WO2021256536A1 - 電磁鋼板用コーティング組成物、電磁鋼板、積層コア及び回転電機 - Google Patents

電磁鋼板用コーティング組成物、電磁鋼板、積層コア及び回転電機 Download PDF

Info

Publication number
WO2021256536A1
WO2021256536A1 PCT/JP2021/023039 JP2021023039W WO2021256536A1 WO 2021256536 A1 WO2021256536 A1 WO 2021256536A1 JP 2021023039 W JP2021023039 W JP 2021023039W WO 2021256536 A1 WO2021256536 A1 WO 2021256536A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic steel
steel sheet
steel sheets
epoxy resin
coating composition
Prior art date
Application number
PCT/JP2021/023039
Other languages
English (en)
French (fr)
Inventor
和年 竹田
真介 高谷
美菜子 福地
一郎 田中
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to BR112022024524A priority Critical patent/BR112022024524A2/pt
Priority to JP2022531909A priority patent/JP7343823B2/ja
Priority to CN202180042673.1A priority patent/CN115917044A/zh
Priority to KR1020227043347A priority patent/KR20230008865A/ko
Priority to MX2022016040A priority patent/MX2022016040A/es
Priority to CA3180892A priority patent/CA3180892A1/en
Priority to US18/010,264 priority patent/US20240034903A1/en
Priority to EP21825453.0A priority patent/EP4169986A4/en
Publication of WO2021256536A1 publication Critical patent/WO2021256536A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • C09D163/10Epoxy resins modified by unsaturated compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • B32B15/011Layered products comprising a layer of metal all layers being exclusively metallic all layers being formed of iron alloys or steels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/043Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/18Layered products comprising a layer of metal comprising iron or steel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/62Alcohols or phenols
    • C08G59/621Phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D161/00Coating compositions based on condensation polymers of aldehydes or ketones; Coating compositions based on derivatives of such polymers
    • C09D161/04Condensation polymers of aldehydes or ketones with phenols only
    • C09D161/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C09D161/14Modified phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/40Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/02Cores, Yokes, or armatures made from sheets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/04Details of the magnetic circuit characterised by the material used for insulating the magnetic circuit or parts thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2202/00Metallic substrate
    • B05D2202/10Metallic substrate based on Fe
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2252/00Sheets
    • B05D2252/04Sheets of definite length in a continuous process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D2504/00Epoxy polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/02Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by baking
    • B05D3/0254After-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D5/00Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
    • B05D5/12Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain a coating with specific electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/14Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials to metal, e.g. car bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • Y10T428/12562Elastomer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • Y10T428/12569Synthetic resin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12958Next to Fe-base component
    • Y10T428/12965Both containing 0.01-1.7% carbon [i.e., steel]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12951Fe-base component
    • Y10T428/12972Containing 0.01-1.7% carbon [i.e., steel]

Definitions

  • the present invention relates to a coating composition for an electromagnetic steel sheet, an electromagnetic steel sheet, a laminated core, and a rotary electric machine.
  • the present application claims priority based on Japanese Patent Application No. 2020-104254 filed in Japan on June 17, 2020, the contents of which are incorporated herein by reference.
  • a core iron core
  • a laminated core in which a plurality of electromagnetic steel sheets are joined to each other and laminated is known.
  • Caulking and welding are known as methods for joining electrical steel sheets to each other.
  • the magnetic properties (core iron loss) of electrical steel sheets tend to deteriorate due to mechanical strain and thermal strain during processing.
  • Patent Document 1 a method of bonding electromagnetic steel sheets having an insulating film having an adhesive ability on the surface to each other is known (Patent Document 1). Adhesion using the insulating film does not give mechanical strain or thermal strain, so it is superior in core iron loss as compared with caulking and welding. Epoxy resin has little volume change, is excellent in heat resistance, oil resistance, and chemical resistance, and is excellent as an adhesive for adhering electromagnetic steel sheets to each other (Patent Documents 2 and 3).
  • a method of improving heat resistance there is a method of blending a phenol resin.
  • a resin having excellent heat resistance is hard at room temperature and applies a large stress to the laminated core, so that the magnetic properties deteriorate.
  • a resin having an appropriate hardness near room temperature is inferior in heat resistance because it becomes soft at high temperatures. For these reasons, it is difficult to achieve both excellent magnetic properties and excellent heat resistance that can maintain sufficient adhesive strength even when exposed to high temperatures during driving.
  • the present invention is a coating composition for electrical steel sheets that can achieve both the magnetic properties of a laminated core and heat resistance that can maintain the adhesive strength between electromagnetic steel sheets even in a high temperature state during driving, an electromagnetic steel sheet using the same, a laminated core, and rotation.
  • the purpose is to provide electrical equipment.
  • the present invention has the following aspects.
  • the coating composition for an electromagnetic steel plate according to one aspect of the present invention contains an epoxy resin, an epoxy resin curing agent, and an elastomer-modified phenol resin, and the content of the elastomer-modified phenol resin is the epoxy. It is 10 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the resin.
  • the coating composition for electrical steel sheets according to the above [1] may have a weight average molecular weight of 2000 or more and 200,000 or less in the elastomer portion of the elastomer-modified phenol resin.
  • the coating composition for electrical steel sheets according to the above [1] or [2] may have a curing shrinkage rate of 15% or less.
  • the electromagnetic steel sheet according to one aspect of the present invention has an insulating film on the surface containing the coating composition for electrical steel sheets according to any one of the above [1] to [3].
  • a plurality of electrical steel sheets according to the above [4] are laminated and bonded to each other.
  • the rotary electric machine according to one aspect of the present invention includes the laminated core according to the above [5].
  • a coating composition for electrical steel sheets capable of achieving both the magnetic properties of a laminated core and heat resistance capable of maintaining the adhesive strength between electrical steel sheets even in a high temperature state during driving, and electromagnetic steel using the same.
  • Steel sheets, laminated cores and rotary electric machines can be provided.
  • FIG. 2 is a cross-sectional view taken along the line AA of FIG. It is a top view of the material for forming the laminated core shown in FIG. 1.
  • FIG. 4 is a cross-sectional view taken along the line BB of FIG. It is an enlarged view of the part C of FIG. It is a side view of the manufacturing apparatus used for manufacturing the laminated core shown in FIG. 1.
  • an electric motor as a rotary electric machine specifically an AC electric motor, more specifically a synchronous electric motor, and more specifically, a permanent magnet field type electric motor will be described as an example.
  • This type of motor is suitably adopted for, for example, an electric vehicle.
  • the rotary electric machine 10 includes a stator 20, a rotor 30, a case 50, and a rotary shaft 60.
  • the stator 20 and the rotor 30 are housed in the case 50.
  • the stator 20 is fixed in the case 50.
  • the rotary electric machine 10 adopts an inner rotor type in which the rotor 30 is located inside the stator 20 in the radial direction.
  • an outer rotor type in which the rotor 30 is located outside the stator 20 may be adopted.
  • the rotary electric machine 10 is a 12-pole 18-slot three-phase AC motor.
  • the rotary electric machine 10 can rotate at a rotation speed of 1000 rpm, for example, by applying an exciting current having an effective value of 10 A and a frequency of 100 Hz to each phase.
  • the stator 20 includes an adhesive laminated core for a stator (hereinafter referred to as a stator core) 21 and a winding not shown.
  • the stator core 21 includes an annular core back portion 22 and a plurality of teeth portions 23.
  • the central axis O direction of the stator core 21 (or core back portion 22) is referred to as an axial direction
  • the radial direction of the stator core 21 (or core back portion 22) (direction orthogonal to the central axis O) is referred to as a radial direction
  • the circumferential direction (direction that orbits around the central axis O) of the stator core 21 (or core back portion 22) is referred to as a circumferential direction.
  • the core back portion 22 is formed in an annular shape in a plan view of the stator 20 when viewed from the axial direction.
  • the plurality of tooth portions 23 project radially inward from the inner circumference of the core back portion 22 (toward the central axis O of the core back portion 22 along the radial direction).
  • the plurality of tooth portions 23 are arranged at equal angular intervals in the circumferential direction. In the present embodiment, 18 tooth portions 23 are provided at every 20 degrees of the central angle centered on the central axis O.
  • the plurality of tooth portions 23 are formed to have the same shape and the same size as each other. Therefore, the plurality of tooth portions 23 have the same thickness dimension as each other.
  • the winding is wound around the teeth portion 23.
  • the winding may be a centralized winding or a distributed winding.
  • the rotor 30 is arranged radially inside the stator 20 (stator core 21).
  • the rotor 30 includes a rotor core 31 and a plurality of permanent magnets 32.
  • the rotor core 31 is formed in an annular shape (annular ring) arranged coaxially with the stator 20.
  • the rotating shaft 60 is arranged in the rotor core 31.
  • the rotating shaft 60 is fixed to the rotor core 31.
  • the plurality of permanent magnets 32 are fixed to the rotor core 31.
  • a set of two permanent magnets 32 form one magnetic pole.
  • the plurality of sets of permanent magnets 32 are arranged at equal angular intervals in the circumferential direction. In this embodiment, 12 sets (24 in total) of permanent magnets 32 are provided at every 30 degrees of the central angle centered on the central axis O.
  • an embedded magnet type motor is adopted as a permanent magnet field type motor.
  • the rotor core 31 is formed with a plurality of through holes 33 that penetrate the rotor core 31 in the axial direction.
  • the plurality of through holes 33 are provided corresponding to the arrangement of the plurality of permanent magnets 32.
  • Each permanent magnet 32 is fixed to the rotor core 31 in a state of being arranged in the corresponding through hole 33.
  • the fixing of each permanent magnet 32 to the rotor core 31 can be realized, for example, by adhering the outer surface of the permanent magnet 32 and the inner surface of the through hole 33 with an adhesive.
  • a surface magnet type motor may be adopted instead of the embedded magnet type.
  • both the stator core 21 and the rotor core 31 are laminated cores.
  • the stator core 21 is formed by laminating a plurality of electromagnetic steel sheets 40 in the laminating direction.
  • the product thickness (total length along the central axis O) of each of the stator core 21 and the rotor core 31 is, for example, 50.0 mm.
  • the outer diameter of the stator core 21 is, for example, 250.0 mm.
  • the inner diameter of the stator core 21 is, for example, 165.0 mm.
  • the outer diameter of the rotor core 31 is, for example, 163.0 mm.
  • the inner diameter of the rotor core 31 is, for example, 30.0 mm.
  • the product thickness, outer diameter and inner diameter of the stator core 21, and the product thickness, outer diameter and inner diameter of the rotor core 31 are not limited to these values.
  • the inner diameter of the stator core 21 is based on the tip end portion of the teeth portion 23 in the stator core 21. That is, the inner diameter of the stator core 21 is the diameter of a virtual circle inscribed in the tips of all the teeth portions 23.
  • Each of the electrical steel sheets 40 forming the stator core 21 and the rotor core 31 is formed, for example, by punching the material 1 as shown in FIGS. 4 to 6.
  • Material 1 is an electromagnetic steel sheet that is a base material of the electromagnetic steel sheet 40. Examples of the material 1 include strip-shaped steel plates and cut plates.
  • the strip-shaped steel sheet that is the base material of the electromagnetic steel sheet 40 may be referred to as material 1.
  • a steel sheet having a shape used for a laminated core by punching the material 1 may be referred to as an electromagnetic steel sheet 40.
  • the material 1 is handled, for example, in a state of being wound around the coil 1A shown in FIG. 7.
  • non-oriented electrical steel sheets are used as the material 1.
  • JIS C 2552: 2014 non-oriented electrical steel sheet can be adopted.
  • a grain-oriented electrical steel sheet may be used instead of the non-oriented electrical steel sheet.
  • JIS C 2553: 2019 grain-oriented electrical steel sheet can be adopted.
  • a non-oriented thin electromagnetic steel strip or a directional thin electromagnetic steel strip of JIS C 2558: 2015 can be adopted.
  • the upper and lower limit values of the average plate thickness t0 of the material 1 are set as follows, for example, in consideration of the case where the material 1 is used as the electromagnetic steel sheet 40. As the material 1 becomes thinner, the manufacturing cost of the material 1 increases. Therefore, in consideration of the manufacturing cost, the lower limit of the average plate thickness t0 of the material 1 is 0.10 mm, preferably 0.15 mm, and more preferably 0.18 mm. On the other hand, if the material 1 is too thick, the manufacturing cost becomes good, but when the material 1 is used as the electromagnetic steel sheet 40, the eddy current loss increases and the core iron loss deteriorates.
  • the upper limit of the average plate thickness t0 of the material 1 is 0.65 mm, preferably 0.35 mm, and more preferably 0.30 mm.
  • 0.20 mm can be exemplified as a material that satisfies the above range of the average plate thickness t0 of the material 1.
  • the average plate thickness t0 of the material 1 includes not only the thickness of the base steel plate 2 described later but also the thickness of the insulating film 3. Further, the method for measuring the average plate thickness t0 of the material 1 is, for example, the following measuring method. For example, when the material 1 is wound into the shape of the coil 1A, at least a part of the material 1 is unwound into a flat plate shape. In the material 1 unraveled into a flat plate shape, a predetermined position in the longitudinal direction of the material 1 (for example, a position 10% of the total length of the material 1 away from the longitudinal edge of the material 1) is selected. do. At this selected position, the material 1 is divided into five regions along the width direction thereof. The plate thickness of the material 1 is measured at four locations that are boundaries of these five regions. The average value of the plate thicknesses at the four locations can be set to the average plate thickness t0 of the material 1.
  • a predetermined position in the longitudinal direction of the material 1 for example, a position 10% of the total length of the material
  • the upper and lower limit values of the average plate thickness t0 of the material 1 can be naturally adopted as the upper and lower limit values of the average plate thickness t0 of the electrical steel sheet 40.
  • the method for measuring the average plate thickness t0 of the electrical steel sheet 40 is, for example, the following measuring method.
  • the thickness of the laminated core is measured at four locations (that is, every 90 degrees around the central axis O) at equal intervals in the circumferential direction.
  • Each of the measured product thicknesses at the four locations is divided by the number of laminated electromagnetic steel sheets 40 to calculate the plate thickness per sheet.
  • the average value of the plate thicknesses at the four locations can be set to the average plate thickness t0 of the electromagnetic steel sheet 40.
  • the material 1 includes a base steel plate 2 and an insulating coating 3.
  • the material 1 is formed by covering both sides of a strip-shaped base steel plate 2 with an insulating coating 3.
  • most of the material 1 is formed of the base steel plate 2, and the insulating film 3 thinner than the base steel plate 2 is laminated on the surface of the base steel plate 2.
  • the chemical composition of the base steel sheet 2 contains 2.5% to 4.5% Si in mass%.
  • the yield strength of the material 1 can be set to, for example, 380 MPa or more and 540 MPa or less.
  • the insulating film 3 When the material 1 is used as the electromagnetic steel sheet 40, the insulating film 3 exhibits insulation performance between the electromagnetic steel sheets 40 adjacent to each other in the stacking direction. Further, in the present embodiment, the insulating coating 3 has an adhesive ability and adheres the electromagnetic steel sheets 40 adjacent to each other in the laminating direction.
  • the insulating coating 3 may have a single-layer structure or a multi-layer structure. More specifically, for example, the insulating coating 3 may have a single-layer structure having both insulating performance and adhesive ability, and may include a base insulating coating having excellent insulating performance and a ground insulating coating having excellent adhesive performance. It may have a multi-layer structure including.
  • the "adhesive ability of the insulating coating 3" in the present embodiment means that the laminated body composed of a plurality of electromagnetic steel sheets 40 laminated with the insulating coating 3 sandwiched thereof has an adhesive strength of a predetermined value or more under a predetermined temperature condition. It means the ability that can be expressed.
  • the insulating coating 3 covers both sides of the base steel plate 2 without gaps over the entire surface.
  • a part of the layers of the insulating coating 3 may not cover both sides of the base steel plate 2 without gaps.
  • a part of the layer of the insulating film 3 may be intermittently provided on the surface of the base steel sheet 2.
  • both sides of the base steel plate 2 need to be covered with the insulating film 3 so that the entire surface is not exposed.
  • the insulating coating 3 does not have a base insulating coating having excellent insulating performance and has a single-layer structure having both insulating performance and adhesive ability, the insulating coating 3 has no gap over the entire surface of the base steel plate 2. Must be formed.
  • the insulating film 3 has a multi-layer structure including a base insulating film having excellent insulating performance and a ground insulating film having excellent adhesiveness, both the base insulating film and the ground insulating film are made of a base steel sheet. In addition to forming the base insulating film without gaps over the entire surface of No. 2, even if the underlying insulating film is formed without gaps over the entire surface of the base steel sheet and the upper ground insulating film is intermittently provided, both insulation performance and adhesive ability can be achieved. ..
  • the coating composition constituting the underlying insulating film is not particularly limited, and for example, a general treatment agent such as a chromic acid-containing treatment agent or a phosphate-containing treatment agent can be used.
  • the insulating coating 3 having an adhesive ability is coated with a coating composition for an electromagnetic steel plate containing an epoxy resin, an epoxy resin curing agent, and an elastomer-modified phenol resin.
  • the insulating film made of the coating composition for electrical steel sheets is in an uncured or semi-cured state (B stage) before heat crimping at the time of manufacturing a laminated core, and the curing reaction proceeds by heating during heat crimping to adhere. Noh develops.
  • the coating composition for electrical steel sheets may be used for forming an insulating film having a single layer structure, or may be used for forming an underlying insulating film provided on an underlying insulating film.
  • epoxy resin a general epoxy resin can be used, and specifically, any epoxy resin having two or more epoxy groups in one molecule can be used without particular limitation.
  • epoxy resins include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, triphenylmethane type epoxy resin, alicyclic epoxy resin, and glycidyl ester type.
  • Epoxy resin, glycidylamine type epoxy resin, hidden toin type epoxy resin, isocyanurate type epoxy resin, acrylic acid modified epoxy resin (epoxy acrylate), phosphorus-containing epoxy resin, their halides (bromination epoxy resin, etc.) and hydrogenation Things etc. can be mentioned.
  • the epoxy resin one type may be used alone, or two or more types may be used in combination.
  • the content of the epoxy resin is, for example, preferably 30 to 90% by mass, more preferably 40 to 80% by mass, still more preferably 50 to 70% by mass, based on the total mass of the coating composition for electrical steel sheets.
  • the content of the epoxy resin is at least the above lower limit value, the adhesive strength of the electrical steel sheet 40 can be further increased.
  • the content of the epoxy resin is not more than the above upper limit value, the stress strain of the electromagnetic steel sheet 40 can be further suppressed.
  • epoxy resin curing agent a latent curing agent of a type that cures an epoxy resin and in which a curing reaction is started by heating to a predetermined temperature can be used.
  • the epoxy resin curing agent include aromatic polyamines, acid anhydrides, phenolic curing agents, dicyandiamides, boron trifluoride-amine complexes, organic acid hydrazides and the like.
  • aromatic polyamine examples include meta-phenylenediamine, diaminodiphenylmethane, diaminodiphenylethane, and diaminodiphenylsulfone.
  • acid anhydride examples include phthalic anhydride, hexahydrophthalic anhydride, tetrahydrophthalic anhydride, pyromellitic anhydride, pyromellitic anhydride and the like.
  • phenol-based curing agent examples include phenol novolac resin, cresol novolak resin, bisphenol novolak resin, triazine-modified phenol novolac resin, phenol resol resin and the like.
  • epoxy resin curing agent aromatic polyamine, phenol-based curing agent, and dicyandiamide are preferable, phenol-based curing agent is more preferable, and phenol-resole resin and phenol novolac resin are further preferable, from the viewpoint of easily achieving both magnetic properties and heat resistance. ..
  • the epoxy resin curing agent one type may be used alone, or two or more types may be used in combination.
  • the lower limit of the content of the epoxy resin curing agent in the coating composition for electrical steel sheets is preferably 1 part by mass or more, more preferably 3 parts by mass or more with respect to 100 parts by mass of the epoxy resin.
  • the upper limit of the content of the epoxy resin curing agent is preferably 50 parts by mass or less, more preferably 35 parts by mass or less.
  • Elastomer-modified phenolic resin is a phenolic resin grafted with a thermoplastic elastomer that has a soft segment and a hard segment.
  • an elastomer-modified phenol resin can be obtained by blending an elastomer when polycondensing phenols and aldehydes.
  • An elastomer-modified phenol resin can also be obtained by reacting the phenol resin with an elastomer.
  • the phenol resin in the phenol-modified phenol resin may be a phenol novolac resin or a phenol resol resin.
  • the phenols are not particularly limited, and examples thereof include phenol, o-cresol, cardanol, alkylphenol (isopropylphenol, p-isobutylphenol, etc.), bisphenol (bisphenol A, bisphenol F, etc.), and polyhydric phenol (resorcin, etc.). Can be mentioned.
  • the phenols one type may be used alone, or two or more types may be used in combination.
  • the aldehydes are not particularly limited, and examples thereof include formaldehyde, paraformaldehyde, acetaldehyde, and benzaldehyde.
  • examples thereof include formaldehyde, paraformaldehyde, acetaldehyde, and benzaldehyde.
  • the aldehydes one type may be used alone, or two or more types may be used in combination.
  • thermoplastic elastomer examples include acrylic rubber, ethylene-propylene rubber, styrene-butadiene rubber, acrylonitrile-butadiene rubber, isoprene rubber, and silicone rubber.
  • thermoplastic elastomer one type may be used alone, or two or more types may be used in combination.
  • the lower limit of the weight average molecular weight (Mw) of the elastomer portion of the elastomer-modified phenolic resin is 2000 or more and 200,000 or less.
  • Mw of the elastomer portion is at least the above lower limit value, it is easy to suppress the deterioration of iron loss of the laminated core.
  • the Mw of the elastomer portion is not more than the upper limit value, it is possible to suppress the thickening of the coating composition for electrical steel sheets applied to the steel sheet.
  • the lower limit of Mw of the elastomer portion is preferably 3000 or more, more preferably 4000 or more.
  • the upper limit of Mw of the elastomer portion is preferably 180,000 or less, more preferably 160,000 or less.
  • the Mw of the elastomer portion is measured as a polystyrene-equivalent value by GPC (gel permeation chromatography) after decomposing the elastomer and the phenol resin by a hydrolysis reaction and separating them by HPLC (liquid chromatography).
  • the lower limit of the content of the elastomer portion in the elastomer-modified phenolic resin is preferably 5% by mass or more, more preferably 10% by mass or more.
  • the upper limit of the content of the elastomer portion is preferably 40% by mass or less, more preferably 35% by mass or less. When the content of the elastomer portion is not more than the above upper limit value, it can be cured quickly.
  • the content of the elastomer-modified phenolic resin in the coating composition for an electromagnetic steel plate is 10 parts by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the epoxy resin.
  • the content of the elastomer-modified phenol resin is at least the above lower limit value, a laminated core having excellent magnetic properties can be obtained.
  • the content of the elastomer-modified phenolic resin is not more than the upper limit, a laminated core having excellent heat resistance can be obtained.
  • the lower limit of the content of the elastomer-modified phenolic resin is preferably 10 parts by mass or more, more preferably 20 parts by mass or more.
  • the upper limit of the content of the elastomer-modified phenol resin is preferably 80 parts by mass or less, more preferably 70 parts by mass or less.
  • the coating composition for an electromagnetic steel plate may contain components other than the epoxy resin, the epoxy resin curing agent, and the elastomer-modified phenol resin.
  • examples of other components include acrylic resins, curing accelerators (curing catalysts), emulsifiers, defoaming agents, and the like.
  • the coating composition for electrical steel sheets does not contain inorganic fillers such as silica, alumina, and glass. As other components, only one kind may be used, or two or more kinds may be used in combination.
  • the acrylic resin is not particularly limited.
  • the monomer used for the acrylic resin include unsaturated carboxylic acids such as acrylic acid and methacrylic acid, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, isobutyl (meth) acrylate, and cyclohexyl (meth).
  • unsaturated carboxylic acids such as acrylic acid and methacrylic acid
  • (meth) acrylates such as meta) acrylate, 2-ethylhexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, and hydroxypropyl (meth) acrylate can be mentioned.
  • the acrylic resin may have a structural unit derived from a monomer other than the acrylic monomer.
  • examples of other monomers include ethylene, propylene, styrene and the like.
  • the other monomer one type may be used alone, or two or more types may be used in combination.
  • the glass transition point (Tg point) of the acrylic resin is not particularly limited, but the lower limit is preferably ⁇ 40 ° C., more preferably ⁇ 20 ° C.
  • the upper limit of the Tg point of the acrylic resin is preferably 80 ° C., more preferably 50 ° C.
  • the content of the acrylic resin is not particularly limited, and is, for example, 5% by mass or more and 60% by mass or less with respect to the total amount of the epoxy resin and the acrylic resin. be able to. The same applies to the content when it is contained as an acrylic-modified epoxy resin or an acrylic monomer.
  • an acrylic resin when used, it may be used as an acrylic modified epoxy resin obtained by grafting an acrylic resin onto an epoxy resin.
  • the coating composition for electrical steel sheets it may be contained as a monomer forming an acrylic resin.
  • an epoxy resin adhesive having excellent heat resistance has a large Young's modulus near room temperature when the adhesive strength at a high temperature is guaranteed, and stresses the steel plate to deteriorate the magnetic properties (core iron loss).
  • the resin composition has an appropriate strength near room temperature, the heat resistance is lowered.
  • an elastomer-modified phenol resin having a soft segment and a hard segment and grafted with a thermoplastic elastomer having a large elastic modulus it is possible to suppress the application of stress to the steel plate at around room temperature, so that it is magnetic. Deterioration of characteristics (core iron loss) is suppressed.
  • the adhesive strength in a high temperature environment is also ensured.
  • both magnetic properties and heat resistance can be achieved. It is difficult to enjoy the effects of the present invention simply by including the thermoplastic elastomer in the composition without grafting the thermoplastic elastomer. That is, by using an elastomer-modified phenolic resin grafted with a thermoplastic elastomer, more excellent magnetic properties can be obtained.
  • the adhesive strength at high temperatures may decrease, or when pressure is applied to the steel plate, only the thermoplastic elastomer component may flow and the laminated state may be distorted.
  • the curing shrinkage of the coating composition for electrical steel sheets is preferably 15% or less, more preferably 12% or less, further preferably 10% or less, and particularly preferably 8% or less.
  • the curing shrinkage rate is measured by a method according to JIS K6941.
  • the insulating film 3 can be formed, for example, by applying a coating composition for an electromagnetic steel sheet to the surface of a base steel sheet, drying it, and baking it.
  • the lower limit of the reached temperature at the time of baking is preferably 120 ° C. or higher, more preferably 140 ° C. or higher.
  • the upper limit of the reached temperature at the time of baking is preferably 200 ° C. or lower, more preferably 180 ° C. or lower.
  • the lower limit of the baking time is preferably 5 seconds or longer, more preferably 10 seconds or longer.
  • the upper limit of the baking time is preferably 40 seconds or less, more preferably 30 seconds or less.
  • the baking time is equal to or longer than the above lower limit, the coating composition for electrical steel sheets is sufficiently adhered to the electrical steel sheets and peeling is suppressed.
  • the baking time is not more than the above upper limit value, overcuring of the epoxy resin can be suppressed, and the adhesive ability of the coating composition for electrical steel sheets can be maintained.
  • the upper and lower limit values of the average thickness t1 of the insulating film 3 may be set as follows, for example, in consideration of the case where the material 1 is used as the electromagnetic steel sheet 40.
  • the average thickness t1 of the insulating film 3 is the insulation performance and adhesive ability between the electrical steel sheets 40 laminated with each other. Adjust so that can be secured.
  • the average thickness t1 (thickness per one side of the electromagnetic steel sheet 40 (material 1)) of the insulating coating 3 can be, for example, 1.5 ⁇ m or more and 8.0 ⁇ m or less. ..
  • the average thickness of the underlying insulating coating can be, for example, 0.3 ⁇ m or more and 2.5 ⁇ m or less, preferably 0.5 ⁇ m or more and 1.5 ⁇ m or less.
  • the average thickness of the upper insulating film can be, for example, 1.5 ⁇ m or more and 8.0 ⁇ m or less.
  • the method of measuring the average thickness t1 of the insulating coating 3 in the material 1 is the same as that of the average plate thickness t0 of the material 1, and the thicknesses of the insulating coatings 3 at a plurality of locations can be obtained and obtained as the average of those thicknesses. can.
  • the upper and lower limit values of the average thickness t1 of the insulating film 3 in the material 1 can be naturally adopted as the upper and lower limit values of the average thickness t1 of the insulating film 3 in the electrical steel sheet 40.
  • the method for measuring the average thickness t1 of the insulating coating 3 on the electrical steel sheet 40 is, for example, the following measuring method. For example, among a plurality of electrical steel sheets forming a laminated core, the electrical steel sheet 40 located on the outermost side in the laminated direction (the electrical steel sheet 40 whose surface is exposed in the laminated direction) is selected. On the surface of the selected electrical steel sheet 40, a predetermined position in the radial direction (for example, a position just intermediate (center) between the inner peripheral edge and the outer peripheral edge of the electrical steel sheet 40) is selected.
  • the thickness of the insulating coating 3 of the electrical steel sheet 40 is measured at four locations (that is, every 90 degrees around the central axis O) at equal intervals in the circumferential direction.
  • the average value of the measured thicknesses at the four locations can be taken as the average thickness t1 of the insulating coating 3.
  • the reason why the average thickness t1 of the insulating coating 3 was measured on the outermost electromagnetic steel sheet 40 in the laminating direction is that the thickness of the insulating coating 3 is the laminating position along the laminating direction of the electromagnetic steel sheet 40. This is because the insulating film 3 is built so that it hardly changes.
  • the electromagnetic steel sheet 40 is manufactured by punching the material 1 as described above, and the laminated core (stator core 21 and rotor core 31) is manufactured by the electromagnetic steel sheet 40.
  • the description of the laminated core will be returned.
  • the plurality of electrical steel sheets 40 forming the stator core 21 are laminated via the insulating coating 3.
  • the electromagnetic steel sheets 40 adjacent to each other in the stacking direction are adhered over the entire surface by the insulating film 3.
  • the surface of the electromagnetic steel sheet 40 facing the stacking direction (hereinafter referred to as the first surface) is the bonding region 41a over the entire surface.
  • the electromagnetic steel sheets 40 adjacent to each other in the stacking direction may not be adhered over the entire surface.
  • the adhesive region 41a and the non-adhesive region (not shown) may coexist on the first surface of the electrical steel sheet 40.
  • the plurality of electrical steel sheets forming the rotor core 31 are fixed to each other by the caulking 42 (dowel) shown in FIG.
  • the plurality of electrical steel sheets forming the rotor core 31 may also have a laminated structure fixed by the insulating coating 3 as in the stator core 21.
  • the laminated core such as the stator core 21 and the rotor core 31 may be formed by so-called rotating stacking.
  • the stator core 21 is manufactured, for example, by using the manufacturing apparatus 100 shown in FIG. 7.
  • the manufacturing apparatus 100 the laminated core manufacturing apparatus 100 (hereinafter, simply referred to as the manufacturing apparatus 100) will be described.
  • the material 1 is sent out from the coil 1A (hoop) in the direction of the arrow F, the material 1 is punched a plurality of times by the dies arranged on each stage to gradually form the shape of the electromagnetic steel sheet 40. go. Then, the punched electrical steel sheets 40 are laminated and pressurized while raising the temperature. As a result, the electromagnetic steel sheets 40 adjacent to each other in the laminating direction are adhered by the insulating coating 3 (that is, the portion of the insulating coating 3 located in the adhesive region 41a exerts an adhesive ability), and the adhesion is completed.
  • the insulating coating 3 that is, the portion of the insulating coating 3 located in the adhesive region 41a exerts an adhesive ability
  • the manufacturing apparatus 100 includes a plurality of stages of punching stations 110.
  • the punching station 110 may have two stages or three or more stages.
  • the punching station 110 of each stage includes a female die 111 arranged below the material 1 and a male die 112 arranged above the material 1.
  • the manufacturing apparatus 100 further includes a stacking station 140 at a position downstream of the most downstream punching station 110.
  • the laminating station 140 includes a heating device 141, an outer peripheral punching female die 142, a heat insulating member 143, an outer peripheral punching male die 144, and a spring 145.
  • the heating device 141, the outer peripheral punched female die 142, and the heat insulating member 143 are arranged below the material 1.
  • the outer peripheral punching die 144 and the spring 145 are arranged above the material 1.
  • Reference numeral 21 indicates a stator core.
  • the material 1 is sequentially sent out from the coil 1A in the direction of the arrow F in FIG. Then, the material 1 is sequentially punched by a plurality of punching stations 110. By these punching processes, the shape of the electromagnetic steel sheet 40 having the core back portion 22 and the plurality of tooth portions 23 shown in FIG. 3 is obtained on the material 1. However, since it is not completely punched at this point, the process proceeds to the next step along the arrow F direction.
  • the material 1 is sent to the laminating station 140, punched out by the outer peripheral punching die 144, and laminated with high accuracy.
  • the electromagnetic steel sheet 40 receives a constant pressing force by the spring 145.
  • the laminated core formed by stacking the electromagnetic steel sheets 40 in this way is heated to, for example, a temperature of 200 ° C. by the heating device 141. By this heating, the insulating coatings 3 of the adjacent electromagnetic steel sheets 40 are adhered to each other (adhesion step).
  • the conditions of the bonding process are not particularly limited.
  • the heating temperature in the bonding step is preferably 120 to 250 ° C.
  • the heating time in the bonding step is affected by the size of the laminated core and the heating method, but is preferably 30 seconds to 120 minutes, for example.
  • the insulating coatings 3 when adhered to each other, they may be adhered by pressurizing the laminated body.
  • the pressure and pressurization time for pressurizing the laminate are preferably, for example, 2 to 300 MPa and 30 seconds to 120 minutes.
  • the heating device 141 may not be arranged on the outer peripheral punched female die 142. That is, before the electromagnetic steel sheets 40 laminated by the outer peripheral punched female die 142 are adhered, they may be taken out of the outer peripheral punched female die 142. In this case, the outer peripheral punched female die 142 may not have the heat insulating member 143. Further, in this case, the stacked electromagnetic steel sheets 40 before bonding may be sandwiched and held from both sides in the stacking direction by a jig (not shown), and then transported or heated. The stator core 21 is completed by each of the above steps.
  • an insulating film is formed on the surface of the electromagnetic steel plate by a coating composition for an electromagnetic steel plate in which an epoxy resin and an epoxy resin curing agent are combined with an elastomer-modified phenol resin in a specific ratio.
  • a coating composition for an electromagnetic steel plate in which an epoxy resin and an epoxy resin curing agent are combined with an elastomer-modified phenol resin in a specific ratio.
  • the shape of the stator core is not limited to the form shown in the above embodiment. Specifically, the dimensions of the outer diameter and inner diameter of the stator core, the stacking thickness, the number of slots, the dimensional ratio between the circumferential direction and the radial direction of the tooth portion, the dimensional ratio in the radial direction between the tooth portion and the core back portion, etc. are desired. It can be arbitrarily designed according to the characteristics of the rotary electric machine.
  • a set of two permanent magnets 32 form one magnetic pole, but the present invention is not limited to this.
  • one permanent magnet 32 may form one magnetic pole, or three or more permanent magnets 32 may form one magnetic pole.
  • the permanent magnet field type electric machine has been described as an example of the rotary electric machine 10, but the structure of the rotary electric machine 10 is not limited to this as illustrated below, and is not further exemplified below. Various known structures can also be adopted.
  • the permanent magnet field type motor has been described as an example of the rotary electric machine 10, but the present invention is not limited to this.
  • the rotary electric machine 10 may be a reluctance type electric machine or an electromagnet field type electric machine (winding field type electric machine).
  • the synchronous motor has been described as an example of the AC motor, but the present invention is not limited to this.
  • the rotary electric machine 10 may be an induction motor.
  • the AC electric machine has been described as an example of the rotary electric machine 10, but the present invention is not limited to this.
  • the rotary electric machine 10 may be a DC motor.
  • the rotary electric machine 10 has been described by taking an electric machine as an example, but the present invention is not limited to this.
  • the rotary electric machine 10 may be a generator.
  • the coating composition for electrical steel sheets was applied to the surface of the electrical steel strips of each example, and the curing shrinkage was measured.
  • the curing shrinkage rate was measured by changing the film thickness according to JIS K 6941.
  • Example 1 As a base steel sheet, non-directional electromagnetic steel having a mass% of Si: 3.0%, Mn: 0.2%, Al: 0.5%, a plate thickness of 0.25 mm and a width of 100 mm, the balance of which is composed of Fe and impurities. A steel plate was used. Each component shown in Table 1 was mixed to prepare a coating composition for electrical steel sheets. The obtained coating composition for an electromagnetic steel sheet was applied to the surface of a base steel sheet and baked at 200 ° C. for 5 seconds to obtain an electromagnetic steel strip having an insulating film having an average thickness of 3 ⁇ m.
  • Examples 2 to 10 Comparative Examples 1 to 6
  • An electromagnetic steel strip was obtained in the same manner as in Example 1 except that the composition and baking conditions of the coating composition for electrical steel sheets were changed as shown in Table 1.
  • Table 1 shows the composition and baking conditions of the coating composition for electrical steel sheets of each example.
  • Table 2 shows the evaluation results of the magnetic properties (magnetism) and the adhesive strength of each example.
  • both the heat resistance and the magnetic characteristics of the laminated core can be achieved at the same time. Therefore, the industrial applicability is great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Soft Magnetic Materials (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

積層コアに用いる電磁鋼板が、電磁鋼板用コーティング組成物が塗布されてなる絶縁被膜3を母材鋼板2の表面に有する電磁鋼板であり、前記電磁鋼板用コーティング組成物は、エポキシ樹脂と、エポキシ樹脂硬化剤と、エラストマー変性フェノール樹脂とを含有し、前記エラストマー変性フェノール樹脂の含有量が、前記エポキシ樹脂100質量部に対して、10質量部以上100質量部以下である。

Description

電磁鋼板用コーティング組成物、電磁鋼板、積層コア及び回転電機
 本発明は、電磁鋼板用コーティング組成物、電磁鋼板、積層コア及び回転電機に関する。本願は、2020年6月17日に、日本に出願された特願2020-104254号に基づき優先権を主張し、その内容をここに援用する。
 回転電機に使用されるコア(鉄心)として、複数の電磁鋼板が互いに接合されて積層された積層コアが知られている。電磁鋼板同士の接合方法としては、かしめや溶接が知られている。しかし、かしめや溶接では、加工時の機械歪や熱歪によって電磁鋼板の磁気特性(コア鉄損)が劣化しやすい。
 かしめ、溶接以外の接合方法としては、例えば、表面に接着能を有する絶縁被膜が形成された電磁鋼板を互いに接着させる方法が知られている(特許文献1)。前記絶縁被膜を用いた接着は機械歪や熱歪を与えないため、かしめや溶接に比べてコア鉄損に優れる。エポキシ樹脂は、体積変化が少なく、耐熱性や耐油性、耐薬品性に優れており、電磁鋼板同士を接着する接着剤として優れている(特許文献2、3)。
日本国特開2017-011863号公報 日本国特開2000-173816号公報 国際公開第2004/070080号
 近年、モータ効率の更なる向上の要請を受け、より一層のコア鉄損の低減が求められている。コア鉄損の低減には、電磁鋼板の薄手化が有力である。しかし、鋼板は板厚の減少に伴ってヤング率が低下するため、鉄損劣化の原因となる応力歪が鋼板に付与されないことが求められる。エポキシ樹脂は、耐熱性に優れるが、硬く靱性が低いことから、接着時の硬化によって鋼板に応力歪が付与されるため、鋼板が薄くなると鉄損劣化の原因となる。
 また、電気自動車の駆動モータ等では、駆動中に高温になるため、さらなる耐熱性が求められる。
 耐熱性を向上させる手法としては、フェノール樹脂を配合する方法がある。しかし、耐熱性に優れた樹脂は常温では硬く積層コアに大きな応力を付与するため、磁気特性が劣化させる。一方、常温付近で適切な硬さの樹脂は、高温では柔らかくなるため、耐熱性に劣る。これらのことから、優れた磁気特性と、駆動時に高温に曝された状態でも十分な接着強度を保持できる優れた耐熱性とを両立することは難しい。
 本発明は、積層コアの磁気特性と、駆動時の高温状態でも電磁鋼板同士の接着強度を保持できる耐熱性とを両立できる電磁鋼板用コーティング組成物、それを用いた電磁鋼板、積層コア及び回転電機を提供することを目的とする。
 本発明は、以下の態様を有する。
[1]本発明の一態様に係る電磁鋼板用コーティング組成物は、エポキシ樹脂と、エポキシ樹脂硬化剤と、エラストマー変性フェノール樹脂と、を含有し、前記エラストマー変性フェノール樹脂の含有量が、前記エポキシ樹脂100質量部に対して、10質量部以上100質量部以下である。
[2]上記[1]に記載の電磁鋼板用コーティング組成物は、エラストマー変性フェノール樹脂のエラストマー部の重量平均分子量が2000以上200000以下であってもよい。
[3]上記[1]又は[2]に記載の電磁鋼板用コーティング組成物は、硬化収縮率が15%以下であってもよい。
[4]本発明の一態様に係る電磁鋼板は、上記[1]~[3]のいずれかに記載の電磁鋼板用コーティング組成物を含む絶縁被膜を表面に有する。
[5]本発明の一態様に係る積層コアは、上記[4]に記載の電磁鋼板が複数積層され、互いに接着されている。
[6]本発明の一態様に係る回転電機は、上記[5]に記載の積層コアを備える。
 本発明に係る上記態様によれば、積層コアの磁気特性と、駆動時の高温状態でも電磁鋼板同士の接着強度を保持できる耐熱性とを両立できる電磁鋼板用コーティング組成物、それを用いた電磁鋼板、積層コア及び回転電機を提供することができる。
本発明の第1実施形態に係る積層コアを備えた回転電機の断面図である。 図1に示す積層コアの側面図である。 図2のA-A断面図である。 図1に示す積層コアを形成するための素材の平面図である。 図4のB-B断面図である。 図5のC部の拡大図である。 図1に示す積層コアを製造するために用いられる製造装置の側面図である。
 以下、図面を参照し、本発明の一実施形態に係る積層コアと、この積層コアを備えた回転電機と、この積層コアを形成する素材について説明する。なお、本実施形態では、回転電機として電動機、具体的には交流電動機、より具体的には同期電動機、より一層具体的には永久磁石界磁型電動機を一例に挙げて説明する。この種の電動機は、例えば、電気自動車などに好適に採用される。
 また、以下に「~」を挟んで記載する数値限定範囲には、下限値および上限値がその範囲に含まれる。「未満」または「超」と示す数値には、その値が数値範囲に含まれない。
(回転電機10)
 図1に示すように、回転電機10は、ステータ20と、ロータ30と、ケース50と、回転軸60と、を備える。ステータ20及びロータ30は、ケース50内に収容される。
ステータ20は、ケース50内に固定される。
 本実施形態では、回転電機10として、ロータ30がステータ20の径方向内側に位置するインナーロータ型を採用している。しかしながら、回転電機10として、ロータ30がステータ20の外側に位置するアウターロータ型を採用してもよい。また、本実施形態では、回転電機10が、12極18スロットの三相交流モータである。しかしながら、極数、スロット数、相数などは、適宜変更することができる。
 回転電機10は、例えば、各相に実効値10A、周波数100Hzの励磁電流を印加することにより、回転数1000rpmで回転することができる。
 ステータ20は、ステータ用接着積層コア(以下、ステータコア)21と、図示しない巻線と、を備える。
 ステータコア21は、環状のコアバック部22と、複数のティース部23と、を備える。以下では、ステータコア21(又はコアバック部22)の中心軸線O方向を軸方向と言い、ステータコア21(又はコアバック部22)の径方向(中心軸線Oに直交する方向)を径方向と言い、ステータコア21(又はコアバック部22)の周方向(中心軸線O回りに周回する方向)を周方向と言う。
 コアバック部22は、ステータ20を軸方向から見た平面視において円環状に形成されている。
 複数のティース部23は、コアバック部22の内周から径方向内側に向けて(径方向に沿ってコアバック部22の中心軸線Oに向けて)突出する。複数のティース部23は、周方向に同等の角度間隔をあけて配置されている。本実施形態では、中心軸線Oを中心とする中心角20度おきに18個のティース部23が設けられている。複数のティース部23は、互いに同等の形状でかつ同等の大きさに形成されている。よって、複数のティース部23は、互いに同じ厚み寸法を有している。
 前記巻線は、ティース部23に巻回されている。前記巻線は、集中巻きされていてもよく、分布巻きされていてもよい。
 ロータ30は、ステータ20(ステータコア21)に対して径方向の内側に配置されている。ロータ30は、ロータコア31と、複数の永久磁石32と、を備える。
 ロータコア31は、ステータ20と同軸に配置される環状(円環状)に形成されている。ロータコア31内には、前記回転軸60が配置されている。回転軸60は、ロータコア31に固定されている。
 複数の永久磁石32は、ロータコア31に固定されている。本実施形態では、2つ1組の永久磁石32が1つの磁極を形成している。複数組の永久磁石32は、周方向に同等の角度間隔をあけて配置されている。本実施形態では、中心軸線Oを中心とする中心角30度おきに12組(全体では24個)の永久磁石32が設けられている。
 本実施形態では、永久磁石界磁型電動機として、埋込磁石型モータが採用されている。
 ロータコア31には、ロータコア31を軸方向に貫通する複数の貫通孔33が形成されている。複数の貫通孔33は、複数の永久磁石32の配置に対応して設けられている。各永久磁石32は、対応する貫通孔33内に配置された状態でロータコア31に固定されている。各永久磁石32のロータコア31への固定は、例えば永久磁石32の外面と貫通孔33の内面とを接着剤により接着すること等により、実現できる。なお、永久磁石界磁型電動機として、埋込磁石型に代えて表面磁石型モータを採用してもよい。
 ステータコア21及びロータコア31は、いずれも積層コアである。例えばステータコア21は、図2に示すように、複数の電磁鋼板40が積層方向に積層されることで形成されている。
 なお、ステータコア21及びロータコア31それぞれの積厚(中心軸線Oに沿った全長)は、例えば、50.0mmとされる。ステータコア21の外径は、例えば、250.0mmとされる。ステータコア21の内径は、例えば、165.0mmとされる。ロータコア31の外径は、例えば、163.0mmとされる。ロータコア31の内径は、例えば、30.0mmとされる。ただし、これらの値は一例であり、ステータコア21の積厚、外径や内径、及びロータコア31の積厚、外径や内径は、これらの値のみに限られない。ここで、ステータコア21の内径は、ステータコア21におけるティース部23の先端部を基準とする。すなわち、ステータコア21の内径は、全てのティース部23の先端部に内接する仮想円の直径である。
 ステータコア21及びロータコア31を形成する各電磁鋼板40は、例えば、図4から図6に示すような素材1を打ち抜き加工すること等により形成される。素材1は、電磁鋼板40の母材となる電磁鋼板である。素材1としては、例えば、帯状の鋼板や切り板などが挙げられる。
 積層コアの説明の途中ではあるが、以下では、この素材1について説明する。なお、本明細書において、電磁鋼板40の母材となる帯状の鋼板を素材1という場合がある。素材1を打ち抜き加工して積層コアに用いられる形状にした鋼板を電磁鋼板40という場合がある。
(素材1)
 素材1は、例えば、図7に示すコイル1Aに巻き取られた状態で取り扱われる。本実施形態では、素材1として、無方向性電磁鋼板を採用している。無方向性電磁鋼板としては、JIS C 2552:2014の無方向性電磁鋼板を採用できる。しかしながら、素材1として、無方向性電磁鋼板に代えて方向性電磁鋼板を採用してもよい。この場合の方向性電磁鋼板としては、JIS C 2553:2019の方向性電磁鋼板を採用できる。また、JIS C 2558:2015の無方向性薄電磁鋼帯や方向性薄電磁鋼帯を採用できる。
 素材1の平均板厚t0の上下限値は、素材1が電磁鋼板40として用いられる場合も考慮して、例えば以下のように設定される。
 素材1が薄くなるに連れて素材1の製造コストは増す。そのため、製造コストを考慮すると、素材1の平均板厚t0の下限値は、0.10mm、好ましくは0.15mm、より好ましくは0.18mmとなる。
 一方で素材1が厚すぎると、製造コストは良好になるが、素材1が電磁鋼板40として用いられた場合に、渦電流損が増加してコア鉄損が劣化する。そのため、コア鉄損と製造コストを考慮すると、素材1の平均板厚t0の上限値は、0.65mm、好ましくは0.35mm、より好ましくは0.30mmとなる。
 素材1の平均板厚t0の上記範囲を満たすものとして、0.20mmを例示できる。
 なお、素材1の平均板厚t0は、後述する母材鋼板2の厚さだけでなく、絶縁被膜3の厚さも含まれる。また、素材1の平均板厚t0の測定方法は、例えば、以下の測定方法による。例えば、素材1がコイル1Aの形状に巻き取られている場合、素材1の少なくとも一部を平板形状にほどく。平板形状にほどかれた素材1において、素材1の長手方向の所定の位置(例えば、素材1の長手方向の端縁から、素材1の全長の10%分の長さ、離れた位置)を選定する。この選定した位置において、素材1を、その幅方向に沿って5つの領域に区分する。これらの5つの領域の境界となる4か所において、素材1の板厚を測定する。4か所の板厚の平均値を、素材1の平均板厚t0とすることができる。
 この素材1の平均板厚t0についての上下限値は、電磁鋼板40としての平均板厚t0の上下限値としても当然に採用可能である。なお、電磁鋼板40の平均板厚t0の測定方法は、例えば、以下の測定方法による。例えば、積層コアの積厚を、周方向に同等の間隔をあけて4か所において(すなわち、中心軸線Oを中心とした90度おきに)測定する。
 測定した4か所の積厚それぞれを、積層されている電磁鋼板40の枚数で割って、1枚当たりの板厚を算出する。4か所の板厚の平均値を、電磁鋼板40の平均板厚t0とすることができる。
 図5及び図6に示すように、素材1は、母材鋼板2と、絶縁被膜3と、を備えている。
 素材1は、帯状の母材鋼板2の両面が絶縁被膜3によって被覆されてなる。本実施形態では、素材1の大部分が母材鋼板2によって形成され、母材鋼板2の表面に、母材鋼板2よりも薄い絶縁被膜3が積層されている。
 母材鋼板2の化学組成は、以下に示すように、質量%で2.5%~4.5%のSiを含有する。なお、化学組成をこの範囲とすることにより、素材1(電磁鋼板40)の降伏強度を、例えば、380MPa以上540MPa以下に設定することができる。
 Si:2.5%~4.5%
 Al:0.001%~3.0%
 Mn:0.05%~5.0%
 残部:Fe及び不純物
 素材1が電磁鋼板40として用いられるときに、絶縁被膜3は、積層方向に隣り合う電磁鋼板40間での絶縁性能を発揮する。また、本実施形態では、絶縁被膜3は、接着能を備えていて、積層方向に隣り合う電磁鋼板40を接着する。絶縁被膜3は、単層構成であってもよく、複層構成であってもよい。より具体的には、例えば、絶縁被膜3は、絶縁性能と接着能とを兼ね備えた単層構成であってもよく、絶縁性能に優れる下地絶縁被膜と、接着性能に優れる上地絶縁被膜とを含む複層構成であってもよい。なお、本実施形態における「絶縁被膜3の接着能」とは、絶縁被膜3を挟んで積層された複数の電磁鋼板40からなる積層体において、所定の温度条件下で所定値以上の接着強度を発現することが可能な能力を意味する。
 本実施形態では、絶縁被膜3は、母材鋼板2の両面を全面にわたって隙間なく覆っている。しかしながら、前述の絶縁性能や接着能が確保される範囲において、絶縁被膜3の一部の層は、母材鋼板2の両面を隙間なく覆っていなくてもよい。言い換えると、絶縁被膜3の一部の層が、母材鋼板2の表面に間欠的に設けられていてもよい。ただし、絶縁性能を確保するには、母材鋼板2の両面は全面が露出しないように絶縁被膜3によって覆われている必要がある。具体的には、絶縁被膜3が絶縁性能に優れる下地絶縁被膜を有さず、絶縁性能と接着能を兼ね備えた単層構成である場合は、絶縁被膜3は母材鋼板2の全面にわたって隙間なく形成されている必要がある。これに対し、絶縁被膜3が、絶縁性能に優れる下地絶縁被膜と、接着能に優れる上地絶縁被膜とを含む複層構成である場合、下地絶縁被膜と上地絶縁被膜の両方を母材鋼板2の全面にわたって隙間なく形成する他に、下地絶縁被膜を母材鋼板の全面にわたって隙間なく形成して、上地絶縁被膜を間欠的に設けても、絶縁性能と接着能の両立が可能である。
 下地絶縁被膜を構成するコーティング組成物としては、特に限定されず、例えば、クロム酸含有処理剤、リン酸塩含有処理等の一般的な処理剤を使用できる。
 接着能を備える絶縁被膜3は、エポキシ樹脂と、エポキシ樹脂硬化剤と、エラストマー変性フェノール樹脂と、を含有する電磁鋼板用コーティング組成物が塗布されてなる。
 電磁鋼板用コーティング組成物からなる絶縁被膜は、積層コア製造時の加熱圧着前においては、未硬化状態又は半硬化状態(Bステージ)であり、加熱圧着時の加熱によって硬化反応が進行して接着能が発現する。電磁鋼板用コーティング組成物は、単層構成の絶縁被膜の形成に用いてもよく、下地絶縁被膜上に設ける上地絶縁被膜の形成に用いてもよい。
 エポキシ樹脂としては、一般的なエポキシ樹脂が使用でき、具体的には、一分子中にエポキシ基を2個以上有するエポキシ樹脂であれば特に制限なく使用できる。このようなエポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、トリフェニルメタン型エポキシ樹脂、脂環式エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂、ヒダントイン型エポキシ樹脂、イソシアヌレート型エポキシ樹脂、アクリル酸変性エポキシ樹脂(エポキシアクリレート)、リン含有エポキシ樹脂、及びこれらのハロゲン化物(臭素化エポキシ樹脂等)や水素添加物等が挙げられる。エポキシ樹脂としては、1種を単独で使用してもよく、2種以上を併用してもよい。
 エポキシ樹脂の含有量は、電磁鋼板用コーティング組成物の総質量に対して、例えば、30~90質量%が好ましく、40~80質量%がより好ましく、50~70質量%がさらに好ましい。エポキシ樹脂の含有量が上記下限値以上であると、電磁鋼板40の接着強度をより高められる。エポキシ樹脂の含有量が上記上限値以下であると、電磁鋼板40の応力歪みをより抑制できる。
 エポキシ樹脂硬化剤としては、エポキシ樹脂を硬化させるものであって、所定の温度に加熱することによって硬化反応が開始するタイプの潜在性硬化剤を使用できる。エポキシ樹脂硬化剤としては、例えば、芳香族ポリアミン、酸無水物、フェノール系硬化剤、ジシアンジアミド、三フッ化ホウ素-アミン錯体、有機酸ヒドラジッド等が挙げられる。
 芳香族ポリアミンとしては、例えば、メタフェニレンジアミン、ジアミノジフェニルメタン、ジアミノジフェニルエタン、ジアミノジフェニルスルホン等が挙げられる。
 酸無水物としては、例えば、無水フタル酸、ヘキサヒドロフタル酸無水物、テトラヒドロフタル酸無水物、無水ピロメリット酸、パイロメリット酸無水物等が挙げられる。
 フェノール系硬化剤としては、例えば、フェノールノボラック樹脂、クレゾールノボラック樹脂、ビスフェノールノボラック樹脂、トリアジン変性フェノールノボラック樹脂、フェノールレゾール樹脂等が挙げられる。
 磁気特性と耐熱性を両立させやすい点から、エポキシ樹脂硬化剤としては、芳香族ポリアミン、フェノール系硬化剤、ジシアンジアミドが好ましく、フェノール系硬化剤がより好ましく、フェノールレゾール樹脂、フェノールノボラック樹脂がさらに好ましい。エポキシ樹脂硬化剤としては、1種を単独で使用してもよく、2種以上を併用してもよい。
 電磁鋼板用コーティング組成物中のエポキシ樹脂硬化剤の含有量の下限値は、エポキシ樹脂100質量部に対して、好ましくは1質量部以上、より好ましくは3質量部以上である。エポキシ樹脂硬化剤の含有量の上限値は、好ましくは50質量部以下、より好ましくは35質量部以下である。
 エラストマー変性フェノール樹脂は、ソフトセグメントとハードセグメントをする熱可塑性エラストマーをグラフト化したフェノール樹脂である。例えば、フェノール類とアルデヒド類とを重縮合させる際にエラストマーを配合することで、エラストマー変性フェノール樹脂が得られる。また、フェノール樹脂にエラストマーを反応させることでもエラストマー変性フェノール樹脂が得られる。
 エラストマー変性フェノール樹脂におけるフェノール樹脂は、フェノールノボラック樹脂であってもよく、フェノールレゾール樹脂であってもよい。
 フェノール類としては、特に限定されず、例えば、フェノール、o-クレゾール、カルダノール、アルキルフェノール(イソプロピルフェノール、p-イソブチルフェノール等)、ビスフェノール(ビスフェノールA、ビスフェノールF等)、多価フェノール(レゾルシン等)が挙げられる。フェノール類としては、1種を単独で使用してもよく、2種以上を併用してもよい。
 アルデヒド類としては、特に限定されず、例えば、ホルムアルデヒド、パラホルムアルデヒド、アセトアルデヒド、ベンズアルデヒド等が挙げられる。アルデヒド類としては、1種を単独で使用してもよく、2種以上を併用してもよい。
 熱可塑性エラストマーとしては、例えば、アクリルゴム、エチレン-プロピレンゴム、スチレン-ブタジエンゴム、アクリロニトリル-ブタジエンゴム、イソプレンゴム、シリコーンゴム等が挙げられる。熱可塑性エラストマーとしては、1種を単独で使用してもよく、2種以上を併用してもよい。
 エラストマー変性フェノール樹脂のエラストマー部の重量平均分子量(Mw)の下限は、2000以上200000以下である。エラストマー部のMwが前記下限値以上であれば、積層コアの鉄損劣化を抑制しやすい。エラストマー部のMwが前記上限値以下であれば、鋼板に塗布する電磁鋼板用コーティング組成物の増粘を抑制可能である。
 エラストマー部のMwの下限は、好ましくは3000以上、より好ましくは4000以上である。エラストマー部のMwの上限は、好ましくは180000以下、より好ましくは160000以下である。
 なお、エラストマー部のMwは、加水分解反応によりエラストマーとフェノール樹脂を分解し、HPLC(液体クロマトグラフィー)により分離した後、GPC(ゲルパミュレーションクロマトグラフィー)によりポリスチレン換算値として測定される。
 エラストマー変性フェノール樹脂中のエラストマー部の含有量の下限は、好ましくは5質量%以上、より好ましくは10質量%以上である。エラストマー部の含有量が前記下限値以上であれば、コア鉄損が良好である。
 エラストマー部の含有量の上限は、好ましくは40質量%以下、より好ましくは35質量%以下である。エラストマー部の含有量が前記上限値以下であれば、速やかに硬化させることができる。
 電磁鋼板用コーティング組成物中のエラストマー変性フェノール樹脂の含有量は、エポキシ樹脂100質量部に対して、10質量部以上100質量部以下である。エラストマー変性フェノール樹脂の含有量が前記下限値以上であれば、磁気特性に優れた積層コアが得られる。エラストマー変性フェノール樹脂の含有量が前記上限値以下であれば、耐熱性に優れた積層コアが得られる。
 エラストマー変性フェノール樹脂の含有量の下限は、好ましくは10質量部以上、より好ましくは20質量部以上である。エラストマー変性フェノール樹脂の含有量の上限は、好ましくは80質量部以下、より好ましくは70質量部以下である。
 電磁鋼板用コーティング組成物は、エポキシ樹脂、エポキシ樹脂硬化剤及びエラストマー変性フェノール樹脂以外の他の成分を含有してもよい。他の成分としては、例えば、アクリル樹脂、硬化促進剤(硬化触媒)、乳化剤、消泡剤等が挙げられる。なお、接着強度を確保する観点から、電磁鋼板用コーティング組成物中には、シリカ、アルミナ、ガラス等の無機充填材は含まれない。他の成分としては、1種のみを使用してもよく、2種以上を併用してもよい。
 アクリル樹脂としては、特に限定されない。アクリル樹脂に用いるモノマーとしては、例えば、アクリル酸、メタクリル酸等の不飽和カルボン酸、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート等の(メタ)アクリレートを例示できる。なお、(メタ)アクリレートとは、アクリレート又はメタクリレートを意味する。アクリル樹脂としては、1種を単独で使用してもよく、2種以上を併用してもよい。
 アクリル樹脂は、アクリルモノマー以外の他のモノマーに由来する構成単位を有していてもよい。他のモノマーとしては、例えば、エチレン、プロピレン、スチレン等が挙げられる。他のモノマーとしては、1種を単独で使用してもよく、2種以上を併用してもよい。
 アクリル樹脂のガラス転移点(Tg点)は、特に限定されないが、下限は、好ましくは-40℃、より好ましくは-20℃である。アクリル樹脂のTg点の上限は、好ましくは80℃、より好ましくは50℃である。
 電磁鋼板用コーティング組成物がアクリル樹脂を含有する場合、アクリル樹脂の含有量は、特に制限されず、例えば、エポキシ樹脂とアクリル樹脂の合計量に対して、5質量%以上60質量%以下とすることができる。アクリル変性エポキシ樹脂やアクリルモノマーとして含有させる場合の含有量も同様である。
 アクリル樹脂を用いる場合、エポキシ樹脂にアクリル樹脂をグラフトさせたアクリル変性エポキシ樹脂として用いてもよい。電磁鋼板用コーティング組成物においては、アクリル樹脂を形成するモノマーとして含まれていてもよい。
 一般に、耐熱性に優れるエポキシ樹脂接着剤は、高温での接着強度を担保すると常温付近ではヤング率が大きく、鋼板に応力を付与して磁気特性(コア鉄損)を劣化させる。一方、常温付近で適度な強度を持つ樹脂組成とすると、耐熱性が低下する。
 本実施形態では、ソフトセグメントとハードセグメントを持ち、弾性率の大きい熱可塑性エラストマーをグラフト化したエラストマー変性フェノール樹脂を用いることで、常温付近での鋼板への応力の付与が抑制されるため、磁気特性(コア鉄損)の劣化が抑制される。
 また、エラストマーはフェノール樹脂に結合しており、高温に曝されても流動しないため、高温環境下での接着強度も確保される。このように、エラストマー変性フェノール樹脂を特定量用いることで、磁気特性と耐熱性が両立される。なお、熱可塑性エラストマーをグラフト化させず、熱可塑性エラストマーを単に、組成物中に含ませるだけでは、本発明の効果を享受することは困難である。すなわち、熱可塑性エラストマーをグラフト化したエラストマー変性フェノール樹脂を用いることで、より優れた磁気特性が得られる。グラフト化させていない熱可塑性エラストマーを用いる場合には、高温での接着強度が低下したり、鋼板に圧力がかかった際に熱可塑性エラストマー成分だけが流動して積層状態が歪む恐れがある。
 電磁鋼板用コーティング組成物の硬化収縮率は、15%以下が好ましく、12%以下がより好ましく、10%以下がさらに好ましく、8%以下が特に好ましい。硬化収縮率が前記上限値以下であれば、鋼板への応力付与を低減しやすく、磁気特性に優れた積層コアが得られやすい。
 なお、硬化収縮率は、JIS K6941に準拠した方法により測定される。
 絶縁被膜3は、例えば電磁鋼板用コーティング組成物を母材鋼板の表面に塗布して乾燥し、焼き付けることで形成できる。
 焼き付ける際の到達温度の下限値は、好ましくは120℃以上、より好ましくは140℃以上である。焼き付ける際の到達温度の上限値は、好ましくは200℃以下、より好ましくは180℃以下である。到達温度が上記下限値以上であると、電磁鋼板用コーティング組成物が電磁鋼板と充分に接着し、剥離が抑制される。到達温度が上記上限値以下であると、エポキシ樹脂の過硬化を抑制でき、電磁鋼板用コーティング組成物の接着能を維持できる。
 焼き付け時間の下限値は、好ましくは5秒以上、より好ましくは10秒以上である。焼き付け時間の上限値は、好ましくは40秒以下、より好ましくは30秒以下である。焼き付け時間が上記下限値以上であると、電磁鋼板用コーティング組成物が電磁鋼板と充分に接着し、剥離が抑制される。焼き付け時間が上記上限値以下であると、エポキシ樹脂の過硬化を抑制でき、電磁鋼板用コーティング組成物の接着能を維持できる。
 絶縁被膜3の平均厚みt1の上下限値は、素材1が電磁鋼板40として用いられる場合も考慮して、例えば以下のように設定されてよい。
 素材1が電磁鋼板40として用いられる場合において、絶縁被膜3の平均厚みt1(電磁鋼板40(素材1)片面あたりの厚さ)は、互いに積層される電磁鋼板40間での絶縁性能及び接着能を確保できるように調整する。
 単層構成の絶縁被膜3の場合、絶縁被膜3の全体の平均厚みt1(電磁鋼板40(素材1)片面あたりの厚さ)は、例えば、1.5μm以上8.0μm以下とすることができる。
 複層構成の絶縁被膜3の場合、下地絶縁被膜の平均厚みは、例えば、0.3μm以上2.5μm以下とすることができ、0.5μm以上1.5μm以下が好ましい。上地絶縁被膜の平均厚みは、例えば、1.5μm以上8.0μm以下とすることができる。
 なお、素材1における絶縁被膜3の平均厚みt1の測定方法は、素材1の平均板厚t0と同様の考え方で、複数箇所の絶縁被膜3の厚みを求め、それらの厚みの平均として求めることができる。
 この素材1における絶縁被膜3の平均厚みt1についての上下限値は、電磁鋼板40における絶縁被膜3の平均厚みt1の上下限値としても当然に採用可能である。
 なお、電磁鋼板40における絶縁被膜3の平均厚みt1の測定方法は、例えば、以下の測定方法による。例えば、積層コアを形成する複数の電磁鋼板のうち、積層方向の最も外側に位置する電磁鋼板40(表面が積層方向に露出している電磁鋼板40)を選定する。選定した電磁鋼板40の表面において、径方向の所定の位置(例えば、電磁鋼板40における内周縁と外周縁との丁度中間(中央)の位置)を選定する。選定した位置において、電磁鋼板40の絶縁被膜3の厚みを、周方向に同等の間隔をあけて4か所において(すなわち、中心軸線Oを中心とした90度おきに)測定する。測定した4か所の厚みの平均値を、絶縁被膜3の平均厚みt1とすることができる。
 なお、このように絶縁被膜3の平均厚みt1を、積層方向の最も外側に位置する電磁鋼板40において測定した理由は、絶縁被膜3の厚みが、電磁鋼板40の積層方向に沿った積層位置で殆ど変わらないように、絶縁被膜3が作り込まれているからである。
 以上のような素材1を打ち抜き加工することで電磁鋼板40が製造され、電磁鋼板40によって積層コア(ステータコア21やロータコア31)が製造される。
(積層コアの積層方法)
 以下、積層コアの説明に戻る。
 ステータコア21を形成する複数の電磁鋼板40は、図3に示すように、絶縁被膜3を介して積層されている。
 積層方向に隣り合う電磁鋼板40は、絶縁被膜3によって全面にわたって接着されている。言い換えると、電磁鋼板40において積層方向を向く面(以下、第1面という)は、全面にわたって接着領域41aとなっている。ただし、積層方向に隣り合う電磁鋼板40が、全面にわたって接着されていなくてもよい。言い換えると、電磁鋼板40の第1面において、接着領域41aと非接着領域(不図示)とが混在していてもよい。
 本実施形態では、ロータコア31を形成する方の複数の電磁鋼板は、図1に示すかしめ42(ダボ)によって互いに固定されている。しかしながら、ロータコア31を形成する複数の電磁鋼板も、ステータコア21と同様に絶縁被膜3により固定した積層構造を有してもよい。
 また、ステータコア21やロータコア31などの積層コアは、いわゆる回し積みにより形成されていてもよい。
(積層コアの製造方法)
 前記ステータコア21は、例えば、図7に示す製造装置100を用いて製造される。以下では、製造方法の説明にあたり、まず先に、積層コアの製造装置100(以下、単に製造装置100という)について説明する。
 製造装置100では、コイル1A(フープ)から素材1を矢印F方向に向かって送り出しつつ、各ステージに配置された金型により複数回の打ち抜きを行って電磁鋼板40の形状に徐々に形成していく。そして、打ち抜いた電磁鋼板40を積層して昇温させながら加圧する。その結果、積層方向に隣り合う電磁鋼板40を絶縁被膜3によって接着させ(すなわち、絶縁被膜3のうちの接着領域41aに位置する部分に接着能を発揮させ)、接着が完了する。
 図7に示すように、製造装置100は、複数段の打ち抜きステーション110を備えている。打ち抜きステーション110は、二段であってもよく、三段以上であってもよい。各段の打ち抜きステーション110は、素材1の下方に配置された雌金型111と、素材1の上方に配置された雄金型112とを備える。
 製造装置100は、さらに、最も下流の打ち抜きステーション110よりも下流位置に積層ステーション140を備える。この積層ステーション140は、加熱装置141と、外周打ち抜き雌金型142と、断熱部材143と、外周打ち抜き雄金型144と、スプリング145と、を備えている。
 加熱装置141、外周打ち抜き雌金型142、断熱部材143は、素材1の下方に配置されている。一方、外周打ち抜き雄金型144及びスプリング145は、素材1の上方に配置されている。なお、符号21は、ステータコアを示している。
 以上説明の構成を有する製造装置100において、まずコイル1Aより素材1を図7の矢印F方向に順次送り出す。そして、この素材1に対し、複数段の打ち抜きステーション110による打ち抜き加工を順次行う。これら打ち抜き加工により、素材1に、図3に示したコアバック部22と複数のティース部23を有する電磁鋼板40の形状を得る。ただし、この時点では完全には打ち抜かれていないので、矢印F方向に沿って次工程へと進む。
 そして最後に、素材1は積層ステーション140へと送り出され、外周打ち抜き雄金型144により打ち抜かれて精度良く、積層される。この積層の際、電磁鋼板40はスプリング145により一定の加圧力を受ける。以上説明のような、打ち抜き工程、積層工程、を順次繰り返すことで、所定枚数の電磁鋼板40を積み重ねることができる。さらに、このようにして電磁鋼板40を積み重ねて形成された積層コアは、加熱装置141によって例えば温度200℃まで加熱される。この加熱により、隣り合う電磁鋼板40の絶縁被膜3同士が接着される(接着工程)。
 接着工程の条件については、特に限定されない。例えば、接着工程における加熱温度としては、120~250℃が好ましい。接着工程における加熱時間としては、積層コアの大きさや加熱方法によって影響を受けるが、例えば、30秒~120分間が好ましい。また、絶縁被膜3同士を接着させる際は、積層体を加圧することによって接着させてもよい。積層体を加圧する際の圧力、および、加圧時間は、例えば、2~300MPa、30秒~120分間が好ましい。
 なお、加熱装置141は、外周打ち抜き雌金型142に配置されていなくてもよい。すなわち、外周打ち抜き雌金型142で積層された電磁鋼板40を接着させる前に、外周打ち抜き雌金型142外に取り出してもよい。この場合、外周打ち抜き雌金型142に断熱部材143がなくてもよい。さらにこの場合、積み重ねられた接着前の電磁鋼板40を、図示されない治具で積層方向の両側から挟んで保持した上で、搬送したり加熱したりしてもよい。
 以上の各工程により、ステータコア21が完成する。
 以上説明したように、本発明では、エポキシ樹脂及びエポキシ樹脂硬化剤に、エラストマー変性フェノール樹脂を特定の比率で組み合わせた電磁鋼板用コーティング組成物によって電磁鋼板の表面に絶縁被膜を形成する。これにより、積層コアの優れた磁気特性(コア鉄損)と、駆動時の高温状態でも電磁鋼板同士の接着強度を保持できる優れた耐熱性とを両立できる。
 なお、本発明の技術的範囲は前記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 ステータコアの形状は、前記実施形態で示した形態に限定されるものではない。具体的には、ステータコアの外径及び内径の寸法、積厚、スロット数、ティース部の周方向と径方向の寸法比率、ティース部とコアバック部との径方向の寸法比率、などは所望の回転電機の特性に応じて任意に設計可能である。
 前記実施形態におけるロータでは、2つ1組の永久磁石32が1つの磁極を形成しているが、本発明はこれに限られない。例えば、1つの永久磁石32が1つの磁極を形成していてもよく、3つ以上の永久磁石32が1つの磁極を形成していてもよい。
 上記実施形態では、回転電機10として、永久磁石界磁型電動機を一例に挙げて説明したが、回転電機10の構造は、以下に例示するようにこれのみに限られず、更には以下に例示しない種々の公知の構造も採用可能である。
 上記実施形態では、回転電機10として、永久磁石界磁型電動機を一例に挙げて説明したが、本発明はこれのみに限られない。例えば、回転電機10がリラクタンス型電動機や電磁石界磁型電動機(巻線界磁型電動機)であってもよい。
 上記実施形態では、交流電動機として、同期電動機を一例に挙げて説明したが、本発明はこれに限られない。例えば、回転電機10が誘導電動機であってもよい。
 上記実施形態では、回転電機10として、交流電動機を一例に挙げて説明したが、本発明はこれに限られない。例えば、回転電機10が直流電動機であってもよい。
 上記実施形態では、回転電機10として、電動機を一例に挙げて説明したが、本発明はこれに限られない。例えば、回転電機10が発電機であってもよい。
 その他、本発明の趣旨に逸脱しない範囲で、前記実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、前記した変形例を適宜組み合わせてもよい。
 以下、実施例によって本発明の一態様の効果を具体的に説明するが、実施例での条件は、本発明の実施可能性および効果を確認するために採用した一条件例であり、本発明は以下の記載によっては限定されない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。
 [原料]
 実施例で使用した原料を以下に示す。
 (エポキシ樹脂)
 E1:ビスフェノールA型エポキシ樹脂
 E2:ビスフェノールF型エポキシ樹脂
 E3:クレゾールノボラック型エポキシ樹脂
 (エラストマー変性フェノール樹脂)
 A1:アクリルゴム変性フェノール樹脂(ノボラック型、フェノール樹脂部とエラストマー部の質量比=70:30、エラストマー部のMw:35000)
 A2:スチレン-ブタジエンゴム変性フェノール樹脂(ノボラック型、フェノール樹脂部とエラストマー部の質量比=65:35、エラストマー部のMw:20000)
 A3:エチレン-プロピレンゴム変性フェノール樹脂(ノボラック型、フェノール樹脂部とエラストマー部の質量比=85:15、エラストマー部のMw:160000)
 A4:シリコーンゴム変性フェノール樹脂(ノボラック型、フェノール樹脂部とエラストマー部の質量比=90:10、エラストマー部のMw:3000)
 (エポキシ樹脂硬化剤)
 H1:フェノールレゾール樹脂
 H2:フェノールノボラック樹脂
 H3:ジアミノジフェニルメタン
 H4:ジシアンジアミド
 H5:4-メチルヘキサヒドロフタル酸無水物
 (配合剤)
 M1:アクリル樹脂(メチルメタクリレート単位:スチレン単位:2-エチルヘキシルアクリレート単位(モル比)=60:30:10、ガラス転移温度:40℃)
 M2:アクリル樹脂(メチルメタクリレート単位:n-ブチルアクリレート単位(モル比)=70:30、ガラス転移温度:15℃)
[磁気特性]
 各例の電磁鋼帯から55mm×55mmサイズの矩形の電磁鋼板(単板)を切り出し、鋼板温度200℃、圧力10MPa、加圧時間1時間の条件で電磁鋼板10枚を積層接着して積層コアを作製した。得られた積層コアについて、JIS C2556(2015)に準拠した単板磁気測定法により、圧延方向と圧延方向に対して直角方向の単板磁気特性を測定し、それらの値の平均値を磁気特性として求めた。なお、磁気特性(磁性)としては、鉄損として「W10/400(W/kg)」を評価した。「W10/400」は、周波数400Hz、最大磁束密度1.0Tのときの鉄損である。
[接着強度]
 各例の電磁鋼帯から、幅30mm×長さ60mmの長方形の電磁鋼板(単板)を2枚切り出した。次いで、表面に、電磁鋼板用コーティング組成物を塗布し、互いの幅30mm×長さ10mmの先端部分同士を重ね合わせ、加圧することで測定用のサンプルを作製した。加圧条件は、鋼板温度200℃、圧力10MPa、加圧時間1時間とした。
 得られたサンプルに対し、雰囲気温度を25℃もしくは150℃のそれぞれ雰囲気下で、引張速度を2mm/分として引張り、剥離するまでの最大荷重(N)を測定し、この最大荷重(N)接着面積で除した数値を接着強度(MPa)とした。
[硬化収縮率]
 各例の電磁鋼帯の表面に電磁鋼板用コーティング組成物を塗布し、硬化収縮率を測定した。硬化収縮率は、JIS K 6941に準拠して膜厚の変化により測定した。
[判定]
 各例について、以下の基準で判定を行った。なお、鉄損が小さいほど、電磁鋼板に付与する応力歪が抑制されていることを意味する。測定結果及び判定結果を表2に示す。表において、発明範囲外の値には下線を付した。
[基準]
 「Good」:25℃の接着強度が5.0MPa以上、150℃の接着強度が1.0MPa以上、かつ磁気特性が12.0W/kg未満。
 「Bad」:25℃の接着強度が5.0MPa未満、150℃の接着強度が1.0MPa未満、または、磁気特性が12.0W/kg以上。
[実施例1]
 母材鋼板として、質量%で、Si:3.0%、Mn:0.2%、Al:0.5%、残部がFe及び不純物からなる板厚0.25mm、幅100mmの無方向性電磁鋼板を用いた。
 表1に示す各成分を混合して電磁鋼板用コーティング組成物を調製した。得られた電磁鋼板用コーティング組成物を母材鋼板の表面に塗布し、200℃で5秒間焼き付けることで、平均厚みが3μmの絶縁被膜を有する電磁鋼帯を得た。
[実施例2~10、比較例1~6]
 電磁鋼板用コーティング組成物の組成及び焼き付け条件を表1に示すとおりに変更した以外は、実施例1と同様にして電磁鋼帯を得た。
 各例の電磁鋼板用コーティング組成物の組成及び焼き付け条件を表1に示す。各例の磁気特性(磁性)及び接着強度の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、エポキシ樹脂及びエポキシ樹脂硬化剤に、エラストマー変性フェノール樹脂を特定の比率で組み合わせた実施例1~10では、150℃でも十分な接着強度が確保され、耐熱性に優れるうえ、磁気特性にも優れていた。
 一方、エラストマー変性フェノール樹脂の含有量が本発明の範囲外の比較例1~4、エラストマー変性フェノール樹脂を含まない比較例5、エポキシ樹脂硬化剤を含まない比較例6では、耐熱性と磁気特性が両立できなかった。
 本発明によれば、積層コアの耐熱性と磁気特性を両立できる。よって、産業上の利用可能性は大である。
 1…素材、2…母材鋼板、3…絶縁被膜、10…回転電機、20…ステータ、21…ステータコア、40…電磁鋼板。

Claims (6)

  1.  エポキシ樹脂と、エポキシ樹脂硬化剤と、エラストマー変性フェノール樹脂と、を含有し、
     前記エラストマー変性フェノール樹脂の含有量が、前記エポキシ樹脂100質量部に対して、10質量部以上100質量部以下である、電磁鋼板用コーティング組成物。
  2.  エラストマー変性フェノール樹脂のエラストマー部の重量平均分子量が2000以上200000以下である、請求項1に記載の電磁鋼板用コーティング組成物。
  3.  硬化収縮率が15%以下である、請求項1又は2に記載の電磁鋼板用コーティング組成物。
  4.  請求項1~3のいずれか一項に記載の電磁鋼板用コーティング組成物を含む絶縁被膜を表面に有する、電磁鋼板。
  5.  請求項4に記載の電磁鋼板が複数積層され、互いに接着されている、積層コア。
  6.  請求項5に記載の積層コアを備える回転電機。
PCT/JP2021/023039 2020-06-17 2021-06-17 電磁鋼板用コーティング組成物、電磁鋼板、積層コア及び回転電機 WO2021256536A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
BR112022024524A BR112022024524A2 (pt) 2020-06-17 2021-06-17 Composição de revestimento para uma chapa de aço elétrico, chapa de aço elétrico, núcleo laminado, e, máquina elétrica rotativa
JP2022531909A JP7343823B2 (ja) 2020-06-17 2021-06-17 電磁鋼板用コーティング組成物、電磁鋼板、積層コア及び回転電機
CN202180042673.1A CN115917044A (zh) 2020-06-17 2021-06-17 电磁钢板用涂布组合物、电磁钢板、层叠铁芯及旋转电机
KR1020227043347A KR20230008865A (ko) 2020-06-17 2021-06-17 전자 강판용 코팅 조성물, 전자 강판, 적층 코어 및 회전 전기 기기
MX2022016040A MX2022016040A (es) 2020-06-17 2021-06-17 Composicion de recubrimiento para lamina de acero electrico, lamina de acero electrico, nucleo laminado y maquina electrica rotativa.
CA3180892A CA3180892A1 (en) 2020-06-17 2021-06-17 Coating composition for electrical steel sheet, electrical steel sheet, laminated core, and rotary electric machine
US18/010,264 US20240034903A1 (en) 2020-06-17 2021-06-17 Coating composition for electrical steel sheet, electrical steel sheet, laminated core, and rotary electric machine
EP21825453.0A EP4169986A4 (en) 2020-06-17 2021-06-17 COATING COMPOSITION FOR ELECTROMAGNETIC STEEL SHEET, ELECTROMAGNETIC STEEL SHEET, LAMINATED CORE AND ROTARY ELECTRIC MACHINE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-104254 2020-06-17
JP2020104254 2020-06-17

Publications (1)

Publication Number Publication Date
WO2021256536A1 true WO2021256536A1 (ja) 2021-12-23

Family

ID=79268076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/023039 WO2021256536A1 (ja) 2020-06-17 2021-06-17 電磁鋼板用コーティング組成物、電磁鋼板、積層コア及び回転電機

Country Status (10)

Country Link
US (1) US20240034903A1 (ja)
EP (1) EP4169986A4 (ja)
JP (1) JP7343823B2 (ja)
KR (1) KR20230008865A (ja)
CN (1) CN115917044A (ja)
BR (1) BR112022024524A2 (ja)
CA (1) CA3180892A1 (ja)
MX (1) MX2022016040A (ja)
TW (1) TWI774428B (ja)
WO (1) WO2021256536A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021256534A1 (ja) * 2020-06-17 2021-12-23

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54164456U (ja) * 1978-05-11 1979-11-17
JP2000173816A (ja) 1998-12-02 2000-06-23 Nippon Steel Corp 接着用表面被覆電磁鋼板とその製造方法
WO2004070080A1 (ja) 2003-02-03 2004-08-19 Nippon Steel Corporation 接着用表面被覆電磁鋼板
JP2017011863A (ja) 2015-06-22 2017-01-12 新日鐵住金株式会社 モータ鉄心用積層電磁鋼板およびその製造方法
WO2017085797A1 (ja) * 2015-11-18 2017-05-26 株式会社日立製作所 静止誘導電器の鉄心接合構造及び鉄心接合方法
JP2020070393A (ja) * 2018-11-01 2020-05-07 群栄化学工業株式会社 樹脂組成物、及びロータコア
JP2020104254A (ja) 2018-11-19 2020-07-09 ザ・ボーイング・カンパニーThe Boeing Company ケーブルにスリーブを自動で装着するための方法及び装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE793030A (fr) * 1971-12-20 1973-04-16 Goodrich Co B F Procede pour la realisation de matieres plastiques de resine epoxy
US5248400A (en) * 1992-03-27 1993-09-28 Ppg Industries, Inc. Thermosetting powder coating compositions based on polyepoxides and elastomer-modified phenolics
WO2007063581A1 (ja) * 2005-11-30 2007-06-07 Sumitomo Metal Industries, Ltd. 無方向性電磁鋼板およびその製造方法
TW200848481A (en) * 2007-06-05 2008-12-16 China Steel Corp Chromium-free insulation coating for use in electromagnetic steel sheet and method for preparing non-directional electromagnetic steel sheet by using the coating
CN102066610B (zh) * 2008-06-20 2014-06-11 新日铁住金株式会社 无方向性电磁钢板及其制造方法
CN102668334B (zh) * 2010-01-14 2015-08-05 三菱电机株式会社 旋转电机及其制造方法
JP5383781B2 (ja) * 2011-12-16 2014-01-08 三菱電機株式会社 固定子鉄心、その製造方法、およびその固定子鉄心を用いた回転電機
JP5542894B2 (ja) * 2012-10-26 2014-07-09 三菱電機株式会社 回転電機の固定子製造方法
JP6134497B2 (ja) * 2012-11-08 2017-05-24 京セラ株式会社 積層コアの製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54164456U (ja) * 1978-05-11 1979-11-17
JP2000173816A (ja) 1998-12-02 2000-06-23 Nippon Steel Corp 接着用表面被覆電磁鋼板とその製造方法
WO2004070080A1 (ja) 2003-02-03 2004-08-19 Nippon Steel Corporation 接着用表面被覆電磁鋼板
JP2017011863A (ja) 2015-06-22 2017-01-12 新日鐵住金株式会社 モータ鉄心用積層電磁鋼板およびその製造方法
WO2017085797A1 (ja) * 2015-11-18 2017-05-26 株式会社日立製作所 静止誘導電器の鉄心接合構造及び鉄心接合方法
JP2020070393A (ja) * 2018-11-01 2020-05-07 群栄化学工業株式会社 樹脂組成物、及びロータコア
JP2020104254A (ja) 2018-11-19 2020-07-09 ザ・ボーイング・カンパニーThe Boeing Company ケーブルにスリーブを自動で装着するための方法及び装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4169986A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2021256534A1 (ja) * 2020-06-17 2021-12-23
JP7156579B2 (ja) 2020-06-17 2022-10-19 日本製鉄株式会社 電磁鋼板、積層コア、及び積層コア製造方法
US11749431B2 (en) 2020-06-17 2023-09-05 Nippon Steel Corporation Electrical steel sheet, laminated core, and laminated core manufacturing method

Also Published As

Publication number Publication date
KR20230008865A (ko) 2023-01-16
US20240034903A1 (en) 2024-02-01
EP4169986A4 (en) 2024-01-24
MX2022016040A (es) 2023-02-02
JP7343823B2 (ja) 2023-09-13
CA3180892A1 (en) 2021-12-23
TW202205788A (zh) 2022-02-01
CN115917044A (zh) 2023-04-04
JPWO2021256536A1 (ja) 2021-12-23
BR112022024524A2 (pt) 2023-01-24
EP4169986A1 (en) 2023-04-26
TWI774428B (zh) 2022-08-11

Similar Documents

Publication Publication Date Title
TWI720745B (zh) 定子用接著積層鐵芯、其製造方法、及旋轉電機
WO2021256534A1 (ja) 電磁鋼板、積層コア、及び積層コア製造方法
JP2022000888A (ja) 積層コアの製造方法
WO2021256536A1 (ja) 電磁鋼板用コーティング組成物、電磁鋼板、積層コア及び回転電機
JP2022001014A (ja) 積層コアおよび積層コアの製造方法
WO2021256538A1 (ja) 電磁鋼板用コーティング組成物、電磁鋼板、積層コア及び回転電機
JP7095819B2 (ja) 電磁鋼板、積層コア及び回転電機
WO2021256533A1 (ja) 電磁鋼板用コーティング組成物、電磁鋼板、積層コア及び回転電機
JP2022000536A (ja) 電磁鋼板、積層コア及び回転電機、ならびに電磁鋼板の製造方法
WO2021256531A1 (ja) 電磁鋼板用コーティング組成物、電磁鋼板、積層コア及び回転電機
RU2796249C1 (ru) Покрывающая композиция для листа электротехнической стали, лист электротехнической стали, шихтованный сердечник и вращающаяся электрическая машина
WO2021256529A1 (ja) 電磁鋼板用コーティング組成物、接着用表面被覆電磁鋼板及び積層鉄心
RU2796419C1 (ru) Покрывающая композиция для листа электротехнической стали, лист электротехнической стали, шихтованный сердечник и вращающаяся электрическая машина
JP2022000537A (ja) 電磁鋼板、積層コア及び回転電機、ならびに電磁鋼板の製造方法
JP7406061B2 (ja) 積層コアおよびその製造方法、回転電機
JP2022000538A (ja) 電磁鋼板、積層コア及び回転電機、ならびに電磁鋼板の製造方法
JP2022000887A (ja) 電磁鋼板及び積層コア
JP2021197860A (ja) 積層コアおよび積層コアの製造方法
JP2021195606A (ja) 電磁鋼板用コーティング組成物、電磁鋼板、積層コア及び回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825453

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531909

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3180892

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 202217070336

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20227043347

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022024524

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 18010264

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021825453

Country of ref document: EP

Effective date: 20230117

ENP Entry into the national phase

Ref document number: 112022024524

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221130