WO2023133735A1 - 电池、用电设备、制备电池的方法和设备 - Google Patents

电池、用电设备、制备电池的方法和设备 Download PDF

Info

Publication number
WO2023133735A1
WO2023133735A1 PCT/CN2022/071661 CN2022071661W WO2023133735A1 WO 2023133735 A1 WO2023133735 A1 WO 2023133735A1 CN 2022071661 W CN2022071661 W CN 2022071661W WO 2023133735 A1 WO2023133735 A1 WO 2023133735A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
wall
pressure relief
relief mechanism
groove
Prior art date
Application number
PCT/CN2022/071661
Other languages
English (en)
French (fr)
Inventor
姚鹏程
顾明光
李耀
李兵锋
陆泽全
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/071661 priority Critical patent/WO2023133735A1/zh
Priority to EP22919400.6A priority patent/EP4362187A1/en
Priority to KR1020247003669A priority patent/KR20240027115A/ko
Priority to CN202280019140.6A priority patent/CN116941109A/zh
Publication of WO2023133735A1 publication Critical patent/WO2023133735A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • H01M50/3425Non-re-sealable arrangements in the form of rupturable membranes or weakened parts, e.g. pierced with the aid of a sharp member
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, in particular to a battery, an electrical device, a method and a device for preparing a battery.
  • Energy saving and emission reduction is the key to the sustainable development of the automobile industry.
  • electric vehicles have become an important part of the sustainable development of the automobile industry due to their advantages in energy saving and environmental protection.
  • battery technology is an important factor related to its development.
  • the present application provides a battery, an electrical device, a method and a device for preparing the battery, which can enhance the safety of the battery.
  • a battery including: a battery cell, including a pressure relief mechanism, the pressure relief mechanism is arranged on the first wall of the battery cell, and the pressure relief mechanism is used for When the internal pressure or temperature reaches a threshold value, it is actuated to release the internal pressure; an attachment member, the first surface of the attachment member is attached to the first wall, the attachment member is provided with the a first through hole corresponding to the position of the pressure relief mechanism for allowing discharge from the battery cell to pass through the attachment member when the pressure relief mechanism is actuated; an insulating member , at least part of the insulating component is attached to the inner wall of the first through hole, so as to provide insulation protection for the inner wall of the first through hole.
  • the attachment component is provided with a first through hole, and at least part of the insulating component is attached to an inner wall of the first through hole.
  • the inner wall of the first through hole can be insulated and protected, thereby improving the insulation of the attachment component and preventing the short circuit phenomenon caused by the battery cells directly contacting the inner wall of the first through hole. Therefore, the safety risk can be reduced and the safety of the battery can be enhanced.
  • the first surface of the attachment member is attached to the first wall provided with a pressure relief mechanism, and when the pressure relief mechanism is actuated, the discharge of the battery cells is discharged toward the first through hole. Emissions can be quickly drained away from the battery cells through the attachment part via the first through holes, reducing their danger, thereby enhancing the safety of the battery.
  • the insulating component is provided with a first groove, wherein the sidewall of the first groove is embedded in the first through hole, and the outer edge of the first groove is attached to on the first surface.
  • the insulating part provided with the first groove can be directly fitted in the first through hole provided on the attachment part, and can cover the inner wall of the first through hole, so as to realize the protection of the first through hole.
  • the insulation protection of the inner wall can also conveniently and stably fix the insulating component to the attachment component, improving the assembly efficiency of the battery.
  • the bottom wall of the first groove is provided with a second through hole, and the second through hole is used to discharge the discharge from the battery cell when the pressure relief mechanism is actuated. objects through the insulating part.
  • the discharge of the battery cell can be quickly discharged through the second through hole away from the battery cell, reducing its danger, thereby enhancing the safety of the battery.
  • the bottom wall of the first groove is used to block the first through hole; wherein the bottom wall of the first groove is configured to capable of being damaged by the emissions such that the emissions pass through the insulation.
  • the bottom wall of the first groove can block the first through hole, so as to prevent foreign matters from entering the space where the pressure relief mechanism is located and affecting the pressure relief performance of the pressure relief mechanism.
  • the bottom wall of the first groove is easily damaged by the discharge, so that the discharge can pass through the insulating component and be discharged out of the battery cell.
  • the bottom wall of the first groove is provided with a weakened area, and the weakened area is configured to be damaged by the discharge when the pressure relief mechanism is actuated, so that the Emissions pass through the weak zone.
  • the setting of the weakened area makes the bottom wall of the first groove more likely to be damaged by the discharge of the battery cells, which is beneficial to the rapid pressure release of the battery cells.
  • the weakened region satisfies at least one of the following: the weakened region has a lower melting point than the rest of the insulating part; the weakened region has a higher melting point than the rest of the insulating part a small thickness; and, said weakened area is provided with scoring.
  • Vulnerable areas can adopt various settings to facilitate the destruction of emissions. In this way, when the pressure relief mechanism is actuated, the weakened area is more likely to be damaged by discharge than other parts of the bottom wall of the first groove.
  • the attachment part is configured to be attached to the first wall through an adhesive; the insulating part is configured to prevent the adhesive from being applied between the attachment part and the first wall. between the pressure relief mechanism.
  • the insulating part can not only insulate and protect the inner wall of the first through hole provided by the attaching part, but also prevent the adhesive from being applied between the attaching part and the pressure relief mechanism in an effective manner during the battery production process to prevent or affect the Actuation performance of the pressure relief mechanism.
  • the pressure relief mechanism has an actuation area, and the pressure relief mechanism is configured to form a pressure relief mechanism in the actuation area when the internal pressure or temperature of the battery cell reaches a threshold value.
  • the outer edge of the first groove at least surrounds the actuation area, which can prevent the adhesive from flowing into the actuation area from any direction and cause any hindrance or adverse effect on the execution of the actuation action of the pressure relief mechanism. Therefore, it is possible to more reliably prevent the adhesive from interfering with the normal actuation of the pressure relief mechanism, and prevent the adhesive from flowing in to block the discharge channel and thereby blocking the discharge of the battery cell discharge. Thus, the safety performance of the battery can be further improved.
  • a protruding portion is provided on the outer edge of the first groove, and the protruding portion is configured to protrude from the first surface and surround the pressure relief mechanism, and the protruding portion is used for to prevent the adhesive from being applied between the attachment member and the pressure relief mechanism.
  • This arrangement makes it possible to prevent, in a simple and effective manner, adhesives from being applied on the surface of the pressure relief mechanism during the production of the battery, preventing the actuation of the pressure relief mechanism from being hindered.
  • the protruding portion includes a flange structure formed by bending an outer edge of the first groove.
  • edge of the insulating part By setting the edge of the insulating part into a flanging structure, it is not only convenient to process and shape the insulating part, but also prevent the adhesive from being applied to the surface of the pressure relief mechanism in a simple and effective manner during the battery production process.
  • the maximum height of the protrusion from the first surface is configured to be greater than or equal to a predetermined application height of the adhesive, and when the battery cell is attached to the attachment In the case of joint parts, it is compressed to match the height of the adhesive.
  • This arrangement ensures that the protrusions are effective in preventing adhesive from being applied between the attachment member and the pressure relief mechanism. At the same time, this enables the insulating part not to interfere with the reliable bonding between the attachment part and the pressure relief mechanism and the actuation of the pressure relief mechanism.
  • the attachment part is provided with a second groove opposite to the pressure relief mechanism, and the bottom wall of the second groove is provided with the first through hole; wherein, the The outer edge of the first groove includes a first attachment wall connected to the side wall of the first groove, and the first attachment wall is attached to the bottom wall of the second groove.
  • a buffer space for the discharge of the battery cell can be provided, thereby reducing the discharge of the battery cell to the outside.
  • the impact pressure of the structure or components further improves the safety performance of the battery.
  • the attachment component includes a first heat conduction plate and a second heat conduction plate, the first heat conduction plate is located between the first wall and the second heat conduction plate and is attached to the the first wall, the first region of the first heat conduction plate is recessed toward the second heat conduction plate to form the second groove, the first region is connected to the second heat conduction plate, the first A through hole is arranged in the first area; the outer edge of the first groove also includes a second attachment wall and a connecting wall, and the second attachment wall connects with the first attachment wall through the connection wall connected, wherein the first attachment wall is attached to the first area, the second attachment wall is attached to the second area of the first heat conducting plate, and the second area is used to communicate with the attached to the first wall.
  • a gap is provided between the connecting wall and the side wall of the second groove; or, the connecting wall is attached to the side wall of the second groove.
  • the insulating component is configured to provide a space allowing the actuation of the pressure relief mechanism, wherein an avoidance cavity is formed between the insulating component and the pressure relief mechanism.
  • the escape cavity can provide deformation space for the pressure relief mechanism to deform and rupture towards the attachment part.
  • an inner wall of the first through hole is coated with an insulating material.
  • the insulating material and the insulating part can form double-layer insulation on the inner wall of the first through hole, further improving the insulating property of the attached part.
  • the attachment component is a thermal management component
  • the thermal management component is used for containing fluid to regulate the temperature of the battery cells.
  • an electric device comprising: the battery in the above first aspect or any possible implementation manner of the first aspect, where the battery is used to provide electric energy for the electric device.
  • a method for preparing a battery including: providing a battery cell, the battery cell includes a pressure relief mechanism, the pressure relief mechanism is arranged on the first wall of the battery cell, and the pressure relief mechanism a mechanism for actuating to vent the internal pressure when the internal pressure or temperature of the battery cell reaches a threshold value; an attachment member is provided, a first surface of the attachment member is attached to the first wall, The attachment member is provided with a first through hole corresponding to a position of the pressure relief mechanism for allowing discharge from the battery cells to be released when the pressure relief mechanism is actuated. passing through the attaching part; providing an insulating part; attaching at least part of the insulating part to the inner wall of the first through hole, so as to provide insulation protection for the inner wall of the first through hole.
  • a device for preparing a battery including: providing a module for: providing a battery cell, the battery cell includes a pressure relief mechanism, and the pressure relief mechanism is arranged on the first side of the battery cell. wall, the pressure relief mechanism for actuating to relieve the internal pressure of the battery cell when the internal pressure or temperature reaches a threshold value; an attachment member is provided, the first surface of the attachment member is attached to The first wall and the attachment part are provided with a first through hole corresponding to the position of the pressure relief mechanism, and the first through hole is used to allow the The discharge of the battery cell passes through the attachment part; an insulation part is provided; and an installation module is used for: attaching at least part of the insulation part to the inner wall of the first through hole, so that the first The inner wall of the through hole is protected by insulation.
  • Fig. 1 is a schematic structural view of a vehicle disclosed in an embodiment of the present application
  • Fig. 2 is a schematic diagram of an exploded structure of a battery disclosed in an embodiment of the present application
  • 3-4 are schematic structural views of a battery cell disclosed in an embodiment of the present application.
  • Fig. 5 is a schematic structural diagram and a partially enlarged diagram of a battery disclosed in an embodiment of the present application.
  • 6-12 are partial structural schematic diagrams of a battery disclosed in another embodiment of the present application.
  • FIG. 13-15 are schematic structural views of a battery disclosed in another embodiment of the present application.
  • 16-17 are schematic structural views of an insulating component disclosed in an embodiment of the present application.
  • Fig. 18 is an exploded schematic diagram of a battery disclosed in an embodiment of the present application.
  • Fig. 19 is a schematic flowchart of a method for preparing a battery disclosed in an embodiment of the present application.
  • Fig. 20 is a schematic block diagram of a device for preparing a battery disclosed in an embodiment of the present application.
  • a battery refers to a physical module including one or more battery cells to provide electrical energy.
  • the batteries mentioned in this application may include battery modules or battery packs.
  • Batteries generally include a case for enclosing one or more battery cells. The box can prevent liquid or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, which are not limited in this embodiment of the present application.
  • a battery cell may also be referred to as a battery cell.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet, and a separator.
  • a battery cell works primarily by moving metal ions between the positive and negative plates.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the positive electrode current collector that is not coated with the positive electrode active material layer protrudes from the positive electrode collector that has been coated with the positive electrode active material layer , the positive electrode current collector not coated with the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobaltate, lithium iron phosphate, ternary lithium or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the negative electrode current collector that is not coated with the negative electrode active material layer protrudes from the negative electrode collector that has been coated with the negative electrode active material layer , the negative electrode current collector not coated with the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector may be copper, and the negative electrode active material may be carbon or silicon.
  • the number of positive pole tabs is multiple and stacked together, and the number of negative pole tabs is multiple and stacked together.
  • the material of the isolation film may be polypropylene (polypropylene, PP) or polyethylene (polyethylene, PE).
  • the electrode assembly may be a wound structure or a laminated structure, which is not limited in the embodiment of the present application.
  • the case of the battery in the embodiment of the present application is used to accommodate a plurality of battery cells, bus components and other components of the battery, such as heat management components.
  • a structure for fixing the battery cells may also be provided in the case.
  • the shape of the box can be determined according to the number of battery cells to be accommodated. In some embodiments, the box may be square, with six walls.
  • the current-flow component mentioned in this application is used to realize the electrical connection between multiple battery cells, such as parallel connection, series connection or mixed connection.
  • the bus component can realize the electrical connection between the battery cells by connecting the electrode terminals of the battery cells.
  • the bus member may be fixed to the electrode terminal of the battery cell by welding.
  • the bussing part transmits the voltage of the battery cells, and a higher voltage will be obtained after multiple battery cells are connected in series.
  • the electrical connection formed by the bussing part can also be called a "high voltage connection".
  • the thermal management components mentioned in this application are used to contain fluid to regulate the temperature of multiple battery cells.
  • the fluid here can be liquid or gas, and regulating temperature refers to heating or cooling multiple battery cells.
  • the thermal management component is used to contain cooling fluid to lower the temperature of multiple battery cells.
  • the thermal management component can also be called a cooling component, a cooling system or a cooling plate, etc.
  • the fluid it contains can also be called cooling medium or cooling fluid, more specifically, it can be called cooling liquid or cooling gas.
  • the thermal management component can also be used for heating to raise the temperature of multiple battery cells, which is not limited in this embodiment of the present application.
  • the fluid may circulate in order to achieve a better effect of temperature regulation.
  • the fluid may be water, a mixture of water and glycol, or air.
  • a plurality of battery cells can be firstly integrated into a battery module, and then the battery module is installed in a battery box to form a battery pack.
  • multiple battery cells can also be directly installed in the battery box to form a battery pack.
  • This battery packaging technology can also be called cell to pack (CTP). ) packaging technology.
  • CTP packaging technology since the intermediate state of the battery module is removed, the quality of the battery pack can be reduced and the energy density of the battery can be increased. That is to say, in the process of packaging the battery, multiple battery cells can directly form a battery, or form a battery module first, and then form a battery from the battery module.
  • the battery is further arranged in the electric device to provide electric energy for the electric device.
  • the protection measures include at least the switching element, the selection of an appropriate isolation diaphragm material, and the pressure relief mechanism.
  • the switching element refers to an element that can stop charging or discharging the battery when the temperature or resistance inside the battery cell reaches a certain threshold.
  • the separator is used to isolate the positive electrode and the negative electrode. When the temperature rises to a certain value, it can automatically dissolve the micron-scale (or even nano-scale) micropores attached to it, so that metal ions cannot pass through the separator and terminate the battery. The internal reaction of the monomer.
  • the pressure relief mechanism provided on the battery cell refers to an element or component that is activated to release the internal pressure or temperature when the internal pressure or temperature of the battery cell reaches a predetermined threshold.
  • the threshold design varies according to design requirements. The threshold may depend on the materials of one or more of the positive pole piece, the negative pole piece, the electrolyte and the separator in the battery cell.
  • the pressure relief mechanism arranged on the battery cell can take the form of an explosion-proof valve, an air valve, a pressure relief valve or a safety valve, etc., and can specifically use a pressure-sensitive or temperature-sensitive element or structure, that is, when the battery cell When the internal pressure or temperature reaches a predetermined threshold, the pressure relief mechanism performs an action or the weak structure provided in the pressure relief mechanism is destroyed, thereby forming an opening or channel for internal pressure or temperature relief.
  • the pressure relief mechanism on the battery cell has an important impact on the safety of the battery. For example, when a short circuit, overcharge, etc. occur, it may cause thermal runaway inside the battery cell, resulting in a sudden increase in pressure or temperature. In this case, the internal pressure and temperature can be released to the outside through the actuation of the pressure relief mechanism, so as to prevent the battery cells from exploding and igniting.
  • the "activation" mentioned in this application means that the pressure relief mechanism is activated or activated to a certain state, so that the internal pressure and temperature of the battery cells can be released. Actions by the pressure relief mechanism may include, but are not limited to, at least a portion of the pressure relief mechanism rupture, shatter, be torn, or open, among others.
  • the pressure relief mechanism When the pressure relief mechanism is actuated, the high-temperature and high-pressure material inside the battery cell will be discharged from the actuated part as discharge. In this way, the battery cells can be depressurized under controllable pressure or temperature, thereby avoiding potential more serious accidents.
  • the emissions from battery cells mentioned in this application include but are not limited to: electrolyte, dissolved or split positive and negative electrodes, fragments of separator, high temperature and high pressure gas generated by reaction, flame, etc.
  • the shell of the battery cell is generally made of metal materials, such as aluminum, steel, etc. If the internal insulation design of the battery is not good, for example, the conductors around the battery cell may come into direct contact with the shell of the battery cell, which will easily lead to the failure of the battery cell. Body short circuit occurs. A short circuit may cause thermal runaway inside the battery cell and a sudden increase in pressure or temperature, which may lead to safety issues such as explosion and fire of the battery cell.
  • insulating material is usually coated on the surface of the conductors around the battery cells to realize the insulation between these conductors and the battery cells.
  • some conductor parts will be provided with openings, and the current insulation design does not consider the insulation protection of the inner wall of the hole.
  • Batteries are installed in electrical equipment, for example, in vehicles. The movement of vehicles and other electrical equipment will have a certain impact on the battery. In order to make full use of the space inside the battery, the interior design of the battery is compact and the distance between components is small. The impact of electrical equipment on the battery may cause the inner wall of the hole on the conductor that lacks insulation protection to contact the outer shell of the battery cell, causing a short circuit in the battery, thus posing a safety hazard.
  • the present application provides a technical solution, using an insulating member to insulate and protect the first through hole provided on the attachment member attached to the battery cell, so as to enhance the safety of the battery. More specifically, at least part of the insulating component is attached to the inner wall of the first through hole, so as to provide insulation protection for the inner wall of the first through hole. In this way, the insulation of the attachment component can be improved, and the short circuit phenomenon caused by the direct contact of the battery cells with the inner wall of the first through hole can be prevented, thereby reducing safety risks and enhancing the safety of the battery.
  • batteries such as mobile phones, portable devices, notebook computers, battery cars, electric toys, electric tools, electric vehicles, ships and spacecraft, etc.
  • spacecraft include Airplanes, rockets, space shuttles and spaceships, etc.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle.
  • a motor 40 , a controller 30 and a battery 10 can be arranged inside the vehicle 1 , and the controller 30 is used to control the battery 10 to supply power to the motor 40 .
  • the battery 10 may be provided at the bottom or front or rear of the vehicle 1 .
  • the battery 10 can be used for power supply of the vehicle 1 , for example, the battery 10 can be used as an operating power source of the vehicle 1 , for a circuit system of the vehicle 1 , for example, for starting, navigating and running power requirements of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source for the vehicle 1 , but can also be used as a driving power source for the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • the battery may include multiple battery cells, wherein the multiple battery cells may be connected in series, in parallel or in parallel, and the hybrid connection refers to a mixture of series and parallel connections. Batteries can also be referred to as battery packs.
  • a plurality of battery cells can be connected in series, parallel or mixed to form a battery module, and then a plurality of battery modules can be connected in series, parallel or mixed to form a battery. That is to say, multiple battery cells can directly form a battery, or form a battery module first, and then form a battery from the battery module.
  • FIG. 2 it is a schematic structural diagram of a battery 10 according to an embodiment of the present application.
  • the battery 10 may include a plurality of battery cells 20 .
  • the battery 10 may also include a box (or cover) 11 , the inside of which is a hollow structure, and a plurality of battery cells 20 are accommodated in the box 11 .
  • the case body 11 may include two parts, referred to herein as a first part 111 and a second part 112 respectively, and the first part 111 and the second part 112 are fastened together to form a housing for a plurality of battery cells 20 of containment space.
  • the shapes of the first part 111 and the second part 112 can be determined according to the combined shape of a plurality of battery cells 20 , and each of the first part 111 and the second part 112 can have an opening.
  • both the first part 111 and the second part 112 can be hollow cuboids and each has only one face as an open face, the opening of the first part 111 and the opening of the second part 112 are arranged oppositely, and the first part 111 and the second part 112 are interlocked combined to form a box with a closed chamber.
  • a plurality of battery cells 20 are combined in parallel, in series or in parallel and placed in the box formed by fastening the first part 111 and the second part 112 .
  • a plurality of battery cells (cell) 20 can be first integrated into at least one battery module (module), and then the battery module is installed in the box body 11 to form a battery pack (pack) form.
  • auxiliary structural members such as beams may also be arranged between the battery modules to improve the installation stability of the battery modules in the box body 11 .
  • a plurality of battery cells 20 can also be directly connected to each other, and installed in the case 11 to form a battery pack. Since the intermediate state of the battery module is removed, there is no need to arrange auxiliary structural members such as beams in the box body 11 , so that the weight of the battery 10 can be reduced and the energy density of the battery 10 can be increased.
  • This implementation manner may also be referred to as a battery cell to battery pack (cell to pack, CTP) installation technology in the related art.
  • the box body 11 can be integrated with the electrical equipment where the battery 10 is located.
  • the box body 11 can be integrally formed with the structural components in the electrical equipment.
  • the multiple battery cells 20 After the multiple battery cells 20 are connected to each other, they can be directly installed in the box body 11 of the electrical equipment.
  • the box body 11 may be integrally arranged in a local area of the chassis of the vehicle 1 , and the plurality of battery cells 20 may be directly installed on the chassis of the vehicle 1 after being connected to each other.
  • This implementation manner may also be referred to as a battery cell to chassis (cell to chassis, CTC) installation technology in the related art.
  • the battery 10 may also include other structures, which will not be repeated here.
  • the battery 10 may also include a confluence part, which is used to realize electrical connection between a plurality of battery cells 20 , such as parallel connection, series connection or mixed connection.
  • the current-combining component can realize the electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
  • the bus member may be fixed to the electrode terminal of the battery cell 20 by welding. The electric energy of the plurality of battery cells 20 can be further drawn out through the box body 11 through the conductive mechanism.
  • the conduction means can also belong to the current-collecting part.
  • the number of battery cells 20 can be set to any value. Multiple battery cells 20 can be connected in series, in parallel or in parallel to achieve greater capacity or power.
  • the battery cell 20 may include a battery case 21 and one or more electrode assemblies 22 accommodated in the battery case 21 .
  • the battery box 21 may also be referred to as a casing.
  • the battery case 21 may include a case 211 and a cover plate 212 .
  • the walls of the casing 211 and the cover plate 212 are both referred to as walls of the battery cell 20 .
  • the housing 211 depends on the combined shape of one or more electrode assemblies 22 , for example, the housing 211 may be a hollow cuboid, cube or cylinder. At least one surface of the casing 211 has an opening so that one or more electrode assemblies 22 can be placed in the casing 211 .
  • one of the planes of the housing 211 may be an open surface, that is, the plane does not have a wall so that the inside and outside of the housing 211 communicate.
  • the end surface of the casing 211 may be an open surface, that is, the end surface does not have a wall so that the inside and outside of the casing 211 communicate.
  • the cover plate 212 covers the opening and is connected with the housing 211 to form a closed cavity for placing the electrode assembly 22.
  • the casing 211 is filled with electrolyte, such as electrolytic solution.
  • one surface of the housing 211 has an opening
  • the cover plate 212 covers the opening and is connected to the housing 211 .
  • the two opposite surfaces of the casing 211 have openings
  • the cover plate 212 may include a first cover plate and a second cover plate, and the first cover plate and the second cover plate cover the two sides respectively. The opening on one side is connected with the housing 211.
  • the battery cell 20 may also include two electrode terminals 214 .
  • the two electrode terminals 214 may be disposed on the same cover plate 212 .
  • the two electrode terminals 214 may be respectively disposed on two cover plates, such as the aforementioned first cover plate and the second cover plate, which is not limited in this embodiment of the present application.
  • the cover plate 212 is usually in the shape of a flat plate, and two electrode terminals 214 are fixed on the flat plate surface of the cover plate 212, and the two electrode terminals 214 are positive electrode terminals 214a and negative electrode terminals 214b respectively.
  • Each electrode terminal 214 is respectively provided with a connecting member 23 , or also referred to as a current collecting member 23 , which is located between the cover plate 212 and the electrode assembly 22 for electrically connecting the electrode assembly 22 and the electrode terminal 214 .
  • each electrode assembly 22 has a first tab 22 a and a second tab 22 b.
  • the polarities of the first tab 22a and the second tab 22b are opposite.
  • the first tab 22a is a positive tab
  • the second tab 22b is a negative tab.
  • the first tabs 22 a of one or more electrode assemblies 22 are connected to one electrode terminal through a connecting member 23
  • the second tabs 22 b of one or more electrode assemblies 22 are connected to another electrode terminal through another connecting member 23 .
  • the positive electrode terminal 214 a is connected to the positive electrode tab through one connection member 23
  • the negative electrode terminal 214 b is connected to the negative electrode tab through the other connection member 23 .
  • the number of electrode assemblies 22 can be flexibly set according to actual usage requirements. As shown in FIG. 3 , four independent electrode assemblies 22 are arranged in the battery cell 20 .
  • FIG. 4 it is a schematic structural diagram of a battery cell 20 according to another embodiment of the present application.
  • a pressure relief mechanism 213 may also be provided on one wall of the battery cell 20 .
  • the pressure relief mechanism 213 is activated to release the internal pressure or temperature when the internal pressure or temperature of the battery cell 20 reaches a threshold.
  • a pressure relief mechanism 213 may be provided on the first wall 215 of the battery cell 20 .
  • the first wall 215 is a part of the housing 211, wherein the housing 211 can be formed by an integral molding process between the first wall 215 and the rest of the housing 211, or the rest of the housing 211 is blocked by the first wall 215 opening is formed.
  • FIG. 4 separates the first wall 215 from the casing 211 , but this does not limit the bottom side of the casing 211 to have an opening.
  • the pressure relief mechanism 213 may be a part of the wall where it is located, or may be a separate structure from the wall where it is located, and be fixed on the wall where it is located by, for example, welding.
  • the pressure relief mechanism 213 when the pressure relief mechanism 213 is a part of the first wall 215, the pressure relief mechanism 213 can be formed by setting a notch on the first wall 215, and the corresponding part of the notch
  • the thickness of the first wall 215 is smaller than the thickness of other areas of the pressure relief mechanism 213 except the notch.
  • the notch is the weakest position of the pressure relief mechanism 213 .
  • the pressure relief mechanism 213 can A crack occurs at the notch, which leads to communication between the inside and outside of the shell 211 , and the gas pressure and temperature are released outward through the crack of the pressure relief mechanism 213 , thereby preventing the battery cell 20 from exploding.
  • the pressure relief mechanism 213 and the electrode terminal 214 may be disposed on the same wall of the battery cell 20 .
  • both the electrode terminal 214 and the pressure relief mechanism 213 can be disposed on the top wall of the battery cell 20 , that is, the cover plate 212 .
  • Arranging the pressure relief mechanism 213 and the electrode terminal 214 on the same wall of the battery cell 20, such as the cover plate 212 of the battery cell 20, can facilitate the processing and installation of the pressure relief mechanism 213 and the electrode terminal 214, which is beneficial to improve The production efficiency of the battery 10.
  • the pressure relief mechanism 213 and the electrode terminal 214 may also be disposed on different walls of the battery cell 20 .
  • the second wall of the battery cell 20 may be provided with the electrode terminal 214 , and the second wall is different from the first wall 215 .
  • the electrode terminal 214 is disposed on the top wall of the battery cell 20 , that is, the cover plate 212
  • the pressure relief mechanism 213 is disposed on the bottom wall opposite to the top wall, that is, the first wall 215 .
  • the two electrode terminals 214 are respectively disposed on the cover plate 212 and the first wall 215 of the battery cell 20 , and the pressure relief mechanism 213 is disposed on other walls of the casing 21 except the cover plate 212 and the first wall 215 .
  • Arranging the pressure relief mechanism 213 and the electrode terminal 214 on different walls of the battery cell 20 can make the discharge of the battery cell 20 farther away from the electrode terminal 214 when the pressure relief mechanism 213 is actuated, thereby reducing the impact of the discharge on the electrode.
  • the influence of the terminal 214 and the bus part, therefore, the safety of the battery can be enhanced.
  • the electrode terminal 214 is arranged on the cover plate 212 of the battery cell 20
  • the pressure relief mechanism 213 is arranged on the bottom wall of the battery cell 20, so that when the pressure relief mechanism 213 is actuated, the pressure of the battery cell 20
  • the discharge is discharged to the bottom of the cell 10 .
  • the heat management components at the bottom of the battery 10 can be used to reduce the danger of emissions, and on the other hand, the bottom of the battery 10 is usually far away from the user, thereby reducing the harm to the user.
  • the battery cell 20 may further include a backing plate 24, which is located between the electrode assembly 22 and the bottom wall of the casing 211, and can support the electrode assembly 22.
  • the supporting effect can also effectively prevent the electrode assembly 22 from interfering with the rounded corners around the bottom wall of the casing 211 .
  • the backing plate 24 may be provided with one or more through holes, for example, a plurality of evenly arranged through holes may be provided, or, when the pressure relief mechanism 213 is provided on the bottom wall of the housing 211, corresponding to the The position of the pressure relief mechanism 213 is provided with a through hole to facilitate liquid and gas conduction. Specifically, this can make the space between the upper and lower surfaces of the backing plate 24 communicate, and the gas generated inside the battery cell 20 and the electrolyte can pass through freely. Backing plate 24.
  • the pressure relief mechanism 213 may be various possible pressure relief mechanisms, which are not limited in this embodiment of the present application.
  • the pressure relief mechanism 213 may be a temperature-sensitive pressure relief mechanism configured to melt when the internal temperature of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold; and/or, the pressure relief mechanism 213 may be a pressure-sensitive pressure relief mechanism configured to rupture when the internal air pressure of the battery cell 20 provided with the pressure relief mechanism 213 reaches a threshold value.
  • Fig. 5 shows a schematic structure diagram and a partially enlarged diagram of a battery provided by an embodiment of the present application.
  • the battery 10 may include a battery cell 20 , an attachment member 13 and an insulating member 14 .
  • the battery cell 20 includes a pressure relief mechanism 213 disposed on the first wall 215 of the battery cell 20, and the pressure relief mechanism 213 is used to actuate to release the pressure when the internal pressure or temperature of the battery cell 20 reaches a threshold value. internal pressure.
  • the battery cell 20 may be the battery cell 20 in FIG. 4 .
  • the first surface 13 a (eg, the upper surface shown in FIG. 5 ) of the attachment member 13 is attached to the first wall 215 .
  • the attachment part 13 is provided with a first through hole 101 corresponding to the position of the pressure relief mechanism 213, and the first through hole 101 is used to pass the discharge from the battery cell 20 through the attachment when the pressure relief mechanism 213 is actuated. Part 13.
  • At least part of the insulating component 14 is attached to the inner wall 13b of the first through hole 101 to provide insulation protection for the inner wall 13b of the first through hole.
  • the attachment component 13 is provided with a first through hole 101 , and at least part of the insulating component 14 is attached to the inner wall 13b of the first through hole.
  • the insulating member 14 can insulate and protect the inner wall 13b of the first through hole, thereby improving the insulation of the attaching member 13 and preventing the short circuit phenomenon caused by the battery cell 20 directly contacting the inner wall 13b of the first through hole. Therefore, the safety risk can be reduced and the safety of the battery can be enhanced.
  • the first surface 13 a of the attachment member 13 is attached to the first wall 215 provided with a pressure relief mechanism 213 , and when the pressure relief mechanism 213 is actuated, the discharge of the battery cells 20 is discharged toward the first through hole 101 .
  • the discharge can be quickly drained away from the battery cell 20 through the attachment part 13 via the first through hole 101 , reducing its danger, thereby enhancing the safety of the battery.
  • the insulating component 14 is made of insulating material.
  • Insulating materials include, but are not limited to: resins (such as thermoplastic synthetic resins, thermosetting synthetic resins, etc.), plastics (such as polyethylene, polyvinyl chloride, etc.) and their products.
  • the insulating member 14 is attached to the inner wall 13b of the first through hole 101, which means that at least part of the insulating member 14 completely covers the inner wall 13b of the first through hole.
  • the method of attaching the insulating component 14 to the inner wall 13b of the first through hole may be bonding, riveting, clamping, interference fitting, etc., which is not limited in this application.
  • the inner wall 13b of the first through hole is coated with an insulating material.
  • the insulating material and the insulating part 14 can form double-layer insulation for the inner wall 13b of the first through hole, further improving the insulating property of the attaching part 13 .
  • the shape of the first through hole 101 can be flexibly designed according to actual needs, for example, it can be a cylinder, a cuboid, a cube, a triangular prism, a square prism, a circular truncated or other shapes, etc., which are not discussed in the embodiment of the present application. limited.
  • the insulating member 14 may be in the shape of a hollow column, and the outer surface of the side wall of the hollow column is attached to the inner wall 13 b of the first through hole.
  • an interference fit may be used between the hollow cylindrical sidewall and the inner wall 13b of the first through hole, so that the insulating part 14 and the attachment part 13 can be firmly connected, and the first through hole The insulation protection of the inner wall 13b.
  • the shape of the insulating component 14 is adapted to the shape of the first through hole 101 , so the shape of the insulating component 14 may be determined according to the shape of the first through hole 101 .
  • the insulating component 14 can be in the shape of a hollow column; if the first through hole 101 is in a square shape, the insulating component 14 can be in the shape of a hollow square ring, and so on.
  • the insulating component 14 is provided with a first groove 102, wherein the sidewall 142 of the first groove is embedded in the first through hole 101, the second An outer edge 141 of a groove is attached to the first surface 13a.
  • the insulating component 14 may include a first subsection and a second subsection, and the second subsection is recessed relative to the first subsection in a direction away from the pressure relief mechanism 213 to form the first groove 102 .
  • the first sub-section can be considered as the outer edge 141 of the first groove
  • the part of the second sub-section that is parallel to (or attached to) the inner wall 13b of the first through hole 101 can be considered as the side wall of the first groove. 142.
  • there may be a part covering (or blocking) the first through hole 101 after the second sub-section is recessed then the part of the second sub-section corresponding to the position of the first through hole 101 may be Consider the bottom wall 143 of the first recess.
  • the part of the insulating component 14 except the bottom wall 143 of the first groove and the sidewall 142 of the first groove can be regarded as the outer edge 141 of the first groove.
  • the sidewall 142 of the first groove is embedded in the first through hole 101, which means that at least part of the sidewall 142 of the first groove is embedded in the first through hole 101 .
  • the outer edge 141 of the first groove is attached to the first surface 13 a, which means that at least part of the outer edge 141 of the first groove is attached to the first surface 13 a of the attachment member 13 .
  • the insulating part 14 provided with the first groove 102 can be directly embedded in the first through hole 101 provided on the attachment part 13, and can cover the inner wall 13b of the first through hole, realizing The insulation protection of the inner wall 13b of the first through hole can also conveniently and stably fix the insulating component 14 to the attachment component 13, improving the assembly efficiency of the battery.
  • the bottom wall 143 of the first groove may be provided with a second through hole 103 , and the second through hole 103 is used to allow the The discharge of the body 20 passes through the insulating part 14 .
  • the pressure release mechanism 213 when the pressure release mechanism 213 is actuated, the discharge of the battery cell 20 can be quickly drained away from the battery cell 20 through the second through hole 103 , reducing its danger, thereby enhancing the safety of the battery.
  • the second through hole 103 may be disposed opposite to the pressure relief mechanism 213 , that is, the position of the second through hole 103 corresponds to the position of the pressure relief mechanism 213 . In this way, when the pressure relief mechanism 213 is actuated, the exhaust can be directly discharged from the second through hole 103 .
  • the bottom wall 143 of the first groove is used to block the first through hole 101 . That is, the bottom wall 143 of the first groove is not provided with a through hole.
  • the bottom wall 143 of the first groove can isolate the pressure relief mechanism 213, so that the space where the pressure relief mechanism 213 is located does not communicate with the outside, thereby preventing foreign objects in the box body 11 such as aluminum chips from passing through the first through hole 101 Enter the space where the pressure relief mechanism 213 is located. Therefore, problems such as abnormal battery cell insulation and damage to the pressure relief mechanism of the battery cell caused by foreign objects can be prevented, and further safety problems can be avoided.
  • the bottom wall 143 of the first groove is configured to be broken by the discharges when the pressure relief mechanism 213 is actuated, so that the discharges pass through. through the insulating part 14. That is to say, when the pressure relief mechanism 213 is not actuated, the bottom wall 143 of the first groove can block the first through hole 101, so as to prevent foreign matter from entering the space where the pressure relief mechanism 213 is located and affecting the relief of the pressure relief mechanism 213. pressure performance. When the pressure relief mechanism 213 is actuated, the bottom wall 143 of the first groove is easily damaged by the discharge, so that the discharge passes through the insulating member 14 and is discharged out of the battery cell 20 .
  • the bottom wall 143 of the first groove may be provided with a weakened area 104, and the weakened area 104 is configured to be damaged by the discharge when the pressure relief mechanism 213 is actuated, so that the discharge passes through. Pass the weak zone 104.
  • the setting of the weakened area 104 makes the bottom wall 143 of the first groove more likely to be damaged by the discharge of the battery cell 20 , which is beneficial to the rapid pressure release of the battery cell 20 .
  • the weakened area 104 may be disposed opposite to the pressure relief mechanism 213 . In this way, when the pressure relief mechanism 213 is actuated, the discharge can directly impact the weakened region 104 to open the weakened region 104.
  • the weakened area 104 can adopt various settings to facilitate the destruction of the discharge, which is not limited in this embodiment of the present application, and will be described with examples below.
  • the part of the bottom wall 143 of the first groove opposite to the pressure relief mechanism 213 may be made of a material with a low melting point to form the weak zone 104 . That is, the region of weakness 104 has a lower melting point than the rest of the insulating part 14 .
  • the material used for the weakened region 104 has a melting point lower than 400°C.
  • the weakened area 104 is more likely to be melted by the discharge than other parts of the bottom wall 143 of the first groove.
  • the bottom wall 143 of the first groove is provided with a groove 105 opposite to the pressure relief mechanism 213, and the bottom wall of the groove 105 forms a weak zone 104. That is, the area of weakness 104 has a smaller thickness than the rest of the insulating part 14 .
  • the thickness of the weakened area 104 is less than or equal to 3 mm.
  • the thickness of the weakened region 104 may be 1 mm or less. The thickness of the weakened area 104 may be determined according to actual requirements and/or experimental data, which is not limited in this embodiment of the present application.
  • the discharge can break the bottom wall of the groove 105 and pass through the insulating component 14 .
  • the groove 105 is disposed on a surface of the bottom wall 143 of the first groove facing the first wall 215 . That is, the opening of the groove 105 faces the first wall 215 .
  • the opening of the groove 105 may also face away from the first wall 215 .
  • the bottom wall of the groove 105 is also easily damaged by the discharge.
  • thinning methods can also be used to thin the bottom wall 143 of the first groove to form the weakened area 104, for example, a blind hole or a stepped hole is provided on the bottom wall 143 of the first groove, which will not be repeated here. Describe in detail.
  • the bottom wall 143 of the first groove is provided with notches to form the weakened area 104 .
  • the bottom wall 143 of the first groove is provided with cross marks, Pozi-shaped marks, H-shaped marks and the like.
  • the thickness of the bottom wall 143 of the first groove corresponding to the notch is smaller than the thickness of other areas of the bottom wall 143 of the first groove except the notch, so the notch is the weakest position of the bottom wall 143 of the first groove .
  • the weakened region 104 can adopt at least two methods of low melting point material, setting of a smaller thickness and setting of notches at the same time, that is to say, the above three implementations can be implemented alone or in combination.
  • the attachment member 13 may be configured to be attached to the first wall 215 through an adhesive 15 .
  • the insulating member 14 is configured to prevent the adhesive 15 from being applied between the attaching member 13 and the pressure relief mechanism 213 .
  • the insulating member 14 can not only insulate and protect the inner wall 13b of the first through hole provided by the attaching member 13, but also prevent the adhesive 15 from being applied to the attaching member 13 and pressure release in an effective manner during the battery production process.
  • mechanism 213 to prevent or affect the actuation performance of the pressure relief mechanism 213 .
  • the application efficiency and accuracy of the adhesive 15 can also be improved, thereby improving the production efficiency of the battery.
  • the pressure relief mechanism 213 has an actuation area, and the pressure relief mechanism 213 is configured to form a pressure relief mechanism 213 in the actuation area for releasing the internal pressure or temperature of the battery cell 20 when the internal pressure or temperature reaches a threshold value.
  • the outer edge 141 of the first groove is configured to at least surround the actuation area, so as to prevent the adhesive 15 from entering the actuation area.
  • the discharge channel formed in the actuation area can guide the discharge of the battery cell 20 to discharge outward through the formed discharge channel in the case of thermal runaway of the battery, thereby improving the battery life. safety performance.
  • the outer edge 141 of the first groove at least surrounds the actuation area, which can prevent the adhesive 15 from flowing into the actuation area from any direction and cause any hindrance or adverse effect on the actuation of the pressure relief mechanism 213 . Therefore, it is possible to more reliably prevent the adhesive 15 from interfering with the normal actuation of the pressure relief mechanism 213 , and prevent the adhesive 15 from flowing in to block the discharge channel and thereby blocking the discharge of the discharge discharged from the battery cell 20 . Thus, the safety performance of the battery can be further improved.
  • the insulating part 14 can adopt various possible configurations, so that the above-mentioned adhesive 15 used for assembling the battery cell 20 to the attaching part 13 can be isolated from the attaching part 13 and the vent.
  • the coated adhesive 15 can be isolated from the space where once the adhesive 15 flows in, it may affect the pressure relief mechanism 213 to perform its designed function of pressure relief. outside.
  • the insulating member 14 can be designed to surround a partial area of the pressure relief mechanism 213, and the partial area can form a relief passage for releasing the internal pressure of the battery cell 20 when the pressure relief mechanism 213 is actuated for the discharge to flow out.
  • actuation region may be referred to as an actuation region or a relief region
  • actuation region may also be a region attached to the attachment part 13 corresponding to the pressure relief mechanism 213, thereby enclosing the area provided by the attachment part 13 to allow the pressure relief mechanism 213 to actuate space, and so on.
  • insulating member 14 may be attached to a region on attachment member 13 corresponding to pressure relief mechanism 213 prior to application of adhesive 15 . It should be noted that, as long as the components in the battery are bonded together by the adhesive 15 and the battery cell 20, they can be considered as attachment components or a part of the attachment components, and these components can use the insulating component 14, that is, The insulating member 14 may be attached thereto before the adhesive 15 is applied.
  • the insulating part 14 will be able to prevent the adhesive 15 from entering on the attachment part 13 corresponding to the pressure relief mechanism 213 and in particular corresponding to the pressure relief mechanism 213 for actuation to
  • a relief passage for releasing the internal pressure of the battery cell 20 is formed to provide an area for the discharge to flow out, so as to ensure that the pressure relief mechanism 213 can be actuated and normally perform its designed function.
  • the use of the insulating component 14 can also speed up the application speed and accuracy of the adhesive 15 without worrying about applying the adhesive 15 to the area related to the actuation of the pressure relief mechanism 213 and save production time and cost.
  • the outer edge 141 of the first groove is provided with a protrusion 141a, and the protrusion 141a is configured to protrude from the first surface 13a and surround the pressure relief mechanism 213,
  • the protrusion 141 a serves to prevent the adhesive 15 from being applied between the attachment member 13 and the pressure relief mechanism 213 .
  • This arrangement prevents the adhesive 15 from being applied on the surface of the pressure relief mechanism 213 during the production of the battery in a simple and effective manner, preventing the actuation of the pressure relief mechanism 213 from being hindered.
  • the outer edge 141 of the first groove may include a main body and a protrusion 141a.
  • the main body is intended to be attached to or fitted to the attachment part 13 .
  • Protrusions 141 a protrude outward from the surface of the main body, and are configured to protrude from the surface of the main body in a direction away from the attachment member 13 , ie toward the battery cells 20 , when fitted in place.
  • the protruding part 141a is disposed around the pressure relief mechanism 213, for example, the protruding part 141a may be in an annular structure.
  • the protruding portion 141a may include a flange structure 141b formed by bending the outer edge 141 of the first groove.
  • the flange structure 141b may be formed by the outermost portion of the outer edge 141 of the first groove being raised to one side of the battery cell 20 relative to the first surface 13a.
  • the embodiment of the present application does not limit the specific structure of the flange structure 141b, as long as it can realize the glue blocking function of the edge of the insulating component 14 .
  • the cuff structure 141b is in a free state.
  • the state diagram of the battery cell 20 shown in (a) in FIG. direction gradually increases.
  • the height between the flange structure 141b and the first surface 13a may first increase and then decrease along the direction away from the centerline of the first through hole 101 , or remain unchanged.
  • the flange structure 141b When the attachment member 13 is attached to the battery cell 20, the flange structure 141b may be deformed due to force. Referring to the schematic diagram of the assembled state of the battery cell 20 and the attachment member 13 shown in (b) in FIG. The direction away from the centerline of the first through hole 101 may remain unchanged, and the height between the portion of the flange structure 141b that is not in contact with the battery cell 20 and the first surface 13a may be along the direction away from the first through hole 101. The direction of the centerline gradually increases.
  • the maximum height of the protruding portion 141a from the first surface 13a is configured to be greater than or equal to the predetermined application height of the adhesive 15 , and when the battery cell 20 is attached to the attachment member 13 The case is compressed to match the height of the adhesive 15 .
  • the maximum height between 141b and the first surface 13a is greater than or equal to the predetermined application height of the adhesive 15 . After the battery cell 20 is attached to the attachment part 13 , the maximum height between the flange structure 141 b and the first surface 13 a is consistent with the height of the compressed adhesive 15 .
  • This arrangement can ensure that the protrusion 141 a can effectively prevent the adhesive 15 from being applied between the attachment member 13 and the pressure relief mechanism 213 . At the same time, this allows the insulating part 14 not to affect the reliable bonding between the attachment part 13 and the pressure relief mechanism 213 and the actuation of the pressure relief mechanism 213 .
  • the protruding portion 141a can be compressed to a height consistent with the adhesive 15, whereby the protruding portion 141a will not be in the Leaving any space between the bonding surfaces of both the battery cell 20 and the attachment member 13 can more reliably ensure that the adhesive 15 is isolated from the area where the pressure relief mechanism 213 actuates and forms the passage of the discharge. outside.
  • the area where the first through hole 101 is provided on the attachment member 13 may be a plate area as shown in FIGS. 5-11 .
  • the area where the first through hole 101 is provided on the attachment member 13 may also be provided with a groove.
  • the attachment part 13 is provided with a second groove 13c opposite to the pressure relief mechanism 213, and the bottom wall of the second groove 13c is provided with a first through hole 101.
  • the outer edge 141 of the first groove includes a first attachment wall 144 connected to the side wall 142 of the first groove, and the first attachment wall 144 is attached to the bottom wall of the second groove 13c.
  • a buffer space for the discharge of the battery cell 20 can be provided, thereby lowering the battery cell 20.
  • the impact pressure of the discharge on the external structure or components further improves the safety performance of the battery.
  • the rest of the outer edge 141 of the first groove except the first attachment wall 144 can also be attached. connected to the bottom wall of the second groove 13c, such as shown in FIG. 12 .
  • the rest of the outer edge 141 of the first groove except the first attachment wall 144 may also extend to the first surface 13a, so as to be attached to the first surface 13a.
  • Figure 13 shows a schematic top view of a battery provided by an embodiment of the present application
  • Figure 14 shows a schematic cross-sectional view of the battery in Figure 13 along the A-A line
  • Figure 15 shows the battery shown in Figure 14
  • the structure of the insulating member 14 will be described below with reference to FIGS. 13-15.
  • the attachment part 13 may include a first heat conducting plate 131 and a second heat conducting plate 132 .
  • the first heat conducting plate 131 is located between the first wall 215 and the second heat conducting plate 132 and is attached to the first wall 215 .
  • the first region 131a of the first heat conducting plate 131 is recessed toward the second heat conducting plate 132 to form a second groove 13c.
  • the first area 131a is connected to the second heat conducting plate 132, and the first through hole 101 is disposed in the first area 131a.
  • the outer edge 141 of the first groove may include a first attachment wall 144 , a second attachment wall 145 and a connection wall 146 , and the second attachment wall 145 is connected to the first attachment wall 144 through the connection wall 146 .
  • the first attachment wall 144 is attached to the first area 131 a
  • the second attachment wall 145 is attached to the second area 131 b of the first heat conducting plate 131
  • the second area 131 b is used for attaching to the first wall 215 .
  • the outer edge 141 of the first groove further includes a flange structure 141b located on the edge.
  • the insulating member 14 having the above structure can provide insulating protection for the inner wall of the first through hole 101 .
  • the first through hole 101 can be blocked by the bottom wall 143 of the first groove, so as to prevent foreign matters such as aluminum chips from entering the space where the pressure relief mechanism 213 is located.
  • the flange structure 141b located at the edge of the outer edge 141 of the first groove can also prevent the adhesive 15 from entering between the pressure relief mechanism 213 and the attachment component 13, thereby ensuring that the pressure relief mechanism 213 can be normally activated. move.
  • a gap may be provided between the connecting wall 146 and the sidewall of the second groove 13c; or, the connecting wall 146 may be attached to the sidewall of the second groove 13c.
  • the design may be performed according to actual requirements, which is not limited in this embodiment of the present application.
  • the insulating component 14 is configured to provide a space for actuating the pressure relief mechanism 213 , wherein an avoidance cavity is formed between the insulating component 14 and the pressure relief mechanism 213 .
  • the avoidance cavity can provide a deformation space for the pressure relief mechanism 213 to deform and break the pressure relief mechanism 213 toward the attachment part 13 .
  • the avoidance cavity may be a closed cavity or a non-sealed cavity formed by the insulation component 14 and the pressure relief mechanism 213 together.
  • the above-mentioned first groove 102 may be configured as an avoidance cavity that can be opened when the pressure relief mechanism 213 is actuated.
  • the setting of the first groove 102 should meet the condition that the pressure relief mechanism 213 can be opened when activated.
  • the depth of the first groove 102 is related to the size of the pressure relief mechanism 213 .
  • the depth of the first groove 102 is greater than 1mm.
  • the depth of the first groove 102 can be 3 mm or greater than 3 mm, so that it is easier for the pressure relief mechanism 213 to be opened.
  • the area of the opening of the first groove 102 is also related to the area of the pressure relief mechanism 213 .
  • the ratio of the area of the opening of the first groove 102 to the area of the pressure relief mechanism 213 must be greater than a certain value.
  • the ratio of the area of the opening of the first groove 102 to the area of the pressure relief mechanism 213 may range from 0.5 to 2.
  • the first groove 102 may be stepped, and the opening of the first groove 102 may be regarded as the opening formed by the part connecting the connecting wall 146 and the second attaching wall 145 .
  • the attachment component 13 may be a thermal management component for containing fluid to regulate the temperature of the battery cell 20 .
  • the thermal management component can contain a cooling medium to adjust the temperature of the battery cell 20 , and at this time, the thermal management component can also be called a cooling component, a cooling system, or a cooling plate.
  • the thermal management component may also be used for heating, which is not limited in this embodiment of the present application.
  • the fluid may circulate to achieve better temperature regulation.
  • the first heat conducting plate 131 and the second heat conducting plate 132 may form a flow channel 133 for containing fluid.
  • the portion of the first heat conduction plate 131 used to form the flow channel 133 may be provided with a weak structure that is easily damaged by high-temperature and high-pressure discharge, such as a portion with reduced thickness, a score, a hole made of a fragile material, etc.
  • the pressure relief mechanism 213 when the pressure relief mechanism 213 is actuated, the discharge from the battery cell 20 can destroy the weak structure provided on the first heat conducting plate 131, so that the cooling medium in the flow channel 133, such as cooling liquid, flows out, and the discharge from the battery cell 20 is rapidly reduced.
  • the temperature and pressure of the high-temperature and high-pressure discharge of the cell 20 can protect other components in the battery 10 such as the battery cell 20 that do not have thermal runaway.
  • the battery 10 may further include a protective member 115, as shown in FIG. 15 .
  • the protection member 115 in this application refers to a component arranged on a side of the thermal management component away from the battery cell 20 to provide protection for the thermal management component and the battery cell 20 .
  • the space between the shield member 115 and the thermal management component may be used to collect battery cell emissions.
  • FIG. 16 and Fig. 17 show a schematic structural view of an insulating component provided by an embodiment of the present application. 16 shows schematic three views of the insulating component, and FIG. 17 shows schematic perspective views of the insulating component at two different angles.
  • the insulating component 14 may be provided with one or more first grooves 102 .
  • the first groove 102 may include a bottom wall 143 of the first groove, a side wall 142 of the first groove, and an outer edge 141 of the first groove.
  • the bottom wall 143 of the first groove can be used to block the first through hole 101 that the attachment part 13 is provided with, and the side wall 142 of the first groove is used to be attached to the inner wall of the first through hole 101 so that the first through hole
  • the inner wall of 101 is insulated and protected, and the outer edge 141 of the first groove can be used for attaching with the attaching component 13 .
  • the outer edge 141 of the first groove may include a first attachment wall 144 , a second attachment wall 145 , a connection wall 146 and a flange structure 141 b.
  • the second attachment wall 145 is connected to the first attachment wall 144 through the connection wall 146 , and the edge of the second attachment wall 145 forms a flanging structure 141b.
  • the first attachment wall 144 is used to attach to the first region 131a of the first heat conduction plate 131
  • the second attachment wall 145 is used to attach to the second region 131b of the first heat conduction plate 131
  • the flange structure 141b It is used to prevent the adhesive from entering the first groove 102 to prevent the adhesive from being applied between the pressure relief mechanism 213 and the insulating component 14 .
  • the insulating member 14 is designed to have elongated lamellar main bodies, with a row of first grooves 102 depressed on each main body.
  • the main body of the insulating component 14 and the first groove 102 in the present application can have various shapes according to the shape and structure of the pressure relief mechanism 213 and other factors.
  • the main body of the insulating member 14 usually has a relatively thin thickness, so it can generally be in the form of films or sheets of various shapes.
  • the wall thickness of the insulating part 14 or the main body of the insulating part 14 may be between 0.01 mm and 0.05 mm.
  • the shape of the first groove 102 can be, for example, an oblong shape as shown in the figure, or a shape of a circle, an ellipse, a square, or the like.
  • the flange structures 141b corresponding to the plurality of first grooves 102 may be integrally formed.
  • its main body may be designed to have a single first groove 102, multiple rows of first grooves 102, or multiple first grooves 102 arranged in other ways, As long as the arrangement and relative position of the first grooves 102 can be adapted to the installation position of the pressure relief mechanism 213 of the battery cell 20 in the battery.
  • each first groove 102 in the plurality of first grooves 102 is respectively aligned with a pressure relief mechanism 213 (or aligned with the pressure relief mechanism 213 discharge area). Therefore, the process of assembling the insulating member 14 to the attachment member 13 will be relatively simple, and the assembly efficiency of the battery can be improved.
  • the flange structures 141 b corresponding to the plurality of first grooves 102 can function to isolate the adhesive for the pressure relief mechanisms 213 of the plurality of battery cells 20 .
  • the application does not limit the arrangement direction and position of the pressure relief mechanism 213 in the battery cell 20 .
  • the relevant design of the insulating member 14 proposed in this application can be properly applied, and it can ensure that the pressure relief mechanism 213 realizes Its design function is to release the high-temperature and high-pressure discharge in the battery cell when necessary, so as to ensure the safe use of the battery.
  • the insulating component 14 can be made of thermoplastic material through a blistering process, which helps to simplify the manufacturing process of the insulating component 14 and reduce costs.
  • foam or other components may be provided to block glue.
  • FIG. 18 shows an exploded schematic diagram of a battery 10 according to an embodiment of the present application.
  • the attachment member 13 may be attached to the case 11 and attached to the first wall 215 of the battery cell 20 through the first surface 13a.
  • At least a portion of the insulation component 14 is attached to the inner wall of the first through hole 101 provided by the attachment component 13 .
  • An embodiment of the present application also provides an electric device, which may include the battery 10 in the foregoing embodiments.
  • the electric device may be a vehicle 1 , a ship or a spacecraft.
  • FIG. 19 shows a schematic flowchart of a method 300 for manufacturing a battery 10 according to an embodiment of the present application. As shown in Figure 19, the method 300 may include:
  • the battery cell 20 includes a pressure relief mechanism 213 disposed on the first wall 215 of the battery cell 20, and the pressure relief mechanism 213 is used to actuate to release the pressure when the internal pressure or temperature of the battery cell 20 reaches a threshold value. internal pressure.
  • the first surface 13a of the attachment part 13 is attached to the first wall 215, the attachment part 13 is provided with a first through hole 101 corresponding to the position of the pressure relief mechanism 213, the first through hole 101 is used for 213 is actuated to pass the discharge from the battery cell 20 through the attachment member 13 .
  • FIG. 20 shows a schematic block diagram of an apparatus 400 for preparing a battery 10 according to an embodiment of the present application.
  • the device 400 may include:
  • a module 410 is provided for:
  • the battery cell 20 is provided, the battery cell 20 includes a pressure relief mechanism 213, the pressure relief mechanism 213 is arranged on the first wall 215 of the battery cell 20, and the pressure relief mechanism 213 is used for when the internal pressure or temperature of the battery cell 20 reaches a threshold actuated to relieve internal pressure;
  • An attachment part 13 is provided, the first surface 13a of the attachment part 13 is attached to the first wall 215, the attachment part 13 is provided with a first through hole 101 corresponding to the position of the pressure relief mechanism 213, the first through hole 101 for allowing discharge from the battery cells 20 to pass through the attachment member 13 when the pressure relief mechanism 213 is actuated;
  • the installation module 420 is used for attaching at least part of the insulating component 14 to the inner wall 13b of the first through hole, so as to insulate and protect the inner wall 13b of the first through hole.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

本申请实施例提供一种电池、用电设备、制备电池的方法和设备。该电池包括:电池单体,包括泄压机构,泄压机构设置于电池单体的第一壁,泄压机构用于在电池单体的内部压力或温度达到阈值时致动以泄放内部压力;附接部件,附接部件的第一表面附接于第一壁,附接部件设置有与泄压机构的位置相对应的第一通孔,第一通孔用于在泄压机构致动时使来自电池单体的排放物穿过附接部件;绝缘部件,绝缘部件的至少部分贴覆于第一通孔的内壁,以对第一通孔的内壁进行绝缘保护。上述技术方案能够增强电池的安全性。

Description

电池、用电设备、制备电池的方法和设备 技术领域
本申请涉及电池技术领域,特别是涉及一种电池、用电设备、制备电池的方法和设备。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,除了提高电池的电学性能外,安全问题也是一个不可忽视的问题。如果电池的安全问题不能保证,那该电池就无法使用。因此,如何增强电池的安全性,是电池技术中一个亟待解决的技术问题。
发明内容
本申请提供了一种电池、用电设备、制备电池的方法和设备,能够增强电池的安全性。
第一方面,提供一种电池,包括:电池单体,包括泄压机构,所述泄压机构设置于所述电池单体的第一壁,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;附接部件,所述附接部件的第一表面附接于所述第一壁,所述附接部件设置有与所述泄压机构的位置相对应的第一通孔,所述第一通孔用于在所述泄压机构致动时使来自所述电池单体的排放物穿过所述附接部件;绝缘部件,所述绝缘部件的至少部分贴覆于所述第一通孔的内壁,以对所述第一通孔的内壁进行绝缘保护。
基于本申请实施例的技术方案,附接部件设置有第一通孔,绝缘部件的至少部分贴覆于第一通孔的内壁。这样,可以对第一通孔的内壁进行绝缘保护,从而提高附接部件的绝缘性,防止电池单体因直接接触第一通孔的内壁而产生的短路现象。因而能够降低安全风险,增强电池的安全性。另外,附接部件的第一表面附接于设置有泄压机构的第一壁,在泄压机构致动时,电池单体的排放物朝向第一通孔排放。排放物能够经由第一通孔穿过附接部件被迅速排走而远离电池单体,降低了其危险性,从而能够增强电池的安全性。
在一些可能的实施方式中,所述绝缘部件设置有第一凹槽,其中所述第一凹槽的侧壁内嵌于所述第一通孔,所述第一凹槽的外缘附接于所述第一表面。
这样在实际安装过程中,设置有第一凹槽的绝缘部件可以直接嵌合在附接部件 上设置的第一通孔内,既可以覆盖第一通孔的内壁,实现对第一通孔的内壁的绝缘保护,还可以方便、稳定地将绝缘部件固定于附接部件,提升电池的组装效率。
在一些可能的实施方式中,所述第一凹槽的底壁设置有第二通孔,所述第二通孔用于在所述泄压机构致动时使来自所述电池单体的排放物穿过所述绝缘部件。
因此,在泄压机构致动时,电池单体的排放物可以通过第二通孔被迅速排走而远离电池单体,降低了其危险性,从而能够增强电池的安全性。
在一些可能的实施方式中,所述第一凹槽的底壁用于封堵所述第一通孔;其中所述第一凹槽的底壁被配置为在所述泄压机构致动时能够被所述排放物破坏,以使所述排放物穿过所述绝缘部件。
这样在泄压机构未致动时,第一凹槽的底壁可以封堵第一通孔,以防止异物进入泄压机构所在的空间而影响泄压机构的泄压性能。在泄压机构致动时,第一凹槽的底壁容易被排放物破坏,而使排放物顺利穿过绝缘部件而被排出电池单体之外。
在一些可能的实施方式中,所述第一凹槽的底壁设置有薄弱区,所述薄弱区被配置为在所述泄压机构致动时能够被所述排放物破坏,以使所述排放物穿过所述薄弱区。
薄弱区的设置使得第一凹槽的底壁更容易被电池单体的排放物破坏,有利于电池单体的快速泄压。
在一些可能的实施方式中,所述薄弱区满足以下至少一项:所述薄弱区具有比所述绝缘部件的其余部分更低的熔点;所述薄弱区具有比所述绝缘部件的其余部分更小的厚度;以及,所述薄弱区设置有刻痕。
薄弱区可以采用各种便于排放物破坏的设置。这样在泄压机构致动时,薄弱区较第一凹槽的底壁的其他部分而言,更容易被排放物破坏。
在一些可能的实施方式中,所述附接部件被配置为通过粘接剂附接于所述第一壁;所述绝缘部件被配置为防止所述粘接剂施加在所述附接部件与所述泄压机构之间。
绝缘部件不仅能够对附接部件设置的第一通孔的内壁进行绝缘保护,还能够在电池生产过程中以有效的方式防止粘接剂施加在附接部件和泄压机构之间而阻止或影响泄压机构的致动性能。
在一些可能的实施方式中,所述泄压机构具有致动区域,所述泄压机构被配置为在所述电池单体的内部压力或温度达到阈值时在所述致动区域形成用于泄放所述内部压力的泄放通道;其中,所述第一凹槽的外缘被配置为至少包围所述致动区域,以防止所述粘接剂进入所述致动区域。
第一凹槽的外缘至少包围致动区域,能够避免粘接剂从任何方向流入致动区域而对泄压机构的致动动作的执行造成任何阻碍或不利影响。因此,能够更可靠地防止粘接剂妨碍泄压机构的正常致动,以及防止粘接剂流入而阻塞泄放通道进而阻塞电池单体泄放的排放物的排出。由此,可进一步提高电池的安全性能。
在一些可能的实施方式中,所述第一凹槽的外缘设置有突出部,所述突出部被配置为突出于所述第一表面且围绕所述泄压机构设置,所述突出部用于防止所述粘接 剂施加在所述附接部件与所述泄压机构之间。
这种布置能够在电池的生产过程中以一种简单有效的方式防止粘接剂被施加在泄压机构的表面上,防止对泄压机构的致动造成阻碍。
在一些可能的实施方式中,所述突出部包括经由所述第一凹槽的外缘弯折形成的翻边结构。
通过将绝缘部件的边沿设置成翻边结构,既方便绝缘部件的加工成型,还能够在电池的生产过程中以一种简单有效的方式防止粘接剂被施加在泄压机构的表面上。
在一些可能的实施方式中,所述突出部距离所述第一表面的最大高度被配置为大于或等于所述粘接剂的预定施加高度,并且在所述电池单体附接到所述附接部件的情况下被压缩以与所述粘接剂的高度一致。
这种布置方式可以确保突出部能够有效地防止粘接剂施加在附接部件和泄压机构之间。同时,这使得绝缘部件不会影响附接部件与泄压机构之间的可靠粘接和泄压机构的致动。
在一些可能的实施方式中,所述附接部件设置有与所述泄压机构相对设置的第二凹槽,所述第二凹槽的底壁设置有所述第一通孔;其中,所述第一凹槽的外缘包括与所述第一凹槽的侧壁相连接的第一附接壁,所述第一附接壁附接于所述第二凹槽的底壁。
在本申请实施例中,通过在附接部件上设置与泄压机构相对设置的第二凹槽,能够提供用于电池单体的排放物的缓冲空间,从而降低电池单体的排放物对外部结构或部件的冲击压力,进一步提高电池的安全性能。
在一些可能的实施方式中,所述附接部件包括第一导热板和第二导热板,所述第一导热板位于所述第一壁和所述第二导热板之间且附接于所述第一壁,所述第一导热板的第一区域向所述第二导热板凹陷以形成所述第二凹槽,所述第一区域连接到所述第二导热板,所述第一通孔设置于所述第一区域;所述第一凹槽的外缘还包括第二附接壁和连接壁,所述第二附接壁通过所述连接壁与所述第一附接壁相连接,其中所述第一附接壁附接于所述第一区域,所述第二附接壁附接于所述第一导热板的第二区域,所述第二区域用于与所述第一壁相附接。
在一些可能的实施方式中,所述连接壁与所述第二凹槽的侧壁之间设置有间隙;或者,所述连接壁贴覆于所述第二凹槽的侧壁。
在一些可能的实施方式中,所述绝缘部件被配置为提供允许所述泄压机构致动的空间,其中所述绝缘部件与所述泄压机构之间形成避让腔。
避让腔能够为泄压机构提供变形空间,以使泄压机构朝向附接部件变形并破裂。
在一些可能的实施方式中,所述第一通孔的内壁涂覆有绝缘材料。
绝缘材料和绝缘部件可以对第一通孔的内壁形成双层绝缘,进一步提高附接部件的绝缘性。
在一些可能的实施方式中,所述附接部件为热管理部件,所述热管理部件用于容纳流体以给所述电池单体调节温度。
第二方面,提供一种用电设备,包括:上述第一方面或第一方面中任一可能的实施方式中的电池,该电池用于所述用电设备提供电能。
第三方面,提供一种制备电池的方法,包括:提供电池单体,所述电池单体包括泄压机构,所述泄压机构设置于所述电池单体的第一壁,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;提供附接部件,所述附接部件的第一表面附接于所述第一壁,所述附接部件设置有与所述泄压机构的位置相对应的第一通孔,所述第一通孔用于在所述泄压机构致动时使来自所述电池单体的排放物穿过所述附接部件;提供绝缘部件;将所述绝缘部件的至少部分贴覆于所述第一通孔的内壁,以对所述第一通孔的内壁进行绝缘保护。
第四方面,提供一种制备电池的设备,包括:提供模块,用于:提供电池单体,所述电池单体包括泄压机构,所述泄压机构设置于所述电池单体的第一壁,所述泄压机构用于在所述电池单体的内部压力或温度达到阈值时致动以泄放所述内部压力;提供附接部件,所述附接部件的第一表面附接于所述第一壁,所述附接部件设置有与所述泄压机构的位置相对应的第一通孔,所述第一通孔用于在所述泄压机构致动时使来自所述电池单体的排放物穿过所述附接部件;提供绝缘部件;安装模块,用于:将所述绝缘部件的至少部分贴覆于所述第一通孔的内壁,以对所述第一通孔的内壁进行绝缘保护。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池的分解结构示意图;
图3-4是本申请一实施例公开的一种电池单体的结构示意图;
图5是本申请一实施例公开的一种电池的示意性结构图和局部放大图;
图6-12是本申请另一实施例公开的一种电池的局部结构示意图;
图13-15是本申请又一实施例公开的一种电池的结构示意图;
图16-17是本申请一实施例公开的一种绝缘部件的结构示意图;
图18是本申请一实施例公开的一种电池的分解示意图;
图19是本申请一实施例公开的制备电池的方法的示意性流程图;
图20是本申请一实施例公开的制备电池的设备的示意性框图。
在附图中,附图并未按照实际的比例绘制。
标记说明:
1-车辆;10-电池;11-箱体;111-第一部分;112-第二部分;13-附接部件;13a-第一表面;101-第一通孔;13b-第一通孔的内壁;13c-第二凹槽;131-第一导热板;132-第二 导热板;133-流道;131a-第一区域;131b-第二区域;14-绝缘部件;102-第一凹槽;141-第一凹槽的外缘;141a-突出部;141b-翻边结构;142-第一凹槽的侧壁;143-第一凹槽的底壁;144-第一附接壁;145-第二附接壁;146-连接壁;103-第二通孔;104-薄弱区;105-凹槽;15-粘接剂;115-防护构件;20-电池单体;21-电池盒;211-壳体;212-盖板;213-泄压机构;214-电极端子;214a-正电极端子;214b-负电极端子;215-第一壁;22-电极组件;22a-第一极耳;22b-第二极耳;23-连接构件;24-垫板;30-控制器;40-马达。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上(包括两个);术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:存在A,同时存在A和B,存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
本申请中,电池是指包括一个或多个电池单体以提供电能的物理模块。例如,本申请所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
可选地,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。在一些实施方式中,电池单体也可称之为电芯。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
本申请实施例中的电池的箱体用于容纳多个电池单体、汇流部件以及电池的其他部件,例如热管理部件。在一些实施例中,箱体中还可以设置用于固定电池单体的结构。箱体的形状可以根据所容纳的多个电池单体而定。在一些实施例中,箱体可以为方形,具有六个壁。
本申请中所提到的汇流部件用于实现多个电池单体之间的电连接,例如并联、串联或混联。汇流部件可通过连接电池单体的电极端子实现电池单体之间的电连接。在一些实施例中,汇流部件可通过焊接固定于电池单体的电极端子。汇流部件传输电池单体的电压,多个电池单体串联后会得到较高的电压,相应地,汇流部件形成的电连接也可称为“高压连接”。
本申请中所提到的热管理部件是用于容纳流体以给多个电池单体调节温度。这里的流体可以是液体或气体,调节温度是指给多个电池单体加热或者冷却。在给电池单体冷却或降温的情况下,该热管理部件用于容纳冷却流体以给多个电池单体降低温度,此时,热管理部件也可以称为冷却部件、冷却系统或冷却板等,其容纳的流体也可以称为冷却介质或冷却流体,更具体的,可以称为冷却液或冷却气体。另外,热管理部件也可以用于加热以给多个电池单体升温,本申请实施例对此并不限定。可选的,所述流体可以是循环流动的,以达到更好的温度调节的效果。可选的,流体可以为水、水和乙二醇的混合液或者空气等。
在一些电池封装技术中,可以先将多个电池单体(cell)整合为电池模块(module),然后将电池模块安装于电池的箱体中,形成电池包(pack)。而在另一 些电池封装技术中,也可直接将多个电池单体安装于电池的箱体中形成电池包,这种电池封装技术也可以称为电池单体到电池包(cell to pack,CTP)的封装技术。在CTP封装技术中,由于去除了电池模块这个中间状态,可以降低电池包的质量并提高电池的能量密度。也就是说,在封装电池的过程中,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。电池再进一步设置于用电设备中,为用电设备提供电能。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
对于电池单体来说,主要的安全危险来自于充电和放电过程,同时还有适宜的环境温度设计,为了有效地避免不必要的损失,对电池单体一般会有至少三重保护措施。具体而言,保护措施至少包括开关元件、选择适当的隔离膜材料以及泄压机构。开关元件是指电池单体内的温度或者电阻达到一定阈值时而能够使电池停止充电或者放电的元件。隔离膜用于隔离正极片和负极片,可以在温度上升到一定数值时自动溶解掉附着在其上的微米级(甚至纳米级)微孔,从而使金属离子不能在隔离膜上通过,终止电池单体的内部反应。
设置于电池单体上的泄压机构是指电池单体的内部压力或温度达到预定阈值时致动以泄放内部压力或温度的元件或部件。该阈值设计根据设计需求不同而不同。所述阈值可能取决于电池单体中的正极极片、负极极片、电解液和隔离膜中一种或几种的材料。设置于电池单体上的泄压机构可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏或温敏的元件或构造,即,当电池单体的内部压力或温度达到预定阈值时,泄压机构执行动作或者泄压机构中设有的薄弱结构被破坏,从而形成可供内部压力或温度泄放的开口或通道。
电池单体上的泄压机构对电池的安全性有着重要影响。例如,当发生短路、过充等现象时,可能会导致电池单体内部发生热失控从而压力或温度骤升。这种情况下通过泄压机构致动可以将内部压力及温度向外释放,以防止电池单体爆炸、起火。
本申请中所提到的“致动”是指泄压机构产生动作或被激活至一定的状态,从而使得电池单体的内部压力及温度得以被泄放。泄压机构产生的动作可以包括但不限于:泄压机构中的至少一部分破裂、破碎、被撕裂或者打开,等等。泄压机构在致动时,电池单体的内部的高温高压物质作为排放物会从致动的部位向外排出。以此方式能够在可控压力或温度的情况下使电池单体发生泄压,从而避免潜在的更严重的事故发生。
本申请中所提到的来自电池单体的排放物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离膜的碎片、反应产生的高温高压气体、火焰,等等。
电池单体的外壳一般采用的是金属材料,例如铝材、钢材等,若电池内绝缘设计不良,例如电池单体周围的导体有可能与电池单体的外壳发生直接接触,则容易导致电池单体发生短路现象。短路可能会导致电池单体内部发生热失控而压力或温度骤升,从而引发电池单体爆炸、起火等安全问题。
在目前的绝缘设计方案中,通常是在电池单体周围的导体的表面涂覆绝缘材 料,来实现这些导体与电池单体之间的绝缘。然而在实际应用中,根据设计需求,一些导体部件会设置开孔,目前的绝缘设计中并没有考虑对孔的内壁进行绝缘保护。电池安装于用电设备,例如,安装于车辆。车辆等用电设备的运动会对电池造成一定的冲击。为了充分利用电池内的空间,电池内部设计紧凑,部件之间的距离很小。用电设备对电池所造成的冲击可能会使导体上缺乏绝缘保护的孔的内壁与电池单体的外壳接触,引起电池发生短路,因而存在安全隐患。
鉴于此,本申请提供一种技术方案,利用绝缘部件对附接于电池单体的附接部件上设置的第一通孔进行绝缘保护,以增强电池的安全性。更为具体地,将绝缘部件的至少部分贴覆于第一通孔的内壁,以对第一通孔的内壁进行绝缘保护。这样可以提高附接部件的绝缘性,防止电池单体因直接接触第一通孔的内壁而产生的短路现象,从而能够降低安全风险,增强电池的安全性。
本申请实施例描述的技术方案均适用于各种使用电池的设备,例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
另外,需要说明的是,以下是参照图1至图20对本申请实施例提供的结构或方法进行描述,为清楚和简洁,部分实施例的描述中引用了在前附图中的附图标记,但这些附图标记可能并未全部标注在该部分实施例所对应的附图中。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图。车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池可以包括多个电池单体,其中,多个电池单体之间可以串联或并联或混联,混联是指串联和并联的混合。电池也可以称为电池包。可选地,多个电池单体可以先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联组成电池。也就是说,多个电池单体可以直接组成电池,也可以先组成电池模块,电池模块再组成电池。
例如,如图2所示,为本申请一个实施例的一种电池10的结构示意图。电池10可以包括多个电池单体20。电池10还可以包括箱体(或称罩体)11,箱体11内部为中空结构,多个电池单体20容纳于箱体11内。示例性的,参考图2,箱体11可以包括两部分,这里分别称为第一部分111和第二部分112,第一部分111和第二部分112扣合在一起,形成容纳多个电池单体20的收容空间。第一部分111和第二部分112 的形状可以根据多个电池单体20组合的形状而定,第一部分111和第二部分112可以均具有一个开口。例如,第一部分111和第二部分112均可以为中空长方体且各自只有一个面为开口面,第一部分111的开口和第二部分112的开口相对设置,并且第一部分111和第二部分112相互扣合形成具有封闭腔室的箱体。多个电池单体20相互并联或串联或混联组合后置于第一部分111和第二部分112扣合后形成的箱体内。
可选地,在一种实施方式中,可以首先将多个电池单体(cell)20先整合为至少一个电池模组(module),然后将电池模组安装于箱体11中,形成电池包(pack)形态。在该实施方式中,电池模组之间还可以设置有横梁等辅助结构件,以提高电池模组在箱体11中的安装稳定性。
可选地,在另一种实施方式中,也可以直接将多个电池单体20相互连接,并安装设置于箱体11中形成电池包形态。由于去除了电池模组这个中间状态,箱体11中可不必设置横梁等辅助结构件,从而能够降低电池10的重量并提高电池10的能量密度。该实施方式在相关技术中也可称之为电池单体至电池包(cell to pack,CTP)的安装技术。
可选地,在又一种实施方式中,箱体11可集成于电池10所在的用电设备。换言之,箱体11可与用电设备中的结构件一体成型。多个电池单体20相互连接后,可直接安装设置于用电设备中的箱体11中。作为一种示例,箱体11可集成设置于上述车辆1的底盘的局部区域,多个电池单体20相互连接后,可直接安装于车辆1的底盘。该实施方式在相关技术中也可称之为电池单体至底盘(cell to chassis,CTC)的安装技术。
可选地,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体11而引出。可选地,导电机构也可属于汇流部件。
根据不同的电力需求,电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。
如图3所示,为本申请一个实施例的电池单体20的结构示意图。电池单体20可以包括电池盒21和收容于电池盒21内的一个或多个电极组件22。在一些实施例中,电池盒21也可以称为外壳。
参考图3,电池盒21可以包括壳体211和盖板212。壳体211的壁以及盖板212均称为电池单体20的壁。壳体211根据一个或多个电极组件22组合后的形状而定,例如,壳体211可以为中空的长方体或正方体或圆柱体。壳体211的至少一个面具有开口以便一个或多个电极组件22可以放置于壳体211内。例如,当壳体211为中空的长方体或正方体时,壳体211的其中一个平面可以为开口面,即该平面不具有壁体而使得壳体211内外相通。当壳体211为中空的圆柱体时,壳体211的端面可以为开口面,即该端面不具有壁体而使得壳体211内外相通。盖板212覆盖开口并且与壳体 211连接,以形成放置电极组件22的封闭的腔体。壳体211内填充有电解质,例如电解液。
可选地,在一种实施方式中,如图3所示,壳体211的其中一个面具有开口,盖板212覆盖开口并与壳体211连接。在另一种实施方式中,壳体211中相对的两个面均具有开口,盖板212可以包括第一盖板和第二盖板,该第一盖板和第二盖板分别覆盖该两个面上的开口并与壳体211连接。
该电池单体20还可以包括两个电极端子214。可选地,如图3所示,该两个电极端子214可以设置在同一盖板212上。或者,在另一些实施例中,该两个电极端子214可以分别设置于两个盖板上,如前述第一盖板和第二盖板,本申请实施例对此不作限定。
盖板212通常是平板形状,两个电极端子214固定在盖板212的平板面上,两个电极端子214分别为正电极端子214a和负电极端子214b。每个电极端子214各对应设置一个连接构件23,或者也可以称为集流构件23,其位于盖板212与电极组件22之间,用于将电极组件22和电极端子214实现电连接。
如图3所示,在电池单体20中,每个电极组件22具有第一极耳22a和第二极耳22b。第一极耳22a和第二极耳22b的极性相反。例如,当第一极耳22a为正极极耳时,第二极耳22b为负极极耳。一个或多个电极组件22的第一极耳22a通过一个连接构件23与一个电极端子连接,一个或多个电极组件22的第二极耳22b通过另一个连接构件23与另一个电极端子连接。例如,正电极端子214a通过一个连接构件23与正极极耳连接,负电极端子214b通过另一个连接构件23与负极极耳连接。
在电池单体20中,根据实际使用需求,可以灵活设置电极组件22的数量,如图3所示,电池单体20内设置有4个独立的电极组件22。
如图4所示,为本申请另一实施例的电池单体20的结构示意图。与图3所示的电池单体20不同的是,电池单体20的一个壁上还可设置泄压机构213。泄压机构213用于电池单体20的内部压力或温度达到阈值时致动以泄放内部压力或温度。
作为示例,参考图4,电池单体20的第一壁215上可以设置泄压机构213。
第一壁215为壳体211的一部分,其中壳体211可以是第一壁215与壳体211的其余部分经一体成型工艺形成,或者是由第一壁215封堵壳体211的其余部分上的开口形成。为了便于展示,图4将第一壁215从壳体211上分离,但这并不限定壳体211的底侧具有开口。
该泄压机构213可以为其所在壁的一部分,也可以与其所在壁为分体式结构,通过例如焊接的方式固定在其所在壁上。例如,在图4所示实施例中,当泄压机构213为第一壁215的一部分时,泄压机构213可以通过在第一壁215上设置刻痕的方式形成,与该刻痕的对应的第一壁215厚度小于泄压机构213除刻痕处其他区域的厚度。刻痕处是泄压机构213最薄弱的位置。当电池单体20产生的气体太多使得壳体211内部压力升高并达到阈值或电池单体20内部反应产生热量造成电池单体20内部温度升高并达到阈值时,泄压机构213可以在刻痕处发生破裂而导致壳体211内外相通,气体压力及温度通过泄压机构213的裂开向外释放,进而避免电池单体20发生爆炸。
可选地,在本申请的一个实施例中,泄压机构213和电极端子214可以设置于电池单体20的同一壁。作为示例,电极端子214和泄压机构213均可设置于电池单体20的顶壁,即盖板212。
将泄压机构213和电极端子214设置于电池单体20的同一壁上,例如设置于电池单体20的盖板212,可以方便泄压机构213和电极端子214的加工和安装,有利于提高电池10的生产效率。
当然,在本申请其它实施例中,泄压机构213也可和电极端子214设置于电池单体20的不同壁。例如,在泄压机构213设置于电池单体20的第一壁215的情况下,电池单体20的第二壁可以设置电极端子214,第二壁不同于第一壁215。示例性的,如图4所示,电极端子214设置于电池单体20的顶壁,即盖板212,而泄压机构213设置于与顶壁相对的底壁,即第一壁215。或者,两个电极端子214分别设置于电池单体20的盖板212和第一壁215,而泄压机构213设置于外壳21中除盖板212和第一壁215以外的其他壁。
将泄压机构213和电极端子214设置于电池单体20的不同壁上,可以使得泄压机构213致动时,电池单体20的排放物更加远离电极端子214,从而减小排放物对电极端子214和汇流部件的影响,因此能够增强电池的安全性。进一步地,在电极端子214设置于电池单体20的盖板212上时,将泄压机构213设置于电池单体20的底壁,可以使得泄压机构213致动时,电池单体20的排放物向电池10底部排放。这样,一方面可以利用电池10底部的热管理部件等降低排放物的危险性,另一方面,电池10底部通常会远离用户,从而能够降低对用户的危害。
在一些实施例中,如图4所示,该电池单体20还可以包括垫板24,该垫板24位于电极组件22与壳体211的底壁之间,可以对电极组件22起到承托作用,还可以有效防止电极组件22与壳体211的底壁四周的圆角发生干涉。另外,该垫板24上可以设置有一个或者多个通孔,例如,可以设置多个均匀排列的通孔,或者,也可以在泄压机构213设置在壳体211的底壁时,对应该泄压机构213的位置设置通孔,以便于导液和导气,具体的,这样可以使得垫板24上下表面的空间连通,电池单体20内部产生的气体以及电解液都能够自由地穿过垫板24。
泄压机构213可以为各种可能的泄压机构,本申请实施例对此并不限定。例如,泄压机构213可以为温敏泄压机构,温敏泄压机构被配置为在设有泄压机构213的电池单体20的内部温度达到阈值时能够熔化;和/或,泄压机构213可以为压敏泄压机构,压敏泄压机构被配置为在设有泄压机构213的电池单体20的内部气压达到阈值时能够破裂。
图5示出了本申请实施例提供的一种电池的示意性结构图和局部放大图。如图5所示,电池10可以包括电池单体20、附接部件13和绝缘部件14。
电池单体20包括泄压机构213,泄压机构213设置于电池单体20的第一壁215,泄压机构213用于在电池单体20的内部压力或温度达到阈值时致动以泄放内部压力。例如,电池单体20可以为图4中的电池单体20。
附接部件13的第一表面13a(例如图5所示的上表面)附接于第一壁215。附 接部件13设置有与泄压机构213的位置相对应的第一通孔101,第一通孔101用于在泄压机构213致动时使来自电池单体20的排放物穿过附接部件13。
绝缘部件14的至少部分贴覆于第一通孔101的内壁13b,以对第一通孔的内壁13b进行绝缘保护。
在本申请实施例中,附接部件13设置有第一通孔101,绝缘部件14的至少部分贴覆于第一通孔的内壁13b。这样,绝缘部件14可以对第一通孔的内壁13b进行绝缘保护,从而提高附接部件13的绝缘性,防止电池单体20因直接接触第一通孔的内壁13b而产生短路现象。因而能够降低安全风险,增强电池的安全性。另外,附接部件13的第一表面13a附接于设置有泄压机构213的第一壁215,在泄压机构213致动时,电池单体20的排放物朝向第一通孔101排放。排放物能够经由第一通孔101穿过附接部件13被迅速排走而远离电池单体20,降低了其危险性,从而能够增强电池的安全性。
本申请实施例中,绝缘部件14采用绝缘材料制成。绝缘材料包括但不限于:树脂(例如热塑性合成树脂、热固性合成树脂等)、塑料(例如聚乙烯、聚氯乙烯等)及其制品等。
可以理解的是,本申请实施例中,绝缘部件14的至少部分贴覆于第一通孔101的内壁13b,指的是绝缘部件14的至少部分将第一通孔的内壁13b完全覆盖。其中,绝缘部件14贴覆于第一通孔的内壁13b的方式可以为粘接、铆接、卡接、过盈配合等,本申请对此不作限定。
可选地,在一些实施例中,第一通孔的内壁13b涂覆有绝缘材料。
绝缘材料和绝缘部件14可以对第一通孔的内壁13b形成双层绝缘,进一步提高附接部件13的绝缘性。
可选地,第一通孔101的形状可以根据实际需求进行灵活设计,例如可以为圆柱形、长方体、正方体、三棱柱、四棱台、圆台或其他形状等等,本申请实施例对此不作限定。
可选地,如图5所示,在本申请的一个实施例中,绝缘部件14可以呈空心柱状,该空心柱状的侧壁的外表面与第一通孔的内壁13b相附接。作为示例而非限定,该空心柱状的侧壁与第一通孔的内壁13b之间可以为过盈配合,这样可以将绝缘部件14与附接部件13紧固连接,并实现对第一通孔的内壁13b的绝缘保护。
应理解,在本申请实施例中,绝缘部件14的形状适配于第一通孔101的形状,因此绝缘部件14的形状可以根据第一通孔101的形状而定。例如,第一通孔101为圆柱形,则绝缘部件14可以呈空心柱状;第一通孔101为方体,则绝缘部件14可以呈空心方环,等等。
可选地,如图6所示,在本申请的另一个实施例中,绝缘部件14设置有第一凹槽102,其中第一凹槽的侧壁142内嵌于第一通孔101,第一凹槽的外缘141附接于第一表面13a。
或者说,绝缘部件14可以包括第一子部和第二子部,第二子部相对于第一子部向远离泄压机构213的方向凹陷形成第一凹槽102。第一子部可以认为是第一凹槽的 外缘141,第二子部的与第一通孔101的内壁13b相平行(或相附接)的部分可以认为是第一凹槽的侧壁142。可选地,在一些实施例中,第二子部凹陷后可以存在覆盖(或遮挡)第一通孔101的部分,则第二子部的与第一通孔101的位置相对应的部分可以认为是第一凹槽的底壁143。在本申请实施例中,绝缘部件14上除第一凹槽的底壁143和第一凹槽的侧壁142之外的部分,均可以认为是第一凹槽的外缘141。
可以理解的是,本申请实施例中,第一凹槽的侧壁142内嵌于第一通孔101,指的是第一凹槽的侧壁142的至少部分内嵌于第一通孔101。第一凹槽的外缘141附接于第一表面13a,指的是第一凹槽的外缘141的至少部分附接于附接部件13的第一表面13a。
这样,在实际安装过程中,设置有第一凹槽102的绝缘部件14可以直接嵌合在附接部件13上设置的第一通孔101内,既可以覆盖第一通孔的内壁13b,实现对第一通孔的内壁13b的绝缘保护,还可以方便、稳定地将绝缘部件14固定于附接部件13,提升电池的组装效率。
可选地,参考图6,在一些实施例中,第一凹槽的底壁143可以设置有第二通孔103,第二通孔103用于在泄压机构213致动时使来自电池单体20的排放物穿过绝缘部件14。
因此,在泄压机构213致动时,电池单体20的排放物可以通过第二通孔103被迅速排走而远离电池单体20,降低了其危险性,从而能够增强电池的安全性。
可选地,在本申请实施例中,第二通孔103可以与泄压机构213相对设置,即第二通孔103的位置与泄压机构213的位置相对应。这样,泄压机构213致动时,排放物可以直接从第二通孔103排出。
可选地,参考图7,在另一些实施例中,第一凹槽的底壁143用于封堵第一通孔101。即第一凹槽的底壁143不设置通孔。
这样,第一凹槽的底壁143可以将泄压机构213隔离,使泄压机构213所在的空间与外部不相通,从而可以阻挡箱体11内的异物例如铝屑等通过第一通孔101进入到泄压机构213所在的空间。因此可以防止产生电池单体绝缘异常、异物导致电池单体的泄压机构被破坏等问题,避免产生进一步的安全问题。
可选地,为了便于排放物穿过绝缘部件14,在一些实施例中,第一凹槽的底壁143被配置为在泄压机构213致动时能够被排放物破坏,以使排放物穿过绝缘部件14。也就是说,在泄压机构213未致动时,第一凹槽的底壁143可以封堵第一通孔101,以防止异物进入泄压机构213所在的空间而影响泄压机构213的泄压性能。在泄压机构213致动时,第一凹槽的底壁143容易被排放物破坏,而使排放物顺利穿过绝缘部件14而被排出电池单体20之外。
示例性的,如图8所示,第一凹槽的底壁143可以设置有薄弱区104,薄弱区104被配置为在泄压机构213致动时能够被排放物破坏,以使排放物穿过薄弱区104。薄弱区104的设置使得第一凹槽的底壁143更容易被电池单体20的排放物破坏,有利于电池单体20的快速泄压。
可选地,薄弱区104可以与泄压机构213相对设置。这样,泄压机构213致动 时,排放物可以直接冲击薄弱区104而打开薄弱区104。
薄弱区104可以采用各种便于排放物破坏的设置,本申请实施例对此不作限定,以下进行举例说明。
可选地,在本申请一个实施例中,第一凹槽的底壁143的与泄压机构213相对设置的部分可以采用低熔点材料,以形成薄弱区104。也就是说,薄弱区104具有比绝缘部件14的其余部分更低的熔点。例如,薄弱区104采用的材料的熔点低于400℃。
在泄压机构213致动时,薄弱区104较第一凹槽的底壁143的其他部分而言,更容易被排放物熔破。
可选地,如图9所示,在本申请另一个实施例中,第一凹槽的底壁143设置有与泄压机构213相对设置的凹槽105,凹槽105的底壁形成薄弱区104。也就是说,薄弱区104具有比绝缘部件14的其余部分更小的厚度。例如,薄弱区104的厚度小于或等于3mm。再如,薄弱区104的厚度可以为1mm或者更小。薄弱区104的厚度可以根据实际需求和/或实验数据确定,本申请实施例对此不作限定。
由于凹槽105的底壁较绝缘部件14的其他区域薄弱,容易被排放物破坏,因此泄压机构213致动时,排放物可以破坏凹槽105的底壁而穿过绝缘部件14。
可选地,凹槽105设置于第一凹槽的底壁143的面向第一壁215的表面。也就是说,凹槽105的开口面向第一壁215。
应理解,凹槽105的开口也可以背向第一壁215。这种情况下,凹槽105的底壁同样容易被排放物破坏。
应理解,还可以采用其他减薄方式对第一凹槽的底壁143进行减薄以形成薄弱区104,例如在第一凹槽的底壁143上设置盲孔或阶梯孔,在此不再一一详述。
可选地,在本申请又一个实施例中,第一凹槽的底壁143设置有刻痕,以形成薄弱区104。例如,在第一凹槽的底壁143设置十字刻痕、米字刻痕、工字刻痕等。
与刻痕对应的第一凹槽的底壁143厚度小于第一凹槽的底壁143的除刻痕外其他区域的厚度,因此刻痕处是第一凹槽的底壁143最薄弱的位置。当泄压机构213致动时,排放物可以使第一凹槽的底壁143在刻痕处发生破裂。因此,排放物可以破坏第一凹槽的底壁143而穿过绝缘部件14。
应理解,薄弱区104可以同时采用低熔点材料、较小厚度的设置和刻痕设置中的至少两种方式,也就是说,上述三种实施方式既可以单独实施,也可以结合实施。
可选地,如图6至9所示,在本申请实施例中,附接部件13可以被配置为通过粘接剂15附接于第一壁215。绝缘部件14被配置为防止粘接剂15施加在附接部件13与泄压机构213之间。
因此,绝缘部件14不仅能够对附接部件13设置的第一通孔的内壁13b进行绝缘保护,还能够在电池生产过程中以有效的方式防止粘接剂15施加在附接部件13和泄压机构213之间而阻止或影响泄压机构213的致动性能。同时,还能够提高粘接剂15的施加效率和准确性,从而提高电池的生产效率。
可选地,在一些实施例中,泄压机构213具有致动区域,泄压机构213被配置为在电池单体20的内部压力或温度达到阈值时在该致动区域形成用于泄放内部压力的 泄放通道。其中第一凹槽的外缘141被配置为至少包围该致动区域,以防止粘接剂15进入致动区域。
通过泄压机构213致动时在致动区域形成的泄放通道,可在电池发生热失控的情况下引导电池单体20的排放物经由形成的泄放通道向外排放,从而提高了电池的安全性能。第一凹槽的外缘141至少包围该致动区域,能够避免粘接剂15从任何方向流入致动区域而对泄压机构213的致动动作的执行造成任何阻碍或不利影响。因此,能够更可靠地防止粘接剂15妨碍泄压机构213的正常致动,以及防止粘接剂15流入而阻塞泄放通道进而阻塞电池单体20泄放的排放物的排出。由此,可进一步提高电池的安全性能。
在本申请实施例中,绝缘部件14可采用各种可能的构造,以使得上述用于将电池单体20装配至附接部件13所用的粘接剂15能够被隔离于附接部件13和泄压机构213之间的空间之外,或者说,以使得涂覆的粘接剂15能够被隔离于一旦粘接剂15流入则可能会影响泄压机构213发挥其泄压的设计功能的空间之外。例如,绝缘部件14既可以被设计为包围泄压机构213的部分区域,该部分区域能够在泄压机构213致动时形成泄放电池单体20的内部压力的泄放通道以供排放物流出(可称为致动区域或泄放区域),也可以是附接至附接部件13上的对应于泄压机构213的区域,从而包围附接部件13所提供的允许泄压机构213致动的空间,等等。
在一些实施例中,绝缘部件14可以在涂覆粘接剂15之前附接至附接部件13上的对应于泄压机构213的区域。需要说明的是,电池中只要是通过粘接剂15和电池单体20粘合在一起的部件都可以被认为属于附接部件或者附接部件的一部分,这些部件都可以使用绝缘部件14,即可在涂覆粘接剂15之前将绝缘部件14附接至其上。以此方式,在涂覆粘接剂15时,绝缘部件14将能够防止粘接剂15进入到附接部件13上对应于泄压机构213尤其是对应于泄压机构213上用于致动以形成泄放电池单体20的内部压力的泄放通道以供排放物流出的区域,从而保证泄压机构213能够致动并正常地实现其设计功能。此外,采用绝缘部件14还可以加快粘接剂15的涂覆速度和准确性,而不必担心将粘接剂15涂覆至和泄压机构213致动有关的区域中,并节省生产时间成本。
可选地,如图10所示,在一些实施例中,第一凹槽的外缘141设置有突出部141a,突出部141a被配置为突出于第一表面13a且围绕泄压机构213设置,突出部141a用于防止粘接剂15施加在附接部件13与泄压机构213之间。
这种布置能够在电池的生产过程中以一种简单有效的方式防止粘接剂15被施加在泄压机构213的表面上,防止对泄压机构213的致动造成阻碍。
示例性的,第一凹槽的外缘141可以包括主体和突出部141a。其中,主体用于附接至或者被装配至附接部件13。突出部141a从主体的表面朝外突出,在装配到位的情况下,突出部141a被配置为从主体的表面朝向背离附接部件13的方向突出,即朝向电池单体20突出。突出部141a围绕泄压机构213设置,例如该突出部141a可以呈环状结构。
可选地,如图11所示,在一个实施例中,突出部141a可以包括经由第一凹槽 的外缘141弯折形成的翻边结构141b。例如,该翻边结构141b可以是第一凹槽的外缘141的最边沿部分相对于第一表面13a向电池单体20的一侧翘起形成。
通过将绝缘部件14的边沿设置成翻边结构141b,既方便绝缘部件14的加工成型,还能够在电池的生产过程中以一种简单有效的方式防止粘接剂15被施加在泄压机构213的表面上。
本申请实施例对于翻边结构141b的具体结构不作限定,只要是能够实现绝缘部件14的边沿的挡胶功能即可。
例如,在绝缘部件14已附接至附接部件13上但附接部件13未附接至电池单体20上时,翻边结构141b处于自由状态。参考图11中的(a)所示的电池单体20与附接部件13装配之前的状态示意图,翻边结构141b与第一表面13a之间的高度可以沿远离第一通孔101的中心线的方向逐渐变大。当然在其他实施例中,翻边结构141b与第一表面13a之间的高度可以沿远离第一通孔101的中心线的方向先变大再变小,或者保持不变。
当附接部件13附接至电池单体20上时,翻边结构141b可能因受力而变形。参考图11中的(b)所示的电池单体20与附接部件13装配在一起的状态示意图,翻边结构141b的与电池单体20相接触的部分与第一表面13a之间的高度可以沿远离第一通孔101的中心线的方向保持不变,而翻边结构141b的与电池单体20未接触的部分与第一表面13a之间的高度可以沿远离第一通孔101的中心线的方向逐渐增大。
可选地,在本申请实施例中,突出部141a距离第一表面13a的最大高度被配置为大于或等于粘接剂15的预定施加高度,并且在电池单体20附接到附接部件13的情况下被压缩以与粘接剂15的高度一致。
作为示例而非限定,参考图11中的(a)和(b)所示,以突出部141a包括翻边结构141b为例,在电池单体20附接至附接部件13之前,翻边结构141b与第一表面13a的之间的最大高度大于或等于粘接剂15的预定施加高度。在电池单体20附接至附接部件13之后,翻边结构141b与第一表面13a的之间的最大高度与被压缩后的粘接剂15的高度一致。
这种布置方式可以确保突出部141a能够有效地防止粘接剂15施加在附接部件13和泄压机构213之间。同时,这使得绝缘部件14不会影响附接部件13与泄压机构213之间的可靠粘接和泄压机构213的致动。并且,在通过粘接剂15胶粘压合或接合电池单体20及附接部件13时,突出部141a可被压缩至与粘接剂15一致的高度,由此突出部141a将不会在电池单体20及附接部件13二者的粘接表面之间留出任何空隙,因而能够更为可靠地确保粘接剂15被隔离于泄压机构213致动并形成排放物的通道的区域之外。
可选地,在一些实施例中,附接部件13设置第一通孔101的区域可以为如图5-11中所示的平板区域。在另一些实施例中,附接部件13设置第一通孔101的区域还可以设置有凹槽。
可选地,如图12所示,在一个实施例中,附接部件13设置有与泄压机构213相对设置的第二凹槽13c,第二凹槽13c的底壁设置有第一通孔101。其中,第一凹槽 的外缘141包括与第一凹槽的侧壁142相连接的第一附接壁144,第一附接壁144附接于第二凹槽13c的底壁。
在本申请实施例中,通过在附接部件13上设置与泄压机构213相对设置的第二凹槽13c,能够提供用于电池单体20的排放物的缓冲空间,从而降低电池单体20的排放物对外部结构或部件的冲击压力,进一步提高电池的安全性能。
需要说明的是,在第一附接壁144附接于第二凹槽13c的底壁的情况下,第一凹槽的外缘141上除第一附接壁144外的其余部分也可以附接于第二凹槽13c的底壁,例如图12中所示。或者,第一凹槽的外缘141上除第一附接壁144外的其余部分也可以延伸至第一表面13a,从而与第一表面13a相附接。
图13示出了本申请实施例提供的一种电池的示意性俯视图,图14示出了图13中的电池沿A-A线剖开的示意性剖面图,图15示出了图14所示的电池的局部结构B的放大示意图。下面结合图13-15描述绝缘部件14的结构。
如图13-15所示,附接部件13可以包括第一导热板131和第二导热板132。第一导热板131位于第一壁215和第二导热板132之间且附接于第一壁215。第一导热板131的第一区域131a向第二导热板132凹陷以形成第二凹槽13c。第一区域131a连接到第二导热板132,第一通孔101设置于第一区域131a。
第一凹槽的外缘141可以包括第一附接壁144、第二附接壁145和连接壁146,第二附接壁145通过连接壁146与第一附接壁144相连接。其中第一附接壁144附接于第一区域131a,第二附接壁145附接于第一导热板131的第二区域131b,第二区域131b用于与第一壁215相附接。
可选地,第一凹槽的外缘141还包括位于边沿的翻边结构141b。
本申请实施例中,具有上述结构的绝缘部件14,能够对第一通孔101的内壁进行绝缘保护。另外,通过第一凹槽的底壁143可以封堵第一通孔101,以防止铝屑等异物进入泄压机构213所在的空间。并且,通过位于第一凹槽的外缘141的边沿处的翻边结构141b,还能够阻挡粘接剂15进入泄压机构213与附接部件13之间,从而确保泄压机构213能够正常致动。
可选地,在一些实施例中,连接壁146与第二凹槽13c的侧壁之间可以设置有间隙;或者,连接壁146可以贴覆于第二凹槽13c的侧壁。具体可以根据实际需求进行设计,本申请实施例对此不作限定。
可选地,仍参考图15,在一个实施例中,绝缘部件14被配置为提供允许泄压机构213致动的空间,其中绝缘部件14与泄压机构213之间形成避让腔。避让腔能够为泄压机构213提供变形空间,以使泄压机构213朝向附接部件13变形并破裂。具体而言,避让腔可以是由绝缘部件14与泄压机构213共同围绕形成的密闭空腔或非密闭空腔。示例性的,前述介绍的第一凹槽102可以被配置为使泄压机构213致动时能够被打开的避让腔。
在第一凹槽102作为避让腔的情况下,第一凹槽102的设置要满足使泄压机构213致动时能够被打开的条件。具体而言,第一凹槽102的深度与泄压机构213的尺寸相关。作为本申请的一个实施例,第一凹槽102的深度大于1mm。例如,第一凹槽 102的深度可以为3mm或者大于3mm,从而更便于泄压机构213被打开。第一凹槽102的开口的面积也与泄压机构213的面积相关。为了使得泄压机构213被打开,第一凹槽102的开口的面积与泄压机构213的面积的比值要大于一定的值。例如,第一凹槽102的开口的面积与泄压机构213的面积的比值的取值范围可以为0.5-2。
应理解,在一些实施例中,第一凹槽102可以为阶梯状,则第一凹槽102的开口可以认为是连接壁146与第二附接壁145相连接的部分所形成的开口。
可选地,在一些实施例中,附接部件13可以为热管理部件,热管理部件用于容纳流体以给电池单体20调节温度。在给电池单体20降温的情况下,该热管理部件可以容纳冷却介质以给电池单体20调节温度,此时,热管理部件也可以称为冷却部件、冷却系统或冷却板等。另外,热管理部件也可以用于加热,本申请实施例对此并不限定。
可选地,所述流体可以是循环流动的,以达到更好的温度调节的效果。例如,第一导热板131和第二导热板132可以形成流道133,用于容纳流体。
可选地,第一导热板131的用于形成流道133的部分可设置有易于被高温高压的排放物破坏的薄弱结构,例如厚度减薄的部分、刻痕、由易损材料制成的易损部、或者由熔点较低的材料制成的易损部,等等。这样,在泄压机构213致动时,来自电池单体20的排放物可以破坏第一导热板131上所设置的薄弱结构,使流道133中的冷却介质诸如冷却液流出,迅速降低来自电池单体20的高温高压排放物的温度和压强,从而对电池10中的其他未出现热失控的电池单体20等部件起到保护作用。
可选地,在一些实施例中,电池10还可以包括防护构件115,如图15所示。本申请中的防护构件115是指布置在热管理部件的远离电池单体20的一侧以对热管理部件和电池单体20提供防护的部件。在一些实施例中,防护构件115与热管理部件之间的空间可以用于收集电池单体的排放物。
图16和图17示出了本申请实施例提供的一种绝缘部件的示意性结构图。其中图16示出了该绝缘部件的示意性三视图,图,17示出了该绝缘部件在两个不同角度下的示意性立体图。
参考图16和图17所示,绝缘部件14可以设置一个或多个第一凹槽102。以其中一个第一凹槽102为例,第一凹槽102可以包括第一凹槽的底壁143、第一凹槽的侧壁142以及第一凹槽的外缘141。第一凹槽的底壁143可用于封堵附接部件13设置的第一通孔101,第一凹槽的侧壁142用于贴覆于第一通孔101的内壁以对第一通孔101的内壁进行绝缘保护,第一凹槽的外缘141可用于与附接部件13相附接。
更为具体地,第一凹槽的外缘141可以包括第一附接壁144、第二附接壁145、连接壁146和翻边结构141b。第二附接壁145通过连接壁146与第一附接壁144相连接,第二附接壁145的边沿形成翻边结构141b。这里,第一附接壁144用于附接于第一导热板131的第一区域131a,第二附接壁145用于附接于第一导热板131的第二区域131b,翻边结构141b用于阻挡粘接剂进入第一凹槽102内以防止粘接剂施加在泄压机构213与绝缘部件14之间。
在图16和图17示出的实施例中,绝缘部件14被设计成具有狭长的的薄片状 的主体,在每个主体上具有凹陷的一排第一凹槽102。可以理解的是,本申请中的绝缘部件14的主体及第一凹槽102可根据泄压机构213的形状、构造等因素而可以具有各种不同的形状。出于电池的重量能量密度或体积能量密度方面的考虑,绝缘部件14的主体通常具有较薄的厚度,因而其一般可呈各种形状的薄膜或薄片状。例如,该绝缘部件14或该绝缘部件14的主体的壁厚可以在0.01mm至0.05mm之间。第一凹槽102的形状则可例如为图中所示的长圆形或者圆形、椭圆形、方形等等形状。在一个绝缘部件14的主体上设置的多个第一凹槽102时,该多个第一凹槽102对应的翻边结构141b可以是一体成型。
可选地,对于一个绝缘部件14来说,其主体上可以被设计为具有单个第一凹槽102、多排第一凹槽102、或者具有以其他方式排列的多个第一凹槽102,只要第一凹槽102的排列和相对位置能够适应于电池中的电池单体20的泄压机构213的设置位置即可。
示例性的,当绝缘部件14的主体设置多个第一凹槽102时,该多个第一凹槽102中的每个第一凹槽102分别对齐一个泄压机构213(或者对齐泄压机构213的泄放区域)。由此,将绝缘部件14装配至附接部件13的过程将较为简单,可以提高电池的装配效率。另外,绝缘部件14装配到位的情况下,该多个第一凹槽102所对应的翻边结构141b将能够针对多个电池单体20的泄压机构213起到隔离粘接剂的作用。
应当理解的是,本申请中并不限定电池单体20中的泄压机构213的布置方向和位置。实际上,无论泄压机构213布置于电池单体20的下部、上部还是侧部等处,本申请提出的绝缘部件14的相关设计都可以被适当地应用,并起到保障泄压机构213实现其设计功能以在必要时泄放电池单体内的高温高压的排放物,从而保障电池的安全使用的有益作用。
可选地,在本申请一个实施例中,绝缘部件14可以采用由热塑性材料通过吸塑工艺制成,这有助于简化绝缘部件14的制造过程及降低成本。
可选地,在本申请一个实施例中,对于绝缘部件14上未设置翻边结构141b的部分,可以设置泡棉或其他部件等进行挡胶。
图18示出了本申请一个实施例的电池10的分解示意图。在图18所示的实施例中,附接部件13可以附接于箱体11,并通过第一表面13a附接于电池单体20的第一壁215。绝缘部件14的至少部分贴覆于附接部件13设置的第一通孔101的内壁。关于电池10中各部件的详细描述可以参见前述各实施例,为了简洁,在此不再赘述。
本申请一个实施例还提供了一种用电设备,该用电设备可以包括前述各实施例中的电池10。可选地,用电设备可以为车辆1、船舶或航天器。
上文描述了本申请实施例的电池单体、电池和用电设备,下面将描述本申请实施例的制备电池单体的方法和设备,其中未详细描述的部分可参见前述各实施例。
图19示出了本申请一个实施例的制备电池10的方法300的示意性流程图。如图19所示,该方法300可以包括:
S310,提供电池单体20。
电池单体20包括泄压机构213,泄压机构213设置于电池单体20的第一壁 215,泄压机构213用于在电池单体20的内部压力或温度达到阈值时致动以泄放内部压力。
S320,提供附接部件13。
附接部件13的第一表面13a附接于第一壁215,附接部件13设置有与泄压机构213的位置相对应的第一通孔101,第一通孔101用于在泄压机构213致动时使来自电池单体20的排放物穿过附接部件13。
S330,提供绝缘部件14。
S340,将绝缘部件14的至少部分贴覆于第一通孔的内壁13b,以对第一通孔的内壁13b进行绝缘保护。
图20示出了本申请一个实施例的制备电池10的设备400的示意性框图。如图20所示,该设备400可以包括:
提供模块410,该提供模块410用于:
提供电池单体20,电池单体20包括泄压机构213,泄压机构213设置于电池单体20的第一壁215,泄压机构213用于在电池单体20的内部压力或温度达到阈值时致动以泄放内部压力;
提供附接部件13,附接部件13的第一表面13a附接于第一壁215,附接部件13设置有与泄压机构213的位置相对应的第一通孔101,第一通孔101用于在泄压机构213致动时使来自电池单体20的排放物穿过附接部件13;
提供绝缘部件14;
安装模块420,用于将绝缘部件14的至少部分贴覆于第一通孔的内壁13b,以对第一通孔的内壁13b进行绝缘保护。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (20)

  1. 一种电池(10),其特征在于,包括:
    电池单体(20),包括泄压机构(213),所述泄压机构(213)设置于所述电池单体(20)的第一壁(215),所述泄压机构(213)用于在所述电池单体(20)的内部压力或温度达到阈值时致动以泄放所述内部压力;
    附接部件(13),所述附接部件(13)的第一表面(13a)附接于所述第一壁(215),所述附接部件(13)设置有与所述泄压机构(213)的位置相对应的第一通孔(101),所述第一通孔(101)用于在所述泄压机构(213)致动时使来自所述电池单体(20)的排放物穿过所述附接部件(13);
    绝缘部件(14),所述绝缘部件(14)的至少部分贴覆于所述第一通孔(101)的内壁(13b),以对所述第一通孔(101)的内壁(13b)进行绝缘保护。
  2. 根据权利要求1所述的电池(10),其特征在于,所述绝缘部件(14)设置有第一凹槽(102),其中所述第一凹槽(102)的侧壁(142)内嵌于所述第一通孔(101),所述第一凹槽(102)的外缘(141)附接于所述第一表面(13a)。
  3. 根据权利要求2所述的电池(10),其特征在于,所述第一凹槽(102)的底壁(143)设置有第二通孔(103),所述第二通孔(103)用于在所述泄压机构(213)致动时使来自所述电池单体(20)的排放物穿过所述绝缘部件(14)。
  4. 根据权利要求2所述的电池(10),其特征在于,所述第一凹槽(102)的底壁(143)用于封堵所述第一通孔(101);
    其中所述第一凹槽(102)的底壁(143)被配置为在所述泄压机构(213)致动时能够被所述排放物破坏,以使所述排放物穿过所述绝缘部件(14)。
  5. 根据权利要求4所述的电池(10),其特征在于,所述第一凹槽(102)的底壁(143)设置有薄弱区(104),所述薄弱区(104)被配置为在所述泄压机构(213)致动时能够被所述排放物破坏,以使所述排放物穿过所述薄弱区(104)。
  6. 根据权利要求5所述的电池(10),其特征在于,所述薄弱区(104)满足以下至少一项:
    所述薄弱区(104)具有比所述绝缘部件(14)的其余部分更低的熔点;
    所述薄弱区(104)具有比所述绝缘部件(14)的其余部分更小的厚度;以及,
    所述薄弱区(104)设置有刻痕。
  7. 根据权利要求2至6中任一项所述的电池(10),其特征在于,
    所述附接部件(13)被配置为通过粘接剂附接于所述第一壁(215);
    所述绝缘部件(14)被配置为防止所述粘接剂施加在所述附接部件(13)与所述泄压机构(213)之间。
  8. 根据权利要求7所述的电池(10),其特征在于,所述泄压机构(213)具有致动区域,所述泄压机构(213)被配置为在所述电池单体(20)的内部压力或温度达到阈值时在所述致动区域形成用于泄放所述内部压力的泄放通道;
    其中,所述第一凹槽(102)的外缘(141)被配置为至少包围所述致动区域,以防止所述粘接剂进入所述致动区域。
  9. 根据权利要求7或8所述的电池(10),其特征在于,所述第一凹槽(102)的外缘(141)设置有突出部(141a),所述突出部(141a)被配置为突出于所述第一表面(13a)且围绕所述泄压机构(213)设置,所述突出部(141a)用于防止所述粘接剂施加在所述附接部件(13)与所述泄压机构(213)之间。
  10. 根据权利要求9所述的电池(10),其特征在于,所述突出部(141a)包括经由所述第一凹槽(102)的外缘(141)弯折形成的翻边结构(141b)。
  11. 根据权利要求9或10所述的电池(10),其特征在于,所述突出部(141a)距离所述第一表面(13a)的最大高度被配置为大于或等于所述粘接剂的预定施加高度,并且在所述电池单体(20)附接到所述附接部件(13)的情况下被压缩以与所述粘接剂的高度一致。
  12. 根据权利要求2至11中任一项所述的电池(10),其特征在于,所述附接部件(13)设置有与所述泄压机构(213)相对设置的第二凹槽(13c),所述第二凹槽(13c)的底壁设置有所述第一通孔(101);
    其中,所述第一凹槽(102)的外缘(141)包括与所述第一凹槽(102)的侧壁(142)相连接的第一附接壁(144),所述第一附接壁(144)附接于所述第二凹槽(13c)的底壁。
  13. 根据权利要求12所述的电池(10),其特征在于,所述附接部件(13)包括第一导热板(131)和第二导热板(132),所述第一导热板(131)位于所述第一壁(215)和所述第二导热板(132)之间且附接于所述第一壁(215),所述第一导热板(131)的第一区域(131a)向所述第二导热板(132)凹陷以形成所述第二凹槽(13c),所述第一区域(131a)连接到所述第二导热板(132),所述第一通孔(101)设置于所述第一区域(131a);
    所述第一凹槽(102)的外缘(141)还包括第二附接壁(145)和连接壁(146),所述第二附接壁(145)通过所述连接壁(146)与所述第一附接壁(144)相连接,其中所述第一附接壁(144)附接于所述第一区域(131a),所述第二附接壁(145)附接于所述第一导热板(131)的第二区域(131b),所述第二区域(131b)用于与所述第一壁(215)相附接。
  14. 根据权利要求13所述的电池(10),其特征在于,所述连接壁(146)与所述第二凹槽(13c)的侧壁之间设置有间隙;或者,所述连接壁(146)贴覆于所述第二凹槽(13c)的侧壁。
  15. 根据权利要求1至14中任一项所述的电池(10),其特征在于,所述绝缘部件(14)被配置为提供允许所述泄压机构(213)致动的空间,其中所述绝缘部件(14)与所述泄压机构(213)之间形成避让腔。
  16. 根据权利要求1至15中任一项所述的电池(10),其特征在于,所述第一通孔(101)的内壁(13b)涂覆有绝缘材料。
  17. 根据权利要求1至16中任一项所述的电池(10),其特征在于,所述附接部件(13)为热管理部件,所述热管理部件用于容纳流体以给所述电池单体(20)调节温度。
  18. 一种用电设备,其特征在于,包括:根据权利要求1至17中任一项所述的电池(10),所述电池(10)用于为所述用电设备提供电能。
  19. 一种制备电池的方法,其特征在于,包括:
    提供电池单体(20),所述电池单体(20)包括泄压机构(213),所述泄压机构(213)设置于所述电池单体(20)的第一壁(215),所述泄压机构(213)用于在所述电池单体(20)的内部压力或温度达到阈值时致动以泄放所述内部压力;
    提供附接部件(13),所述附接部件(13)的第一表面(13a)附接于所述第一壁(215),所述附接部件(13)设置有与所述泄压机构(213)的位置相对应的第一通孔(101),所述第一通孔(101)用于在所述泄压机构(213)致动时使来自所述电池单体(20)的排放物穿过所述附接部件(13);
    提供绝缘部件(14);
    将所述绝缘部件(14)的至少部分贴覆于所述第一通孔(101)的内壁(13b),以对所述第一通孔(101)的内壁(13b)进行绝缘保护。
  20. 一种制备电池的设备,其特征在于,包括:
    提供模块,用于:
    提供电池单体(20),所述电池单体(20)包括泄压机构(213),所述泄压机构(213)设置于所述电池单体(20)的第一壁(215),所述泄压机构(213)用于在所述电池单体(20)的内部压力或温度达到阈值时致动以泄放所述内部压力;
    提供附接部件(13),所述附接部件(13)的第一表面(13a)附接于所述第一壁(215),所述附接部件(13)设置有与所述泄压机构(213)的位置相对应的第一通孔(101),所述第一通孔(101)用于在所述泄压机构(213)致动时使来自所述电池单体(20)的排放物穿过所述附接部件(13);
    提供绝缘部件(14);
    安装模块,用于:
    将所述绝缘部件(14)的至少部分贴覆于所述第一通孔(101)的内壁(13b),以对所述第一通孔(101)的内壁(13b)进行绝缘保护。
PCT/CN2022/071661 2022-01-12 2022-01-12 电池、用电设备、制备电池的方法和设备 WO2023133735A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2022/071661 WO2023133735A1 (zh) 2022-01-12 2022-01-12 电池、用电设备、制备电池的方法和设备
EP22919400.6A EP4362187A1 (en) 2022-01-12 2022-01-12 Battery, power consuming apparatus, and method and apparatus for preparing battery
KR1020247003669A KR20240027115A (ko) 2022-01-12 2022-01-12 전지, 전기 장치, 전지의 제조 방법 및 장치
CN202280019140.6A CN116941109A (zh) 2022-01-12 2022-01-12 电池、用电设备、制备电池的方法和设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/071661 WO2023133735A1 (zh) 2022-01-12 2022-01-12 电池、用电设备、制备电池的方法和设备

Publications (1)

Publication Number Publication Date
WO2023133735A1 true WO2023133735A1 (zh) 2023-07-20

Family

ID=87280002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071661 WO2023133735A1 (zh) 2022-01-12 2022-01-12 电池、用电设备、制备电池的方法和设备

Country Status (4)

Country Link
EP (1) EP4362187A1 (zh)
KR (1) KR20240027115A (zh)
CN (1) CN116941109A (zh)
WO (1) WO2023133735A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117219947A (zh) * 2023-11-08 2023-12-12 中创新航科技集团股份有限公司 一种电池包以及电池包的装配和拆卸方法
CN117438734A (zh) * 2023-11-24 2024-01-23 宁德新能源科技有限公司 外壳、电芯及用电设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112086605A (zh) * 2020-10-19 2020-12-15 江苏时代新能源科技有限公司 电池、用电装置、制备电池的方法和设备
CN213026308U (zh) * 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池、用电装置和制备电池的装置
CN213026307U (zh) * 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备
CN213601965U (zh) * 2020-07-10 2021-07-02 宁德时代新能源科技股份有限公司 电池、用电装置和制备电池的装置
CN213782158U (zh) * 2020-07-10 2021-07-23 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备
CN214898695U (zh) * 2021-04-02 2021-11-26 宁德时代新能源科技股份有限公司 电池和用电装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN213026308U (zh) * 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池、用电装置和制备电池的装置
CN213026307U (zh) * 2020-07-10 2021-04-20 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备
CN213601965U (zh) * 2020-07-10 2021-07-02 宁德时代新能源科技股份有限公司 电池、用电装置和制备电池的装置
CN213782158U (zh) * 2020-07-10 2021-07-23 宁德时代新能源科技股份有限公司 电池、包括电池的装置和制备电池的设备
CN112086605A (zh) * 2020-10-19 2020-12-15 江苏时代新能源科技有限公司 电池、用电装置、制备电池的方法和设备
CN214898695U (zh) * 2021-04-02 2021-11-26 宁德时代新能源科技股份有限公司 电池和用电装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117219947A (zh) * 2023-11-08 2023-12-12 中创新航科技集团股份有限公司 一种电池包以及电池包的装配和拆卸方法
CN117219947B (zh) * 2023-11-08 2024-03-08 中创新航科技集团股份有限公司 一种电池包以及电池包的装配和拆卸方法
CN117438734A (zh) * 2023-11-24 2024-01-23 宁德新能源科技有限公司 外壳、电芯及用电设备

Also Published As

Publication number Publication date
CN116941109A (zh) 2023-10-24
KR20240027115A (ko) 2024-02-29
EP4362187A1 (en) 2024-05-01

Similar Documents

Publication Publication Date Title
WO2022006894A1 (zh) 电池及其相关装置、制备方法和制备设备
WO2022006890A1 (zh) 电池的箱体、电池、用电装置、制备电池的方法和装置
WO2022006903A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2022006891A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2022006892A1 (zh) 电池、用电装置、制备电池的方法和装置
CN213692271U (zh) 电池单体、电池及用电装置
CN214254572U (zh) 电池单体、电池以及用电装置
US20220320677A1 (en) Battery cell and manufacturing method and system therefor, battery and electric device
WO2023133735A1 (zh) 电池、用电设备、制备电池的方法和设备
US11881601B2 (en) Box of battery, battery, power consumption device, and method and apparatus for producing box
US20230223641A1 (en) Box of battery, battery, power consumption apparatus, and method and apparatus for producing battery
WO2022205076A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2022198462A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2023044619A1 (zh) 电池的箱体、电池、用电设备、制备电池的方法和设备
EP4009433B1 (en) Battery, electric apparatus, and battery manufacturing method and device
WO2023134547A1 (zh) 箱体、电池、用电装置以及制备电池的方法和装置
WO2023028748A1 (zh) 电池、用电装置以及制备电池的方法和装置
CN114175377B (zh) 电池及其相关装置、制备方法和制备设备
RU2805991C1 (ru) Батарея и связанное с ней устройство, способ ее изготовления и устройство для ее изготовления
WO2023050080A1 (zh) 电池单体、电池、用电设备、制造电池单体的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919400

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280019140.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2024101191

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 2401000427

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2022919400

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20247003669

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022919400

Country of ref document: EP

Effective date: 20240122