first connecting section 351 on the first surface and the orthographic projection of the explosion-proof mechanism 33 on the first surface are different from each other.
  • the orthographic projection of the third connecting segment 353 on the first surface at least partially overlaps with the orthographic projection of the support member 36 on the first surface, so that when the battery cell 100 is thermally out of control, the support member 36 can support the third connecting segment 353 to prevent the third connecting segment 353 from blocking the explosion-proof mechanism 33 .
  • the third connection segment 353 is directly supported by the adapter 35, so that there is always a gap between the first connection segment 351 and the third connection segment 353, so as to allow the discharge of the battery cell 100 to pass through when thermal runaway occurs, and the support
  • the member 36 is located within the height range between the first connecting section 351 and the third connecting section 353, therefore, the arrangement of the supporting member 36 will not occupy additional space inside the casing 10, thereby reducing the volume of the battery cell 100 and improving the battery The energy density of the monomer 100 .
  • the adapter 35 is provided with a through hole facing the explosion-proof mechanism 33 for the discharge generated when the battery cell 100 is thermally out of control.
  • the through hole can be specifically Provided on the third connection section 353, the exhaust inside the battery cell 100 can reach the explosion-proof mechanism 33 through the through hole, and be discharged through the explosion-proof mechanism 33, further ensuring the smooth exhaust of the battery cell 100 when thermal runaway occurs.
  • the support member 36 made of high temperature resistant material is arranged on the end cover assembly 30, and the specific position between the support member 36 and the adapter member 35 is set, so that the When the end cap assembly 30 is used for the battery cell 100 , the support member 36 can support the adapter member 35 , so as to reduce the possibility that the adapter member 35 blocks the explosion-proof mechanism 33 , so that the explosion-proof mechanism 33 can occur in the battery cell 100 .
  • the explosion-proof mechanism 33 can reduce the possibility of explosion of the battery cell 100 and improve the battery The safety of the process of using the monomer 100.
  • a method for manufacturing an end cap assembly 30 is provided.
  • the manufactured end cap assembly 30 is used to seal the opening of the casing 10 of the battery cell 100 .
  • the method include:
  • S410 Provide an end cap 31, the end cap 31 is used to seal the casing 10 of the battery cell 100, an explosion-proof mechanism 33 is provided on the end cap 31, and the explosion-proof mechanism 33 can be actuated to discharge the battery when the battery cell 100 is thermally out of control The pressure of the monomer 100.
  • S420 Provide an adapter 35, the adapter 35 is used to electrically connect the electrode assembly 20 of the battery cell 100 and the electrode terminal 32 of the battery cell 100, and the adapter 35 is an orthographic projection of the first surface 31a of the end cover 31 At least partially coincident with the orthographic projection of the explosion-proof mechanism 33 on the first surface 31 a of the end cover 31 , the first surface 31 a is the surface of the end cover 31 facing the housing 10 .
  • S430 Provide a support member 36, the support member 36 is located between the adapter member 35 and the end cover 31, the support member 36 is made of a high temperature resistant insulating material, and the orthographic projection of the adapter member 35 on the first surface is at least partially connected to the support member The orthographic projections of 36 on the first surface 31a overlap, so that when the battery cell 100 is thermally out of control, the support 36 can support the adapter 35 to prevent the adapter 35 from blocking the explosion-proof mechanism 33 .
  • a method for manufacturing a battery cell 100 is also provided, as shown in FIG. 11 , the method includes:
  • S510 Provide a casing 10, where the casing 10 is a hollow cavity with an opening.
  • S520 Provide the electrode assembly 20 , and install the electrode assembly 20 in the cavity of the casing 10 .
  • S530 Provide an end cap 31, the end cap 31 is used to seal the casing 10 of the battery cell 100, an explosion-proof mechanism 33 is provided on the end cap 31, and the explosion-proof mechanism 33 can be actuated to discharge the battery when the battery cell 100 is thermally out of control Internal pressure of the monomer 100 .
  • S540 Provide an adapter 35, the adapter 35 is used to electrically connect the electrode assembly 20 of the battery cell 100 and the electrode terminal 32 of the battery cell 100, and the adapter 35 is an orthographic projection of the first surface 31a of the end cover 31 It at least partially overlaps with the orthographic projection of the explosion-proof mechanism 33 on the first surface 31 a of the end cover 31 , and the first surface is the surface of the end cover 31 facing the housing 10 .
  • S550 Provide a support member 36, the support member 36 is located between the adapter member 35 and the end cover 31, the support member 36 is made of a high temperature resistant insulating material, and the orthographic projection of the adapter member 35 on the first surface 31a is at least partially connected to the support member The orthographic projections of the components 36 on the first surface 31 a overlap, so that when the battery cells 100 are thermally out of control, the support 36 can support the adapter 35 to prevent the adapter 35 from blocking the explosion-proof mechanism 33 .
  • the order of the above steps is not completely carried out in the above-mentioned order.
  • the order of the above steps may be adjusted according to the actual situation, or performed simultaneously, or other steps may be added to manufacture the battery cell 100 .
  • other components to finally obtain the desired battery cell 100 please refer to the embodiments of the battery cell 100 section for details.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例涉及电池领域,尤其涉及一种端盖组件、电池单体及其制造方法、电池及用电装置。其中,端盖组件包括端盖,用于封闭电池单体的壳体,端盖上设有防爆机构;转接件,转接件在端盖的第一面的正投影与防爆机构在端盖的第一面的正投影至少部分重合,第一面为端盖朝向壳体的面;转接件与端盖之间设有支撑件,支撑件由耐高温的绝缘材料制成,支撑件能够支撑转接件,以防止转接件在电池单体热失控时堵塞防爆机构。本申请通过增加支撑件,从而防止转接件在电池单体发生热失控时直接抵在防爆机构上而堵塞防爆机构,保证防爆机构的正常致动,进而防止电池单体在热失控时发生燃烧甚至爆炸,保证电池单体在使用时的安全性。

Description

端盖组件、电池单体及其制造方法、电池及用电装置 技术领域
本申请实施例涉及电池领域,尤其涉及一种端盖组件、电池单体及其制造方法、电池及用电装置。
背景技术
随着科学技术的发展,电池在移动电话、数码摄像机和手提电脑等便携式电子设备中得到了广泛使用,并且在电动汽车、电动自行车等电动交通工具及储能设施等大中型电动设备方面有着广泛的应用前景,成为解决能源危机和环境污染等全球性问题的重要技术手段。
电池的使用安全性是衡量电池性能的重要因素,现有技术中用于组成电池的电池单体一般包括两端开口的壳体、用于封闭壳体上的开口的端盖、位于端盖上的电极端子以及位于端盖靠近壳体一侧的转接件,转接件用于电连接电极端子和电极组件。为了提高电池单体的使用安全性,端盖上一般设有防爆机构,防爆机构能够在电池单体发生热失控时,泄放电池单体内部产生的高温高压排放物,降低电池单体内部的压力,防止电池单体在热失控情况下发生爆炸。
但是,发明人发现,在电池单体发生热失控的情况下,防爆机构有时难以正常开启,而是端盖与壳体之间在电池单体内部的高压下发生分离,严重者引发爆炸等风险。
发明内容
鉴于上述问题,本申请提供了一种端盖组件、电池单体及其制造方法、电池及用电装置,其可以减小转接片堵塞防爆机构的可能性,保证电池单体在热失控情况下的防爆机构的正常工作,提高电池单体的使用安全性。
本申请的第一方面提供了一种端盖组件,用于电池单体,包括:
端盖,用于封闭所述电池单体的壳体,所述端盖上设有防爆机构,所述防爆机构能够在所述电池单体热失控时致动以泄放所述电池单体的内部压力;
转接件,用于电连接所述电池单体的电极组件和所述电池单体的电极端子,所述转接件在所述端盖的第一面的正投影与所述防爆机构在所述端盖的第一面的正投影至少部分重合,所述第一面为所述端盖朝向所述壳体的面。
其中,所述转接件与所述端盖之间设有支撑件,所述支撑件由耐高温材料制成,所述转接件在所述第一面的正投影与所述支撑件在所述第一面上的正投影至少部分重合,以使所述电池单体热失控时,所述支撑件能够支撑所述转接件,以防止所述转接件堵塞所述防爆机构。
通过采用上述方案,由耐高温材料制成的支撑件在电池单体发生热失控时不易熔化变形,从而在热失控情况下转接件发生变形时,转接件受到支撑件的阻挡而不会抵在防爆机构上而堵塞防爆机构,因此,在发生热失控时,电池单体内的高温高压排放物能够使防爆机构致动,并通过防爆机构排出,减小电池单体发生燃烧甚至爆炸的可能性,提高了电池单体在使用时的安全性。
在一些实施例中,所述支撑件的熔点大于300℃。
通过采用上述方案,电池单体在热失控时,其内部的排放物的最高温度在300℃以内,此时支撑件不会因为熔化而变形,从而能够在热失控时稳定的支撑转接件,保证防爆机构的正常排气。
在一些实施例中,所述支撑件为绝缘材质。
通过采用上述方案,支撑件在使用过程中不会引起短路问题。
在一些实施例中,所述支撑件包括支撑块,所述支撑块设置在所述转接件与端盖之间的。
在一些实施例中,所述支撑块在所述第一面上的正投影与所述防爆机构在所述第一面上的正投影错开。
在一些实施例中,所述转接件与所述端盖之间设有隔离部件,所述隔离部件用于使转接件与端盖之间绝缘,所述支撑块固定于所述隔离部件上。
通过采用上述方案,隔离部件不仅能够实现转接件与端盖之间的绝缘,还能够固定支撑块的位置,防止支撑块发生移位而无法对转接件形成良好的支撑。
在一些实施例中,所述隔离部件上设有容置槽,所述支撑块设于所述容置槽 内。
在一些实施例中,所述容置槽一侧设有开口,用于放入所述支撑块。
在一些实施例中,所述开口朝向所述端盖,所述支撑块一端抵在所述容置槽底壁上,另一端抵在所述端盖上;
或者,所述开口朝向所述转接件,所述支撑块一端抵在所述容置槽底壁上,另一端抵在所述转接件上。
通过采用上述方案,容置槽的侧壁限制支撑块在垂直于第一面的方向上的位置,使得支撑块能够始终位于转接件对应的位置上;而支撑块两端分别被容置槽的底壁和端盖或转接件抵紧的设置则能够防止支撑块从容置槽的开口掉落,从而导致的难以在热失控时支撑转接件的情况发生。
在一些实施例中,所述隔离部件由耐高温的绝缘材料制成。
通过采用上述方案,隔离部件在热失控时不易熔化,其本身不仅起到绝缘作用,还能起到支撑转接件的作用,从而防止转接件堵塞防爆机构。
在一些实施例中,所述支撑块与所述隔离部件材质相同且一体成型。
通过采用上述方案,支撑块与隔离部件一起加工成型,大大提高了端盖组件的加工效率,节约了端盖组件的制造成本。
在一些实施例中,所述转接件包括第一连接段、第二连接段和第三连接段,所述第一连接段与所述电池单体的电极端子连接,所述第三连接段用于与所述电池单体的壳体内部的电极组件连接,所述第二连接段连接所述第一连接段与所述第三连接段;
所述第一连接段在所述第一面上的正投影与所述防爆机构在所述第一面上的正投影不重合,所述第三连接段在所述第一面上的正投影至少部分与所述支撑件在所述第一面上的正投影重合,以使所述电池单体热失控时,所述支撑件能够支撑所述第三连接段,以防止所述第三连接段堵塞所述防爆机构。
通过采用上述方案,转接件直接支撑第三连接段,从而使得第一连接段与第三连接段之间始终具有间隙,以供电池单体发生热失控时的排放物通过,并且,支撑件位于第一连接段与第三连接段之间的高度范围内,不会额外占用壳体内部的空 间,从而缩小电池单体的体积,提高电池单体的能量密度。
在一些实施例中,所述转接件上正对所述防爆机构设有供所述电池单体热失控时产生的排放物通过的通孔。
通过采用上述方案,电池单体内部的排放物能够通过通孔而到达防爆机构,并通过防爆机构排出,进一步保证了电池单体内、外部的排气通畅。
本申请的第二方面,提供了一种电池单体,包括电极组件、壳体和上述实施例所述的端盖组件;
所述壳体为具有开口的中空腔体,所述电极组件容纳于所述腔体内,所述端盖组件覆盖所述壳体的所述开口。
通过采用上述方案,在发生热失控时,电池单体内的高温高压排放物能够使防爆机构致动,并通过防爆机构排出,防止电池单体发生燃烧甚至爆炸,保证电池单体在使用时的安全性
本申请的第三方面,提供了一种电池,包括两个以上的上述实施例的电池单体。
通过采用上述方案,当其中一个电池单体发生热失控时,其内部的高温高压排放物能够使防爆机构致动,并通过防爆机构排出,防止发生热蔓延而影响其他电池单体,并防止电池发生燃烧甚至爆炸,保证电池在使用时的安全性。
本申请的第四方面,提供了一种用电装置,包括上述实施例的电池单体,所述电池单体用于提供电能。
通过采用上述方案,用电装置在使用电池提供动力的过程中,电池不易发生爆炸,装置的使用安全性高。
本申请的第五方面,提供了一种端盖组件的制造方法,所制造的端盖组件用于电池单体,包括:
提供端盖,所述端盖用于密封电池单体的壳体,所述端盖上设有防爆机构,所述防爆机构能够在所述电池单体热失控时致动以泄放所述电池单体的压力;
提供转接件,所述转接件用于电连接所述电池单体的电极组件和所述电池单体的电极端子,所述转接件在所述端盖的第一面的正投影与所述防爆机构在所述端盖 的第一面的正投影至少部分重合,所述第一面为所述端盖朝向所述壳体的面;
提供支撑件,所述支撑件位于所述转接件与所述端盖之间,所述支撑件由耐高温的绝缘材料制成,所述转接件在所述第一面的正投影至少部分与所述支撑件在所述第一面的正投影重合,以使所述电池单体热失控时,所述支撑件能够支撑所述转接件,以防止所述转接件堵塞所述防爆机构。
本申请的第六方面,提供了一种电池单体的制造方法,包括:
提供壳体,所述壳体为具有开口的中空腔体;
提供电极组件,将所述电极组件装于所述壳体的腔体内;
提供端盖,所述端盖用于密封所述电池单体的壳体,所述端盖上设有防爆机构,所述防爆机构能够在所述电池单体热失控时致动以泄放所述电池单体的内部压力;
提供转接件,所述转接件用于电连接所述电池单体的电极组件和所述电池单体的电极端子,所述转接件在所述端盖的第一面的正投影与所述防爆机构在所述端盖的第一面的正投影至少部分重合,所述第一面为所述端盖朝向所述壳体的面;
提供支撑件,所述支撑件位于所述转接件与所述端盖之间,所述支撑件由耐高温的绝缘材料制成,所述转接件在所述第一面的正投影至少部分与所述支撑件在所述第一面的正投影重合,以使所述电池单体热失控时,所述支撑件能够支撑所述转接件,以防止所述转接件堵塞所述防爆机构。
上述说明仅是本申请实施例技术方案的概述,为了能够更清楚了解本申请实施例的技术手段,而可依照说明书的内容予以实施,并且为了让本申请实施例的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本申请一实施例的用电装置的示意图。
图2是本申请一实施例的电池的分解结构示意图。
图3是本申请一实施例的电池单体的部分分解示意图。
图4是本申请一实施例的端盖组件的分解示意图。
图5是本申请一实施例的端盖组件的俯视图。
图6是本申请一实施例的端盖组件沿图5中A-A面的剖视示意图。
图7是本申请另一实施例的端盖组件的分解示意图。
图8是本申请另一实施例的端盖组件沿图5中A-A面所示方向的剖视示意图。
图9是本申请另一实施例的端盖组件沿图5中B-B面所示方向的剖视示意图。
图10是本申请一实施例中的端盖组件的制造流程图。
图11是本申请一实施例中的电池单体的制造流程图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。
本申请的说明书和权利要求书及附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖而不排除其它的内容。单词“一”或“一个”并不排除存在多个。在本申请的描述中,除非另有说明,“多个”的含义是指两个以上(包括两个),同理,“多组”指的是两组以上(包括两组)。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语“实施 例”并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,机械结构的“相连”或“连接”可以是指物理上的连接,例如,物理上的连接可以是固定连接,例如通过固定件固定连接,例如通过螺丝、螺栓或其它固定件固定连接;物理上的连接也可以是可拆卸连接,例如相互卡接或卡合连接;物理上的连接也可以是一体地连接,例如,焊接、粘接或一体成型形成连接进行连接。电路结构的“相连”或“连接”除了可以是指物理上的连接,还可以是指电连接或信号连接,例如,可以是直接相连,即物理连接,也可以通过中间至少一个元件间接相连,只要达到电路相通即可,还可以是两个元件内部的连通;信号连接除了可以通过电路进行信号连接外,也可以是指通过媒体介质进行信号连接,例如,无线电波。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本说明书的描述中,需要理解的是,本申请实施例所描述的“上”、“下”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。
此外,本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序,可以明示或者隐含地包括一个或者更多个该特征。下面通过具体的实施例并结合附图对本申请做进一步的详细描述。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等,为描述方便,本文中可以将电池模块和电池包等统称为电池。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。
电池单体包括外壳、电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP或PE等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
外壳包括壳体和端盖组件,壳体为中空腔体结构,壳体上具有开口,电极组件从开口装入壳体内之后,利用端盖组件对开口进行封闭以使外壳密封,防止气态、液态或固态物质在外壳内部与外部之间流通,影响电池单体的使用性能。
端盖组件上具有电极端子,电极端子从端盖组件的内部延伸到外部,其包括正极端子和负极端子,正极端子通过一转接件与正极极耳电连接,即该转接件一端连接在电极端子上,另一端连接在正极极耳上;负极端子通过一转接件与负极极耳电连接,即该转接件一端连接在负极端子上,另一端连接在负极极耳上,从而实现电池单体内、外部电流的导通。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性,影响电池的使用安全性的其中一个重要因素就是电池的热失控。
在电池的使用过程中,当其中一个电池单体发生外部短路、过充、针刺、平板冲击等等情况时,该电池单体容易发生热失控,发生热失控时,该电池单体会释放出排放物,该排放物包含高温烟气、挥发的高温电解液、被溶解或分裂的正、负极极片、隔离膜的碎片、反应产生的高温高压气体、火焰等等的一种或几种,这些排放物如不及时排出,会导致电池单体内部的温度和压力持续升高,甚至发生爆炸事故。
为此,在设计电池单体时,在电池单体的端盖上设置防爆机构。防爆机构是指在电池单体的内部压力或内部温度达到预定阈值时能够致动以泄放电池单体的内部压力和/ 或内部物质的元件或部件。防爆机构具体可以采用防爆阀,例如气阀、泄压阀或安全阀等的形式,并可以具体采用压敏或温敏的元件或构造,即,当电池单体的内部压力或温度达到预定阈值时,防爆机构执行动作或者防爆机构中设有的薄弱结构被破坏,从而形成可供内部压力泄放的开口或通道。本申请中所称的阈值可以是压力阈值或温度阈值,该阈值的设计根据设计需求的不同而不同,例如可根据被认为是存在危险或失控风险的电池单体的内部压力或内部温度值而设计或确定该阈值。并且,该阈值例如可能取决于电池单体中的正极极片、负极极片、电解液和隔离膜中的一种或几种所用的材料。
本申请中所提到的“致动”是指防爆机构产生动作或被激活至一定的状态,从而使得电池单体的内部压力得以被泄放。防爆机构产生的动作可以包括但不限于:防爆机构中的至少一部分破裂、破碎、被撕裂或者打开,等等。防爆机构在致动时,电池单体的内部的高温高压物质作为排放物会从致动的部位向外排出。以此方式能够在可控压力或温度的情况下使电池单体发生泄压,从而避免潜在的更严重的事故发生。
为了保证防爆机构能够在发生热失控时,及时被排放物激活到致动状态,转接件与防爆机构之间通常会留出一定的空间供热失控时产生的排放物通过。
然而,在电池的实际使用过程中还是会发生因为电池单体热失控产生的排放物无法及时通过防爆机构排出而导致电池单体的端盖与壳体在高压下分离的情况,进而引发电池起火或者爆炸的风险。发明人经过长期的研究发现,这一问题是由于在发生热失控时,外壳内部温度急剧上升,电极组件的极耳和转接件在受内部温度和气压影响发生变形而向防爆机构方向上靠近,导致防爆机构被转接件堵塞,难以被排放物激活至致动状态,导致内部气压或温度持续升高,端盖组件和壳体的连接处发生分离。
鉴于此,本申请实施例提供了一种用于电池单体的端盖组件,通过在端盖组件上设置支撑件,该支撑件位于转接件与防爆机构之间,并且该支撑件采用耐高温材料制成,从而在电池单体发生热失控时不易发生熔化变形,并在转接件发生变形时支撑转接件,减小转接件堵塞防爆机构的可能性,使得防爆机构能够在电池单体发生热失控时被激活至致动状态以泄放电池单体内部的排放物,减小电池单体发生爆炸的可能性,提高电池单体使用过程的安全性。
本申请实施例中的电池单体可以应用到各种电池中,该电池也可以适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等,但不限于此。
如图1所示,为本申请一实施例提供的一种用电装置的结构示意图,以用电装置为汽车为例进行说明,汽车可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。汽车包括电池200、控制器210和马达220。电池200用于向控制器210和马达220供电,作为汽车的操作电源和驱动电源,例如,电池200用于汽车的启动、导航和运行时的工作用电需求。例如,电池200向控制器210供电,控制器210控制电池200向马达220供电,马达220接收并使用电池200的电力作为汽车的驱动电源,替代或部分地替代燃油或天然气为汽车提供驱动动力。
为了满足不同的使用电力需求,电池200可以包括多个电池单体100,其中,多个电池单体100之间可以串联或并联或混联,混联是指串联和并联的混合。可选地,多个电池单体100可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池200。也就是说,多个电池单体100可以直接组成电池200,也可以先组成电池模块,电池模块再组成电池200。
例如,如图2所示,为本申请一个实施例提供的一种电池200的结构示意图,电池200可以包括两个以上的电池单体100,此外,电池200还包括第一箱体201、第二箱体202和第三箱体203,其中,第三箱体203可以是两端开口的壳体结构,第一箱体201和第二箱体202分别扣合在第三箱体203两端的开口上,以形成用于容置电池单体100的密闭空间。多个电池单体100可以通过串联、并联或混联的方式电连接形成电池模块以后,再将各个电池模块串联或并联或混联以实现较大的电流或电压。可选的,第一箱体201、第二箱体202和第三箱体203可以为金属或塑料,例如,第一箱体201、第二箱体202和第三箱体203均为铝或铝合金。
在一实施例中,多个电池单体100沿竖直方向放置,并且排布在第一箱体201、第二箱体202和第三箱体203围合形成的空间内。在一些实施例中,第一箱体201、第二箱体202均和第三箱体203密封连接。
当然,箱体的结构不限于此,也可以是其他的方式,例如,两个开口的结构相互扣合形成密闭的空间以容纳电池单体100。
如图3所示,为本申请一实施例公开的一种电池单体100的部分分解结构示意图,其中,电池单体100可以为二次电池或一次电池,例如锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池或镁离子电池,但不局限于此。电池单体100 可呈圆柱体、扁平体、长方体或其它形状等,本申请此实例中以电池单体100为圆柱体为例进行说明。
电池单体100包括壳体10和放置于壳体10内的电极组件20,壳体10可由金属材料或塑料制成,可选地,壳体10由铝或铝合金制成。壳体10具有开口,开口可以位于壳体10的端面上,,例如,壳体10包括两个开口,两个开口分别位于圆柱形的壳体10的两个端面上,即壳体10的两个端面不具有端壁而使壳体10内外相通,以便电极组件20能够从任意一个开口装入壳体10内。
电极组件20由正极极片、负极极片和隔离膜层叠或卷绕形成,隔离膜夹在正极极片与负极极片之间,电极组件20具有正极极耳和负极极耳,正极极耳与负极极耳分别正对其中一个开口,开口上盖合有端盖组件30,端盖组件30在壳体10的开口处与壳体10密封结合以形成中空腔体,电极组件20放置于壳体10内后,壳体10内填充电解液并密封。
如图4所示,图4为图3中端盖组件30的分解结构示意图,端盖组件30包括端盖31、隔离部件34、电极端子32和转接件35。与电极组件20的正极极耳对应的端盖组件30上的电极端子32为正极端子,与电极组件20的负极极耳对应的端盖组件30上的电极端子32为负极端子,电极组件20的正极极耳与正极端子电连接,电极组件20的负极极耳与负极端子电连接。
端盖31基本呈平板状,其具有第一面31a和第二面31b,第一面31a为朝向壳体10的面,第二面31b为背向壳体10的面,隔离部件34、电极端子32和转接件35均位于第一面31a所在侧。端盖31可由金属或者塑料制成,可选的,端盖31由铝或铝合金制成,并通过焊接的方式密封连接在壳体10的开口上。
端盖31上开设有两个贯通的端子孔,隔离部件34及转接件35上均开设有与端子孔对应的通孔,两个电极端子32贯穿通孔和端子孔,在端盖31的第二面上与一铆接块37铆接,铆接块37和端盖31之间夹设有绝缘件39,用于电极端子32与端盖31之间的绝缘。电极端子32的外壁与端子孔的内壁之间设置有密封圈38,通过压缩密封圈38可实现端子孔的密封,同时,可使电极端子32与端子孔结合的更加牢固。
端盖31上设有防爆机构33,防爆机构33能够在电池单体100热失控时致动以泄放电池单体100的内部压力,例如,防爆机构33可以为端盖31的一部分薄弱 区域,也可以是端盖31上设有防爆通孔331,防爆片332设置于端盖31上并密封防爆通孔331,并且防爆片332能够在热失控时被电池单体100内部产生的排放物破坏。
例如,可通过减小薄弱区域或防爆片332的厚度来降低薄弱区域或防爆片332的强度,从而使得薄弱区域或防爆片332比端盖31的其他区域更容易被排放物破坏。防爆机构33靠近端盖31的第二面设置有贴片333,贴片333覆盖防爆通孔331,用于防止防爆片332被外力破坏,同时,贴片333能够在热失控时被电池单体100内部的排放物顶开,以供排放物流出。
隔离部件34设置于端盖31的第一面31a,其由绝缘材料制成,一般由塑料、塑胶等材料制成,以将端盖31和电极组件20隔开,降低短路风险,隔离部件34上开设有供排放物通过的排放口341,排放口341与防爆机构33正对设置。
结合图3和图4,转接件35位于电极组件20与隔离部件34之间,其一端连接电极端子32,另一端用于与电极组件20的正极极耳或负极极耳连接,用于实现电极组件20和电极端子32之间的电连接。由于电池单体100内部空间的限制,转接件35在端盖31的第一面的正投影通常与防爆机构33在端盖31的第一面的正投影至少部分重合。
在电池单体100的使用过程中,如果电池单体100过充、受到冲击等等情况时,电极组件20发生短路并产生大量的气体和热量,此种情况称为电池单体100的热失控。热失控情况下,电池单体100内的高温高压排放物在外壳内聚集到一定程度后,会破坏防爆机构33,从防爆机构33排放出,即防爆机构33致动。通过防爆机构33的致动从而避免排放物持续累积而发生燃烧、爆炸等事故。
但是,由于电池单体100在热失控状态下,其内部的温度和气压升高,从而导致转接件35向端盖31方向变形,而隔离部件34会在此时熔化变软,难以支撑转接件35,导致转接件35持续变形后抵在防爆机构33上,从而堵塞防爆机构33,导致防爆机构33难以被电池单体100内的排放物破坏掉而对电池单体100进行泄压,进而引发爆炸风险。
为解决上述问题,参照图4,本申请一实施例中,在转接件35与端盖31之间设置有支撑件36,支撑件36由耐高温的材料制成,例如,陶瓷、云母、耐高温树脂等,支撑件36可以为环形、U形、棱柱状、圆柱状或异形,在此不作限制。支撑 件36的数量可为一个或多个,只要保证转接件35在第一面的正投影与支撑件36在第一面上的正投影至少部分重合即可,从而使电池单体100热失控时,支撑件36能够支撑转接件35,以防止转接件35堵塞防爆机构33。
在一实施例中,支撑件36的熔点大于300℃,从而保证支撑件36不会在热失控时被排放物熔化而变形,从而在转接件35发生变形时,不会使转接件35直接抵在防爆机构33上而堵塞防爆机构33,因此,在发生热失控时,电池单体100内的高温高压排放物能够使防爆机构33致动,并通过防爆机构33排出,防止电池单体100发生燃烧甚至爆炸,提高电池单体100在使用时的安全性。
在一实施例中,支撑件36由绝缘材料支撑,避免支撑件36在使用过程中引起短路的问题。
在一实施例中,支撑件36包括支撑块,支撑块设置在转接件35与端盖31之间,例如,如图4所示,支撑块共设置有两组,每组包括两个弧形条状的支撑块,支撑块在第一面上的正投影与防爆机构33在第一面上的正投影错开,以保证防爆机构33能够在热失控时被破坏以排放气体,例如,可以将支撑块固定于隔离部件34上,以防止支撑块发生移位而无法对转接件35形成良好的支撑,或者影响防爆机构33的致动。支撑块的具体固定方式将在以下实施例说明。
如图4所示,在一实施例中,隔离部件34上设置有容置槽40,支撑块设置于容置槽40内,容置槽40一侧具有开口,以便支撑块从开口放入,即支撑块有部分没有被容置槽40的槽壁包裹,这种情况下,便于支撑块的定位。
例如,如图4、图5和图6所示,容置槽40的开口朝向端盖31,支撑块一端抵在容置槽40底壁上,另一端抵在端盖31上,图5为端盖组件30的俯视示意图,图6示出了容置槽40开口朝向端盖31时的剖视示意图。
又例如,如图7所示,图7中以端盖组件30的分解示意图的方式示意出了支撑块位于隔离部件34靠近转接件35一侧的状态,此时容置槽40的开口朝向转接件35,支撑块一端抵在容置槽40底壁上,另一端抵在转接件35上。
上述两种容置槽40的开口方式使得容置槽40的侧壁能够限制支撑块在垂直于第一面的方向上的位置,从而使得支撑块能够始终位于转接件35对应的位置上,在不限制防爆机构33致动的情况下,对转接件35形成稳定的支撑;而支撑块两端分别被容置槽40的底壁和端盖31或转接件35抵紧的设置则能够防止支撑块从容置 槽40的开口掉落,从而导致的难以在热失控时支撑转接件35的情况发生。
如图8所示,在另一实施例中,支撑块粘贴固定在隔离部件34上,支撑块可以粘贴在隔离部件34朝向端盖31一面,也可以粘贴在隔离部件34朝向转接件35一面,例如,可以采用耐热胶进行粘贴。这种固定支撑块的方式同样能够达到避免支撑块发生移位而难以在热失控时支撑转接件35的情况。图8示出了支撑块粘贴固定在隔离部件34朝向转接件35一面的状态。
在另一实施例中,还可以采用注塑的方式将支撑块固定在隔离部件34上。
在另一实施例中,隔离部件34由耐高温的绝缘材料制成,例如,陶瓷、云母、耐高温树脂等,隔离部件34的材质可以与支撑块的材质相同,也可以与支撑块的材质不相,支撑块可以采用上述任一实施例中的支撑块的固定方式固定在隔离部件34上,此时,隔离部件34在热失控时不易熔化,其本身不仅起到绝缘作用,还能起到支撑转接件35的作用,进一步减小转接件35堵塞防爆机构33的可能性。
如图9所示,在一实施例中,当支撑块与隔离部件34的材质相同,均为耐高温材料时,为了方便加工与组装,支撑块与隔离部件34可以一体成型,从而大大提高了端盖组件30的加工效率,节约了端盖组件30的制造成本。
在本申请的上述各实施例中,转接件35包括第一连接段351、第二连接段352和第三连接段353,第一连接段351与电池单体100的电极端子32连接,第三连接段353用于与电池单体100的壳体10内部的电极组件20连接,第二连接段352连接第一连接段351与第三连接段353,例如,第一连接段351、第二连接段352、第三连接段353可以由同一弹性金属片弯折而成。
为了节约电池单体100内部的空间,结合图8和图9所示,可以具体的设置为第一连接段351在第一面上的正投影与防爆机构33在第一面上的正投影不重合,第三连接段353在第一面上的正投影至少部分与支撑件36在第一面上的正投影重合,以使电池单体100热失控时,支撑件36能够支撑第三连接段353,以防止第三连接段353堵塞防爆机构33。
通过转接件35直接支撑第三连接段353,从而使得第一连接段351与第三连接段353之间始终具有间隙,以供电池单体100发生热失控时的排放物通过,并且,支撑件36位于第一连接段351与第三连接段353之间的高度范围内,因此,支撑件36的设置不会额外占用壳体10内部的空间,从而缩小电池单体100的体积, 提高电池单体100的能量密度。
如图4和图7所示,在一些实施例中,转接件35上正对防爆机构33设有供电池单体100热失控时产生的排放物通过的通孔,该通孔可具体的设置在第三连接段353上,电池单体100内部的排放物能够通过通孔而到达防爆机构33,并通过防爆机构33排出,进一步保证了电池单体100发生热失控时的排气通畅。
综上所述,本申请上述实施例通过在端盖组件30上设置由耐高温材料制成的支撑件36,并通过设置具体的支撑件36与转接件35之间的位置,从而使得将该盖端盖组件30用于电池单体100时,支撑件36能够支撑转接件35,以减小转接件35堵塞防爆机构33的可能性,使得防爆机构33能够在电池单体100发生热失控时被激活至致动状态以泄放电池单体100内部的排放物,从而使得防爆机构33能够在电池单体100发生热失控时减小电池单体100发生爆炸的可能性,提高电池单体100使用过程的安全性。
此外,本申请的另一方面,提供了一种端盖组件30的制造方法,所制造的端盖组件30用于密封电池单体100的壳体10的开口,如图10所示,该方法包括:
S410:提供端盖31,端盖31用于密封电池单体100的壳体10,端盖31上设有防爆机构33,防爆机构33能够在电池单体100热失控时致动以泄放电池单体100的压力。
S420:提供转接件35,转接件35用于电连接电池单体100的电极组件20和电池单体100的电极端子32,转接件35在端盖31的第一面31a的正投影与防爆机构33在端盖31的第一面31a的正投影至少部分重合,第一面31a为端盖31朝向壳体10的面。
S430:提供支撑件36,支撑件36位于转接件35与端盖31之间,支撑件36由耐高温的绝缘材料制成,转接件35在第一面的正投影至少部分与支撑件36在第一面31a的正投影重合,以使电池单体100热失控时,支撑件36能够支撑转接件35,以防止转接件35堵塞防爆机构33。
需要注意的是,上述端盖组件30的制造方法中,各步骤之间的顺序并非完全按照上述排列顺序进行,在实际制造端盖组件30的过程中,可以根据实际情况对上述步骤的顺序进行调整,或者同步进行,或者加入其它步骤以制造端盖组件30的其他部件,以最终获得需要的端盖组件30,具体参照端盖组件30部分的实施例。
本申请的又一方面,还提供了一种电池单体100的制造方法,如图11所示,该方法包括:
S510:提供壳体10,壳体10为具有开口的中空腔体。
S520:提供电极组件20,将电极组件20装于壳体10的腔体内。
S530:提供端盖31,端盖31用于密封电池单体100的壳体10,端盖31上设有防爆机构33,防爆机构33能够在电池单体100热失控时致动以泄放电池单体100的内部压力。
S540:提供转接件35,转接件35用于电连接电池单体100的电极组件20和电池单体100的电极端子32,转接件35在端盖31的第一面31a的正投影与防爆机构33在端盖31的第一面31a的正投影至少部分重合,第一面为端盖31朝向壳体10的面。
S550:提供支撑件36,支撑件36位于转接件35与端盖31之间,支撑件36由耐高温的绝缘材料制成,转接件35在第一面31a的正投影至少部分与支撑件36在第一面31a的正投影重合,以使电池单体100热失控时,支撑件36能够支撑转接件35,以防止转接件35堵塞防爆机构33。
上述各步骤的顺序并非完全按照上述排列顺序进行,在实际制造电池单体100的过程中,可以根据实际情况对上述步骤的顺序进行调整,或者同步进行,或者加入其它步骤以制造电池单体100的其他部件,以最终获得需要的电池单体100,具体参照电池单体100部分的实施例。
此外,任何可以制造相关部件和连接相关部件的方法均落入本申请实施例的保护范围内,本申请实施例在此不再冗述。
本申请上述各保护主题以及各实施例中的特征之间可以相互借鉴,在结构允许的情况下,本领域技术人员也可对不同实施例中的技术特征灵活组合,以形成更多的实施例。
以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方 案的精神和范围。

Claims (17)

  1. 一种端盖组件,用于电池单体(100),包括:
    端盖(31),用于封闭所述电池单体(100)的壳体(10),所述端盖(31)上设有防爆机构(33),所述防爆机构(33)能够在所述电池单体(100)热失控时致动以泄放所述电池单体(100)的内部压力;
    转接件(35),用于电连接所述电池单体(100)的电极组件(20)和所述电池单体(100)的电极端子(32),所述转接件(35)在所述端盖(31)的第一面(31a)的正投影与所述防爆机构(33)在所述端盖(31)的第一面(31a)的正投影至少部分重合,所述第一面(31a)为所述端盖(31)朝向所述壳体(10)的面;
    其中,所述转接件(35)与所述端盖(31)之间设有支撑件(36),所述支撑件(36)由耐高温材料制成,所述转接件(35)在所述第一面(31a)的正投影与所述支撑件(36)在所述第一面(31a)上的正投影至少部分重合,以使所述电池单体(100)热失控时,所述支撑件(36)能够支撑所述转接件(35),以防止所述转接件(35)堵塞所述防爆机构(33)。
  2. 根据权利要求1所述的端盖组件,其中,所述支撑件(36)的熔点大于300℃。
  3. 根据权利要求1或2所述的端盖组件,其中,所述支撑件(36)为绝缘材料制成。
  4. 根据权利要求1至3任一项所述的端盖组件,其中,所述支撑件(36)包括支撑块,所述支撑块设置在所述转接件(35)与端盖(31)之间。
  5. 根据权利要求4所述的端盖组件,其中,所述支撑块在所述第一面(31a)上的正投影与所述防爆机构(33)在所述第一面(31a)上的正投影错开。
  6. 根据权利要求4或5所述的端盖组件,其中,所述转接件(35)与所述端盖(31)之间设有隔离部件(34),所述隔离部件(34)用于使转接件(35)与端盖(31)之间绝缘,所述支撑块固定于所述隔离部件(34)上。
  7. 根据权利要求6所述的端盖组件,其中,所述隔离部件(34)上设有容置槽(40),所述支撑块设于所述容置槽(40)内。
  8. 根据权利要求7所述的端盖组件,其中,所述容置槽(40)一侧设有开口,用于放入所述支撑块。
  9. 根据权利要求8所述的端盖组件,其中,所述开口朝向所述端盖(31),所述支撑块一端抵在所述容置槽(40)底壁上,另一端抵在所述端盖(31)上;
    或者,所述开口朝向所述转接件(35),所述支撑块一端抵在所述容置槽(40)底壁 上,另一端抵在所述转接件(35)上。
  10. 根据权利要求9所述的端盖组件,其中,所述隔离部件(34)由耐高温的绝缘材料制成。
  11. 根据权利要求10所述的端盖组件,其中,所述支撑块与所述隔离部件(34)材质相同且一体成型。
  12. 根据权利要求1至11任一项所述的端盖组件,其中,所述转接件(35)包括第一连接段(351)、第二连接段(352)和第三连接段(353),所述第一连接段(351)与所述电池单体(100)的电极端子(32)连接,所述第三连接段(353)用于与所述电池单体(100)的壳体(10)内部的电极组件(20)连接,所述第二连接段(352)连接所述第一连接段(351)与所述第三连接段(353);
    所述第一连接段(351)在所述第一面上的正投影与所述防爆机构(33)在所述第一面上的正投影不重合,所述第三连接段(353)在所述第一面上的正投影至少部分与所述支撑件(36)在所述第一面上的正投影重合,以使所述电池单体(100)热失控时,所述支撑件(36)能够支撑所述第三连接段(353),以防止所述第三连接段(353)堵塞所述防爆机构(33)。
  13. 根据权利要求1至12任一项所述的端盖组件,其中,所述转接件(35)上正对所述防爆机构(33)设有供所述电池单体(100)热失控时产生的排放物通过的通孔。
  14. 一种电池单体,其中,包括电极组件(20)、壳体(10)和权利要求1至13任一项所述的端盖组件(30);
    所述壳体(10)为具有开口的中空腔体,所述电极组件(20)容纳于所述腔体内,所述端盖组件(30)覆盖所述壳体(10)的所述开口。
  15. 一种电池,其中,包括两个以上如权利要求14所述的电池单体(100)。
  16. 一种用电装置,其中,包括如权利要求14所述的电池单体(100),所述电池单体(100)用于提供电能。
  17. 一种电池单体的制造方法,其中,包括:
    提供壳体(10),所述壳体(10)为具有开口的中空腔体;
    提供电极组件(20),将所述电极组件(20)装于所述壳体(10)的腔体内;
    提供端盖(31),所述端盖(31)用于密封所述电池单体(100)的壳体(10),所述端盖(31)上设有防爆机构(33),所述防爆机构(33)能够在所述电池单体(100)热失控时致动以泄放所述电池单体(100)的内部压力;
    提供转接件(35),所述转接件(35)用于电连接所述电池单体(100)的电极组件(20)和所述电池单体(100)的电极端子(32),所述转接件(35)在所述端盖(31)的第一面(31a)的正投影与所述防爆机构(33)在所述端盖(31)的第一面(31a)的正投影至少部分重合,所述第一面(31a)为所述端盖(31)朝向所述壳体(10)的面;
    提供支撑件(36),所述支撑件(36)位于所述转接件(35)与所述端盖(31)之间,所述支撑件(36)由耐高温的绝缘材料制成,所述转接件(35)在所述第一面(31a)的正投影至少部分与所述支撑件(36)在所述第一面(31a)的正投影重合,以使所述电池单体(100)热失控时,所述支撑件(36)能够支撑所述转接件(35),以防止所述转接件(35)堵塞所述防爆机构(33)。
PCT/CN2020/135949 2020-12-11 2020-12-11 端盖组件、电池单体及其制造方法、电池及用电装置 WO2022120851A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080102986.7A CN115868074A (zh) 2020-12-11 2020-12-11 端盖组件、电池单体及其制造方法、电池及用电装置
EP20964784.1A EP4071897A4 (en) 2020-12-11 2020-12-11 END CAP ASSEMBLY, BATTERY CELL AND METHOD FOR MANUFACTURING SAME, BATTERY AND POWER SUPPLY DEVICE
PCT/CN2020/135949 WO2022120851A1 (zh) 2020-12-11 2020-12-11 端盖组件、电池单体及其制造方法、电池及用电装置
US17/842,775 US11688907B2 (en) 2020-12-11 2022-06-16 End cap assembly, battery cell and manufacturing method thereof, battery, and electric apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/135949 WO2022120851A1 (zh) 2020-12-11 2020-12-11 端盖组件、电池单体及其制造方法、电池及用电装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/842,775 Continuation US11688907B2 (en) 2020-12-11 2022-06-16 End cap assembly, battery cell and manufacturing method thereof, battery, and electric apparatus

Publications (1)

Publication Number Publication Date
WO2022120851A1 true WO2022120851A1 (zh) 2022-06-16

Family

ID=81974173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/135949 WO2022120851A1 (zh) 2020-12-11 2020-12-11 端盖组件、电池单体及其制造方法、电池及用电装置

Country Status (4)

Country Link
US (1) US11688907B2 (zh)
EP (1) EP4071897A4 (zh)
CN (1) CN115868074A (zh)
WO (1) WO2022120851A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246098A1 (zh) * 2022-06-21 2023-12-28 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置
WO2023246227A1 (zh) * 2022-06-21 2023-12-28 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置
WO2023245431A1 (zh) * 2022-06-21 2023-12-28 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备
WO2024066133A1 (zh) * 2022-09-28 2024-04-04 厦门海辰储能科技股份有限公司 单体电池、电池包和用电设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116544488B (zh) * 2023-07-06 2023-11-14 宁德时代新能源科技股份有限公司 底托板、电池单体、电池和用电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202749425U (zh) * 2012-08-20 2013-02-20 常州市武进中瑞电子有限公司 防堵塞超声焊圆柱锂电池防爆组合盖帽
CN208225974U (zh) * 2017-12-28 2018-12-11 力神电池(苏州)有限公司 一种锂离子电池上垫片
JP2019053934A (ja) * 2017-09-18 2019-04-04 タイガースポリマー株式会社 密閉型電気化学デバイス用防爆弁体
CN111490212A (zh) * 2020-04-21 2020-08-04 东莞蒲微防水透气膜材料有限公司 一种防堵塞的防爆阀及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000285886A (ja) * 1999-03-29 2000-10-13 Matsushita Electric Ind Co Ltd 電池パック装置
KR100646532B1 (ko) * 2005-03-24 2006-11-23 삼성에스디아이 주식회사 리튬 이차전지
KR102586879B1 (ko) * 2017-10-11 2023-10-10 삼성에스디아이 주식회사 이차 전지

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202749425U (zh) * 2012-08-20 2013-02-20 常州市武进中瑞电子有限公司 防堵塞超声焊圆柱锂电池防爆组合盖帽
JP2019053934A (ja) * 2017-09-18 2019-04-04 タイガースポリマー株式会社 密閉型電気化学デバイス用防爆弁体
CN208225974U (zh) * 2017-12-28 2018-12-11 力神电池(苏州)有限公司 一种锂离子电池上垫片
CN111490212A (zh) * 2020-04-21 2020-08-04 东莞蒲微防水透气膜材料有限公司 一种防堵塞的防爆阀及其制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023246098A1 (zh) * 2022-06-21 2023-12-28 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置
WO2023246227A1 (zh) * 2022-06-21 2023-12-28 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置
WO2023245431A1 (zh) * 2022-06-21 2023-12-28 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备
WO2024066133A1 (zh) * 2022-09-28 2024-04-04 厦门海辰储能科技股份有限公司 单体电池、电池包和用电设备

Also Published As

Publication number Publication date
US11688907B2 (en) 2023-06-27
EP4071897A1 (en) 2022-10-12
US20220320643A1 (en) 2022-10-06
CN115868074A (zh) 2023-03-28
EP4071897A4 (en) 2023-10-11

Similar Documents

Publication Publication Date Title
WO2022120851A1 (zh) 端盖组件、电池单体及其制造方法、电池及用电装置
WO2022006894A1 (zh) 电池及其相关装置、制备方法和制备设备
WO2023137976A1 (zh) 电池单体、电池以及用电装置
WO2023279260A1 (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
WO2022006891A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2022006903A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023098258A1 (zh) 电池单体、电池以及用电装置
WO2022109884A1 (zh) 电池单体及其制造方法和系统、电池以及用电装置
WO2022213728A1 (zh) 电池及用电装置
WO2022213400A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2022178679A1 (zh) 电池单体、电池、用电装置及制备电池单体的方法和装置
WO2022205076A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023133722A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2023028745A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2023133735A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023077268A1 (zh) 端盖组件、电池单体、电池及用电装置
WO2023050281A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023004660A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2022198462A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2022006896A1 (zh) 电池及其相关装置、制备方法和制备设备
WO2023142620A1 (zh) 端盖组件、电池单体、电池及用电设备
WO2024016158A1 (zh) 电池单体的端盖组件、电池单体、电池以及用电装置
KR20040110156A (ko) 안전변을 구비한 파우치형 이차전지
WO2023245429A1 (zh) 电池单体、电池及用电装置
WO2023097440A1 (zh) 电池、用电装置、制备电池的方法和装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020964784

Country of ref document: EP

Effective date: 20220708

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20964784

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE