WO2023246098A1 - 电池单体、电池及用电装置 - Google Patents

电池单体、电池及用电装置 Download PDF

Info

Publication number
WO2023246098A1
WO2023246098A1 PCT/CN2023/073107 CN2023073107W WO2023246098A1 WO 2023246098 A1 WO2023246098 A1 WO 2023246098A1 CN 2023073107 W CN2023073107 W CN 2023073107W WO 2023246098 A1 WO2023246098 A1 WO 2023246098A1
Authority
WO
WIPO (PCT)
Prior art keywords
wall
support member
battery cell
pressure relief
sub
Prior art date
Application number
PCT/CN2023/073107
Other languages
English (en)
French (fr)
Inventor
苏华圣
杜香龙
邢承友
李全坤
王鹏
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/CN2022/100171 external-priority patent/WO2023245429A1/zh
Priority claimed from PCT/CN2022/100174 external-priority patent/WO2023245431A1/zh
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to CN202380014335.6A priority Critical patent/CN118216037A/zh
Priority to CN202380014437.8A priority patent/CN118216038A/zh
Priority to PCT/CN2023/085655 priority patent/WO2023246227A1/zh
Priority to CN202321002045.3U priority patent/CN220672794U/zh
Publication of WO2023246098A1 publication Critical patent/WO2023246098A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/172Arrangements of electric connectors penetrating the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular to a battery cell, a battery and an electrical device.
  • Electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy conservation and environmental protection.
  • battery technology is an important factor related to their development.
  • the purpose of this application is to provide a battery cell, a battery and an electrical device.
  • This battery cell has high safety.
  • this application provides a battery cell, including: a casing having a first wall; a pressure relief mechanism disposed on the first wall; an electrode lead-out part disposed on the casing; and an electrode assembly disposed on In the housing, the electrode assembly is provided with tabs; an adapter connecting the electrode lead-out part and the tabs; a gap control part disposed in the housing, and the gap control part is configured to The adapter is restricted from blocking the pressure relief hole formed by the pressure relief mechanism when the battery cell is thermally out of control.
  • a gap control part is provided in the casing.
  • the high-temperature and high-pressure gas generated in the casing rushes toward the pressure relief mechanism, and the pressure relief mechanism performs actions or releases pressure.
  • the mechanism is destroyed, thereby forming a pressure relief hole for releasing the internal pressure or temperature.
  • the adapter provided in the casing is easily deformed by heat and force and blocks the pressure relief hole of the pressure relief mechanism.
  • the pressure relief hole is provided in the casing.
  • the internal gap control part can effectively limit the deformation or movement of the adapter from blocking the pressure relief holes, reducing the risk of the battery cells being unable to smoothly exhaust and pressure release due to the adapter blocking the pressure relief holes, thus reducing the risk of the battery cells being heated when heated.
  • When out of control there is a risk of fire or explosion due to poor pressure relief, which effectively improves the safety of battery cells.
  • the gap control part includes a support member disposed between the first wall and the adapter member, and the support member is configured to limit the adapter member.
  • the component blocks the pressure relief hole formed by the pressure relief mechanism when the battery cell is thermally out of control.
  • the support member is provided between the first wall and the adapter member, which can form a support between the first wall and the adapter member when the battery cell is thermally out of control, so as to limit the adapter member from blocking the pressure relief hole. , so that the battery cells can release pressure in time.
  • the melting point of the support is higher than 200°C.
  • the melting point of the support member is higher than 200°C to effectively reduce the impact of high-temperature and high-pressure gas on the structural stability of the support member, thereby effectively ensuring the performance stability of the support member.
  • the support member is a metal member.
  • the metal support piece has higher structural strength, thereby effectively ensuring the blocking and limiting effect of the support piece on the adapter.
  • the metal support piece has a higher melting point, which can effectively ensure that the support piece is in place. Structural stability in high temperature environments.
  • the support member is fixed to the first wall.
  • the support member is fixed to the first wall, so that the support member is stably arranged in the battery cell, which facilitates improving the connection stability of the support member, thereby improving the stress stability of the support member.
  • the support member and the first wall are integrally formed.
  • the support member and the first wall are integrally formed, which facilitates manufacturing and assembly while effectively ensuring the structural strength of the support member.
  • the support member is arranged around the pressure relief mechanism.
  • the support member is arranged around the pressure relief mechanism to form a stable support around the pressure relief mechanism, further improving the stability of the support member's support and limitation of the adapter member.
  • the support member includes a first sub-support member and a second sub-support member, and the pressure relief mechanism is disposed between the first sub-support member and the second sub-support member.
  • the pressure relief mechanism is provided between the first sub-support member and the second sub-support member to support the adapter member at two positions and further ensure the blocking effect of the support member.
  • the support member is covered by the pressure relief mechanism, and the support member has a second exhaust channel that connects the internal space of the support member and the external space of the support member.
  • the support member covers the pressure relief mechanism, and the support member protects the pressure relief mechanism similarly to a protective cover.
  • it can effectively protect the pressure relief mechanism.
  • the support cover is installed on the pressure relief mechanism to fully limit the adapter from blocking the pressure relief hole of the battery cell.
  • the support is provided with a connected support
  • the internal space and the second exhaust channel in the external space of the component are provided to ensure that when the battery cell undergoes thermal runaway, the gas in the battery cell can smoothly reach the pressure relief mechanism through the second exhaust channel, ensuring that the pressure relief mechanism can release pressure smoothly.
  • the support member includes a first bottom wall and a first side wall, the first bottom wall and the pressure relief mechanism are arranged oppositely along the thickness direction of the first wall, and the third A gap is formed between a bottom wall and the pressure relief mechanism, the first side wall connects the first bottom wall and the first wall, and the second exhaust channel is formed on the first side wall .
  • the first bottom wall is arranged opposite to the first wall so that a gap is formed between the first bottom wall and the pressure relief mechanism.
  • the first bottom wall faces the electrode assembly to limit the adapter from blocking the pressure relief mechanism.
  • the second exhaust channel is formed on the first side wall, which can effectively reduce the risk of the second exhaust channel being blocked by the adapter and effectively ensure the smoothness of the pressure relief mechanism.
  • the battery cell further includes: an insulating member, at least partially located between the first wall and the adapter, for insulating and isolating the first wall and the adapter. component; wherein the melting point of the support component is higher than the melting point of the insulating component, and the support component is configured to prevent the adapter component from blocking the pressure relief mechanism in the battery cell after the insulating component melts.
  • the insulating member is used to insulate and isolate the first wall and the adapter to prevent the first wall and the adapter from contacting and short-circuiting; the melting point of the support member is higher than the melting point of the insulating member.
  • the insulating part melts and the supporting part is not easy to melt, so as to prevent the adapter part from blocking the pressure relief hole.
  • the insulation member includes a third surface facing the first wall, a first groove is formed on the third surface, and at least a part of the support member is accommodated in the third surface. within a groove.
  • the arrangement of the first groove not only ensures the insulation effect between the first wall and the adapter, but also prevents the support member from occupying too much internal space of the battery cell, thereby effectively ensuring the energy density of the battery cell.
  • the gap control part includes a reinforcing part, the reinforcing part is provided on the adapter, along the thickness direction of the first wall, the reinforcing part is on the first wall
  • the projection covers at least a portion of the pressure relief mechanism.
  • the reinforced portion can increase the strength of the adapter. Since the projection of the reinforced portion on the first wall covers at least a part of the pressure relief mechanism, when the battery cell undergoes thermal runaway, it becomes more difficult for the adapter to deform. , reducing the risk of the adapter blocking the pressure relief hole when the battery cell is thermally out of control.
  • the gap control part further includes a support member disposed between the first wall and the reinforcement part, the support member being configured to When thermal runaway occurs, it abuts between the first wall and the reinforcement part to form a pressure relief channel between the reinforcement part and the first wall.
  • the support member abuts between the first wall and the reinforced part to form a pressure relief channel between the reinforced part and the first wall, so that the gas can pass through the pressure relief channel towards the pressure relief channel.
  • the mechanism flows to facilitate the pressure relief mechanism to relieve pressure.
  • the support member includes a first sub-support member and a second sub-support member, and the pressure relief mechanism is disposed between the first sub-support member and the second sub-support member.
  • the pressure relief mechanism is provided between the first sub-support member and the second sub-support member so as to stop the reinforcing portion at two positions, further ensuring the blocking effect of the support member.
  • the projection of the reinforcement portion on the first wall covers at least a part of the first sub-support and at least a part of the second sub-support.
  • the projection of the reinforcing part covers at least part of the first sub-support and at least part of the second sub-support to form a simply supported beam, thereby reducing the risk of deformation of the reinforcing part.
  • the projections of the center of the first sub-support and the center of the second sub-support on the adapter fall into the reinforcement part.
  • the projections of the center of the first sub-support and the center of the second sub-support on the adapter fall into the reinforcing part, ensuring that the reinforcing part has a larger relationship with the first and second sub-support.
  • the first sub-support and the second sub-support better block the reinforcement, reducing the risk of the reinforcement deforming to block or block the pressure relief hole.
  • the adapter includes a first connecting section, the first connecting section is used to connect the tab, and the reinforcing portion is provided on the first connecting section.
  • the reinforcing portion is provided on the first connecting section to enhance the strength of the first connecting section and reduce the risk of deformation of the first connecting section.
  • the reinforcing part is a first flange part of the first connecting section
  • the first connecting section has a first surface facing the first wall and a first surface facing away from the first wall.
  • the second surface, the first flange portion is bent to one side of the first surface or the first flange portion is bent to one side of the second surface.
  • the reinforcing part is a first flange part, and the first flange part is bent to one side of the first surface or the first flange part is bent to one side of the second surface to facilitate processing and shaping.
  • the first flange portion is bent to one side of the first surface, and the first flange portion is adhered to the first surface; or, the first flange portion is bent to one side of the first surface.
  • the edge portion is bent to one side of the second surface, and the first flange portion is attached to the second surface.
  • the first flange part is attached to the first surface or the second surface, which reduces the risk of the first flange part being lifted and increases the difficulty of deformation of the reinforcing part.
  • the first connecting section has a first surface facing the first wall and a second surface facing away from the first wall, the first surface forming a protrusion, and the protrusion is the reinforcement part.
  • a second groove is formed at a position corresponding to the second surface and the protrusion.
  • the other one of the first surface or the second surface forms a second groove corresponding to the protrusion, which on the one hand facilitates the processing of the reinforced portion. Molding, on the other hand, can reduce the weight of the adapter.
  • the first connecting section has a first surface facing the first wall and a second surface facing away from the first wall, and the reinforcement forms a protrusion on the second surface.
  • the reinforcing part forms a second groove on the first surface at a position corresponding to the protrusion.
  • the reinforcing part forms a protrusion on the second surface and a second groove on the first surface, thereby increasing the strength of the adapter and increasing the difficulty of the adapter deforming toward the first wall.
  • the projection of the second groove on the first wall at least partially covers the pressure relief mechanism.
  • the projection of the second groove on the first wall at least partially covers the pressure relief mechanism, making it difficult for the reinforced portion to deform and block or block the pressure relief holes, ensuring smooth pressure relief of the battery cells.
  • the second groove extends to an edge of the adapter.
  • the second groove extends to the edge of the adapter to form a channel for gas flow at the reinforcing portion, so that the gas can flow toward the pressure relief mechanism through the reinforcing portion and facilitate pressure relief by the pressure relief mechanism.
  • the groove wall of the second groove is provided with a first exhaust channel connecting the inside of the second groove and the outside of the second groove.
  • the groove wall of the second groove is provided with a first exhaust channel connecting the inside of the second groove and the outside of the second groove, so that the gas can enter the second groove and flow toward the pressure relief mechanism to ensure that The gas flows smoothly, making it easier for the pressure relief mechanism to relieve pressure.
  • the distance between the bottom surface of the second groove and the first wall is C1
  • the distance between the first surface and the first wall is C1 It is C2 and satisfies 0.5mm ⁇ C1-C2 ⁇ 5mm.
  • the distance C1 between the bottom surface of the second groove and the first wall and the distance C2 between the first surface and the first wall satisfy the above relationship, ensuring that the gas flows toward the pressure relief mechanism, and the reinforced part is not easily deformed even if it is deformed. Blocking the pressure relief hole also ensures that the reinforced part does not take up too much assembly space and ensures that the battery cell has a high energy density.
  • 1mm ⁇ C1-C2 ⁇ 3mm is satisfied.
  • the distance C1 between the bottom surface of the second groove and the first wall and the distance C2 between the first surface and the first wall satisfy the above relationship.
  • the flow towards the pressure relief mechanism is smooth, and the assembly space is rationally utilized to ensure the energy density of the battery cells.
  • the battery cell further includes: a second support member, the second support member includes a second bottom wall and a second side wall, the second bottom wall is connected to the second concave The bottom surface of the groove is in contact with each other, the second side wall is formed on the edge of the second bottom wall, and the second side wall is in contact with the side surface of the second groove.
  • the second support member is disposed in the second groove, the second bottom wall is in contact with the bottom surface of the second groove, and the second side wall is in contact with the side surface of the second groove, further enhancing the strength of the reinforcement part. Strength, reduce the risk of the pressure relief mechanism being blocked or blocked, and ensure the pressure relief mechanism releases pressure.
  • the second support member further includes a second flange portion, the second flange portion is connected to the second side wall, and the second flange portion is located on the second side wall. The outside of the groove is in contact with the first surface.
  • the second flange portion is in contact with the first surface, ensuring that the second support member and the adapter have a larger connection area, and ensuring that the second support and the adapter have better connection stability.
  • the first connection section includes a main body area and a connection area, the connection area is connected to the tab, and the reinforcing part is provided in the main body area.
  • the connecting area is connected to the tab, and the reinforcing portion is provided in the main body area to prevent the reinforcing portion from interfering with the connection between the first connecting section and the tab.
  • the connecting area protrudes from the second surface, and the height of the reinforcing portion protruding from the second surface is less than or equal to the height of the connecting area protruding from the second surface. the height of.
  • the height of the reinforcing part protruding from the second surface is less than or equal to the height of the connecting area protruding from the second surface.
  • the reinforcing part occupies less space in the thickness direction.
  • the adapter includes a first connection section for connecting the tab, and the gap control portion is disposed on a side of the first connection section away from the The side of the pole ear.
  • the gap control part is arranged on the side of the first connecting section away from the tab, which can strengthen the strength of the first connecting section, increase the difficulty of deformation of the first connecting section, and reduce the thermal runaway of the battery cell when the adapter Risk of blocking pressure relief holes.
  • the gap control part includes a reinforcing part and a support member, the reinforcing part has a first face and a second face oppositely arranged along the thickness direction of the first wall, the first face Connected to the first connection section, the support member protrudes from the second surface, and the support member is configured to cooperate with the first wall to form a pressure relief channel when the battery cell is thermally runaway.
  • the first surface is connected to the first connection section
  • the reinforcement can increase the strength of the first connection section and increase the difficulty of deformation of the first connection section
  • the support can cooperate with the first wall when the battery cell is thermally out of control.
  • a pressure relief channel is formed to facilitate timely pressure relief of battery cells.
  • the adapter includes a first connection section for connecting the tab, and the gap control portion is disposed on a side of the first connection section facing the The side of the pole ear.
  • the gap control part is provided on the side of the first connecting section facing the tab, which can increase the strength of the first connecting section, increase the difficulty of deformation of the first connecting section, and reduce the thermal runaway of the battery cell when the adapter Risk of blocking pressure relief holes.
  • the gap control part includes a reinforcing part and a support member, the reinforcing part has a first face and a second face oppositely arranged along the thickness direction of the first wall, and the second face Connected to the first connecting section, the support member protrudes from the second surface, and the support member It is configured to cooperate with the first connecting section and the first wall to form a pressure relief channel when the battery cell is thermally runaway.
  • the second surface is connected to the first connection section, and the support member protrudes from the second surface, which can enhance the strength of the first connection section and increase the difficulty of deformation of the first connection section.
  • the support member When out of control, it cooperates with the first connecting section and the first wall to form a pressure relief channel, which facilitates timely pressure relief of the battery cells.
  • the first connecting section is provided with a recess corresponding to the support member, and the support member is inserted into the recess.
  • the support member is inserted into the recess, which ensures the connection stability between the gap control part and the first connection section and reduces the support member from occupying too much internal space of the battery cell, thereby effectively ensuring the energy of the battery cell. density.
  • the support member includes a first sub-support member and a second sub-support member, and the pressure relief mechanism is disposed between the first sub-support member and the second sub-support member.
  • the pressure relief mechanism is provided between the first sub-support member and the second sub-support member so as to cooperate with the first wall at multiple positions to facilitate the formation of a pressure relief channel when the battery cell is thermally out of control.
  • the support member and the reinforcement part are integrally formed.
  • the support part and the reinforcing part are integrally formed, which facilitates processing and manufacturing.
  • the tab is formed on an end of the electrode assembly close to the first wall, and the electrode lead-out part is provided on the first wall.
  • the electrode lead-out part is provided on the first wall, and the distance between the tab and the first wall is small, so that the size of the adapter in the thickness direction of the first wall is small, so as to facilitate the connection between the tab and the first wall. Electrical connection of electrode leads.
  • the present application provides a battery, including the battery cell provided in the above embodiment.
  • the present application provides an electrical device, including the battery cell provided in the above embodiment.
  • Figure 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • Figure 2 is an exploded view of a battery provided by some embodiments of the present application.
  • Figure 3 is an exploded view of a battery cell provided by some embodiments of the present application.
  • Figure 4 is an exploded view of the first wall, adapter and insulator of a battery cell provided by some embodiments of the present application;
  • Figure 5 is a cross-sectional view of the first wall and the support member when the battery cell is thermally runaway according to some embodiments of the present application;
  • Figure 6 is an exploded view of the first wall, insulating member and supporting member of a battery cell provided by some embodiments of the present application;
  • Figure 7 is a cross-sectional view of the first wall and the support provided by some embodiments of the present application.
  • Figure 8 is a cross-sectional view of the cooperation relationship between the insulating member and the supporting member provided by some embodiments of the present application.
  • Figure 9 is a cross-sectional view of the cooperation relationship between the insulating member and the supporting member provided in some embodiments of the present application.
  • Figure 10 is a schematic structural diagram of an adapter provided with a reinforced portion according to some embodiments of the present application.
  • Figure 11 is a partial cross-sectional view of a battery cell provided by some embodiments of the present application.
  • Figure 12 is a schematic structural diagram of the first flange portion on the adapter in an expanded state according to some embodiments of the present application.
  • Figure 13 is a schematic structural diagram of the first flange portion on the adapter provided in some embodiments of the present application in a folded state;
  • Figure 14 is a schematic structural diagram of the reinforcement provided by some embodiments of the present application.
  • Figure 15 is a schematic structural diagram of a reinforcement portion provided by other embodiments of the present application.
  • Figure 16 is a schematic structural diagram of a reinforcing part provided by some embodiments of the present application.
  • Figure 17 is a partial enlarged view of A in Figure 10;
  • Figure 18 is a schematic diagram of the first exhaust channel provided by some embodiments of the present application.
  • Figure 19 is a cross-sectional view of some components of a battery cell provided by some embodiments of the present application.
  • Figure 20 is a partial cross-sectional view of a battery cell after thermal runaway (the insulator is melted) according to some embodiments of the present application;
  • Figure 21 is a schematic diagram of the assembly of the adapter and the clearance fitting part provided by some embodiments of the present application.
  • Figure 22 is a cross-sectional view of the reinforcing part provided by some embodiments of the present application after mating with the first connecting section;
  • Figure 23 is a cross-sectional view of the reinforcing part provided by other embodiments of the present application after mating with the first connecting section;
  • Figure 24 is a schematic diagram of the assembly of the adapter and the clearance fitting part provided by other embodiments of the present application.
  • Figure 25 is a schematic structural diagram of an adapter and a clearance fitting portion provided by other embodiments of the present application.
  • Figure 26 is a cross-sectional view of the reinforcing part provided by some embodiments of the present application after mating with the first connecting section;
  • Figure 27 is a schematic structural diagram of the cooperation between the reinforcement part and the first wall provided by some embodiments of the present application.
  • Figure 28 is a schematic structural diagram of the cooperation between the reinforcing part and the insulating part provided by some embodiments of the present application;
  • Figure 29 is a schematic structural diagram of the cooperation between the reinforcement part and the first connection section provided by some embodiments of the present application.
  • Marking description 1000-vehicle; 100-battery; 10-box; 11-first part; 12-second part; 20-battery cell; 21-outer shell; 211-casing; 212-cover; 213-section One wall; 22-pressure relief mechanism; 221-pressure relief hole; 23-electrode lead-out part; 241-pole lug; 242-adapter; 2421-first connection section; 242a-main area; 242b-connection area; 2422 -First surface; 2423-Second surface; 2424-Second connecting section; 2425-Recessed part; 2426-Third connecting section; 2427-First positioning part; 2428-Mounting hole; 243-Reinforcement part; 243a-First Flange portion; 243b-Protrusion; 243c-Second groove; 243d-First exhaust channel; 243e-First surface; 243f-Second surface; 2431-Second positioning portion; 25-Electrode assembly; 25
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • the term “plurality” refers to two or more (including two).
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity. Among them, multiple battery cells can be connected in series, parallel or mixed.
  • the battery may also include a case for enclosing one or more battery cells.
  • the box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery may be a battery module.
  • the multiple battery cells are arranged and fixed to form a battery module.
  • the battery may be a battery pack.
  • the battery pack includes a case and battery cells, and the battery cells or battery modules are accommodated in the case.
  • the box may be part of the vehicle's chassis structure.
  • parts of the box may become at least part of the floor of the vehicle, or parts of the box may become at least part of the cross members and longitudinal members of the vehicle.
  • the battery may be an energy storage device.
  • Energy storage devices include energy storage containers, energy storage cabinets, etc.
  • the battery cells may include lithium ion secondary batteries, lithium ion primary batteries, lithium sulfur batteries, sodium lithium ion batteries, sodium ion batteries or magnesium ion batteries, etc., which are not limited in the embodiments of this application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this.
  • the battery cell includes an electrode assembly and an electrolyte.
  • the electrode assembly consists of a positive electrode plate, a negative electrode plate and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode collector that is coated with the positive electrode active material layer. Fluid, the positive electrode current collector without the positive electrode active material layer can be directly used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode collector that is coated with the negative electrode active material layer.
  • Fluid, the negative electrode current collector without the negative electrode active material layer can be directly used as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the isolation film can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • a pressure relief mechanism can be provided on the battery cell.
  • the pressure relief mechanism Activate to form a pressure relief hole, which connects the inside and outside of the battery cell, and can release the internal pressure of the battery cell to the outside in time to prevent the battery cell from exploding or catching fire, thereby effectively improving the safety of the battery cell. performance.
  • the inventor analyzed the reason and found that an adapter is usually provided inside the battery cell to lead the electric energy generated by the electrode assembly out of the battery cell through the adapter.
  • the interior of the battery cell generally also includes insulating parts used to insulate the isolation casing and adapters.
  • the pressure relief mechanism is activated to form a pressure relief hole, the insulating parts are melted, and the internal components of the battery cell are
  • high-temperature and high-pressure gas flows to the pressure relief mechanism, it will impact the adapter.
  • At least part of the adapter will move toward the pressure relief hole due to the high temperature and gas force. Without the blocking of the insulating piece, the adapter will cover the pressure relief hole.
  • the inventor has conducted research and designed a battery cell with a gap in the casing of the battery cell.
  • the control part and the gap control part can limit the adapter from blocking the pressure relief hole formed by the pressure relief mechanism when the battery cell is thermally runaway.
  • the pressure relief mechanism releases the internal pressure of the battery cell, and high-temperature and high-pressure gas flows toward the pressure-relief mechanism.
  • the adapter is affected by the temperature and force of the high-temperature and high-pressure gas, and is prone to deformation. Gap control The whole part can effectively restrict the deformed or moved adapter from blocking the pressure relief hole, and avoid the problem that the battery cell cannot smoothly exhaust and release pressure due to the adapter blocking the pressure relief hole, thus reducing the risk of battery cells being thermally runaway.
  • the risk of fire and explosion caused by poor pressure relief effectively improves the safety performance of battery cells.
  • the battery cells disclosed in the embodiments of the present application can be used in, but are not limited to, electrical devices such as vehicles, ships, or aircrafts.
  • a power supply system including the battery cells, batteries, etc. disclosed in this application can be used to form the electrical device.
  • Embodiments of the present application provide an electrical device that uses a battery as a power source.
  • the electrical device may be, but is not limited to, a mobile phone, a tablet, a laptop, an electric toy, an electric tool, a battery car, an electric vehicle, a ship, a spacecraft, etc.
  • electric toys can include fixed or mobile electric toys, such as game consoles, electric car toys, electric ship toys, electric airplane toys, etc.
  • spacecraft can include airplanes, rockets, space shuttles, spaceships, etc.
  • the battery described in the embodiments of the present application is not limited to the above-described electrical devices, but can also be applied to all electrical devices that use batteries. However, for the sake of simplicity of description, the following embodiment is based on an embodiment of the present application.
  • the electric device is a vehicle as an example for explanation.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • the vehicle 1000 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 100 is disposed inside the vehicle 1000 , and the battery 100 may be disposed at the bottom, head, or tail of the vehicle 1000 .
  • the battery 100 may be used to power the vehicle 1000 , for example, the battery 100 may serve as an operating power source for the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 .
  • the controller 200 is used to control the battery 100 to provide power to the motor 300 , for example, for starting, navigating and driving the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but also can be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1000 .
  • the battery 100 may include a box 10 and a battery cell 20 , and the battery cell 20 is accommodated in the box 10 .
  • the box 10 is used to provide an accommodation space for the battery cells 20, and the box 10 can adopt a variety of structures.
  • the box 10 may include a first part 11 and a second part 12 , the first part 11 and the second part 12 cover each other, and the first part 11 and the second part 12 jointly define a space for accommodating the battery cells 20 of accommodation space.
  • the second part 12 may be a hollow structure with one end open, and the first part 11 may be a plate-like structure.
  • the first part 11 covers the open side of the second part 12 so that the first part 11 and the second part 12 jointly define a receiving space.
  • the first part 11 and the second part 12 may also be hollow structures with one side open, and the open side of the first part 11 is covered with the open side of the second part 12.
  • the box 10 formed by the first part 11 and the second part 12 can be in various shapes, such as rectangular parallelepiped, cube, etc.
  • the battery 100 there may be a plurality of battery cells 20, and the plurality of battery cells 20 may be connected in series, in parallel, or in mixed connection.
  • Mixed connection means that the plurality of battery cells 20 are connected in series and in parallel.
  • Multiple battery cells 20 can be directly connected in series or in parallel or mixed together.
  • Figure 3 is an exploded view of a battery cell provided by some embodiments of the present application.
  • Figure 4 is an exploded view of a battery cell provided by some embodiments of the present application.
  • Figure 5 is an exploded view of the first wall, adapter and insulator of the battery cell provided.
  • Figure 5 is a cross-sectional view of the first wall and support member when the battery cell is thermally runaway according to some embodiments of the present application.
  • the battery cell 20 may include a casing 21, an electrode assembly 25, a pressure relief mechanism 22, an electrode lead-out part 23, an adapter 242 and a gap control part 260.
  • the housing 21 has a first wall 213, and the pressure relief mechanism 22 is provided on the first wall 213.
  • the electrode lead-out part 23 is provided in the housing 21 .
  • the electrode assembly 25 is provided in the housing 21 , and the electrode assembly 25 is provided with tabs 241 .
  • the adapter 242 connects the electrode lead-out part 23 and the pole lug 241 .
  • the gap control part 260 is disposed in the housing 21 , and the gap control part 260 is configured to limit the adapter 242 from blocking the pressure relief hole 221 formed by the pressure relief mechanism 22 when the battery cell 20 is thermally runaway.
  • a gap control part 260 is provided in the casing 21.
  • the high-temperature and high-pressure gas generated in the casing 21 rushes towards the pressure relief mechanism 22, releasing the pressure.
  • the mechanism 22 performs an action or the pressure relief mechanism 22 is destroyed, thereby forming a pressure relief hole 221 for releasing the internal pressure or temperature.
  • the adapter 242 provided in the housing 21 is easily deformed by heat and force and blocks the pressure relief mechanism.
  • the gap control part 260 provided in the housing 21 of the present application can effectively limit deformation or movement after the adapter 242 blocks the pressure relief hole 221, reducing the risk of the adapter 242 blocking the pressure relief hole 221.
  • the risk of the battery cell 20 being unable to smoothly exhaust and release pressure reduces the risk of fire or explosion caused by poor pressure relief when the battery cell 20 undergoes thermal runaway, effectively improving the safety of the battery cell 20 .
  • the housing 21 is a component for housing the electrode assembly 25 .
  • the housing 21 can be in various shapes, such as cylinder, cuboid, etc.
  • the housing 21 may include a housing 211 and a cover 212.
  • the cover 212 covers the opening of the housing 211.
  • the cover 212 and the housing 211 jointly define a sealed space.
  • the housing 211 may be a hollow structure with an opening formed at one end, or the housing 211 may be a hollow structure with openings formed at two opposite ends.
  • the housing 211 can be made of various materials, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • the cover 212 is a component that closes the opening of the case 211 to isolate the internal environment of the battery cell 20 from the external environment.
  • the cover 212 and the housing 211 jointly define a sealed space for accommodating the electrode assembly 25, electrolyte and other components.
  • the cover 212 can be connected to the housing 211 by welding or crimping to close the opening of the housing 211 .
  • the shape of the cover 212 can be adapted to the shape of the shell 21.
  • the shell 211 is a rectangular parallelepiped structure
  • the cover 212 is a rectangular plate structure matching the shell 21.
  • the shell 211 is a cylinder
  • the cover 212 is a circular plate-shaped structure adapted to the housing 211 .
  • the cover 212 can also be made of various materials, such as copper, iron, aluminum, steel, aluminum alloy, etc.
  • the housing 211 is a hollow structure with openings formed at both ends
  • two covers 212 may be provided correspondingly.
  • the two covers 212 respectively close the two openings of the housing 211.
  • the two covers 212 are in contact with the housing 211. jointly define a sealed space.
  • one cover 212 may be provided correspondingly.
  • the cover 212 closes the opening at one end of the housing 211, and the cover 212 and the housing 211 jointly define a sealed space.
  • the first wall 213 may be the cover 212 .
  • the first wall 213 may also be other side walls of the housing 211 .
  • the electrode assembly 25 is a component in the battery cell 20 where electrochemical reactions occur.
  • the electrode assembly 25 may include a positive electrode piece, a negative electrode piece, and a separator.
  • the electrode assembly 25 may be a rolled structure formed by winding the positive electrode sheet, the isolation film and the negative electrode sheet.
  • the electrode assembly 25 may also be a laminate structure.
  • the pressure relief mechanism 22 is an element or component that releases the internal pressure or temperature of the battery cell 20 .
  • the pressure relief mechanism 22 may take the form of an explosion-proof valve, an air valve, a pressure relief valve, a safety valve, a notch provided on the housing 21, etc.
  • pressure-sensitive or temperature-sensitive components or structures may be specifically used, that is, when the internal pressure or temperature of the battery cell 20 reaches a threshold, the pressure relief mechanism 22 performs an action or the weak structure provided in the pressure relief mechanism 22 is destroyed.
  • a pressure relief hole 221 is formed for releasing the internal pressure or temperature of the battery cell.
  • the pressure relief hole 221 refers to a hole formed on the casing 21 to connect the inside and outside of the battery cell when the battery cell undergoes thermal runaway.
  • the pressure relief hole may be formed by actuation of a pressure relief mechanism. For example, when the internal pressure of the battery cell 20 exceeds the threshold, at least part of the pressure relief mechanism is destroyed to form a pressure relief hole 221 .
  • the actions generated by the pressure relief mechanism 22 may include, but are not limited to: at least a part of the pressure relief mechanism 22 is broken, broken, torn or opened, etc.
  • the pressure relief mechanism 22 can be disposed on the cover 212 .
  • the gap control part 260 includes a support 26 disposed between the first wall 213 and the adapter 242 , the support 26 being configured to limit the adapter 242 from blocking the pressure relief mechanism.
  • 22 is a pressure relief hole 221 formed when the battery cell 20 is thermally runaway.
  • the adapter 242 includes a first connecting section for connecting the tabs of the electrode assembly, and the supporting member 26 is disposed between the first wall 213 and the first connecting section.
  • the support member 26 is disposed between the first wall 213 and the adapter 242, and can form a support between the first wall 213 and the adapter 242 when the battery cell 20 is thermally runaway, so as to limit the adapter 242 from blocking the leakage.
  • the pressure hole 221 enables the battery cell 20 to release pressure in time.
  • the melting point of the support 26 is higher than 200°C.
  • the support member 26 can be made of metal materials, ceramic materials, etc. with high melting points.
  • the melting point of the support member 26 can be higher than 300°C, 400°C, 500°C, etc., or it can be greater than 600°C or even higher.
  • the higher the melting point of the support member 26, The better the structural stability is in high temperature and high pressure environments, the high melting point support member 26 can effectively ensure the functional stability of the support member 26 when the battery cell 20 undergoes thermal runaway.
  • the support member 26 is a metal member.
  • the material of the support member 26 can be copper, iron, aluminum, aluminum alloy, etc.
  • the support member 26 can be made of the same material as the first wall 213, so that the support member 26 It can be welded or integrally formed with the first wall 213.
  • the supporting member 26, the first wall 213 and the adapter 242 may also be made of different materials.
  • the support member 26 can be made of a metal material with a melting point higher than 200°C.
  • the metal support 26 can easily achieve higher structural strength, thereby effectively ensuring the blocking and limiting effect of the support 26 on the adapter 242. At the same time, the metal support 26 can be easily fixed in the casing 21 to facilitate the battery cells. 20 manufacturing.
  • the support 26 is fixed to the first wall 213 .
  • the first wall 213 includes an inner surface facing the electrode assembly 25.
  • the support member 26 is fixed to the inner surface of the first wall 213 and protrudes from the inner surface.
  • the support member 26 is fixed to the first wall 213 and includes various implementation forms. , for example, the support member 26 can be integrally formed with the first wall 213, or the support member 26 can be separated from the first wall 213 and fixedly connected to the first wall 213 by welding, gluing, snapping, fastener locking, etc. Wall 213.
  • the material of the support member 26 can be the same as the material of the first wall 213, so that the support member 26 and the first wall 213 can be welded or integrally formed; the material of the support member 26 can also be different from the material of the first wall 213, for example, the first wall 213 can be made of the same material.
  • the wall 213 may be made of aluminum, stainless steel or aluminum alloy, and the support member 26 may be made of ceramic.
  • the support member 26 is fixed to the first wall 213 to ensure the connection stability of the support member 26, thereby ensuring the stress stability of the support member 26, and to fully exert the restricting effect of the support member 26 on the adapter 242.
  • the support 26 and the first wall 213 are integrally formed.
  • the material of the support member 26 can be the same as that of the first wall 213 , and the support member 26 and the first wall 213 can be integrally formed by forging, casting, stamping, or other methods.
  • the support member 26 and the first wall 213 are integrally formed, which facilitates the manufacturing and assembly of the battery cell 20 while effectively ensuring the structural strength of the support member 26 .
  • the support member 26 is disposed around the pressure relief mechanism 22 .
  • the support member 26 can be annular and arranged around the pressure relief mechanism 22.
  • One end of the annular support member 26 is fixedly connected to the first wall 213, and the other end faces the adapter 242.
  • the side walls of the annular support member 26 A channel can be provided to connect the internal space of the annular support member 26 and the external space of the annular support member 26.
  • the channel on the side wall of the support member 26 can This effectively ensures that the gas smoothly enters the internal space of the annular support member 26 and is discharged through the pressure relief mechanism 22.
  • the annular support member 26 can be in the shape of a circular ring, an elliptical ring, a rectangular frame, etc.
  • the support member 26 may also include a plurality of split structures arranged around the pressure relief mechanism 22.
  • the multiple split structures are spaced apart from each other and arranged around the pressure relief mechanism 22.
  • Two adjacent split structures form a communication structure that can relieve pressure.
  • the external channels of the mechanism 22 and the support member 26 can effectively ensure that gas can be smoothly discharged through the pressure relief mechanism 22 when the adapter 242 is deformed and contacts part or all of the body structure.
  • the support member 26 is arranged around the pressure relief mechanism 22 to form a stable support around the pressure relief mechanism 22 , further improving the stability of the support member 26 supporting and limiting the adapter member 242 .
  • Figure 5 is a front view of the first wall and the support member provided by some embodiments of the present application.
  • the support member 26 includes a first sub-support member 261a and The second sub-support member 261b, the pressure relief mechanism 22 is disposed between the first sub-support member 261a and the second sub-support member 261b.
  • the pressure relief mechanism 22 is disposed between the projections of the first sub-support member 261a and the second sub-support member 261b on the first wall 213.
  • the pressure relief mechanism 22 and the first sub-support member 261a and the second sub-support 261b are spatially offset.
  • the pressure relief mechanism 22 may be layered with the first sub-support 261a and the second sub-support 261b.
  • the pressure relief mechanism 22 is disposed between the first sub-support member 261a and the second sub-support member 261b to support the adapter 242 at two positions to further ensure the blocking effect of the support member 26.
  • Figure 5 is a front view of the first wall and the support member provided in some embodiments of the present application.
  • the support member 26 includes a plurality of sub-support members 261, multiple The sub-support 261 is arranged around the pressure relief mechanism 22 .
  • each sub-support member 261 can have a cylindrical structure, a hexahedral structure, a cone structure, an arc-shaped protrusion 243b structure, etc., and multiple sub-support members 261 can be spaced apart from each other and arranged around the pressure relief mechanism 22.
  • One end is integrally formed or fixedly connected to the first wall 213, and the other end opposite to the first wall 213 faces the adapter 242.
  • one end of the sub-support member 261 facing the adapter 242 may have a bent section, and the bent section It can be arranged opposite to the first wall 213.
  • the projection of the bent section on the first wall 213 can fall into the pressure relief mechanism 22, or it does not need to fall into the pressure relief mechanism 22.
  • the bent section can effectively increase the adapter 242 and support.
  • the contact area of the member 26 is further improved, thereby further improving the blocking and limiting effect of the support member 26 on the adapter member 242 .
  • the support member 26 may include two, three, four or even more sub-support members 261.
  • the support member 26 includes two sub-support members 261, and the two sub-support members 261 are fixed to the first wall. 213 and located on opposite sides of the pressure relief mechanism 22 .
  • the support member 26 includes a plurality of sub-support members 261.
  • the plurality of sub-support members 261 are arranged around the pressure relief mechanism 22.
  • the plurality of sub-support members 261 can support the adapter 242 from multiple positions. Between two adjacent sub-support members 261
  • An exhaust channel connected to the pressure relief mechanism 22 can be formed in the space to facilitate high-temperature and high-pressure gas to pass through the exhaust channel and be discharged through the pressure relief mechanism 22. Its structure is simple and practical.
  • Figure 6 is an exploded view of the first wall, insulating member and support member of a battery cell provided in some further embodiments of the present application.
  • Figure 7 is an exploded view of the first wall of a battery cell provided by some further embodiments of the present application. Still other embodiments provide cross-sectional views of the first wall and support.
  • the support member 26 is covered by the pressure relief mechanism 22 , and has a second exhaust channel 264 that communicates the inner space of the support member 26 and the outer space of the support member 26 .
  • the support member 26 may have a structure similar to a cover body, and the opening surface of the cover body faces the first wall 213 and is fixedly connected to the first wall 213 to cover the pressure relief mechanism 22 in the support member 26 . It can be understood that the pressure relief mechanism 22 can be entirely covered in the support member 26 or partially covered in the support member 26 .
  • the support member 26 can have a mesh or porous cover structure, and the mesh on the support member 26 forms the above-mentioned second exhaust channel 264, and the shape of the support member 26 can be a hemispherical shape, a cylindrical shape with one end open, etc.,
  • the support member 26 may also include a support wall opposite to the pressure relief mechanism 22 and a side wall connecting the support wall and the first wall 213. The support wall is used to abut the deformed adapter 242, and the second exhaust gas Channels 264 may be provided in the side walls.
  • the support member 26 covers the pressure relief mechanism 22.
  • the support member 26 plays a protective role similar to a protective cover for the pressure relief mechanism 22. On the one hand, it can effectively ensure the structural strength of the support member 26 itself, thereby effectively ensuring that the support member 26 is Force stability.
  • the support member 26 covering the pressure relief mechanism 22 can fully limit the adapter 242 from blocking the pressure relief hole 221.
  • the support member 26 is provided with a second exhaust gas that connects the internal space and the external space of the support member 26. channel 264 to ensure that when the battery cell 20 undergoes thermal runaway, the gas in the battery cell 20 can smoothly reach the pressure relief mechanism 22 through the second exhaust channel 264 to ensure smooth pressure relief by the pressure relief mechanism 22 .
  • the support member 26 includes a first bottom wall 262 and a first side wall 263 , the first bottom wall 262 and the pressure relief mechanism 22 are arranged along the thickness of the first wall 213 The directions are opposite, a gap is formed between the first bottom wall 262 and the pressure relief mechanism 22 , the first side wall 263 connects the first bottom wall 262 and the first wall 213 , and the second exhaust channel 264 is formed on the first side wall 263 .
  • the thickness direction of the first wall 213 extends along the first direction Z, and the first bottom wall 262 and the first wall 213 are spaced apart along the first direction Z, so that the gap between the first bottom wall 262 and the pressure relief mechanism 22 A gap is formed between them.
  • the first side wall 263 connects the first bottom wall 262 and the first wall 213 and the second exhaust channel 264 is formed on the first side wall 263.
  • the first side wall 263 may be an annular structure that is not completely closed.
  • the first side wall 263 is arranged around the pressure relief mechanism 22 and around the first bottom wall 262 , wherein the opening of the first side wall 263 forms a second Exhaust channel 264.
  • first side wall 263 may be in a completely closed annular shape, and the wall portion of the first side wall 263 is provided with one or more through holes, and the through holes form the second exhaust channel 264 .
  • first side wall 263 may also include a plurality of sub-side walls.
  • the plurality of sub-side walls are spaced around the pressure relief mechanism 22, and a second exhaust channel 264 is formed between two adjacent sub-side walls.
  • the first side wall 263 includes a first sub-side wall 2631 and a second sub-side wall 2632.
  • the first sub-side wall 2631 is an arc-shaped wall whose axial direction extends along the first direction Z.
  • the second sub-side wall 2632 is inclined relative to the first bottom wall 262
  • the first sub-side wall 2631 and the second sub-side wall 2632 are spaced apart and located on opposite sides of the first bottom wall 262
  • the first sub-side wall A second exhaust channel 264 is formed between 2631 and the second sub-side wall 2632.
  • the first bottom wall 262 is disposed opposite to the first wall 213 so that a gap is formed between the first bottom wall 262 and the pressure relief mechanism 22 .
  • the first bottom wall 262 faces the electrode assembly 25 to limit the adapter 242 from approaching the pressure relief mechanism 22 , thereby limiting the adapter 242 from blocking the pressure relief hole 221.
  • the second exhaust channel 264 is formed on the first side wall 263, which can effectively reduce the risk of the second exhaust channel 264 being blocked by the adapter 242 and effectively ensure leakage.
  • Figure 8 is a cross-sectional view of the cooperation relationship between the insulating member and the support member provided by some embodiments of the present application
  • Figure 9 is Some embodiments of the present application provide cross-sectional views of the cooperation relationship between the insulating member and the supporting member.
  • the battery cell 20 further includes an insulating member 27 located between the first wall 213 and the adapter 242 .
  • the insulating member 27 is used to insulate and isolate the first wall 213 and the adapter 242 .
  • the melting point of the support member 26 is higher than the melting point of the insulator 27 .
  • the support member 26 is configured to prevent the adapter 242 from blocking the pressure relief hole formed by the pressure relief mechanism 22 when the battery cell 20 is thermally runaway after the insulator 27 melts. .
  • the material of the insulating member 27 can be plastic, such as PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc., which is beneficial to reducing the weight of the battery cell 20 while ensuring the insulation effect.
  • plastic such as PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc., which is beneficial to reducing the weight of the battery cell 20 while ensuring the insulation effect.
  • the insulating member 27 is at least partially disposed between the first wall 213 and the adapter 242, which means that part of the structure of the insulating member 27 is located between the first wall 213 and the adapter 242, or the entire structure of the insulating member 27 is located on the first wall 213. between wall 213 and adapter 242.
  • a through hole 274 is provided in the insulating member 27 at a position corresponding to the pressure relief mechanism 22 so that the gas inside the battery cell 20 can smoothly reach the pressure relief mechanism 22.
  • the temperature inside the battery cell 20 will If the pressure is high, the insulating member 27 will be melted, and the adapter 242 will be partially deformed and block the pressure relief hole 221 , preventing the gas inside the battery cell 20 from flowing to the pressure relief hole 221 .
  • the insulating member 27 insulates and isolates the first wall 213 and the adapter member 242.
  • the insulating member 27 is easily melted at high temperature, and the support member 26 It is easy to deform.
  • the support member 26 can be supported between the adapter 242 and the first wall 213 to form a channel that allows gas to pass between the adapter 242 and the first wall 213 to facilitate the passage of gas inside the battery cell 20 .
  • the gas can pass through this channel and be discharged from the battery cell 20 through the pressure relief mechanism 22 , preventing the deformed or displaced adapter 242 from blocking the pressure relief hole 221 of the pressure relief mechanism 22 .
  • the insulating member 27 is used to insulate and isolate the first wall 213 and the adapter 242 to prevent the first wall 213 and the adapter 242 from contacting and short-circuiting; the melting point of the support member 26 is higher than the melting point of the insulating member 27.
  • the insulating member 27 melts, and the supporting member 26 is difficult to melt, so as to prevent the adapter 242 from blocking the pressure relief hole.
  • the insulating member 27 includes a third surface 271 facing the first wall 213, a first groove 272 is formed on the third surface 271, and at least a portion of the support member 26 is received in the first groove 272.
  • the arrangement of the first groove 272 ensures the insulation effect between the first wall 213 and the adapter 242 and prevents the support 26 from occupying too much of the internal space of the battery cell 20 , thereby effectively ensuring the energy density of the battery cell 20 .
  • the material of the insulating member 27 can be plastic, such as PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc., which is beneficial to reducing the weight of the battery cell 20 while ensuring the insulation effect.
  • the insulating member 27 is generally provided with a through hole 274 at a position corresponding to the pressure relief mechanism 22.
  • the through hole 274 allows the gas inside the battery cell 20 to smoothly reach the pressure relief mechanism 22.
  • the first groove 272 is a portion provided on the insulating member 27 to avoid the support member 26 .
  • the first groove 272 is a recessed area formed by recessing the third surface 271 in a direction away from the first wall 213 .
  • the position and form of the first groove 272 may correspond to the support member 26.
  • the support member 26 includes a plurality of sub-support members 261.
  • the first groove 272 may also include a plurality of sub-grooves 2721, along the thickness direction of the first wall 213 (the first direction Z shown in the figure), The plurality of sub-grooves 2721 correspond to the plurality of sub-supports 261 one-to-one, and one end of each sub-support 261 away from the first wall 213 extends into the corresponding sub-groove 2721.
  • the support member 26 includes a first bottom wall 262 and a first side wall 263 , and the first bottom wall 262 is opposite to the pressure relief mechanism 22 along the thickness direction of the first wall 213 It is provided that a gap is formed between the first bottom wall 262 and the pressure relief mechanism 22, the first side wall 263 connects the first bottom wall 262 and the first wall 213, and the second exhaust channel 264 is formed on the first side wall 263"
  • the first groove 272 is in contact with the support member 26
  • the inner surface of the first groove 272 may correspond to the outer surface of the support member 26 , the first bottom wall 262 completely extends into the first groove 272 , and at least part of the first side wall 263 extends into the first groove 272 .
  • the insulating member 27 further includes a fourth surface 273 opposite to the third surface 271 along the thickness direction of the first wall 213 (the first direction Z shown in the figure), that is, The fourth surface 273 faces the electrode assembly 25, and a protruding portion 2722 is formed on the fourth surface 273 at a position corresponding to the first groove 272.
  • This design allows the structure outside the first groove 272 of the insulating member 27 to be effectively reduced. Thin, thereby effectively reducing the space occupation rate of the insulating member 27, reducing the weight of the insulating member 27, and achieving the purpose of saving material of the insulating member 27.
  • the insulating member 27 is used to insulate and isolate the first wall 213 and the adapter 242 to prevent the first wall 213 and the adapter 242 from contacting and short-circuiting, and the setting of the first groove 272 ensures that the first wall 213 and the adapter 242 are connected to each other. 242 while preventing the support member 26 and the insulating member 27 from occupying too much internal space of the battery cell 20, thereby effectively ensuring the energy density of the battery cell 20.
  • the gap control part 260 includes a reinforcing part 243 , the reinforcing part 243 is provided on the adapter 242 , along the thickness direction of the first wall 213 , the reinforcing part 243 is on the first
  • the projection on the wall 213 covers at least a portion of the pressure relief mechanism 22 .
  • the reinforced part 243 can increase the strength of the adapter 242. Since the projection of the reinforced part 243 on the first wall 213 covers at least a part of the pressure relief mechanism 22, when the battery cell 20 undergoes thermal runaway, the adapter It is more difficult for the component 242 to deform, thereby reducing the risk of the adapter 242 blocking the pressure relief hole when the battery cell 20 is thermally out of control.
  • the gap control part 260 further includes a support 26 disposed between the first wall 213 and the reinforcing part 243 , and the support 26 is configured to When the unit 20 is thermally runaway, it abuts between the first wall 213 and the reinforced portion 243 to form a pressure relief channel 30 between the reinforced portion 243 and the first wall 213 .
  • the support member 26 may also be referred to as a stop member.
  • the support 26 is a component used to play a blocking role.
  • the support member 26 abuts between the first wall 213 and the reinforcing part 243 when the battery cell 20 is thermally runaway, so that there is always a gap between the reinforcing part 243 and the first wall 213 in the thickness direction Z of the first wall 213 to form a pressure relief.
  • the pressure relief channel 30 may also be called an exhaust channel and is used for gas circulation.
  • the support member 26 abuts between the first wall 213 and the reinforcing part 243 when the battery cell 20 is thermally runaway, so as to form a pressure relief channel 30 between the reinforcing part 243 and the first wall 213 to facilitate gas flow. It flows toward the pressure relief mechanism 22 through the pressure relief channel 30 to facilitate pressure relief by the pressure relief mechanism 22 .
  • the support member 26 includes a first sub-support member 261a and a second sub-support member 261b, and the pressure relief mechanism 22 is disposed on the first sub-support member 261a and the second sub-support member 261a. between 261b.
  • first sub-support part 261a may also be called a first sub-stop part
  • second sub-support part 261b may also be called a second sub-stop part
  • the first sub-support part 261a and the second sub-support part 261b are two components of the support part 26, and the first sub-support part 261a and the second sub-support part 261b are spaced apart.
  • the pressure relief mechanism 22 is disposed between the first sub-support member 261a and the second sub-support member 261b to stop the reinforcing portion 243 at two positions to further ensure the stopping effect of the support member 26.
  • the projection of the reinforcement 243 on the first wall 213 covers at least a part of the first sub-support 261a and at least a part of the second sub-support 261b.
  • the projection of the reinforcement 243 on the first wall 213 may cover a part of the first sub-support 261a and a part of the second sub-support 261b, or the projection of the reinforcement 243 on the first wall 213 may cover the first sub-support The entirety of the member 261a and the entirety of the second sub-support member 261b.
  • the projection of the reinforcing portion 243 has a larger overlapping area with the first sub-support 261a and the second sub-support 261b.
  • the reinforcing part 243 has strong strength. When the reinforcing part 243 is in contact with the first sub-supporting part 261a and the second sub-supporting part 261b, the reinforcing part 243 forms a simple structure with the first sub-supporting part 261a and the second sub-supporting part 261b.
  • the support beam reduces the risk of the reinforcing portion 243 deforming and blocking or blocking the pressure relief hole.
  • the projections of the center of the first sub-support 261 a and the center of the second sub-support 261 b on the adapter 242 fall into the reinforcement 243 .
  • the center of the first sub-support 261a and the center of the second sub-support 261b are respectively the geometric centers of the first sub-support 261a and the second sub-support 261b.
  • the first sub-support 261a and the second sub-support 261b are spaced apart along the first direction X, and the center line P1 of the first sub-support 261a and the center line of the second sub-support 261b
  • the distance between P2 is L1
  • the size of the reinforcing part 243 in the first direction X is L2, and L1 ⁇ L2 is satisfied.
  • the direction indicated by the letter X is the first direction, and the first direction X is perpendicular to the thickness direction Z.
  • the distance from the center line of the reinforcement 243 to the center line of the first sub-support 261a is equal to
  • the distance between the center line of the reinforcing part 243 and the center line of the second sub-support member 261b is equal to ensure that when the battery cell 20 is thermally out of control, the reinforcing part 243 is affected by the force of the first sub-support member 261a and the second sub-support member 261b.
  • the blocking force is balanced.
  • the distance L1 between the center line P1 of the first sub-support member 261a and the center line P2 of the second sub-support member 261b and the size L2 of the reinforcement portion 243 in the first direction X satisfy the above relationship, ensuring that The reinforcing part 243 is formed with the first sub-support part 261a and the second sub-support part 261b. There is a large overlapping area. When the battery cell 20 is thermally runaway, the reinforcing portion 243 can overlap the first sub-support member 261a and the second sub-support member 261b. The first sub-support member 261a and the second sub-support member 261b The reinforcement part 243 is better blocked, which reduces the risk of the reinforcement part 243 deforming and blocking or blocking the pressure relief hole.
  • the adapter 242 includes a first connecting section 2421.
  • the first connecting section 2421 is used to connect the tab 241 (see Figure 3).
  • the reinforcing portion 243 is disposed on the first connecting section. Section 2421.
  • the adapter 242 also includes a second connection section 2424 connected to the electrode lead-out part 23 .
  • the first connection section 2421 and the second connection section 2424 can be located at opposite ends of the adapter 242 .
  • the reinforcing part 243 is provided on the first connecting section 2421. Under the action of external force (such as air flow), the position or area where the reinforcing part 243 is installed on the first connecting section 2421 is not easily deformed. When the battery cell 20 undergoes thermal runaway, the deformation of the tab 241 will directly cause the first connecting section 2421 to deform and move closer to the first wall 213. Therefore, the reinforcing portion 243 is provided on the first connecting section 2421, which can effectively increase the number of first connections. The deformation difficulty of segment 2421.
  • first connecting section 2421 generally has a relatively large area, and the projection of the first connecting section 2421 on the first wall 213 covers the pressure relief mechanism 22.
  • the second connecting section 2424 generally has a relatively small area, and the second connecting section 2424 is on the first wall.
  • the projection on 213 will not cover the pressure relief mechanism 22, so a reinforcement 243 is provided on the first connecting section 2421.
  • first connecting section 2421 can also be called a tab connecting section
  • second connecting section 2424 can also be called an outlet connecting section
  • the reinforcing portion 243 is the first flange portion 243a of the first connecting section 2421, and the first connecting section 2421 has a surface facing the first connecting section 2421.
  • the reinforcing part 243 may be a flange structure of the first connecting section 2421.
  • the first surface 2422 and the second surface 2423 may be two opposite surfaces in the thickness direction of the first connecting section 2421 , and the thickness direction of the first connecting section 2421 may be parallel to the thickness direction Z of the first wall 213 .
  • the first flange portion 243a is bent to one side of the first surface 2422.
  • the reinforcing portion 243 is bent from the first connecting section 2421 toward one side of the first surface 2422 to form a first flange.
  • Edge 243a The first flange portion 243a is bent to one side of the second surface 2423.
  • the reinforcing portion 243 is bent from the first connecting section 2421 toward one side of the second surface 2423 to form the first flange portion 243a.
  • the reinforcing part 243 is a first flange part 243a.
  • the first flange part 243a is bent to one side of the first surface 2422 or the first flange part 243a is bent to one side of the second surface 2423 to facilitate processing and shaping.
  • the reinforcing portion 243 is connected to the edge of the first connecting section 2421 to facilitate bending.
  • the first flange portion 243a is bent to one side of the first surface 2422, and the first flange portion 243a is attached to the first surface 2422; or, the first flange portion 243a is bent to On one side of the second surface 2423, the first flange portion 243a is in contact with the second surface 2423.
  • the first flange portion 243a is in contact with the first surface 2422, and the first flange portion 243a and the first surface 2422 have a large contact area.
  • the first flange portion 243a can prevent the first surface 2422 from deforming toward the first wall 213, so that the first flange portion 243a is connected to the first wall 213.
  • the covered area of the surface 2422 becomes more difficult to deform, thereby reducing the risk of the first connecting section 2421 blocking or blocking the pressure relief hole.
  • the first flange portion 243a is in contact with the second surface 2423, and the first flange portion 243a and the second surface 2423 have a large contact area.
  • the second surface 2423 can prevent the first flange portion 243a from deforming toward the first wall 213, so that the first flange portion 243a and the second flange portion 243a are deformed.
  • the covered area of the surface 2423 becomes more difficult to deform, thereby reducing the risk of the first connecting section 2421 blocking or blocking the pressure relief hole.
  • Figure 14 is a schematic structural diagram of a reinforcement portion provided by some embodiments of the present application.
  • the first connecting section 2421 has a first surface 2422 facing the first wall 213 and a second surface 2423 facing away from the first wall 213, and the first surface 2422 forms a protrusion 243b.
  • the protrusion 243b is the reinforcing part 243.
  • the first surface 2422 and the second surface 2423 may be two opposite surfaces in the thickness direction of the first connecting section 2421.
  • the reinforcing part 243 is a protrusion 243b formed on the first surface 2422, the reinforcing part 243 protrudes from the first surface 2422 along the thickness direction of the first connecting section 2421.
  • the first connecting section 2421 includes a main body area 242a.
  • the main body area 242a is connected to the tab 241.
  • the reinforcing part 243 is provided in the main body area 242a.
  • the reinforcing part 243 can be provided separately from the main body area 242a.
  • the reinforcing part 243 is fixed on the first surface 2422, for example , the reinforcing part 243 has a plate-like or sheet-like structure, and the reinforcing part 243 is welded to the main body area 242a.
  • the reinforcing portion 243 is a part of the main body region 242a.
  • the reinforcing portion 243 is a portion where the first connecting section 2421 is punched and formed, or the reinforcing portion 243 is a portion of the first connecting section 2421 that is locally thicker.
  • Figure 15 is a schematic structural diagram of a reinforcement portion provided by other embodiments of the present application.
  • a second groove 243c is formed at a position corresponding to the second surface 2423 and the protrusion 243b.
  • the reinforcing part 243 is a structure integrally formed on the first connecting section 2421.
  • the reinforcing part 243 protrudes from the first surface 2422, and the second surface 2423 is formed at a position corresponding to the protrusion 243b.
  • Second groove 243c Second groove 243c.
  • the reinforcing part 243 may be a reinforcing rib punched and formed on the first connecting section 2421 .
  • the second surface 2423 forms a second groove 243c corresponding to the protrusion, which on the one hand facilitates the processing and shaping of the reinforcement part 243 and on the other hand can reduce the weight of the first connecting section 2421.
  • the reinforcing portion 243 is located on a side of the first connecting section 2421 facing the first wall 213 (see Figure 4).
  • the first connecting section 2421 has a first surface 2422 facing the first wall 213, and the reinforcing portion 243 is located on the side of the first connecting section 2421 where the first surface 2422 is disposed. In other words, the reinforcing portion 243 is disposed on the first surface 2422.
  • the reinforcing portion 243 is located on the side of the first connecting section 2421 facing the first wall 213, which can limit the deformation of the first connecting section 2421 towards the first wall 213 and reduce the risk of the first connecting section 2421 blocking or blocking the pressure relief hole.
  • FIG. 16 is a schematic structural diagram of a reinforcing part provided by some embodiments of the present application.
  • FIG. 17 is a partial enlarged view of position A in FIG. 16 .
  • the first connecting section 2421 has a first surface 2422 facing the first wall 213 and a second surface 2423 facing away from the first wall 213.
  • the reinforcing portion 243 forms a protrusion 243b on the second surface 2423.
  • the portion 243 forms a second groove 243c on the first surface 2422 at a position corresponding to the protrusion 243b.
  • the reinforced portion 243 can be punched and formed by the adapter 242; the reinforced portion 243 forms a protrusion 243b on the second surface 2423 and a second groove 243c on the first surface 2422, thereby increasing the strength of the adapter 242 and increasing the number of adapters. 242 is difficult to deform toward the first wall 213.
  • the second groove 243c can also be called a concave portion, and the protrusion 243b can also be called a convex portion.
  • the projection of the second groove 243c on the first wall 213 at least partially covers the pressure relief mechanism 22 .
  • the projection of the second groove 243c on the first wall 213 at least partially covers the pressure relief mechanism 22, which may be that the projection of the second groove 243c on the first wall 213 only covers a part of the pressure relief mechanism 22; or, second The projection of the groove 243c on the first wall 213 completely covers the pressure relief mechanism 22 .
  • the pressure relief mechanism 22 along the thickness direction Z of the first wall 213, there is a gap between the pressure relief mechanism 22 and the first connecting section 2421, which reduces the risk of the first connecting section 2421 blocking or blocking the pressure relief hole.
  • the projection of the second groove 243c on the first wall 213 at least partially covers the pressure relief mechanism 22, so that the reinforced portion 243 is not easily deformed to block or block the pressure relief hole, ensuring smooth pressure relief of the battery cell 20.
  • the second groove 243c extends to the edge of the adapter 242 .
  • the second groove 243c can extend to the edge of the first connecting section 2421, so that the second groove 243c communicates with the space on the side of the first connecting section 2421, When the gas in the battery cell 20 flows toward the pressure relief mechanism 22 , the gas can flow into the second groove 243 c through the edge of the first connecting section 2421 and flow toward the pressure relief mechanism 22 .
  • the second groove 243c extends to the edge of the adapter 242 to form a gas flow channel at the reinforced portion 243 to facilitate the gas flow toward the pressure relief mechanism 22 through the reinforced portion 243 to facilitate the pressure relief mechanism 22 Relieve pressure.
  • Figure 18 is a schematic diagram of the first exhaust channel provided by some embodiments of the present application.
  • the groove wall of the second groove 243c is provided with a first exhaust channel 243d that communicates the inside of the second groove 243c and the outside of the second groove 243c.
  • the first exhaust channel 243d is a channel that penetrates the groove wall of the second groove 243c, and the first exhaust channel 243d may be a through hole.
  • the first exhaust channel 243d connects the inside of the second groove 243c and the outside of the second groove 243c, so that the gas enters the second groove 243c through the first exhaust channel 243d and flows toward the pressure relief mechanism 22 , ensuring smooth gas flow and facilitating pressure relief by the pressure relief mechanism 22 .
  • Figure 19 is a cross-sectional view of some components of a battery cell provided by some embodiments of the present application.
  • the distance between the bottom surface of the second groove 243c and the first wall 213 is C1
  • the distance between the first surface 2422 and the first wall 213 is C2, satisfying 0.5 mm ⁇ C1-C2 ⁇ 5mm.
  • the opening of the second groove 243c faces the first wall 213.
  • the second groove 243c is formed by a depression of the first surface 2422 in a direction away from the first wall 213 along the thickness direction Z.
  • the bottom surface of the second groove 243c is the surface of the second groove 243c facing the first wall 213.
  • the bottom surface of the second groove 243c is away from the first wall 213 relative to the first surface 2422.
  • the distance C1 between the bottom surface of the second groove 243c and the first wall 213 and the distance C2 between the first surface 2422 and the first wall 213 satisfy the above relationship, ensuring that the gas flows toward the pressure relief mechanism 22 and the reinforced portion Even if 243 deforms, it is not easy to block the pressure relief hole, and it can ensure that the reinforced part 243 does not occupy too much assembly space, ensuring that the battery cell 20 has a high energy density. When the battery cell 20 is thermally runaway, the reinforcing portion 243 will deform.
  • the reinforced part 243 will easily block and block the pressure relief hole after deformation, affecting the pressure relief of the pressure relief mechanism 22 . If the distance C1 between the bottom surface of the second groove 243c and the first wall 213 minus the distance C2 between the first surface 2422 and the first wall 213 is greater than 5 mm, the reinforcement 243 occupies a larger area in the thickness direction Z. The installation space affects the energy density of the battery cell 20 .
  • the difference between the distance C1 between the bottom surface of the second groove 243c and the first wall 213 and the distance C2 between the first surface 2422 and the first wall 213 may be 0.5mm, 1mm, 1.5mm, 2mm, 2.5 mm, 3mm, 3.5mm, 4mm, 4.5mm or 5mm, etc.
  • 1mm ⁇ C1-C2 ⁇ 3mm is satisfied.
  • the distance C1 between the bottom surface of the second groove 243c and the first wall 213 and the distance C2 between the first surface 2422 and the first wall 213 satisfy the above relationship. Compared with 0.5mm ⁇ C1-C2 ⁇ 5mm, the gas direction is further ensured.
  • the pressure relief mechanism 22 flows smoothly, and at the same time, the assembly space is reasonably utilized to ensure the energy density of the battery cell 20 .
  • the difference between the distance C1 between the bottom surface of the second groove 243c and the first wall 213 and the distance C2 between the first surface 2422 and the first wall 213 may be 1 mm, 1.5 mm, 2 mm, 2.5 mm or 3 mm. wait.
  • the battery cell 20 further includes a second support member 28 , and the second support member 28 includes a second bottom wall 281 and a second side wall 282 .
  • the wall 281 is in contact with the bottom surface of the second groove 243c
  • the second side wall 282 is formed on the edge of the second bottom wall 281
  • the second side wall 282 is in contact with the side surface of the second groove 243c.
  • the second support member 28 may also be referred to as a reinforcement member.
  • the second supporting member 28 is a component that supports the reinforcing part 243. When the battery cell 20 is thermally runaway, the second supporting member 28 can restrain the deformation of the reinforcing part 243, making it more difficult for the reinforcing part 243 to deform.
  • the second bottom wall 281 and the second side wall 282 are two components of the second support member 28.
  • the second side wall 282 is formed on the edge of the second bottom wall 281.
  • the second side wall 282 and the second bottom wall 281 are integrated. forming.
  • the second bottom wall 281 is in contact with the bottom surface of the second groove 243c.
  • the second bottom wall 281 has a large contact area with the bottom surface of the second groove 243c.
  • the second bottom wall 281 has a large contact area with the bottom surface of the second groove 243c. Better blocking effect.
  • the second bottom wall 281 and the bottom surface of the second groove 243c can be welded to ensure better connection strength between the second bottom wall 281 and the bottom surface of the second groove 243c.
  • the second side wall 282 is in contact with the side surface of the second groove 243c.
  • the second side wall 282 has a large contact area with the side surface of the second groove 243c.
  • the second side wall 282 has a large contact area with the side surface of the second groove 243c.
  • the second side wall 282 and the side surfaces of the second groove 243c can be welded to ensure better connection strength between the second side wall 282 and the side surfaces of the second groove 243c.
  • the second support member 28 is disposed in the second groove 243c, the second bottom wall 281 is in contact with the bottom surface of the second groove 243c, and the second side wall 282 is in contact with the side surface of the second groove 243c.
  • the contour of the second support member 28 matches the contour of the second groove 243c, further enhancing the strength of the reinforcing part 243, reducing the risk of the pressure relief mechanism 22 being blocked or blocked, and ensuring that the pressure relief mechanism 22 releases pressure.
  • the second support member 28 further includes a second flange portion 283 connected to the second side wall 282 , and the second flange portion 283 is located on the second side wall 282 .
  • the outer portions of the two grooves 243c are in contact with the first surface 2422.
  • the second flange portion 283 is a flange structure connected to the second side wall 282 .
  • the second flange portion 283 is located outside the second groove 243c and fits the first surface 2422, so that the second support member 28 and the first connection section 2421 have better connection stability.
  • the second flange part 283 can be welded to the first surface 2422 to ensure better connection strength between the second flange part 283 and the first connection section 2421.
  • the second flange portion 283 fits the first surface 2422 to ensure that the second support member 28 and the adapter 242 have a larger connection area, and to ensure that the second support member 28 and the adapter 242 have better connection stability. .
  • Figure 20 is a partial cross-sectional view of a battery cell after thermal runaway (the insulator is melted) provided by other embodiments of the present application.
  • Figure 20 is a partial structure of the battery cell 20 after the battery cell 20 is thermally runaway. sectional view.
  • the distance between the surface of the second bottom wall 281 facing the first wall 213 and the first wall 213 is C3, and the distance between the first surface 2422 and the first wall 213 is C2, which satisfies 0.5 mm ⁇ C3-C2 ⁇ 5mm.
  • the distance C3 between the surface of the second bottom wall 281 facing the first wall 213 and the first wall 213 and the distance C2 between the first surface 2422 and the first wall 213 satisfy the above relationship, ensuring that the gas flows toward the pressure relief mechanism. 22 flow, even if the reinforced part 243 deforms, it will not easily block the pressure relief hole 221, and it can ensure that the reinforced part 243 and the second support member 28 do not occupy too much assembly space, ensuring that the battery cell 20 has a high energy density. When the battery cell 20 is thermally runaway, the reinforced portion 243 will deform.
  • the second support member 28 will easily block and block the pressure relief hole after the reinforcing portion 243 is deformed, affecting the pressure relief of the pressure relief mechanism 22 . If the distance C3 between the surface of the second bottom wall 281 facing the first wall 213 and the first wall 213 minus the distance C2 between the first surface 2422 and the first wall 213 is greater than 5 mm, then the reinforcement 243 and the second support The component 28 occupies a large installation space in the thickness direction Z, affecting the energy density of the battery cell 20 .
  • the first connection section 2421 includes a main body area 242a and a connection area 242b.
  • the connection area 242b is connected to the tab 241, and the reinforcing portion 243 is provided in the main body area 242a.
  • connection area 242b is an area for direct connection with the tab 241.
  • the connection area 242b can be welded to the tab 241 to ensure the stability of the connection between the first connection section 2421 and the tab 241.
  • the connecting area 242b is connected to the tab 241, and the reinforcing portion 243 is provided in the main body area 242a to prevent the reinforcing portion 243 from interfering with the connection between the first connecting section 2421 and the tab 241.
  • the connecting area 242b protrudes from the second surface 2423, and the height of the reinforcing portion 243 protruding from the second surface 2423 is less than or equal to the height of the connecting area 242b protruding from the second surface 2423. high.
  • the height of the reinforcing part 243 protruding from the second surface 2423 is less than or equal to the height of the connecting area 242b protruding from the second surface 2423.
  • the reinforcing part 243 occupies less space in the thickness direction Z.
  • the thickness of the reinforcing part 243 is W1
  • the thickness of the main body area 242a is W2, satisfying W1/W2>1.1.
  • the reinforcing part 243 may be a locally thicker part of the first connecting section 2421.
  • the reinforcing part 243 may be plate-shaped or sheet-shaped, and the main body area 242a and the reinforcing part 243 may be made of the same material.
  • the reinforcing part 243 The thickness W1 of the main body region 242a and the thickness W2 of the main body region 242a satisfy the above relationship.
  • the strength of the reinforcing part 243 is greater than the strength of other parts of the main body region 242a where the reinforcing part 243 is not provided, making it more difficult for the reinforcing part 243 to deform.
  • the thickness W1 of the reinforcing part 243 may be a height at which the reinforcing part 243 protrudes from the first surface 2422.
  • the gap control part 260 is fixed to the adapter 242 .
  • the adapter 242 includes a first connecting section 2421.
  • the first connecting section 2421 is used to connect the tab 241 (see Figure 3).
  • the gap control part 260 is disposed on the first The side of the connecting section 2421 facing away from the tab 241 .
  • the gap control part 260 is disposed on the side of the first connecting section 2421 away from the tab 241, which can improve space utilization and facilitate the connection between the first connecting section 2421 and the tab 241.
  • the gap control part 260 includes a reinforcing part 243 and a support member 26 .
  • the reinforcing part 243 has first surfaces arranged oppositely along the thickness direction of the first wall 213 243e and the second surface 243f.
  • the first surface 243e is connected to the first connecting section 2421.
  • the support member 26 protrudes from the second surface 243f.
  • the support member 26 is configured to cooperate with the first wall 213 when the battery cell 20 is thermally runaway. To form the pressure relief channel 30.
  • the first surface 243e and the second surface 243f are two surfaces opposite to each other in the thickness direction of the reinforcing part 243.
  • the first surface 243e and the second surface 243f may be planes.
  • the first surface 243e and the second surface 243f may be in contact with the third surface.
  • the thickness direction of one wall 213 is perpendicular, and the first surface 243e and the second surface 243f may intersect with the thickness direction of the first wall 213; or the first surface 243e and the second surface 243f may also be curved surfaces.
  • the thickness direction of the reinforcing portion 243 is parallel to the thickness direction of the first wall 213 .
  • the first surface 243e may be the surface of the reinforcement part 243 facing the electrode assembly 25, and the second surface 243f may be the surface of the reinforcement part 243 facing away from the electrode assembly 25.
  • the first surface 243e is connected to the first connecting section 2421.
  • the first surface 243e can fit with the first connecting section 2421.
  • the first surface 243e and the first connecting section 2421 have a large connection area, so that the first surface 243e can be connected with the first connecting section 2421.
  • the first connection section 2421 is connected stably.
  • the support member 26 may have a structure protruding from the second surface 243f.
  • the support member 26 may have a columnar structure.
  • the supporting member 26 can abut against the insulating member 27 to restrict the movement of the electrode assembly 25 inside the battery cell 20 ; when the battery cell 20 When thermal runaway occurs, the insulating member 27 melts, and the support member 26 can cooperate with the first wall 213 to form a pressure relief channel 30.
  • the high-temperature and high-pressure gas can move toward the pressure relief mechanism 22 through the pressure relief channel 30, and then be discharged from the pressure relief hole.
  • the first surface 243e is connected to the first connecting section 2421, the reinforcing portion 243 can increase the strength of the first connecting section 2421 and increase the difficulty of deformation of the first connecting section 2421, and the support 26 can heat the battery cell 20
  • the pressure relief channel 30 is formed in cooperation with the first wall 213 to facilitate timely pressure relief of the battery cell 20 .
  • the reinforcing part 243 may be welded to the first connecting section 2421 so that the reinforcing part 243 and the first connecting section 2421 are firmly connected.
  • Welding can be ultrasonic welding or laser welding, etc.
  • the reinforcing part 243 can be bonded to the first connection section 2421.
  • a conductive glue can be disposed between the first surface 243e and the first connection section 2421, so that the first surface 243e is connected to the first connection section 2421. Section 2421 is bonded.
  • the first connecting section 2421 is provided with a first positioning portion 2427
  • the first surface 243e is formed with a second positioning portion 2431
  • the first positioning portion 2427 corresponds to the second positioning portion 2431. It is provided that the first positioning part 2427 can cooperate with the second positioning part 2431 to realize the connection between the first connecting section 2421 and the reinforcing part 243.
  • the first positioning part 2427 can be a through hole
  • the second positioning part 2431 can be a protruding structure
  • the second positioning part 2431 is riveted to the first positioning part 2427 to fix the reinforcing part 243 to the first connection.
  • Section 2421 the first positioning part 2427 may also be a protruding structure
  • the second positioning part 2431 may also be a through hole
  • the second positioning part 2431 and the first positioning part 2427 are riveted.
  • the adapter 242 includes a first connecting section 2421.
  • the first connecting section 2421 is used to connect the tab 241, and the gap control portion 260 is disposed on the first connecting section 2421.
  • the gap control part 260 is disposed on the side of the first connecting section 2421 facing the tab 241, which can increase the strength of the first connecting section 2421, increase the difficulty of deformation of the first connecting section 2421, and reduce the gap between the adapter 242 and the battery cell 20. Risk of blocking pressure relief vents in the event of thermal runaway.
  • the gap control part 260 includes a reinforcing part 243 and a support 26 .
  • the reinforcing part 243 has first surfaces disposed oppositely along the thickness direction of the first wall 213 243e and the second surface 243f.
  • the second surface 243f is connected to the first connecting section 2421.
  • the supporting member 26 protrudes from the second surface 243f.
  • the supporting member 26 is configured to connect with the first connecting section 2421 when the battery cell 20 is thermally runaway. Cooperating with the first wall 213 to form the pressure relief channel 30 .
  • the second surface 243f is connected to the first connecting section 2421.
  • the second surface 243f can fit with the first connecting section 2421.
  • the second surface 243f and the first connecting section 2421 have a large connection area, so that the second surface 243f can be connected with the first connecting section 2421.
  • the first connection section 2421 is connected stably.
  • the support member 26 protrudes from the second surface 243f, and the second surface 243f is away from the electrode assembly 25.
  • the support member 26 protrudes from the side of the reinforcing portion 243 away from the electrode assembly 25, so that the support member 26 can be used when the battery cell 20 is thermally out of control.
  • the second surface 243f is connected to the first connecting section 2421, and the support member 26 protrudes from the second surface 243f, which can enhance the strength of the first connecting section 2421 and increase the difficulty of deformation of the first connecting section 2421. 26 can cooperate with the first connecting section 2421 and the first wall 213 to form a pressure relief channel 30 when the battery cell 20 is thermally runaway, so as to facilitate timely pressure relief of the battery cell 20 .
  • the gap control part 260 includes a reinforcing part 243 and a support member 26.
  • the reinforcing part 243 has a first face 243e and a second face 243f arranged oppositely along the thickness direction of the first wall 213.
  • the second face 243f is connected to In the first connecting section 2421, the supporting member 26 protrudes from the second surface 243f.
  • the supporting member 26 is configured to cooperate with the first connecting section 2421 and the first wall 213 to form the pressure relief channel 30 when the battery cell 20 is thermally runaway.
  • the support member 26 and the first connecting section 2421 are staggered from each other, and the support member 26 can cooperate with the first wall 213 to form the pressure relief channel 30 when the battery cell 20 is thermally runaway.
  • the first connecting section 2421 is provided with a recess 2425 corresponding to the support member 26, and the support member 26 is inserted into the recess 2425.
  • the support member 26 is inserted into the recess 2425 so that the second surface 243f can fit with the first connecting section 2421 and reduce the support member 26 from occupying too much space.
  • the support member 26 is inserted into the recess 2425, which ensures the connection stability between the gap control part 260 and the first connection section 2421 and reduces the support member 26 from occupying too much internal space of the battery cell 20, thereby effectively The energy density of the battery cell 20 is ensured.
  • the support 26 may include a first sub-support 261a and a second sub-support 261b, and the pressure relief mechanism 22 is disposed on the first sub-support 261a and the second sub-support 261a. between pieces 261b.
  • the pressure relief mechanism 22 is disposed between the projections of the first sub-support member 261 a and the second sub-support member 261 b on the first wall 213 .
  • the pressure relief mechanism 22 may be spatially offset from the first sub-support member 261a and the second sub-support member 261b, for example, along the thickness direction of the first wall 213. Layered settings.
  • the arrangement of the first sub-support 261a and the second sub-support 261b is beneficial to cooperate with the first wall 213 at different positions to form a pressure relief channel 30 when the battery cell 20 is thermally out of control, so that the battery cell 20 can Relieve pressure promptly.
  • the gap control part 260 includes a reinforcing part 243 and a support part 26 , the reinforcing part 243 is connected to the first wall 213 , the support part 26 is disposed on the reinforcing part 243 away from the first wall 213 On one side, the support member 26 is configured to contact the adapter 242 when the battery cell 20 is thermally runaway, so as to limit the adapter 242 from blocking the pressure relief hole 221 formed by the pressure relief mechanism 22 .
  • the reinforcing part 243 may be welded to the first wall 213 , or the reinforcing part 243 may be integrally formed on the first wall 213 , or the reinforcing part 243 may be bonded to the first wall 213 .
  • the reinforcing part 243 has a first surface 243e and a second surface 243f that are oppositely arranged along the thickness direction of the first wall 213.
  • the first surface 243e is connected to the first wall 213, and the support member 26 protrudes from the second surface.
  • surface 243f for example, the support member 26 includes a first sub-support member 261a and a second sub-support member 261b, and the first sub-support member 261a and the second sub-support member 261b can abut against the first connecting section 2421 of the adapter 242 .
  • the gap control part 260 includes a reinforcing part 243 and a support member 26 .
  • the reinforcing part 243 is connected to the insulating member 27 .
  • the support member 26 is disposed on a side of the reinforcing part 243 away from the insulating member 27 . On the other side, the support member 26 is in contact with the adapter member 242 .
  • the support member 26 can be bonded to the insulating member 27 , or the support member 26 can also be snap-connected with the insulating member 27 .
  • the reinforcing part 243 has a first surface 243e and a second surface 243f that are oppositely arranged along the thickness direction of the first wall 213.
  • the first surface 243e is connected to the insulating member 27, and the support member 26 protrudes from the second surface. 243f;
  • the support member 26 includes a first sub-support member 261a and a second sub-support member 261b, and the first sub-support member 261a and the second sub-support member 261b can abut against the first connecting section 2421 of the adapter 242.
  • the gap control part 260 includes a reinforcement part 243 and a support member 26.
  • the reinforcement part 243 is provided on the side of the first connecting section 2421 facing the tab 241.
  • the reinforcement part 243 has an edge along the
  • the first wall 213 has a first surface 243e and a second surface 243f that are oppositely arranged in the thickness direction.
  • the second surface 243f is connected to the first connecting section 2421.
  • the support member 26 protrudes from the second surface 243f.
  • the first connecting section 2421 is provided with
  • the mounting hole 2428 corresponds to the supporting member 26.
  • the mounting hole 2428 penetrates the first connecting segment 2421 along the thickness direction of the first connecting segment 2421.
  • the supporting member 26 is inserted into the mounting hole 2428.
  • the supporting member 26 abuts against the insulating member 27 to support
  • the member 26 is configured to cooperate with the first wall 213 to form the pressure relief channel 30 when the battery cell 20 is thermally runaway.
  • the reinforcing portion 243 is disposed on a side of the first connecting section 2421 facing the tab 241 , that is, the reinforcing portion 243 is located on a side of the first connecting section 2421 away from the first wall 213 .
  • the support member 26 is inserted into the mounting hole 2428 and protrudes from the first connecting section 2421 to abut with the insulating member 27 .
  • the insulating member 27 melts, and the support member 26 can contact the first wall 213 to form a pressure relief channel 30 , and the high-temperature and high-pressure gas in the battery cell 20 can be released to the air through the pressure relief channel 30 .
  • the pressure flows through the pressure mechanism 22 and is discharged from the pressure relief hole 221 .
  • the support member 26 and the second connecting section 2424 are staggered to avoid interference between the supporting member 26 and the second connecting section 2424.
  • the support member 26 and the reinforcing portion 243 are integrally formed.
  • the support member 26 and the reinforcing part 243 are integrally formed to facilitate processing and manufacturing.
  • the thickness of the reinforcing part 243 may be greater than the thickness of the portion of the first connecting section 2421 connected to the reinforcing part 243 .
  • the tab 241 is formed at one end of the electrode assembly 25 close to the first wall 213 , and the electrode lead-out portion 23 is provided on the first wall 213 .
  • the electrode assembly 25 includes a main body 251 and a tab 241 extending from the main body 251 .
  • the tab 241 extends from an end of the main body 251 close to the first wall 213 .
  • the electrode lead-out part 23 is provided on the first wall 213, and the distance between the pole lug 241 and the first wall 213 is small, so that the size of the adapter 242 in the thickness direction Z of the first wall 213 is small, so as to facilitate the realization of the electrode lead-out part 23.
  • the ear 241 is electrically connected to the electrode lead-out part 23 .
  • the housing 21 includes a housing 211 and a cover 212 .
  • the housing 211 has an opening, and the electrode assembly 25 is disposed in the housing 211; the cover 212 closes the opening to form a sealed space.
  • the cover 212 is the first wall 213, and the electrode lead-out part 23 is provided on the cover 212.
  • the pressure relief mechanism 22 and the electrode lead-out part 23 are both provided on the cover 212.
  • the tab 241 is formed on one end of the electrode assembly 25 close to the cover 212, the battery cell 20 is compact in structure and the assembly space is rationally utilized.
  • the first wall 213 may also be a wall of the housing 211 .
  • the adapter 242 further includes a third connecting section 2426 , and the third connecting section 2426 connects the first connecting section 2421 and the second connecting section 2424 .
  • the third connecting section 2426 is bent relative to the first connecting section 2421, the third connecting section 2426 is bent relative to the second connecting section 2424, and the adapter 242 is Z-shaped.
  • the third connecting section 2426 may also be called a transition connecting section.
  • the reinforcing portion 243 is located at one end of the first connecting section 2421 away from the connection between the first connecting section 2421 and the third connecting section 2426 .
  • the present application also provides a battery 100, including the battery cell 20 described in any of the above solutions.
  • the present application also provides an electrical device, including the battery 100 described in the above solution, where the battery 100 is used to provide electrical energy.
  • the power-consuming device may be any of the aforementioned devices or systems using the battery 100 .
  • the battery cell 20 includes a casing 21 , an electrode assembly 25 , and an electrode lead-out part 23 .
  • the housing 21 includes a first wall 213 .
  • the pressure relief mechanism 22 and the electrode lead-out part 23 are both arranged on the first wall 213 .
  • the electrode assembly 25 and the adapter 242 are both arranged in the housing 21,
  • the electrode assembly 25 is provided with tabs 241
  • the adapter 242 includes a first connecting section 2421 and a second connecting section 2424 .
  • the first connecting section 2421 is connected to the tabs 241
  • the second connecting section 2424 is connected to the electrode lead-out part 23 .
  • the support member 26 is fixed to the first wall 213 .
  • the support member 26 includes two sub-support members 261 .
  • the two sub-support members 261 are located on opposite sides of the pressure relief mechanism 22 .
  • the insulating member 27 is disposed between the first wall 213 and the adapter 242 for insulating the first wall 213 and the adapter 242.
  • the insulating member 27 includes a third surface 271 facing the first wall 213.
  • the third surface 271 A first groove 272 is formed on the base, and one end of the two sub-support members 261 facing the adapter 242 is received in the first groove 272 .
  • the first connecting section 2421 is provided with a reinforcing portion 243.
  • the projection of the reinforcing portion 243 on the first wall 213 at least partially overlaps with the projection of the support member 26 on the first wall 213.
  • the reinforcing part 243 is the first flange part 243a connected to the edge of the first connecting section 2421.
  • the first connecting section 2421 has a first surface 2422 facing the first wall 213 and a second surface 2423 facing away from the first wall 213. , the first flange portion 243a is bent to one side of the first surface 2422.
  • the battery cell 20 includes a casing 21 , an electrode assembly 25 , and an electrode lead-out part 23 .
  • the housing 21 includes a first wall 213 .
  • the pressure relief mechanism 22 and the electrode lead-out part 23 are both arranged on the first wall 213 .
  • the electrode assembly 25 and the adapter 242 are both arranged in the housing 21.
  • the electrode assembly 25 is provided with a tab 241.
  • the adapter 242 includes a first connecting section 2421 and a second connecting section 2424. The first connecting section 2421 and the tab 241 connection, the second connection section 2424 is connected to the electrode lead-out part 23 .
  • the support member 26 is fixed to the first wall 213 .
  • the support member 26 includes two sub-support members 261 .
  • the two sub-support members 261 are located on opposite sides of the pressure relief mechanism 22 .
  • the insulating member 27 is disposed between the first wall 213 and the adapter 242 for insulating the first wall 213 and the adapter 242.
  • the insulating member 27 includes a third surface 271 facing the first wall 213.
  • the third surface 271 A first groove 272 is formed on the base, and one end of the two sub-support members 261 facing the adapter 242 is received in the first groove 272 .
  • the first connecting section 2421 is provided with a reinforcing portion 243.
  • the projection of the reinforcing portion 243 on the first wall 213 at least partially overlaps with the projection of the support member 26 on the first wall 213.
  • the first connecting section 2421 has a first surface 2422 facing the first wall 213 and a second surface 2423 facing away from the first wall 213.
  • the first surface 2422 or the second surface 2423 forms a protrusion 243b, and the protrusion 243b is a reinforcing part. 243.
  • the battery cell 20 includes a casing 21, an electrode assembly 25, an electrode lead-out part 23, and an adapter. 242. Pressure relief mechanism 22, support member 26 and insulator 27.
  • the housing 21 includes a first wall 213.
  • the pressure relief mechanism 22 and the electrode lead-out part 23 are both provided on the first wall 213.
  • the electrode assembly 25 and the adapter 242 are both arranged in the housing 21.
  • the electrode assembly 25 is provided with a tab 241.
  • the adapter 242 includes a first connecting section 2421 and a second connecting section 2424. The first connecting section 2421 and the tab 241 connection, the second connection section 2424 is connected to the electrode lead-out part 23 .
  • the support member 26 is fixed to the first wall 213 and covers the pressure relief mechanism 22.
  • the support member 26 includes a first bottom wall 262 and a first side wall 263.
  • the first bottom wall 262 and the pressure relief mechanism 22 are arranged along the first wall 213. The thickness directions are opposite, a gap is formed between the first bottom wall 262 and the pressure relief mechanism 22 , the first side wall 263 connects the first bottom wall 262 and the first wall 213 , and the first side wall 263 has a second exhaust channel 264 .
  • the insulating member 27 is disposed between the first wall 213 and the adapter 242 for insulating the first wall 213 and the adapter 242.
  • the insulating member 27 includes a third surface 271 facing the first wall 213.
  • the third surface 271 A first groove 272 is formed on the bottom wall, and one end of the first bottom wall 262 and the first side wall 263 facing the adapter 242 is received in the first groove 272 .
  • the battery cell 20 includes a casing 21, an electrode assembly 25, an electrode lead-out part 23, The adapter 242 , the pressure relief mechanism 22 , the insulation member 27 , the reinforcing part 243 and the second support member 28 .
  • the housing 21 includes a first wall 213 .
  • the pressure relief mechanism 22 and the electrode lead-out part 23 are both arranged on the first wall 213 .
  • the electrode assembly 25 and the adapter 242 are both arranged in the housing 21.
  • the electrode assembly 25 is provided with a tab 241.
  • the adapter 242 includes a first connecting section 2421 and a second connecting section 2424. The first connecting section 2421 and the tab 241 connection, the second connection section 2424 is connected to the electrode lead-out part 23 .
  • the insulating member 27 is disposed between the first wall 213 and the adapter 242 for insulating and isolating the first wall 213 and the adapter 242 .
  • the reinforcing part 243 is provided on the first connecting section 2421.
  • the first connecting section 2421 has a first surface 2422 facing the first wall 213 and a second surface 2423 away from the first wall 213.
  • the support member 26 forms a second surface on the first surface 2422.
  • the groove 243c forms a protrusion 243b at the position corresponding to the second surface 2423 and the second groove 243c.
  • the second groove 243c extends to the edge of the first connecting section 2421.
  • the second support member 28 includes a second flange portion 283, a second bottom wall 281 and a second side wall 282.
  • the second bottom wall 281 fits the bottom surface of the second groove 243c.
  • the second side wall 282 is formed on the second groove 243c.
  • the edges of the bottom wall 281 and the second side wall 282 are in contact with the side surfaces of the second groove 243c.
  • the second flange portion 283 is connected to the second side wall 282.
  • the second flange portion 283 is located outside the second groove 243c and is in contact with the first surface 2422.
  • the cylindrical battery cell includes a casing 21, a pressure relief mechanism 22, and an electrode lead-out part 23. , electrode assembly 25, adapter 242, reinforcement 243 and support 26.
  • the housing 21 includes a housing 211 and a cover 212.
  • the housing 211 has an opening, and the cover 212 closes the opening to form a sealed space.
  • the cover 212 is a first wall 213
  • the pressure relief mechanism 22 is provided on the first wall 213
  • the electrode lead-out part 23 is provided on the first wall 213 .
  • the electrode assembly 25 is disposed in the housing 211 .
  • the electrode assembly 25 is provided with a tab 241 .
  • the tab 241 is formed at an end of the electrode assembly 25 close to the first wall 213 .
  • the adapter 242 includes a first connecting section 2421, a second connecting section 2424 and a third connecting section 2426.
  • the third connecting section 2426 connects the first connecting section 2421 and the second connecting section 2424.
  • the first connecting section 2421 connects the pole lug 241
  • the second connecting section 2424 is connected to the electrode lead-out part 23 .
  • the reinforcing portion 243 is provided on a side of the first connecting section 2421 away from the tab 241 .
  • Strengthening Department 243 It has a first surface 243e and a second surface 243f arranged oppositely along the thickness direction of the first wall 213.
  • the first surface 243e is connected to the first connecting section 2421, and the support member 26 protrudes from the second surface 243f.
  • the support member 26 is configured In order to cooperate with the first wall 213 to form the pressure relief channel 30 when the battery cell 20 is thermally runaway.
  • the cylindrical battery cell includes a casing 21, a pressure relief mechanism 22, and an electrode lead-out part 23. , electrode assembly 25, adapter 242, reinforcement 243 and support 26.
  • the housing 21 includes a housing 211 and a cover 212.
  • the housing 211 has an opening, and the cover 212 closes the opening to form a sealed space.
  • the cover 212 is a first wall 213
  • the pressure relief mechanism 22 is provided on the first wall 213
  • the electrode lead-out part 23 is provided on the first wall 213 .
  • the electrode assembly 25 is disposed in the housing 211 .
  • the electrode assembly 25 is provided with a tab 241 .
  • the tab 241 is formed at an end of the electrode assembly 25 close to the first wall 213 .
  • the adapter 242 includes a first connecting section 2421, a second connecting section 2424 and a third connecting section 2426.
  • the third connecting section 2426 connects the first connecting section 2421 and the second connecting section 2424.
  • the first connecting section 2421 connects the pole lug 241
  • the second connecting section 2424 is connected to the electrode lead-out part 23 .
  • the reinforcing part 243 and the support member 26 are provided on the side of the first connecting section 2421 facing the pole lug 241 .
  • the reinforcing part 243 has a first surface 243e and a second surface 243f that are oppositely arranged along the thickness direction of the first wall 213.
  • the second surface 243f is connected to the first connecting section 2421, and the support member 26 protrudes from the second surface 243f.
  • the connection section 2421 is provided with a recess 2425 corresponding to the support member 26, and the support member 26 is inserted into the recess 2425; the support member 26 is configured to cooperate with the first connection section 2421 and the first wall 213 when the battery cell 20 is thermally runaway.
  • a pressure relief channel 30 is formed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例提供一种电池单体、电池及用电装置。该电池单体包括:外壳,具有第一壁;泄压机构,设置于所述第一壁;电极引出部,设置于所述外壳;电极组件,设置于所述外壳内,所述电极组件设置有极耳;转接件,连接所述电极引出部和所述极耳;间隙控制部,设置于所述外壳内,所述间隙控制部被配置为能够限制所述转接件遮挡所述泄压机构在所述电池单体热失控时形成的泄压孔。该电池单体,具有较高的安全性。

Description

电池单体、电池及用电装置
相关申请的交叉引用
本申请要求享有于2022年06月21日提交的名称为“电池单体、电池及用电设备”的国际专利申请PCT/CN2022/100174的优先权,以及于2022年06月21日提交的名称为“电池单体、电池及用电装置”的国际专利申请PCT/CN2022/100171的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,特别是涉及一种电池单体、电池及用电装置。
背景技术
节能减排是汽车产业可持续发展的关键,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的能量密度外,安全性也是一个不可忽视的问题。因此,如何提高电池的安全性,是电池技术一个亟需解决的技术问题。
发明内容
本申请的目的在于提供一种电池单体、电池及用电装置。该电池单体,具有较高的安全性。
本申请是通过如下技术方案实现的:
第一方面,本申请提供了一种电池单体,包括:外壳,具有第一壁;泄压机构,设置于所述第一壁;电极引出部,设置于所述外壳;电极组件,设置于所述外壳内,所述电极组件设置有极耳;转接件,连接所述电极引出部和所述极耳;间隙控制部,设置于所述外壳内,所述间隙控制部被配置为能够限制所述转接件遮挡所述泄压机构在所述电池单体热失控时形成的泄压孔。
根据本申请实施例的电池单体,在外壳内设置间隙控制部,当电池单体发生热失控时,外壳内产生的高温高压气体向泄压机构方向顶冲,泄压机构执行动作或者泄压机构被破坏,从而形成可供内部压力或温度泄放的泄压孔,而设置在外壳内的转接件受热、受力容易发生变形遮挡泄压机构的泄压孔,本申请的设置在外壳内的间隙控制部能够有效限制变形或移动后转接件遮挡泄压孔,降低因转接件遮挡泄压孔而导致电池单体无法顺畅排气泄压的风险,从而降低电池单体在热失控时由于泄压不畅而发生起火、爆炸的风险,有效提高电池单体的安全性。
根据本申请的一些实施例,所述间隙控制部包括支撑件,所述支撑件设置于所述第一壁和所述转接件之间,所述支撑件被配置为能够限制所述转接件遮挡所述泄压机构在所述电池单体热失控时形成的泄压孔。
在上述方案中,支撑件设置于第一壁和转接件之间,能够在电池单体热失控时在第一壁和转接件之间形成支撑,以便于限制转接件遮挡泄压孔,使得电池单体能够及时泄压。
根据本申请的一些实施例,所述支撑件的熔点高于200℃。
上述技术方案中,支撑件的熔点高于200℃,以有效降低高温高压气体对支撑件的结构稳定性的影响,从而有效保证支撑件的性能稳定性。
根据本申请的一些实施例,所述支撑件为金属件。
在上述方案中,金属材质的支撑件具备更高的结构强度,从而有效保证支撑件对转接件的阻挡限位作用,同时,金属材质的支撑件的熔点较高,可以有效保证支撑件在高温环境下的结构稳定性。
根据本申请的一些实施例,所述支撑件固定于所述第一壁。
在上述方案中,支撑件固定于第一壁,以使支撑件稳定设置在电池单体内,便于提高支撑件的连接稳定性,从而提高支撑件的受力稳定性。
根据本申请的一些实施例,所述支撑件和所述第一壁一体成型。
在上述方案中,支撑件和第一壁一体成型,方便制造装配的同时有效保证支撑件的结构强度。
根据本申请的一些实施例,所述支撑件环绕所述泄压机构设置。
在上述方案中,支撑件环绕泄压机构设置,以在泄压机构的周围形成稳定支撑,进一步提高支撑件对转接件的支撑限位的稳定性。
根据本申请的一些实施例,所述支撑件包括第一子支撑件和第二子支撑件,所述泄压机构设置于所述第一子支撑件和所述第二子支撑件之间。
在上述方案中,泄压机构设置于第一子支撑件和第二子支撑件之间,以便于在两个位置对转接件进行支撑,进一步保证支撑件的止挡效果。
根据本申请的一些实施例,所述支撑件罩设于所述泄压机构,所述支撑件具有连通所述支撑件的内部空间和所述支撑件的外部空间的第二排气通道。
在上述方案中,支撑件罩设于泄压机构,支撑件对泄压机构起到类似防护罩式保护,一方面,可有效保 证支撑件本身的结构强度,从而有效保证支撑件受力稳定性,另一方面,支撑件罩设于泄压机构可充分限制转接件遮挡电池单体的泄压孔,支撑件设置连通支撑件的内部空间和外部空间的第二排气通道,以保证电池单体发生热失控时,电池单体内的气体能够顺利经第二排气通道到达泄压机构,保证泄压机构泄压顺畅。
根据本申请的一些实施例,所述支撑件包括第一底壁和第一侧壁,所述第一底壁与所述泄压机构沿所述第一壁的厚度方向相对设置,所述第一底壁与所述泄压机构之间形成有间隙,所述第一侧壁连接所述第一底壁和所述第一壁,所述第二排气通道形成于所述第一侧壁。
在上述方案中,第一底壁与第一壁相对设置,使得第一底壁和泄压机构之间形成间隙,第一底壁朝向电极组件,以限制转接件遮挡泄压机构,同时,第二排气通道形成于第一侧壁,可有效降低第二排气通道被转接件遮挡的风险,有效保证泄压机构泄压的通畅性。
根据本申请的一些实施例,所述电池单体还包括:绝缘件,至少部分位于所述第一壁和所述转接件之间,用于绝缘隔离所述第一壁和所述转接件;其中,所述支撑件的熔点高于所述绝缘件的熔点,所述支撑件被配置为在所述绝缘件熔化后阻止所述转接件遮挡所述泄压机构在所述电池单体热失控时形成的所述泄压孔。
在上述方案中,绝缘件用于绝缘隔离第一壁和转接件,以避免第一壁和转接件接触短路;支撑件的熔点高于绝缘件的熔点,在电池单体热失控时,绝缘件熔化,支撑件不易熔化,以便于阻止转接件遮挡泄压孔。
根据本申请的一些实施例,所述绝缘件包括面向所述第一壁的第三表面,所述第三表面上形成有第一凹槽,所述支撑件的至少一部分容置于所述第一凹槽内。
在上述方案中,第一凹槽的设置,在保证第一壁与转接件的绝缘效果的同时,避免支撑件占用过多电池单体的内部空间,从而有效保证电池单体的能量密度。
根据本申请的一些实施例,所述间隙控制部包括加强部,所述加强部设置于所述转接件,沿所述第一壁的厚度方向,所述加强部在所述第一壁上的投影至少覆盖所述泄压机构的一部分。
在上述方案中,加强部能够增加转接件的强度,由于加强部在第一壁上的投影覆盖泄压机构的至少一部分,当电池单体发生热失控时,转接件发生变形的难度增加,降低转接件在电池单体热失控时遮挡泄压孔的风险。
根据本申请的一些实施例,所述间隙控制部还包括支撑件,所述支撑件设置在所述第一壁和所述加强部之间,所述支撑件被配置为在所述电池单体热失控时抵接于所述第一壁和所述加强部之间以在所述加强部和所述第一壁之间形成泄压通道。
在上述方案中,支撑件在电池单体热失控时抵接于第一壁和加强部之间,以在加强部和第一壁之间形成泄压通道,便于气体经由泄压通道朝向泄压机构流动,便于泄压机构泄压。
根据本申请的一些实施例,所述支撑件包括第一子支撑件和第二子支撑件,所述泄压机构设置于所述第一子支撑件和所述第二子支撑件之间。
在上述方案中,泄压机构设置于第一子支撑件和第二子支撑件之间,以便于在两个位置对加强部进行止挡,进一步保证支撑件的止挡效果。
根据本申请的一些实施例,沿所述厚度方向,所述加强部在所述第一壁上的投影覆盖所述第一子支撑件的至少一部分和所述第二子支撑件的至少一部分。
在上述方案中,加强部的投影覆盖第一子支撑件的至少一部分和第二子支撑件的至少一部分,以形成简支梁,降低加强部发生形变的风险。
根据本申请的一些实施例,沿所述厚度方向,所述第一子支撑件的中心和所述第二子支撑件的中心在所述转接件上的投影落入所述加强部。
在上述方案中,第一子支撑件的中心和第二子支撑件的中心在转接件上的投影落入加强部,保证加强部与第一子支撑件和第二子支撑件具有较大的重叠面积,在电池单体热失控时,第一子支撑件和第二子支撑件对加强部的阻挡较好,降低加强部发生形变而遮挡、堵塞泄压孔的风险。
根据本申请的一些实施例,所述转接件包括第一连接段,所述第一连接段用于连接所述极耳,所述加强部设置于所述第一连接段。
在上述方案中,加强部设置于第一连接段,以增强第一连接段的强度,降低第一连接段变形的风险。
根据本申请的一些实施例,所述加强部为所述第一连接段的第一翻边部,所述第一连接段具有面向所述第一壁的第一表面和背离所述第一壁的第二表面,所述第一翻边部弯折至所述第一表面的一侧或所述第一翻边部弯折至所述第二表面的一侧。
在上述方案中,加强部为第一翻边部,第一翻边部弯折至第一表面的一侧或第一翻边部弯折至第二表面的一侧,便于加工成型。
根据本申请的一些实施例,所述第一翻边部弯折至所述第一表面的一侧,所述第一翻边部与所述第一表面贴合;或,所述第一翻边部弯折至所述第二表面的一侧,所述第一翻边部与所述第二表面贴合。
在上述方案中,第一翻边部与第一表面贴合或第二表面贴合,降低第一翻边部翘起的风险,增加加强部发生形变的难度。
根据本申请的一些实施例,所述第一连接段具有面向所述第一壁的第一表面和背离所述第一壁的第二表面,所述第一表面形成凸起,所述凸起为所述加强部。
根据本申请的一些实施例,所述第二表面与所述凸起对应的位置形成第二凹槽。
在上述方案中,第一表面或第二表面中的另一者形成与凸起对应的第二凹槽,一方面便于加强部的加工 成型,另一方面能够降低转接件的重量。
根据本申请的一些实施例,所述第一连接段具有面向所述第一壁的第一表面和背离所述第一壁的第二表面,所述加强部在所述第二表面形成凸起,所述加强部在所述第一表面与所述凸起对应的位置形成第二凹槽。
在上述方案中,加强部在第二表面形成凸起,在第一表面形成第二凹槽,增加转接件的强度,并且增加转接件朝向第一壁发生形变的难度。
根据本申请的一些实施例,所述第二凹槽在第一壁上的投影至少部分覆盖所述泄压机构。
在上述方案中,第二凹槽在第一壁上的投影至少部分覆盖泄压机构,使得加强部不易发生形变而遮挡、堵塞泄压孔,保证电池单体泄压顺畅。
根据本申请的一些实施例,所述第二凹槽延伸至所述转接件的边缘。
在上述方案中,第二凹槽延伸至转接件的边缘,以便于在加强部位置形成气体流动的通道,便于气体经由加强部朝向泄压机构流动,便于泄压机构泄压。
根据本申请的一些实施例,所述第二凹槽的槽壁设置有连通所述第二凹槽内部与所述第二凹槽外部的第一排气通道。
在上述方案中,第二凹槽的槽壁设置有连通第二凹槽内部与第二凹槽外部的第一排气通道,以便于气体进入第二凹槽,并朝向泄压机构流动,保证气体流动顺畅,便于泄压机构泄压。
根据本申请的一些实施例,沿所述厚度方向,所述第二凹槽的底面与所述第一壁之间的距离为C1,所述第一表面与所述第一壁之间的距离为C2,满足0.5mm≤C1-C2≤5mm。
在上述方案中,第二凹槽的底面与第一壁的距离C1和第一表面与第一壁之间的距离C2满足上述关系,保证气体朝向泄压机构流动,加强部即使发生形变也不易堵塞泄压孔,又能够保证加强部不占用太多的装配空间,保证电池单体具有较高的能量密度。
根据本申请的一些实施例,满足1mm≤C1-C2≤3mm。
在上述方案中,第二凹槽的底面与第一壁的距离C1和第一表面与第一壁之间的距离C2满足上述关系,相较于0.5mm≤C1-C2≤5mm,进一步保证气体朝向泄压机构流动顺畅,同时合理利用装配空间,保证电池单体的能量密度。
根据本申请的一些实施例,所述电池单体还包括:第二支撑件,所述第二支撑件包括第二底壁和第二侧壁,所述第二底壁与所述第二凹槽的底面贴合,所述第二侧壁形成在所述第二底壁的边缘,所述第二侧壁与所述第二凹槽的侧面贴合。
在上述方案中,第二支撑件设置于第二凹槽内,第二底壁与第二凹槽的底面贴合,第二侧壁与第二凹槽的侧面贴合,进一步增强加强部的强度,降低泄压机构被遮挡、堵塞的风险,保证泄压机构泄压。
根据本申请的一些实施例,所述第二支撑件还包括第二翻边部,所述第二翻边部连接于所述第二侧壁,所述第二翻边部位于所述第二凹槽的外部且与所述第一表面贴合。
在上述方案中,第二翻边部与第一表面贴合,保证第二支撑件与转接件具有较大的连接面积,保证第二支撑件与转接件具有较好的连接稳定性。
根据本申请的一些实施例,所述第一连接段包括主体区和连接区,所述连接区连接所述极耳,所述加强部设置于所述主体区。
在上述方案中,通过连接区与极耳连接,加强部设置于主体区,以避免加强部干涉第一连接段与极耳的连接。
根据本申请的一些实施例,所述连接区凸出于所述第二表面,所述加强部凸出于所述第二表面的高度小于或等于所述连接区凸出于所述第二表面的高度。
在上述方案中,加强部凸出于第二表面的高度小于或等于连接区凸出于第二表面的高度,加强部在厚度方向占用的空间较小,在保证加强部的强度的前提下,以避免干涉连接区与极耳的连接。
根据本申请的一些实施例,所述转接件包括第一连接段,所述第一连接段用于连接所述极耳,所述间隙控制部设置于所述第一连接段的背离所述极耳的一侧。
在上述方案中,间隙控制部设置于第一连接段的背离极耳的一侧,能够加强第一连接段的强度,增加第一连接段变形的难度,降低转接件在电池单体热失控时遮挡泄压孔的风险。
根据本申请的一些实施例,所述间隙控制部包括加强部和支撑件,所述加强部具有沿所述第一壁的厚度方向相对设置的第一面和第二面,所述第一面连接于所述第一连接段,所述支撑件凸出于所述第二面,所述支撑件被配置为在所述电池单体热失控时与所述第一壁配合以形成泄压通道。
在上述方案中,第一面连接于第一连接段,加强部能够增加第一连接段的强度,增加第一连接段变形的难度,支撑件能够在电池单体热失控时与第一壁配合形成泄压通道,便于电池单体及时泄压。
根据本申请的一些实施例,所述转接件包括第一连接段,所述第一连接段用于连接所述极耳,所述间隙控制部设置于所述第一连接段的面向所述极耳的一侧。
在上述方案中,间隙控制部设置于第一连接段的面向极耳的一侧,能够增加第一连接段的强度,增加第一连接段变形的难度,降低转接件在电池单体热失控时遮挡泄压孔的风险。
根据本申请的一些实施例,所述间隙控制部包括加强部和支撑件,所述加强部具有沿所述第一壁的厚度方向相对设置的第一面和第二面,所述第二面连接于所述第一连接段,所述支撑件凸出于所述第二面,所述支撑件 被配置为在所述电池单体热失控时与所述第一连接段和所述第一壁配合以形成泄压通道。
在上述方案中,第二表面连接于第一连接段,支撑件凸出于第二表面,能够增强第一连接段的强度,增加第一连接段变形的难度,支撑件能够在电池单体热失控时与第一连接段和第一壁配合形成泄压通道,便于电池单体及时泄压。
根据本申请的一些实施例,所述第一连接段设置有与所述支撑件对应的凹部,所述支撑件插设于所述凹部。
在上述方案中,支撑件插设于凹部,在保证间隙控制部与第一连接段的连接稳定性的同时,降低支撑件占用过多电池单体的内部空间,从而有效保证电池单体的能量密度。
根据本申请的一些实施例,所述支撑件包括第一子支撑件和第二子支撑件,所述泄压机构设置于所述第一子支撑件和所述第二子支撑件之间。
在上述方案中,泄压机构设置于第一子支撑件和第二子支撑件之间,以便于在多个位置与第一壁配合,便于在电池单体热失控时形成泄压通。
根据本申请的一些实施例,所述支撑件与所述加强部一体成型。
在上述方案中,支撑件与加强部一体成型,便于加工制造。
根据本申请的一些实施例,所述极耳形成于所述电极组件的靠近所述第一壁的一端,所述电极引出部设置于所述第一壁。
在上述方案中,电极引出部设置于第一壁,极耳与第一壁之间的距离较小,使得转接件在第一壁的厚度方向上的尺寸较小,以便于实现极耳与电极引出部的电连接。
第二方面,本申请提供了一种电池,包括如上述实施例提供的电池单体。
第三方面,本申请提供了一种用电装置,包括如上述实施例提供的电池单体。
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸图;
图3为本申请一些实施例提供的电池单体的爆炸图;
图4为本申请一些实施例提供的电池单体的第一壁、转接件和绝缘件的爆炸图;
图5为本申请一些实施例提供的在电池单体热失控时的第一壁和支撑件的剖面图;
图6为本申请又一些实施例提供的电池单体的第一壁、绝缘件和支撑件的爆炸图;
图7为本申请又一些实施例提供的第一壁和支撑件的剖面图;
图8为本申请一些实施例提供的绝缘件与支撑件的配合关系剖面图;
图9为本申请再一些实施例提供的绝缘件与支撑件的配合关系剖面图;
图10为本申请一些实施例提供的转接件具有加强部的结构示意图;
图11为本申请一些实施例提供的电池单体的局部剖视图;
图12为本申请一些实施例提供的转接件上的第一翻边部展开状态的结构示意图;
图13为本申请一些实施例提供的转接件上的第一翻边部翻折状态的结构示意图;
图14为本申请一些实施例提供的加强部的结构示意图;
图15为本申请另一些实施例提供的加强部的结构示意图;
图16为本申请又一些实施例提供的加强部的结构示意图;
图17为图10的A处局部放大图;
图18为本申请一些实施例提供的第一排气通道的示意图;
图19为本申请一些实施例提供的电池单体的部分部件的剖视图;
图20为本申请一些实施例提供的电池单体热失控后(绝缘件被熔化)的局部剖视图;
图21为本申请一些实施例提供的转接件与间隙配合部的装配示意图;
图22为本申请一些实施例提供的加强部与第一连接段配合后的剖视图;
图23为本申请另一些实施例提供的加强部与第一连接段配合后的剖视图;
图24为本申请另一些实施例提供的转接件与间隙配合部的装配示意图;
图25为本申请另一些实施例提供的转接件与间隙配合部的结构示意图;
图26为本申请又一些实施例提供的加强部与第一连接段配合后的剖视图;
图27为本申请一些实施例提供的加强部与第一壁配合的结构示意图;
图28为本申请一些实施例提供的加强部与绝缘件配合的结构示意图;
图29为本申请一些实施例提供的加强部与第一连接段配合的结构示意图;
在附图中,附图并未按照实际的比例绘制。
标记说明:1000-车辆;100-电池;10-箱体;11-第一部分;12-第二部分;20-电池单体;21-外壳;211-壳体;212-盖体;213-第一壁;22-泄压机构;221-泄压孔;23-电极引出部;241-极耳;242-转接件;2421-第一连接段;242a-主体区;242b-连接区;2422-第一表面;2423-第二表面;2424-第二连接段;2425-凹部;2426-第三连接段;2427-第一定位部;2428-安装孔;243-加强部;243a-第一翻边部;243b-凸起;243c-第二凹槽;243d-第一排气通道;243e-第一面;243f-第二面;2431-第二定位部;25-电极组件;251-主体部;260-间隙控制部;26-支撑件;261-子支撑件;261a-第一子支撑件;261b-第二子支撑件;262-第一底壁;263-第一侧壁;2631-第一子侧壁;2632-第二子侧壁;264-第二排气通道;27-绝缘件;271-第三表面;272-第一凹槽;2721-子凹槽;2722-凸出部;2723-绝缘部件;273-第四表面;274-通孔;28-第二支撑件;281-第二底壁;282-第二侧壁;283-第二翻边部;30-泄压通道;200-控制器;300-马达。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。
因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“设置”“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接、信号连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
在本申请的实施例中,相同的附图标记表示相同的部件,并且为了简洁,在不同实施例中,省略对相同部件的详细说明。应理解,附图示出的本申请实施例中的各种部件的厚度、长宽等尺寸,以及集成装置的整体厚度、长宽等尺寸仅为示例性说明,而不应对本申请构成任何限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。其中,多个电池单体之间可以串联、并联或者混联。电池还可以包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
在一些实施例中,电池可以为电池模块,电池单体有多个时,多个电池单体排列并固定形成一个电池模块。
在一些实施例中,电池可以为电池包,电池包包括箱体和电池单体,电池单体或电池模块容纳于箱体中。
在一些实施例中,箱体可以作为车辆的底盘结构的一部分。例如,箱体的部分可以成为车辆的地板的至少一部分,或者,箱体的部分可以成为车辆的横梁和纵梁的至少一部分。
在一些实施例中,电池可以为储能装置。储能装置包括储能集装箱、储能电柜等。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔离膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体可以直接作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体可以直接作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池单体热失控时容易发生起火、爆炸,存在较大的安全隐患,如何提高电池的安全性能,是电池技术发展中的一个亟需解决的问题。
为了有效提高电池单体的安全性能,发明人研究发现,可以在电池单体上设置泄压机构,当电池单体发生热失控而导致电池单体内部的压力或温度骤升时,泄压机构致动,形成泄压孔,泄压孔连通电池单体的内部和外部,可以将电池单体的内部压力及时向外释放,以防止电池单体爆炸、起火,从而有效提高电池单体的安全性能。
但发明人注意到,即使在电池单体设置了泄压机构,还是无法有效解决电池单体容易因热失控而起火、爆炸的问题。
发明人分析其原因发现,电池单体内部通常会设置转接件,以将电极组件产生的电能通过转接件引出电池单体。电池单体内部一般还包括用于绝缘隔离外壳和转接件的绝缘件,而当电池单体发生热失控时,泄压机构致动形成泄压孔,绝缘件被熔化,电池单体内部的高温高压气体向泄压机构流动的过程中会冲击转接件,至少部分转接件受高温和气体作用力向泄压孔移动,缺少了绝缘件的阻挡,转接件会覆盖泄压孔,并在对应泄压孔的位置发生变形,变形的转接件的部分伸入泄压孔堵塞泄压孔,使得电池单体的内部压力无法及时、有效得以释放,从而导致电池单体爆炸、起火。
基于以上原因,为了解决转接片容易发生变形而遮挡泄压孔致使电池单体的安全性能差的问题,发明人经过研究,设计了一种电池单体,在电池单体的壳体内设置间隙控制部,间隙控制部能够限制转接件遮挡泄压机构在电池单体热失控时形成的泄压孔。
当电池单体发生热失控时,泄压机构泄放电池单体的内部压力,高温高压气体朝向泄压机构流动,转接件受高温高压气体的温度及作用力影响,容易发生变形,间隙控制部能够有效限制变形或移动后的转接件遮挡泄压孔,避免因转接件遮挡泄压孔而致使电池单体无法顺畅排气泄压的问题,从而降低电池单体在热失控时由于泄压不畅而发生起火、爆炸的风险,有效提高电池单体的安全性能。
本申请实施例公开的电池单体可以但不限用于车辆、船舶或飞行器等用电装置中。可以使用具备本申请公开的电池单体、电池等组成该用电装置的电源系统。
本申请实施例提供一种使用电池作为电源的用电装置,用电装置可以为但不限于手机、平板、笔记本电脑、电动玩具、电动工具、电瓶车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
本申请的实施例描述的电池不仅仅局限适用于上述所描述的用电装置,还可以适用于所有使用电池的用电装置,但为描述简洁,以下实施例以本申请一实施例的一种用电装置为车辆为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在其他一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的爆炸图,电池100可以包括箱体10和电池单体20,电池单体20容纳于箱体10内。其中,箱体10用于为电池单体20提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,第一部分11和第二部分12共同限定出用于容纳电池单体20的容纳空间。第二部分12可以为一端开口的空心结构,第一部分11可以为板状结构,第一部分11盖合于第二部分12的开口侧,以使第一部分11与第二部分12共同限定出容纳空间;第一部分11和第二部分12也可以是均为一侧开口的空心结构,第一部分11的开口侧盖合于第二部分12的开口侧。当然,第一部分11和第二部分12形成的箱体10可以是多种形状,比如,长方体、正方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起。
请参照图3至图5,图3为本申请一些实施例提供的电池单体的爆炸图,图4为本申请一些实施例提 供的电池单体的第一壁、转接件和绝缘件的爆炸图,图5为本申请一些实施例提供的在电池单体热失控时的第一壁和支撑件的剖面图。
本申请一些实施例提供的电池单体20可以包括外壳21、电极组件25、泄压机构22、电极引出部23、转接件242及间隙控制部260。外壳21具有第一壁213,泄压机构22设置于第一壁213。电极引出部23设置于外壳21。电极组件25设置于外壳21内,电极组件25设置有极耳241。转接件242连接电极引出部23和极耳241。间隙控制部260设置于外壳21内,间隙控制部260被配置为能够限制转接件242遮挡泄压机构22在电池单体20热失控时形成的泄压孔221。
根据本申请实施例的电池单体20,在外壳21内设置间隙控制部260,当电池单体20发生热失控时,外壳21内产生的高温高压气体向泄压机构22方向顶冲,泄压机构22执行动作或者泄压机构22被破坏,从而形成可供内部压力或温度泄放的泄压孔221,而设置在外壳21内的转接件242受热、受力容易发生变形遮挡泄压机构22的泄压孔221,本申请的设置在外壳21内的间隙控制部260能够有效限制变形或移动后转接件242遮挡泄压孔221,降低因转接件242遮挡泄压孔221而导致电池单体20无法顺畅排气泄压的风险,从而降低电池单体20在热失控时由于泄压不畅而发生起火、爆炸的风险,有效提高电池单体20的安全性。
外壳21是用于容纳电极组件25的部件。外壳21可以是多种形状,例如,圆柱体、长方体等。外壳21可以包括壳体211和盖体212,盖体212盖合于壳体211的开口,盖体212与壳体211共同限定出密封空间。
其中,壳体211可以是一端形成开口的空心结构,壳体211也可以是相对的两端形成开口的空心结构。壳体211的材质可以是多种,例如,铜、铁、铝、钢、铝合金等。
盖体212是封闭壳体211的开口以将电池单体20的内部环境与外部环境隔绝的部件。盖体212与壳体211共同限定出用于容纳电极组件25、电解液以及其他部件的密封空间。盖体212可以通过焊接或卷封的方式连接于壳体211,以封闭壳体211的开口。盖体212的形状可以与外壳21的形状相适配,例如,壳体211为长方体结构,盖体212为与外壳21相适配的矩形板状结构,再如,壳体211为圆柱体,盖体212为与壳体211相适配的圆形板状结构。盖体212的材质也可以是多种,例如,铜、铁、铝、钢、铝合金等。
在电池单体20中,盖体212可以是一个,也可以是两个。在壳体211为两端形成开口的空心结构的实施例中,盖体212可以对应设置两个,两个盖体212分别封闭壳体211的两个开口,两个盖体212与壳体211共同限定出密封空间。在壳体211为一端开口的空心结构的实施例中,盖体212可以对应设置一个,盖体212封闭壳体211一端的开口,一个盖体212与壳体211共同限定出密封空间。
在一些实施例中,第一壁213可以为盖体212,当然,第一壁213也可以为壳体211的其他侧壁。
电极组件25是电池单体20中发生电化学反应的部件。电极组件25可以包括正极极片、负极极片和隔离膜。电极组件25可以是由正极极片、隔离膜和负极极片通过卷绕形成的卷绕式结构,当然,电极组件25也可以是叠片结构。
泄压机构22是泄放电池单体20内部压力或温度的元件或部件。泄压机构22可以采用诸如防爆阀、气阀、泄压阀、安全阀、在外壳21上设置的刻痕等的形式。并可以具体采用压敏或温敏的元件或构造,即,当电池单体20的内部压力或温度达到阈值时,泄压机构22执行动作或者泄压机构22中设有的薄弱结构被破坏,从而形成可供电池单体内部压力或温度泄放的泄压孔221。
泄压孔221是指在电池单体发生热失控时,在外壳21上形成的连通电池单体内部和外部的孔。泄压孔可由泄压机构致动形成。如在电池单体20内部压力超过阈值时,至少部分泄压机构被破坏形成泄压孔221。
泄压机构22产生的动作可以包括但不限于:泄压机构22中的至少一部分破裂、破碎、被撕裂或者打开等等。
如图3所示,当第一壁213为盖体212时,泄压机构22可以设置于盖体212上。
根据本申请的一些实施例,间隙控制部260包括支撑件26,支撑件26设置于第一壁213和转接件242之间,支撑件26被配置为能够限制转接件242遮挡泄压机构22在电池单体20热失控时形成的泄压孔221。
一些实施例中,转接件242包括第一连接段,第一连接段用于连接电极组件的极耳,支撑件26设置于第一壁213和第一连接段之间。
支撑件26设置于第一壁213和转接件242之间,能够在电池单体20热失控时在第一壁213和转接件242之间形成支撑,以便于限制转接件242遮挡泄压孔221,使得电池单体20能够及时泄压。
根据本申请的一些实施例,支撑件26的熔点高于200℃。
支撑件26可以使用熔点高的金属材质、陶瓷材质等,支撑件26的熔点可以高于300℃、400℃、500℃等,也可以大于600℃甚至更高,支撑件26的熔点越高,其在高温高压环境下的结构稳定性就越好,高熔点的支撑件26可有效保证支撑件26在电池单体20发生热失控时的功能稳定性。根据本申请的一些实施例,支撑件26为金属件。
支撑件26的材质可以为铜、铁、铝、铝合金等等,在支撑件26设置于第一壁213的实施形式中,支撑件26可以与第一壁213的材质相同,便于支撑件26能够与第一壁213焊接或一体成型,当然,支撑件26和第一壁213以及和转接件242的材质也可以不相同。示例性的,支撑件26可以采用熔点高于200℃的金属材质制成。
金属材质的支撑件26容易达到更高的结构强度,从而有效保证支撑件26对转接件242的阻挡限位作用,同时,金属材质的支撑件26便于在外壳21内固定,便于电池单体20的生产制造。
根据本申请的一些实施例,支撑件26固定于第一壁213。
具体而言,第一壁213包括朝向电极组件25的内表面,支撑件26固定于第一壁213的内表面且凸出于内表面,支撑件26固定于第一壁213包括多种实施形式,比如,支撑件26可以和第一壁213一体成型,支撑件26也可以和第一壁213分体设置并通过焊接、胶粘、卡接、紧固件锁附等方式固定连接于第一壁213。支撑件26的材质可以与第一壁213的材质相同,以便于支撑件26与第一壁213焊接或一体成型;支撑件26的材质也可以与第一壁213的材质不同,比如,第一壁213的材质可以为铝、不锈钢或铝合金,支撑件26的材质可以为陶瓷。
支撑件26固定于第一壁213,便于保证支撑件26的连接稳定性,从而保证支撑件26的受力稳定性,有利于充分发挥支撑件26对转接件242的限制作用。根据本申请的一些实施例,支撑件26和第一壁213一体成型。
其中,支撑件26的材质可以和第一壁213的材质相同,支撑件26和第一壁213可以通过锻压、铸造、冲压等方式一体成型。
支撑件26和第一壁213一体成型,方便电池单体20制造装配的同时有效保证支撑件26的结构强度。根据本申请的一些实施例,支撑件26环绕泄压机构22设置。
如前所述,支撑件26可以呈环形而环绕泄压机构22设置,环形的支撑件26的一端与第一壁213固定连接,另一端朝向转接件242,环形的支撑件26的侧壁可以设置连通环形的支撑件26的内部空间和环形的支撑件26的外部空间的通道,当转接件242变形后抵接环形的支撑件26的端部时,支撑件26侧壁的通道能够有效保证气体顺畅进入环形的支撑件26的内部空间并经泄压机构22排出,可以理解的是,环形的支撑件26可以呈圆环状、椭圆环状、矩形框状等。
当然,支撑件26也可以包括多个环绕泄压机构22设置的分体结构,多个分体结构相互间隔且环绕泄压机构22设置,相邻两个分体结构之间形成能够连通泄压机构22和支撑件26的外部的通道,当转接件242变形后抵接于部分或全部分体结构时,该通道能够有效保证气体顺畅的经泄压机构22排出。
支撑件26环绕泄压机构22设置,以在泄压机构22的周围形成稳定支撑,进一步提高支撑件26对转接件242的支撑限位的稳定性。
请参照图4,并进一步参照图5,图5为本申请一些实施例提供的第一壁和支撑件的主视图,根据本申请的一些实施例,支撑件26包括第一子支撑件261a和第二子支撑件261b,泄压机构22设置于第一子支撑件261a和第二子支撑件261b之间。
沿第一壁213的厚度方向观察,泄压机构22设置于第一子支撑件261a和第二子支撑件261b在第一壁213上的投影之间,泄压机构22与第一子支撑件261a和第二子支撑件261b在空间上错位设置,例如,沿第一壁213的厚度方向,泄压机构22可以与第一子支撑件261a和第二子支撑件261b分层设置。
泄压机构22设置于第一子支撑件261a和第二子支撑件261b之间,以便于在两个位置对转接件242进行支撑,进一步保证支撑件26的止挡效果。
根据本申请的一些实施例,请参照图4,并进一步参照图5,图5为本申请一些实施例提供的第一壁和支撑件的主视图,支撑件26包括多个子支撑件261,多个子支撑件261环绕泄压机构22设置。
其中,每个子支撑件261可以呈圆柱体结构、六面体结构、锥形体结构、弧形凸起243b结构等等,多个子支撑件261可以相互间隔并环绕泄压机构22设置,子支撑件261的一端与第一壁213一体成型或固定连接,与第一壁213相对的另一端朝向转接件242,同时,子支撑件261的朝向转接件242的一端可以具有弯折段,弯折段可以与第一壁213相对设置,弯折段在第一壁213上的投影可以落入泄压机构22,也可以不落入泄压机构22,弯折段可以有效增加转接件242和支撑件26的接触面积,从而进一步提高支撑件26对转接件242的阻挡限位效果。
可以理解的是,支撑件26可以包括两个、三个、四个甚至更多个子支撑件261,示例性的,支撑件26包括两个子支撑件261,两个子支撑件261固定于第一壁213且位于泄压机构22的相对两侧。
支撑件26包括多个子支撑件261,多个子支撑件261环绕泄压机构22设置,多个子支撑件261能够从多个位置对转接件242起到支撑作用,相邻两个子支撑件261之间可以形成与泄压机构22连通的排气通道,便于高温高压气体穿过排气通道并经泄压机构22排出,其结构简单实用性强。
根据本申请的又一些实施例,请参照图6和图7,图6为本申请又一些实施例提供的电池单体的第一壁、绝缘件和支撑件的爆炸图,图7为本申请又一些实施例提供的第一壁和支撑件的剖面图。支撑件26罩设于泄压机构22,支撑件26具有连通支撑件26的内部空间和支撑件26的外部空间的第二排气通道264。
具体而言,支撑件26可以呈类似罩体的结构,罩体的开口面朝向第一壁213而与第一壁213固定连接,以将泄压机构22罩在支撑件26内。可以理解的是,泄压机构22可以全部罩在支撑件26内,也可以部分罩在支撑件26内。
支撑件26可以呈网状或多孔状的罩体结构,支撑件26上的网孔形成上述第二排气通道264,并且支撑件26的形状可以为半球形、一端开口的圆柱体型等等,当然,支撑件26也可以包括与泄压机构22相对设置的支撑壁和连接支撑壁与第一壁213的侧壁,支撑壁用于与变形后的转接件242抵接,第二排气通道264可以设置于侧壁。
支撑件26罩设于泄压机构22,支撑件26对泄压机构22起到类似防护罩式的保护作用,一方面,可有效保证支撑件26本身的结构强度,从而有效保证支撑件26受力稳定性,另一方面,支撑件26罩设于泄压机构22可充分限制转接件242遮挡泄压孔221,支撑件26设置连通支撑件26的内部空间和外部空间的第二排气通道264,以保证电池单体20发生热失控时,电池单体20内的气体能够顺利经第二排气通道264到达泄压机构22,保证泄压机构22泄压顺畅。
根据本申请的一些实施例,请继续参照图6和图7,支撑件26包括第一底壁262和第一侧壁263,第一底壁262与泄压机构22沿第一壁213的厚度方向相对设置,第一底壁262与泄压机构22之间形成有间隙,第一侧壁263连接第一底壁262和第一壁213,第二排气通道264形成于第一侧壁263。
如图7所示,第一壁213的厚度方向沿第一方向Z延伸,第一底壁262与第一壁213沿第一方向Z间隔设置,使得第一底壁262和泄压机构22之间形成间隙。
第一侧壁263连接第一底壁262和第一壁213并且第二排气通道264形成于第一侧壁263,其中,第一侧壁263和第一通道的实施形式有多种,比如,第一侧壁263可以为不完全闭合的环形结构,第一侧壁263环绕泄压机构22设置且围设在第一底壁262的周围,其中,第一侧壁263的开口形成第二排气通道264。
又如,第一侧壁263可以呈完全闭合的环形,且第一侧壁263的壁部设置一个或多个通孔,该通孔形成第二排气通道264。
当然,第一侧壁263也可以包括多个子侧壁,多个子侧壁环绕泄压机构22间隔设置,相邻两个子侧壁之间均形成一个第二排气通道264。
示例性的,如图6所示,第一侧壁263包括第一子侧壁2631和第二子侧壁2632,第一子侧壁2631为弧形壁,其轴向沿第一方向Z延伸,第二子侧壁2632相较于第一底壁262倾斜设置,第一子侧壁2631和第二子侧壁2632间隔设置且位于第一底壁262的相对两侧,第一子侧壁2631和第二子侧壁2632之间形成第二排气通道264。
第一底壁262与第一壁213相对设置,使得第一底壁262和泄压机构22之间形成间隙,第一底壁262朝向电极组件25,以限制转接件242靠近泄压机构22,从而限制转接件242遮挡泄压孔221,同时,第二排气通道264形成于第一侧壁263,可有效降低第二排气通道264被转接件242遮挡的风险,有效保证泄压机构22泄压的通畅性。
根据本申请的一些实施例,请再次参照图4至图6,并进一步参照图8和图9,图8为本申请一些实施例提供的绝缘件与支撑件的配合关系剖面图,图9为本申请再一些实施例提供的绝缘件与支撑件的配合关系剖面图。
电池单体20还包括绝缘件27,绝缘件27位于第一壁213和转接件242之间,绝缘件27用于绝缘隔离第一壁213和转接件242。其中,支撑件26的熔点高于绝缘件27的熔点,支撑件26被配置为在绝缘件27熔化后阻止转接件242遮挡泄压机构22在电池单体20热失控时形成的泄压孔。
绝缘件27的材质可以为塑料,例如,PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等,有利于在保证绝缘效果的同时降低电池单体20的重量。
绝缘件27至少部分设置在第一壁213和转接件242之间,是指绝缘件27的部分结构位于第一壁213和转接件242之间,或者绝缘件27整体结构都位于第一壁213和转接件242之间。
一般在绝缘件27对应泄压机构22的位置设置有通孔274,使电池单体20内部的气体顺利到达泄压机构22,但在电池单体20热失控时,电池单体20内部的温度和压力较高,会将绝缘件27熔化,同时使转接件242部分变形并遮挡泄压孔221,阻止电池单体20内部气体流向泄压孔221。
在设置支撑件26后,电池单体20处于正常状态时,绝缘件27绝缘隔离第一壁213和转接件242,在电池单体20热失控时,绝缘件27容易高温熔化,支撑件26容易变形,此时支撑件26能够支撑在转接件242和第一壁213之间,以在转接件242和第一壁213之间形成允许气体通过的通道,便于电池单体20内部的气体能够通过此通道并经泄压机构22排出电池单体20,阻止变形或移位后的转接件242遮挡泄压机构22的泄压孔221。
绝缘件27用于绝缘隔离第一壁213和转接件242,以避免第一壁213和转接件242接触短路;支撑件26的熔点高于绝缘件27的熔点,在电池单体20热失控时,绝缘件27熔化,支撑件26不易熔化,以便于阻止转接件242遮挡泄压孔。
根据本申请的一些实施例,绝缘件27包括面向第一壁213的第三表面271,第三表面271上形成有第一凹槽272,支撑件26的至少一部分容置于第一凹槽272内。
第一凹槽272的设置,在保证第一壁213与转接件242的绝缘效果的同时,避免支撑件26占用过多电池单体20的内部空间,从而有效保证电池单体20的能量密度。
如前所述,绝缘件27的材质可以为塑料,例如,PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等,有利于在保证绝缘效果的同时降低电池单体20的重量。
如前文所述,一般在绝缘件27对应泄压机构22的位置设置有通孔274,通孔274使电池单体20内部的气体能够顺利到达泄压机构22。
第一凹槽272为设置在绝缘件27上的用于避让支撑件26的部位,第一凹槽272是在第三表面271朝向背离第一壁213的方向凹陷形成的凹陷区。
其中,第一凹槽272的设置位置和设置形式可以与支撑件26对应,比如,如图8所示,基于“支撑件26固定于第一壁213,支撑件26包括多个子支撑件261,多个子支撑件261环绕泄压机构22设置”的实施形式,第一凹槽272也可以包括多个子凹槽2721,沿第一壁213的厚度方向(图中所示的第一方向Z),多个子凹槽2721与多个子支撑件261一一对应,每个子支撑件261的远离第一壁213的一端均伸入与之对应的子凹槽2721。
在又一些实施例中,如图9所示,基于“支撑件26包括第一底壁262和第一侧壁263,第一底壁262与泄压机构22沿第一壁213的厚度方向相对设置,第一底壁262与泄压机构22之间形成有间隙,第一侧壁263连接第一底壁262和第一壁213,第二排气通道264形成于第一侧壁263”的实施形式,第一凹槽272与支撑件26相 对应,第一凹槽272的内表面可以与支撑件26的外表面相对应,第一底壁262完全伸入第一凹槽272,第一侧壁263的至少部分伸入第一凹槽272。
在其他一些实施例中,如图8所示,绝缘件27还包括沿第一壁213的厚度方向(图中所示的第一方向Z)与第三表面271相对的第四表面273,即第四表面273朝向电极组件25,第四表面273上与第一凹槽272对应的位置形成凸出部2722,这种设计,使得绝缘件27的第一凹槽272之外的结构可以有效减薄,从而有效降低绝缘件27的空间占用率、减轻绝缘件27的重量,并达到节省绝缘件27材料的目的。
绝缘件27用于绝缘隔离第一壁213和转接件242,以避免第一壁213和转接件242接触短路,而第一凹槽272的设置,在保证第一壁213与转接件242的绝缘效果的同时,避免支撑件26和绝缘件27占用过多电池单体20的内部空间,从而有效保证电池单体20的能量密度。
根据本申请的一些实施例,请参见图10和图11,间隙控制部260包括加强部243,加强部243设置于转接件242,沿第一壁213的厚度方向,加强部243在第一壁213上的投影至少覆盖泄压机构22的一部分。
在上述方案中,加强部243能够增加转接件242的强度,由于加强部243在第一壁213上的投影覆盖泄压机构22的至少一部分,当电池单体20发生热失控时,转接件242发生变形的难度增加,降低转接件242在电池单体20热失控时遮挡泄压孔的风险。
请参见图5和图8,根据本申请的一些实施例,间隙控制部260还包括支撑件26,支撑件26设置在第一壁213和加强部243之间,支撑件26被配置为在电池单体20热失控时抵接于第一壁213和加强部243之间以在加强部243和第一壁213之间形成泄压通道30。
在一些实施例中,支撑件26也可以称为止挡件。
支撑件26为用于起到阻挡作用的部件。
支撑件26在电池单体20热失控时抵接于第一壁213和加强部243之间,使得加强部243与第一壁213在第一壁213的厚度方向Z上始终存在间隙形成泄压通道30,以供气体从该泄压通道30朝向泄压机构22流动。泄压通道30也可以称为排气通道,用于气体流通。
在上述方案中,支撑件26在电池单体20热失控时抵接于第一壁213和加强部243之间,以在加强部243和第一壁213之间形成泄压通道30,便于气体经由泄压通道30朝向泄压机构22流动,便于泄压机构22泄压。
根据本申请的一些实施例,如图5所示,支撑件26包括第一子支撑件261a和第二子支撑件261b,泄压机构22设置于第一子支撑件261a和第二子支撑件261b之间。
在一些实施例中,第一子支撑件261a也可以称为第一子止挡件,第二子支撑件261b也可以称为第二子止挡件。
第一子支撑件261a和第二子支撑件261b为支撑件26的两个组成部分,第一子支撑件261a和第二子支撑件261b间隔设置。
泄压机构22设置于第一子支撑件261a和第二子支撑件261b之间,以便于在两个位置对加强部243进行止挡,进一步保证支撑件26的止挡效果。
根据本申请的一些实施例,沿厚度方向Z,加强部243在第一壁213上的投影覆盖第一子支撑件261a的至少一部分和第二子支撑件261b的至少一部分。
加强部243在第一壁213上的投影可以覆盖第一子支撑件261a的一部分和第二子支撑件261b的一部分,或者,加强部243在第一壁213上的投影可以覆盖第一子支撑件261a的全部和第二子支撑件261b的全部。
换句话说,沿厚度方向Z,加强部243的投影与第一子支撑件261a和第二子支撑件261b具有较大的重叠面积。
加强部243具有较强的强度,在加强部243与第一子支撑件261a和第二子支撑件261b抵接时,加强部243与第一子支撑件261a和第二子支撑件261b形成简支梁,降低加强部243发生形变而遮挡、堵塞泄压孔的风险。
根据本申请的一些实施例,沿厚度方向Z,第一子支撑件261a的中心和第二子支撑件261b的中心在转接件242上的投影落入加强部243。
第一子支撑件261a的中心和第二子支撑件261b的中心分别为第一子支撑件261a和第二子支撑件261b的几何中心。
第一子支撑件261a的中心和第二子支撑件261b的中心在转接件242上的投影落入加强部243,使得加强部243与第一子支撑件261a和第二子支撑件261b。
如图5和图8所示,第一子支撑件261a和第二子支撑件261b沿第一方向X间隔设置,第一子支撑件261a的中心线P1和第二子支撑件261b的中心线P2之间的距离为L1,加强部243在第一方向X上的尺寸为L2,满足L1≤L2。
图中,字母X所指示的方向为第一方向,第一方向X与厚度方向Z垂直。
可选地,以第一子支撑件261a的横截面和第二子支撑件261b的横截面为规则形状为例介绍,加强部243的中心线到第一子支撑件261a的中心线的距离与加强部243的中心线到第二子支撑件261b的中心线的距离相等,以保证在电池单体20热失控时,加强部243受到的第一子支撑件261a和第二子支撑件261b的阻挡力均衡。
在上述方案中,第一子支撑件261a的中心线P1和第二子支撑件261b的中心线P2之间的距离L1、加强部243的在第一方向X上的尺寸L2满足上述关系,保证加强部243与第一子支撑件261a和第二子支撑件261b具 有较大的重叠面积,在电池单体20热失控时,加强部243能够搭接于第一子支撑件261a和第二子支撑件261b,第一子支撑件261a和第二子支撑件261b对加强部243的阻挡较好,降低加强部243发生形变而遮挡、堵塞泄压孔的风险。
请参照图8,根据本申请的一些实施例,转接件242包括第一连接段2421,第一连接段2421用于连接极耳241(请参见图3),加强部243设置于第一连接段2421。
转接件242还包括第二连接段2424,第二连接段2424连接电极引出部23,第一连接段2421和第二连接段2424可以位于转接件242的相对的两端。加强部243设置于第一连接段2421,在外力(如气流)作用下,第一连接段2421的设置加强部243的位置或者区域不容易发生形变。当电池单体20发生热失控时,极耳241变形会直接导致第一连接段2421变形并向第一壁213靠拢,所以,加强部243设置在第一连接段2421,可有效增加第一连接段2421的变形难度。另外,第一连接段2421一般面积比较大,第一连接段2421在第一壁213上的投影覆盖泄压机构22,第二连接段2424一般面积比较小,第二连接段2424在第一壁213上的投影不会覆盖泄压机构22,所以,在第一连接段2421上设置加强部243。
在一些实施例中,第一连接段2421也可以称为极耳连接段,第二连接段2424也可以称为引出部连接段。
请参见图12和图13,根据本申请的一些实施例,如图12和图13所示,加强部243为第一连接段2421的第一翻边部243a,第一连接段2421具有面向第一壁213(请参见图4)的第一表面2422和背离第一壁213的第二表面2423,第一翻边部243a弯折至第一表面2422的一侧或第一翻边部243a弯折至第二表面2423的一侧。
加强部243可以为第一连接段2421的翻边结构。
第一表面2422和第二表面2423可以为第一连接段2421的厚度方向的相对的两个表面,第一连接段2421的厚度方向可以与第一壁213的厚度方向Z平行。
如图13所示,第一翻边部243a弯折至第一表面2422的一侧,换句话说,加强部243由第一连接段2421朝向第一表面2422的一侧弯折形成第一翻边部243a。第一翻边部243a弯折至第二表面2423的一侧,换句话说,加强部243由第一连接段2421朝向第二表面2423的一侧弯折形成第一翻边部243a。
加强部243为第一翻边部243a,第一翻边部243a弯折至第一表面2422的一侧或第一翻边部243a弯折至第二表面2423的一侧,便于加工成型。
在一些实施例中,加强部243连接于第一连接段2421的边缘以方便弯折。
根据本申请的一些实施例,第一翻边部243a弯折至第一表面2422的一侧,第一翻边部243a与第一表面2422贴合;或,第一翻边部243a弯折至第二表面2423的一侧,第一翻边部243a与第二表面2423贴合。
如图13所示,第一翻边部243a与第一表面2422贴合,第一翻边部243a与第一表面2422具有较大的接触面积。当电池单体20发生热失控、且气流作用于第一连接段2421时,第一翻边部243a能够阻挡第一表面2422朝向第一壁213发生变形,使得第一翻边部243a与第一表面2422的覆盖区域变形的难度增大,降低第一连接段2421遮挡、堵塞泄压孔的风险。
第一翻边部243a与第二表面2423贴合,第一翻边部243a与第二表面2423具有较大的接触面积。当电池单体20发生热失控、且气体作用于第一连接段2421时,第二表面2423能够阻挡第一翻边部243a朝向第一壁213发生变形,使得第一翻边部243a与第二表面2423的覆盖区域变形的难度增大,降低第一连接段2421遮挡、堵塞泄压孔的风险。
请参见图14,图14为本申请一些实施例提供的加强部的结构示意图。根据本申请的一些实施例,如图14所示,第一连接段2421具有面向第一壁213的第一表面2422和背离第一壁213的第二表面2423,第一表面2422形成凸起243b,凸起243b为加强部243。
第一表面2422和第二表面2423可以为第一连接段2421的厚度方向的相对的两个表面。当加强部243为形成于第一表面2422的凸起243b时,加强部243沿第一连接段2421的厚度方向凸出于第一表面2422。
第一连接段2421包括主体区242a,主体区242a连接极耳241,加强部243设置于主体区242a,加强部243可以与主体区242a分体设置,加强部243固定于第一表面2422,例如,加强部243为板状或片状结构,加强部243焊接于主体区242a。或者,加强部243为主体区242a的一部分,例如,加强部243为第一连接段2421冲压形成的部位,或者,加强部243为第一连接段2421局部厚度较厚的部位。
请参见图15,图15为本申请另一些实施例提供的加强部的结构示意图。根据本申请的一些实施例,第二表面2423与凸起243b对应的位置形成第二凹槽243c。
在一些实施例中,如图15所示,加强部243为一体成型于第一连接段2421的结构,加强部243凸出于第一表面2422,第二表面2423与凸起243b对应的位置形成第二凹槽243c。基于上述的结构,加强部243可以为冲压成型于第一连接段2421的加强筋。
在上述方案中,第二表面2423形成与凸起对应的第二凹槽243c,一方面便于加强部243的加工成型,另一方面能够降低第一连接段2421的重量。
根据本申请的一些实施例,如图13至图15,加强部243位于第一连接段2421的朝向第一壁213(请参见图4)的一侧。
第一连接段2421具有面向第一壁213的第一表面2422,加强部243位于第一连接段2421设置第一表面2422的一侧,换句话说,加强部243设置于第一表面2422。
加强部243位于第一连接段2421朝向第一壁213的一侧,能够限制第一连接段2421朝向第一壁213变形,降低第一连接段2421遮挡、堵塞泄压孔的风险。
请参见图16和图17,图16为本申请又一些实施例提供的加强部的结构示意图,图17为图16的A处局部放大图。根据本申请的一些实施例,第一连接段2421具有面向第一壁213的第一表面2422和背离第一壁213的第二表面2423,加强部243在第二表面2423形成凸起243b,加强部243在第一表面2422与凸起243b对应的位置形成第二凹槽243c。
加强部243可以由转接件242冲压成型;加强部243在第二表面2423形成凸起243b,在第一表面2422形成第二凹槽243c,增加转接件242的强度,并且增加转接件242朝向第一壁213发生形变的难度。
在一些实施例中,第二凹槽243c也可以称为凹部,凸起243b也可以称为凸部。
根据本申请的一些实施例,第二凹槽243c在第一壁213上的投影至少部分覆盖泄压机构22。
第二凹槽243c在第一壁213上的投影至少部分覆盖泄压机构22,可以为,第二凹槽243c在第一壁213上的投影只覆盖泄压机构22的一部分;或者,第二凹槽243c在第一壁213上的投影完全覆盖泄压机构22。上述的设置形式,沿第一壁213的厚度方向Z,泄压机构22与第一连接段2421之间具有间隙,降低第一连接段2421遮挡、堵塞泄压孔的风险。
在上述方案中,第二凹槽243c在第一壁213上的投影至少部分覆盖泄压机构22,使得加强部243不易发生形变而遮挡、堵塞泄压孔,保证电池单体20泄压顺畅。
根据本申请的一些实施例,如图16和图17所示,第二凹槽243c延伸至转接件242的边缘。
在加强部243设置于第一连接段2421的实施例中,第二凹槽243c可以延伸至第一连接段2421的边缘,使得第二凹槽243c与第一连接段2421侧方的空间连通,电池单体20内的气体朝向泄压机构22流动时,气体能够经由第一连接段2421的边缘流入第二凹槽243c,并朝向泄压机构22流动。
在上述方案中,第二凹槽243c延伸至转接件242的边缘,以便于在加强部243位置形成气体流动的通道,便于气体经由加强部243朝向泄压机构22流动,便于泄压机构22泄压。
请参见图18,图18为本申请一些实施例提供的第一排气通道的示意图。根据本申请的一些实施例,第二凹槽243c的槽壁设置有连通第二凹槽243c内部与第二凹槽243c外部的第一排气通道243d。
第一排气通道243d为贯穿第二凹槽243c的槽壁的通道,第一排气通道243d可以为通孔。
在上述方案中,第一排气通道243d连通第二凹槽243c内部与第二凹槽243c外部,以便于气体经由第一排气通道243d进入第二凹槽243c,并朝向泄压机构22流动,保证气体流动顺畅,便于泄压机构22泄压。
请参见图19,图19为本申请一些实施例提供的电池单体的部分部件的剖视图。根据本申请的一些实施例,沿厚度方向Z,第二凹槽243c的底面与第一壁213之间的距离为C1,第一表面2422与第一壁213之间的距离为C2,满足0.5mm≤C1-C2≤5mm。
沿厚度方向Z,第二凹槽243c的开口面向第一壁213,第二凹槽243c由第一表面2422沿厚度方向Z朝向背离第一壁213的方向凹陷形成,第二凹槽243c的底面为第二凹槽243c的面向第一壁213的表面。第二凹槽243c的底面相对于第一表面2422远离第一壁213。
在上述方案中,第二凹槽243c的底面与第一壁213的距离C1和第一表面2422与第一壁213之间的距离C2满足上述关系,保证气体朝向泄压机构22流动,加强部243即使发生形变也不易堵塞泄压孔,又能够保证加强部243不占用太多的装配空间,保证电池单体20具有较高的能量密度。在电池单体20热失控时,加强部243会产生变形,如果第二凹槽243c的底面与第一壁213的距离C1减去第一表面2422与第一壁213之间的距离C2的值小于0.5mm,则加强部243变形后容易遮挡、堵塞泄压孔,影响泄压机构22泄压。如果第二凹槽243c的底面与第一壁213的距离C1减去第一表面2422与第一壁213之间的距离C2的值大于5mm,则加强部243在厚度方向Z上占用较大的安装空间,影响电池单体20的能量密度。
可选地,第二凹槽243c的底面与第一壁213的距离C1和第一表面2422与第一壁213之间的距离C2的差值可以为0.5mm、1mm、1.5mm、2mm、2.5mm、3mm、3.5mm、4mm、4.5mmm或5mm等。
根据本申请的一些实施例,满足1mm≤C1-C2≤3mm。
第二凹槽243c的底面与第一壁213的距离C1和第一表面2422与第一壁213之间的距离C2满足上述关系,相较于0.5mm≤C1-C2≤5mm,进一步保证气体朝向泄压机构22流动顺畅,同时合理利用装配空间,保证电池单体20的能量密度。
可选地,第二凹槽243c的底面与第一壁213的距离C1和第一表面2422与第一壁213之间的距离C2的差值可以为1mm、1.5mm、2mm、2.5mm或3mm等。
根据本申请的一些实施例,如图16和图17所示,电池单体20还包括第二支撑件28,第二支撑件28包括第二底壁281和第二侧壁282,第二底壁281与第二凹槽243c的底面贴合,第二侧壁282形成在第二底壁281的边缘,第二侧壁282与第二凹槽243c的侧面贴合。
在一些实施例中,第二支撑件28也可以称为加强件。
第二支撑件28为对加强部243起到支撑作用的部件,在电池单体20热失控时,第二支撑件28能够约束加强部243的变形,提高加强部243发生形变的难度。
第二底壁281和第二侧壁282为第二支撑件28的两个组成部分,第二侧壁282形成在第二底壁281的边缘,第二侧壁282和第二底壁281一体成型。
第二底壁281与第二凹槽243c的底面贴合,第二底壁281与第二凹槽243c的底面具有较大的接触面积,第二底壁281对第二凹槽243c的底面具有较好的阻挡效果。第二底壁281与第二凹槽243c的底面可以焊接,以保证第二底壁281与第二凹槽243c的底面具有较好的连接强度。
第二侧壁282与第二凹槽243c的侧面贴合,第二侧壁282与第二凹槽243c的侧面具有较大的接触面积,第二侧壁282对第二凹槽243c的侧面具有较好的阻挡效果。第二侧壁282与第二凹槽243c的侧面可以焊接,以保证第二侧壁282与第二凹槽243c的侧面具有较好的连接强度。
在上述方案中,第二支撑件28设置于第二凹槽243c内,第二底壁281与第二凹槽243c的底面贴合,第二侧壁282与第二凹槽243c的侧面贴合,第二支撑件28的轮廓与第二凹槽243c轮廓相适配,进一步增强加强部243的强度,降低泄压机构22被遮挡、堵塞的风险,保证泄压机构22泄压。
根据本申请的一些实施例,如图17所示,第二支撑件28还包括第二翻边部283,第二翻边部283连接于第二侧壁282,第二翻边部283位于第二凹槽243c的外部且与第一表面2422贴合。
第二翻边部283为连接于第二侧壁282的翻边结构。
第二翻边部283位于第二凹槽243c的外部且与第一表面2422贴合,使得第二支撑件28与第一连接段2421具有较好的连接稳定性。第二翻边部283可以与第一表面2422焊接,以保证第二翻边部283与第一连接段2421之间具有较好的连接强度。
第二翻边部283与第一表面2422贴合,保证第二支撑件28与转接件242具有较大的连接面积,保证第二支撑件28与转接件242具有较好的连接稳定性。
请参见图20,图20为本申请另一些实施例提供的电池单体热失控后(绝缘件被熔化)的局部剖视图,图20为电池单体20热失控后,电池单体20的部分结构的剖视图。根据本申请的一些实施例,第二底壁281面向第一壁213的表面与第一壁213之间的距离为C3,第一表面2422与第一壁213之间的距离为C2,满足0.5mm≤C3-C2≤5mm。
在上述方案中,第二底壁281面向第一壁213的表面与第一壁213的距离C3和第一表面2422与第一壁213之间的距离C2满足上述关系,保证气体朝向泄压机构22流动,加强部243即使发生形变也不易堵塞泄压孔221,又能够保证加强部243和第二支撑件28不占用太多的装配空间,保证电池单体20具有较高的能量密度。在电池单体20热失控时,加强部243会产生变形,如果第二底壁281面向第一壁213的表面与第一壁213的距离C3减去第一表面2422与第一壁213之间的距离C2的值小于0.5mm,则加强部243变形后第二支撑件28容易遮挡、堵塞泄压孔,影响泄压机构22泄压。如果第二底壁281面向第一壁213的表面与第一壁213的距离C3减去第一表面2422与第一壁213之间的距离C2的值大于5mm,则加强部243和第二支撑件28在厚度方向Z上占用较大的安装空间,影响电池单体20的能量密度。
根据本申请的一些实施例,如图16所示,第一连接段2421包括主体区242a和连接区242b,连接区242b连接极耳241,加强部243设置于主体区242a。
连接区242b为用于与极耳241直接连接的区域。连接区242b可以与极耳241焊接,保证第一连接段2421与极耳241的连接稳定性。通过连接区242b与极耳241连接,加强部243设置于主体区242a,以避免加强部243干涉第一连接段2421与极耳241的连接。
请参见图17,根据本申请的一些实施例,连接区242b凸出于第二表面2423,加强部243凸出于第二表面2423的高度小于或等于连接区242b凸出于第二表面2423的高度。
在上述方案中,加强部243凸出于第二表面2423的高度小于或等于连接区242b凸出于第二表面2423的高度,加强部243在厚度方向Z占用的空间较小,在保证加强部243的强度的前提下,以避免干涉连接区242b与极耳241的连接。
根据本申请的一些实施例,加强部243的厚度为W1,主体区242a的厚度为W2,满足W1/W2>1.1。
在加强部243为一体成型于第一连接段2421的实施例中,加强部243可以为第一连接段2421的局部厚度较厚的部位。
如图14所示,在加强部243与第一连接段2421分体设置的实施例中,加强部243可以为板状或片状,主体区242a和加强部243的材质可以相同,加强部243的厚度W1和主体区242a的厚度W2满足上述关系,加强部243的强度大于主体区242a的未设置加强部243的其他部位的强度,使得加强部243变形的难度较大。
在加强部243为形成于第一表面2422的凸起的实施例中,加强部243的厚度W1可以为加强部243凸出于第一表面2422的高度。
请参照图21,根据本申请的一些实施例,间隙控制部260固定于转接件242。
请参照图21,根据本申请的一些实施例,转接件242包括第一连接段2421,第一连接段2421用于连接极耳241(请参见图3),间隙控制部260设置于第一连接段2421的背离极耳241的一侧。
间隙控制部260设置于第一连接段2421的背离极耳241的一侧,可以提高空间利用率,便于第一连接段2421与极耳241的连接。
请参照图3、图21和图22,根据本申请的一些实施例,间隙控制部260包括加强部243和支撑件26,加强部243具有沿第一壁213的厚度方向相对设置的第一面243e和第二面243f,第一面243e连接于第一连接段2421,支撑件26凸出于第二面243f,支撑件26被配置为在电池单体20热失控时与第一壁213配合以形成泄压通道30。
第一面243e和第二面243f为加强部243的厚度方向相对设置的两个面,第一面243e和第二面243f可以为平面,例如,第一面243e和第二面243f可以与第一壁213的厚度方向垂直,第一面243e和第二面243f可以与第一壁213的厚度方向相交;或者,第一面243e和第二面243f也可以为曲面。加强部243的厚度方向与第一壁213的厚度方向平行。第一面243e可以为加强部243的面向电极组件25的面,第二面243f可以为加强部243的背离电极组件25的面。
第一面243e连接于第一连接段2421,第一面243e可以与第一连接段2421贴合,第一面243e与第一连接段2421具有较大的连接面积,使得第一面243e可以与第一连接段2421连接稳定。
支撑件26可以凸出于第二面243f的结构,例如,支撑件26可以柱状结构。
当第一壁213的面向电极组件25的一侧设置绝缘件27时,支撑件26可以与绝缘件27抵接,以便于限制电极组件25在电池单体20的内部移动;当电池单体20热失控时,绝缘件27熔融,支撑件26能够与第一壁213配合以形成泄压通道30,高温高压气体能够经由泄压通道30朝向泄压机构22移动,进而从泄压孔排出。
在上述方案中,第一面243e连接于第一连接段2421,加强部243能够增加第一连接段2421的强度,增加第一连接段2421变形的难度,支撑件26能够在电池单体20热失控时与第一壁213配合形成泄压通道30,便于电池单体20及时泄压。
根据本申请的一些实施例,加强部243可以与第一连接段2421焊接,使得加强部243与第一连接段2421连接牢固。焊接可为超声波焊接或激光焊接等。
根据本申请的一些实施例,加强部243可以与第一连接段2421粘接,例如,第一面243e与第一连接段2421之间可以设置有导电胶,使得第一面243e与第一连接段2421粘接。
请参见图23,根据本申请的一些实施例,第一连接段2421设置有第一定位部2427,第一面243e形成有第二定位部2431,第一定位部2427与第二定位部2431对应设置,第一定位部2427能够与第二定位部2431配合,实现第一连接段2421与加强部243的连接。
如图23所示,第一定位部2427可以为通孔,第二定位部2431可以为凸出结构,第二定位部2431与第一定位部2427铆接,以将加强部243固定于第一连接段2421。在其他实施例中,第一定位部2427也可以为凸出结构,第二定位部2431也可以为通孔,第二定位部2431与第一定位部2427铆接。
请参见图24和图25,根据本申请的一些实施例,转接件242包括第一连接段2421,第一连接段2421用于连接极耳241,间隙控制部260设置于第一连接段2421的面向极耳241的一侧。
间隙控制部260设置于第一连接段2421的面向极耳241的一侧,能够增加第一连接段2421的强度,增加第一连接段2421变形的难度,降低转接件242在电池单体20热失控时遮挡泄压孔的风险。
请参见图3、图24和图25,根据本申请的一些实施例,间隙控制部260包括加强部243和支撑件26,加强部243具有沿第一壁213的厚度方向相对设置的第一面243e和第二面243f,第二面243f连接于第一连接段2421,支撑件26凸出于第二面243f,支撑件26被配置为在电池单体20热失控时与第一连接段2421和第一壁213配合以形成泄压通道30。
第二面243f连接于第一连接段2421,第二面243f可以与第一连接段2421贴合,第二面243f与第一连接段2421具有较大的连接面积,使得第二面243f可以与第一连接段2421连接稳定。
支撑件26凸出于第二面243f,第二面243f背离电极组件25,支撑件26在加强部243背离电极组件25的一侧凸出,使得支撑件26在电池单体20热失控时能够与第一连接段2421和第一壁213配合以形成泄压通道30。
在上述方案中,第二面243f连接于第一连接段2421,支撑件26凸出于第二面243f,能够增强第一连接段2421的强度,增加第一连接段2421变形的难度,支撑件26能够在电池单体20热失控时与第一连接段2421和第一壁213配合形成泄压通道30,便于电池单体20及时泄压。
在一些实施例中,间隙控制部260包括加强部243和支撑件26,加强部243具有沿第一壁213的厚度方向相对设置的第一面243e和第二面243f,第二面243f连接于第一连接段2421,支撑件26凸出于第二面243f,支撑件26被配置为在电池单体20热失控时与第一连接段2421和第一壁213配合以形成泄压通道30。
在此方案中,支撑件26与第一连接段2421相互错开,支撑件26能够在电池单体20热失控时与第一壁213配合以形成泄压通道30。
请参见图24和图25,并进一步参见图26,根据本申请的一些实施例,第一连接段2421设置有与支撑件26对应的凹部2425,支撑件26插设于凹部2425。
支撑件26插设于凹部2425,使得第二面243f可以与第一连接段2421贴合,并且减少支撑件26占用过多的空间。
在上述方案中,支撑件26插设于凹部2425,在保证间隙控制部260与第一连接段2421的连接稳定性的同时,降低支撑件26占用过多电池单体20的内部空间,从而有效保证电池单体20的能量密度。
根据本申请的一些实施例,如图5所示,支撑件26可以包括第一子支撑件261a和第二子支撑件261b,泄压机构22设置于第一子支撑件261a和第二子支撑件261b之间。
如图5所示,沿第一壁213的厚度方向观察,泄压机构22设置于第一子支撑件261a和第二子支撑件261b在第一壁213上的投影之间,泄压机构22与第一子支撑件261a和第二子支撑件261b在空间上错位设置,例如,沿第一壁213的厚度方向,泄压机构22可以与第一子支撑件261a和第二子支撑件261b分层设置。
第一子支撑件261a和第二子支撑件261b的设置,有利于在电池单体20热失控时在不同的位置与第一壁213配合,以形成泄压通道30,使得电池单体20能够及时泄压。
根据本申请的一些实施例,请参照图27,间隙控制部260包括加强部243和支撑件26,加强部243连接于第一壁213,支撑件26设置于加强部243的背离第一壁213的一侧,支撑件26被配置为在电池单体20热失控时抵接于转接件242,以限制转接件242遮挡泄压机构22形成的泄压孔221。
加强部243可以焊接于第一壁213,或者,加强部243也可以一体成型于第一壁213,或者,加强部243也可以粘接于第一壁213。
在一些实施例中,加强部243具有沿第一壁213的厚度方向相对设置的第一面243e和第二面243f,第一面243e连接于第一壁213,支撑件26凸出于第二面243f;例如,支撑件26包括第一子支撑件261a和第二子支撑件261b,第一子支撑件261a和第二子支撑件261b可以抵接于转接件242的第一连接段2421。
根据本申请的一些实施例,请参照图28,间隙控制部260包括加强部243和支撑件26,加强部243连接于绝缘件27,支撑件26设置于加强部243的背离绝缘件27的一侧,支撑件26抵接于转接件242。
支撑件26可以粘接于绝缘件27,或者,支撑件26也可以与绝缘件27卡接。
在一些实施例中,加强部243具有沿第一壁213的厚度方向相对设置的第一面243e和第二面243f,第一面243e连接于绝缘件27,支撑件26凸出于第二面243f;例如,支撑件26包括第一子支撑件261a和第二子支撑件261b,第一子支撑件261a和第二子支撑件261b可以抵接于转接件242的第一连接段2421。
根据本申请的一些实施例,请参照图29,间隙控制部260包括加强部243和支撑件26,加强部243设置于第一连接段2421的面向极耳241的一侧,加强部243具有沿第一壁213的厚度方向相对设置的第一面243e和第二面243f,第二面243f连接于第一连接段2421,支撑件26凸出于第二面243f,第一连接段2421设置有与支撑件26对应的安装孔2428,安装孔2428沿第一连接段2421的厚度方向贯穿第一连接段2421,支撑件26插设于安装孔2428,支撑件26抵接于绝缘件27,支撑件26被配置为在电池单体20热失控时与第一壁213配合,以形成泄压通道30。
加强部243设置于第一连接段2421的面向极耳241的一侧,也即,加强部243位于第一连接段2421的背离第一壁213的一侧。支撑件26插设于安装孔2428且凸出于第一连接段2421,以与绝缘件27抵接。当电池单体20热失控时,绝缘件27熔化,支撑件26能够与第一壁213抵接,以形成泄压通道30,电池单体20内的高温高压气体能够经由泄压通道30向泄压机构22流动,并从泄压孔221排出。
支撑件26与第二连接段2424错开设置,避免支撑件26与第二连接段2424干涉。
根据本申请的一些实施例,支撑件26与加强部243一体成型。
支撑件26与加强部243一体成型,便于加工制造。
在上述实施例中,加强部243的厚度可以大于第一连接段2421的与加强部243连接的部位的厚度。
根据本申请的一些实施例,如图3和图4所示,极耳241形成于电极组件25的靠近第一壁213的一端,电极引出部23设置于第一壁213。
电极组件25包括主体部251和从主体部251延伸出的极耳241,极耳241从主体部251的靠近第一壁213的一端延伸出。
电极引出部23设置于第一壁213,极耳241与第一壁213之间的距离较小,使得转接件242在第一壁213的厚度方向Z上的尺寸较小,以便于实现极耳241与电极引出部23的电连接。
根据本申请的一些实施例,如图3和图4所示,外壳21包括壳体211和盖体212。壳体211具有开口,电极组件25设置于壳体211内;盖体212封闭开口,以形成密封空间。盖体212为第一壁213,电极引出部23设置于盖体212。
泄压机构22和电极引出部23均设置于盖体212,当极耳241形成于电极组件25的靠近盖体212的一端时,使得电池单体20结构紧凑,合理利用装配空间。
在一些实施例中,第一壁213还可以为壳体211的一个壁。
根据本申请的一些实施例,如图4、图11和图21所示,转接件242还包括第三连接段2426,第三连接段2426连接第一连接段2421和第二连接段2424。为了减小转接件242占用的装配空间,第三连接段2426相对于第一连接段2421折弯,第三连接段2426相对于第二连接段2424折弯,转接件242呈Z形。
在一些实施例中,第三连接段2426也可以称为过渡连接段。
沿厚度方向Z,第二连接段2424在第一壁213上的投影和第三连接段2426在第一壁213上的投影均不与泄压机构22重叠。加强部243位于第一连接段2421的远离第一连接段2421与第三连接段2426的连接部位的一端。
根据本申请的一些实施例,本申请还提供了一种电池100,包括以上任一方案所述的电池单体20。
根据本申请的一些实施例,本申请还提供了一种用电装置,包括上述方案所述的电池100,所述电池100用于提供电能。
其中,用电装置可以是前述任一应用电池100的设备或系统。
请参照图3至图5,并进一步参照图8、图10至图13,本申请一些实施例提供一种电池单体20,电池单体20包括外壳21、电极组件25、电极引出部23、转接件242、泄压机构22、支撑件26和绝缘件27,外壳21包括第一壁213,泄压机构22和电极引出部23均设置于第一壁213。电极组件25和转接件242均设置在外壳21内, 电极组件25设置有极耳241,转接件242包括第一连接段2421和第二连接段2424,第一连接段2421与极耳241连接,第二连接段2424与电极引出部23连接。
支撑件26固定于第一壁213,支撑件26包括两个子支撑件261,两个子支撑件261位于泄压机构22的相对两侧。
绝缘件27设置在第一壁213和转接件242之间,用于绝缘隔离第一壁213和转接件242,绝缘件27包括面向第一壁213的第三表面271,第三表面271上形成有第一凹槽272,两个子支撑件261的朝向转接件242的一端容置于第一凹槽272内。
第一连接段2421设置有加强部243,沿第一壁213的厚度方向,加强部243在第一壁213上的投影与支撑件26在第一壁213上的投影至少部分重叠。
其中,加强部243为连接于第一连接段2421的边缘的第一翻边部243a,第一连接段2421具有面向第一壁213的第一表面2422和背离第一壁213的第二表面2423,第一翻边部243a弯折至第一表面2422的一侧。
请参照图3至图5,并进一步参照图8、图10至图13,本申请一些实施例提供一种电池单体20,电池单体20包括外壳21、电极组件25、电极引出部23、转接件242、泄压机构22、支撑件26和绝缘件27,外壳21包括第一壁213,泄压机构22和电极引出部23均设置于第一壁213。电极组件25和转接件242均设置在外壳21内,电极组件25设置有极耳241,转接件242包括第一连接段2421和第二连接段2424,第一连接段2421与极耳241连接,第二连接段2424与电极引出部23连接。
支撑件26固定于第一壁213,支撑件26包括两个子支撑件261,两个子支撑件261位于泄压机构22的相对两侧。
绝缘件27设置在第一壁213和转接件242之间,用于绝缘隔离第一壁213和转接件242,绝缘件27包括面向第一壁213的第三表面271,第三表面271上形成有第一凹槽272,两个子支撑件261的朝向转接件242的一端容置于第一凹槽272内。
第一连接段2421设置有加强部243,沿第一壁213的厚度方向,加强部243在第一壁213上的投影与支撑件26在第一壁213上的投影至少部分重叠。
其中,第一连接段2421具有面向第一壁213的第一表面2422和背离第一壁213的第二表面2423,第一表面2422或第二表面2423形成凸起243b,凸起243b为加强部243。
请参照图3,并进一步参照图6和图7以及图9,本申请一些实施例提供一种电池单体20,电池单体20包括外壳21、电极组件25、电极引出部23、转接件242、泄压机构22、支撑件26和绝缘件27,外壳21包括第一壁213,泄压机构22和电极引出部23均设置于第一壁213。电极组件25和转接件242均设置在外壳21内,电极组件25设置有极耳241,转接件242包括第一连接段2421和第二连接段2424,第一连接段2421与极耳241连接,第二连接段2424与电极引出部23连接。
支撑件26固定于第一壁213且罩设于泄压机构22,支撑件26包括第一底壁262和第一侧壁263,第一底壁262与泄压机构22沿第一壁213的厚度方向相对设置,第一底壁262与泄压机构22之间形成有间隙,第一侧壁263连接第一底壁262和第一壁213,第一侧壁263具有第二排气通道264。
绝缘件27设置在第一壁213和转接件242之间,用于绝缘隔离第一壁213和转接件242,绝缘件27包括面向第一壁213的第三表面271,第三表面271上形成有第一凹槽272,第一底壁262和第一侧壁263的朝向转接件242的一端容置于第一凹槽272内。
请参照图3,并进一步参照图16、图17、图19及图20,本申请一些实施例提供一种电池单体20,电池单体20包括外壳21、电极组件25、电极引出部23、转接件242、泄压机构22、绝缘件27、加强部243和第二支撑件28,外壳21包括第一壁213,泄压机构22和电极引出部23均设置于第一壁213。电极组件25和转接件242均设置在外壳21内,电极组件25设置有极耳241,转接件242包括第一连接段2421和第二连接段2424,第一连接段2421与极耳241连接,第二连接段2424与电极引出部23连接。
绝缘件27设置在第一壁213和转接件242之间,用于绝缘隔离第一壁213和转接件242。
加强部243设置于第一连接段2421,第一连接段2421具有面向第一壁213的第一表面2422和背离第一壁213的第二表面2423,支撑件26在第一表面2422形成第二凹槽243c,在第二表面2423与第二凹槽243c对应的位置形成凸起243b,沿第一壁213的厚度方向,第二凹槽243c在第一壁213上的投影覆盖泄压机构22,第二凹槽243c延伸至第一连接段2421的边缘。
第二支撑件28包括第二翻边部283、第二底壁281和第二侧壁282,第二底壁281与第二凹槽243c的底面贴合,第二侧壁282形成在第二底壁281的边缘,第二侧壁282与第二凹槽243c的侧面贴合。第二翻边部283连接于第二侧壁282,第二翻边部283位于第二凹槽243c的外部且与第一表面2422贴合。
根据本申请的一些实施例,请参照图3、图4及图21至图22,本申请提供了一种圆柱电池单体,圆柱电池单体包括外壳21、泄压机构22、电极引出部23、电极组件25、转接件242、加强部243和支撑件26。外壳21包括壳体211和盖体212,壳体211具有开口,盖体212封闭开口,以形成密封空间。盖体212为第一壁213,泄压机构22设置于第一壁213,电极引出部23设置于第一壁213。电极组件25设置于壳体211内,电极组件25设置有极耳241,极耳241形成于电极组件25的靠近第一壁213的一端。转接件242包括第一连接段2421、第二连接段2424和第三连接段2426,第三连接段2426连接第一连接段2421和第二连接段2424,第一连接段2421连接极耳241,第二连接段2424连接电极引出部23。加强部243设置于第一连接段2421的背离极耳241的一侧。加强部243 具有沿第一壁213的厚度方向相对设置的第一面243e和第二面243f,第一面243e连接于第一连接段2421,支撑件26凸出于第二面243f,支撑件26被配置为在电池单体20热失控时与第一壁213配合以形成泄压通道30。
根据本申请的一些实施例,请参照图3、图4及图24至图26,本申请提供了一种圆柱电池单体,圆柱电池单体包括外壳21、泄压机构22、电极引出部23、电极组件25、转接件242、加强部243和支撑件26。外壳21包括壳体211和盖体212,壳体211具有开口,盖体212封闭开口,以形成密封空间。盖体212为第一壁213,泄压机构22设置于第一壁213,电极引出部23设置于第一壁213。电极组件25设置于壳体211内,电极组件25设置有极耳241,极耳241形成于电极组件25的靠近第一壁213的一端。转接件242包括第一连接段2421、第二连接段2424和第三连接段2426,第三连接段2426连接第一连接段2421和第二连接段2424,第一连接段2421连接极耳241,第二连接段2424连接电极引出部23。加强部243和支撑件26设置于第一连接段2421的面向极耳241的一侧。加强部243具有沿第一壁213的厚度方向相对设置的第一面243e和第二面243f,第二面243f连接于第一连接段2421,支撑件26凸出于第二面243f,第一连接段2421设置有与支撑件26对应的凹部2425,支撑件26插设于凹部2425;支撑件26被配置为在电池单体20热失控时与第一连接段2421和第一壁213配合以形成泄压通道30。
需要说明的是,在不冲突的情况下,本申请中的实施例中的特征可以相互结合。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (42)

  1. 一种电池单体,包括:
    外壳,具有第一壁;
    泄压机构,设置于所述第一壁;
    电极引出部,设置于所述外壳;
    电极组件,设置于所述外壳内,所述电极组件设置有极耳;
    转接件,连接所述电极引出部和所述极耳;
    间隙控制部,设置于所述外壳内,所述间隙控制部被配置为能够限制所述转接件遮挡所述泄压机构在所述电池单体热失控时形成的泄压孔。
  2. 根据权利要求1所述的电池单体,其中,所述间隙控制部包括支撑件,所述支撑件设置于所述第一壁和所述转接件之间,所述支撑件被配置为能够限制所述转接件遮挡所述泄压机构在所述电池单体热失控时形成的泄压孔。
  3. 根据权利要求2所述的电池单体,其中,所述支撑件的熔点高于200℃。
  4. 根据权利要求2或3所述的电池单体,其中,所述支撑件为金属件。
  5. 根据权利要求2-4中任一项所述的电池单体,其中,所述支撑件固定于所述第一壁。
  6. 根据权利要求5所述的电池单体,其中,所述支撑件和所述第一壁一体成型。
  7. 根据权利要求2-6中任一项所述的电池单体,其中,所述支撑件环绕所述泄压机构设置。
  8. 根据权利要求2-7中任一项所述的电池单体,其中,所述支撑件包括第一子支撑件和第二子支撑件,所述泄压机构设置于所述第一子支撑件和所述第二子支撑件之间。
  9. 根据权利要求2所述的电池单体,其中,所述支撑件罩设于所述泄压机构,所述支撑件具有连通所述支撑件的内部空间和所述支撑件的外部空间的第二排气通道。
  10. 根据权利要求9所述的电池单体,其中,所述支撑件包括第一底壁和第一侧壁,所述第一底壁与所述泄压机构沿所述第一壁的厚度方向相对设置,所述第一底壁与所述泄压机构之间形成有间隙,所述第一侧壁连接所述第一底壁和所述第一壁,所述第二排气通道形成于所述第一侧壁。
  11. 根据权利要求2-9中任一项所述的电池单体,其中,所述电池单体还包括:
    绝缘件,位于所述第一壁和所述转接件之间,用于绝缘隔离所述第一壁和所述转接件;
    其中,所述支撑件的熔点高于所述绝缘件的熔点,所述支撑件被配置为在所述绝缘件熔化后阻止所述转接件遮挡所述泄压机构在所述电池单体热失控时形成的所述泄压孔。
  12. 根据权利要求11所述的电池单体,其中,所述绝缘件包括面向所述第一壁的第三表面,所述第三表面上形成有第一凹槽,所述支撑件的至少一部分容置于所述第一凹槽内。
  13. 根据权利要求1-8中任一项所述的电池单体,其中,所述间隙控制部包括加强部,所述加强部设置于所述转接件,沿所述第一壁的厚度方向,所述加强部在所述第一壁上的投影至少覆盖所述泄压机构的一部分。
  14. 根据权利要求13所述的电池单体,其中,所述间隙控制部还包括支撑件,所述支撑件设置在所述第一壁和所述加强部之间,所述支撑件被配置为在所述电池单体热失控时抵接于所述第一壁和所述加强部之间以在所述加强部和所述第一壁之间形成泄压通道。
  15. 根据权利要求14所述的电池单体,其中,所述支撑件包括第一子支撑件和第二子支撑件,所述泄压机构设置于所述第一子支撑件和所述第二子支撑件之间。
  16. 根据权利要求15所述的电池单体,其中,沿所述厚度方向,所述加强部在所述第一壁上的投影覆盖所述第一子支撑件的至少一部分和所述第二子支撑件的至少一部分。
  17. 根据权利要求16所述的电池单体,其中,沿所述厚度方向,所述第一子支撑件的中心和所述第二子支撑件的中心在所述转接件上的投影落入所述加强部。
  18. 根据权利要求13-17中任一项所述的电池单体,其中,所述转接件包括第一连接段,所述第一连接段用于连接所述极耳,所述加强部设置于所述第一连接段。
  19. 根据权利要求18所述的电池单体,其中,所述加强部为所述第一连接段的第一翻边部,所述第一连接段具有面向所述第一壁的第一表面和背离所述第一壁的第二表面,所述第一翻边部弯折至所述第一表面的一侧或所述第一翻边部弯折至所述第二表面的一侧。
  20. 根据权利要求19所述的电池单体,其中,所述第一翻边部弯折至所述第一表面的一侧,所述第一翻边部与所述第一表面贴合;或,
    所述第一翻边部弯折至所述第二表面的一侧,所述第一翻边部与所述第二表面贴合。
  21. 根据权利要求18所述的电池单体,其中,所述第一连接段具有面向所述第一壁的第一表面和背离所述第一壁的第二表面,所述第一表面形成凸起,所述凸起为所述加强部。
  22. 根据权利要求21所述的电池单体,其中,所述第二表面与所述凸起对应的位置形成第二凹槽。
  23. 根据权利要求18所述的电池单体,其中,所述第一连接段具有面向所述第一壁的第一表面和背离所述第一壁的第二表面,所述加强部在所述第二表面形成凸起,所述加强部在所述第一表面与所述凸起对应的位置形成第二 凹槽。
  24. 根据权利要求23所述的电池单体,其中,所述第二凹槽在第一壁上的投影至少部分覆盖所述泄压机构。
  25. 根据权利要求23或24所述的电池单体,其中,所述第二凹槽延伸至所述第一连接段的边缘。
  26. 根据权利要求23-25中任一项所述的电池单体,其中,所述第二凹槽的槽壁设置有连通所述第二凹槽内部与所述第二凹槽外部的第一排气通道。
  27. 根据权利要求23-26中任一项所述的电池单体,其中,沿所述厚度方向,所述第二凹槽的底面与所述第一壁之间的距离为C1,所述第一表面与所述第一壁之间的距离为C2,满足0.5mm≤C1-C2≤5mm。
  28. 根据权利要求27所述的电池单体,其中,满足1mm≤C1-C2≤3mm。
  29. 根据权利要求23-28中任一项所述的电池单体,其中,所述电池单体还包括:
    第二支撑件,所述第二支撑件包括第二底壁和第二侧壁,所述第二底壁与所述第二凹槽的底面贴合,所述第二侧壁形成在所述第二底壁的边缘,所述第二侧壁与所述第二凹槽的侧面贴合。
  30. 根据权利要求29所述的电池单体,其中,所述第二支撑件还包括第二翻边部,所述第二翻边部连接于所述第二侧壁,所述第二翻边部位于所述第二凹槽的外部且与所述第一表面贴合。
  31. 根据权利要求23-30中任一项所述的电池单体,其中,所述第一连接段包括主体区和连接区,所述连接区连接所述极耳,所述加强部设置于所述主体区。
  32. 根据权利要求31所述的电池单体,其中,所述连接区凸出于所述第二表面,所述加强部凸出于所述第二表面的高度小于或等于所述连接区凸出于所述第二表面的高度。
  33. 根据权利要求1所述的电池单体,其中,所述转接件包括第一连接段,所述第一连接段用于连接所述极耳,所述间隙控制部设置于所述第一连接段的背离所述极耳的一侧。
  34. 根据权利要求33所述的电池单体,其中,所述间隙控制部包括加强部和支撑件,所述加强部具有沿所述第一壁的厚度方向相对设置的第一面和第二面,所述第一面连接于所述第一连接段,所述支撑件凸出于所述第二面,所述支撑件被配置为在所述电池单体热失控时与所述第一壁配合以形成泄压通道。
  35. 根据权利要求1所述的电池单体,其中,所述转接件包括第一连接段,所述第一连接段用于连接所述极耳,所述间隙控制部设置于所述第一连接段的面向所述极耳的一侧。
  36. 根据权利要求35所述的电池单体,其中,所述间隙控制部包括加强部和支撑件,所述加强部具有沿所述第一壁的厚度方向相对设置的第一面和第二面,所述第二面连接于所述第一连接段,所述支撑件凸出于所述第二面,所述支撑件被配置为在所述电池单体热失控时与所述第一连接段和所述第一壁配合以形成泄压通道。
  37. 根据权利要求36所述的电池单体,其中,所述第一连接段设置有与所述支撑件对应的凹部,所述支撑件插设于所述凹部。
  38. 根据权利要求34或36所述的电池单体,其中,所述支撑件包括第一子支撑件和第二子支撑件,所述泄压机构设置于所述第一子支撑件和所述第二子支撑件之间。
  39. 根据权利要求34或36所述的电池单体,其中,所述支撑件与所述加强部一体成型。
  40. 根据权利要求1-39中任一项所述的电池单体,其中,所述极耳形成于所述电极组件的靠近所述第一壁的一端,所述电极引出部设置于所述第一壁。
  41. 一种电池,包括如权利要求1-40中任一项所述的电池单体。
  42. 一种用电装置,包括如权利要求1-40中任一项所述的电池单体。
PCT/CN2023/073107 2022-06-21 2023-01-19 电池单体、电池及用电装置 WO2023246098A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202380014335.6A CN118216037A (zh) 2022-06-21 2023-01-19 电池单体、电池及用电装置
CN202380014437.8A CN118216038A (zh) 2022-06-21 2023-03-31 电池单体、电池及用电装置
PCT/CN2023/085655 WO2023246227A1 (zh) 2022-06-21 2023-03-31 电池单体、电池及用电装置
CN202321002045.3U CN220672794U (zh) 2022-06-21 2023-04-27 电池单体、电池及用电装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CNPCT/CN2022/100171 2022-06-21
CNPCT/CN2022/100174 2022-06-21
PCT/CN2022/100171 WO2023245429A1 (zh) 2022-06-21 2022-06-21 电池单体、电池及用电装置
PCT/CN2022/100174 WO2023245431A1 (zh) 2022-06-21 2022-06-21 电池单体、电池及用电设备

Publications (1)

Publication Number Publication Date
WO2023246098A1 true WO2023246098A1 (zh) 2023-12-28

Family

ID=87422615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073107 WO2023246098A1 (zh) 2022-06-21 2023-01-19 电池单体、电池及用电装置

Country Status (2)

Country Link
CN (1) CN219457923U (zh)
WO (1) WO2023246098A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN211182350U (zh) * 2019-12-20 2020-08-04 欣旺达电动汽车电池有限公司 二次电池连接片和二次电池
CN112350002A (zh) * 2019-08-07 2021-02-09 江苏时代新能源科技有限公司 二次电池及电池包
CN215816085U (zh) * 2021-06-30 2022-02-11 厦门海辰新能源科技有限公司 电芯以及储能装置
CN216085104U (zh) * 2021-10-19 2022-03-18 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置
CN216719997U (zh) * 2022-01-25 2022-06-10 宁德时代新能源科技股份有限公司 集流盘、顶盖、电池单体、电池及用电装置
WO2022120851A1 (zh) * 2020-12-11 2022-06-16 宁德时代新能源科技股份有限公司 端盖组件、电池单体及其制造方法、电池及用电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112350002A (zh) * 2019-08-07 2021-02-09 江苏时代新能源科技有限公司 二次电池及电池包
CN211182350U (zh) * 2019-12-20 2020-08-04 欣旺达电动汽车电池有限公司 二次电池连接片和二次电池
WO2022120851A1 (zh) * 2020-12-11 2022-06-16 宁德时代新能源科技股份有限公司 端盖组件、电池单体及其制造方法、电池及用电装置
CN215816085U (zh) * 2021-06-30 2022-02-11 厦门海辰新能源科技有限公司 电芯以及储能装置
CN216085104U (zh) * 2021-10-19 2022-03-18 宁德时代新能源科技股份有限公司 电池单体、电池及用电装置
CN216719997U (zh) * 2022-01-25 2022-06-10 宁德时代新能源科技股份有限公司 集流盘、顶盖、电池单体、电池及用电装置

Also Published As

Publication number Publication date
CN219457923U (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
EP3965213B1 (en) Battery and related apparatus thereof, preparation method and preparation device
JP7428811B2 (ja) 電池セル、電池及び電力消費装置
WO2023174266A1 (zh) 壳体、电池单体、电池及用电设备
EP3965214B1 (en) Battery and related apparatus thereof and preparation method and preparation device therefor
WO2023164997A1 (zh) 端盖组件、电池单体、电池及用电装置
WO2023207402A1 (zh) 顶盖组件、电池单体、电池及用电设备
WO2023236309A1 (zh) 电池箱体、电池以及用电装置
WO2023221267A1 (zh) 端盖组件、电池单体、电池及用电装置
WO2023159507A1 (zh) 绝缘件、端盖组件、电池单体、电池及用电设备
WO2023044634A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023245429A1 (zh) 电池单体、电池及用电装置
WO2023160389A1 (zh) 电池壳体、电池单体、电池和用电设备
US11955657B2 (en) Battery, powered device, method for preparing battery, and device for preparing battery
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023246098A1 (zh) 电池单体、电池及用电装置
CN218414891U (zh) 电池的箱体、电池、用电装置和制备电池的装置
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
WO2023246227A1 (zh) 电池单体、电池及用电装置
WO2023245431A1 (zh) 电池单体、电池及用电设备
WO2023173428A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2024026829A1 (zh) 电池单体、电池以及用电装置
WO2023173414A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
WO2023245673A1 (zh) 电池单体、电池及用电装置
CN220382158U (zh) 电极组件、电池单体、电池及用电设备
WO2023184422A1 (zh) 电池单体、电池及用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23825758

Country of ref document: EP

Kind code of ref document: A1