WO2023159507A1 - 绝缘件、端盖组件、电池单体、电池及用电设备 - Google Patents

绝缘件、端盖组件、电池单体、电池及用电设备 Download PDF

Info

Publication number
WO2023159507A1
WO2023159507A1 PCT/CN2022/078068 CN2022078068W WO2023159507A1 WO 2023159507 A1 WO2023159507 A1 WO 2023159507A1 CN 2022078068 W CN2022078068 W CN 2022078068W WO 2023159507 A1 WO2023159507 A1 WO 2023159507A1
Authority
WO
WIPO (PCT)
Prior art keywords
protrusion
insulator
battery cell
end cap
electrode assembly
Prior art date
Application number
PCT/CN2022/078068
Other languages
English (en)
French (fr)
Inventor
柯海波
李全坤
梅祥
王鹏
吴宁生
陈燕琳
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/078068 priority Critical patent/WO2023159507A1/zh
Priority to CN202280007847.5A priority patent/CN116964835A/zh
Priority to CN202223198311.2U priority patent/CN219123437U/zh
Publication of WO2023159507A1 publication Critical patent/WO2023159507A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/35Gas exhaust passages comprising elongated, tortuous or labyrinth-shaped exhaust passages
    • H01M50/367Internal gas exhaust passages forming part of the battery cover or case; Double cover vent systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to an insulating member, an end cover assembly, a battery cell, a battery and electrical equipment.
  • Energy saving and emission reduction is the key to the sustainable development of the automobile industry.
  • electric vehicles have become an important assembly part of the sustainable development of the automobile industry due to their advantages of energy saving and environmental protection.
  • battery technology is an important factor related to its development.
  • Embodiments of the present application provide an insulator, an end cap assembly, a battery cell, a battery, and an electrical device, which can enhance the safety of the battery cell.
  • the present application provides an insulator for a battery cell, comprising: an insulator body having a first surface and a second surface oppositely disposed along its thickness direction, the first surface facing the battery A single electrode assembly, the second surface is away from the electrode assembly; a protrusion is formed on the first surface for abutting against the electrode assembly; wherein, the protrusion is provided with air holes, and the The ventilation hole runs through the protrusion along a direction intersecting with the thickness direction.
  • the air vent penetrates the protrusion along the direction intersecting with the thickness direction, in other words, the extending direction of the air vent intersects the thickness direction of the insulator body, and the air vent penetrates the protrusion, so that the gas When flowing through the protrusion, it can pass through the protrusion quickly, reducing the resistance of the protrusion to the flow of gas and facilitating the flow of gas; when the battery cell is thermally out of control and the pressure relief mechanism is activated, the gas can flow from the area where the gas is generated Fast flow towards the pressure relief mechanism to discharge from the pressure relief mechanism, reducing the risk of cracking failure of the weld seam between the end cover and the shell, and improving the safety of the battery cell.
  • the protrusion includes a bottom surface and an outer peripheral surface, the bottom surface is used to abut against the electrode assembly, the outer peripheral surface is arranged around the bottom surface, and the outer peripheral surface is connected to the The bottom surface and the first surface, the ventilation holes are arranged on the outer peripheral surface.
  • the bottom surface is a raised surface for abutting against the electrode assembly.
  • the electrode assembly By abutting the bottom surface with the electrode assembly, the positioning of the insulator to the electrode assembly can be realized.
  • the electrode The assembly has better assembly stability; air vents are arranged on the outer peripheral surface to facilitate the passage of gas through the protrusions and reduce the resistance of the protrusions to gas flow.
  • the protrusion extends along a first direction
  • the ventilation hole penetrates through the protrusion along a second direction perpendicular to the first direction
  • the first direction and the second direction The directions are all parallel to the first surface.
  • the extending direction of the vent hole is perpendicular to the extending direction of the protrusion, and the extending length of the vent hole is relatively short, that is, the path for the gas to pass through the protrusion is short, which facilitates the gas to pass through the protrusion quickly and improves the gas flow. smoothness.
  • the protrusion is provided with a plurality of the ventilation holes, and the plurality of the ventilation holes are arranged at intervals along the first direction.
  • a plurality of ventilation holes are arranged at intervals along the extension direction of the protrusion, so that the protrusion has a plurality of positions for gas circulation, which facilitates the passage of gas through the protrusion and improves the passage efficiency of gas.
  • the plurality of protrusions are arranged at intervals along the second direction.
  • a plurality of protrusions are arranged at intervals along the second direction, so that the insulator has higher strength, and the insulator and the electrode assembly have more contact positions, which can better position the electrode assembly.
  • the insulator body is a rectangular plate
  • the second direction is the length direction of the insulator body
  • the protrusions include a first protrusion, a second protrusion and a third protrusion
  • the first protrusion and the third protrusion are located at both ends of the insulator body in the length direction
  • the second protrusion is located between the first protrusion and the third protrusion .
  • the first protrusion and the third protrusion are located at both ends of the length direction of the insulator body, and the second protrusion is located between the first protrusion and the third protrusion, so that the insulator body is positioned between the insulator body It has higher strength in the length direction of the insulator body, so that the insulator has a better positioning effect on the electrode assembly in the length direction of the insulator body.
  • the second protrusion is a hollow structure
  • the second surface is provided with an opening communicating with the inside of the second protrusion
  • the ventilation holes on the second protrusion It communicates with the inside of the second protrusion.
  • the second protrusion is a hollow structure, and the vent hole of the second protrusion communicates with the interior of the second protrusion.
  • the interior of the second protrusion can gather gas and facilitate gas circulation.
  • the gas in the interior can flow toward the opening, so as to facilitate the discharge of the gas in the second protrusion.
  • the second surface is provided with a groove for avoiding the pressure relief mechanism of the battery cell, and the groove at least partially overlaps with the opening.
  • the groove corresponds to the pressure relief mechanism, and the groove and the opening at least partially overlap, so that the gas flows toward the opening after entering the second protrusion, so as to quickly reach the pressure relief mechanism, and facilitate rapid pressure relief.
  • the present application provides an end cap assembly for a battery cell, including: an end cap; an electrode terminal disposed on the end cap; a pressure relief mechanism disposed on the end cap and configured to When the internal pressure of the battery cell reaches a threshold value, the internal pressure is released; as described in any one of the above-mentioned insulators, the insulator is arranged on a side of the end cap facing the inside of the battery cell side.
  • the insulator is arranged on the side of the end cover facing the inside of the battery cell, and the battery cell formed by the end cover assembly can improve the smoothness of gas flow, so that the gas can pass through the pressure relief Mechanism discharge, improve the safety of battery cells.
  • the insulator body is in the shape of a cuboid
  • the protrusion includes a second protrusion
  • the second protrusion is arranged in the middle of the insulator body
  • the second protrusion is along the The width direction of the insulator body extends, and the air hole runs through the second protrusion along the length direction of the insulator body
  • the second protrusion is a hollow structure
  • the second surface is provided with a The opening communicating with the inside of the second protrusion
  • the air hole on the second protrusion communicates with the inside of the second protrusion
  • the pressure relief mechanism is arranged on the end cover and the first At positions corresponding to the two protrusions, along the thickness direction, the projection of the pressure relief mechanism at least partially overlaps with the projection of the opening.
  • the pressure relief mechanism is arranged correspondingly to the second protrusion, the second protrusion is a hollow structure, and the pressure relief mechanism overlaps with the opening at least in part, so that the gas can flow toward the pressure relief mechanism after gathering inside the second protrusion
  • the flow improves the flow rate of the gas flowing to the pressure relief mechanism, which is convenient for the pressure relief mechanism to release pressure in time when the battery cell is thermally out of control.
  • the second surface is provided with a positioning portion
  • the end cover is provided with a positioning hole corresponding to the positioning portion, and the positioning portion is inserted into the positioning hole.
  • the assembling of the insulator and the end cover is realized by inserting the locating part into the locating hole, and the structure is simple and easy to operate.
  • the present application provides a battery cell, including: a casing with an opening at the end; an electrode assembly disposed in the casing; the end cap assembly according to any one of the above embodiments, the end The cover covers the end opening, and the protrusion abuts against the electrode assembly.
  • the above-mentioned end cover assembly is adopted, when the battery cell is thermally runaway, the gas generated inside the battery cell can quickly flow to the pressure relief mechanism, which improves the safety of the battery cell.
  • the battery cell further includes: an insulating film wrapped on the outside of the electrode assembly, used to insulate and isolate the electrode assembly from the casing, the insulating film and the protrusion
  • the insulating film is provided with a notch, and the notch is set corresponding to the vent hole, so that the gas generated inside the battery cell enters the vent hole through the notch.
  • the gaps in the insulating film are set correspondingly to the vent holes, which can facilitate the circulation of gas while ensuring the connection between the insulating film and the insulating part and the insulation and isolation effect of the insulating film on the electrode assembly.
  • the gas between them can enter the vent hole through the gap, and quickly flow toward the pressure relief mechanism.
  • the insulating film is connected to the protrusion by heat fusion.
  • the insulating film is hot-melt connected to the protrusion, so as to ensure the stability of the connection between the insulating film and the protrusion.
  • the present application provides a battery, including the battery cell as described in any one of the above embodiments.
  • the present application provides an electric device, including the battery cell as described in any one of the above embodiments.
  • the present application provides a method for manufacturing a battery cell, comprising: providing a casing, the casing having an end opening; providing an electrode assembly; providing an end cap assembly, the end cap assembly including an end cap, An electrode terminal, a pressure relief mechanism, and an insulator, the electrode terminal is disposed on the end cover, the pressure relief mechanism is disposed on the end cap, and the pressure relief mechanism is configured to The internal pressure is released when the threshold value is reached, the insulator is arranged on the end cap, the insulator includes an insulator body and a protrusion, the insulator body has a first surface oppositely arranged along its thickness direction and On the second surface, the protrusion is formed on the first surface, and the protrusion is provided with a vent hole, and the vent hole penetrates the protrusion along a direction intersecting with the thickness direction; the electrode assembly is placed within the housing; covering the end cap over the end opening so that the insulator is located on the side of the end cap facing the interior of the battery cell, and
  • the present application provides a battery cell manufacturing equipment, including: providing a module for: providing a casing, providing an electrode assembly and providing an end cap assembly, the casing has an opening at the end, and the end
  • the cover assembly includes an end cover, an electrode terminal, a pressure relief mechanism and an insulator, the electrode terminal is provided on the end cover, the pressure relief mechanism is provided on the end cover, and the pressure relief mechanism is configured to When the internal pressure of the battery cell reaches a threshold value, the internal pressure is released, the insulator is arranged on the end cover, the insulator includes an insulator body and a protrusion, and the insulator body has opposite sides along its thickness direction A first surface and a second surface are provided, the protrusion is formed on the first surface, the protrusion is provided with a vent hole, and the vent hole penetrates the protrusion along a direction intersecting with the thickness direction; An installation module for placing the electrode assembly in the casing, covering the end cap on the end opening, so that the insulator is located
  • Fig. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • FIG. 2 is a schematic diagram of an exploded structure of a battery provided in some embodiments of the present application.
  • FIG. 3 is a schematic diagram of an exploded structure of a battery cell provided in some embodiments of the present application.
  • Fig. 4 is a schematic diagram of an assembly state of an end cap assembly and an electrode assembly provided by some embodiments of the present application;
  • Fig. 5 is the left view of Fig. 4;
  • Fig. 6 is a schematic structural view of the first surface of the insulator provided by some embodiments of the present application.
  • Fig. 7 is a schematic structural diagram of the second surface of the insulator provided by some embodiments of the present application.
  • Fig. 8 is a schematic structural diagram of an insulating member on the first surface provided by other embodiments of the present application according to some embodiments of the present application;
  • Fig. 9 is a schematic diagram of partial structural decomposition of a battery cell provided by some embodiments of the present application.
  • FIG. 10 is a schematic diagram of the assembly of an insulating film and an insulating member provided by some embodiments of the present application.
  • FIG. 11 is a schematic flowchart of a method for manufacturing a battery cell provided by some embodiments of the present application.
  • Fig. 12 is a schematic flow chart of the manufacturing equipment of the battery cell provided by some embodiments of the present application.
  • Marking instructions 100-battery; 10-box; 11-first part; 12-second part; 20-battery unit; 21-end cover assembly; 211-end cover; 212-electrode terminal; 213-pressure relief mechanism 214-insulator; 2141-insulator body; 21411-first face; 21412-second face; 21413-opening; 21414-groove; 21415-positioning part; 2142b-second protrusion; 2142c-third protrusion; 21421-bottom surface; 21422-peripheral surface; 2143-air vent; - insulating film; 241 - gap; 25 - connecting member; 200 - controller; 300 - motor; 1000 - vehicle.
  • multiple refers to more than two (including two), similarly, “multiple groups” refers to more than two groups (including two), and “multiple pieces” refers to More than two pieces (including two pieces).
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be mechanically connected or electrically connected; it can be directly connected or indirectly connected through an intermediary, and it can be the internal communication of two components. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application in specific situations.
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in the embodiments of the present application.
  • the battery cell can be in the shape of a cylinder, a flat body, a cuboid or other shapes, which is not limited in this embodiment of the present application.
  • Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, square battery cells and pouch battery cells, which are not limited in this embodiment of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack, and the like.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive pole piece, a negative pole piece and a diaphragm.
  • a battery cell works primarily by moving metal ions between the positive and negative pole pieces.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the current collector not coated with the positive electrode active material layer protrudes from the current collector coated with the positive electrode active material layer, The current collector not coated with the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the current collector not coated with the negative electrode active material layer protrudes from the current collector coated with the negative electrode active material layer, The current collector not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the diaphragm can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), etc.
  • the battery cell also includes a casing, an end cover and an insulator.
  • the casing has an opening at the end, the electrode assembly is arranged in the casing, the insulator covers the opening at the end, and the insulator is arranged on a side of the end cover facing the inside of the battery cell. On the side, the insulator is used to insulate and separate the electrode assembly and the end cap.
  • the battery cell also includes a pressure relief mechanism, which can be arranged on the end cap to release the internal pressure or temperature of the battery cell.
  • the pressure relief mechanism refers to an element or part that is activated to release the internal pressure or temperature when the internal pressure or temperature of the battery cell reaches a predetermined threshold.
  • the pressure relief mechanism can take the form of an explosion-proof valve, gas valve, pressure relief valve or safety valve, etc., and can specifically use a pressure-sensitive or temperature-sensitive element or structure, that is, when the internal pressure or temperature of the battery cell reaches a predetermined threshold When the pressure relief mechanism performs an action or the weak structure provided in the pressure relief mechanism is destroyed, an opening or channel for internal pressure or temperature release is formed.
  • the "activation" mentioned in this application means that the pressure relief mechanism is activated or activated to a certain state, so that the internal pressure and temperature of the battery cells can be released.
  • Actions by the pressure relief mechanism may include, but are not limited to, at least a portion of the pressure relief mechanism rupture, shatter, be torn, or open, among others.
  • the pressure relief mechanism When the pressure relief mechanism is actuated, the high-temperature and high-pressure substance (such as gas) inside the battery cell will be discharged from the actuated part as discharge. In this way, the pressure and temperature of the battery cells can be released under the condition of controllable pressure or temperature, so as to avoid potential more serious accidents.
  • the end cover of the battery cell is welded to the casing, the insulator is arranged on the side of the end cover facing the inside of the battery cell, and the side of the insulator facing the electrode assembly is provided with a protrusion, which is used to connect with the electrode assembly.
  • the components abut to realize the positioning of the electrode assembly; since the pressure relief mechanism on the end cap is arranged in the middle of the end cap, and the position of the insulator corresponding to the pressure relief mechanism is provided with a middle protrusion, the middle protrusion abuts against on the electrode assembly to reduce the shaking of the electrode assembly.
  • the surface of the middle protrusion facing the electrode assembly is provided with vent holes extending along the thickness direction of the insulator, but the inventors have found that when the battery cell is thermally out of control, the pressure relief mechanism (such as an explosion-proof valve) still exists The problem of not being able to release the pressure in time.
  • the pressure relief mechanism such as an explosion-proof valve
  • the gas production in this local area is relatively large, and the air pressure in this area rises rapidly, and the air hole facing the electrode assembly in the middle is covered by the electrode assembly.
  • the obstruction of the gas on both sides of the middle protrusion has poor fluidity, and the amount of gas flowing from the inside of the battery cell toward the pressure relief mechanism is small. Because the gas cannot quickly flow to the pressure relief mechanism to be discharged, the gas in this area impacts the nearby shell, causing the weld seam between the shell and the end cover to crack, resulting in the risk of fire and explosion.
  • the insulator includes an insulator body and protrusions.
  • the insulator body has The first surface and the second surface are oppositely arranged, the first surface faces the electrode assembly of the battery cell, the second surface faces away from the electrode assembly, a protrusion is formed on the first surface, and the protrusion is used to abut against the electrode assembly, wherein the protrusion A vent hole is provided, and the vent hole penetrates the protrusion along a direction intersecting with the thickness direction.
  • the air holes facilitate gas to flow in a direction intersecting with the thickness direction and pass through the protrusions, reduce the resistance of the protrusions to the gas flow, improve the smoothness of the gas flow, and facilitate the gas to flow toward the pressure relief mechanism arranged on the end cover.
  • the vent hole runs through the protrusion along the direction intersecting with the thickness direction, in other words, the extending direction of the vent hole intersects the thickness direction of the insulator body, and the vent hole penetrates the protrusion , so that when the gas flows through the protrusion, it can pass through the protrusion quickly, reducing the resistance of the protrusion to the flow of gas, and facilitating the flow of gas;
  • the area of gas flows quickly toward the pressure relief mechanism to be discharged from the pressure relief mechanism, reducing the risk of cracking and failure of the welding seam between the end cover and the shell, and improving the safety of the battery cell.
  • the battery cells disclosed in the embodiments of the present application can be used, but not limited, in electrical equipment such as vehicles, ships, or aircrafts.
  • the power supply system of the electrical equipment can be composed of the battery cells and batteries disclosed in this application.
  • the embodiment of the present application provides an electric device that uses a battery cell as a power source.
  • the electric device can be, but not limited to, a mobile phone, a tablet computer, a notebook computer, an electric toy, an electric tool, an electric bicycle, an electric motorcycle, an electric car, Ships, spacecraft, etc.
  • electric toys may include fixed or mobile electric toys, such as game consoles, electric car toys, electric boat toys, electric airplane toys, etc.
  • spacecraft may include airplanes, rockets, space shuttles, spaceships, etc.
  • a vehicle 1000 as an electric device according to an embodiment of the present application is taken as an example.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 provided by some embodiments of the present application.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles.
  • the interior of the vehicle 1000 is provided with a battery 100 , and the battery 100 may be provided at the bottom, head or tail of the vehicle 1000 .
  • the battery 100 can be used for power supply of the vehicle 1000, for example, the battery 100 can be used as an operating power source of the vehicle 1000, and can be used for a circuit system of the vehicle, for example, for starting, navigating, and working power requirements of the vehicle.
  • the vehicle 1000 may further include a controller 200 and a motor 300 , the controller 200 is used to control the battery 100 to supply power to the motor 300 , for example, for starting, navigating and running the vehicle 1000 .
  • the battery 100 can not only be used as an operating power source for the vehicle 1000 , but can also be used as a driving power source for the vehicle 1000 , replacing or partially replacing fuel oil or natural gas to provide driving power for the vehicle 1000 .
  • FIG. 2 is a schematic diagram of an exploded structure of a battery 100 provided in some embodiments of the present application.
  • the battery 100 includes a case 10 and battery cells 20 housed in the case 10 .
  • the box body 10 is used to provide accommodating space for the battery cells 20 , and the box body 10 may adopt various structures.
  • the box body 10 may include a first part 11 and a second part 12, the first part 11 and the second part 12 cover each other, the first part 11 and the second part 12 jointly define a of accommodation space.
  • the second part 12 can be a hollow structure with one end open, the first part 11 can be a plate-shaped structure, and the first part 11 covers the opening side of the second part 12, so that the first part 11 and the second part 12 jointly define an accommodation space ;
  • the first part 11 and the second part 12 can also be hollow structures with one side opening, and the opening side of the first part 11 is covered by the opening side of the second part 12 .
  • the box body 10 formed by the first part 11 and the second part 12 can be in various shapes, such as a cylinder, a cuboid and the like.
  • the battery 100 there may be multiple battery cells 20 , and the multiple battery cells 20 may be connected in series, in parallel or in parallel.
  • the mixed connection means that the multiple battery cells 20 are connected in series and in parallel.
  • a plurality of battery cells 20 can be directly connected in series, in parallel or mixed together, and then the whole composed of a plurality of battery cells 20 is housed in the box 10; of course, the battery 100 can also be a plurality of battery cells 20
  • the battery modules are firstly connected in series or parallel or in combination, and then multiple battery modules are connected in series or in parallel or in combination to form a whole, which is accommodated in the case 10 .
  • the battery 100 may also include other structures, for example, the battery 100 may also include a bus component for realizing electrical connection between multiple battery cells 20 .
  • each battery cell 20 may be a secondary battery or a primary battery; it may also be a lithium-sulfur battery, a sodium-ion battery or a magnesium-ion battery, but not limited thereto.
  • the battery cell 20 may be in the form of a cylinder, a flat body, a cuboid or other shapes. The embodiment of the present application is introduced by taking the battery cell 20 as a rectangular parallelepiped as an example.
  • FIG. 3 is a schematic diagram of an exploded structure of a battery cell 20 provided in some embodiments of the present application.
  • the battery cell 20 refers to the smallest unit constituting a battery.
  • the battery cell 20 includes an end cap assembly 21 , a casing 22 , an electrode assembly 23 and other functional components.
  • the end cap assembly 21 includes an end cap 211 , an electrode terminal 212 , a pressure relief mechanism 213 and an insulator 214 .
  • the electrode terminal 212 and the pressure relief mechanism 213 can be disposed on the end cap 211 , and the insulator 214 is disposed inside the end cap 211 .
  • the end cap 211 refers to a component that covers the end opening of the casing 22 to isolate the internal environment of the battery cell 20 from the external environment.
  • the shape of the end cap 211 can be adapted to the shape of the housing 22 to fit the housing 22 .
  • the end cap 211 can be made of a material (such as aluminum alloy) with a certain hardness and strength, so that the end cap 211 is not easily deformed when being squeezed and collided, so that the battery cell 20 can have a higher Structural strength and safety performance can also be improved.
  • the end cap 211 can also be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, and the like.
  • the electrode terminal 212 can be used to be electrically connected with the electrode assembly 23 for outputting or inputting electric energy of the battery cell 20 .
  • the pressure relief mechanism 213 is used to release the internal pressure when the internal pressure or temperature of the battery cell 20 reaches a threshold.
  • the casing 22 is a component used to cooperate with the end cap 211 to form the internal environment of the battery cell 20 , wherein the formed internal environment can be used to accommodate the electrode assembly 23 , electrolyte and other components.
  • the housing 22 and the end cover 211 can be independent components, and an end opening can be provided on the housing 22 , and the internal environment of the battery cell 20 can be formed by making the end cover 211 cover the end opening at the end opening.
  • the end cover 211 and the housing 22 can also be integrated. Specifically, the end cover 211 and the housing 22 can form a common connection surface before other components are inserted into the housing. When the inside of the housing 22 needs to be encapsulated , then make the end cover 211 cover the housing 22 .
  • the shape of the casing 22 can be determined according to the specific shape and size of the electrode assembly 23 .
  • the housing 22 can be made of various materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic and so on.
  • the casing 22 and the end cover 211 in the embodiment of the present application are connected by welding.
  • the electrode assembly 23 is a part where the electrochemical reaction occurs in the battery cell 20 .
  • One or more electrode assemblies 23 may be contained within the case 22 .
  • the electrode assembly 23 is mainly formed by winding or laminating a positive pole piece and a negative pole piece, and a separator is usually provided between the positive pole piece and the negative pole piece.
  • the part of the positive pole piece and the negative pole piece with the active material constitutes the main body of the electrode assembly 23 , and the parts of the positive pole piece and the negative pole piece without the active material respectively form tabs.
  • the positive pole tab and the negative pole tab can be located at one end of the main body together or at two ends of the main body respectively.
  • the insulator 214 is disposed on the side of the end cover 211 facing the inside of the battery cell 20 , and the insulator 214 can be used to isolate the electrical connection components in the housing 22 from the end cover 211 to reduce the risk of short circuit.
  • the insulating member 214 may be plastic, rubber or the like.
  • FIG. 3 is a schematic structural diagram of the insulating member 214 provided by some embodiments of the present application on the first surface 21411
  • FIG. 7 is a schematic structural diagram of the insulating member 214 provided by some embodiments of the present application on the second surface 21412 .
  • the present application provides an insulator 214 for a battery cell 20
  • the insulator 214 includes an insulator body 2141 and a protrusion 2142 .
  • the insulator body 2141 has a first surface 21411 and a second surface 21412 oppositely disposed along its thickness direction Z, the first surface 21411 faces the electrode assembly 23 of the battery cell 20 , and the second surface 21412 faces away from the electrode assembly 23 .
  • the protrusion 2142 is formed on the first surface 21411 , and the protrusion 2142 is used to abut against the electrode assembly 23 .
  • the protrusion 2142 is provided with a ventilation hole 2143 , and the ventilation hole 2143 penetrates the protrusion 2142 along a direction intersecting with the thickness direction Z.
  • the direction indicated by the letter Z is the thickness direction of the insulator body 2141 .
  • the first surface 21411 faces the electrode assembly 23 of the battery cell 20
  • the second surface 21412 faces away from the electrode assembly 23 .
  • the protrusion 2142 is a part formed on the first surface 21411 and used for cooperating with the electrode assembly 23 .
  • the protrusion 2142 can be integrally formed with the insulator body 2141 , for example, the protrusion 2142 and the insulator body 2141 are melt-molded.
  • the ventilation hole 2143 penetrates the protrusion 2142 along the direction intersecting the thickness direction Z, which means that the extension direction of the ventilation hole 2143 intersects the thickness direction Z of the insulator body 2141, for example, the extension direction of the ventilation hole 2143 can be perpendicular to the thickness direction Z, Alternatively, the extending direction of the vent holes 2143 and the thickness direction Z may also form an included angle.
  • the ventilation hole 2143 is a through hole provided on the protrusion 2142 for realizing gas circulation.
  • the air vent 2143 penetrates the protrusion 2142 along the direction intersecting the thickness direction Z, in other words, the extending direction of the air vent 2143 intersects the thickness direction Z of the insulator body 2141, and is breathable.
  • the hole 2143 runs through the protrusion 2142, so that when the gas flows through the protrusion 2142, it can quickly pass through the protrusion 2142, reducing the resistance of the protrusion 2142 to the flow of gas and facilitating the flow of gas;
  • the pressure mechanism 213 When the pressure mechanism 213 is actuated, the gas can quickly flow from the gas-generating area toward the pressure relief mechanism 213 to be discharged from the pressure relief mechanism 213, reducing the risk of cracking and failure of the welding seam between the end cover 211 and the casing 22, and improving battery life. body 20 security.
  • the protrusion 2142 includes a bottom surface 21421 and an outer peripheral surface 21412, the bottom surface 21421 is used to abut the electrode assembly 23, the outer peripheral surface 21412 is surrounded by the bottom surface 21421, and the outer peripheral surface 21421 The surface 21412 connects the bottom surface 21421 and the first surface 21411 , and the ventilation hole 2143 is disposed on the outer peripheral surface 21412 .
  • the bottom surface 21421 is the surface of the protrusion 2142 facing the electrode assembly 23 , in other words, the bottom surface 21421 is the surface of the protrusion 2142 away from the first surface 21411 .
  • the outer peripheral surface 21412 is disposed around the bottom surface 21421 , and the outer peripheral surface 21412 is disposed around the edge of the bottom surface 21421 .
  • the bottom surface 21421 is the surface of the protrusion 2142 for abutting against the electrode assembly 23, through the abutment of the bottom surface 21421 and the electrode assembly 23, the positioning of the insulator 214 to the electrode assembly 23 can be realized, and the battery cell using the insulator 214 In 20, the electrode assembly 23 has better assembly stability; the air vent 2143 is provided on the outer peripheral surface 21412, so that the gas can pass through the protrusion 2142, and the resistance of the protrusion 2142 to the flow of gas can be reduced.
  • the ventilation holes 2143 may extend from the first surface 21411 toward the bottom surface 21421 . In order to ensure the strength of the protrusion 2142 , there is a certain distance between the air hole 2143 and the bottom surface 21421 in the thickness direction Z of the insulator body 2141 .
  • the protrusion 2142 extends along the first direction X, and the vent hole 2143 penetrates the protrusion 2142 along the second direction Y perpendicular to the first direction X, and the first direction Both X and the second direction Y are parallel to the first surface 21411 .
  • the direction indicated by the letter X is the first direction
  • the direction indicated by the letter Y is the second direction
  • both the first direction X and the second direction Y are perpendicular to the thickness direction Z of the insulator body 2141 .
  • Both the first direction X and the second direction Y are parallel to the first surface 21411 , in other words, the plane formed by the first direction X and the second direction Y is parallel to the first surface 21411 .
  • the extension direction of the vent hole 2143 is perpendicular to the extension direction of the protrusion 2142, and the extension length of the vent hole 2143 is relatively short, that is, the path for the gas to pass through the protrusion 2142 is relatively short, so that the gas can pass through the protrusion 2142 quickly and improve the gas flow. smoothness.
  • the extending direction of the vent hole 2143 may also form an included angle with the extending direction of the protrusion 2142, and the included angle is not equal to 90°.
  • the protrusion 2142 extends along the first direction X, and the ventilation holes 2143 may also penetrate through the protrusion 2142 along the first direction X.
  • the protrusion 2142 is provided with a plurality of ventilation holes 2143 , and the plurality of ventilation holes 2143 are arranged at intervals along the first direction X.
  • the plurality of air holes 2143 are arranged at intervals along the first direction X, in other words, the plurality of air holes 2143 are arranged at intervals along the extending direction of the protrusion 2142 .
  • the plurality of air holes 2143 may be located on a straight line parallel to the first direction X, or the plurality of air holes 2143 may also be scattered.
  • a plurality of ventilation holes 2143 are arranged at intervals along the extending direction of the protrusion 2142, so that the protrusion 2142 has a plurality of positions for gas circulation, which facilitates the passage of gas through the protrusion 2142 and improves the passing efficiency of the gas.
  • a plurality of protrusions 2142 are provided, and the plurality of protrusions 2142 are arranged at intervals along the second direction Y.
  • a plurality of protrusions 2142 are arranged at intervals along the second direction Y, and the plurality of protrusions 2142 are arranged in parallel.
  • the positions of the ventilation holes 2143 on the plurality of protrusions 2142 can be the same, and the ventilation holes 2143 of the plurality of protrusions 2142 are arranged in the second direction.
  • Y is overlapped, which is convenient for processing and manufacturing; or, the positions of the vent holes 2143 on the plurality of protrusions 2142 are different, and the vent holes 2143 of the plurality of protrusions 2142 do not overlap or partially overlap in the second direction Y.
  • a plurality of protrusions 2142 are arranged at intervals along the second direction Y, so that the insulator 214 has higher strength, and the insulator 214 has more contact positions with the electrode assembly 23 , which can better position the electrode assembly 23 .
  • the insulator body 2141 is a rectangular plate
  • the second direction Y is the length direction of the insulator body 2141
  • the protrusions 2142 include a first protrusion 2142a, a second protrusion 2142b and a third protrusion 2142c
  • the first protrusion 2142a and the third protrusion 2142c are located at both ends of the insulator body 2141 in the length direction
  • the second protrusion 2142b is located between the first protrusion 2142a and the third protrusion 2142c.
  • the second direction Y is the length direction of the insulator body 2141
  • the first direction X is the width direction of the insulator body 2141 .
  • the protrusion 2142 extends along the first direction X, and may be that the protrusion 2142 penetrates the insulator body 2141 in the width direction of the insulator body 2141 to increase the strength of the insulator body 2141 in the width direction.
  • the first protrusion 2142a and the third protrusion 2142c are located at both ends of the length direction of the insulator body 2141, and the second protrusion 2142b is located between the first protrusion 2142a and the third protrusion 2142c, so that the insulator body 2141 is insulated.
  • the length direction of the insulator body 2141 has higher strength, so that the insulator 214 has a better positioning effect on the electrode assembly 23 in the length direction of the insulator body 2141 .
  • the second protrusion 2142b is a hollow structure
  • the second surface 21412 is provided with an opening 21413 communicating with the inside of the second protrusion 2142b
  • the ventilation hole 2143 on the second protrusion 2142b is connected with the second protrusion From the internal communication of 2142b.
  • the opening 21413 is a region provided on the second surface 21412 for communicating with the inside of the second protrusion 2142b.
  • the opening 21413 can be a hollow part on the insulator 214 , for example, the opening 21413 can penetrate the insulator body 2141 in the thickness direction Z of the insulator body 2141 , that is, the opening 21413 can extend from the second surface 21412 to the first surface 21411 .
  • the second protrusion 2142b is a hollow structure, and the vent hole 2143 of the second protrusion 2142b communicates with the inside of the second protrusion 2142b.
  • the inside of the second protrusion 2142b can gather gas and facilitate gas circulation. It is located on the second protrusion 2142b The gas inside can flow toward the opening 21413, so as to facilitate the discharge of the gas in the second protrusion 2142b.
  • FIG. 8 is a schematic structural diagram of the insulating member 214 on the first surface 21411 provided by other embodiments of the present application.
  • the protrusion 2142 may extend along the second direction Y, which is the length direction of the insulator body 2141 , and the ventilation holes penetrate the protrusion 2142 along the first direction X.
  • the second surface 21412 is provided with a groove 21414 for avoiding the pressure relief mechanism 213 of the battery cell 20 (see FIG. 3 ), and the groove 21414 is at least partly connected with the opening 21413 overlapping.
  • the groove 21414 is a region of the insulator body 2141 for assembling with the pressure relief mechanism 213 , and the groove 21414 may be formed by indenting the second surface 21412 toward the first surface 21411 .
  • the groove 21414 may partially overlap the opening 21413 , or the groove 21414 may completely overlap the opening 21413 .
  • the groove 21414 corresponds to the pressure relief mechanism 213, and the groove 21414 at least partially overlaps the opening 21413, so that the gas flows toward the opening 21413 after entering the second protrusion 2142b, so as to quickly reach the pressure relief mechanism 213, so as to facilitate rapid pressure relief.
  • the present application provides an end cover assembly 21 for a battery cell 20 .
  • the end cover assembly 21 includes an end cover 211 , an electrode terminal 212 , a pressure relief mechanism 213 and an insulating member 214 provided in any one of the above-mentioned embodiments.
  • the electrode terminal 212 is disposed on the end cap 211 ;
  • the pressure relief mechanism 213 is disposed on the end cap 211 , and the pressure relief mechanism 213 is configured to release the internal pressure of the battery cell 20 when the internal pressure reaches a threshold.
  • the insulator 214 is disposed on a side of the end cover 211 facing the inside of the battery cell 20 .
  • the insulator 214 is provided with a hole for avoiding the electrode terminal 212 so as to facilitate the electrical connection between the electrode terminal 212 and the electrode assembly 23 of the battery cell 20 .
  • the insulator 214 is disposed on the side of the end cover 211 facing the inside of the battery cell 20, and the battery cell 20 formed by the end cover assembly 21 can improve the smoothness of gas flow, In order to facilitate the discharge of gas through the pressure relief mechanism 213 , the safety of the battery cell 20 is improved.
  • the insulator body 2141 is in the shape of a cuboid
  • the protrusion 2142 includes a second protrusion 2142b
  • the second protrusion 2142b is disposed on the insulator body 2141
  • the second protrusion 2142b extends along the width direction of the insulator body 2141
  • the vent hole 2143 runs through the second protrusion 2142b along the length direction of the insulator body 2141.
  • the second protrusion 2142b is a hollow structure, and the second surface 21412 is provided with The opening 21413 communicating with the inside of the second protrusion 2142b, the vent hole 2143 on the second protrusion 2142b communicates with the inside of the second protrusion 2142b, and the pressure relief mechanism 213 is arranged on the end cover 211 corresponding to the second protrusion 2142b , along the thickness direction Z, the projection of the pressure relief mechanism 213 and the projection of the opening 21413 at least partially overlap.
  • the second protrusion 2142b is disposed in the middle of the insulator body 2141 means that the second protrusion 2142b is located near the center of the insulator body 2141, but it is not limited to the second protrusion 2142b being located in the insulator The center of the body 2141 .
  • the second protrusion 2142b can be located at the center of the insulator body 2141 , or the second protrusion 2142b can also have a certain distance from the center of the insulator body 2141 .
  • the second protrusion 2142b extends along the width direction of the insulator body 2141, which may be that the second protrusion 2142b extends from one edge to the opposite edge in the width direction of the insulator body 2141, that is, the second protrusion 2142b may penetrate the insulator body 2141 in a width direction of the insulator body 2141 .
  • the second protrusion 2142b is a hollow structure, and the vent hole 2143 communicates with the interior of the second protrusion 2142b when passing through the second protrusion 2142b, and gas can enter the interior of the second protrusion 2142b through the vent hole 2143 . At the same time, the gas inside the second protrusion 2142 b can flow toward the end cap 211 through the opening 21413 .
  • the projection of the pressure relief mechanism 213 and the projection of the opening 21413 at least partially overlap. At least partially overlap; for example, the projection of the pressure relief mechanism 213 may partially overlap the projection of the opening 21413 , or the projection of the pressure relief mechanism 213 may completely overlap the projection of the opening 21413 .
  • the pressure relief mechanism 213 is arranged corresponding to the second protrusion 2142b, the second protrusion 2142b is a hollow structure, and the pressure relief mechanism 213 and the opening 21413 are at least partially overlapped, so that the gas can converge in the inside of the second protrusion 2142b and then move towards pressure relief.
  • the flow of the mechanism 213 increases the flow rate of the gas flowing to the pressure relief mechanism 213 , which facilitates timely pressure relief by the pressure relief mechanism 213 when the battery cell 20 is thermally out of control.
  • the second surface 21412 is provided with a positioning part 21415
  • the end cover 211 is provided with a positioning hole (not shown) corresponding to the positioning part 21415, and the positioning part 21415 is inserted in the positioning hole.
  • the positioning part 21415 is a component provided on the second surface 21412 for connecting and positioning with the end cover 211 , and the positioning part 21415 may protrude from the second surface 21412 .
  • the positioning part 21415 can be a positioning rod, and the cross section of the positioning rod can be circular, rectangular, triangular or special-shaped, etc.
  • the cross section of the positioning rod is circular, which is convenient for processing.
  • the shape of the positioning hole corresponds to the cross-sectional shape of the positioning rod.
  • the positioning part 21415 By inserting the positioning part 21415 into the positioning hole, the assembly of the insulator 214 and the end cover 211 is realized, and the structure is simple and easy to operate.
  • the present application provides a battery cell 20 .
  • the battery cell 20 includes a casing 22 , an electrode assembly 23 and an end cap assembly 21 provided in any one of the above-mentioned embodiments.
  • the casing 22 has an open end, and the electrode assembly 23 is disposed in the casing 22 .
  • the end cap 211 covers the end opening, and the protrusion 2142 abuts against the electrode assembly 23 .
  • the end cap 211 covers the end opening, the insulator 214 is located on the side of the end cap 211 facing the electrode assembly 23, and the protrusion 2142 of the insulator 214 abuts against the electrode assembly 23 to realize the positioning of the electrode assembly 23 and avoid the electrode assembly 23.
  • the assembly 23 moves within the housing 22 .
  • the above-mentioned end cover assembly 21 is adopted.
  • the gas generated inside the battery cell 20 can quickly flow to the pressure relief mechanism 213, which improves the battery cell. 20 for security.
  • FIG. 9 is a schematic diagram of partial structural decomposition of the battery cell 20 provided by some embodiments of the present application.
  • the battery cell 20 further includes an insulating film 24, and the insulating film 24 is wrapped on the outside of the electrode assembly 23.
  • the insulating film 24 is used to insulate and isolate the electrode assembly 23 from the casing 22. 2142 , the insulating film 24 is provided with a notch 241 , and the notch 241 is set corresponding to the vent hole 2143 , so that the gas generated inside the battery cell 20 enters the vent hole 2143 through the notch 241 .
  • the insulating film 24 wraps the electrode assembly 23 so that the electrode assembly 23 is insulated from the casing 22 .
  • the insulating film 24 is usually arranged around the edge of the electrode assembly 23 .
  • the gap 241 provided on the insulating film 24 is set correspondingly to the vent hole 2143, which can facilitate the circulation of gas while ensuring the connection between the insulating film 24 and the insulating member 214 and the insulation and isolation effect of the insulating film 24 on the electrode assembly 23.
  • the gas between the casing 22 can enter the vent hole 2143 through the gap 241 , and quickly flow toward the pressure relief mechanism 213 .
  • the notch 241 is located at one end of the insulating film 24 for connecting with the insulating member 214, and the notch 241 is also arranged between two adjacent protrusions 2142, that is, , the region of the insulating film 24 located between two adjacent notches 241 is connected to the protrusion 2142 of the insulating member 214 .
  • the insulating film 24 is connected to the protrusion 2142 by heat fusion.
  • the insulating film 24 is connected to the protrusion 2142 by heat fusion, so as to ensure the stability of the connection between the insulating film 24 and the protrusion 2142 .
  • the area of the protrusion 2142 connected to the insulating film 24 is provided with a recess 2144 to reduce the weight of the protrusion 2142 .
  • the present application provides a battery 100, and the battery 100 includes the battery cell 20 provided in any one of the above-mentioned embodiments.
  • the present application provides an electric device, the electric device includes the battery cell 20 provided in any one of the above embodiments, and the battery cell 20 is used to provide electric energy for the electric device.
  • the electric device may be any of the aforementioned devices or systems using the battery cell 20 .
  • the present application provides a battery cell 20
  • the battery cell 20 includes an end cap assembly 21 , a casing 22 , an electrode assembly 23 and an insulating film 24 .
  • the end cover assembly 21 includes an end cover 211 , an electrode terminal 212 , a pressure relief mechanism 213 and an insulator 214 .
  • the electrode terminal 212 is disposed on the end cap 211
  • the pressure relief mechanism 213 is disposed on the end cap 211
  • the insulator 214 is disposed on a side of the end cap 211 facing the inside of the battery cell 20 .
  • the casing 22 has an open end
  • the electrode assembly 23 is disposed in the casing 22 .
  • the end cap 211 covers the end opening.
  • the insulator 214 includes an insulator body 2141 and a protrusion 2142.
  • the insulator body 2141 has a first surface 21411 and a second surface 21412 opposite to each other in the thickness direction Z.
  • the first surface 21411 faces the electrode assembly 23, and the second surface 21412 faces away from the electrode.
  • a protrusion 2142 is formed on the first surface 21411 , and the protrusion 2142 is provided with a vent hole 2143 , the vent hole 2143 penetrates the protrusion 2142 along the direction intersecting with the thickness direction Z, and the protrusion 2142 abuts against the electrode assembly 23 .
  • the insulator body 2141 is in the shape of a cuboid
  • the protrusion 2142 includes a second protrusion 2142b
  • the second protrusion 2142b is arranged in the middle of the insulator body 2141
  • the second protrusion 2142b extends along the width direction of the insulator body 2141
  • the ventilation holes 2143 The second protrusion 2142b runs through the length direction of the insulator body 2141.
  • the second protrusion 2142b is a hollow structure.
  • the second surface 21412 is provided with an opening 21413 communicating with the inside of the second protrusion 2142b.
  • the vent hole 2143 communicates with the inside of the second protrusion 2142b.
  • the pressure relief mechanism 213 is disposed on the end cover 211 at a position corresponding to the second protrusion 2142b. The pressure relief mechanism 213 partially overlaps the opening 21413 .
  • vent hole 2143 runs through the protrusion 2142, the resistance of the protrusion 2142 to the flow of gas is reduced, and when the battery cell 20 is thermally runaway, the gas generated inside the battery cell 20 can quickly flow to the pressure relief mechanism 213, which improves the performance of the battery cell. 20 for security.
  • FIG. 11 shows a schematic flowchart of a method 400 for manufacturing a battery cell provided by some embodiments of the present application.
  • the manufacturing method 400 of the battery cell may include:
  • the housing 22 has an end opening
  • the end cap assembly 21 includes an end cap 211, an electrode terminal 212, a pressure relief mechanism 213 and an insulator 214, the electrode terminal 212 is disposed on the end cap 211, the pressure relief mechanism 213 is disposed on the end cap 211, and the pressure relief mechanism 213 is disposed on the end cap 211.
  • the pressure mechanism 213 is configured to release the internal pressure when the internal pressure of the battery cell 20 reaches a threshold value.
  • the insulator 214 is arranged on the end cap 211.
  • the insulator 214 includes an insulator body 2141 and a protrusion 2142.
  • the insulator body 2141 has a The first surface 21411 and the second surface 21412 are arranged opposite to each other in the thickness direction Z.
  • the protrusion 2142 is formed on the first surface 21411.
  • the protrusion 2142 is provided with a vent hole 2143, and the vent hole 2143 penetrates the protrusion along the direction intersecting with the thickness direction Z. 2142;
  • Fig. 12 shows a schematic flowchart of a battery cell manufacturing device 500 provided by some embodiments of the present application.
  • the battery cell manufacturing equipment 500 may include: a supply module 501 and an installation module 502 .
  • a module 501 is provided for providing the casing 22, providing the electrode assembly 23 and providing the end cap assembly 21, the casing 22 has an end opening, and the end cap assembly 21 includes an end cap 211, an electrode terminal 212, a pressure relief mechanism 213 and an insulator 214, the electrode terminal 212 is set on the end cover 211, the pressure relief mechanism 213 is set on the end cover 211, the pressure relief mechanism 213 is configured to release the internal pressure when the internal pressure of the battery cell 20 reaches a threshold value, and the insulator 214 is set on the end cover 214.
  • the cover 211, the insulator 214 includes an insulator body 2141 and a protrusion 2142, the insulator body 2141 has a first surface 21411 and a second surface 21412 oppositely arranged along its thickness direction Z, the protrusion 2142 is formed on the first surface 21411, and the protrusion 2142 is formed on the first surface 21411.
  • the protrusion 2142 is provided with a ventilation hole 2143, and the ventilation hole 2143 penetrates the protrusion 2142 along the direction intersecting with the thickness direction Z;
  • the installation module 502 is used to place the electrode assembly 23 in the casing 22, cover the end cap 211 on the end opening, so that the insulator 214 is located on the side of the end cap 211 facing the inside of the battery cell 20, and the protrusion The protrusion 2142 abuts against the electrode assembly 23 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sealing Battery Cases Or Jackets (AREA)
  • Gas Exhaust Devices For Batteries (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请实施例提供一种绝缘件、端盖组件、电池单体、电池及用电设备。该绝缘件,用于电池单体,包括:绝缘件本体,具有沿其厚度方向相对设置的第一面和第二面,所述第一面面向所述电池单体的电极组件,所述第二面背离所述电极组件;凸起,形成于所述第一面,用于抵接于所述电极组件;其中,所述凸起设置有透气孔,所述透气孔沿与所述厚度方向相交的方向贯穿所述凸起。该绝缘件,能够增强电池单体的安全性。

Description

绝缘件、端盖组件、电池单体、电池及用电设备 技术领域
本申请涉及电池技术领域,特别是涉及一种绝缘件、端盖组件、电池单体、电池及用电设备。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组装部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的性能外,安全问题也是一个不可忽视的问题。如果电池的安全问题不能保证,那么该电池就无法使用。因此,如何增强电池的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请实施例提供一种绝缘件、端盖组件、电池单体、电池及用电设备,能够增强电池单体的安全性。
第一方面,本申请提供了一种绝缘件,用于电池单体,包括:绝缘件本体,具有沿其厚度方向相对设置的第一面和第二面,所述第一面面向所述电池单体的电极组件,所述第二面背离所述电极组件;凸起,形成于所述第一面,用于抵接于所述电极组件;其中,所述凸起设置有透气孔,所述透气孔沿与所述厚度方向相交的方向贯穿所述凸起。
根据本申请实施例的绝缘件,由于透气孔沿与厚度方向相交的方向贯穿凸起,换句话说,透气孔的延伸方向与绝缘件本体的厚度方向相交,并且透气孔贯穿凸起,使得气体在流经凸起时,能够快速穿过凸起,降低凸起对气体流动的阻挡,便于气体的流动;在电池单体发生热失控、泄压机构致动时,气体能够从产气的区域朝向泄压机构快速流动,以从泄压机构排出,降低端盖与壳体的焊缝裂开失效的风险,提高电池单体的安全性。
根据本申请的一些实施例,所述凸起包括底面和外周面,所述底面用于抵接所述电极组件,所述外周面围设于所述底面的周围,所述外周面连接所述底面与所述第一面,所述透气孔设置于所述外周面。
在上述方案中,底面为凸起的用于与电极组件抵接的面,通过底面与电极组件抵接,能够实现绝缘件对电极组件的定位,在采用该绝缘件的电池单体中,电极组件具有较好的装配稳定性;透气孔设置于外周面,以便于气体穿过凸起,减少凸起对气体流动的阻挡。
根据本申请的一些实施例,所述凸起沿第一方向延伸,所述透气孔沿垂直于所述第一方向的第二方向贯穿所述凸起,所述第一方向和所述第二方向均与所述第一面平行。
在上述方案中,透气孔的延伸方向与凸起的延伸方向垂直,透气孔的延伸长度较短,也即,气体穿过凸起的路径较短,便于气体快速穿过凸起,提高气体流动的顺畅性。
根据本申请的一些实施例,所述凸起设置有多个所述透气孔,多个所述透气孔沿所述第一方向间隔设置。
在上述方案中,多个透气孔沿凸起的延伸方向间隔设置,使得凸起上具有多个气体流通的位置,利于气体穿过凸起,提高气体的通过效率。
根据本申请的一些实施例,所述凸起设置有多个,多个所述凸起沿所述第二方向间隔设置。
在上述方案中,多个凸起沿第二方向间隔设置,使得绝缘件具有较高的强度,绝缘件与电极组件具有较多的接触位置,能够对电极组件起到较好的定位作用。
根据本申请的一些实施例,所述绝缘件本体为长方形板,所述第二方向为所述绝缘件本体的长度方向,所述凸起包括第一凸起、第二凸起和第三凸起,所述第一凸起和所述第三凸起位于所述绝缘件本体的长度方向的两端,所述第二凸起位于所述第一凸起和所述第三凸起之间。
在上述方案中,第一凸起和第三凸起位于绝缘件本体的长度方向的两端、第二凸起位于第一凸起和第三凸起之间,使得绝缘件本体在绝缘件本体的长度方向上具有较高的强度,从而使得绝缘件在绝缘件本体的长度方向对电极组件具有较好的定位效果。
根据本申请的一些实施例,所述第二凸起为中空结构,所述第二面设置有与所述第二凸起的内部连通的开口,所述第二凸起上的所述透气孔与所述第二凸起的内部连通。
在上述方案中,第二凸起为中空结构,第二凸起的透气孔与第二凸起的内部连通,第二凸起的内部能够汇聚气体,还便于气体流通,位于第二凸起的内部的气体能够朝向开口流动,便于排出第二凸起内的气体。
根据本申请的一些实施例,所述第二面设置有用于避让所述电池单体的泄压机构的凹槽,所述凹槽与所述开口至少部分重叠。
在上述方案中,凹槽与泄压机构对应,凹槽与开口至少部分重叠,以便于气体进入第二凸起后朝向开口流动,以快速到达泄压机构,便于快速泄压。
第二方面,本申请提供了一种端盖组件,用于电池单体,包括:端盖;电极端子,设置于所述端盖;泄压机构,设置于所述端盖,被配置为在所述电池单体的内部压力达到阈值时泄放所述内部压力;如上述任一实施例所述的绝缘件,所述绝缘件设置于所述端盖的面向所述电池单体内部的一侧。
根据本申请实施例的端盖组件,绝缘件设置于端盖的面向电池单体内部的一侧,该端盖组件构成的电池单体,能够提高气体的流动顺畅性,以便于气体经由泄压机构 排出,提高电池单体的安全性。
根据本申请的一些实施例,所述绝缘件本体为长方体形,所述凸起包括第二凸起,所述第二凸起设置于所述绝缘件本体的中部,所述第二凸起沿所述绝缘件本体的宽度方向延伸,所述透气孔沿所述绝缘件本体的长度方向贯穿所述第二凸起,所述第二凸起为中空结构,所述第二面设置有与所述第二凸起的内部连通的开口,所述第二凸起上的所述透气孔与所述第二凸起的内部连通,所述泄压机构设置于所述端盖的与所述第二凸起对应的位置,沿所述厚度方向,所述泄压机构的投影与所述开口的投影至少部分重叠。
在上述方案中,泄压机构与第二凸起对应设置,第二凸起为中空结构,并且泄压机构与开口至少部分重叠,以便于气体在第二凸起的内部汇聚后朝向泄压机构流动,提高了气体流向泄压机构的流速,便于在电池单体热失控时泄压机构及时泄压。
根据本申请的一些实施例,所述第二面设置有定位部,所述端盖设置有与所述定位部对应的定位孔,所述定位部插设于所述定位孔内。
在上述方案中,通过定位部插设于定位孔内,实现绝缘件与端盖的装配,结构简单,便于操作。
第三方面,本申请提供了一种电池单体,包括:壳体,具有端部开口;电极组件,设置于所述壳体内;如上述任一实施例所述的端盖组件,所述端盖覆盖于所述端部开口,所述凸起与所述电极组件抵接。
根据本申请实施例的电池单体,采用上述的端盖组件,在电池单体发生热失控时,电池单体内部产生的气体能够快速流向泄压机构,提高了电池单体的安全性。
根据本申请的一些实施例,所述电池单体还包括:绝缘膜,包裹于所述电极组件的外部,用于绝缘隔离所述电极组件与所述壳体,所述绝缘膜与所述凸起连接,所述绝缘膜设置有缺口,所述缺口与所述透气孔对应设置,以使所述电池单体内部产生的气体通过所述缺口进入所述透气孔。
在上述方案中,绝缘膜设置的缺口与透气孔对应设置,在保证绝缘膜与绝缘件连接以及绝缘膜对电极组件的绝缘隔离效果的同时,还能够便于气体的流通,位于绝缘膜与壳体之间的气体能够经由缺口进入透气孔,朝向泄压机构快速流动。
根据本申请的一些实施例,所述绝缘膜与所述凸起热熔连接。
在上述方案中,绝缘膜与凸起热熔连接,保证绝缘膜与凸起的连接稳定性。
第四方面,本申请提供了一种电池,包括如上述任一实施例所述的电池单体。
第五方面,本申请提供了一种用电设备,包括如上述任一实施例所述的电池单体。
第六方面,本申请提供了一种电池单体的制造方法,包括:提供壳体,所述壳体具有端部开口;提供电极组件;提供端盖组件,所述端盖组件包括端盖、电极端子、泄压机构和绝缘件,所述电极端子设置于所述端盖,所述泄压机构设置于所述端盖,所述泄压机构被配置为在所述电池单体的内部压力达到阈值时泄放所述内部压力,所述绝缘件设置于所述端盖,所述绝缘件包括绝缘件本体和凸起,所述绝缘件本体具有沿其厚度方向相对设置的第一面和第二面,所述凸起形成于所述第一面,所述凸起设 置有透气孔,所述透气孔沿与所述厚度方向相交的方向贯穿所述凸起;将所述电极组件放置于所述壳体内;将所述端盖覆盖于所述端部开口,以使所述绝缘件位于所述端盖的面向所述电池单体内部的一侧,并且使所述凸起与所述电极组件抵接。
第七方面,本申请提供了一种电池单体的制造设备,包括:提供模块,用于:提供壳体、提供电极组件及提供端盖组件,所述壳体具有端部开口,所述端盖组件包括端盖、电极端子、泄压机构和绝缘件,所述电极端子设置于所述端盖,所述泄压机构设置于所述端盖,所述泄压机构被配置为在所述电池单体的内部压力达到阈值时泄放所述内部压力,所述绝缘件设置于所述端盖,所述绝缘件包括绝缘件本体和凸起,所述绝缘件本体具有沿其厚度方向相对设置的第一面和第二面,所述凸起形成于所述第一面,所述凸起设置有透气孔,所述透气孔沿与所述厚度方向相交的方向贯穿所述凸起;安装模块,用于将所述电极组件放置于所述壳体内,将所述端盖覆盖于所述端部开口,以使所述绝缘件位于所述端盖的面向所述电池单体内部的一侧,并且使所述凸起与所述电极组件抵接。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的分解结构示意图;
图3为本申请一些实施例提供的电池单体的分解结构示意图;
图4为本申请一些实施例提供的端盖组件与电极组件装配状态的示意图;
图5为图4的左视图;
图6为本申请一些实施例提供的绝缘件在第一面的结构示意图;
图7为本申请一些实施例提供的绝缘件在第二面的结构示意图;
图8为本申请另一些实施例提供的绝缘件在第一面的结构示意图根据本申请的一些实施例;
图9为本申请一些实施例提供的电池单体的部分结构分解的示意图;
图10为本申请一些实施例提供的绝缘膜与绝缘件的装配示意图;
图11为本申请一些实施例提供的电池单体的制造方法的示意性流程图;
图12为本申请一些实施例提供的电池单体的制造设备的示意性流程图;
在附图中,附图并未按照实际的比例绘制。
标记说明:100-电池;10-箱体;11-第一部分;12-第二部分;20-电池单体; 21-端盖组件;211-端盖;212-电极端子;213-泄压机构;214-绝缘件;2141-绝缘件本体;21411-第一面;21412-第二面;21413-开口;21414-凹槽;21415-定位部;2142-凸起;2142a-第一凸起;2142b-第二凸起;2142c-第三凸起;21421-底面;21422-外周面;2143-透气孔;2144-凹陷部;22-壳体;221-端部开口;23-电极组件;24-绝缘膜;241-缺口;25-连接构件;200-控制器;300-马达;1000-车辆。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排它的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体 可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极极片、负极极片和隔膜组成。电池单体主要依靠金属离子在正极极片和负极极片之间移动来工作。正极极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。
电池单体还包括壳体、端盖和绝缘件,壳体具有端部开口,电极组件设置于壳体内,绝缘件覆盖于端部开口,绝缘件设置于端盖的面向电池单体内部的一侧,绝缘件用于绝缘隔离电极组件和端盖。
电池单体还包括泄压机构,泄压机构可以设置于端盖,以泄放电池单体的内部压力或温度。
泄压机构是指电池单体的内部压力或温度达到预定阈值时致动以泄放内部压力或温度的元件或部件。泄压机构可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏或温敏的元件或构造,即,当电池单体的内部压力或温度达到预定阈值时,泄压机构执行动作或者泄压机构中设有的薄弱结构被破坏,从而形成可供内部压力或温度泄放的开口或通道。
本申请中所提到的“致动”是指泄压机构产生动作或被激活至一定的状态,从而使得电池单体的内部压力及温度得以被泄放。泄压机构产生的动作可以包括但不限于:泄压机构中的至少一部分破裂、破碎、被撕裂或者打开,等等。泄压机构在致动时,电池单体的内部的高温高压物质(如气体)作为排放物会从致动的部位向外排出。以此方式能够在可控压力或温度的情况下使电池单体发生泄压及泄温,从而避免潜在的更严重的事故发生。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
现有技术中,电池单体的端盖与壳体焊接,绝缘件设置于端盖面向电池单体内 部的一侧,绝缘件的面向电极组件的一面设置有凸起,该凸起用于与电极组件抵接,以实现对电极组件的定位;由于端盖上的泄压机构设置于端盖的中部,并且绝缘件的与泄压机构对应的位置设置有中间凸起,该中间凸起抵接于电极组件以减少电极组件的晃动。同时,该中间凸起的面向电极组件的表面开设有沿绝缘件的厚度方向延伸的透气孔,但是,发明人发现,在电池单体发生热失控时,泄压机构(如防爆阀)依旧存在不能及时泄压的问题。经分析发现,当电池单体的局部区域发生热失控时,该局部区域产气量较大,此区域气压快速升高,而中间凸起面向电极组件的透气孔被电极组件覆盖,由于中间凸起的阻挡,中间凸起两侧的气体的流动性较差,电池单体的内部朝向泄压机构流动的气体的量较少,在泄压机构泄压的瞬间,产气量较大的区域产生的气体因无法快速流向泄压机构排出,而导致该区域的气体冲击附近的壳体,使得壳体与端盖的焊缝裂开,导致起火爆炸风险。
鉴于此,为了提高电池单体的安全性,发明人经过深入研究,设计了一种绝缘件,用于电池单体,该绝缘件包括绝缘件本体和凸起,绝缘件本体具有沿其厚度方向相对设置的第一面和第二面,第一面面向电池单体的电极组件,第二面背离电极组件,凸起形成于第一面,凸起用于抵接于电极组件,其中,凸起设置有透气孔,透气孔沿与厚度方向相交的方向贯穿凸起。透气孔利于气体在与厚度方向相交的方向流动且穿过凸起,降低凸起对气体流动的阻挡,提高了气体流动的顺畅性,便于气体朝向设置于端盖的泄压机构流动。
在这样的绝缘件构成的电池单体中,由于透气孔沿与厚度方向相交的方向贯穿凸起,换句话说,透气孔的延伸方向与绝缘件本体的厚度方向相交,并且透气孔贯穿凸起,使得气体在流经凸起时,能够快速穿过凸起,降低凸起对气体流动的阻挡,便于气体的流动;在电池单体发生热失控、泄压机构致动时,气体能够从产气的区域朝向泄压机构快速流动,以从泄压机构排出,降低端盖与壳体的焊缝裂开失效的风险,提高电池单体的安全性。
本申请实施例公开的电池单体可以但不限用于车辆、船舶或飞行器等用电设备中。可以使用具备本申请公开的电池单体、电池等组成该用电设备的电源系统。
本申请实施例提供一种使用电池单体作为电源的用电设备,用电设备可以为但不限于手机、平板电脑、笔记本电脑、电动玩具、电动工具、电动自行车、电动摩托车、电动汽车、轮船、航天器等等。其中,电动玩具可以包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等,航天器可以包括飞机、火箭、航天飞机和宇宙飞船等等。
以下实施例为了方便说明,以本申请一实施例的一种用电设备为车辆1000为例进行说明。
请参照图,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源,用于车辆的电路系统,例如用于车辆的启动、导航和运行时的 工作用电需求。
车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池100的分解结构示意图。电池100包括箱体10和电池单体20,电池单体20容纳于箱体10内。其中,箱体10用于为电池单体20提供容纳空间,箱体10可以采用多种结构。在一些实施例中,箱体10可以包括第一部分11和第二部分12,第一部分11与第二部分12相互盖合,第一部分11和第二部分12共同限定出用于容纳电池单体20的容纳空间。第二部分12可以为一端开口的空心结构,第一部分11可以为板状结构,第一部分11盖合于第二部分12的开口侧,以使第一部分11与第二部分12共同限定出容纳空间;第一部分11和第二部分12也可以是均为一侧开口的空心结构,第一部分11的开口侧盖合于第二部分12的开口侧。当然,第一部分11和第二部分12形成的箱体10可以是多种形状,比如,圆柱体、长方体等。
在电池100中,电池单体20可以是多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,电池100也可以是多个电池单体20先串联或并联或混联组成电池模块形式,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池100还可以包括其他结构,例如,该电池100还可以包括汇流部件,用于实现多个电池单体20之间的电连接。
其中,每个电池单体20可以为二次电池或一次电池;还可以是锂硫电池、钠离子电池或镁离子电池,但不局限于此。电池单体20可呈圆柱体、扁平体、长方体或其它形状等。本申请实施例以电池单体20呈长方体为例介绍。
请参照图3,图3为本申请一些实施例提供的电池单体20的分解结构示意图。电池单体20是指组成电池的最小单元。如图3,电池单体20包括有端盖组件21、壳体22、电极组件23以及其他的功能性部件。
端盖组件21包括端盖211、电极端子212、泄压机构213和绝缘件214,电极端子212和泄压机构213可以设置于端盖211上,绝缘件214设置于端盖211的内侧。
端盖211是指盖合于壳体22的端部开口处以将电池单体20的内部环境隔绝于外部环境的部件。不限地,端盖211的形状可以与壳体22的形状相适应以配合壳体22。可选地,端盖211可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖211在受挤压碰撞时就不易发生形变,使电池单体20能够具备更高的结构强度,安全性能也可以有所提高。端盖211的材质也可以是多种的,比如,铜、铁、铝、不锈钢、铝合金、塑胶等。
电极端子212可以用于与电极组件23电连接,以用于输出或输入电池单体20 的电能。
泄压机构213用于在电池单体20的内部压力或温度达到阈值时泄放内部压力。
壳体22是用于配合端盖211以形成电池单体20的内部环境的组件,其中,形成的内部环境可以用于容纳电极组件23、电解液以及其他部件。壳体22和端盖211可以是独立的部件,可以于壳体22上设置端部开口,通过在端部开口处使端盖211盖合端部开口以形成电池单体20的内部环境。不限地,也可以使端盖211和壳体22一体化,具体地,端盖211和壳体22可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体22的内部时,再使端盖211盖合壳体22。壳体22的形状可以根据电极组件23的具体形状和尺寸大小来确定。壳体22的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等。本申请实施例的壳体22与端盖211采用焊接方式连接。
电极组件23是电池单体20中发生电化学反应的部件。壳体22内可以包含一个或更多个电极组件23。电极组件23主要由正极极片和负极极片卷绕或层叠放置形成,并且通常在正极极片与负极极片之间设有隔膜。正极极片和负极极片具有活性物质的部分构成电极组件23的主体部,正极极片和负极极片不具有活性物质的部分各自构成极耳。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳通过连接构件25连接电极端子212以形成电流回路。
绝缘件214设置在端盖211的朝向电池单体20内部的一侧,绝缘件214可以用于隔离壳体22内的电连接部件与端盖211,以降低短路的风险。示例性的,绝缘件214可以是塑料、橡胶等。
根据本申请的一些实施例,参照图3,并请进一步参照图4至图7,图4为本申请一些实施例提供的端盖组件21与电极组件23装配状态的示意图,图5为图4的左视图,图6为本申请一些实施例提供的绝缘件214在第一面21411的结构示意图,图7为本申请一些实施例提供的绝缘件214在第二面21412的结构示意图。本申请提供了一种绝缘件214,用于电池单体20,绝缘件214包括绝缘件本体2141和凸起2142。绝缘件本体2141具有沿其厚度方向Z相对设置的第一面21411和第二面21412,第一面21411面向电池单体20的电极组件23,第二面21412背离电极组件23。凸起2142形成于第一面21411,凸起2142用于抵接于电极组件23。凸起2142设置有透气孔2143,透气孔2143沿与厚度方向Z相交的方向贯穿凸起2142。
图中,字母Z所指示的方向为绝缘件本体2141的厚度方向。
第一面21411面向电池单体20的电极组件23,第二面21412背离电极组件23,第一面21411和第二面21412为绝缘件本体2141的沿其厚度方向Z相对设置的两个面。
凸起2142为形成于第一面21411、且用于与电极组件23配合的部件,凸起2142可以与绝缘件本体2141一体成型,例如,凸起2142与绝缘件本体2141热熔成型。
透气孔2143沿与厚度方向Z相交的方向贯穿凸起2142是指,透气孔2143的延伸方向与绝缘件本体2141的厚度方向Z相交,例如,透气孔2143的延伸方向与厚度方向Z可以垂直,或者,透气孔2143的延伸方向与厚度方向Z也可以呈夹角。
透气孔2143为设置于凸起2142的通孔,用于实现气体的流通。
根据本申请实施例的绝缘件214,由于透气孔2143沿与厚度方向Z相交的方向贯穿凸起2142,换句话说,透气孔2143的延伸方向与绝缘件本体2141的厚度方向Z相交,并且透气孔2143贯穿凸起2142,使得气体在流经凸起2142时,能够快速穿过凸起2142,降低凸起2142对气体流动的阻挡,便于气体的流动;在电池单体20发生热失控、泄压机构213致动时,气体能够从产气的区域朝向泄压机构213快速流动,以从泄压机构213排出,降低端盖211与壳体22的焊缝裂开失效的风险,提高电池单体20的安全性。
根据本申请的一些实施例,如图5和图6所示,凸起2142包括底面21421和外周面21412,底面21421用于抵接电极组件23,外周面21412围设于底面21421的周围,外周面21412连接底面21421与第一面21411,透气孔2143设置于外周面21412。
底面21421为凸起2142的面向电极组件23的面,换句话说,底面21421为凸起2142的远离第一面21411的面。
外周面21412围设于底面21421的周围,外周面21412围绕底面21421的边缘设置。
底面21421为凸起2142的用于与电极组件23抵接的面,通过底面21421与电极组件23抵接,能够实现绝缘件214对电极组件23的定位,在采用该绝缘件214的电池单体20中,电极组件23具有较好的装配稳定性;透气孔2143设置于外周面21412,以便于气体穿过凸起2142,减少凸起2142对气体流动的阻挡。
在一些实施例中,在绝缘件本体2141的厚度方向Z上,透气孔2143可以由第一面21411朝向底面21421延伸。为了保证凸起2142的强度,在绝缘件本体2141的厚度方向Z上,透气孔2143与底面21421之间具有一定的距离。
根据本申请的一些实施例,如图6和图7所示,凸起2142沿第一方向X延伸,透气孔2143沿垂直于第一方向X的第二方向Y贯穿凸起2142,第一方向X和第二方向Y均与第一面21411平行。
图中,字母X所指示的方向为第一方向,字母Y所指示的方向为第二方向,第一方向X和第二方向Y均与绝缘件本体2141的厚度方向Z垂直。
第一方向X和第二方向Y均与第一面21411平行,换句话说,第一方向X和第二方向Y构成的平面与第一面21411平行。
透气孔2143的延伸方向与凸起2142的延伸方向垂直,透气孔2143的延伸长度较短,也即,气体穿过凸起2142的路径较短,便于气体快速穿过凸起2142,提高气体流动的顺畅性。
在本申请的其他实施例中,透气孔2143的延伸方向也可以与凸起2142的延伸方向呈夹角,夹角不等于90°。
在本申请的另一些实施例中,凸起2142沿第一方向X延伸,透气孔2143也可以沿第一方向X贯穿凸起2142。
根据本申请的一些实施例,凸起2142设置有多个透气孔2143,多个透气孔2143沿第一方向X间隔设置。
多个透气孔2143沿第一方向X间隔设置,换句话说,多个透气孔2143沿凸起2142的延伸方向间隔设置。多个透气孔2143可以位于与第一方向X平行的一条直线上,或者,多个透气孔2143也可以分散设置。
多个透气孔2143沿凸起2142的延伸方向间隔设置,使得凸起2142上具有多个气体流通的位置,利于气体穿过凸起2142,提高气体的通过效率。
根据本申请的一些实施例,凸起2142设置有多个,多个凸起2142沿第二方向Y间隔设置。
多个凸起2142沿第二方向Y间隔设置,多个凸起2142平行设置,多个凸起2142上的透气孔2143的设置位置可以相同,多个凸起2142的透气孔2143在第二方向Y上重叠,便于加工制造;或者,多个凸起2142上的透气孔2143的设置位置不同,多个凸起2142的透气孔2143在第二方向Y上不重叠或部分重叠。
多个凸起2142沿第二方向Y间隔设置,使得绝缘件214具有较高的强度,绝缘件214与电极组件23具有较多的接触位置,能够对电极组件23起到较好的定位作用。
根据本申请的一些实施例,绝缘件本体2141为长方形板,第二方向Y为绝缘件本体2141的长度方向,凸起2142包括第一凸起2142a、第二凸起2142b和第三凸起2142c,第一凸起2142a和第三凸起2142c位于绝缘件本体2141的长度方向的两端,第二凸起2142b位于第一凸起2142a和第三凸起2142c之间。
第二方向Y为绝缘件本体2141的长度方向,第一方向X为绝缘件本体2141的宽度方向。凸起2142沿第一方向X延伸,可以为,凸起2142在绝缘件本体2141的宽度方向上贯穿绝缘件本体2141,以增加绝缘件本体2141在其宽度方向上的强度。
第一凸起2142a和第三凸起2142c位于绝缘件本体2141的长度方向的两端、第二凸起2142b位于第一凸起2142a和第三凸起2142c之间,使得绝缘件本体2141在绝缘件本体2141的长度方向上具有较高的强度,从而使得绝缘件214在绝缘件本体2141的长度方向对电极组件23具有较好的定位效果。
根据本申请的一些实施例,第二凸起2142b为中空结构,第二面21412设置有与第二凸起2142b的内部连通的开口21413,第二凸起2142b上的透气孔2143与第二凸起2142b的内部连通。
开口21413为第二面21412上设置的、用于与第二凸起2142b的内部连通的区域。开口21413可以为绝缘件214上的镂空部,例如,开口21413可以在绝缘件本体2141的厚度方向Z贯穿绝缘件本体2141,也即,开口21413可以由第二面21412延伸至第一面21411。
第二凸起2142b为中空结构,第二凸起2142b的透气孔2143与第二凸起2142b的内部连通,第二凸起2142b的内部能够汇聚气体,还便于气体流通,位于第二凸起2142b的内部的气体能够朝向开口21413流动,便于排出第二凸起2142b内的气体。
请参照图8,图8为本申请另一些实施例提供的绝缘件214在第一面21411的结构示意图。根据本申请的一些实施例,如图8所示,凸起2142可以沿第二方向Y 延伸,第二方向Y为绝缘件本体2141的长度方向,透气孔沿第一方向X贯穿凸起2142。
根据本申请的一些实施例,如图7所示,第二面21412设置有用于避让电池单体20的泄压机构213(请参见图3)的凹槽21414,凹槽21414与开口21413至少部分重叠。
凹槽21414为绝缘件本体2141的用于与泄压机构213装配的区域,凹槽21414可以由第二面21412朝向第一面21411凹陷形成。凹槽21414可以与开口21413部分重叠,或者,凹槽21414也可以与开口21413完全重叠。
凹槽21414与泄压机构213对应,凹槽21414与开口21413至少部分重叠,以便于气体进入第二凸起2142b后朝向开口21413流动,以快速到达泄压机构213,便于快速泄压。
根据本申请的一些实施例,如图3所示,本申请提供了一种端盖组件21,用于电池单体20。端盖组件21包括端盖211、电极端子212、泄压机构213和上述任一实施例提供的绝缘件214。电极端子212设置于端盖211;泄压机构213设置于端盖211,泄压机构213被配置为在电池单体20的内部压力达到阈值时泄放内部压力。绝缘件214设置于端盖211的面向电池单体20内部的一侧。
由于电极端子212设置于端盖211,绝缘件214设置有用于避让电极端子212的孔,以便于电极端子212与电池单体20的电极组件23电连接。
根据本申请实施例的端盖组件21,绝缘件214设置于端盖211的面向电池单体20内部的一侧,该端盖组件21构成的电池单体20,能够提高气体的流动顺畅性,以便于气体经由泄压机构213排出,提高电池单体20的安全性。
根据本申请的一些实施例,如图3、图6和图7所示,绝缘件本体2141为长方体形,凸起2142包括第二凸起2142b,第二凸起2142b设置于绝缘件本体2141的中部,第二凸起2142b沿绝缘件本体2141的宽度方向延伸,透气孔2143沿绝缘件本体2141的长度方向贯穿第二凸起2142b,第二凸起2142b为中空结构,第二面21412设置有与第二凸起2142b的内部连通的开口21413,第二凸起2142b上的透气孔2143与第二凸起2142b的内部连通,泄压机构213设置于端盖211的与第二凸起2142b对应的位置,沿厚度方向Z,泄压机构213的投影与开口21413的投影至少部分重叠。
第二凸起2142b设置于绝缘件本体2141的中部是指,第二凸起2142b位于绝缘件本体2141的靠近绝缘件本体2141的中心的位置,但并不局限于第二凸起2142b位于绝缘件本体2141的中心。例如,沿绝缘件本体2141的长度方向,第二凸起2142b可以位于绝缘件本体2141的中心,或者,第二凸起2142b也可以与绝缘件本体2141的中心有一定的距离。
第二凸起2142b沿绝缘件本体2141的宽度方向延伸,可以为,第二凸起2142b由绝缘件本体2141的宽度方向上的一个边缘延伸至相对的另一个边缘,也即,第二凸起2142b可以沿绝缘件本体2141的宽度方向贯穿绝缘件本体2141。
第二凸起2142b为中空结构,透气孔2143在贯穿第二凸起2142b时与第二凸起2142b的内部连通,气体能够经由透气孔2143进入第二凸起2142b的内部。同时, 位于第二凸起2142b的内部的气体能够经由开口21413朝向端盖211流动。
沿厚度方向Z,泄压机构213的投影与开口21413的投影至少部分重叠,换句话说,在垂直于绝缘件本体2141的厚度方向Z的平面上,泄压机构213的投影与开口21413的投影至少部分重叠;例如,泄压机构213的投影可以与开口21413的投影部分重叠,或者,泄压机构213的投影与开口21413的投影完全重叠。
泄压机构213与第二凸起2142b对应设置,第二凸起2142b为中空结构,并且泄压机构213与开口21413至少部分重叠,以便于气体在第二凸起2142b的内部汇聚后朝向泄压机构213流动,提高了气体流向泄压机构213的流速,便于在电池单体20热失控时泄压机构213及时泄压。
根据本申请的一些实施例,如图7所示,第二面21412设置有定位部21415,端盖211设置有与定位部21415对应的定位孔(图中未示出),定位部21415插设于定位孔内。
定位部21415为设置于第二面21412的、用于与端盖211连接定位的部件,定位部21415可以凸出于第二面21412。定位部21415可以为定位杆,定位杆的截面可以为圆形、矩形、三角形或异形等。可选地,定位杆的截面为圆形,便于加工。定位孔的形状与定位杆的截面形状对应。
通过定位部21415插设于定位孔内,实现绝缘件214与端盖211的装配,结构简单,便于操作。
根据本申请的一些实施例,请参见图3至图5,本申请提供了一种电池单体20。电池单体20包括壳体22、电极组件23及上述任一实施例提供的端盖组件21。壳体22具有端部开口,电极组件23设置于壳体22内。端盖211覆盖于端部开口,凸起2142与电极组件23抵接。
端盖211覆盖于端部开口,绝缘件214位于端盖211的面向电极组件23的一侧,绝缘件214的凸起2142与电极组件23抵接,以实现对电极组件23的定位,避免电极组件23在壳体22内发生位置移动。
根据本申请实施例的电池单体20,采用上述的端盖组件21,在电池单体20发生热失控时,电池单体20内部产生的气体能够快速流向泄压机构213,提高了电池单体20的安全性。
请参照图3,并进一步参照图9和图10,图9为本申请一些实施例提供的电池单体20的部分结构分解的示意图,图10为本申请一些实施例提供的绝缘膜24与绝缘件214的装配示意图。根据本申请的一些实施例,电池单体20还包括绝缘膜24,绝缘膜24包裹于电极组件23的外部,绝缘膜24用于绝缘隔离电极组件23与壳体22,绝缘膜24与凸起2142连接,绝缘膜24设置有缺口241,缺口241与透气孔2143对应设置,以使电池单体20内部产生的气体通过缺口241进入透气孔2143。
绝缘膜24包裹电极组件23,使得电极组件23与壳体22绝缘隔离。为了保证电极组件23与壳体22的绝缘隔离效果,绝缘膜24通常围绕电极组件23的边缘设置。
绝缘膜24设置的缺口241与透气孔2143对应设置,在保证绝缘膜24与绝 缘件214连接以及绝缘膜24对电极组件23的绝缘隔离效果的同时,还能够便于气体的流通,位于绝缘膜24与壳体22之间的气体能够经由缺口241进入透气孔2143,朝向泄压机构213快速流动。
同时,为了保证气体的流通顺畅,如图9所示,缺口241位于绝缘膜24的用于与绝缘件214连接的一端,缺口241还设置在相邻的两个凸起2142之间,也即,绝缘膜24的位于相邻两个缺口241之间的区域与绝缘件214的凸起2142连接。
根据本申请的一些实施例,绝缘膜24与凸起2142热熔连接。
绝缘膜24与凸起2142热熔连接,保证绝缘膜24与凸起2142的连接稳定性。
在一些实施例中,凸起2142的与绝缘膜24连接的区域设置有凹陷部2144,以减轻凸起2142的重量。
根据本申请的一些实施例,本申请提供了一种电池100,该电池100包括上述任一实施例提供的电池单体20。
根据本申请的一些实施例,本申请提供了一种用电设备,该用电设备包括上述任一实施例提供的电池单体20,电池单体20用于为用电设备提供电能。
用电设备可以是前述任一应用电池单体20的设备或系统。
根据本申请的一些实施例,参见图3至图10,本申请提供了一种电池单体20,该电池单体20包括端盖组件21、壳体22、电极组件23及绝缘膜24。端盖组件21包括端盖211、电极端子212、泄压机构213及绝缘件214。电极端子212设置于端盖211,泄压机构213设置于端盖211,绝缘件214设置于端盖211的面向电池单体20内部的一侧。壳体22具有端部开口,电极组件23设置于壳体22内。端盖211覆盖于端部开口。绝缘件214包括绝缘件本体2141和凸起2142,绝缘件本体2141具有其厚度方向Z相对设置的第一面21411和第二面21412,第一面21411面向电极组件23,第二面21412背离电极组件23,凸起2142形成于第一面21411,凸起2142设置有透气孔2143,透气孔2143沿与厚度方向Z相交的方向贯穿凸起2142,凸起2142与电极组件23抵接。绝缘件本体2141为长方体形,凸起2142包括第二凸起2142b,第二凸起2142b设置于绝缘件本体2141的中部,第二凸起2142b沿绝缘件本体2141的宽度方向延伸,透气孔2143沿绝缘件本体2141的长度方向贯穿第二凸起2142b,第二凸起2142b为中空结构,第二面21412设置有与第二凸起2142b的内部连通的开口21413,第二凸起2142b上的透气孔2143与第二凸起2142b的内部连通,泄压机构213设置于端盖211的与第二凸起2142b对应的位置,泄压机构213与开口21413部分重叠。
由于透气孔2143贯穿凸起2142,减少凸起2142对气体流动的阻挡,在电池单体20发生热失控时,电池单体20内部产生的气体能够快速流向泄压机构213,提高了电池单体20的安全性。
图11示出了本申请一些实施例提供的电池单体的制造方法400的示意性流程图。如图11所示,该电池单体的制造方法400可以包括:
401,提供壳体22,壳体22具有端部开口;
402,提供电极组件23;
403,提供端盖组件21,端盖组件21包括端盖211、电极端子212、泄压机 构213和绝缘件214,电极端子212设置于端盖211,泄压机构213设置于端盖211,泄压机构213被配置为在电池单体20的内部压力达到阈值时泄放内部压力,绝缘件214设置于端盖211,绝缘件214包括绝缘件本体2141和凸起2142,绝缘件本体2141具有沿其厚度方向Z相对设置的第一面21411和第二面21412,凸起2142形成于第一面21411,凸起2142设置有透气孔2143,透气孔2143沿与厚度方向Z相交的方向贯穿凸起2142;
404,将电极组件23放置于壳体22内;
405,将端盖211覆盖于端部开口,以使绝缘件214位于端盖211的面向电池单体20内部的一侧,并且使凸起2142与电极组件23抵接。
图12示出了本申请一些实施例提供的电池单体的制造设备500的示意性流程图。如图12所示,该电池单体的制造设备500可以包括:提供模块501和安装模块502。
提供模块501,用于提供壳体22、提供电极组件23及提供端盖组件21,壳体22具有端部开口,端盖组件21包括端盖211、电极端子212、泄压机构213和绝缘件214,电极端子212设置于端盖211,泄压机构213设置于端盖211,泄压机构213被配置为在电池单体20的内部压力达到阈值时泄放内部压力,绝缘件214设置于端盖211,绝缘件214包括绝缘件本体2141和凸起2142,绝缘件本体2141具有沿其厚度方向Z相对设置的第一面21411和第二面21412,凸起2142形成于第一面21411,凸起2142设置有透气孔2143,透气孔2143沿与厚度方向Z相交的方向贯穿凸起2142;
安装模块502,用于将电极组件23放置于壳体22内,将端盖211覆盖于端部开口,以使绝缘件214位于端盖211的面向电池单体20内部的一侧,并且使凸起2142与电极组件23抵接。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (18)

  1. 一种绝缘件,用于电池单体,包括:
    绝缘件本体,具有沿其厚度方向相对设置的第一面和第二面,所述第一面面向所述电池单体的电极组件,所述第二面背离所述电极组件;
    凸起,形成于所述第一面,用于抵接于所述电极组件;
    其中,所述凸起设置有透气孔,所述透气孔沿与所述厚度方向相交的方向贯穿所述凸起。
  2. 根据权利要求1所述的绝缘件,其中,所述凸起包括底面和外周面,所述底面用于抵接所述电极组件,所述外周面围设于所述底面的周围,所述外周面连接所述底面与所述第一面,所述透气孔设置于所述外周面。
  3. 根据权利要求2所述的绝缘件,其中,所述凸起沿第一方向延伸,所述透气孔沿垂直于所述第一方向的第二方向贯穿所述凸起,所述第一方向和所述第二方向均与所述第一面平行。
  4. 根据权利要求3所述的绝缘件,其中,所述凸起设置有多个所述透气孔,多个所述透气孔沿所述第一方向间隔设置。
  5. 根据权利要求3或4所述的绝缘件,其中,所述凸起设置有多个,多个所述凸起沿所述第二方向间隔设置。
  6. 根据权利要求5所述的绝缘件,其中,所述绝缘件本体为长方形板,所述第二方向为所述绝缘件本体的长度方向,所述凸起包括第一凸起、第二凸起和第三凸起,所述第一凸起和所述第三凸起位于所述绝缘件本体的长度方向的两端,所述第二凸起位于所述第一凸起和所述第三凸起之间。
  7. 根据权利要求6所述的绝缘件,其中,所述第二凸起为中空结构,所述第二面设置有与所述第二凸起的内部连通的开口,所述第二凸起上的所述透气孔与所述第二凸起的内部连通。
  8. 根据权利要求7所述的绝缘件,其中,所述第二面设置有用于避让所述电池单体的泄压机构的凹槽,所述凹槽与所述开口至少部分重叠。
  9. 一种端盖组件,用于电池单体,包括:
    端盖;
    电极端子,设置于所述端盖;
    泄压机构,设置于所述端盖,被配置为在所述电池单体的内部压力达到阈值时泄放所述内部压力;
    如权利要求1-8中任一项所述的绝缘件,所述绝缘件设置于所述端盖的面向所述电池单体内部的一侧。
  10. 根据权利要求9所述的端盖组件,其中,所述绝缘件本体为长方体形,所述凸起包括第二凸起,所述第二凸起设置于所述绝缘件本体的中部,所述第二凸起沿所述绝缘件本体的宽度方向延伸,所述透气孔沿所述绝缘件本体的长度方向贯穿所述第二凸起,所述第二凸起为中空结构,所述第二面设置有与所述第二凸起的内部连通的开 口,所述第二凸起上的所述透气孔与所述第二凸起的内部连通,所述泄压机构设置于所述端盖的与所述第二凸起对应的位置,沿所述厚度方向,所述泄压机构的投影与所述开口的投影至少部分重叠。
  11. 根据权利要求9或10所述的端盖组件,其中,所述第二面设置有定位部,所述端盖设置有与所述定位部对应的定位孔,所述定位部插设于所述定位孔内。
  12. 一种电池单体,包括:
    壳体,具有端部开口;
    电极组件,设置于所述壳体内;
    如权利要求9-11中任一项所述的端盖组件,所述端盖覆盖于所述端部开口,所述凸起与所述电极组件抵接。
  13. 根据权利要求12所述的电池单体,其中,所述电池单体还包括:
    绝缘膜,包裹于所述电极组件的外部,用于绝缘隔离所述电极组件与所述壳体,所述绝缘膜与所述凸起连接,所述绝缘膜设置有缺口,所述缺口与所述透气孔对应设置,以使所述电池单体内部产生的气体通过所述缺口进入所述透气孔。
  14. 根据权利要求13所述的电池单体,其中,所述绝缘膜与所述凸起热熔连接。
  15. 一种电池,包括如权利要求12-14中任一项所述的电池单体。
  16. 一种用电设备,包括如权利要求12-14中任一项所述的电池单体。
  17. 一种电池单体的制造方法,包括:
    提供壳体,所述壳体具有端部开口;
    提供电极组件;
    提供端盖组件,所述端盖组件包括端盖、电极端子、泄压机构和绝缘件,所述电极端子设置于所述端盖,所述泄压机构设置于所述端盖,所述泄压机构被配置为在所述电池单体的内部压力达到阈值时泄放所述内部压力,所述绝缘件设置于所述端盖,所述绝缘件包括绝缘件本体和凸起,所述绝缘件本体具有沿其厚度方向相对设置的第一面和第二面,所述凸起形成于所述第一面,所述凸起设置有透气孔,所述透气孔沿与所述厚度方向相交的方向贯穿所述凸起;
    将所述电极组件放置于所述壳体内;
    将所述端盖覆盖于所述端部开口,以使所述绝缘件位于所述端盖的面向所述电池单体内部的一侧,并且使所述凸起与所述电极组件抵接。
  18. 一种电池单体的制造设备,包括:
    提供模块,用于:提供壳体、提供电极组件及提供端盖组件,所述壳体具有端部开口,所述端盖组件包括端盖、电极端子、泄压机构和绝缘件,所述电极端子设置于所述端盖,所述泄压机构设置于所述端盖,所述泄压机构被配置为在所述电池单体的内部压力达到阈值时泄放所述内部压力,所述绝缘件设置于所述端盖,所述绝缘件包括绝缘件本体和凸起,所述绝缘件本体具有沿其厚度方向相对设置的第一面和第二面,所述凸起形成于所述第一面,所述凸起设置有透气孔,所述透气孔沿与所述厚度方向相交的方向贯穿所述凸起;
    安装模块,用于将所述电极组件放置于所述壳体内,将所述端盖覆盖于所述端部 开口,以使所述绝缘件位于所述端盖的面向所述电池单体内部的一侧,并且使所述凸起与所述电极组件抵接。
PCT/CN2022/078068 2022-02-25 2022-02-25 绝缘件、端盖组件、电池单体、电池及用电设备 WO2023159507A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2022/078068 WO2023159507A1 (zh) 2022-02-25 2022-02-25 绝缘件、端盖组件、电池单体、电池及用电设备
CN202280007847.5A CN116964835A (zh) 2022-02-25 2022-02-25 绝缘件、端盖组件、电池单体、电池及用电设备
CN202223198311.2U CN219123437U (zh) 2022-02-25 2022-11-30 绝缘件、端盖组件、电池单体、电池及用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/078068 WO2023159507A1 (zh) 2022-02-25 2022-02-25 绝缘件、端盖组件、电池单体、电池及用电设备

Publications (1)

Publication Number Publication Date
WO2023159507A1 true WO2023159507A1 (zh) 2023-08-31

Family

ID=86527720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/078068 WO2023159507A1 (zh) 2022-02-25 2022-02-25 绝缘件、端盖组件、电池单体、电池及用电设备

Country Status (2)

Country Link
CN (2) CN116964835A (zh)
WO (1) WO2023159507A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117175122A (zh) * 2023-10-30 2023-12-05 宁德时代新能源科技股份有限公司 电池和用电装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116895905A (zh) * 2023-09-11 2023-10-17 宁德时代新能源科技股份有限公司 电池单体、电池及用电设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110097613A1 (en) * 2009-10-26 2011-04-28 Yong-Sam Kim Rechargeable battery
US20170125836A1 (en) * 2015-11-04 2017-05-04 Samsung Sdi Co., Ltd. Secondary battery
CN209249546U (zh) * 2018-11-12 2019-08-13 中兴高能技术有限责任公司 电池的止动架和电池
CN112290133A (zh) * 2020-11-18 2021-01-29 江西百思利新能源科技股份有限公司 二次电池顶盖及其组装方法,及二次电池
CN113270667A (zh) * 2020-11-11 2021-08-17 厦门海辰新能源科技有限公司 顶盖组件及具有其的锂电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110097613A1 (en) * 2009-10-26 2011-04-28 Yong-Sam Kim Rechargeable battery
US20170125836A1 (en) * 2015-11-04 2017-05-04 Samsung Sdi Co., Ltd. Secondary battery
CN209249546U (zh) * 2018-11-12 2019-08-13 中兴高能技术有限责任公司 电池的止动架和电池
CN113270667A (zh) * 2020-11-11 2021-08-17 厦门海辰新能源科技有限公司 顶盖组件及具有其的锂电池
CN112290133A (zh) * 2020-11-18 2021-01-29 江西百思利新能源科技股份有限公司 二次电池顶盖及其组装方法,及二次电池

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117175122A (zh) * 2023-10-30 2023-12-05 宁德时代新能源科技股份有限公司 电池和用电装置
CN117175122B (zh) * 2023-10-30 2024-03-29 宁德时代新能源科技股份有限公司 电池和用电装置

Also Published As

Publication number Publication date
CN116964835A (zh) 2023-10-27
CN219123437U (zh) 2023-06-02

Similar Documents

Publication Publication Date Title
CN113258124B (zh) 电池单体、电池、用电设备及电池单体的制造方法和设备
JP2022543185A (ja) 電池、その関連装置、製造方法及び製造機器
JP7428811B2 (ja) 電池セル、電池及び電力消費装置
EP4071912A1 (en) Battery cell and manufacturing method and system therefor, battery, and electrical apparatus
WO2023159507A1 (zh) 绝缘件、端盖组件、电池单体、电池及用电设备
WO2022213400A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置
EP4138166A1 (en) Battery cell, battery, electrical device, and manufacturing method and device for battery cell
WO2023221598A1 (zh) 连接组件、电池单体、电池及用电设备
US20240055646A1 (en) Wound electrode assembly, battery cell, battery, and electrical device
US20230395931A1 (en) End cover assembly, battery cell, battery, and electric apparatus
WO2023020127A1 (zh) 电极组件、电池单体、电池及用电设备
WO2023179192A1 (zh) 电池和用电设备
WO2023000859A1 (zh) 电池单体、电池以及用电装置
US20220320673A1 (en) Battery, power consumption device, method and device for producing battery
JP2023534585A (ja) 電池単体およびその製造方法と製造システム、電池および電力使用装置
WO2023216829A1 (zh) 电池单体、电池及用电装置
CN216698635U (zh) 圆柱电池单体、电池及用电设备
WO2023173429A1 (zh) 电池单体及其制造方法和制造设备、电池、用电设备
WO2023133722A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2023184422A1 (zh) 电池单体、电池及用电设备
WO2023178600A1 (zh) 集流构件、电池单体、电池及用电设备
WO2023216253A1 (zh) 电池单体、电池及用电设备
WO2024002163A1 (zh) 电池单体、电池及用电装置
WO2023133854A1 (zh) 电池单体、电池、用电设备、电池单体的制造方法及设备
WO2023173414A1 (zh) 电池单体及其制造方法和制造系统、电池以及用电装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280007847.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927790

Country of ref document: EP

Kind code of ref document: A1