WO2023028745A1 - 电池的箱体、电池、用电装置、制备电池的方法和装置 - Google Patents

电池的箱体、电池、用电装置、制备电池的方法和装置 Download PDF

Info

Publication number
WO2023028745A1
WO2023028745A1 PCT/CN2021/115295 CN2021115295W WO2023028745A1 WO 2023028745 A1 WO2023028745 A1 WO 2023028745A1 CN 2021115295 W CN2021115295 W CN 2021115295W WO 2023028745 A1 WO2023028745 A1 WO 2023028745A1
Authority
WO
WIPO (PCT)
Prior art keywords
cavity
battery
chamber
discharge
pressure relief
Prior art date
Application number
PCT/CN2021/115295
Other languages
English (en)
French (fr)
Inventor
胡璐
陈小波
李耀
杨飘飘
顾明光
吴少基
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2021/115295 priority Critical patent/WO2023028745A1/zh
Priority to EP21955327.8A priority patent/EP4203153A1/en
Priority to CN202180083689.7A priority patent/CN116670906A/zh
Priority to KR1020237010747A priority patent/KR20230060517A/ko
Priority to JP2023520226A priority patent/JP2023544047A/ja
Publication of WO2023028745A1 publication Critical patent/WO2023028745A1/zh
Priority to US18/188,993 priority patent/US20230231260A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/317Re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6561Gases
    • H01M10/6566Means within the gas flow to guide the flow around one or more cells, e.g. manifolds, baffles or other barriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/367Internal gas exhaust passages forming part of the battery cover or case; Double cover vent systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, in particular to a battery box, a battery, an electrical device, a method for preparing a battery, and a device for preparing a battery.
  • Energy saving and emission reduction is the key to the sustainable development of the automobile industry.
  • electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy saving and environmental protection.
  • battery technology is an important factor related to its development.
  • the application provides a battery box, a battery, an electrical device, a method for preparing a battery, and a device for preparing a battery, which can enhance the safety of the battery.
  • a battery box including: an electrical chamber for accommodating a plurality of battery cells, at least one of the plurality of battery cells includes a pressure relief mechanism, the pressure relief a mechanism for actuating to release the internal pressure when the internal pressure or temperature of the battery cell provided with the pressure relief mechanism reaches a threshold value;
  • the discharge of the battery cells provided with the pressure relief mechanism; the isolation part is used to isolate the electrical chamber and the collection chamber, so that the electrical chamber and the collection chamber are arranged in the isolation part Two sides; a separation structure, used to divide the collection chamber into a first cavity and a second cavity, wherein, the separation structure is provided with a first exhaust hole, and the first exhaust hole is used to separate the The discharge in the first cavity is introduced into the second cavity; the flow channel partition is arranged in the second cavity and used to form a flow channel for guiding the discharge.
  • the electrical cavity containing the battery cells is separated from the collection cavity for collecting discharges by means of an isolation component.
  • the pressure relief mechanism When the pressure relief mechanism is actuated, the discharges of the battery cells enter the collection cavity, but do not enter or enter in a small amount.
  • the electrical chamber prevents conduction and short circuiting of the electrical connection components in the electrical chamber, thereby enhancing the safety of the battery.
  • the collection chamber is further divided into two cavities by using a partition structure, and a flow channel for guiding the discharge is formed in the second cavity to extend the discharge path of the discharge, thereby It can further cool down the emissions, reduce the possibility of emissions burning, reduce the impact of emissions on the external environment, and enhance the safety of the battery.
  • the tank further includes: a pressure balance mechanism for balancing the pressure inside and outside the tank, the pressure balance mechanism is configured to guide the discharge to the pressure balance mechanism and discharge to the outside of the tank.
  • the discharge of the battery cells can be discharged to the outside of the box, so that the pressure inside and outside the box can be kept in balance to ensure the safety of the battery.
  • the first exhaust hole is arranged at an end of the partition structure away from the pressure balance mechanism, or, the first exhaust hole is arranged at the middle of the partition structure.
  • the first vent hole By arranging the first vent hole at different positions of the separation structure, it can match the structural strength of the battery, making the structural design of the battery case more flexible.
  • the flow channel is an S-shaped flow channel, and the inlet of the flow channel communicates with the first exhaust hole.
  • the length of the flow channel can be extended to the maximum, so that the discharge path of the discharge can be extended, so that the discharge can be fully buffered, so that the temperature of the discharge can be reduced, and the The possibility of exhaust combustion, at the same time, the inlet of the S-shaped flow channel can communicate with the first exhaust hole, so that the discharge path of the exhaust from the first cavity into the second cavity can be greatly improved Extend, so that the temperature of the exhaust can be reduced as much as possible, the possibility of burning the exhaust can be reduced, and the safety of the battery can be ensured.
  • an oxidizing agent or a cooling material is provided in the collection cavity.
  • the discharge generated after the thermal runaway of the battery cells may include combustible gases, such as H 2 , CO, etc.
  • combustible gases such as H 2 , CO, etc.
  • materials that can react with the combustible gases in the discharge can also be provided in the case, so that further Reduce the possibility of burning the emissions, make the emissions less likely to be ignited, enhance the safety of the battery, and ensure the integrity of the battery and the external environment.
  • the oxidizing agent or the cooling material is disposed on the surface of the partition structure; and/or, the oxidizing agent or the cooling material is disposed on the surface of the flow channel separator.
  • the discharge By arranging at least one of the above-mentioned oxidants or cooling materials on the discharge path of the discharge, the discharge can be further treated, the possibility of combustion of the discharge is reduced, and the integrity of the battery and the external environment is ensured.
  • the box further includes: a protective member, the protective member is used to protect the isolation part, and the protective member and the isolation part form the collection chamber, wherein the oxidant or the The cooling material is arranged on the surface of the protective member facing the isolation part.
  • the emissions can be further reacted or treated on the emission path, thereby further reducing the temperature of the emissions and reducing the possibility of their combustion, thus ensuring the protection of the battery and the outside world. environmental safety.
  • a surface of the separation structure facing the shielding member has a recess configured to accommodate the oxidizing agent or the cooling material.
  • the contact area between the cavity and the discharge can be significantly increased by providing a concave portion with a concave-convex surface structure, and at the same time, more oxidants or cooling materials can be carried, so that the discharge can be more fully carried out on the discharge path. And effectively react, reduce the temperature of the exhaust and the possibility of burning, reduce its impact on the battery and the external environment, and ensure the safety of the battery.
  • the electrical cavity includes a first sub-cavity for accommodating the plurality of battery cells, and a second sub-cavity and the first sub-cavity
  • the cavity is adjacently disposed;
  • the pressure balance mechanism is disposed on the outer wall of the second sub-cavity, and the second sub-cavity is configured to communicate with the second cavity so that the discharge passes through the flow channel Guided into the second sub-cavity, and discharged to the outside of the tank through the pressure balance mechanism.
  • the discharge produced by the battery cells in the first subchamber can enter the second subchamber through the second chamber and be discharged through the pressure balance mechanism on the second subchamber.
  • the cavity of the object is separated from the first sub-cavity containing the battery cells, which can prevent the discharge from affecting the electrical connection components in the first sub-cavity and enhance the safety of the battery; on the other hand, by setting the second cavity and The second sub-chamber can greatly prolong the discharge path of the discharge, thereby further cooling the discharge, reducing the possibility of combustion of the discharge, and enhancing the safety of the battery and the external environment.
  • the isolation member is provided with a second vent hole
  • the partition structure is also provided with a third vent hole corresponding to the second vent hole
  • the second sub-chamber is connected to the The second cavity communicates with the third exhaust hole through the second exhaust hole.
  • a battery including: a plurality of battery cells, at least one of the plurality of battery cells includes a pressure relief mechanism, and the pressure relief mechanism is used for When the internal pressure or temperature of the battery cells of the pressure mechanism reaches a threshold value, the internal pressure is actuated to release the internal pressure; and, according to the case of the first aspect, the plurality of battery cells are accommodated in the case.
  • an electric device including: the battery described in the second aspect, the battery is used to provide electric energy.
  • the electrical device is a vehicle, ship or spacecraft.
  • a method for preparing a battery comprising: providing a plurality of battery cells, at least one of the plurality of battery cells includes a pressure relief mechanism, and the pressure relief mechanism is used to actuating to relieve the internal pressure when the internal pressure or temperature of the battery cells of the pressure relief mechanism reaches a threshold value; providing a case, the case including: an electrical cavity for containing the plurality of battery cells body; a collection chamber for collecting discharge from said battery cells provided with said pressure relief mechanism when said pressure relief mechanism is actuated; an isolation member for isolating said electrical chamber from said collection chamber , so that the electrical cavity and the collection cavity are arranged on both sides of the isolation member; the partition structure is used to divide the collection cavity into a first cavity and a second cavity, on the partition structure A first exhaust hole is provided, and the first exhaust hole is used to introduce the discharge in the first cavity into the second cavity; the flow channel partition is arranged in the second cavity And is used to form the flow channel that guides said discharge.
  • a device for preparing a battery including: a first supply module, configured to provide a plurality of battery cells, at least one of the plurality of battery cells includes a pressure relief mechanism, the The pressure relief mechanism is used to actuate to release the internal pressure when the internal pressure or temperature of the battery cell provided with the pressure relief mechanism reaches a threshold value; the second providing module is used to provide a box body, and the box body comprising: an electrical cavity for receiving the plurality of battery cells; a collection cavity for collecting discharge from the battery cells provided with the pressure relief mechanism when the pressure relief mechanism is actuated; an isolation Parts, used to isolate the electrical cavity and the collection cavity, so that the electrical cavity and the collection cavity are arranged on both sides of the isolation component; a partition structure, used to separate the collection cavity into a first A cavity and a second cavity; a flow channel partition arranged in the second cavity and used to form a flow channel for guiding the discharge; a module is provided for setting a first exhaust gas on the partition structure holes,
  • Fig. 1 is a schematic structural view of a vehicle disclosed in an embodiment of the present application
  • Fig. 2 is a schematic structural diagram of a battery disclosed in an embodiment of the present application.
  • Fig. 3 is a schematic diagram of a partial structure of a battery cell group disclosed in an embodiment of the present application.
  • Fig. 4 is an exploded view of a battery cell disclosed in an embodiment of the present application.
  • Fig. 5 is an exploded view of a battery cell disclosed in another embodiment of the present application.
  • Fig. 6 is a schematic structural diagram of a battery disclosed in an embodiment of the present application.
  • Fig. 7 is a schematic diagram of a box disclosed in an embodiment of the present application.
  • Fig. 8 is an exploded view corresponding to the casing of Fig. 7;
  • Fig. 9 is a schematic plan view corresponding to the casing in Fig. 7 and Fig. 8;
  • Figures 10 to 12 are schematic cross-sectional views corresponding to the boxes in Figure 9 along the axes A-A, B-B, and C-C;
  • Fig. 13a is a schematic diagram of an arrangement of a first vent hole disclosed in an embodiment of the present application.
  • Fig. 13b is a bottom view corresponding to the arrangement of the first exhaust hole in Fig. 13a;
  • Fig. 13c is a top view corresponding to the arrangement of the first exhaust hole in Fig. 13a;
  • Fig. 14a is a schematic diagram of another arrangement of the first exhaust hole disclosed in an embodiment of the present application.
  • Fig. 14b is a bottom view corresponding to the arrangement of the first exhaust hole in Fig. 14a;
  • Fig. 14c is a top view corresponding to the arrangement of the first exhaust hole in Fig. 14a;
  • Fig. 15a and Fig. 15b are schematic diagrams of a structure provided with a recessed part disclosed in an embodiment of the present application;
  • Fig. 16 is an exploded view of a battery disclosed in an embodiment of the present application.
  • Fig. 17 is a schematic flow chart of a method for preparing a battery disclosed in an embodiment of the present application.
  • Fig. 18 is a schematic block diagram of a device for preparing a battery disclosed in an embodiment of the present application.
  • a battery cell may include a primary battery or a secondary battery, such as a lithium-ion battery, a lithium-sulfur battery, a sodium-lithium-ion battery, a sodium-ion battery, or a magnesium-ion battery, which is not limited in this embodiment of the application.
  • the battery cell can be in the form of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the batteries mentioned in this application may include battery cell groups or battery packs.
  • a battery pack generally includes a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly includes a positive electrode sheet, a negative electrode sheet, and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative plates.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector without the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector coated with the negative electrode active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the material of the isolation film can be polypropylene (PP) or polyethylene (PE).
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • a pressure relief mechanism is generally installed on the battery cell.
  • the pressure relief mechanism refers to an element or part that is activated to release the internal pressure or temperature when the internal pressure or temperature of the battery cell reaches a predetermined threshold.
  • the predetermined threshold can be adjusted according to different design requirements.
  • the predetermined threshold may depend on the materials of one or more of the positive electrode sheet, the negative electrode sheet, the electrolyte and the separator in the battery cell.
  • the pressure relief mechanism can adopt elements or components that are sensitive to pressure or temperature, that is, when the internal pressure or temperature of the battery cell reaches a predetermined threshold, the pressure relief mechanism is actuated, thereby forming a pressure-sensitive or temperature-sensitive pressure relief mechanism. aisle.
  • the "actuation" mentioned in this application refers to the action of the pressure relief mechanism, so that the internal pressure and temperature of the battery cells can be released. Actions by the pressure relief mechanism may include, but are not limited to, at least a portion of the pressure relief mechanism rupture, be torn, or melt, among others. After the pressure relief mechanism is actuated, the high temperature and high pressure material inside the battery cell will be discharged from the pressure relief mechanism as discharge. In this way, the battery cells can be depressurized under controllable pressure or temperature, thereby avoiding potential more serious accidents.
  • the emissions from battery cells mentioned in this application include but are not limited to: electrolyte, dissolved or split positive and negative electrodes, fragments of separator, high temperature and high pressure gas generated by reaction, flame, etc.
  • the pressure relief mechanism on the battery cell has an important impact on the safety of the battery. For example, when a battery cell is short-circuited or overcharged, it may cause thermal runaway inside the battery cell, resulting in a sudden increase in pressure or temperature. In this case, the internal pressure and temperature of the battery cells can be released to the outside by actuating the pressure relief mechanism, so as to prevent the battery cells from exploding and igniting.
  • the main concern is to release the high pressure and high heat inside the battery cell, that is, to discharge the discharge to the outside of the battery cell.
  • the discharge from the inside of a thermally runaway battery cell has the potential to short-circuit the rest of the battery cells, and furthermore, the discharge to the outside of the battery may still have a high temperature, which may further cause fires, Secondary disasters such as explosions.
  • the embodiment of the present application provides a technical solution, using the isolation member to separate the electrical cavity containing the battery cell from the collection cavity for collecting the discharge, and when the pressure relief mechanism is activated, the discharge of the battery cell enters
  • the collecting cavity does not enter or a small amount enters the electrical cavity, so that there will be no conduction and short circuit to the electrical connection parts in the electrical cavity, so the safety of the battery can be enhanced.
  • the collection chamber is further divided into two cavities by using a partition structure, and a flow channel for guiding the discharge is formed in the second cavity to extend the discharge path of the discharge, thereby It can further cool down the emissions, reduce the possibility of emissions burning, reduce the impact of emissions on the external environment, and enhance the safety of the battery.
  • the isolation component in the present application can be used to isolate the electrical cavity and the collection cavity, so that the electrical cavity and the collection cavity are arranged on both sides of the isolation component.
  • the isolation component in the embodiment of the present application can also serve as a thermal management component, that is, the isolation component can contain fluid to adjust the temperature of multiple battery cells.
  • the fluid here can be liquid or gas, and regulating temperature refers to heating or cooling multiple battery cells.
  • the insulating part is used to contain the cooling fluid to lower the temperature of the multiple battery cells.
  • the insulating part can also be used for heating to raise the temperature of the multiple battery cells. Examples are not limited to this.
  • the fluid may circulate in order to achieve a better effect of temperature regulation.
  • the fluid may be water, a mixture of water and glycol, or air.
  • the electrical cavity referred to in this application is used to accommodate a plurality of battery cells and bus components.
  • the electrical cavity can be sealed or unsealed.
  • the electrical cavity provides installation space for battery cells and bus components.
  • a structure for fixing the battery cells may also be provided in the electrical cavity.
  • the shape of the electrical cavity can be determined according to the number and shape of the battery cells and bus components accommodated.
  • the electrical cavity may be square with six walls.
  • the current-flow component mentioned in this application is used to realize the electrical connection between multiple battery cells, such as parallel connection, series connection or mixed connection.
  • the bus component can realize the electrical connection between the battery cells by connecting the electrode terminals of the battery cells.
  • the bus member may be fixed to the electrode terminal of the battery cell by welding.
  • the collection cavity referred to in this application is used to collect the effluent and may be sealed or unsealed.
  • the collection chamber may contain air or other gases.
  • the collection chamber may also contain liquid, such as a cooling medium, or a component containing the liquid may be provided to further reduce the temperature of the effluent entering the collection chamber. Further optionally, the gas or liquid in the collecting cavity is circulated.
  • batteries such as mobile phones, portable devices, notebook computers, battery cars, electric toys, electric tools, electric vehicles, ships and spacecraft, etc.
  • spacecraft include Airplanes, rockets, space shuttles and spaceships, etc.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or Extended range cars, etc.
  • a motor 40 , a controller 30 and a battery 10 can be arranged inside the vehicle 1 , and the controller 30 is used to control the battery 10 to supply power to the motor 40 .
  • the battery 10 may be provided at the bottom or front or rear of the vehicle 1 .
  • the battery 10 can be used for power supply of the vehicle 1 , for example, the battery 10 can be used as an operating power source of the vehicle 1 , for a circuit system of the vehicle 1 , for example, for starting, navigating and running power requirements of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source for the vehicle 1 , but can also be used as a driving power source for the vehicle 1 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1 .
  • the battery of the present application may include multiple battery cells, wherein the multiple battery cells may be connected in series, in parallel or in parallel, and the hybrid connection refers to a mixture of series and parallel connections. Batteries can also be called battery packs.
  • a plurality of battery cells can be connected in series, parallel or mixed to form a battery module, and then a plurality of battery modules can be connected in series, parallel or mixed to form a battery. That is to say, multiple battery cells can directly form a battery, or form a battery module first, and then form a battery from the battery module.
  • the battery 10 may include a plurality of battery cells 20 .
  • the battery 10 may also include a box body, the inside of which is a hollow structure, and a plurality of battery cells 20 are accommodated in the box body.
  • the box body may include two parts, referred to here as a first part 101 and a second part 102 respectively, and the first part 101 and the second part 102 are fastened together.
  • the shapes of the first part 101 and the second part 102 may be determined according to the combined shape of the battery cells 20 , and each of the first part 101 and the second part 102 may have an opening.
  • both the first part 101 and the second part 102 can be hollow cuboids and each has only one face as an open face, the opening of the first part 101 and the opening of the second part 102 are arranged oppositely, and the first part 101 and the second part 102 are interlocked combined to form a box with a closed chamber.
  • a plurality of battery cells 20 are combined in parallel, in series or in parallel and placed in the box formed by fastening the first part 101 and the second part 102 .
  • the battery 10 may also include other structures, which will not be repeated here.
  • the battery 10 may also include a confluence part, which is used to realize the electrical connection between a plurality of battery cells 20, such as parallel connection, series connection or mixed connection.
  • the current-combining component can realize the electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
  • the bus member may be fixed to the electrode terminal of the battery cell 20 by welding. The electric energy of the plurality of battery cells 20 can be further drawn out through the box through the conductive mechanism.
  • the number of battery cells can be set to any value. Multiple battery cells can be connected in series, parallel or in parallel to achieve greater capacity or power. Since the number of battery cells included in each battery 10 may be large, the battery cells may be arranged in groups for ease of installation, and each group of battery cells constitutes a battery cell group 200 . The number of battery cells included in the battery cell group 200 is not limited, and can be set according to requirements.
  • FIG. 3 is an example of a battery cell group.
  • a battery may include a plurality of battery cell groups, and these battery cell groups may be connected in series, in parallel or in parallel.
  • the battery cell 20 includes one or more electrode assemblies 22 , a casing 211 and a cover plate 212 .
  • the housing 211 and the cover plate 212 form the housing 21 .
  • the walls of the casing 211 and the cover plate 212 are both referred to as walls of the battery cell 20 .
  • the housing 211 depends on the combined shape of one or more electrode assemblies 22.
  • the housing 211 can be a hollow cuboid or cube or cylinder, and one of the surfaces of the housing 211 has an opening so that one or more electrodes Assembly 22 may be placed within housing 211 .
  • the housing 211 when the housing 211 is a hollow cuboid or cube, one of the planes of the housing 211 is an open surface, that is, the plane does not have a wall so that the inside and outside of the housing 211 communicate.
  • the casing 211 can be a hollow cylinder, the end surface of the casing 211 is an open surface, that is, the end surface does not have a wall so that the inside and outside of the casing 211 communicate.
  • the cover plate 212 covers the opening and is connected with the casing 211 to form a closed cavity for placing the electrode assembly 22 .
  • the casing 211 is filled with electrolyte, such as electrolytic solution.
  • the battery cell 20 may further include two electrode terminals 214 , and the two electrode terminals 214 may be disposed on the cover plate 212 .
  • the cover plate 212 is usually in the shape of a flat plate, and two electrode terminals 214 are fixed on the flat plate surface of the cover plate 212, and the two electrode terminals 214 are positive electrode terminals 214a and negative electrode terminals 214b respectively.
  • Each electrode terminal 214 is correspondingly provided with a connection member 23 , which is located between the cover plate 212 and the electrode assembly 22 , and is used for electrically connecting the electrode assembly 22 and the electrode terminal 214 .
  • each electrode assembly 22 has a first tab 221a and a second tab 222a.
  • the polarities of the first tab 221a and the second tab 222a are opposite.
  • the first tab 221a is a positive tab
  • the second tab 222a is a negative tab.
  • the first tabs 221a of one or more electrode assemblies 22 are connected to one electrode terminal through one connection member 23
  • the second tabs 222a of one or more electrode assemblies 22 are connected to another electrode terminal through another connection member 23 .
  • the positive electrode terminal 214 a is connected to the positive electrode tab through one connection member 23
  • the negative electrode terminal 214 b is connected to the negative electrode tab through the other connection member 23 .
  • the electrode assembly 22 can be set as single or multiple, as shown in FIG. 4 , four independent electrode assemblies 22 are arranged in the battery cell 20 .
  • FIG. 5 it is a schematic structural diagram of a battery cell 20 including a pressure relief mechanism 213 according to another embodiment of the present application.
  • the housing 211, cover plate 212, electrode assembly 22 and connecting member 23 in FIG. 5 are consistent with the housing 211, cover plate 212, electrode assembly 22 and connecting member 23 in FIG. .
  • the pressure relief mechanism 213 is disposed on the bottom wall of the battery cell 20 , that is, the wall 21a in FIG. 5 , wherein the pressure relief mechanism 213 can be a part of the wall 21a, or can be a separate structure from the wall 21a. , fixed on the wall 21a by, for example, welding.
  • the pressure relief mechanism 213 can be formed by setting a notch on the wall 21a, and the thickness of the wall 21a corresponding to the notch is smaller than that of the pressure relief mechanism 213 except for the notch. The thickness of other areas.
  • the notch is the weakest position of the pressure relief mechanism 213 .
  • the pressure relief mechanism 213 can A crack occurs at the notch, which leads to communication between the inside and outside of the shell 211 , and the gas pressure and temperature are released outward through the crack of the pressure relief mechanism 213 , thereby preventing the battery cell 20 from exploding.
  • the pressure relief mechanism 213 is located on the bottom wall of the battery cell 20 as an example for description, but it should be understood that the pressure relief mechanism 213 in the embodiment of the present application may be located on the side wall of the housing 211, or It is located on the cover plate 212, or may also be located at the intersection of the two walls of the housing 211, which is not limited in this embodiment of the present application.
  • the pressure relief mechanism 213 may be various possible pressure relief structures, which are not limited in this embodiment of the present application.
  • the pressure relief mechanism 213 may be a temperature-sensitive pressure relief mechanism configured to melt when the internal temperature of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold; and/or, the pressure relief mechanism 213 may be a pressure-sensitive pressure relief mechanism configured to rupture when the internal air pressure of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold value.
  • FIG. 6 shows a schematic structural diagram of a battery 10 according to an embodiment of the present application.
  • the battery 10 may include a plurality of battery cells 20 and a case 11 .
  • the box body 11 may include an electrical cavity 11 a, a collection cavity 11 b, an isolation component 13 , a partition structure 131 and a flow channel partition 132 .
  • the electrical cavity 11a is used to accommodate a plurality of battery cells 20, and at least one battery cell 20 in the plurality of battery cells 20 includes a pressure relief mechanism 213, and the pressure relief mechanism 213 is used to accommodate the When the internal pressure or temperature of the battery cell 20 of the pressure relief mechanism 213 reaches a threshold value, it is activated to release the internal pressure; the collection chamber 11b is used to collect the The discharge of the battery cell 20 of the pressure relief mechanism 213; the isolation member 13 is used to isolate the electrical chamber 11a and the collection chamber 11b, so that the electrical chamber 11a and the collection chamber 11b are arranged in the Both sides of the isolation member 13; a partition structure 131, used to separate the collection chamber 11b into a first cavity 111 and a second cavity 112, wherein the partition structure 131 is provided with a first exhaust hole 1311, The first exhaust hole 1311 is used to introduce the discharge in the first cavity 111 to the second cavity 112; the flow channel partition 132 is arranged in the second cavity 112 And it is used to form
  • the electrical chamber 11a containing the battery cell 20 is separated from the collection chamber 11b for collecting the discharge by using the isolation member 13.
  • the pressure relief mechanism 213 is actuated, the discharge of the battery cell 20 Into the collection chamber 11b, but not into the electrical chamber 11a or a small amount into the electrical chamber 11a, so that there will be no conduction and short circuit to the electrical connection components in the electrical chamber 11a, so the safety of the battery 10 can be enhanced.
  • the collection cavity 11b is divided into the first cavity 111 and the second cavity 112 by the partition structure 131, and the flow channel 1321 for guiding the discharge is formed in the second cavity 112 by the flow channel partition 132, so that The exhaust discharged from the battery cells 20 out of control can enter the first cavity 111 , enter the second cavity 112 through the first exhaust hole 1311 on the partition structure 131 , and then pass through the flow channel 1321 in the second cavity 112
  • the discharge path of the discharge can be greatly extended, so that the discharge can be fully buffered, the temperature of the discharge can be further reduced, the possibility of combustion of the discharge can be reduced, and the impact of the discharge on the external environment can be reduced. impact, ensuring the safety of the battery.
  • the partition structure 131 in the embodiment of the present application may be arranged parallel to the isolation member 13, which may partition the collection chamber 11b into an upper chamber and a lower chamber in the vertical direction.
  • the partition structure 131 in the embodiment of the present application may also be arranged in other forms, for example, arranged perpendicular to the isolation member 13 , which is not limited in the present application.
  • the electrical cavity 11a in the embodiment of the present application can also be used to accommodate a confluence component, and the confluence component is used to realize the electrical connection of a plurality of battery cells 20 .
  • the bus component can realize the electrical connection between the battery cells 20 by connecting the electrode terminals 214 of the battery cells 20 .
  • the battery cell 20 involved in the following description about the pressure relief mechanism 213 refers to the battery cell 20 provided with the pressure relief mechanism 213 .
  • the battery cell 20 may be the battery cell 20 in FIG. 4 or FIG. 5 .
  • the tank 11 in the embodiment of the present application may also include a pressure balance mechanism 12, the pressure balance mechanism 12 is used to balance the pressure inside and outside the tank 11, and the pressure balance mechanism 12 is configured as The discharge is guided to the pressure balance mechanism 12 through the flow channel 1321 and discharged to the outside of the box body 11 .
  • the discharge can enter the first cavity 111 in the collection cavity 11b through the pressure relief mechanism 213, and enter the second cavity 112 through the first exhaust hole 1311 provided on the partition structure 131, and then After the flow channel 1321 in the second cavity 112, it is discharged through the pressure balance mechanism 12. Since the discharge path of the discharge has been greatly extended during this process, the discharge can be fully buffered, thereby achieving Further cooling of emissions. Therefore, in the embodiment of the present application, the temperature and possibility of combustion of the exhaust discharged from the box 11 are relatively low, thereby reducing the impact of the exhaust on the external environment of the battery and enhancing the safety performance of the battery.
  • the electrical cavity 11a in the embodiment of the present application may include a first sub-cavity 111a and a second sub-cavity 112a, the first sub-cavity 111a is used to accommodate the plurality of battery cells 20, the The second sub-chamber 112a is adjacent to the first sub-chamber 111a; the pressure balance mechanism 12 is arranged on the outer wall of the second sub-cavity 112a, and the second sub-cavity 112a is configured to be connected to the first sub-chamber 111a.
  • the two cavities 112 are connected so that the discharge is guided into the second sub-cavity 112 a through the flow channel 1321 , and discharged to the outside of the box body 11 through the pressure balance mechanism 12 .
  • the discharge generated by the battery cells 20 in the first subchamber 111a can enter the second subchamber 112a through the second chamber 112, and be discharged through the pressure balance mechanism 12 on the second subchamber 112a,
  • separating the discharge of the battery cell 20 from the first sub-cavity 111a containing the battery cell 20 can prevent the discharge from affecting the electrical connection components in the first sub-cavity 111a and enhance the safety of the battery 10.
  • the discharge path of the exhaust can be greatly extended, so that the temperature of the exhaust can be further reduced, the possibility of burning the exhaust can be reduced, and the battery can be enhanced. and the safety of the external environment.
  • first sub-cavity 111a and second sub-cavity 112a are only one implementation of the electrical cavity 11a.
  • the electrical cavity 11a in the embodiment of the present application can also be a separate cavity that does not include other sub-cavities.
  • the pressure balance mechanism 12 can be arranged on one of the walls of the collection cavity 11b; or, the electrical The chamber 11a may also include multiple sub-chambers, and the pressure balance mechanism 12 may be disposed on the outer wall of one of the multiple sub-chambers.
  • the specific arrangement of the cavity is not limited in the embodiment of the present application.
  • the isolation member 13 has a common wall for the electrical chamber 11a and the collection chamber 11b.
  • the isolation member 13 can be a wall of the electrical chamber 11 a and a wall of the collection chamber 11 b at the same time. That is to say, the isolation member 13 (or a part thereof) can directly serve as the common wall of the electrical chamber 11a and the collection chamber 11b, so that the discharge of the battery cell 20 can enter the collection chamber 11b through the isolation member 13, and at the same time, due to the isolation member The existence of 13 can isolate the discharge from the electrical cavity 11a as much as possible, thereby reducing the danger of the discharge and enhancing the safety of the battery 10 .
  • FIG. 7 shows a schematic diagram of a box body 11 according to an embodiment of the present application
  • FIG. 8 is an exploded schematic diagram corresponding to the box body 11 in FIG. 7
  • the box body 11 includes an isolation component 13 and a separation structure 131
  • the isolation component 13 is provided with a pressure relief area 213a corresponding to the pressure relief mechanism 213 of the battery cell 20
  • the separation structure 131 is provided with There are first exhaust holes 1311 and flow channel partitions 132.
  • the box body 11 in the embodiment of the present application may also include a protective member 133, which is used to protect the isolation part 13, and the protective member 133
  • the member 133 and the isolation part 13 form the collection chamber 11b.
  • the flow channel partition 132 may also be disposed on the protective member 133, which is not limited in this embodiment of the present application.
  • the isolation member 13 in the embodiment of the present application may be provided with a second exhaust hole 1301, and the partition structure 131 is also provided with a third exhaust hole 1312 corresponding to the second exhaust hole 1301,
  • the second sub-cavity 112 a communicates with the second cavity 112 via the second exhaust hole 1301 and the third exhaust hole 1312 .
  • the arrangement manner and shape of the second exhaust hole 1301 and the third exhaust hole 1312 may be set according to actual needs, which is not limited in this embodiment of the present application.
  • the discharge in order to discharge the discharge from the second chamber 112 to the outside of the tank 11 through the pressure balance mechanism 12, the discharge can be discharged according to the path described in the above embodiments, that is, enter the first chamber from the pressure relief area 213a body 111, and then enter the second cavity 112 through the first exhaust hole 1311 on the partition structure 131, then pass through the flow channel 1321 in the second cavity 112, and then pass through the third exhaust hole 1312 and the second exhaust hole in sequence.
  • the hole 1301 enters the second sub-chamber 112a, and then is discharged to the outside of the box body 11 through the pressure balance mechanism 12 provided on the outer wall of the second sub-chamber 112a.
  • the discharge through the flow channel 1321 can also be discharged through the pressure balance mechanism 12 in other ways.
  • the discharge passing through the flow channel 1321 can directly enter the second sub-cavity 112a through the second exhaust hole 1301 , and discharged to the outside of the tank 11 through the pressure balance mechanism 12, or alternatively, a discharge path can also be set according to the actual situation, so that the discharge can be discharged through the pressure balance mechanism 12, which is not limited in the embodiment of the present application.
  • the box body 11 in the embodiment of the present application may also include an upper box body (not shown in the figure), such as an upper box cover, so as to form an electrical cavity 11 a surrounded by the isolation component 13 .
  • an upper box body such as an upper box cover
  • Fig. 9 shows a schematic plan view corresponding to the box body 11 in Fig. 7 and Fig. 8 of the embodiment of the present application.
  • the box body 11 may include an electrical cavity 11 a and a collection cavity 11 b.
  • the collection cavity 11b can be divided into a first cavity 111 and a second cavity 112 by a partition structure 131, and the flow channel partition 132 provided on the partition structure 131 can be used to form a guide discharge in the second cavity 112.
  • the runner 1321 is a schematic plan view corresponding to the box body 11 in Fig. 7 and Fig. 8 of the embodiment of the present application.
  • the battery cell 20 When the battery cell 20 is out of control, its discharge can be discharged into the collection chamber 11b through the pressure relief mechanism 213, more specifically, the discharge can enter the first chamber 111 through the pressure relief mechanism 213, and pass through the partition structure 131.
  • the first exhaust hole 1311 guides into the second cavity 112 and enters the flow channel 1321 .
  • the discharge of the battery cell 20 in the embodiment of the present application first enters the first cavity 111 after passing through the pressure relief area 213a, and then passes through the flow channel 1321 in the second cavity 112, therefore, any position
  • the exhaust path of the exhaust discharged from the pressure relief area 213a can be greatly extended, so that the exhaust can be sufficiently flow buffered to sufficiently reduce the temperature of the exhaust, thereby reducing the possibility of exhaust combustion and enhancing the battery life. safety performance.
  • the exhaust in the flow channel 1321 can enter the second sub-chamber 112a through the third exhaust hole 1312 provided on the partition structure 131 and the second exhaust hole 1301 provided on the isolation member 13 in sequence, and pass through the set
  • the pressure balance mechanism 12 on the outer wall of the second sub-cavity 112 a is discharged to the outside of the battery case 11 .
  • the box 11 in the embodiment of the present application can reduce the temperature of the exhaust and reduce the possibility of combustion of the exhaust, thereby reducing the impact of the exhaust on the external environment and enhancing the safety performance of the battery.
  • the first exhaust hole 1311 in the embodiment of the present application may be set at the end of the partition structure 131 away from the pressure balance mechanism 12, or the first exhaust hole 1311 is set at The middle part of the partition structure 131 .
  • the first air vent 1311 By arranging the first air vent 1311 at different positions of the partition structure 131 , it can match the structural strength of the battery 10 , making the structural design of the battery case 11 more flexible.
  • the flow channel 1321 in the embodiment of the present application may be an S-shaped flow channel, and the inlet of the flow channel 1321 communicates with the first exhaust hole 1311 .
  • the length of the flow channel can be extended to the maximum extent, thereby extending the discharge path of the discharge, so that the discharge can be fully buffered, thereby reducing the temperature of the discharge and reducing the possibility of combustion of the discharge
  • the inlet of the S-shaped flow channel can communicate with the first exhaust hole 1311, so that the discharge path of the discharge from the first cavity 111 to the second cavity 112 can be greatly extended , so as to reduce the temperature of the exhaust as much as possible and reduce the possibility of exhaust combustion.
  • Fig. 13a shows a schematic diagram of an arrangement manner of a first exhaust hole 1311 in the embodiment of the present application.
  • the first exhaust hole 1311 is arranged at the end of the partition structure 131, further, it can be arranged at the end of the partition structure 131 away from the pressure balance mechanism 12, so that it can be discharged from any pressure relief mechanism 213
  • the discharge path of all emissions can be greatly extended.
  • three square through holes are used as an example for the first exhaust hole 1311, but in actual situations, the shape and quantity of the exhaust holes can be designed according to actual needs, which is not limited in this application.
  • the flow channel partition 132 provided on the partition structure 131 may correspond to the first exhaust hole 1311 provided at the end of the partition structure 131, and Figures b and 13c show that the arrangement corresponding to the first exhaust hole 131 Bottom view and top view of the arrangement of flow channel partitions at the ends of the partition structure 131 .
  • the inlet of the flow channel 1321 formed by the flow channel partition 132 provided on the partition structure 131 can communicate with the first exhaust hole 1311 at the end, and the flow channel partition 132 formed
  • the flow channel is in an S-shaped circuitous shape, forming a single channel for the discharge to flow, so that the discharge entering the second cavity 112 through the first exhaust hole 1311 can only flow along the designed S-shaped flow channel, making full use of The entire space of the second cavity 112 is occupied, so that the discharge path of the discharge entering the flow channel 1321 can be greatly extended, thereby fully reducing the temperature of the discharge and the possibility of combustion of the discharge, and enhancing the safety performance of the battery.
  • the exhaust after passing through the flow channel 1321 can be discharged to other cavities, such as the second sub-cavity 112a in the foregoing embodiment, through the third exhaust hole 1312 and the second exhaust hole 1301, and pass through the box body 11
  • the pressure balance mechanism 12 on the top is discharged, and the specific process can be referred to the above embodiments, and will not be repeated here.
  • the discharge in the embodiment of the present application passes through the flow channel 1321, it can be discharged from the outside of the box body 11 through the pressure balance mechanism 12.
  • a certain discharge space is reserved, so that the discharge can enter other cavities after passing through the flow channel, and be discharged to the outside of the box body 11 .
  • the flow channel partition 132a shown in FIG. 13b and FIG. 13c may reserve a certain gap to provide a path for the discharge to exit the flow channel.
  • FIG. 14a shows a schematic diagram of another arrangement manner of the first exhaust hole 1311 according to the embodiment of the present application.
  • the first exhaust hole 1311 may be disposed in the middle of the partition structure 131 .
  • the flow channel separator 132 provided on the partition structure 131 may correspond to the first exhaust hole 1311 provided at the end of the partition structure 131.
  • Figures 14b and 14c show that Bottom view and top view of the middle part of the flow channel partition 131 .
  • the inlet of the flow channel 1321 formed by the flow channel partitions 132 provided on the partition structure 131 can communicate with the first exhaust hole 1311, and the flow formed by the plurality of flow channel partitions
  • the channel is in an S-shaped circuitous shape, forming a single channel for the discharge to flow, so that the discharge path of the discharge entering the flow channel can be greatly extended, thereby fully reducing the temperature of the discharge and reducing the possibility of combustion of the discharge. Enhance the safety performance of the battery.
  • the setting position of the first exhaust hole 1311 corresponds to the setting method of the S-shaped flow channel 1321, so that the discharge path of the discharge entering the collection chamber 11b can be extended to the greatest extent, so that the discharge Sufficient flow buffering can be carried out, so as to fully reduce the temperature of the exhaust, reduce the possibility of exhaust combustion, and reduce the impact of the exhaust on the external environment, thereby enhancing the safety performance of the battery.
  • the emissions generated by the thermal runaway of the battery cells 20 may include combustible gases, such as H 2 , CO, etc.
  • combustible gases such as H 2 , CO, etc.
  • an oxidizing agent or a cooling material may be provided in the collection chamber 11b in the embodiment of the present application.
  • a catalyst may be added to accelerate the reaction.
  • Alternative catalysts such as porous silicon carbide ceramics support noble metals.
  • the oxidizing agent or cooling material is disposed on the surface of the separation structure 131 ; and/or, the oxidizing agent or cooling material is disposed on the surface of the flow channel separator 132 .
  • the extended exhaust path can reduce the temperature of the exhaust and reduce the possibility of combustion of the exhaust, while the embodiment of the present application can On this basis, an oxidant or cooling material is further provided in the collection chamber 11b, so that the combustible gas in the exhaust can be reacted or processed, thereby further reducing the temperature of the exhaust and reducing the possibility of combustion of the exhaust.
  • the oxidizing agent or cooling material in the embodiment of the present application is disposed on the surface of the protection member 133 facing the isolation component 13 .
  • the exhaust can be further reacted or treated on the discharge path of the exhaust, thereby further reducing the temperature of the exhaust and reducing the possibility of its combustion, thereby ensuring battery and The safety of the external environment.
  • the surface of the separation structure 131 facing the protective member 133 has a recessed portion, and the recessed portion is configured to accommodate an oxidant or a cooling material.
  • the concave-convex design can significantly increase the contact area between the cavity and the combustible gas discharge, and at the same time can carry more oxidants or cooling materials, so as to react more effectively to the discharge, reduce the temperature of the discharge and the possibility of combustion, and reduce Its influence on the battery and the external environment ensures the safety of the battery.
  • Fig. 15a and Fig. 15b show a schematic diagram of a partition structure 131 provided with a recessed portion 134 according to an embodiment of the present application.
  • the surface of the separation structure 131 provided with the flow channel partition 132 may have a recessed portion 134 .
  • the oxidant used in the embodiment of the present application may include at least one of the following: copper oxide powder, sodium peroxide, and potassium permanganate; and/or, the cooling material may include a phase change material.
  • a suitable oxidizing agent and/or cooling material can be selected according to the actual situation, which is not limited in this application.
  • the oxidizing agent and/or cooling material in the embodiment of the present application may be fixed by adhesive bonding. Or optionally, it may also be fixed by coating, which is not limited in this application.
  • Fig. 16 shows an exploded view of a battery 10 according to an embodiment of the present application.
  • the battery 10 may include a plurality of battery cells 20, and the case 11 in the foregoing embodiments.
  • the battery 10 may further include a case upper cover 14 , and the upper cover 14 may form an electrical chamber 11 a with the isolation component 13 .
  • the upper cover 14 in the embodiment of the present application is only used as an example to describe the battery 10, and the upper cover 14 in the battery 10 can also adopt other methods, as shown in the description of the first part 101 in FIG. 2 , the embodiment of the present application There is no limit to this.
  • An embodiment of the present application also provides an electric device, which may include the battery 10 in the foregoing embodiments, and the battery 10 is used to provide electric energy.
  • the electrical device may be a vehicle 1 , a ship or a spacecraft.
  • FIG. 17 shows a schematic flowchart of a method 300 for preparing a battery according to an embodiment of the present application. As shown in Figure 17, the method 300 may include:
  • At least one battery cell 20 among the plurality of battery cells 20 includes a pressure relief mechanism 213, and the pressure relief mechanism 213 is used for the battery cell 20 provided with the pressure relief mechanism 213 actuated to vent the internal pressure when the internal pressure or temperature reaches a threshold.
  • the box body 11 includes: an electrical cavity 11a for accommodating the plurality of battery cells 20; a collection cavity 11b for collecting The discharge of the battery cell 20 with the pressure relief mechanism 213; the isolation member 13 is used to isolate the electrical chamber 11a and the collection chamber 11b, so that the electrical chamber 11a and the collection chamber 11b are arranged in Both sides of the isolation member 13; a partition structure 131, used to divide the collection chamber 11b into a first cavity 111 and a second cavity 112, and a first exhaust hole 1311 is provided on the partition structure 131, The first exhaust hole 1311 is used to introduce the discharge in the first cavity 111 to the second cavity 112; the flow channel partition 132 is arranged in the second cavity 112 and used for A flow channel 1321 is formed to guide the discharge.
  • Fig. 18 shows a schematic block diagram of an apparatus 400 for preparing a battery according to an embodiment of the present application.
  • the device 400 for preparing a battery may include: a first providing module 410 , a second providing module 420 and a setting module 430 .
  • the first providing module 410 is used to provide a plurality of battery cells 20, at least one battery cell 20 in the plurality of battery cells 20 includes a pressure relief mechanism 213, and the pressure relief mechanism 213 is used for The pressure release mechanism 213 is activated to release the internal pressure when the internal pressure or temperature of the battery cell 20 reaches a threshold.
  • the second providing module 420 is used to provide the box body 11, and the box body 11 includes: an electrical cavity 11a for accommodating the plurality of battery cells 20; a collection cavity 11b for the pressure release mechanism 213 When actuated, the discharge from the battery cell 20 provided with the pressure relief mechanism 213 is collected; the isolation member 13 is used to isolate the electrical cavity 11a from the collection cavity 11b, so that the electrical cavity 11a and the collection chamber 11b are arranged on both sides of the isolation member 13; the partition structure 131 is used to divide the collection chamber 11b into a first chamber 111 and a second chamber 112; a flow channel partition 132 is provided It is in the second cavity 112 and is used to form a channel 1321 for guiding the discharge.
  • the setting module 430 is used to set the first exhaust hole 1311 on the partition structure 131, and the first exhaust hole 1311 is used to introduce the exhaust in the first cavity 111 into the second cavity. cavity 112 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例提供一种电池的箱体、电池、用电装置、制备电池的方法和装置。该箱体包括:电气腔,用于容纳多个电池单体,所述多个电池单体中的至少一个电池单体包括泄压机构;收集腔,用于在所述泄压机构致动时收集来自所述设有所述泄压机构的电池单体的排放物;隔离部件,用于隔离所述电气腔和所述收集腔,以使所述电气腔和所述收集腔设置于所述隔离部件的两侧;分隔结构,用于将所述收集腔分隔为第一腔体和第二腔体,其中,所述分隔结构上设置有第一排气孔,所述第一排气孔用于将所述第一腔体中的所述排放物导入至所述第二腔体;流道隔板,设置于所述第二腔体中并用于形成引导所述排放物的流道。本申请实施例的技术方案,能够增强电池的安全性。

Description

电池的箱体、电池、用电装置、制备电池的方法和装置 技术领域
本申请涉及电池技术领域,特别是涉及一种电池的箱体、电池、用电装置、制备电池的方法和制备电池的装置。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的性能外,安全问题也是一个不可忽视的问题。如果电池的安全问题不能保证,那该电池就无法使用。因此,如何增强电池的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请提供了一种电池的箱体、电池、用电装置、制备电池的方法和制备电池的装置,能够增强电池的安全性。
第一方面,提供了一种电池的箱体,包括:电气腔,用于容纳多个电池单体,所述多个电池单体中的至少一个电池单体包括泄压机构,所述泄压机构用于在设有所述泄压机构的电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;收集腔,用于在所述泄压机构致动时收集来自所述设有所述泄压机构的电池单体的排放物;隔离部件,用于隔离所述电气腔和所述收集腔,以使所述电气腔和所述收集腔设置于所述隔离部件的两侧;分隔结构,用于将所述收集腔分隔为第一腔体和第二腔体,其中,所述分隔结构上设置有第一排气孔,所述第一排气孔用于将所述第一腔体中的所述排放物导入至所述第二腔体;流道隔板,设置于所述第二腔体中并用于形成引导所述排放物的流道。
本申请实施例中,利用隔离部件将容纳电池单体的电气腔与收集排放物的收集腔分离,在泄压机构致动时,电池单体的排放物进入收集腔,而不进入或少量进入电气腔,从而不会对电气腔中的电连接部件产生导通而发生短路,因此能够增强电池的安全性。同时,在本申请中,利用分隔结构将收集腔进一步分为两个腔体,并在第二腔体中利用流道隔板形成引导排放物的流道,以延长排放物的排放路径,从而可以进一步对排放物进行降温,降低排放物燃烧的可能性,减少排放物对外界环境的影响,增强电池的安全性。
在一些实施例中,所述箱体还包括:压力平衡机构,用于平衡所述箱体内外的压力,所述压力平衡机构被配置为使所述排放物经所述流道引导至所述压力平衡机构并排放至所述箱体外部。
通过设置压力平衡机构,可以将电池单体的排放物排放至箱体外部,使得箱体内外的压力保持平衡,保证电池的安全。
在一些实施例中,所述第一排气孔设置在所述分隔结构的远离所述压力平衡机构的端部,或者,所述第一排气孔设置在所述分隔结构的中部。
通过将第一排气孔设置在分隔结构的不同位置,可以与电池的结构强度相匹配,使得电池箱体的结构设计更加灵活。
在一些实施例中,所述流道为S形的流道,所述流道的入口与所述第一排气孔连通。
本申请实施例中,通过设置迂回的S形流道,可以最大限度的延长流道长度,从而可以延长排放物的排放路径,使得排放物进行充分的流动缓冲,从而可以降低排放物温度,降低排放物燃烧的可能性,同时,S形流道的入口可以与第一排气孔连通,如此可以使得从第一腔体进入第二腔体中的排放物的排放路径都可以得到极大的延长,从而可以尽可能的降低排放物的温度,减少排放物燃烧的可能性,保证电池的安全。
在一些实施例中,所述收集腔内设置有氧化剂或降温材料。
电池单体热失控后产生的排放物中可能包括可燃气体,例如H 2、CO等,本申请实施例中还可以在箱体中设置可以与排放物中的可燃气体反应的材料,从而可以进一步降低排放物燃烧的可能性,使得排放物不易被点燃,增强电池的安全性,保证电池和外界环境的完全。
在一些实施例中,所述氧化剂或所述降温材料设置于所述分隔结构的表面;和/或,所述氧化剂或所述降温材料设置于所述流道隔板的表面。
通过将上述氧化剂或降温材料中的至少一种设置在排放物的排放路径上,可以对排放物进行进一步的处理,降低排放物燃烧的可能性,保证了电池和外界环境的完全。
在一些实施例中,所述箱体还包括:防护构件,所述防护构件用于防护所述隔离部件,所述防护构件与所述隔离部件形成所述收集腔,其中,所述氧化剂或所述降温材料设置于所述防护构件的朝向所述隔离部件的表面。
通过在防护构件的表面设置氧化剂或降温材料,可以在排放物的排放路径上对排放物进行进一步的反应或处理,从而进一步降低排放物的温度,减少其燃烧的可能性,从而保证电池和外界环境的安全。
在一些实施例中,所述分隔结构的朝向所述防护构件的表面具有凹陷部,所述凹陷部被配置为容纳所述氧化剂或所述降温材料。
本申请实施例中,通过设置具有凹凸表面结构的凹陷部能够显著增大腔体与排放物的接触面积,同时能承载更多氧化剂或降温材料,从而可以在排放路径上对 排放物进行更充分和有效地反应,降低排放物的温度和燃烧的可能性,减少其对电池和外界环境的影响,保证电池的安全。
在一些实施例中,所述电气腔包括第一子腔和第二子腔,所述第一子腔用于容纳所述多个电池单体,所述第二子腔与所述第一子腔相邻设置;所述第二子腔的外壁上设置有所述压力平衡机构,所述第二子腔被配置为与所述第二腔体连通以使所述排放物经所述流道引导至所述第二子腔内,并通过所述压力平衡机构排放到所述箱体外部。
本申请实施例中,第一子腔中的电池单体产生的排放物可以经过第二腔体进入第二子腔,并通过第二子腔上的压力平衡机构排出,一方面,将收集排放物的腔体与容纳电池单体的第一子腔分离,可以避免排放物对第一子腔中的电连接部件产生影响,增强电池的安全性;另一方面,通过设置第二腔体以及第二子腔,可以极大的延长排放物的排放路径,从而可以对排放物进行进一步的降温,降低排放物燃烧的可能性,增强了电池和外界环境的安全。
在一些实施例中,所述隔离部件上设置有第二排气孔,所述分隔结构上还设置有与所述第二排气孔对应的第三排气孔,所述第二子腔与所述第二腔体经由所述第二排气孔和所述第三排气孔连通。
第二方面,提供了一种电池,包括:多个电池单体,所述多个电池单体中的至少一个电池单体包括泄压机构,所述泄压机构用于在设有所述泄压机构的电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;以及,根据第一方面所述的箱体,所述多个电池单体容纳于所述箱体内。
第三方面,提供了一种用电装置,包括:第二方面所述的电池,所述电池用于提供电能。
在一些实施例中,所述用电装置为车辆、船舶或航天器。
第四方面,提供了一种制备电池的方法,包括:提供多个电池单体,所述多个电池单体中的至少一个电池单体包括泄压机构,所述泄压机构用于在设有所述泄压机构的电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;提供箱体,所述箱体包括:电气腔,用于容纳所述多个电池单体;收集腔,用于在所述泄压机构致动时收集来自所述设有所述泄压机构的电池单体的排放物;隔离部件,用于隔离所述电气腔和所述收集腔,以使所述电气腔和所述收集腔设置于所述隔离部件的两侧;分隔结构,用于将所述收集腔分隔为第一腔体和第二腔体,在所述分隔结构上设置第一排气孔,所述第一排气孔用于将所述第一腔体中的排放物导入至所述第二腔体;流道隔板,设置于所述第二腔体中并用于形成引导所述排放物的流道。
第五方面,提供了一种制备电池的装置,包括:第一提供模块,用于提供多个电池单体,所述多个电池单体中的至少一个电池单体包括泄压机构,所述泄压机构用于在设有所述泄压机构的电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;第二提供模块,用于提供箱体,所述箱体包括:电气腔,用于容纳所述多个电池单体;收集腔,用于在所述泄压机构致动时收集来自所述设有所述泄压机构的电池单体的排放物;隔离部件,用于隔离所述电气腔和所述收集腔,以使所述电气腔 和所述收集腔设置于所述隔离部件的两侧;分隔结构,用于将所述收集腔分隔为第一腔体和第二腔体;流道隔板,设置于所述第二腔体中并用于形成引导所述排放物的流道;设置模块,用于在所述分隔结构上设置第一排气孔,所述第一排气孔用于将所述第一腔体中的排放物导入至所述第二腔体。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池的结构示意图;
图3是本申请一实施例公开的一种电池单体组的局部结构示意图;
图4是本申请一实施例公开的一种电池单体的分解图;
图5是本申请另一实施例公开的一种电池单体的分解图;
图6是本申请一实施例公开的一种电池的结构示意图;
图7是本申请一实施例公开的一种箱体的示意图;
图8是对应于图7的箱体的分解图;
图9是对应于图7和图8中的箱体的平面示意图;
图10至图12是对应于图9中的箱体分别沿轴线A-A,B-B,C-C为基准的剖面示意图;
图13a是本申请一实施例公开的一种第一排气孔的设置方式的示意图;
图13b是对应于图13a中的第一排气孔的设置方式的仰视图;
图13c是对应于图13a中的第一排气孔的设置方式的俯视图;
图14a是本申请一实施例公开的另一种第一排气孔的设置方式的示意图;
图14b是对应于图14a中的第一排气孔的设置方式的仰视图;
图14c是对应于图14a中的第一排气孔的设置方式的俯视图;
图15a和图15b是本申请一实施例公开的一种设置有凹陷部的结构示意图;
图16本申请一实施例公开的一种电池的分解图;
图17是本申请一实施例公开的一种制备电池的方法的示意性流程图;
图18是本申请一实施例公开的一种制备电池的装置的示意性框图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上(包括两个);术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中,电池单体可以包括一次电池、二次电池,例如可以是锂离子电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池单体组或电池包等。电池包一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件包括正极片、负极片和隔离膜。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为聚丙烯(PP)或聚乙烯(PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
对于电池来说,主要的安全危险来自于充电和放电过程,为了提高电池的安全性能,对电池单体一般会设置泄压机构。泄压机构是指电池单体的内部压力或温度达到预定阈值时致动以泄放内部压力或温度的元件或部件。该预定阈值可以根据设计需 求不同而进行调整。所述预定阈值可取决于电池单体中的正极极片、负极极片、电解液和隔离膜中一种或几种的材料。泄压机构可以采用诸如对压力敏感或温度敏感的元件或部件,即,当电池单体的内部压力或温度达到预定阈值时,泄压机构致动,从而形成可供内部压力或温度泄放的通道。
本申请中所提到的“致动”是指泄压机构产生动作,从而使得电池单体的内部压力及温度得以被泄放。泄压机构产生的动作可以包括但不限于:泄压机构中的至少一部分破裂、被撕裂或者熔化,等等。泄压机构在致动后,电池单体内部的高温高压物质作为排放物会从泄压机构向外排出。以此方式能够在可控压力或温度的情况下使电池单体发生泄压,从而避免潜在的更严重的事故发生。
本申请中所提到的来自电池单体的排放物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离膜的碎片、反应产生的高温高压气体、火焰,等等。
电池单体上的泄压机构对电池的安全性有着重要影响。例如,当电池单体发生短路、过充等现象时,可能会导致电池单体内部发生热失控从而压力或温度骤升。这种情况下通过泄压机构致动可以将电池单体的内部压力及温度向外释放,以防止电池单体爆炸、起火。
目前的泄压机构设计方案中,主要关注将电池单体内部的高压和高热释放,即将所述排放物排出到电池单体外部。然而,从热失控的电池单体内部排出的排放物有可能导致其余电池单体发生短路现象,更进一步地,排放到电池外部的排放物可能仍具有很高的温度,可能会进一步引发火灾、爆炸等次生灾害。
鉴于此,本申请的实施例提供了一种技术方案,利用隔离部件将容纳电池单体的电气腔与收集排放物的收集腔分离,在泄压机构致动时,电池单体的排放物进入收集腔,而不进入或少量进入电气腔,从而不会对电气腔中的电连接部件产生导通而发生短路,因此能够增强电池的安全性。同时,在本申请中,利用分隔结构将收集腔进一步分为两个腔体,并在第二腔体中利用流道隔板形成引导排放物的流道,以延长排放物的排放路径,从而可以进一步对排放物进行降温,降低排放物燃烧的可能性,降低排放物对外界环境的影响,增强电池的安全性。
本申请中的隔离部件可以用于隔离电气腔和收集腔,以使电气腔和收集腔设置于隔离部件的两侧。可选地,本申请实施例中的隔离部件也可以作为热管理部件,即该隔离部件可以容纳流体以给多个电池单体调节温度。这里的流体可以是液体或气体,调节温度是指给多个电池单体加热或者冷却。在给电池单体冷却或降温的情况下,该隔离部件用于容纳冷却流体以给多个电池单体降低温度另外,隔离部件也可以用于加热以给多个电池单体升温,本申请实施例对此并不限定。可选的,所述流体可以是循环流动的,以达到更好的温度调节的效果。可选的,流体可以为水、水和乙二醇的混合液或者空气等。
本申请中所提到的电气腔用于容纳多个电池单体和汇流部件。电气腔可以是密封或非密封的。电气腔提供电池单体和汇流部件的安装空间。在一些实施例中,电气腔中还可以设置用于固定电池单体的结构。电气腔的形状可以根据所容纳的电池单体和汇流部件的数量和形状而定。在一些实施例中,电气腔可以为方形,具有六个壁。 本申请中所提到的汇流部件用于实现多个电池单体之间的电连接,例如并联或串联或混联。汇流部件可通过连接电池单体的电极端子实现电池单体之间的电连接。在一些实施例中,汇流部件可通过焊接固定于电池单体的电极端子。
本申请中所提到的收集腔用于收集排放物,可以是密封或非密封的。在一些实施例中,所述收集腔内可以包含空气,或者其他气体。可选地,所述收集腔内也可以包含液体,比如冷却介质,或者,设置容纳该液体的部件,以对进入收集腔的排放物进一步降温。进一步可选地,收集腔内的气体或者液体是循环流动的。
本申请实施例描述的技术方案均适用于各种使用电池的装置,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,本申请的电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池也可以称为电池包。可选地,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。
例如,如图2所示,为本申请一个实施例的一种电池10的结构示意图,电池10可以包括多个电池单体20。电池10还可以包括箱体,箱体内部为中空结构,多个电池单体20容纳于箱体内。如图2所示,箱体可以包括两部分,这里分别称为第一部分101和第二部分102,第一部分101和第二部分102扣合在一起。第一部分101和第二部分102的形状可以根据电池单体20组合的形状而定,第一部分101和第二部分102可以均具有一个开口。例如,第一部分101和第二部分102均可以为中空长方体且各自只有一个面为开口面,第一部分101的开口和第二部分102的开口相对设置,并且第一部分101和第二部分102相互扣合形成具有封闭腔室的箱体。多个电池单体20相互并联或串联或混联组合后置于第一部分101和第二部分102扣合后形成的箱体内。
可选地,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或 串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体而引出。
根据不同的电力需求,电池单体的数量可以设置为任意数值。多个电池单体可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体的数量可能较多,为了便于安装,可以将电池单体分组设置,每组电池单体组成电池单体组200。电池单体组200中包括的电池单体的数量不限,可以根据需求设置。例如,图3为电池单体组的一个示例。电池可以包括多个电池单体组,这些电池单体组可通过串联、并联或混联的方式进行连接。
如图4所示,为本申请一个实施例的一种电池单体20的结构示意图,电池单体20包括一个或多个电极组件22、壳体211和盖板212。壳体211和盖板212形成外壳21。壳体211的壁以及盖板212均称为电池单体20的壁。壳体211根据一个或多个电极组件22组合后的形状而定,例如,壳体211可以为中空的长方体或正方体或圆柱体,且壳体211的其中一个面具有开口以便一个或多个电极组件22可以放置于壳体211内。例如,当壳体211为中空的长方体或正方体时,壳体211的其中一个平面为开口面,即该平面不具有壁体而使得壳体211内外相通。当壳体211可以为中空的圆柱体时,壳体211的端面为开口面,即该端面不具有壁体而使得壳体211内外相通。盖板212覆盖开口并且与壳体211连接,以形成放置电极组件22的封闭的腔体。壳体211内填充有电解质,例如电解液。
该电池单体20还可以包括两个电极端子214,两个电极端子214可以设置在盖板212上。盖板212通常是平板形状,两个电极端子214固定在盖板212的平板面上,两个电极端子214分别为正电极端子214a和负电极端子214b。每个电极端子214各对应设置一个连接构件23,其位于盖板212与电极组件22之间,用于将电极组件22和电极端子214实现电连接。
如图4所示,每个电极组件22具有第一极耳221a和第二极耳222a。第一极耳221a和第二极耳222a的极性相反。例如,当第一极耳221a为正极极耳时,第二极耳222a为负极极耳。一个或多个电极组件22的第一极耳221a通过一个连接构件23与一个电极端子连接,一个或多个电极组件22的第二极耳222a通过另一个连接构件23与另一个电极端子连接。例如,正电极端子214a通过一个连接构件23与正极极耳连接,负电极端子214b通过另一个连接构件23与负极极耳连接。
在该电池单体20中,根据实际使用需求,电极组件22可设置为单个,或多个,如图4所示,电池单体20内设置有4个独立的电极组件22。
如图5所示,为本申请另一实施例的包括泄压机构213的电池单体20的结构示意图。
图5中的壳体211、盖板212、电极组件22以及连接构件23与图4中的壳体211、盖板212、电极组件22以及连接构件23的一致,为了简洁,在此不再赘述。
图5中,泄压机构213设置于电池单体20的底壁上,即图5中的壁21a,其中,该泄压机构213可以为壁21a的一部分,也可以与壁21a为分体式结构,通过例 如焊接的方式固定在壁21a上。当泄压机构213为壁21a的一部分时,例如,泄压机构213可以通过在壁21a上设置刻痕的方式形成,与该刻痕的对应的壁21a厚度小于泄压机构213除刻痕处其他区域的厚度。刻痕处是泄压机构213最薄弱的位置。当电池单体20产生的气体太多使得壳体211内部压力升高并达到阈值或电池单体20内部反应产生热量造成电池单体20内部温度升高并达到阈值时,泄压机构213可以在刻痕处发生破裂而导致壳体211内外相通,气体压力及温度通过泄压机构213的裂开向外释放,进而避免电池单体20发生爆炸。
图5中是以泄压机构213位于电池单体20的底壁上为例进行描述,但应理解,本申请实施例中的泄压机构213可以位于壳体211的侧壁上,或者也可以位于盖板212上,或者,也可以位于壳体211的两个壁的相交的位置,本申请实施例对此不做限制。
泄压机构213可以为各种可能的泄压结构,本申请实施例对此并不限定。例如,泄压机构213可以为温敏泄压机构,温敏泄压机构被配置为在设有泄压机构213的电池单体20的内部温度达到阈值时能够熔化;和/或,泄压机构213可以为压敏泄压机构,压敏泄压机构被配置为在设有泄压机构213的电池单体20的内部气压达到阈值时能够破裂。
图6示出了本申请实施例的一个电池10的结构示意图。如图6所示,电池10可以包括多个电池单体20和箱体11。
箱体11可以包括电气腔11a,收集腔11b,隔离部件13,分隔结构131以及流道隔板132。
其中,电气腔11a用于容纳多个电池单体20,所述多个电池单体20中的至少一个电池单体20包括泄压机构213,所述泄压机构213用于在设有所述泄压机构213的电池单体20的内部压力或温度达到阈值时致动以泄放所述内部压力;收集腔11b,用于在所述泄压机构213致动时收集来自所述设有所述泄压机构213的电池单体20的排放物;隔离部件13,用于隔离所述电气腔11a和所述收集腔11b,以使所述电气腔11a和所述收集腔11b设置于所述隔离部件13的两侧;分隔结构131,用于将所述收集腔11b分隔为第一腔体111和第二腔体112,其中,所述分隔结构131上设置有第一排气孔1311,所述第一排气孔1311用于将所述第一腔体111中的所述排放物导入至所述第二腔体112;流道隔板132,设置于所述第二腔体112中并用于形成引导所述排放物的流道1321。
在本申请实施例中,一方面,利用隔离部件13将容纳电池单体20的电气腔11a与收集排放物的收集腔11b分离,在泄压机构213致动时,电池单体20的排放物进入收集腔11b,而不进入或少量进入电气腔11a,从而不会对电气腔11a中的电连接部件产生导通而发生短路,因此能够增强电池10的安全性。另一方面,通过分隔结构131将收集腔11b分隔为第一腔体111和第二腔体112,并在第二腔体112中通过流道隔板132形成引导排放物的流道1321,使得电池单体20失控后排出的排放物可以进入第一腔体111,并通过分隔结构131上的第一排气孔1311进入第二腔体112,然后经过第二腔体112中的流道1321,如此,可以使得排放物的排放路径得到极大的延长, 从而可以对排放物进行充分的流动缓冲,进一步实现对排放物的降温,降低排放物燃烧的可能性,减少排放物对外界环境的影响,保证了电池的安全。
可选地,本申请实施例中的分隔结构131可以是平行于隔离部件13设置,其可以将收集腔11b分隔为竖直方向上的一个上腔体和一个下腔体。可选地,本申请实施例中的分隔结构131也可以以其他形式设置,例如垂直于隔离部件13设置,本申请对此不作限定。
可选地,本申请实施例中的电气腔11a还可以用于容纳汇流部件,汇流部件用于实现多个电池单体20的电连接。汇流部件可通过连接电池单体20的电极端子214实现电池单体20间的电连接。
为了便于描述,以下关于泄压机构213的相关描述中所涉及的电池单体20指设有泄压机构213的电池单体20。例如,电池单体20可以为图4或图5中的电池单体20。
作为一种实现方式,本申请实施例中的箱体11还可以包括压力平衡机构12,所述压力平衡机构12用于平衡所述箱体11内外的压力,所述压力平衡机构12被配置为使所述排放物经所述流道1321,引导至所述压力平衡机构12并排放至所述箱体11外部。
当电池单体20失控后,排放物可以通过泄压机构213进入收集腔11b中的第一腔体111,并通过分隔结构131上设置的第一排气孔1311进入第二腔体112,经第二腔体112中的流道1321后,再通过压力平衡机构12排出,由于在此过程中排放物的排放路径得到了极大的延长,排放物可以进行充分的流动缓冲,由此可以实现对排放物的进一步的降温。因此,本申请实施例中,从箱体11排出的排放物的温度和燃烧的可能性都比较低,从而可以减少排放物对电池外界环境的影响,增强了电池的安全性能。
作为一种实现方式,本申请实施例中的电气腔11a可以包括第一子腔111a和第二子腔112a,所述第一子腔111a用于容纳所述多个电池单体20,所述第二子腔112a与所述第一子腔111a相邻设置;所述第二子腔112a的外壁上设置有所述压力平衡机构12,所述第二子腔112a被配置为与所述第二腔体112连通以使所述排放物经所述流道1321引导至所述第二子腔112a内,并通过所述压力平衡机构12排放到所述箱体11外部。
本申请实施例中,第一子腔111a中的电池单体20产生的排放物可以经过第二腔体112进入第二子腔112a,并通过第二子腔112a上的压力平衡机构12排出,一方面,将电池单体20的排放物与容纳电池单体20的第一子腔111a分离,可以避免排放物对第一子腔111a中的电连接部件产生影响,增强电池10的安全性,另一方面,通过设置第二腔体112以及第二子腔112a,可以极大的延长排放物的排放路径,从而可以对排放物进行进一步的降温,降低排放物燃烧的可能性,增强了电池和外界环境的安全。
应理解,上述第一子腔111a和第二子腔112a仅仅是作为电气腔11a的一种实现方式。可选地,本申请实施例中的电气腔11a也可以是一个不包括其他子腔的单独 的腔体,此时,压力平衡机构12可以设置于收集腔11b的其中一个壁上;或者,电气腔11a也可以包括多个子腔,压力平衡机构12可以设置于多个子腔中的一个子腔的外壁上。在本申请实施例中,只要能够实现将电池单体20的排放物排出到箱体11的外部即可,本申请实施例对腔体的具体设置方式不作限定。
可选地,在本申请一个实施例中,隔离部件13具有为电气腔11a和收集腔11b共用的壁。如图6所示,隔离部件13可以同时为电气腔11a的一个壁以及收集腔11b的一个壁。也就是说,隔离部件13(或其一部分)可以直接作为电气腔11a和收集腔11b共用的壁,这样,电池单体20的排放物可以经过隔离部件13进入收集腔11b,同时,由于隔离部件13的存在,可以将该排放物与电气腔11a尽可能的隔离,从而降低排放物的危险性,增强电池10的安全性。
为了便于理解,图7中给出了本申请实施例的一种箱体11的示意图,图8为对应于图7中的箱体11的分解示意图。如图7和图8所示,该箱体11包括隔离部件13和分隔结构131,隔离部件13上设置有对应于电池单体20的泄压机构213的泄压区域213a,分隔结构131上设置有第一排气孔1311和流道隔板132,进一步地,本申请实施例中的箱体11还可以包括防护构件133,所述防护构件133用于防护所述隔离部件13,所述防护构件133与所述隔离部件13形成所述收集腔11b。
可选地,上述流道隔板132也可以是设置在防护构件133上的,本申请实施例对此不作限定。
进一步地,本申请实施例中的隔离部件13上可以设置有第二排气孔1301,所述分隔结构131上还设置有与所述第二排气孔1301对应的第三排气孔1312,所述第二子腔112a与所述第二腔体112经由所述第二排气孔1301和所述第三排气孔1312连通。应理解,上述第二排气孔1301和第三排气孔1312的设置方式以及形状可以根据实际需要进行设置,本申请实施例对此不作限制。
应理解,为了使排放物可以从第二腔体112通过压力平衡机构12排出至箱体11的外部,排放物可以根据以上实施例中描述的路径排出,即从泄压区域213a进入第一腔体111,然后通过分隔结构131上的第一排气孔1311进入第二腔体112,随后通过第二腔体112中的流道1321后,依次经过第三排气孔1312和第二排气孔1301进入第二子腔112a,然后通过设置在第二子腔112a外壁上的压力平衡机构12排出至箱体11的外部。
或者可选地,本申请实施例中的经过流道1321的排放物也可以通过其他方式经由压力平衡机构12排出,例如,隔离部件13上设置有第二排气孔1301的位置处,没有受到分隔结构131的遮挡时,即,分隔结构131只设置在隔离部件13设置有泄压区域213a的部分时,经过流道1321的排放物可以直接通过第二排气孔1301进入第二子腔112a,并通过压力平衡机构12排出至箱体11的外部,或者可选地,也可以按照实际情况设置排放路径,使得排放物可以通过压力平衡机构12排出,本申请实施例对此不作限定。
可选地,本申请实施例中的箱体11还可以包括上箱体(图中未示出),如上箱盖,以与隔离部件13围合形成电气腔11a。
图9示出了本申请实施例的对应于图7和图8中的箱体11的平面示意图,图10至图12分别给出了以图9中的3个轴线A-A,B-B,C-C为基准的箱体11的剖面示意图。如图10至图12所示,该箱体11可以包括电气腔11a,以及收集腔11b。其中,收集腔11b可以被分隔结构131分隔为第一腔体111和第二腔体112,分隔结构131上设置的流道隔板132,可以用于在第二腔体112中形成引导排放物的流道1321。
当电池单体20失控后,其排放物可以通过泄压机构213排放至收集腔11b中,更具体地,排放物可以通过泄压机构213进入第一腔体111,并经由分隔结构131上设置的第一排气孔1311引导至第二腔体112内,并进入流道1321中。
由于本申请实施例中的电池单体20的排放物经过泄压区域213a之后,首先进入了第一腔体111中,然后通过第二腔体112中的流道1321,因此,由位于任何位置的泄压区域213a排出的排放物的排放路径都可以得到极大的延长,使得排放物可以得到充分的流动缓冲,以充分降低排放物的温度,从而降低排放物燃烧的可能性,增强了电池的安全性能。
进一步地,流道1321中的排放物可以依次通过设置在分隔结构131上的第三排气孔1312和设置在隔离部件13上的第二排气孔1301进入第二子腔112a,并通过设置在第二子腔112a外壁上的压力平衡机构12排放到电池箱体11的外部。
由于本申请中的电池单体20的排放物在排出到电池箱体11的外部之前已经通过长路径的流道1321进行了充分的流动缓冲,排放物的温度可以得到极大程度的降低,因此,本申请实施例中的箱体11可以降低排放物的温度,降低排放物燃烧的可能性,从而减少了排放物对外界环境的影响,增强了电池的安全性能。
作为一种实现方式,本申请实施例中的第一排气孔1311可以设置在所述分隔结构131的远离所述压力平衡机构12的端部,或者,所述第一排气孔1311设置在所述分隔结构131的中部。
通过将第一排气孔1311设置在分隔结构131的不同位置,可以与电池10的结构强度相匹配,使得电池箱体11的结构设计更加灵活。
更进一步地,本申请实施例中的所述流道1321可以为S形的流道,所述流道1321的入口与所述第一排气孔1311连通。
通过设置迂回的S形流道,可以最大限度的延长流道的长度,从而可以延长排放物的排放路径,使得排放物进行充分的流动缓冲,从而降低排放物温度,降低排放物燃烧的可能性,同时,S形流道的入口可以与第一排气孔1311连通,如此可以使得从第一腔体111中进入到第二腔体112中的排放物的排放路径都可以得到极大的延长,从而尽可能的降低排放物的温度,减少排放物燃烧的可能性。
为了便于理解,以下示出了上述描述的第一排气孔1311的设置位置和其相对应的流道1321的设置方式的实施例。
作为一种实现方式,图13a示出了本申请实施例中的一个第一排气孔1311的设置方式的示意图。如图13a所示,第一排气孔1311设置在分隔结构131的端部,进一步地,可以设置在分隔结构131的远离压力平衡机构12的一端,如此可以使得从任一泄压机构213排出的排放物的排放路径都可以得到极大程度的延长。图13a中,第 一排气孔1311以三个方形通孔为例,但是实际情况中,可以根据实际需求设计排气孔的形状和数量,本申请对此不作限定。
相对应地,分隔结构131上设置的流道隔板132可以与设置在分隔结构131端部的第一排气孔1311相对应,图b和13c示出了对应于第一排气孔131设置在分隔结构131端部的流道隔板的设置方式的仰视图和俯视图。如图13a至图13c所示,通过分隔结构131上设置的流道隔板132形成的流道1321的入口可以与端部的第一排气孔1311连通,并且,流道隔板132形成的流道呈S形迂回形状,形成了排放物流动的单通道,使得通过第一排气孔1311进入第二腔体112内的排放物只能沿着设计的S形流道进行流动,充分利用了第二腔体112的整个空间,使得进入到流道1321的排放物的排放路径可以得到极大的延长,从而充分降低排放物的温度和排放物燃烧的可能性,增强电池的安全性能。
应理解,通过流道1321后的排放物可以通过例如第三排气孔1312和第二排气孔1301排出到其他腔体,如前述实施例中的第二子腔112a,并通过箱体11上的压力平衡机构12排出,具体过程可以参见以上实施例,此处不再做过多赘述。
可选地,本申请实施例中的排放物通过流道1321后可以通过压力平衡机构12排出箱体11的外部,此时,靠近压力平衡机构12设置的流道隔板132可以为排放物预留一定的排放空间,使得排放物可以在通过流道之后进入其他腔体,并排出至箱体11的外部。具体地,例如,图13b和图13c中所示的流道隔板132a,其可以预留出一定的缺口,以为排放物提供排出流道的路径。
作为另一种实现方式,图14a示出了本申请实施例的另一个第一排气孔1311设置方式的示意图。如图14a所示,第一排气孔1311可以设置在分隔结构131的中部。
相对应地,分隔结构131上设置的流道隔板132可以与设置在分隔结构131端部的第一排气孔1311相对应,图14b和14c示出了对应于第一排气孔1311设置在流道隔板131中部的仰视图和俯视图。如图14a至图14c所示,通过分隔结构131上设置的流道隔板132形成的流道1321的入口可以与第一排气孔1311连通,并且,该多个流道隔板形成的流道呈S形迂回形状,形成了排放物流动的单通道,使得进入到流道的排放物的排放路径可以得到极大的延长,从而充分降低排放物的温度,减少排放物燃烧的可能性,增强电池的安全性能。
本申请实施例通过将第一排气孔1311的设置位置与S形流道1321的设置方式相对应,使得进入收集腔11b内的排放物的排放路径可以得到最大程度的延长,以使得排放物可以进行充分的流动缓冲,从而充分降低排放物的温度,减少排放物燃烧的可能性,减少排放物对外界环境的影响,从而增强电池的安全性能。
电池单体20热失控后产生的排放物中可能包括可燃气体,例如H 2、CO等,为了进一步降低排放物燃烧的可能性,使得排放物不易被点燃,还可以在箱体11中设置可以与排放物中的可燃气体反应的材料。
可选地,本申请实施例中的收集腔11b内可以设置有氧化剂或降温材料。可选的,在使用氧化剂的实施方式中,可以增加催化剂以加速反应的进行。可选的催 化剂如多孔碳化硅陶瓷负载贵金属。
更具体地,氧化剂或降温材料设置于所述分隔结构131的表面;和/或,氧化剂或降温材料设置于所述流道隔板132的表面。
电池单体20失控后排出的排放物经过本申请实施例中箱体11后,通过延长的排气路径,可以实现对排放物的降温,降低排放物燃烧的可能性,而本申请实施例可以在此基础上,进一步在收集腔11b中设置氧化剂或降温材料,从而可以对排放物中的可燃气体进行反应或处理,从而可以进一步降低排放物的温度,降低排放物燃烧的可能性。
作为一种实现方式,本申请实施例中的氧化剂或降温材料设置于所述防护构件133的朝向所述隔离部件13的表面。
通过在防护构件133的表面设置氧化剂或降温材料,可以在排放物的排放路径上对排放物进行进一步的反应或处理,从而进一步降低排放物的温度,减少其燃烧的可能性,从而保证电池和外界环境的安全。
作为一种可能的实现方式,本申请实施例中的分隔结构131的朝向防护构件133的表面具有凹陷部,凹陷部被配置为容纳氧化剂或降温材料。
通过凹凸设计能够显著增大腔体与可燃气体排放物的接触面积,同时能承载更多氧化剂或降温材料,从而对排放物进行更有效地反应,降低排放物的温度和燃烧的可能性,减少其对电池和外界环境的影响,保证电池的安全。
具体地,图15a和图15b示出了本申请实施例的一个分隔结构131上设置有凹陷部134的示意图。如图15a和15b所示,分隔结构131的设置有流道隔板132的表面可以具有凹陷部134。
可选地,本申请实施例中采用的氧化剂可以包括以下中的至少一种:氧化铜粉末,过氧化钠,高锰酸钾;和/或,降温材料可以包括相变材料。
应理解,上述仅仅示例性的举出了几种常见的材料,实际应用中,可以根据实际情况选择合适的氧化剂和/或降温材料,本申请对此不作限定。
可选地,本申请实施例中的氧化剂和/或降温材料可以通过胶粘剂粘接的方式固定。或者可选地,也可以通过涂覆的方式固定,本申请对此不作限定。
图16示出了本申请一个实施例的一个电池10的分解图,该电池10可以包括多个电池单体20,以及前述实施例中的箱体11。
关于电池10中各部件的描述可以参见前述各实施例,为了简洁,在此不再赘述。
可选地,该电池10还可以包括箱体上盖14,该上盖14可以与隔离部件13形成电气腔11a。应理解,本申请实施例中的上盖14仅作为一个示例对电池10进行描述,电池10中的上盖14也可以采取其他方式,如图2中关于第一部分101的描述,本申请实施例对此不作限定。
本申请一个实施例还提供了一种用电装置,该用电装置可以包括前述各实施例中的电池10,该电池10用于提供电能。
可选地,用电装置可以为车辆1、船舶或航天器。
上文描述了本申请实施例的电池的箱体、电池和用电装置,下面将描述本申请实施例的制备电池的方法和装置,其中未详细描述的部分可参见前述各实施例。
图17示出了本申请一个实施例的制备电池的方法300的示意性流程图。如图17所示,该方法300可以包括:
S310,提供多个电池单体20。
作为一种实现方式,所述多个电池单体20中的至少一个电池单体20包括泄压机构213,所述泄压机构213用于在设有所述泄压机构213的电池单体20的内部压力或温度达到阈值时致动以泄放所述内部压力。
S320,提供箱体11。
作为一种实现方式,所述箱体11包括:电气腔11a,用于容纳所述多个电池单体20;收集腔11b,用于在所述泄压机构213致动时收集来自所述设有所述泄压机构213的电池单体20的排放物;隔离部件13,用于隔离所述电气腔11a和所述收集腔11b,以使所述电气腔11a和所述收集腔11b设置于所述隔离部件13的两侧;分隔结构131,用于将所述收集腔11b分隔为第一腔体111和第二腔体112,在所述分隔结构131上设置第一排气孔1311,所述第一排气孔1311用于将所述第一腔体111中的排放物导入至所述第二腔体112;流道隔板132,设置于所述第二腔体112中并用于形成引导所述排放物的流道1321。
图18示出了本申请一个实施例的制备电池的装置400的示意性框图。如图18所示,制备电池的装置400可以包括:第一提供模块410、第二提供模块420和设置模块430。
所述第一提供模块410用于提供多个电池单体20,所述多个电池单体20中的至少一个电池单体20包括泄压机构213,所述泄压机构213用于在设有所述泄压机构213的电池单体20的内部压力或温度达到阈值时致动以泄放所述内部压力。
所述第二提供模块420用于提供箱体11,所述箱体11包括:电气腔11a,用于容纳所述多个电池单体20;收集腔11b,用于在所述泄压机构213致动时收集来自所述设有所述泄压机构213的电池单体20的排放物;隔离部件13,用于隔离所述电气腔11a和所述收集腔11b,以使所述电气腔11a和所述收集腔11b设置于所述隔离部件13的两侧;分隔结构131,用于将所述收集腔11b分隔为第一腔体111和第二腔体112;流道隔板132,设置于所述第二腔体112中并用于形成引导所述排放物的流道1321。
所述设置模块430用于在所述分隔结构131上设置第一排气孔1311,所述第一排气孔1311用于将所述第一腔体111中的排放物导入至所述第二腔体112。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (14)

  1. 一种电池的箱体,其特征在于,包括:
    电气腔,用于容纳多个电池单体,所述多个电池单体中的至少一个电池单体包括泄压机构,所述泄压机构用于在设有所述泄压机构的电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;
    收集腔,用于在所述泄压机构致动时收集来自所述设有所述泄压机构的电池单体的排放物;
    隔离部件,用于隔离所述电气腔和所述收集腔,以使所述电气腔和所述收集腔设置于所述隔离部件的两侧;
    分隔结构,用于将所述收集腔分隔为第一腔体和第二腔体,其中,所述分隔结构上设置有第一排气孔,所述第一排气孔用于将所述第一腔体中的所述排放物导入至所述第二腔体;
    流道隔板,设置于所述第二腔体中并用于形成引导所述排放物的流道。
  2. 根据权利要求1所述的箱体,其特征在于,所述箱体还包括:
    压力平衡机构,用于平衡所述箱体内外的压力,所述压力平衡机构被配置为使所述排放物经所述流道引导至所述压力平衡机构并排放至所述箱体外部。
  3. 根据权利要求2所述的箱体,其特征在于,所述第一排气孔设置在所述分隔结构的远离所述压力平衡机构的端部,或者,
    所述第一排气孔设置在所述分隔结构的中部。
  4. 根据权利要求1至3中任一项所述的箱体,其特征在于,所述流道为S形的流道,所述流道的入口与所述第一排气孔连通。
  5. 根据权利要求1至4中任一项所述的箱体,其特征在于,所述收集腔内设置有氧化剂或降温材料。
  6. 根据权利要求5所述的箱体,其特征在于,所述氧化剂或所述降温材料设置于所述分隔结构的表面;和/或,
    所述氧化剂或所述降温材料设置于所述流道隔板的表面。
  7. 根据权利要求5或6所述的箱体,其特征在于,所述箱体还包括:
    防护构件,所述防护构件用于防护所述隔离部件,所述防护构件与所述隔离部件形成所述收集腔,
    其中,所述氧化剂或所述降温材料设置于所述防护构件的朝向所述隔离部件的表面。
  8. 根据权利要求7所述的箱体,其特征在于,所述分隔结构的朝向所述防护构件的表面具有凹陷部,所述凹陷部被配置为容纳所述氧化剂或所述降温材料。
  9. 根据权利要求2至8中任一项所述的箱体,其特征在于,所述电气腔包括第一子腔和第二子腔,所述第一子腔用于容纳所述多个电池单体,所述第二子腔与所述第一子腔相邻设置;
    所述第二子腔的外壁上设置有所述压力平衡机构,所述第二子腔被配置为与所述第二腔体连通以使所述排放物经所述流道引导至所述第二子腔内,并通过所述压力平衡机构排放到所述箱体外部。
  10. 根据权利要求9所述的箱体,其特征在于,所述隔离部件上设置有第二排气孔,所述分隔结构上还设置有与所述第二排气孔对应的第三排气孔,所述第二子腔与所述第二腔体经由所述第二排气孔和第三排气孔连通。
  11. 一种电池,其特征在于,包括:
    多个电池单体,所述多个电池单体中的至少一个电池单体包括泄压机构,所述泄压机构用于在设有所述泄压机构的电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;以及,
    根据权利要求1至10中任一项所述的箱体,所述多个电池单体容纳于所述箱体内。
  12. 一种用电装置,其特征在于,包括:根据权利要求11所述的电池,所述电池用于提供电能。
  13. 一种制备电池的方法,其特征在于,包括:
    提供多个电池单体,所述多个电池单体中的至少一个电池单体包括泄压机构,所述泄压机构用于在设有所述泄压机构的电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;
    提供箱体,所述箱体包括:
    电气腔,用于容纳所述多个电池单体;
    收集腔,用于在所述泄压机构致动时收集来自所述设有所述泄压机构的电池单体的排放物;
    隔离部件,用于隔离所述电气腔和所述收集腔,以使所述电气腔和所述收集腔设置于所述隔离部件的两侧;
    分隔结构,用于将所述收集腔分隔为第一腔体和第二腔体,在所述分隔结构上设置第一排气孔,所述第一排气孔用于将所述第一腔体中的排放物导入至所述第二腔体;
    流道隔板,设置于所述下腔体中并用于形成引导所述排放物的流道。
  14. 一种制备电池的装置,其特征在于,包括:
    第一提供模块,用于提供多个电池单体,所述多个电池单体中的至少一个电池单体包括泄压机构,所述泄压机构用于在设有所述泄压机构的电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;
    第二提供模块,用于提供箱体,所述箱体包括:
    电气腔,用于容纳所述多个电池单体;
    收集腔,用于在所述泄压机构致动时收集来自所述设有所述泄压机构的电池单体的排放物;
    隔离部件,用于隔离所述电气腔和所述收集腔,以使所述电气腔和所述收集腔设置于所述隔离部件的两侧;
    分隔结构,用于将所述收集腔分隔为第一腔体和第二腔体;
    流道隔板,设置于所述第二腔体中并用于形成引导所述排放物的流道;
    设置模块,用于在所述分隔结构上设置第一排气孔,所述第一排气孔用于将所述第一腔体中的排放物导入至所述第二腔体。
PCT/CN2021/115295 2021-08-30 2021-08-30 电池的箱体、电池、用电装置、制备电池的方法和装置 WO2023028745A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2021/115295 WO2023028745A1 (zh) 2021-08-30 2021-08-30 电池的箱体、电池、用电装置、制备电池的方法和装置
EP21955327.8A EP4203153A1 (en) 2021-08-30 2021-08-30 Battery box, battery, electrical device, and method and apparatus for preparing battery
CN202180083689.7A CN116670906A (zh) 2021-08-30 2021-08-30 电池的箱体、电池、用电装置、制备电池的方法和装置
KR1020237010747A KR20230060517A (ko) 2021-08-30 2021-08-30 전지 케이스, 전지, 전기 장치, 전지의 제조 방법 및 장치
JP2023520226A JP2023544047A (ja) 2021-08-30 2021-08-30 電池の筐体、電池、電力消費装置、電池の製造方法及び装置
US18/188,993 US20230231260A1 (en) 2021-08-30 2023-03-23 Battery housing, battery, electrical apparatus, method and device for manufacturing battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/115295 WO2023028745A1 (zh) 2021-08-30 2021-08-30 电池的箱体、电池、用电装置、制备电池的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/188,993 Continuation US20230231260A1 (en) 2021-08-30 2023-03-23 Battery housing, battery, electrical apparatus, method and device for manufacturing battery

Publications (1)

Publication Number Publication Date
WO2023028745A1 true WO2023028745A1 (zh) 2023-03-09

Family

ID=85411736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115295 WO2023028745A1 (zh) 2021-08-30 2021-08-30 电池的箱体、电池、用电装置、制备电池的方法和装置

Country Status (6)

Country Link
US (1) US20230231260A1 (zh)
EP (1) EP4203153A1 (zh)
JP (1) JP2023544047A (zh)
KR (1) KR20230060517A (zh)
CN (1) CN116670906A (zh)
WO (1) WO2023028745A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116565440A (zh) * 2023-07-11 2023-08-08 宁德时代新能源科技股份有限公司 电池及用电设备

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117219954B (zh) * 2023-11-07 2024-04-16 宁德时代新能源科技股份有限公司 电池箱体、电池及用电装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332028A (ja) * 2005-04-26 2006-12-07 Nissan Motor Co Ltd 燃料電池用セパレータ及び燃料電池の製造方法
CN111640888A (zh) * 2020-05-19 2020-09-08 威睿电动汽车技术(宁波)有限公司 一种电池包泄压防护系统及其设计方法和车辆
CN213026309U (zh) * 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池的箱体、电池、用电装置和制备电池的装置
CN113054301A (zh) * 2021-03-11 2021-06-29 广州小鹏汽车科技有限公司 动力电池包及电动汽车
CN113224444A (zh) * 2020-11-13 2021-08-06 江苏时代新能源科技有限公司 箱体、电池、用电设备及电池的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006332028A (ja) * 2005-04-26 2006-12-07 Nissan Motor Co Ltd 燃料電池用セパレータ及び燃料電池の製造方法
CN111640888A (zh) * 2020-05-19 2020-09-08 威睿电动汽车技术(宁波)有限公司 一种电池包泄压防护系统及其设计方法和车辆
CN213026309U (zh) * 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池的箱体、电池、用电装置和制备电池的装置
CN113224444A (zh) * 2020-11-13 2021-08-06 江苏时代新能源科技有限公司 箱体、电池、用电设备及电池的制造方法
CN113054301A (zh) * 2021-03-11 2021-06-29 广州小鹏汽车科技有限公司 动力电池包及电动汽车

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116565440A (zh) * 2023-07-11 2023-08-08 宁德时代新能源科技股份有限公司 电池及用电设备
CN116565440B (zh) * 2023-07-11 2023-11-03 宁德时代新能源科技股份有限公司 电池及用电设备

Also Published As

Publication number Publication date
US20230231260A1 (en) 2023-07-20
CN116670906A (zh) 2023-08-29
JP2023544047A (ja) 2023-10-19
KR20230060517A (ko) 2023-05-04
EP4203153A1 (en) 2023-06-28

Similar Documents

Publication Publication Date Title
WO2023004723A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023098258A1 (zh) 电池单体、电池以及用电装置
US20230231260A1 (en) Battery housing, battery, electrical apparatus, method and device for manufacturing battery
EP4092818B1 (en) Battery box body, battery, electric device, and method for preparing box body
EP4096004A1 (en) Case of battery, battery, electronic device, and method and device for preparing battery
WO2023179192A1 (zh) 电池和用电设备
WO2023044634A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2022205076A1 (zh) 电池、用电装置、制备电池的方法和装置
CN219286591U (zh) 电池以及用电设备
WO2023133722A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2023004660A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023130266A1 (zh) 电池单体、电池、用电装置、制备电池单体的方法和装置
WO2023050078A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023004722A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2022198462A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2022205080A1 (zh) 电池、用电装置、制备电池的方法和装置
CN218939874U (zh) 电池及用电装置
WO2023044619A1 (zh) 电池的箱体、电池、用电设备、制备电池的方法和设备
WO2022252010A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023173721A1 (zh) 电池单体、电池模组、电池和用电装置
WO2023173428A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023028748A1 (zh) 电池、用电装置以及制备电池的方法和装置
WO2023133784A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2023070683A1 (zh) 电池单体、电池、制造电池单体的方法和装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021955327

Country of ref document: EP

Effective date: 20230320

ENP Entry into the national phase

Ref document number: 20237010747

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023520226

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955327

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180083689.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE