WO2022082396A1 - 电池、用电装置、制备电池的方法及装置 - Google Patents

电池、用电装置、制备电池的方法及装置 Download PDF

Info

Publication number
WO2022082396A1
WO2022082396A1 PCT/CN2020/121999 CN2020121999W WO2022082396A1 WO 2022082396 A1 WO2022082396 A1 WO 2022082396A1 CN 2020121999 W CN2020121999 W CN 2020121999W WO 2022082396 A1 WO2022082396 A1 WO 2022082396A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
condensate
liquid collecting
pipe
battery cells
Prior art date
Application number
PCT/CN2020/121999
Other languages
English (en)
French (fr)
Inventor
赵丰刚
杨海奇
黄小腾
洪家荣
汪文礼
胡浪超
Original Assignee
江苏时代新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏时代新能源科技有限公司 filed Critical 江苏时代新能源科技有限公司
Priority to KR1020227033637A priority Critical patent/KR20220145395A/ko
Priority to PCT/CN2020/121999 priority patent/WO2022082396A1/zh
Priority to JP2022544802A priority patent/JP2023511951A/ja
Priority to EP20957979.6A priority patent/EP4064439A4/en
Publication of WO2022082396A1 publication Critical patent/WO2022082396A1/zh
Priority to US18/175,248 priority patent/US20230223650A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/14Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors
    • H01M50/141Primary casings, jackets or wrappings of a single cell or a single battery for protecting against damage caused by external factors for protecting against humidity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D5/00Condensation of vapours; Recovering volatile solvents by condensation
    • B01D5/0078Condensation of vapours; Recovering volatile solvents by condensation characterised by auxiliary systems or arrangements
    • B01D5/009Collecting, removing and/or treatment of the condensate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/24Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries from their environment, e.g. from corrosion
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/383Flame arresting or ignition-preventing means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/673Containers for storing liquids; Delivery conduits therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/691Arrangements or processes for draining liquids from casings; Cleaning battery or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/44Methods for charging or discharging
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/375Vent means sensitive to or responsive to temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of batteries, and in particular, to a battery, an electrical device, and a method and device for preparing a battery.
  • the battery In a device that uses electric energy as a driving energy, the battery is the core component, and ensuring the safety of the battery is very important to ensure the safety of the device as a whole, and the thermal runaway of the battery is an important factor that threatens the safety of the battery.
  • the battery in the related art usually adds pipes to cool the battery in which thermal runaway occurs, so as to prevent the spread of thermal runaway.
  • batteries with pipes are prone to short circuits.
  • the present application provides a battery, an electrical device, a method and a device for preparing a battery, which can collect condensate generated by condensing the gas inside the battery in a pipeline to prevent the condensate from flowing around inside the battery and then contacting the battery short circuit caused by the charged structure. .
  • a first aspect of the present application provides a battery, comprising:
  • the liquid collecting part is arranged between the battery cells and the pipeline, and the liquid collecting part is provided with a first accommodating part facing the pipeline, and the first accommodating part is used for collecting the condensate.
  • the first accommodating portion is configured as a groove, and at least one end of the groove in the direction of the central axis of the pipe has an opening for draining the condensate out of the groove through the opening.
  • a plurality of battery cells are arranged in an array, the groove extends along the direction in which the plurality of battery cells are arranged, and the plane where the opening of the groove is located is the side surface of the outermost battery cell along the arrangement direction ;
  • the plane where the opening of the groove is located extends beyond the side surface of the outermost battery cell in the arrangement direction.
  • the first receptacle is further configured to accommodate at least a portion of the conduit so that condensate condensed by the conduit flows into the first receptacle.
  • the grooves are 1-5 millimeters deep.
  • the liquid collection member has insulating properties to prevent short circuits of the battery cells.
  • connection between the liquid collecting member and the pipeline is an adhesive type.
  • the battery cell includes a pressure relief mechanism for actuating when the internal pressure or temperature of the battery cell reaches a threshold to discharge the exhaust to relieve the internal pressure;
  • the pipeline contains a fire fighting medium, the fire fighting medium condenses the gas inside the box through the pipeline to form a condensate, and the pipeline is configured to discharge the fire fighting medium when the pressure relief mechanism is actuated, so that the fire fighting medium enters the interior of the battery cell;
  • the sump includes a weakened region configured to cause the fire fighting medium to flow through the weakened region to the battery cells when the pressure relief mechanism is actuated.
  • the weakened region is configured as a through hole; alternatively, the weakened region is configured as a structure that is broken upon actuation of the pressure relief mechanism to form a through hole.
  • the weakened area is provided on the face of the groove close to the battery cells, so that the fire-fighting medium and condensate collected in the groove flow to the battery cell through the weakened area.
  • the battery further includes a fixing member, and the fixing member is disposed between the battery cell and the pipe, so that the pipe is fixed on the battery cell.
  • the fixing member further includes a plurality of clips, the clips are used for clipping with the pipeline, and the clips are arranged along the direction of the central axis of the pipeline and are located on both sides of the weak area to block the clips located on the The fire-fighting medium and condensate between the buckles flow out of the area formed by the buckles along the direction of the central axis of the pipeline.
  • the battery further includes an isolation member disposed between the liquid collecting member and the pressure relief mechanism.
  • a region of the isolation member corresponding to the pressure relief mechanism is provided with a second accommodating portion, and the liquid collecting member is provided in the second accommodating portion.
  • a second aspect of the present application provides an electrical device, including the battery of the above-mentioned embodiments, and the battery is used to provide electrical energy.
  • a third aspect of the present application provides a method for preparing a battery, comprising:
  • the box is used to accommodate the battery cells
  • a liquid collecting member is provided, the liquid collecting member is arranged between the battery cells and the pipeline, and the liquid collecting member is provided with a first accommodating part facing the pipeline, and the first accommodating part is used for collecting the condensate.
  • a fourth aspect of the present application provides a device for preparing a battery, comprising:
  • a second device for providing a case for accommodating battery cells
  • the fourth device is used for providing a liquid collecting member, the liquid collecting member is arranged between the battery cells and the pipeline, and the liquid collecting member is provided with a first accommodating part facing the pipeline, and the first accommodating part is used for collecting the condensate.
  • a liquid collecting part is arranged between the battery cell and the pipeline, and a first accommodating part is arranged on the liquid collecting part, so that the condensed liquid generated after the pipeline condenses the gas in the box will flow directly to the first accommodating part. It will not flow around inside the battery, and then contact the charged structure on the battery cell, so that the battery is not prone to short-circuit failure or leakage problems.
  • the condensate collected in the first receiving part of the liquid collector It can cool down the thermally runaway battery when the battery is thermally out of control, delay or inhibit the spread of thermal runaway, and improve the safety performance of the battery during use.
  • FIG. 1-A is a schematic structural diagram of an electrical device according to an embodiment of the present application.
  • FIG. 1-B is a schematic structural diagram of a battery according to an embodiment of the present application.
  • 1-C is a schematic structural diagram of a battery module according to an embodiment of the present application.
  • 1-D is a schematic structural diagram of a battery cell according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of an exploded structure of a battery according to an embodiment of the present application.
  • FIG. 3 is a partial enlarged schematic view of part A in FIG. 1 .
  • FIG. 4 is a schematic cross-sectional structural diagram of a battery according to an embodiment of the present application.
  • FIG. 5 is a partial enlarged schematic view of part B in FIG. 4 .
  • FIG. 6 is a schematic structural diagram of a battery with hidden pipes according to an embodiment of the present application.
  • FIG. 7 is a partial enlarged schematic view of part C in FIG. 6 .
  • FIG. 8 is a process flow diagram of preparing a battery according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of an apparatus for preparing a battery according to an embodiment of the present application.
  • 300 a battery module; 201, a first box body; 202, a second box body;
  • 401 a first device; 402, a second device; 403, a third device; 404, a fourth device.
  • a physical connection can be a fixed connection, such as a fixed connection through a fastener, such as a fixed connection through screws, bolts or other fasteners; a physical connection can also be a detachable connection, such as Mutual snap connection or snap connection; the physical connection can also be an integral connection, for example, welding, bonding or integrally forming a connection for connection.
  • it may be directly connected, that is, physically connected, or indirectly connected through at least one intermediate element.
  • the signal connection can be a signal connection not only through a circuit, but also through a media medium, such as radio waves, Bluetooth, etc.
  • orientation terms may be used, for example, the coordinate system in FIG.
  • the y direction is perpendicular to the x direction in the horizontal plane, representing the width direction of the battery cell 400
  • the z direction is perpendicular to the x direction and the y direction, representing the height direction of the battery 200 .
  • the rechargeable battery 200 may be referred to as a secondary battery or a power battery.
  • a widely used rechargeable battery is a lithium battery, such as a lithium sulfur battery, a sodium lithium ion battery or a magnesium ion battery, but not limited thereto.
  • the rechargeable batteries may be collectively referred to as batteries 200 herein.
  • the safety feature of the battery 200 is an important feature to measure the battery 200 , and it is necessary to ensure the safety of the battery 200 as much as possible during use or charging.
  • the battery 200 is generally formed by connecting and combining a plurality of battery cells 400.
  • the battery cells 400 are subject to external short circuit, overcharge, needle stick, plate impact, etc., the battery cells 400 are prone to thermal runaway. Emissions are generated inside the battery cells 400, and the emissions include high-temperature flue gas (in severe cases, open flames) and volatilized high-temperature electrolytes and other substances. These emissions will be thermally diffused during the discharge process, thereby causing other battery cells. The thermal runaway of the body 400 may even cause an accident such as an explosion.
  • an effective solution is to set the pipeline 100 and load the fire-fighting medium into the pipeline 100 , so that when the thermal runaway of the battery cell 400 occurs, the pipeline 100 releases the fire-fighting medium to prevent the Or delay the explosion or fire of the battery cells 400 .
  • the pipeline 100 may also have a temperature adjustment function. When the temperature of the battery 200 is too high, the temperature of the battery 200 is lowered, so as to prevent the battery 200 from thermal runaway due to the high temperature; When the temperature is low, the temperature of the battery 200 is increased so that the battery 200 operates at a suitable temperature.
  • the pipe 100 is generally disposed opposite to the pressure relief mechanism 6 of the battery cell 400 , for example, the pipe 100 may be disposed in the upper cover of the box housing the battery 200 or disposed on the battery cell 400 .
  • the above solution can prevent the occurrence of thermal runaway and timely control the thermal runaway when the battery cell 400 is thermally runaway.
  • the applicant found that the above-mentioned battery 200 is prone to short circuit. Faced with the above problems, the applicant has performed insulation treatment on the parts prone to short circuits inside the battery 200, but the short circuit problem still exists.
  • the applicant has conducted further analysis and found that when the pipeline 100 is used to solve the problem of thermal runaway, when the pipeline 100 is impacted by the high-temperature and high-humidity air inside the battery 200, condensate will be generated, and the condensate will flow around, although the parts that are prone to short-circuits will be treated. Insulation treatment still cannot prevent the condensate from coming into contact with other charged structures on the battery 200 , thereby causing the battery 200 to leak or short-circuit frequently.
  • the present application intends to provide a battery 200 , in which a liquid collecting member 110 is arranged between the battery cells 400 and the pipeline 100 , and a first accommodating portion is arranged on the liquid collecting member 110 , so that the pipeline 100 condenses air to generate The condensed liquid will flow directly into the first accommodating part, and will not flow around inside the battery 200 and then come into contact with the charged structure on the battery cell 400, so that the battery 200 is not prone to short-circuit and leakage risks.
  • the condensate in the first accommodating portion of the liquid component 110 can cool the battery 200 when the battery 200 is thermally out of control, suppress the spread of the thermal runaway, and improve the safety performance of the battery 200 during use.
  • the battery 200 in the embodiment of the present application can be applied to various electrical devices that can provide a power source with electrical energy.
  • the electrical device here can be, but not limited to, an electric vehicle, an electric train, an electric bicycle, a golf cart, a drone, or a ship.
  • the electric device may be a device powered only by the battery 200, or may be a hybrid device.
  • the battery 200 provides electrical energy for the electric device, and drives the electric device to travel through the motor.
  • the electrical device can be a car
  • the car can be a fuel car, a gas car or a new energy car
  • the new energy car can be It is a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the car includes a battery 200 , a controller 210 and a motor 220 .
  • the battery 200 is used for supplying power to the controller 210 and the motor 220 as the operating power and driving power of the vehicle.
  • the battery 200 is used for the starting, navigation and running of the vehicle for working power requirements.
  • the battery 200 supplies power to the controller 210, the controller 210 controls the battery 200 to supply power to the motor 220, and the motor 220 receives and uses the power of the battery 200 as a driving power source for the vehicle, replacing or partially replacing fuel or natural gas to provide driving power for the vehicle.
  • the battery 200 may include a plurality of battery modules 300 that are electrically connected to each other.
  • the battery 200 includes a case including a first case 201 , the second case 202 and a plurality of battery modules 300, wherein, the first case 201 and the second case 202 are buckled with each other, and the plurality of battery modules 300 are arranged around the first case 201 and the second case 202 within the formed space.
  • the first case body 201 and the second case body 202 may be made of aluminum, aluminum alloy or other metal materials. In some embodiments, the first case 201 and the second case 202 are hermetically connected.
  • the battery module 300 may include one or more battery cells 400.
  • the battery module 300 includes a plurality of battery cells 400, the plurality of battery cells 400 may be connected in series, parallel or mixed.
  • the hybrid connection refers to the combination of series and parallel connection.
  • the component that realizes the electrical connection between the battery cells 400 is the confluence component 7 (refer to FIG. 2 ).
  • the confluence component 7 refers to a conductive element arranged between different battery cells 400 , according to the preset connection of the battery cells 400 .
  • the bus members 7 are sequentially connected to the electrode terminals of the two battery cells 400 , thereby realizing electrical connection between the battery cells 400 .
  • the plurality of battery cells 400 can be arranged according to a predetermined rule. As shown in FIG. 1-C, the battery cells 400 can be placed upright, the height direction of the battery cells 400 is consistent with the z direction, and the plurality of battery cells 400 are along the y direction. Or, the battery cells 400 can be laid flat, the width direction of the battery cells 400 is consistent with the z direction, and a plurality of battery cells 400 can be stacked in at least one layer along the z direction, and each layer includes along the x direction or the y direction A plurality of battery cells 400 arranged in a direction.
  • the battery cell 400 includes a housing 40, an electrode assembly 30, and an end cap assembly 10.
  • the end cap assembly 10 includes an end cap plate 10' that is connected to the housing 40 (eg, welding) to form the outer shell of the battery cell 400 , the electrode assembly 30 is disposed in the casing 40 , and the casing 40 is filled with electrolyte.
  • the battery cells 400 may be in the shape of a cube, a rectangular parallelepiped or a cylinder.
  • the electrode assembly 30 can be provided in single or multiple. As shown in FIGS. 1-D , at least two independently wound electrode assemblies 30 may also be provided in the battery 200 .
  • the electrode assembly 30 may be formed by winding or stacking the first pole piece, the second pole piece, and the isolation film between the adjacent first pole pieces and the second pole piece, wherein the isolation film is between the first pole pieces and the second pole piece.
  • the first pole piece is exemplified as a positive pole piece
  • the second pole piece is a negative pole piece for description.
  • the positive active material is coated on the coated area of the positive electrode sheet, and the negative active material is coated on the coated area of the negative electrode sheet.
  • the electrode assembly 30 includes two tabs 301 , a positive tab and a negative tab.
  • the positive tabs extend from the coated area of the positive pole piece, and the negative pole tabs extend from the coated area of the negative pole piece.
  • the end cap assembly 10 is arranged on the top of the electrode assembly 30. As shown in FIG. 1-D, the end cap assembly 10 includes an end cap plate 10' and two electrode terminals 5, and the two electrode terminals 5 are respectively a positive terminal and a negative terminal. Each electrode terminal 5 is provided with a corresponding connecting member 302 , and the connecting member 302 is located between the end cap plate 10 ′ and the electrode assembly 30 .
  • the tab 301 of the electrode assembly 30 in FIG. 1-D is located on the top of the electrode assembly 30 , the positive tab is connected to the positive terminal through one connecting member 302 , and the negative tab is connected to the negative terminal through another connecting member 302 .
  • the battery cell 400 may also include two end cap assemblies 10 , which are respectively disposed on both ends of the casing 40 , and each end cap assembly 10 is provided with an electrode terminal 5 .
  • An explosion-proof member can also be provided on the end cover plate 10', when there is too much gas in the battery cell 400, the gas in the battery cell 400 is released in time to avoid explosion.
  • the end cover plate 10' is provided with an exhaust hole, and the exhaust hole can be arranged in the middle position of the end cover plate 10' along the length direction.
  • the explosion-proof component includes a pressure relief mechanism 6.
  • the pressure relief mechanism 6 is arranged on the exhaust hole. Under normal conditions, the pressure relief mechanism 6 is sealed and installed in the exhaust hole. When the battery cell 400 expands, the air pressure in the casing rises to When the preset value is exceeded, the pressure relief mechanism 6 is opened, and the gas is released outward through the pressure relief mechanism 6 .
  • the pressure relief mechanism 6 refers to an element or component that can be actuated to release the internal pressure and/or internal substances when the internal pressure or internal temperature of the battery cell 400 reaches a predetermined threshold.
  • the pressure relief mechanism 6 may specifically take the form of an explosion-proof valve, an air valve, a pressure relief valve or a safety valve, etc., and may specifically adopt a pressure-sensitive or temperature-sensitive element or structure, that is, when the internal pressure or temperature of the battery cell 400 is When the predetermined threshold value is reached, the pressure relief mechanism 6 performs an action or the weak structure provided in the pressure relief mechanism 6 is destroyed, thereby forming an opening or a channel for releasing the internal pressure.
  • the threshold referred to in this application can be a pressure threshold or a temperature threshold, and the design of the threshold varies according to different design requirements, for example, it can be based on the internal pressure or internal temperature of the battery cell 400 that is considered to be dangerous or at risk of runaway design or determine the threshold. And, the threshold value may depend on, for example, the materials used for one or more of the positive electrode sheet, the negative electrode sheet, the electrolyte and the separator in the battery cell 400 .
  • the “actuation” mentioned in this application means that the pressure relief mechanism 6 is actuated or activated to a certain state, so that the internal pressure of the battery cell 400 can be released.
  • the action produced by the pressure relief mechanism 6 may include, but is not limited to, at least a portion of the pressure relief mechanism 6 is ruptured, broken, torn or opened, and the like.
  • the emissions from the battery cells 400 mentioned in this application include, but are not limited to: electrolyte, dissolved or split positive and negative electrode sheets, fragments of separators, high-temperature and high-pressure gas generated by the reaction, flames, etc. .
  • the high-temperature and high-pressure discharge is discharged toward the direction of the battery cell 400 where the pressure relief mechanism 6 is provided, and may be discharged more specifically in the direction of the area where the pressure relief mechanism 6 is actuated, and the power and destructive power of such discharge may be very high. large, and may even be enough to break through one or more thin-walled structures in that direction.
  • the end cap plate 10 ′ is provided with through holes for injecting electrolyte into the battery cells 400 , and the through holes can be round holes, elliptical holes, polygonal holes or other holes. shape of the hole, and can extend along the height direction of the end cap plate 10'.
  • the end cover plate 10' is provided with a liquid injection member 2 for closing the through hole.
  • the specific structure of the battery 200 provided by the present application is as follows.
  • the battery 200 includes: a box body, a battery module 300 , a pipe 100 and a liquid collecting member 110 .
  • the box body is a hollow structure, so that the battery cells 400 are encapsulated in the box body.
  • the figure shows the structure of the liquid collecting member 110 and the pipeline 100 clearly, and the box body structure is not specifically shown.
  • An inner cavity for accommodating the battery cells 400 is formed in the case, and the inner cavity can accommodate at least one battery module 300 .
  • the battery module 300 includes one or more battery cells 400.
  • the plurality of battery cells 400 may be arranged in a straight line in the thickness direction.
  • the multiple battery modules 300 may be arranged in a direction perpendicular to the arrangement direction of the battery cells 400 .
  • the arrangement direction of the battery cells 400 in the same battery module 300 is defined. is the y direction
  • the arrangement direction of the plurality of battery modules 300 is the x direction
  • the direction of the pressure relief mechanism 6 of each battery cell 400 is the z direction.
  • the z direction may be the opening of the first box 201 direction.
  • the pipeline 100 is located on the side of the battery module 300 , the pipeline 100 contains a fire fighting medium, and the pipeline 100 is configured to be released when the pressure relief mechanism 6 on any one of the battery cells 400 is actuated.
  • fire-fighting medium so that the fire-fighting medium enters the interior of the battery cell 400, for example, the melting point of the pipe wall of the pipe 100 is set to be lower than the temperature of the discharge at the moment of thermal runaway of the battery cell 400, so that the discharge can easily pass the pipe 100 melt through to release fire fighting medium.
  • the duct 100 extends along the arrangement direction of the battery cells 400 in the same battery module 300 , and the duct 100 faces the pressure relief mechanism 6 on each battery cell 400 , so that the battery cells 400 After thermal runaway occurs, at the moment when the pressure relief mechanism 6 is actuated, the pipeline 100 releases the fire-fighting medium, and the fire-fighting medium enters the inside of the battery cell 400 as much as possible.
  • the fire-fighting medium can be liquid fire extinguishing agent, such as water, liquid nitrogen, etc., or solid powder fire extinguishing agent, such as dry powder fire extinguishing agent, fluoroprotein foam fire extinguishing agent, aqueous film-forming foam fire extinguishing agent, etc.
  • the thermally runaway battery cells 400 use liquid water as a fire-fighting medium with rapid cooling, lower cost, and lower storage requirements.
  • the fire-fighting medium When the temperature of the fire-fighting medium is lower than the ambient temperature and the ambient air has a certain humidity, the fire-fighting medium will condense the gas inside the box through the pipeline 100 to form condensate.
  • the liquid collector 110 is provided on the battery cells 400 . Between the pipe 100 and the pipe 100, it is used to collect the condensate condensed in the pipe 100 to prevent the condensate from flowing around inside the battery 200, and then the battery 200 short circuit and leakage problems caused by contact with the charged structure.
  • the liquid collecting member 110 may be provided in a sheet shape, so that it occupies a small space and can improve the energy density of the battery 200 .
  • the liquid collecting member 110 has insulating properties, so as to prevent the condensed liquid from flowing around while insulating and isolating the condensed liquid from other components, thereby preventing the liquid collecting member 110 from contacting the charged structure on the battery cell 400 and causing damage.
  • the liquid collecting member 110 may be a lightweight insulating heat-resistant board such as a rock wool board, a floating bead board, a vermiculite board, or the like.
  • the liquid collecting member 110 is provided with a first accommodating portion facing the pipeline 100 , and the first accommodating portion is used for collecting the condensate.
  • the first accommodating portion is set as a groove 120 concave toward one side of the battery cell 400 , and the depth of the groove 120 is 1-5 mm, so that the groove 120 has a certain capacity of accommodating condensate and preventing condensation
  • the liquid flows away everywhere, and at the same time, it will not occupy more internal space of the box due to the large depth of the groove 120, resulting in an excessively large battery volume. It is connected with the liquid collecting member 110 by means of bonding or the like.
  • the setting of the groove 120 enables the condensate generated on the pipeline 100 to fall on the liquid collecting member 110, and then can be collected into the groove 120, so that the groove 120 can accommodate more condensate, and the condensate can be fixed at the same time. It is stored at the location where the condensate flows around to avoid contact with the charged structure of the battery cell 400 .
  • the groove 120 is located between the pipe 100 and the pressure relief mechanism 6 on the battery cell 400, that is, the groove 120 is parallel to the pipe 100, and the groove 120 and the pipe 100 are both Extending along the direction in which the battery cells 400 are arranged, the pipe 100 is directly opposite to the groove 120 , and the groove 120 is directly opposite to the pressure relief mechanism 6 .
  • the first accommodating portion is also configured to accommodate at least a part of the pipe 100 , that is, the pipe 100 may all be located in the groove 120 ; it may also be partially located in the first accommodating portion, and the remaining part is located outside the groove 120 , as long as the condensed liquid on the pipeline 100 can directly flow into the first accommodation part, so as to better collect the condensed liquid.
  • At least one end of the groove 120 along the central axis of the pipe 100 has an opening, and the plane where the opening of the groove 120 is located is the outermost battery cell along the arrangement direction of the battery cells 400 Or, the plane where the opening of the groove 120 is located exceeds the side surface of the outermost battery cell 400 along the arrangement direction of the battery cells 400.
  • the setting of the opening can make the condensate
  • the grooves 120 are discharged through the opening, but are not discharged to the battery cells 400 , so as to ensure the safety of the battery 200 and prevent the battery 200 from short-circuit and leakage risks.
  • the condensate After the condensate is discharged along the opening of the groove, it flows to the bottom of the first box 201 for collection.
  • the condensate in the first tank 201 When the liquid level reaches a certain height, the condensate in the first tank 201 is discharged to prevent the condensate from contacting the charged structure on the top of the battery cell 400 and causing a short circuit.
  • the condensate can continue to accumulate, thereby reducing the temperature in the box, and playing the role of extinguishing and cooling in the event of thermal runaway of the battery.
  • the liquid level control mechanism may be one or more through holes provided on the side wall of the first tank body 201, and the through holes have a certain height from the bottom wall of the first tank body 201, so that in the first tank body 201 When the condensate liquid level in a box 201 reaches or does not pass through the through hole, the condensate liquid is discharged from the through hole to prevent the liquid level from being further raised and short-circuiting with the charged structure on the battery cell 400 .
  • the liquid level control mechanism may also be a pressure valve disposed on the side wall or bottom wall of the first tank body 201 , and the pressure valve may be a one-way valve, that is, only allowing liquid to flow from the first tank body 201 The inside flows to the outside of the first tank 201, and the inflow of the liquid in the opposite direction is avoided.
  • the hydraulic pressure reaches a predetermined threshold, an opening or channel for the liquid to flow out is formed on the one-way valve, so that the condensate is discharged, the liquid level of the condensate in the first tank 201 is prevented from rising, and the condensate is prevented from contacting the battery cells 400 .
  • a short-circuit occurs due to the charged structure on it.
  • the liquid collecting members 110 above different battery modules 300 may be provided separately, that is, each battery module 300 corresponds to one liquid collecting member 110 , and the liquid collecting members 110 are located along the lines of the battery cells 400 .
  • a first accommodating portion is provided in the arrangement direction, and the liquid collecting members 110 above different battery modules 300 are separated from each other to save cost.
  • the liquid collecting members 110 above different battery modules 300 can also be set as a whole, that is, the same liquid collecting member 110 covers a plurality of battery modules 300, and a first container is provided above each battery module 300 at a position corresponding to the pipeline 100 department.
  • the insulating member 150 may be covered above the busbar 7.
  • the insulating member 150 may only cover one busbar 7, or may cover multiple busbars 7 at the same time, such as covering multiple batteries in one battery module 300.
  • the confluence part 7 on the unit 400 is used to prevent the condensate from flowing on the confluence part 7 to cause a short circuit or electric leakage.
  • the liquid collecting member 110 further includes a weak area 130, and the weak area 130 is arranged on the groove 120, and is connected with the leakage
  • the pressure mechanism 6 is disposed opposite to each other, so that the liquid collecting member 110 can be quickly passed through by the discharge at the moment when the battery cell 400 is thermally out of control, after the pressure relief mechanism 6 is actuated, and the discharge can further damage the pipe of the pipeline 100
  • the fire-fighting medium in the pipeline 100 can be quickly discharged through the wall of the pipeline 100. After the fire-fighting medium is discharged, it passes through the damaged wall of the pipeline 100 and the weak area 130 and flows to the battery cells 400 to quickly achieve fire fighting and cooling.
  • the condensate collected in the groove 120 can also flow from the damaged pipe wall to the weak area 130, and flow into the battery cells 400 through the pressure relief mechanism 6, as a protection against fire protection. Supplement of medium for fire extinguishing and cooling.
  • the weak area 130 is configured as a through hole, and the through hole is arranged corresponding to the pressure relief mechanism 6 .
  • the hole flows to the electrode terminal 5, and the pipe 100 can cover the edge of the through hole and closely abut with the liquid collecting member 110.
  • the condensate can be stored in the groove 120, and furthermore It will flow to the electrode terminal 5 through the edge of the through hole, and when the thermal runaway of the battery occurs, the pipe 100 will be broken by the pressure relief mechanism 6, and the condensate will flow from the through hole to the thermal runaway battery cell 400 to cool down.
  • the edge of the through hole can also be directly bonded to the pressure relief mechanism 6 , that is, the condensate will not flow out from the edge of the through hole, and then all flow into the battery cell 400 through the pressure relief mechanism 6 .
  • the above arrangement can not only prevent the condensate from contacting the charged structure on the battery cell 400 through the through hole, such as contact with the electrode terminal 5; but also can make the condensate accumulated in the groove 120 all used to flow into the battery through the pressure relief mechanism 6 Inside the cell 400 to address thermal runaway issues.
  • the pressure relief mechanism 6 When the thermal runaway of the battery 200 occurs, the pressure relief mechanism 6 is actuated, and the discharge in the battery cells 400 is discharged from the pressure relief mechanism 6 , and the discharge directly passes through the through hole, connecting the pipe 100 to the pipe opposite the pressure relief mechanism 6
  • the wall locations are melted through to form openings so that the fire fighting medium can be discharged through the openings and through holes.
  • the pipeline 100 can be destroyed more quickly and directly, which greatly improves the speed of fire fighting and prevents the accumulation of heat in the box and explosion.
  • the weakened area 130 is configured to be broken when the pressure relief mechanism 6 is actuated to form a through-hole structure, for example, the liquid collecting member 110 is integrated, or the groove 120, or at least a backlog
  • the parts directly opposite the pressure relief mechanism 6 are arranged in a structure that is easy to be damaged by the discharge, and the form of "destruction" here includes but is not limited to one of penetration, rupture, fragmentation, and torn.
  • the position of the liquid collecting member 110 facing the pressure relief mechanism 6 is configured as a weak structure or a low melting point structure which is easy to be melted through by the high temperature and high pressure discharges generated inside the battery cells 400, so that the high temperature and high pressure discharges When discharged from the actuated pressure relief mechanism 6, the discharge quickly melts through the liquid collecting member 110, and the wall of the pipe 100 opposite to the pressure relief mechanism 6 is destroyed to form an opening to discharge the fire-fighting medium in the pipe 100.
  • the medium enters the interior of the battery cells 400 through the pressure relief mechanism 6 , so as to perform fire extinguishing and cooling treatment on the thermally runaway battery cells 400 .
  • the structure of the weak area 130 can be such that the strength of the weak area 130 is smaller than the strength of the rest of the liquid collecting member 110, for example, the weak area
  • the thickness of 130 is less than the thickness of the rest of the sump 110 .
  • the weakened region 130 can also be configured as a low melting point structure, eg, the melting point of the weakened region 130 is lower than the melting point of the rest of the liquid collection member 110 .
  • the weak area 130 may also be configured as a sheet-like structure connected with the rest of the liquid collecting member 110 by easy tearing lines, so as to be easily broken by the discharge discharged by the pressure relief mechanism 6 .
  • the "easy-tear line” mentioned in the embodiments of the present application refers to an intermittent scribe line formed by intermittently destroying the part that needs to be torn and the part that does not need to be torn by external force, and the position of the damaged material is light and thin. However, if it does not penetrate, it can be ruptured under a slight external force, and the part of the material that is not damaged retains the thickness of the original material, so the connection formed by intermittent damage is called an easy tearing line.
  • the easy tear line can be formed by laser punching machine, laser marking machine, laser scribing machine or laser cutting machine.
  • connection between the pipe 100 and the liquid collecting member 110 is an adhesive type, that is, the pipe 100 is directly fixed on the liquid collecting member 110 by using a sticky substance.
  • the battery 200 further includes a fixing member, and the fixing member is disposed between the battery cell 400 and the pipe 100 to clamp the pipe 100 so as to fix the position of the pipe 100 .
  • the fixing member in this embodiment includes a plurality of buckles 140.
  • the buckles 140 are used for clamping with the pipeline 100.
  • the buckles 140 can be made of elastic materials, such as rubber, silicone, plastic or elastic metal, so as to facilitate the clamping of the pipeline 100. Insert and clamp the pipe 100 tightly.
  • the fixing member is fixed on the battery cell 400 , for example, it can be fixed on the electrode terminal 5 , and the fixing method can be adhesion, clipping, etc., so that the pipe 100 is also fixed on the battery cell 400 .
  • the plurality of snaps 140 of the pipeline are arranged along the direction of the central axis of the pipeline 100 .
  • the snaps 140 may be located on both sides of the weak area 130 to block the fire-fighting medium between the snaps 140 when the fire fighting medium is discharged from the pipeline 100 .
  • the fire fighting medium and the condensate flow out of the area formed by the clip 140 and the groove 120 along the direction of the central axis of the pipe 100 .
  • the pipe 100 can also be fixed together by means of clipping and bonding of the buckles 140.
  • the structure, fixing method and arrangement of the buckles 140 in this embodiment are the same as those in the previous embodiment of the present application. Example is the same.
  • the connection between the pipeline 100 and the liquid collecting member 110 is made more firmly, so as to prevent the pipeline 100 from shaking and causing the condensate to flow away everywhere.
  • the battery 200 further includes an isolation member 160 , the isolation member 160 is disposed between the liquid collecting member 110 and the pressure relief mechanism 6 , and a second accommodating portion 161 is disposed in the area corresponding to the isolation member 160 and the pressure relief mechanism 6 , and the liquid collecting
  • the component 110 is arranged in the second accommodating part 161, specifically, the first accommodating part is located in the second accommodating part 161, so that when the condensate flows out from the weak part on the liquid collecting part 110, the condensate flowing out is subjected to a further cleaning process.
  • the collection further protects the battery cells 400 , prevents the condensate from contacting the charged structure, and further improves the use safety and reliability of the battery 200 .
  • the liquid collecting member 110 is arranged between the battery cell 400 and the pipeline 100, and the first accommodating portion is arranged on the liquid collecting member 110, so that when the temperature of the pipeline 100 is low , after contacting the gas in the box, the condensate generated will flow directly into the first accommodating part, instead of flowing to the charged structure on the battery cell 400, so that the battery 200 is not prone to short-circuit failure. It is more stable and safe to use.
  • the electrical device using the battery 200 provided in the present application to provide electrical energy has higher stability in use, and is less likely to cause safety accidents caused by internal short circuit and leakage of the battery 200.
  • the present application also provides a method for preparing a battery 200, which is used to prepare the above-mentioned battery 200 in the present application.
  • a method for preparing a battery 200 includes the following steps.
  • Step a providing battery cells 400 .
  • Step b providing a case body for accommodating the battery cells 400 .
  • Step c Provide a pipeline 100 for condensing the gas inside the box to form a condensate.
  • Step d Provide a liquid collecting member 110, the liquid collecting member 110 is disposed between the battery cells 400 and the pipeline 100, and the liquid collecting member 110 is provided with a first accommodating part toward the pipeline 100, and the first accommodating part is used for collecting the condensate.
  • the order of the above steps is not completely carried out in the above-mentioned order.
  • the order of the above steps may be adjusted according to the actual situation, or performed simultaneously, or other steps may be added to manufacture other components of the battery 200.
  • the present application further provides an apparatus for preparing a battery 200 , including: a first apparatus 401 , a second apparatus 402 , a third apparatus 403 and a fourth apparatus 404 .
  • the first device 401 is used to provide the battery cells 400 .
  • the second device 402 is used to provide a case for accommodating the battery cells 400 .
  • the third device 403 is used for providing the pipeline 100, and the pipeline 100 is used for condensing the gas inside the box to form a condensate.
  • the fourth device 404 is used to provide the liquid collecting member 110, the provided liquid collecting member 110 is arranged between the battery cells 400 and the pipeline 100, and the liquid collecting member 110 is provided with a first accommodating part toward the pipeline 100, and the first accommodating part is used for to collect condensate.
  • the battery 200, the electrical device, and the method and device for preparing the battery 200 provided in the present application have been described in detail above.
  • the principles and implementations of the present application are described herein by using specific embodiments, and the descriptions of the above embodiments are only used to help understand the methods and core ideas of the present application. It should be pointed out that for those of ordinary skill in the art, without departing from the principles of the present application, several improvements and modifications can also be made to the present application, and these improvements and modifications also fall within the protection scope of the claims of the present application.

Abstract

本申请涉及电池技术领域,尤其是涉及一种电池、用电装置、制备电池的方法及装置,其中,电池包括:电池单体;箱体,用于容纳电池单体;管道,用于冷凝箱体内部的气体以形成冷凝液;和集液件,设置于电池单体和管道之间,集液件朝向管道设有第一容纳部,第一容纳部用于收集冷凝液。通过在电池内部设置集液件以收集管道冷凝的冷凝液,可以防止冷凝液在电池内部四处流动进而与带电结构接触造成的电池短路、漏电问题等问题,同时,收集在集液件内的冷凝液能够在电池热失控时为电池降温,抑制热失控的蔓延,提高电池使用过程中的安全性能。

Description

电池、用电装置、制备电池的方法及装置 技术领域
本申请涉及电池技术领域,尤其是涉及一种电池、用电装置、制备电池的方法及装置。
背景技术
在采用电能作为驱动能源的装置中,电池作为其核心部件,保证电池的使用安全性对于确保装置整体的使用安全来说至关重要,而电池的热失控是威胁电池使用安全的一个重要因素。
为应对电池热失控的问题,相关技术中的电池通常会增加管道以对发生热失控的电池进行降温,防止热失控的蔓延。然而,设置了管道的电池却容易发生短路问题。
发明内容
本申请提供一种电池、用电装置、制备电池的方法及装置,可以将管道冷凝电池内部气体所产生的冷凝液收集起来,防止冷凝液在电池内部四处流动进而与带电结构接触造成的电池短路。
本申请的第一方面提供一种电池,包括:
电池单体;
箱体,用于容纳电池单体;
管道,用于冷凝箱体内部的气体以形成冷凝液;和
集液件,设置于电池单体和管道之间,集液件朝向管道设有第一容纳部,第一容纳部用于收集冷凝液。
在一些实施例中,第一容纳部被设置为凹槽,凹槽沿管道的中轴线方 向的至少一端具有开口,用于将冷凝液经由开口排出凹槽。
在一些实施例中,电池单体为多个且排列设置,凹槽沿多个电池单体排列的方向延伸,且凹槽的开口所在的平面为沿排列方向上最外侧的电池单体的侧面;
或者,凹槽的开口所在的平面超出沿排列方向上最外侧的电池单体的侧面。
在一些实施例中,第一容纳部还被配置为容纳管道的至少一部分,以使得管道冷凝的冷凝液流入第一容纳部。
在一些实施例中,凹槽的深度为1-5毫米。
在一些实施例中,集液件具有绝缘性能,以防止电池单体短路。
在一些实施例中,集液件与管道连接方式为粘贴式。
在一些实施例中,电池单体包括泄压机构,泄压机构用于在电池单体的内部压力或温度达到阈值时致动以排出排放物以泄放内部压力;
管道容纳有消防介质,消防介质通过管道冷凝箱体内部的气体以形成冷凝液,且管道被构造为在泄压机构致动时泄放消防介质,以使消防介质进入电池单体的内部;
集液件包括薄弱区,薄弱区被构造为在泄压机构致动时,使得消防介质穿过薄弱区流向电池单体。
在一些实施例中,薄弱区被设置为通孔;或者,薄弱区被设置为在泄压机构致动时被破坏以形成通孔的结构。
在一些实施例中,薄弱区设置在凹槽靠近电池单体的面上,以使得收集在凹槽内的消防介质和冷凝液通过薄弱区流向电池单体。
在一些实施例中,电池还包括固定件,固定件设置于电池单体与管道之间,以使管道固定于电池单体上。
在一些实施例中,固定件还包括多个卡扣,卡扣用于与管道卡接,且多个卡扣沿管道的中轴线方向排布,并位于薄弱区的两侧,以阻挡位于卡 扣之间的消防介质和冷凝液沿管道的中轴线方向流出卡扣所形成的区域。
在一些实施例中,电池还包括隔离部件,隔离部件设置于集液件和泄压机构之间。
在一些实施例中,隔离部件与泄压机构对应的区域设置有第二容纳部,集液件设置在第二容纳部内。
本申请的第二方面提供一种用电装置,包括上述实施例的电池,电池用于提供电能。
本申请的第三方面提供一种制备电池的方法,包括:
提供电池单体;
提供箱体,箱体用于容纳电池单体;
提供管道,管道用于冷凝箱体内部的气体以形成冷凝液;
提供集液件,集液件设置于电池单体和管道之间,且集液件朝向管道设有第一容纳部,第一容纳部用于收集冷凝液。
本申请的第四方面提供一种制备电池的装置,包括:
第一装置,用于提供电池单体;
第二装置,用于提供箱体,箱体用于容纳电池单体;
第三装置,用于提供管道,管道用于冷凝箱体内部的气体以形成冷凝液;和
第四装置,用于提供集液件,集液件设置于电池单体和管道之间,集液件朝向管道设有第一容纳部,第一容纳部用于收集冷凝液。
本申请提供的电池通过在电池单体与管道之间设置集液件,并在集液件上设置第一容纳部,使得管道冷凝箱体内的气体后产生的冷凝液会直接流到第一容纳部内,而不会在电池内部四处流动,进而与电池单体上的带电结构接触,从而使得电池不容易发生短路失效或漏电等问题,同时,收集在集液件的第一容纳部内的冷凝液能够在电池热失控时为热失控的电池降温,延缓或抑制热失控的蔓延,提高电池使用过程中的安全性能。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。
图1-A是本申请实施例的一种用电装置的结构示意图。
图1-B是本申请实施例的一种电池的结构示意图。
图1-C是本申请实施例的一种电池模块的结构示意图。
图1-D是本申请实施例的一种电池单体的结构示意图。
图2是本申请实施例的一种电池的爆炸结构示意图。
图3是图1中A部分的局部放大示意图。
图4是本申请实施例的一种电池的剖视结构示意图。
图5是图4中B部分的局部放大示意图。
图6是本申请实施例的一种电池隐藏管道后的结构示意图。
图7是图6中C部分的局部放大示意图。
图8本申请实施例的一种制备电池的工艺流程图。
图9本申请实施例的一种制备电池的装置的结构示意图。
附图标记说明:
200、电池;210、控制器;220、马达;
300、电池模块;201、第一箱体;202、第二箱体;
400、电池单体;40、壳体;30、电极组件;301、极耳;10、端盖组件;10’、端盖板;302、连接构件;2、注液构件;5、电极端子;6、泄压 机构;7、汇流部件;
100、管道;110、集液件;120、凹槽;130、薄弱区;140、卡扣;150、绝缘部件;160、隔离部件;161、第二容纳部;
401、第一装置;402、第二装置;403、第三装置;404、第四装置。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,为本申请的较佳实施例,并非依此限制本申请的保护范围,故:凡依本申请的结构、形状、原理所做的等效变化,均应涵盖于本申请的保护范围之内。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语“实施例”并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
此外,本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序,可以明示或 者隐含地包括一个或者更多个该特征。
在本申请的描述中,除非另有说明,“多个”的含义是指两个以上(包括两个),同理,“多组”指的是两组以上(包括两组)。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,机械结构的“相连”或“连接”可以是指物理上的连接,例如,物理上的连接可以是固定连接,例如通过固定件固定连接,例如通过螺丝、螺栓或其它固定件固定连接;物理上的连接也可以是可拆卸连接,例如相互卡接或卡合连接;物理上的连接也可以是一体地连接,例如,焊接、粘接或一体成型形成连接进行连接。电路结构的“相连”或“连接”除了可以是指物理上的连接,还可以是指电连接或信号连接,例如,可以是直接相连,即物理连接,也可以通过中间至少一个元件间接相连,只要达到电路相通即可,还可以是两个元件内部的连通;信号连接除了可以通过电路进行信号连接外,也可以是指通过媒体介质进行信号连接,例如,无线电波、蓝牙等。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请实施例中的具体含义。
为了在以下实施例中清楚地描述各个方位,可以使用一些方位用词,例如,如图1-D中的坐标系统对电池200的各个方位方向进行了定义,z方向表示电池单体400的长度方向,y方向在水平面内与x方向垂直,表示电池单体400的宽度方向,z方向垂直于x方向和y方向,表示电池200的高度方向。此外,上述描述的x方向、y方向以及z方向等用于说明本实施例的电池200的各构件的操作和构造的指示方向的表述不是绝对的而是相对的,且尽管当电池200的各构件处于图中所示的位置时这些指示是恰当的,但是当这些位置改变时,这些方向应有不同的解释,以对应此种改变。
基于相同的方位理解,在本申请的描述中,术语“中心”、“纵向”、 “横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
可充电电池200可以称为二次电池或动力电池,目前,使用比较广泛的可充电电池为锂电池,例如,锂硫电池、钠锂离子电池或镁离子电池,但不局限于此。为描述方便,本文中可以将可充电电池统称为电池200。
电池200的安全特性是衡量电池200的一个重要特性,在使用或充电时需要尽可能保证电池200的安全性。
电池200一般由多个电池单体400连接组合而成,当电池单体400发生外部短路、过充、针刺、平板冲击等等情况时,电池单体400容易发生热失控,此时,该电池单体400内部会产生排放物,该排放物包含高温烟气(严重者产生明火)和挥发的高温电解液等物质,这些排放物在排放的过程中会发生热扩散,从而导致其他电池单体400发生热失控,甚至还会引发爆炸等事故。
针对电池单体400的热失控,目前一种有效的方案,是设置管道100,并在管道100内装入消防介质,从而达到在电池单体400发生热失控时,管道100释放消防介质,以阻止或延缓电池单体400发生爆炸或失火。同时,在一些实施例中,管道100还可以具备温度调节功能,在电池200温度过高时,对电池200进行降温,从而防止电池200由于温度较高而发生热失控;在电池200内部温度较低时,对电池200进行升温,从而使电池200在适宜的温度下工作。
管道100一般与电池单体400的泄压机构6相对设置,例如,管道100可以设置在容纳电池200的箱体的上箱盖内或者设置在电池单体400 上。
上述方案能够预防热失控的发生,并在电池单体400发生热失控时,对热失控情况进行及时地控制,但是,申请人发现上述电池200容易出现短路。面对上述问题,申请人对电池200内部容易出现短路部位均做了绝缘处理,但是短路问题仍然存在。申请人进行了进一步的分析发现,当采用管道100解决热失控问题时,管道100受到电池200内部高温高湿空气的冲击时会产生冷凝液,冷凝液四处流动,尽管对容易出现短路的部位做绝缘处理,仍不能避免冷凝液与电池200上的其他带电结构接触,进而使得电池200漏电或者短路问题频发。
鉴于此,本申请欲提供一种电池200,其通过在电池单体400与管道100之间设置集液件110,并在集液件110上设置第一容纳部,使得管道100冷凝空气后产生的冷凝液会直接流到第一容纳部内,不会在电池200内部四处流动进而与电池单体400上的带电结构接触,从而使得电池200不容易发生短路和漏电等风险,同时,收集在集液件110第一容纳部内的冷凝液能够在电池200热失控时为电池200降温,抑制热失控的蔓延,提高电池200使用过程中的安全性能。
本申请实施例中的电池200可应用于各种能够以电能提供动力来源的用电装置。此处的用电装置可以但并非仅限于电动汽车、电动列车、电动自行车、高尔夫球车、无人机或轮船等。并且,用电装置可为仅使用电池200提供动力的装置,也可为混合动力型装置。电池200为用电装置提供电能,并通过电机带动电动装置行进。
例如,如图1-A所示,为本申请一实施例的一种用电装置的结构示意图,用电装置可以为汽车,汽车可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。汽车包括电池200、控制器210和马达220。电池200用于向控制器210和马达220供电,作为汽车的操作电源和驱动电源,例如,电池200用于汽车 的启动、导航和运行时的工作用电需求。例如,电池200向控制器210供电,控制器210控制电池200向马达220供电,马达220接收并使用电池200的电力作为汽车的驱动电源,替代或部分地替代燃油或天然气为汽车提供驱动动力。
为了使得电池200达到较高的功能以满足使用需求,电池200可以包括相互电连接的多个电池模块300,如图1-B所示,电池200包括箱体,箱体包括第一箱体201、第二箱体202和多个电池模块300,其中,第一箱体201和第二箱体202相互扣合,多个电池模块300排布在第一箱体201和第二箱体202围合形成的空间内。第一箱体201和第二箱体202可由铝、铝合金或其它金属材料制成。在一些实施例中,第一箱体201和第二箱体202密封连接。
如图1-C所示,电池模块300可以包括一个或多个电池单体400,当电池模块300包括多个电池单体400时,多个电池单体400可以通过串联、并联或混联的方式电连接以实现较大的电流或电压,其中,所述混联是指串联和并联的组合。实现电池单体400之间电连接的部件为汇流部件7(参照图2),汇流部件7是指设置在不同的电池单体400之间的导电元件,按照预设的电池单体400的连接顺序将汇流部件7连接于两个电池单体400的电极端子上,从而实现电池单体400之间的电连接。另外,多个电池单体400可以按照预定规则排列,如图1-C所示,电池单体400可立放,电池单体400的高度方向与z方向一致,多个电池单体400沿y方向并排设置;或者,电池单体400可以平放,电池单体400的宽度方向与z方向一致,多个电池单体400沿z方向可以堆叠至少一层,每一层包括沿x方向或y方向排列的多个电池单体400。
为了使本领域技术人员清楚地了解本申请的改进点,首先对电池单体400的整体结构进行说明。
如图1-D所示,电池单体400包括壳体40、电极组件30和端盖组 件10,端盖组件10包括端盖板10’,端盖板10’与壳体40连接(例如,焊接)形成电池单体400的外壳,电极组件30设置在壳体40内,且壳体40内填充电解液。电池单体400可为立方体形、长方体形或圆柱体形。
根据实际使用需求,电极组件30可设置为单个或多个。如图1-D所示,也可在电池200内设置至少两个独立卷绕的电极组件30。电极组件30可通过将第一极片、第二极片以及位于相邻第一极片和第二极片之间的隔离膜一同卷绕或堆叠而形成主体部,其中,隔离膜是介于相邻第一极片和第二极片之间的绝缘体。在本实施例中,示例性地以第一极片为正极极片,第二极片为负极极片进行说明。正极活性物质被涂覆在正极极片的涂覆区上,而负极活性物质被涂覆到负极极片的涂覆区上。由主体部的涂覆区延伸出的多个未涂覆区层叠作为极耳301。电极组件30包括两个极耳301,即正极极耳和负极极耳。正极极耳从正极极片的涂覆区延伸出,而负极极耳从负极极片的涂覆区延伸出。
端盖组件10设在电极组件30顶部,如图1-D所示,端盖组件10包括端盖板10’和两个电极端子5,两个电极端子5分别为正极端子和负极端子,每个电极端子5对应设置一个连接构件302,连接构件302位于端盖板10’与电极组件30之间。
例如,图1-D中电极组件30的极耳301位于电极组件30的顶部,正极极耳通过一个连接构件302与正极端子连接,负极极耳通过另一个连接构件302与负极端子连接。可以理解的是,电池单体400也可以包括两个端盖组件10,分别设置于壳体40的两端,每个端盖组件10上各设置一个电极端子5。
端盖板10’上还可设置防爆构件,当电池单体400内气体太多时及时释放电池单体400内的气体,避免发生爆炸。
端盖板10’上设有排气孔,排气孔可设在端盖板10’沿长度方向的中间位置。防爆构件包括泄压机构6,泄压机构6设在排气孔上,在正常 状态下,泄压机构6密封安装于排气孔,在电池单体400发生膨胀使外壳内的气压升高至超出预设值时,泄压机构6开启,气体通过泄压机构6向外释放。
泄压机构6是指在电池单体400的内部压力或内部温度达到预定阈值时能够致动以泄放内部压力和/或内部物质的元件或部件。泄压机构6具体可以采用诸如防爆阀、气阀、泄压阀或安全阀等的形式,并可以具体采用压敏或温敏的元件或构造,即,当电池单体400的内部压力或温度达到预定阈值时,泄压机构6执行动作或者泄压机构6中设有的薄弱结构被破坏,从而形成可供内部压力泄放的开口或通道。本申请中所称的阈值可以是压力阈值或温度阈值,该阈值的设计根据设计需求的不同而不同,例如可根据被认为是存在危险或失控风险的电池单体400的内部压力或内部温度值而设计或确定该阈值。并且,该阈值例如可能取决于电池单体400中的正极极片、负极极片、电解液和隔离膜中的一种或几种所用的材料。
本申请中所提到的“致动”是指泄压机构6产生动作或被激活至一定的状态,从而使得电池单体400的内部压力得以被泄放。泄压机构6产生的动作可以包括但不限于:泄压机构6中的至少一部分破裂、破碎、被撕裂或者打开,等等。泄压机构6在致动时,电池单体400的内部的高温高压物质作为排放物会从致动的部位向外排出。以此方式能够在可控压力或温度的情况下使电池单体400发生泄压,从而避免潜在的更严重的事故发生。本申请中所提到的来自电池单体400的排放物包括但不限于:电解液、被溶解或分裂的正负极极片、隔离膜的碎片、反应产生的高温高压气体、火焰,等等。高温高压的排放物朝向电池单体400的设置泄压机构6的方向排放,并且可更具体地沿朝向泄压机构6致动的区域的方向排放,这种排放物的威力和破坏力可能很大,甚至可能足以冲破在该方向上的一个或多个薄壁结构。
在一些实施例中,如图1-D所示,端盖板10’上设有用于向电池单 体400内注入电解液的通孔,通孔可采用圆孔、椭圆孔、多边形孔或其它形状的孔,并可沿端盖板10’的高度方向延伸。端盖板10’上设有用于将通孔封闭的注液构件2。
为解决电池200在使用过程中的上述问题,本申请提供的电池200的具体结构如下。
如所示2、图4所示,电池200包括:箱体、电池模块300、管道100和集液件110。
其中,箱体为中空结构,从而将电池单体400封装在箱体内,图中为清楚展示集液件110与管道100结构,未具体示出箱体结构。
箱体内形成用于容纳电池单体400的内腔,该内腔能够容纳至少一个电池模块300。
电池模块300包括一个或多个电池单体400,当电池模块300包括多个电池单体400时,多个电池单体400之间可以在厚度方向上沿直线排列。同时,当有多个电池模块300时,多个电池模块300之间可以沿垂直于电池单体400的排列方向上排列,例如,定义同一电池模块300内的电池单体400之间的排列方向为y方向,则多个电池模块300的排列方向为x方向,而各个电池单体400的泄压机构6的朝向为z方向,在一些实施例中,z方向可以为第一箱体201开口的方向。
参照图2、图4和图6,管道100位于电池模块300一侧,管道100内容纳有消防介质,且管道100被构造为在任一电池单体400上的泄压机构6致动时泄放消防介质,以使消防介质进入该电池单体400的内部,例如,设置管道100的管壁的熔点低于电池单体400热失控瞬间的排放物具有的温度,从而使得排放物能够轻易将管道100熔穿以释放消防介质。在一些实施例中,管道100沿着同一电池模块300内的电池单体400的排列方向延伸,并且,管道100正对每一电池单体400上的泄压机构6,以使电池单体400发生热失控之后,在泄压机构6致动的瞬时,管道100释放 消防介质,并且消防介质尽可能多的进入到该电池单体400的内部。
消防介质可以为液态灭火剂,如水、液氮等,也可为固态粉末灭火剂,如干粉灭火剂、氟蛋白泡沫灭火剂、水成膜泡沫灭火剂等,例如,采用比热容较大、能够对热失控的电池单体400进行迅速降温、成本较低、存储要求也较低的液态水作为消防介质。
当消防介质的温度低于环境温度,而环境空气又具有一定湿度时,消防介质会通过管道100冷凝箱体内部的气体以形成冷凝液。
参照图4、图5,为了防止冷凝液流到电池单体400的带电结构(例如电极端子5和连接构件302等)上而造成电池200短路或者漏电,集液件110设置于电池单体400和管道100之间,用于收集管道100冷凝的冷凝液,防止冷凝液在电池200内部四处流动,进而与带电结构接触造成的电池200短路、漏电问题。例如,集液件110可以设置为片状,如此一来占用空间小,能够提高电池200的能量密度。
在一实施例中,集液件110具有绝缘性能,以实现在防止冷凝液四处流动的同时将冷凝液与其他部件绝缘隔离,进而防止集液件110接触到电池单体400上的带电结构而造成电池单体400短路,例如,集液件110可以为岩棉板、漂珠板、蛭石板等轻质绝缘耐热板。
在一实施例中,集液件110朝向管道100设有第一容纳部,第一容纳部用于收集冷凝液。例如,第一容纳部被设置为向电池单体400一侧下凹的凹槽120,凹槽120的深度为1-5毫米,从而使得凹槽120具有一定的容纳冷凝液的能力,防止冷凝液四处流走,同时又不会由于凹槽120深度较大而占用较多的箱体内部空间,导致电池体积过大,该凹槽120与集液件110一体设置,或者,凹槽120采用粘接等方式与集液件110连接。
凹槽120的设置使得管道100上产生的冷凝液滴落到集液件110上之后,能够汇集到凹槽120内,从而使得凹槽120能够容纳较多的冷凝液,并且冷凝液能够在固定的位置进行储存,避免冷凝液四处流动而与电池单 体400的带电结构接触。
参照图5,在本申请另一实施例中,凹槽120位于管道100与电池单体400上的泄压机构6之间,即凹槽120与管道100平行,并且凹槽120与管道100均沿电池单体400排列的方向延伸,管道100与凹槽120正对,凹槽120与泄压机构6正对。
此外,参照图5,第一容纳部还被设置为容纳管道100的至少一部分,即管道100可以全部位于凹槽120内;也可以部分位于第一容纳部内,剩下的部分位于凹槽120以外,只要能够实现使管道100上的冷凝液可以直接流到第一容纳部内即可,从而更好地对冷凝液进行收集。
参照图2、图6和图7,凹槽120沿管道100的中轴线方向的至少一端具有开口,且凹槽120的开口所在的平面为沿电池单体400的排列方向上最外侧的电池单体400的侧面外部;或者,凹槽120的开口所在的平面超出沿电池单体400的排列方向上最外侧的电池单体400的侧面,以电动汽车作为用电装置为例,在电动汽车上、下坡的过程中、或者电动汽车两侧高度不同行驶的过程中、或者电动汽车发生颠簸的过程中、或者电动汽车行驶速度发生变化时,在惯性的作用下,开口的设置能够使冷凝液经由开口排出凹槽120,但又不会排到电池单体400上,保证电池200的使用安全性,以及防止电池200发生短路和漏电风险。
冷凝液沿着凹槽的开口排出之后,流到第一箱体201底部进行收集,第一箱体201内设置有控制冷凝液液位的液位控制机构,以达到在第一箱体201内的液位达到一定高度时,将第一箱体201内的冷凝液排出,防止冷凝液接触到电池单体400顶部的带电结构而造成短路,与此同时,当第一箱体201内的液位未到达该高度时,冷凝液可以持续蓄积,从而降低箱体内的温度,在电池发生热失控时起到灭火和冷却的作用。
例如,在一些实施例中,液位控制机构可以是设置在第一箱体201侧壁上的一个或者多个通孔,通孔距离第一箱体201底壁具有一定的高度, 从而在第一箱体201内的冷凝液液面到达或者没过该通孔时,冷凝液从该通孔排出,防止液面进一步升高而与电池单体400上的带电结构接触发生短路。
在一些实施例中,液位控制机构还可以是设置在第一箱体201侧壁或底壁上的压力阀,该压力阀可以是单向阀,即,只允许液体从第一箱体201内部流到第一箱体201外部,而避免液体沿着相反方向的流入,该单向阀可以具体采用压敏元件或类似构造,并设定压力阈值,即,当单向阀对应高度处的液压到达预定阈值时,单向阀上形成可供液体流出的开口或通道,使得冷凝液排出,防止冷凝液在第一箱体201内的液位升高,避免冷凝液接触到电池单体400上的带电结构而发生短路。
当电池模块300具有多个时,不同电池模块300上方的集液件110可以分开设置,即每个电池模块300上均对应一个集液件110,集液件110上沿着电池单体400的排布方向设置有第一容纳部,不同电池模块300上方的集液件110彼此分离,以节省成本。当然,不同电池模块300上方的集液件110也可以设置为一个整体,即同一集液件110覆盖多个电池模块300,并在每个电池模块300上方与管道100对应的位置设置第一容纳部。
参照图2至图7,当不同电池模块300上的集液件110分开设置时,为了防止第一容纳部内的冷凝液在车辆摇晃的过程中从第一容纳部中流至未被集液件110覆盖的汇流部件7上,可以在汇流部件7上方覆盖绝缘部件150,绝缘部件150可以只覆盖一个汇流部件7,也可以同时覆盖多个汇流部件7,例如覆盖一个电池模块300中的多个电池单体400上的汇流部件7,以防止冷凝液流到汇流部件7上而造成短路或者漏电。
参照图2,在发生热失控时,为了方便排放物迅速穿过集液件110而将管道100破坏,集液件110还包括薄弱区130,薄弱区130设置在凹槽120上,并与泄压机构6相对设置,以使得集液件110能够在电池单体400发生热失控的瞬间,在泄压机构6致动后,快速被排放物穿过,并使得排 放物进一步破坏管道100的管壁而迅速泄放管道100内的消防介质,消防介质被泄放后,穿过被破坏的管道100壁以及薄弱区130,流向电池单体400,快速实现灭火降温。
另外,在泄压机构6发生致动时,收集在凹槽120内的冷凝液也能够从破损的管壁处流动至薄弱区130,通过泄压机构6流入电池单体400内,作为对消防介质的补充以进行灭火降温。
参照3、图5,在本申请一实施例中,薄弱区130被构造为通孔,通孔与在泄压机构6对应设置,此时,为了防止收集在凹槽120内的冷凝液通过通孔流到电极端子5上,管道100可以覆盖通孔的边缘并与集液件110紧密抵接,这样一来,在电池200正常工作时,冷凝液能够被存储在凹槽120中,进而不会通过通孔边缘流到电极端子5上,而当电池发生热失控时,管道100会被泄压机构6冲破,冷凝液会从通孔流向热失控电池单体400以降温。可以理解的是,也可以将通孔的边缘与泄压机构6直接粘接,即冷凝液将不从通孔边缘流出,进而全部通过泄压机构6流入电池单体400内部。上述设置方式不仅能够防止冷凝液通过通孔与电池单体400上的带电结构接触,例如与电极端子5接触;而且能够使得凹槽120内积蓄的冷凝液全部用于通过泄压机构6流入电池单体400内部以解决热失控问题。
当电池200发生热失控时,泄压机构6致动,电池单体400内的排放物从泄压机构6排出,该排放物直接穿过通孔,将管道100与泄压机构6相对的管壁位置熔穿形成开口,使得消防介质能够经开口和通孔排出。此时,由于排放物排出泄压机构6之后直接接触到管道100,因此能够更快更直接的将管道100破坏掉,大大提高了消防灭火的速度,防止箱体内热量累积发生爆炸。
在另一实施例中,薄弱区130被设置为在泄压机构6致动时被破坏以形成通孔的结构,例如,将集液件110整体,或者将凹槽120处,或者 至少将积压件与泄压机构6正对处设置成易于被排放物破坏的结构,此处的“破坏”形式包括但不限于穿透、破裂、破碎、被撕裂中的一种。本申请实施例中,将集液件110与泄压机构6正对处构造成便于被电池单体400内部产生的高温高压排放物熔穿的薄弱结构或低熔点结构,从而在高温高压排放物从致动的泄压机构6中排出时,排放物将集液件110迅速熔穿,管道100与泄压机构6相对设置的管壁被破坏形成开口以泄放管道100内的消防介质,消防介质通过泄压机构6进入电池单体400的内部,从而对热失控的电池单体400进行灭火降温处理。
仅将集液件110与泄压机构6正对处构造成薄弱区130时,该薄弱区130的结构可以为:薄弱区130的强度小于集液件110的其余部分的强度,例如,薄弱区130的厚度小于集液件110的其余部分的厚度。
或者,薄弱区130也可以被构造成低熔点结构,例如,薄弱区130的熔点小于集液件110的其余部分的熔点。
或者,薄弱区130也可以被构造成与集液件110其余部位之间通过易撕线连接的片状结构,从而方便被泄压机构6排出的排放物冲破。
本申请实施例中提到的“易撕线”是指通过外力在需要撕开的部位与不需要撕开的部位之间进行间断地破坏而形成的间断式划线,被破坏的材料位置轻薄但不穿透,在受到轻微外力,便能够破裂开,而未被破坏的材料位置部分保留原始材料厚度,这样通过间断式破坏形成的连线称为易撕线。易撕线可以通过激光打孔机、激光打标机、激光划线机或镭射切割机形成。
在一实施例中,管道100与集液件110之间的连接方式为粘贴式,即直接使用具有粘性的物质将管道100固定在集液件110上。
参照图5,在本申请另一实施例中,电池200还包括固定件,固定件设置于电池单体400与管道100之间,以将管道100卡固,从而达到固定管道100的位置的作用。本实施例中的固定件包括多个卡扣140,卡扣140 用于与管道100卡接,卡扣140可以为弹性材质的,例如橡胶、硅胶、塑料或者弹性金属等,从而方便管道100卡入,并将管道100卡紧。固定件固定于电池单体400上,例如可以固定在电极端子5上,固定方式可以为粘接、卡接等方式,进而使得管道100也固定于电池单体400上。管道多个卡扣140沿管道100的中轴线方向排布,例如,卡扣140可以位于薄弱区130的两侧,以在消防介质从管道100中泄放时,阻挡位于卡扣140之间的消防介质和冷凝液沿管道100的中轴线方向流出卡扣140和凹槽120所形成的区域。
在本申请又一实施例中,管道100还可以通过卡扣140卡接和粘接的方式共同进行固定,本实施例中的卡扣140的结构、固定方式和排列方式与本申请上一实施例相同。通过粘接与卡扣140卡接共同作用,使得管道100与集液件110之间连接的更加牢固,避免管道100晃动,导致产生的冷凝液四处流走。
参照图3,电池200还包括隔离部件160,隔离部件160设置于集液件110和泄压机构6之间,隔离部件160与泄压机构6对应的区域设置有第二容纳部161,集液件110设置在第二容纳部161,具体的,第一容纳部位于第二容纳部161内,从而在冷凝液从集液件110上的薄弱部流出时,对流出的冷凝液进行再一次的收集,进一步起到对电池单体400的防护的作用,避免冷凝液与带电结构接触,进一步提高电池200的使用安全性和可靠性。
综上所述,本申请提供的电池200,通过在电池单体400与管道100之间设置集液件110,并在集液件110上设置第一容纳部,使得管道100在温度较低时,接触到箱体内的气体后,产生的冷凝液会直接流到第一容纳部内,而不会流到电池单体400上的带电结构上,从而使得电池200不容易发生短路失效,电池200的使用稳定性和安全性更高。
由于本申请中的电池200具有上述特性,因此,使用本申请中提供 的电池200提供电能的用电装置,使用稳定性更高,不容易发生因电池200内部短路、漏电等引发的安全事故。
此外,本申请还提供了一种电池200的制备方法,用于制备本申请中的上述电池200。
参照图8,在本申请一实施例中,制备电池200的方法,包括如下步骤。
步骤a:提供电池单体400。
步骤b:提供箱体,箱体用于容纳电池单体400。
步骤c:提供管道100,管道100用于冷凝箱体内部的气体以形成冷凝液。
步骤d:提供集液件110,集液件110设置于电池单体400和管道100之间,且集液件110朝向管道100设有第一容纳部,第一容纳部用于收集冷凝液。
上述各步骤的顺序并非完全按照上述排列顺序进行,在实际制造电池200的过程中,可以根据实际情况对上述步骤的顺序进行调整,或者同步进行,或者加入其它步骤以制造电池200的其他部件,以最终获得需要的电池200,具体参照电池200部分的实施例。
此外,任何可以制造相关部件和连接相关部件的方法均落入本申请实施例的保护范围内,本申请实施例在此不再冗述。
最后,参照图9,本申请还提供了一种制备电池200的装置,包括:第一装置401、第二装置402、第三装置403和第四装置404。
第一装置401,用于提供电池单体400。
第二装置402,用于提供箱体,箱体用于容纳电池单体400。
第三装置403,用于提供管道100,管道100用于冷凝箱体内部的气体以形成冷凝液。
第四装置404,用于提供集液件110,提供的集液件110设置于电 池单体400和管道100之间,集液件110朝向管道100设有第一容纳部,第一容纳部用于收集冷凝液。
上述中各制备电池200的装置应该具有的具体功能和细节已经在对应的电池200的实施例中进行了详细的描述,因此此处不再赘述。
本申请上述各保护主题以及各实施例中的特征之间可以相互借鉴,在结构允许的情况下,本领域技术人员也可对不同实施例中的技术特征灵活组合,以形成更多的实施例。
以上对本申请所提供的一种电池200、用电装置、制备电池200的方法和装置进行了详细介绍。本文中应用了具体的实施例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。

Claims (17)

  1. 一种电池,其中,包括:
    电池单体(400);
    箱体,用于容纳所述电池单体(400);
    管道(100),用于冷凝所述箱体内部的气体以形成冷凝液;和
    集液件(110),设置于所述电池单体(400)和所述管道(100)之间,所述集液件(110)朝向所述管道(100)设有第一容纳部,所述第一容纳部用于收集所述冷凝液。
  2. 根据权利要求1所述的电池,其中,所述第一容纳部被设置为凹槽(120),所述凹槽(120)沿所述管道(100)的中轴线方向的至少一端具有开口,用于将所述冷凝液经由所述开口排出所述凹槽(120)。
  3. 根据权利要求2所述的电池,其中,所述电池单体(400)为多个且排列设置,所述凹槽(120)沿多个所述电池单体(400)排列的方向延伸,且所述凹槽(120)的开口所在的平面为沿电池单体(400)的排列方向上最外侧的电池单体(400)的侧面;
    或者,所述凹槽(120)的所述开口所在的平面超出沿所述排列方向上最外侧的电池单体(400)的侧面。
  4. 根据权利要求1-3任一项所述的电池,其中,所述第一容纳部还被配置为容纳所述管道(100)的至少一部分,以使得所述管道(100)冷凝的冷凝液流入所述第一容纳部。
  5. 根据权利要求2-4任一项所述的电池,其中,所述凹槽(120)的深度为1-5毫米。
  6. 根据权利要求1-5任一项所述的电池,其中,所述集液件(110)具有绝缘性能,以防止所述电池单体(400)短路。
  7. 根据权利要求1-6任一项所述的电池,其中,所述集液件(110)与所述管道(100)连接方式为粘贴式。
  8. 根据权利要求1-7任一项所述的电池,其中,所述电池单体(400)包括泄压机构(6),所述泄压机构(6)用于在所述电池单体(400)的内部压力或温度达到阈值时致动以排出排放物以泄放内部压力;
    所述管道(100)容纳有消防介质,所述消防介质通过所述管道(100)冷凝所述箱体内部的气体以形成所述冷凝液,且所述管道(100)被构造为在所述泄压机构(6)致动时泄放所述消防介质,以使所述消防介质进入所述电池单体(400)的内部;
    所述集液件(110)包括薄弱区(130),所述薄弱区(130)被构造为在所述泄压机构(6)致动时,使得所述消防介质穿过所述薄弱区(130)流向所述电池单体(400)。
  9. 根据权利要求8所述的电池,其中,所述薄弱区(130)被设置为通孔;或者,所述薄弱区(130)被设置为在所述泄压机构(6)致动时被破坏以形成通孔的结构。
  10. 根据权利要求8-9任一项所述的电池,其中,所述薄弱区(130)设置在所述凹槽(120)靠近电池单体(400)的面上,以使得收集在所述凹槽(120)内的所述消防介质和所述冷凝液通过所述薄弱区(130)流向所述电池单体(400)。
  11. 根据权利要求10所述的电池,其中,所述电池(200)还包括固定件,所述固定件设置于所述电池单体(400)与所述管道(100)之间,以使所述管道(100)固定于所述电池单体(400)上。
  12. 根据权利要求11所述的电池,其中,所述固定件还包括多个卡扣(140),所述卡扣(140)用于与所述管道(100)卡接,且所述多个卡扣(140)沿所述管道(100)的中轴线方向排布,并位于所述薄弱区(130)的两侧,以阻挡位于所述卡扣(140)之间的消防介质和冷凝液沿所述管道(100)的中轴线方向流出所述卡扣(140)在所述凹槽(120)处围合所形成的区域。
  13. 根据权利要求8-11任一项所述的电池,其中,所述电池(200) 还包括隔离部件(160),所述隔离部件(160)设置于所述集液件(110)和所述泄压机构(6)之间。
  14. 根据权利要求13所述的电池,其中,所述隔离部件(160)与所述泄压机构(6)对应的区域设置有第二容纳部(161),所述集液件(110)设置在所述第二容纳部(161)内。
  15. 一种用电装置,包括权利要求1至14任一项所述的电池(200),其中,所述电池(200)用于提供电能。
  16. 一种制备电池的方法,其中,包括:
    提供电池单体(400);
    提供箱体,所述箱体用于容纳所述电池单体(400);
    提供管道(100),所述管道(100)用于冷凝所述箱体内部的气体以形成冷凝液;
    提供集液件(110),所述集液件(110)设置于所述电池单体(400)和所述管道(100)之间,且所述集液件(110)朝向所述管道(100)设有第一容纳部,所述第一容纳部用于收集所述冷凝液。
  17. 一种制备电池的装置,包括:
    第一装置(401),用于提供电池单体(400);
    第二装置(402),用于提供箱体,所述箱体用于容纳所述电池单体(400);
    第三装置(403),用于提供管道(100),所述管道(100)用于冷凝所述箱体内部的气体以形成冷凝液;和
    第四装置(404),用于提供集液件(110),所述集液件(110)设置于所述电池单体(400)和所述管道(100)之间,所述集液件(110)朝向所述管道(100)设有第一容纳部,所述第一容纳部用于收集所述冷凝液。
PCT/CN2020/121999 2020-10-19 2020-10-19 电池、用电装置、制备电池的方法及装置 WO2022082396A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020227033637A KR20220145395A (ko) 2020-10-19 2020-10-19 배터리, 전기 장치, 배터리의 제조 방법 및 제조 장치
PCT/CN2020/121999 WO2022082396A1 (zh) 2020-10-19 2020-10-19 电池、用电装置、制备电池的方法及装置
JP2022544802A JP2023511951A (ja) 2020-10-19 2020-10-19 電池、電力消費装置、電池の製造方法及び装置
EP20957979.6A EP4064439A4 (en) 2020-10-19 2020-10-19 BATTERY, POWER LOADING DEVICE, AND METHOD AND APPARATUS FOR MANUFACTURING A BATTERY
US18/175,248 US20230223650A1 (en) 2020-10-19 2023-02-27 Battery, electric apparatus, and method and apparatus for preparing battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/121999 WO2022082396A1 (zh) 2020-10-19 2020-10-19 电池、用电装置、制备电池的方法及装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/175,248 Continuation US20230223650A1 (en) 2020-10-19 2023-02-27 Battery, electric apparatus, and method and apparatus for preparing battery

Publications (1)

Publication Number Publication Date
WO2022082396A1 true WO2022082396A1 (zh) 2022-04-28

Family

ID=81291224

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/121999 WO2022082396A1 (zh) 2020-10-19 2020-10-19 电池、用电装置、制备电池的方法及装置

Country Status (5)

Country Link
US (1) US20230223650A1 (zh)
EP (1) EP4064439A4 (zh)
JP (1) JP2023511951A (zh)
KR (1) KR20220145395A (zh)
WO (1) WO2022082396A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115020932A (zh) * 2022-06-21 2022-09-06 厦门科华数能科技有限公司 一种储能模块

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094313A (ja) * 2010-10-26 2012-05-17 Sanyo Electric Co Ltd バッテリー装置の冷却構造
CN207441811U (zh) * 2017-11-20 2018-06-01 宁德时代新能源科技股份有限公司 箱体及电池包
CN207967074U (zh) * 2017-11-20 2018-10-12 宁德时代新能源科技股份有限公司 箱体
CN110868645A (zh) * 2019-11-22 2020-03-06 安徽飞凯电子技术有限公司 一种防潮通信机柜
CN211088371U (zh) * 2020-01-18 2020-07-24 赵波 一种汽车电池散热装置
CN111584792A (zh) * 2020-04-21 2020-08-25 重庆金康动力新能源有限公司 一种电池模组

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5575209B2 (ja) * 2012-11-21 2014-08-20 三菱重工業株式会社 電池モジュール
JP5761164B2 (ja) * 2012-11-30 2015-08-12 トヨタ自動車株式会社 組電池
CN105762428B (zh) * 2016-03-03 2019-06-04 宁德时代新能源科技股份有限公司 电池包
JP6589786B2 (ja) * 2016-09-15 2019-10-16 トヨタ自動車株式会社 電池システム
JP2018116813A (ja) * 2017-01-17 2018-07-26 株式会社東芝 電池モジュールおよび電池装置
CN209344171U (zh) * 2018-12-27 2019-09-03 北京长城华冠汽车技术开发有限公司 一种液冷动力电池箱
CN111509163A (zh) * 2020-05-25 2020-08-07 重庆金康动力新能源有限公司 具有灭火功能的电池包

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012094313A (ja) * 2010-10-26 2012-05-17 Sanyo Electric Co Ltd バッテリー装置の冷却構造
CN207441811U (zh) * 2017-11-20 2018-06-01 宁德时代新能源科技股份有限公司 箱体及电池包
CN207967074U (zh) * 2017-11-20 2018-10-12 宁德时代新能源科技股份有限公司 箱体
CN110868645A (zh) * 2019-11-22 2020-03-06 安徽飞凯电子技术有限公司 一种防潮通信机柜
CN211088371U (zh) * 2020-01-18 2020-07-24 赵波 一种汽车电池散热装置
CN111584792A (zh) * 2020-04-21 2020-08-25 重庆金康动力新能源有限公司 一种电池模组

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4064439A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115020932A (zh) * 2022-06-21 2022-09-06 厦门科华数能科技有限公司 一种储能模块

Also Published As

Publication number Publication date
EP4064439A4 (en) 2023-08-23
US20230223650A1 (en) 2023-07-13
EP4064439A1 (en) 2022-09-28
KR20220145395A (ko) 2022-10-28
JP2023511951A (ja) 2023-03-23

Similar Documents

Publication Publication Date Title
CN113013503B (zh) 电池及用电装置
CN112086605B (zh) 电池、用电装置、制备电池的方法和设备
WO2022006894A1 (zh) 电池及其相关装置、制备方法和制备设备
WO2022006895A1 (zh) 电池及其相关装置、制备方法和制备设备
KR100906253B1 (ko) 과전류의 인가시 파괴되는 파단부가 형성되어 있는전극단자를 포함하고 있는 이차전지
CN111952515B (zh) 电池、用电装置、制备电池的方法及装置
JP7429719B2 (ja) 電池、電力消費機器、電池の製造方法及び装置
KR20040017094A (ko) 안전변을 구비한 파우치형 이차전지
WO2022109884A1 (zh) 电池单体及其制造方法和系统、电池以及用电装置
WO2022006897A1 (zh) 电池及其相关装置、制备方法和制备设备
US20220328927A1 (en) Battery, electric apparatus, and method and device for preparing battery
US20220416360A1 (en) Battery cell, manufacturing method and manufacturing system therefor, battery and electric device
WO2024077789A1 (zh) 电池及用电装置
WO2023045527A1 (zh) 电池单体、电池以及用电设备
WO2023133735A1 (zh) 电池、用电设备、制备电池的方法和设备
WO2022082396A1 (zh) 电池、用电装置、制备电池的方法及装置
WO2022205325A1 (zh) 电池单体、电池、用电装置、制备电池单体的方法及设备
WO2022006896A1 (zh) 电池及其相关装置、制备方法和制备设备
WO2022082398A1 (zh) 电池、用电装置、制造电池的方法及装置
WO2022082397A1 (zh) 一种电池、用电装置及制备电池的方法、设备
JP2023524121A (ja) 電池、電気デバイス、電池を製造するための方法及びデバイス
WO2022082389A1 (zh) 电池、用电设备、制备电池的方法和装置
WO2024002163A1 (zh) 电池单体、电池及用电装置
KR102642182B1 (ko) 전지 박스 본체, 전지, 전기 장치, 전지 제조 방법 및 장치
WO2024026825A1 (zh) 电池单体、电池及用电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20957979

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020957979

Country of ref document: EP

Effective date: 20220624

ENP Entry into the national phase

Ref document number: 2022544802

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227033637

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE