WO2021256094A1 - 光源駆動装置、光源装置および測距装置 - Google Patents

光源駆動装置、光源装置および測距装置 Download PDF

Info

Publication number
WO2021256094A1
WO2021256094A1 PCT/JP2021/016704 JP2021016704W WO2021256094A1 WO 2021256094 A1 WO2021256094 A1 WO 2021256094A1 JP 2021016704 W JP2021016704 W JP 2021016704W WO 2021256094 A1 WO2021256094 A1 WO 2021256094A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
phase difference
signal
light emission
Prior art date
Application number
PCT/JP2021/016704
Other languages
English (en)
French (fr)
Inventor
マイケル クライン バーグハート
隼人 上水流
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2021256094A1 publication Critical patent/WO2021256094A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C3/00Measuring distances in line of sight; Optical rangefinders
    • G01C3/02Details
    • G01C3/06Use of electric means to obtain final indication
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4911Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/30Driver circuits
    • H05B45/32Pulse-control circuits

Definitions

  • the present disclosure relates to a light source driving device, a light source device, and a distance measuring device. More specifically, the present invention relates to a light source driving device that drives a light source, a light source device that uses the light source driving device, and a distance measuring device.
  • a distance measuring device for measuring a distance to an object.
  • the distance is measured by irradiating the object with a laser beam, detecting the light reflected from the object, and measuring the time for the laser beam to reciprocate between the object and the object.
  • the device can be used.
  • the driving device of the light emitting element used in such a distance measuring device the fluctuation of the light emitting delay time of the light emitting element becomes a problem. This is because it causes an error in distance measurement.
  • a drive device for example, when setting a target current for obtaining a desired emission intensity in distance measurement, the target current is set according to the background light when the light emitting element is non-light emitting and the characteristics of the light emitting element.
  • a drive device to perform the operation has been proposed (see, for example, Patent Document 1).
  • the bias current corresponding to the light emission threshold value of the light emitting element is further set.
  • the drive current of the light emitting element is controlled based on the set target current and vise current. Distance measurement errors due to errors such as target current are reduced.
  • the above-mentioned conventional technique has a problem that the error of distance measurement cannot be reduced when the delay time of the drive signal of the light emitting element fluctuates.
  • a signal for controlling light emission is output from the processing device that executes the distance measurement to the driving device of the light emitting element. If the delay time between the output timing of this signal and the light emission timing of the light emitting element fluctuates, an error in distance measurement occurs.
  • the above-mentioned conventional technique has a problem that an error based on such a variation in delay time cannot be reduced.
  • the present disclosure has been made in view of the above-mentioned problems, and an object thereof is to reduce an error based on a delay time when driving a light emitting element.
  • the present disclosure has been made to solve the above-mentioned problems, and the first aspect thereof is based on a light emitting drive unit that supplies a light emitting current that causes a light source to emit light, and a light emitting control signal that causes the light source to emit light.
  • a drive signal generation unit that generates a drive signal for driving the light emission drive unit, a phase difference detection unit that detects the phase difference between the light emission period of the light source and the light emission control signal, and the detected phase difference.
  • It is a light source drive device provided with a delay detection unit that detects the delay of light emission based on the above.
  • the phase difference detection unit may detect the phase difference from the light emission control signal by using the drive signal as the light emission period of the light source.
  • the phase difference detection unit may detect the phase difference from the light emission control signal by using the signal based on the light emission current as the light emission period of the light source.
  • the light receiving unit for detecting the light emission of the light source is further provided, and the phase difference detecting unit is different from the light emission control signal with the detected light emission period as the light emission period of the light source.
  • the phase difference may be detected.
  • the phase difference detecting unit outputs a differential signal corresponding to the detected phase difference, and the delay is based on the differential signal output from the phase difference detecting unit.
  • the delay of the light emission may be detected.
  • a filter for attenuating the high frequency component of the detected phase difference is further provided, and the delay detection unit detects the delay based on the phase difference in which the high frequency component is attenuated. You may.
  • a receiving unit that receives the light emission control signal transmitted by the signal line and outputs the received light emission control signal is further provided, and the drive signal generation unit is provided from the reception unit.
  • the drive signal may be generated based on the output light emission control signal, and the phase difference detection unit may detect the phase difference between the light emission period of the light source and the light emission control signal output from the reception unit.
  • the signal line transmits the differential emission control signal which is the emission control signal converted into the differential signal
  • the receiving unit transmits the transmitted differential emission control signal. May be received and converted into the above emission control signal.
  • the second receiving unit to which the generated drive signal is input is further provided, and the phase difference detecting unit outputs from the light emission period of the light source and the second receiving unit.
  • the phase difference from the above-mentioned drive signal may be detected.
  • a second aspect of the present disclosure is to drive the light source, a light emitting drive unit for supplying a light emitting current for causing the light source to emit light, and the light emitting drive unit based on a light emission control signal for causing the light source to emit light.
  • the drive signal generation unit that generates the drive signal of the above, the phase difference detection unit that detects the phase difference between the light emission period of the light source and the emission control signal, and the emission delay detected based on the detected phase difference. It is a light source device including a delay detection unit.
  • a third aspect of the present disclosure is to drive the light source, a light emitting drive unit for supplying a light emitting current for causing the light source to emit light, and the light emitting drive unit based on a light emission control signal for causing the light source to emit light.
  • the drive signal generation unit that generates the drive signal
  • the phase difference detection unit that detects the phase difference between the light emission period of the light source and the light emission control signal, and the light emission delay detected based on the detected phase difference.
  • FIG. 1 is a diagram showing a configuration example of a light source device according to the first embodiment of the present disclosure.
  • the figure is a diagram showing a configuration example of the light source device 4.
  • the light source device 4 emits light to an object for distance measurement.
  • the distance measuring sensor 3 constituting the distance measuring device is further described in the figure.
  • the distance measuring sensor 3 measures the distance to the object.
  • the distance measuring sensor 3 detects the reflected light emitted from the light source device 4 and reflected by the object, and reaches the object based on the time required from the emission of the light of the light source device 4 to the incident of the reflected light. Measure the distance.
  • Signal lines 11, 12 and 13 are connected between the distance measuring sensor 3 and the light source device 4.
  • the signal line 11 is a signal line that transmits a light emission control signal output from the distance measuring sensor 3.
  • the light emission control signal is a signal for causing the light source of the light source device 4 to emit light, and is a signal representing a light emission period (timing) of the light source.
  • the signal line 11 in the figure transmits a differential emission control signal converted into a differential signal.
  • the signal line 12 is a signal line that transmits a control signal for controlling the light source device 4.
  • the signal line 13 is a signal line that transmits a delay signal.
  • the delay signal is a signal output from the light source device 4, and is a signal representing the delay time of light emission of the light source of the light source device 4.
  • the light source device 4 includes a light source 20 and a light source driving device 10.
  • the light source 20 emits light.
  • the light source 20 for example, a laser diode that generates a laser beam can be used.
  • the light source driving device 10 causes the light source 20 to emit light.
  • the light source driving device 10 causes the light source 20 to emit light based on a control signal or the like from the distance measuring sensor 3. For this light emission, for example, a method of repeating light emission and non-light emission in a predetermined cycle can be adopted. Further, the light source driving device 10 detects the delay time when the light source 20 emits light and outputs the delay time to the distance measuring sensor 3.
  • the light source drive device 10 in the figure includes a control unit 100, a reception unit 110, a drive signal generation unit 120, a light emission drive unit 130, a phase difference detection unit 140, filters 151 and 152, and a delay detection unit 160. To prepare for.
  • the control unit 100 controls the entire light source driving device 10.
  • the control unit 100 controls the light source driving device 10 based on the control signal from the distance measuring sensor 3.
  • the control signal from the distance measuring sensor 3 is input to the control unit 100 via the signal line 12.
  • the control unit 100 in the figure further detects the delay time in the delay detection unit 160, which will be described later, and further controls the output of the delay time to the distance measuring sensor 3.
  • the control unit 100 outputs a control signal to the delay detection unit 160 via the signal line 109.
  • the receiving unit 110 receives the light emission control signal output from the distance measuring sensor 3.
  • the light emission control signal can be configured by a digital signal (a sequence of pulse signals) representing a light emission period.
  • the period of the light emission control signal value "1" can correspond to the light emission period of the light source.
  • the reception unit 110 outputs the received light emission control signal to the drive signal generation unit 120 and the phase difference detection unit 140.
  • the output signal from the receiving unit 110 is output via the signal line 101.
  • the ranging sensor 3 in the figure shows an example of outputting a differential light emission control signal, which is a light emission control signal converted into a differential signal.
  • This differential emission control signal can be transmitted by, for example, LVDS (Low Voltage Differential Signaling).
  • the signal line 11 is composed of a differential signal line.
  • the receiving unit 110 receives the LVDS differential light emission control signal, converts it into a single-ended light emission control signal, and outputs the signal.
  • the emission control signal in the form of a differential signal to the signal transmission between the distance measuring sensor 3 and the light source device 4, high-speed signal transmission becomes possible.
  • the drive signal generation unit 120 generates a drive signal for driving the light emission drive unit 130, which will be described later, based on the light emission control signal output from the reception unit 110.
  • the drive signal generation unit 120 outputs the generated drive signal to the light emission drive unit 130 and the phase difference detection unit 140.
  • the output signal from the drive signal generation unit 120 is transmitted by the signal line 102.
  • the light emitting drive unit 130 causes the light source 20 to emit light.
  • the light emitting drive unit 130 supplies a light emitting current for causing the light source 20 to emit light to the light source 20.
  • the light emitting drive unit 130 can be configured by a semiconductor element such as a MOS transistor. The details of the configuration of the light emitting drive unit 130 will be described later.
  • the phase difference detection unit 140 detects the phase difference between the light emission period of the light source 20 and the light emission control signal. By detecting this phase difference, it is possible to detect the delay in light emission of the light source 20 with respect to the light emission control signal. By subtracting this emission delay from the time required from the emission of light from the light source device 4 measured by the distance measuring sensor 3 to the incident of reflected light, the error in detecting the distance to the object is reduced. be able to.
  • the phase difference detection unit 140 in the figure detects the phase difference between the light emission control signal output from the reception unit 110 and the light emission control signal output from the drive signal generation unit 120. That is, the phase difference detection unit 140 in the figure detects the phase difference by using the light emission control signal output from the drive signal generation unit 120 as the light emission period of the light source 20. Further, the phase difference detection unit 140 in the figure outputs the detected phase difference as a differential signal. Specifically, phase difference signals having opposite phases are generated and output via the two signal lines 105 and 106, respectively. The details of the configuration of the phase difference detection unit 140 will be described later. It was
  • the filters 151 and 152 attenuate the high frequency component of the phase difference detected by the phase difference detecting unit 140. These filters 151 and 152 can be configured by a low frequency pass filter.
  • the phase difference signal output from the phase difference detection unit 140 is composed of a pulse signal sequence having a pulse width corresponding to the phase difference.
  • the filters 151 and 152 attenuate the high frequency component of this pulse signal to generate a low frequency phase difference signal with a voltage corresponding to the phase difference.
  • the filter 151 is connected to the signal lines 105 and 107, attenuates the high frequency component of the phase difference signal input via the signal line 105, and outputs the filter to the signal line 107.
  • the filter 152 is connected to the signal lines 106 and 108, attenuates the high frequency component of the phase difference signal input via the signal line 106, and outputs the filter to the signal line 108.
  • the delay detection unit 160 detects the delay of light emission in the light source 20 based on the phase difference detected by the phase difference detection unit 140.
  • Signal lines 107 and 108 are connected to the delay detection unit 160 in the figure, and phase difference signals of differential signals whose high frequency components are attenuated by filters 151 and 152 are input, respectively.
  • the delay detection unit 160 generates a delay signal corresponding to the delay time from the phase difference signal of the differential signal, and outputs the delay signal to the distance measuring sensor 3 via the signal line 13. At this time, the delay detection unit 160 can output the delay signal of the digital signal.
  • FIG. 2 is a diagram showing a configuration example of a light emitting drive unit according to the first embodiment of the present disclosure.
  • the figure is a circuit diagram showing a configuration example of the light emitting drive unit 130.
  • the light emitting drive unit 130 includes a MOS transistor 131 and a constant current circuit 132.
  • the light source 20 is also shown in the figure.
  • the gate of the MOS transistor 131 is connected to the signal line 102, and the source is connected to the sink side terminal of the constant current circuit 132.
  • the source side terminal of the constant current circuit 132 is grounded.
  • the drain of the MOS transistor 131 is connected to the cathode of the light source 20 via the signal line 14.
  • the anode of the light source 20 is connected to the power line Vcc.
  • the power line Vcc is a power line that supplies power for passing the light emission current of the light source 20.
  • the MOS transistor 131 is a semiconductor element that supplies a light emitting current to the light source 20.
  • the MOS transistor 131 is driven by a drive signal generated by the drive signal generation unit 120.
  • An n-channel MOS transistor can be used as the MOS transistor 131 in the figure.
  • the MOS transistor 131 becomes conductive. The emission current of the sink current is supplied to the light source 20.
  • the constant current circuit 132 is a circuit through which a constant current flows.
  • the constant current circuit 132 is a circuit that limits the current flowing through the light source 20 when the MOS transistor 131 conducts to a predetermined light emitting current.
  • a constant current circuit using a MOS transistor can be used as the constant current circuit 132.
  • a MOS transistor 131 is arranged in the light emitting drive unit 130, and the drive signal generation unit 120 generates and outputs a gate drive signal of the MOS transistor 131.
  • the drive signal generation unit 120 generates a drive signal having a relatively large amplitude and a short rise and fall time. Therefore, a delay occurs from the input of the light emission control signal by the receiving unit 110 to the output of the drive signal, and a phase difference is generated between the light emission control signal and the drive signal.
  • the phase difference detection unit 140 described above detects this phase difference.
  • FIG. 3 is a diagram showing a configuration example of the phase difference detection unit according to the embodiment of the present disclosure.
  • the figure is a circuit diagram showing a configuration example of the phase difference detection unit 140.
  • the phase difference detection unit 140 includes delay circuits 141 and 142, inverting gates 143 and 144, and two-input NAND gates 145 to 148.
  • a signal line 101 is connected to the input of the delay circuit 141, and the output is connected to one input of the NAND gate 145 via the inverting gate 143.
  • a signal line 101 is connected to the other input of the NAND gate 145.
  • a signal line 102 is connected to the input of the delay circuit 142, and the output is connected to one input of the NAND gate 146 via the inverting gate 144.
  • a signal line 102 is connected to the other input of the NAND gate 146.
  • the output of the NAND gate 145 is connected to one input of the NAND gate 147, and the output of the NAND gate 148 is connected to the other input.
  • the output of the NAND gate 146 is connected to one input of the NAND gate 148, and the output of the NAND gate 147 is connected to the other input.
  • the signal line 105 is connected to the output of the NAND gate 147 and the signal line 106 is connected to the output of the NAND gate 148.
  • the delay circuits 141 and 142 are circuits that delay the input signal for a predetermined period and output it.
  • the delay circuit 141 delays the light emission control signal output from the receiving unit 110.
  • the delayed light emission control signal is inverted by the inverting gate 143 and input to the NAND gate 145, and the light emission control signal without delay is input to the NAND gate 145.
  • a signal synchronized with the rising edge of the drive signal generated by the drive signal generation unit 120 is generated.
  • These signals are input to a flip-flop circuit composed of NAND gates 147 and 148.
  • This flip-flop circuit is set by a light emission control signal and reset by a drive signal.
  • the signal having the pulse width from the set by the light emission control signal to the reset by the drive signal is a signal corresponding to the phase difference between the light emission control signal and the drive signal, and is output to the signal lines 105 and 106.
  • Each output signal of the flip-flop circuit is a signal inverted to each other. Therefore, the signals of the signal lines 105 and 106 are differential phase difference signals.
  • This differential phase difference signal is input to the delay detection unit 160 via the filters 151 and 152, respectively.
  • the phase difference detection unit 140 outputs the differential phase difference signal
  • the analog-to-digital conversion unit 161 described later performs analog-digital conversion of the differential signal. As a result, it is possible to reduce the error of the phase difference signal due to changes in the manufacturing process of the light source driving device 10, the power supply voltage, the temperature, and the like.
  • FIG. 4 is a diagram showing a configuration example of a delay detection unit according to the embodiment of the present disclosure.
  • the figure is a diagram showing a configuration example of the delay detection unit 160.
  • the delay detection unit 160 includes an analog-to-digital conversion unit 161 and a delay holding unit 162.
  • the analog-to-digital conversion unit 161 converts a phase difference signal into a digital signal.
  • the analog-to-digital conversion unit 161 in the figure converts a phase difference signal whose high-frequency component is attenuated by the filters 151 and 152 into a digital signal.
  • the phase difference signal converted into this digital signal is a voltage signal corresponding to the phase difference between the light emission control signal and the drive signal, and is a voltage signal corresponding to the delay of the drive signal with respect to the light emission control signal.
  • the delay time based on the phase difference between the light emission control signal and the drive signal can be detected. Further, it is possible to generate a delay signal which is a digital signal corresponding to the delay time of the drive signal with respect to the light emission control signal. This delay signal is output to the delay holding unit 162 via the signal line 169. Further, the analog-to-digital conversion in the analog-to-digital conversion unit 161 is controlled by a control signal from the control unit 100.
  • the delay holding unit 162 holds the delay signal output from the analog-to-digital conversion unit 161.
  • the delay holding unit 162 outputs the held delay time to the distance measuring sensor 3 at a desired timing.
  • the delay holding unit 162 can be configured by a register that holds a digital signal.
  • the analog-to-digital conversion unit 161 may perform a plurality of analog-to-digital conversions to generate a plurality of delay signals, and the delay holding unit 162 may hold the plurality of delay signals and output the average value thereof as the delay time. ..
  • the delay holding unit 162 is controlled by a control signal from the control unit 100.
  • FIG. 5 is a diagram showing an example of detection of phase difference and delay according to the embodiment of the present disclosure.
  • the figure is a timing diagram showing an example of detection of a phase difference between a light emission control signal and a drive signal in the light source drive device 10.
  • the “differential light emission control signal” represents a differential light emission control signal transmitted by the signal line 11 and input to the receiving unit 110.
  • the “light emission control signal” represents a light emission control signal output from the receiving unit 110.
  • the “drive signal” represents a drive signal output from the drive signal generation unit 120.
  • the "NAND gate 145 output” and the “NAND gate 146 output” represent the output signals of the NAND gates 145 and 146 described in FIG. 3, respectively.
  • phase difference detection unit output (signal line 105)” represents the output signal of the phase difference detection unit 140 output to the signal line 105, and the “phase difference detection unit output (signal line 106)” is output to the signal line 106. Represents the phase difference detection unit 140 output signal.
  • the "filter 151 output” and the “filter 152 output” represent the output signals of the filters 151 and 152, respectively.
  • the solid line and the dotted line of the "differential emission control signal” in the figure represent two differential signals. Further, the "light emission control signal”, “drive signal”, “NAND gate 145 output”, “NAND gate 146 output” and “phase difference detector output” in the figure are represented by binarized signal waveforms. It is a thing.
  • the dotted line in the figure represents the level of 0V.
  • the differential light emission control signal output from the distance measuring sensor 3 is converted into a single-ended light emission control signal by the receiving unit 110.
  • a rectangular wave having a duty ratio of 50% can be used as the emission control signal.
  • the drive signal is generated and output.
  • the drive signal is a signal whose phase is delayed by the delay time with respect to the light emission control signal.
  • These pulse signals are input to the NAND gates 147 and 148 that make up the flip-flop circuit.
  • the output signal of the NAND gate 147 (the signal of the signal line 105) and the output signal of the NAND gate 148 (the signal of the signal line 106) are set to the value “1” and the value "0", respectively, in synchronization with the falling edge of the output signal of the NAND gate 145. Transition to.
  • the output signal of the NAND gate 147 (the signal of the signal line 105) and the output signal of the NAND gate 148 (the signal of the signal line 106) are inverted in synchronization with the falling edge of the output signal of the NAND gate 146, and the values " It transitions to "0" and the value "1".
  • the first half of the figure shows the case where the delay of the drive signal with respect to the light emission control signal is relatively small, and the second half shows the case where the delay of the drive signal with respect to the light emission control signal is relatively large.
  • the pulse width of the differential output signal of the phase difference detection unit 140 is a pulse width corresponding to the delay time of the drive signal with respect to the light emission control signal.
  • FIG. 6 is a diagram showing an example of distance detection according to the embodiment of the present disclosure.
  • the figure is a timing diagram showing an example of driving and detecting a delay of the light source 20 in the light source device 4.
  • a in the figure represents a microframe that measures the distance to the object.
  • the distance is measured by receiving the reflected light from the object by the distance measuring sensor 3 while causing the light source device 4 to emit light, and acquiring an image for one screen.
  • the period for acquiring this image corresponds to a microframe.
  • the "microframe signal" of A in the figure is a signal representing the division of the microframe, an image is generated in the period of the value "1", and the data of the image generated in the period of the value "0" is transferred. Will be done.
  • the microframe signal is an internal signal of the ranging sensor 3.
  • Distance can be measured by multiple microframes with different conditions for image generation. For example, the phases of the light emitted by the light source device 4 and the received light of the distance measuring sensor 3 are changed to 0, 90, 180, and 270 ° for each microframe to generate four images. Next, the phase difference between the emitted light from the light source device 4 and the reflected light from the object can be calculated from these four images to measure the distance to the object. Details of distance measurement will be described later.
  • the period of these four microframes constitutes a frame for measuring the distance to the object.
  • This frame can be repeated a plurality of times, and the average value of the distances in the plurality of frames can be the distance to the object.
  • B in the figure is a diagram showing an example of delay detection in each microframe.
  • the “light emission control signal” of B in the figure represents a light emission control signal output from the receiving unit 110.
  • the “delay detection signal” is a signal instructing the light source driving device 10 to detect the delay.
  • This "delay detection signal” is an example of a control signal output from the ranging sensor 3 described with reference to FIG. 1 via the signal line 12.
  • the “AD conversion signal” is a control signal output from the control unit 100 to the analog-to-digital conversion unit 161 of the delay detection unit 160, and is a signal instructing analog-to-digital conversion.
  • the “delayed output” represents a delay signal output from the light source driving device 10.
  • the differential emission control signal of the pulse train is output from the ranging sensor 3.
  • the output differential light emission control signal is received by the reception unit 110, converted into a light emission control signal, and output to the drive signal generation unit 120 and the phase difference detection unit 140.
  • the ranging sensor 3 After the differential emission control signal having a predetermined number of pulses is output, the ranging sensor 3 outputs a delay detection signal having a value of “1”.
  • the control unit 100 outputs the AD conversion signal having the value "1” to the analog-digital conversion unit 161.
  • the analog-to-digital conversion unit 161 performs analog-to-digital conversion of the phase difference signal output from the filters 151 and 152. The delay time of the digital signal generated by this analog-to-digital conversion is held in the delay holding unit 162.
  • the control unit 100 outputs the AD conversion signal eight times.
  • the analog-to-digital conversion unit 161 performs analog-to-digital conversion each time an AD conversion signal is input, and outputs the detected delay time to the delay holding unit 162.
  • the delay holding unit 162 holds these plurality of delay times. After that, when the output of the delay detection signal is stopped, the delay holding unit 162 calculates the average value of the held plurality of delay times, generates the delay data, and outputs the delay data to the ranging sensor 3 via the signal line 13. do.
  • the detection of the reflected light by the ranging sensor 3 is started, and an image signal based on the reflected light is generated.
  • the image signal is generated by the image pickup device 350 arranged in the distance measuring sensor 3 described later.
  • the image pickup device 350 performs photoelectric conversion of the reflected light and generates an image signal based on the electric charge generated by the photoelectric conversion.
  • the image sensor 350 accumulates the charge generated by photoelectric conversion during the period when the microframe signal has a value of "1", and generates an image signal based on the accumulated image signal when the microframe signal becomes a value of "0". Then, it is output (transferred) to the image processing unit 360 described later.
  • the image processing unit 360 detects an object, and the time from the light emission of the light source driving device 10 to the detection of the reflected light with respect to the detected object is measured.
  • the delay time based on the delay signal output by the delay holding unit 162 is subtracted from this timed time, and the distance is calculated. By subtracting this delay time, it is possible to reduce an error due to the delay of light emission in the light source driving device 10.
  • the phase difference between the light emission control signal input to the drive signal generation unit 120 and the drive signal output from the drive signal generation unit 120 is detected.
  • the delay of light emission in the light source 20 is detected.
  • the light source driving device 10 of the first embodiment described above has detected the delay of the driving signal generation unit 120.
  • the light source driving device 10 of the second embodiment of the present disclosure is different from the above-mentioned first embodiment in that the delay of the receiving unit is further detected.
  • FIG. 7 is a diagram showing a configuration example of the light source device according to the second embodiment of the present disclosure. Similar to FIG. 1, the figure is a diagram showing a configuration example of the light source device 4. It differs from the light source device 4 described with reference to FIG. 1 in that the receiving unit 170 is further arranged between the drive signal generation unit 120 and the phase difference detection unit 140 of the light source drive device 10.
  • the receiving unit 170 is a receiving unit having the same delay characteristics as the receiving unit 110.
  • the non-inverting input of the receiving unit 170 is connected to the signal line 102, and the inverting input is connected to the power supply line Vdd / 2.
  • the output of the receiving unit 170 is connected to the signal line 103.
  • the power line Vdd / 2 is a power line that supplies power with a voltage that is 1 ⁇ 2 of the power supply voltage of the receiving unit 170. Since a voltage 1 ⁇ 2 of the power supply voltage is applied to the inverting input, the receiving unit 170 operates as a non-inverting buffer.
  • the signal line 103 is a signal line connected to the input of the delay circuit 142 and the NAND gate 146 described in FIG.
  • a drive signal that has passed through the receiving unit 170 is input to the phase difference detecting unit 140 in the figure. Therefore, the phase difference detection unit 140 in the figure detects the phase difference based on the delay of the drive signal generation unit 120 and the reception unit 170. As described above, since the receiving unit 170 has the same delay characteristics as the receiving unit 110, the light source driving device 10 in the figure can detect the receiving unit 110 and the driving delay.
  • the configuration of the light source driving device 10 other than this is the same as the configuration of the light source driving device 10 described in the first embodiment of the present disclosure, the description thereof will be omitted.
  • the receiving unit 170 is arranged between the drive signal generation unit 120 and the phase difference detection unit 140 to delay the drive signal. , The delay time of the receiving unit 110 can be detected. The error of distance measurement can be further reduced.
  • the light source driving device 10 of the first embodiment described above has detected the phase difference between the light emission control signal and the driving signal.
  • the light source driving device 10 of the third embodiment of the present disclosure detects the phase difference between the light emission control signal and the signal based on the light emission current of the light source 20, and is the above-mentioned first embodiment. Is different.
  • FIG. 8 is a diagram showing a configuration example of a light emitting drive unit according to a third embodiment of the present disclosure.
  • FIG. 2 is a circuit diagram showing a configuration example of the light emitting drive unit 130, as in FIG. 2.
  • the light emitting drive unit 130 in the figure is different from the light emitting drive unit 130 in FIG. 2 in that the connection between the drive signal generation unit 120 and the phase difference detection unit 140 is described.
  • the phase difference detection unit 140 in the figure detects the phase difference between the light emission control signal and the drive voltage signal.
  • the drive voltage signal is a signal representing the light emission period of the light source 20, and is a signal generated based on the light emission current.
  • the drive voltage detection unit 180 generates a drive voltage signal.
  • the drive voltage detection unit 180 generates a drive voltage signal by converting the drain voltage of the MOS transistor 131 acquired via the signal line 14 into the signal level of the logic circuit of the phase difference detection unit 140 and inverting the logic. ..
  • the generated drive voltage signal is input to the phase difference detection unit 140 via the signal line 104.
  • a delay time occurs from the input of the drive signal to the supply of the light emitting current to the light source 20. This is because it takes time for the MOS transistor 131 to transition to the conduction state. Therefore, the delay time of the light emitting drive unit 130 can be detected by detecting the drain voltage of the MOS transistor 131, generating a drive voltage signal, and inputting the signal to the phase difference detection unit 140.
  • the configuration of the light source driving device 10 other than this is the same as the configuration of the light source driving device 10 described in the first embodiment of the present disclosure, the description thereof will be omitted.
  • the light source driving device 10 of the third embodiment of the present disclosure generates a driving voltage signal from the drain voltage of the MOS transistor 131 of the light emitting driving unit 130 and detects the phase difference from the light emitting control signal. do. As a result, the delay time of the light emitting drive unit 130 can be detected, and the error of the distance measurement can be further reduced.
  • the light source driving device 10 of the third embodiment described above has detected the phase difference between the light emission control signal and the driving voltage signal.
  • the light source driving device 10 of the fourth embodiment of the present disclosure is different from the above-mentioned third embodiment in that it detects the phase difference between the light emission control signal and the light source of the light source 20.
  • FIG. 9 is a diagram showing a configuration example of a light emitting drive unit according to a fourth embodiment of the present disclosure.
  • FIG. 8 is a circuit diagram showing a configuration example of the light emitting drive unit 130, as in FIG. 8. It differs from the light emitting drive unit 130 of FIG. 8 in that it includes a light receiving element 30 and a light receiving unit 190 instead of the drive voltage detecting unit 180.
  • the phase difference detection unit 140 in the figure detects the phase difference between the light emission control signal and the light reception signal.
  • the light receiving signal is a signal representing the light emission period of the light source 20, and is a signal generated by detecting the light emission of the light source 20.
  • the light receiving element 30 receives the light of the light source 20.
  • the light receiving element 30 receives light by converting a change in the irradiated light into an electric signal.
  • the light receiving element 30 can be configured by, for example, a light receiving diode.
  • the light receiving element 30 in the figure is supplied with power by connecting the cathode to the power supply line Vdd. A current corresponding to the amount of light received flows through the light receiving element 30.
  • the light receiving unit 190 detects the light emission of the light source 20.
  • the light receiving unit 190 includes a resistor 191 and a non-inverting buffer 192.
  • the input of the non-inverting buffer 192 is connected to the anode of the light receiving element 30 and one end of the resistor 191.
  • the other end of the resistor 191 is grounded.
  • the output of the non-inverting buffer 192 is connected to the signal line 104.
  • a current corresponding to the amount of light received flows through the light receiving element 30.
  • the resistor 191 converts this change in current into a change in voltage. This change in voltage is amplified by the non-inverting buffer 192 and output as a light receiving signal.
  • the light receiving element 30 and the light receiving unit 190 are arranged to directly detect the light emission of the light source 20 and generate a light receiving signal. By inputting this light receiving signal to the phase difference detecting unit 140, the delay time of the light emitting driving unit 130 and the light source 20 can be detected.
  • the configuration of the light source driving device 10 other than this is the same as the configuration of the light source driving device 10 described in the third embodiment of the present disclosure, the description thereof will be omitted.
  • the light source driving device 10 of the fourth embodiment of the present disclosure detects the light of the light source 20, generates a light receiving signal, and detects the phase difference from the light emission control signal. As a result, the delay time of the light emitting drive unit 130 and the light source 20 can be detected, and the error of the distance measurement can be further reduced.
  • FIG. 10 is a diagram showing a configuration example of a distance measuring sensor according to an embodiment of the present disclosure.
  • the figure is a diagram showing a configuration example of the distance measuring sensor 3.
  • the distance measurement sensor 3 in the figure measures the distance to the object based on the instruction of the distance measurement control device 2, and outputs the measurement result to the distance measurement control device 2.
  • an application processor can be used as the distance measuring control device 2.
  • the distance measuring sensor 3 includes a host interface unit 310, a system control unit 320, a light source device control unit 330, a transmission unit 340, an image pickup element 350, an image processing unit 360, and a delay detection unit 370.
  • the host interface unit 310 communicates with the ranging control device 2.
  • a control signal is output from the distance measuring control device 2.
  • the distance measuring sensor 3 outputs a status indicating its own state and outputs a distance map image to be described later to the distance measuring control device 2.
  • the host interface unit 310 exchanges these signals.
  • the system control unit 320 controls the entire distance measurement sensor 3 and controls the measurement of the distance based on the control signal output from the distance measurement control device 2.
  • the system control unit 320 generates a light emission timing signal indicating the light emission timing of the light source device 4, and outputs the light emission timing signal to the light source device control unit 330, the image processing unit 360, and the delay detection unit 370.
  • the light source device control unit 330 controls the light source device 4.
  • the light source device control unit 330 generates a light emission control signal based on a light emission timing signal output from the system control unit 320, and outputs the light emission control signal to the transmission unit 340. Further, the light source device control unit 330 generates the control signal described in FIG. 1 and outputs the control signal to the control unit 100 via the signal line 12.
  • the transmission unit 340 converts the light emission control signal into a differential light emission control signal which is a differential signal, and transmits the light emission control signal to the light source device 4 via the signal line 11.
  • the delay detection unit 370 detects the delay of the light source device control unit 330.
  • the delay detection unit 370 detects the delay of the light source device control unit 330 based on the phase difference between the light emission timing signal and the light emission control signal. The detected delay is output to the image processing unit 360.
  • the image sensor 350 is a semiconductor element that performs image pickup.
  • the image pickup device 350 takes an image of the object and generates an image of the object.
  • the generated image is output to the image processing unit 360.
  • the image processing unit 360 processes the image output from the image sensor 350.
  • the image processing unit 360 detects the distance to the target unit based on the image output from the image sensor 350. Specifically, the image processing unit 360 starts timing when the light emission timing signal is output from the system control unit 320. After that, the reflected light is detected based on the image from the image sensor 350, and the timing is stopped. The distance to the object is detected from the flight time of this timed light. At this time, the image processing unit 360 subtracts the delay detected by the light source driving device 10 and the delay detected by the delay detecting unit 370 from the flight time of the timed light. As a result, it is possible to reduce the error due to the delay of the light source driving device 10 and the light source device control unit 330. Further, the image processing unit 360 can generate a distance map image based on the distance to the object. From this distance map image, the three-dimensional shape of the object can be acquired. The image processing unit 360 outputs the generated distance map image to the distance measuring control device 2.
  • the image sensor 350 is an example of the sensor described in the claims.
  • the image processing unit 360 is an example of the processing circuit described in the claims.
  • the distance measuring sensor 3 is an example of the distance measuring device described in the claims.
  • FIG. 11 is a diagram showing a configuration example of a delay detection unit according to the embodiment of the present disclosure.
  • the figure is a diagram showing a configuration example of the delay detection unit 370.
  • the delay detection unit 370 includes a phase difference detection unit 371, a filter 372, and an analog-digital conversion unit 373.
  • the phase difference detection unit 371 detects the phase difference between the light emission timing signal output from the system control unit 320 and the light emission control signal output from the light source device control unit 330. The detected phase difference is output to the filter 372.
  • the filter 372 attenuates the high frequency component of the phase difference output from the phase difference detecting unit 371.
  • the phase difference with the high frequency component attenuated is output to the analog-to-digital converter 373.
  • the analog-to-digital conversion unit 373 performs analog-digital conversion of the phase difference with the high-frequency component attenuated, and generates a delay time of the digital signal.
  • the generated delay time is output to the image processing unit 360.
  • the configuration of the ranging sensor 3 is not limited to this example.
  • the delay detection unit 370 may be omitted.
  • the image processing unit 360 corrects the flight time of the light based on the delay output from the light source driving device 10.
  • the ranging sensor 3 of the present disclosure detects the delay of its own light source device control unit 330 in addition to the delay time of the light source driving device 10, and subtracts it from the flight time of light. This makes it possible to reduce the error in measuring the distance.
  • the configuration of the light source driving device 10 of the second embodiment can be combined with other embodiments. Specifically, the light source driving device 10 configuration of FIG. 7 can be applied to the light source driving device 10 of the third and fourth embodiments.
  • FIG. 12 is a diagram showing a configuration example of the distance measuring device according to the embodiment of the present disclosure.
  • the figure is a block diagram showing a configuration example of the distance measuring device 1.
  • the distance measuring device 1 in the figure includes a distance measuring sensor 3, a light source device 4, and a lens 5.
  • the distance measuring control device 2 and the object 901 for distance measurement are shown.
  • the lens 5 is a lens that forms an image of an object on the image sensor 350 of the distance measuring sensor 3.
  • the ranging sensor 3 in the figure controls the light source device 4 to emit the emitted light 902 to the object 901.
  • the emitted light 902 is reflected from the object 901 to become the reflected light 903.
  • the distance measuring sensor 3 detects the reflected light 903
  • the distance measuring sensor 3 measures the time from the emission of the emitted light 902 to the detection of the reflected light 903 and measures the distance to the object 901. This measured distance is output to the distance measurement control device 2 as distance data.
  • FIG. 13 is a diagram showing an example of distance measurement according to the embodiment of the present disclosure.
  • FIG. A in the figure is a diagram showing the relationship between the emitted light emitted from the light source device 4 and the reflected light reflected by the object.
  • the positive x-axis direction corresponds to the phase of the emitted light.
  • the "R" of A in the figure represents the reflected light.
  • a phase difference ⁇ depending on the distance is generated between the emitted light and the reflected light R. By detecting this phase difference ⁇ , the distance to the object can be measured.
  • I represents a component in phase with the emitted light
  • Q represents a component orthogonal to the emitted light.
  • phase difference ⁇ can be expressed by the following equation.
  • arctan (Q / I)
  • I represents the peak value of the reflected light having the same phase as the emitted light.
  • Q represents the peak value of the reflected light that is orthogonal to each other.
  • can be calculated by the above equation also for the emitted light of a pulse wave and the like. This can be done by detecting the reflected light at a plurality of timings that are 90 degrees out of phase with the emitted light. B in the figure shows this situation.
  • B “emitted light” and “reflected light” represent waveforms of emitted light and reflected light, respectively.
  • the reflected light has a waveform delayed by ⁇ T with respect to the emitted light.
  • This ⁇ T is the time to go back and forth between the object and the object.
  • c represents the speed of light.
  • f represents the frequency of the emitted light.
  • the processing procedure described in the above-described embodiment may be regarded as a method having these series of procedures, or as a program for causing a computer to execute these series of procedures or as a recording medium for storing the program. You may catch it.
  • a recording medium for example, a CD (Compact Disc), a DVD (Digital Versatile Disc), a memory card, or the like can be used.
  • the present technology can have the following configurations.
  • a light emitting drive unit that supplies a light emitting current that causes a light source to emit light
  • a drive signal generation unit that generates a drive signal for driving the light emission drive unit based on a light emission control signal that causes the light source to emit light.
  • a phase difference detection unit that detects the phase difference between the light emission period of the light source and the light emission control signal
  • a light source driving device including a delay detection unit that detects a delay in light emission based on the detected phase difference.
  • phase difference detection unit detects a phase difference from the light emission control signal by using a signal based on the light emission current as a light emission period of the light source.
  • the phase difference detection unit detects a phase difference from the light emission control signal by using the detected light emission period as the light emission period of the light source.
  • the phase difference detection unit outputs a differential signal corresponding to the detected phase difference, and outputs a differential signal.
  • the light source driving device detects a delay in light emission based on a differential signal output from the phase difference detection unit.
  • the delay detects a delay in light emission based on a differential signal output from the phase difference detection unit.
  • (6) Further provided with a filter for attenuating the high frequency component of the detected phase difference, The light source driving device according to any one of (1) to (5), wherein the delay detecting unit detects the delay based on the phase difference in which the high frequency component is attenuated.
  • a receiving unit that receives the light emission control signal transmitted by the signal line and outputs the received light emission control signal is further provided.
  • the drive signal generation unit generates the drive signal based on the light emission control signal output from the reception unit.
  • the light source driving device according to any one of (1) to (6) above, wherein the phase difference detecting unit detects the phase difference between the light emitting period of the light source and the light emitting control signal output from the receiving unit.
  • the signal line transmits a differential light emission control signal, which is the light emission control signal converted into a differential signal.
  • the light source driving device according to (7) above, wherein the receiving unit receives the transmitted differential light emission control signal and converts it into the light emission control signal.
  • a second receiving unit to which the generated drive signal is input is further provided.
  • the light source driving device according to (7), wherein the phase difference detecting unit detects the phase difference between the light emitting period of the light source and the driving signal output from the second receiving unit.
  • Light source and A light emitting drive unit that supplies a light emitting current that causes the light source to emit light, A drive signal generation unit that generates a drive signal for driving the light emission drive unit based on a light emission control signal for causing the light source to emit light, and a drive signal generation unit.
  • a phase difference detection unit that detects the phase difference between the light emission period of the light source and the light emission control signal, and A light source device including a delay detection unit that detects a delay in light emission based on the detected phase difference.
  • Light source and A light emitting drive unit that supplies a light emitting current that causes the light source to emit light
  • a drive signal generation unit that generates a drive signal for driving the light emission drive unit based on a light emission control signal for causing the light source to emit light
  • a drive signal generation unit that generates a drive signal for driving the light emission drive unit based on a light emission control signal for causing the light source to emit light
  • a phase difference detection unit that detects the phase difference between the light emission period of the light source and the light emission control signal
  • a delay detection unit that detects the emission delay based on the detected phase difference
  • a sensor that detects the reflected light emitted by the light emitted by the light source and reflected by the object.
  • a distance measuring device including a processing circuit that performs a process of detecting a distance to the object by measuring from the emission of the light to the detection of the reflected light.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

発光素子の駆動の際の遅延時間に基づく誤差を低減する。 光源駆動装置は、発光駆動部、駆動信号生成部、位相差検出部および遅延検出部を具備する。発光駆動部は、光源を発光させる発光電流を供給する。駆動信号生成部は、光源を発光させる発光制御信号に基づいて発光駆動部を駆動するための駆動信号を生成する。位相差検出部は、光源の発光期間と発光制御信号との位相差を検出する。遅延検出部は、検出された位相差に基づいて発光の遅延を検出する。

Description

光源駆動装置、光源装置および測距装置
 本開示は、光源駆動装置、光源装置および測距装置に関する。詳しくは、光源を駆動する光源駆動装置および当該光源駆動装置を使用する光源装置および測距装置に関する。
 従来、車載カメラ等の撮像装置において、対象物までの距離を計測する測距装置が使用されている。この測距装置には、例えば、対象物にレーザ光を照射して対象物から反射された光を検出し、レーザ光が対象物との間を往復する時間を測定することにより距離を計測する装置を使用することができる。このような測距装置に使用される発光素子の駆動装置においては、発光素子の発光遅延時間の変動が問題となる。距離測定の誤差の原因となるためである。
 このような駆動装置として、例えば、距離測定における所望の発光強度を得るためのターゲット電流を設定する際、発光素子が非発光の時の背景光や発光素子の特性に応じてターゲット電流の設定を行う駆動装置が提案されている(例えば、特許文献1参照。)。この従来技術においては、ターゲット電流の他に発光素子の発光閾値に対応するバイアス電流の設定をさらに行う。これら設定されたターゲット電流およびバイス電流に基づいて発光素子の駆動電流が制御される。ターゲット電流等の誤差による距離測定の誤差が低減される。
特開2019-041201号公報
 上述の従来技術では、発光素子の駆動信号の遅延時間が変動した場合に距離計測の誤差を低減することができないという問題がある。距離計測の際、距離計測を実行する処理装置から発光素子の駆動装置に対して発光を制御する信号が出力される。この信号の出力のタイミングと発光素子の発光のタイミングとの遅延時間が変動すると、距離計測の誤差が発生する。上述の従来技術では、このような遅延時間の変動に基づく誤差を低減することができないという問題がある。
 本開示は、上述した問題点に鑑みてなされたものであり、発光素子の駆動の際の遅延時間に基づく誤差を低減することを目的としている。
 本開示は、上述の問題点を解消するためになされたものであり、その第1の態様は、光源を発光させる発光電流を供給する発光駆動部と、上記光源を発光させる発光制御信号に基づいて上記発光駆動部を駆動するための駆動信号を生成する駆動信号生成部と、上記光源の発光期間と上記発光制御信号との位相差を検出する位相差検出部と、上記検出された位相差に基づいて上記発光の遅延を検出する遅延検出部とを具備する光源駆動装置である。
 また、この第1の態様において、上記位相差検出部は、上記駆動信号を上記光源の発光期間として上記発光制御信号との位相差を検出してもよい。
 また、この第1の態様において、上記位相差検出部は、上記発光電流に基づく信号を上記光源の発光期間として上記発光制御信号との位相差を検出してもよい。
 また、この第1の態様において、上記光源の発光を検出する受光部をさらに具備し、上記位相差検出部は、上記検出した発光の期間を上記光源の発光期間として上記発光制御信号との位相差を検出してもよい。
 また、この第1の態様において、上記位相差検出部は、上記検出した位相差に応じた差動信号を出力し、上記遅延は、上記位相差検出部から出力された差動信号に基づいて上記発光の遅延を検出してもよい。
 また、この第1の態様において、上記検出された位相差のうち高周波成分を減衰するフィルタをさらに具備し、上記遅延検出部は、上記高周波成分が減衰された位相差に基づいて上記遅延を検出してもよい。
 また、この第1の態様において、信号線路により伝達される上記発光制御信号を受信して当該受信した発光制御信号を出力する受信部をさらに具備し、上記駆動信号生成部は、上記受信部から出力される発光制御信号に基づいて上記駆動信号を生成し、上記位相差検出部は、上記光源の発光期間と上記受信部から出力される発光制御信号との位相差を検出してもよい。
 また、この第1の態様において、上記信号線路は、差動信号に変換された上記発光制御信号である差動発光制御信号を伝達し、上記受信部は、上記伝達された差動発光制御信号を受信して上記発光制御信号に変換してもよい。
 また、この第1の態様において、上記生成された駆動信号が入力される第2の受信部をさらに具備し、上記位相差検出部は、上記光源の発光期間と上記第2の受信部から出力される上記駆動信号との位相差を検出してもよい。
 また、本開示の第2の態様は、光源と、上記光源を発光させる発光電流を供給する発光駆動部と、上記光源を発光させるための発光制御信号に基づいて上記発光駆動部を駆動するための駆動信号を生成する駆動信号生成部と、上記光源の発光期間と上記発光制御信号との位相差を検出する位相差検出部と、上記検出された位相差に基づいて上記発光の遅延を検出する遅延検出部とを具備する光源装置である。
 また、本開示の第3の態様は、光源と、上記光源を発光させる発光電流を供給する発光駆動部と、上記光源を発光させるための発光制御信号に基づいて上記発光駆動部を駆動するための駆動信号を生成する駆動信号生成部と、上記光源の発光期間と上記発光制御信号との位相差を検出する位相差検出部と、上記検出された位相差に基づいて上記発光の遅延を検出する遅延検出部と、上記光源の発光により出射された光が対象物により反射された反射光を検出するセンサと、上記光の出射から上記反射光の検出までを計時することにより上記対象物までの距離を検出する処理を行う処理回路とを具備する測距装置である。
 本開示の態様により、光源の発光期間と発光制御信号との位相差に基づいて発光の遅延が検出されるという作用をもたらす。検出された遅延に基づく距離の検出の補正が想定される。
本開示の第1の実施の形態に係る光源装置の構成例を示す図である。 本開示の第1の実施の形態に係る発光駆動部の構成例を示す図である。 本開示の実施の形態に係る位相差検出部の構成例を示す図である。 本開示の実施の形態に係る遅延検出部の構成例を示す図である。 本開示の実施の形態に係る位相差および遅延の検出の一例を示す図である。 本開示の実施の形態に係る距離の検出の一例を示す図である。 本開示の第2の実施の形態に係る光源装置の構成例を示す図である。 本開示の第3の実施の形態に係る発光駆動部の構成例を示す図である。 本開示の第4の実施の形態に係る発光駆動部の構成例を示す図である。 本開示の実施の形態に係る測距センサの構成例を示す図である。 本開示の実施の形態に係る遅延検出部の構成例を示す図である。 本開示の実施の形態に係る測距装置の構成例を示す図である。 本開示の実施の形態に係る測距の一例を示す図である。
 次に、図面を参照して、本開示を実施するための形態(以下、実施の形態と称する)を説明する。以下の図面において、同一または類似の部分には同一または類似の符号を付している。また、以下の順序で実施の形態の説明を行う。
 1.第1の実施の形態
 2.第2の実施の形態
 3.第3の実施の形態
 4.第4の実施の形態
 5.測距センサ
 6.測距装置
 <1.第1の実施の形態>
 [光源装置の構成]
 図1は、本開示の第1の実施の形態に係る光源装置の構成例を示す図である。同図は、光源装置4の構成例を表す図である。この光源装置4は、距離測定の対象物に対して光を出射するものである。なお、同図には、光源装置4の他に測距装置を構成する測距センサ3をさらに記載した。
 測距センサ3は、対象物までの距離を測定するものである。この測距センサ3は、光源装置4から出射されて対象物により反射された反射光を検出し、光源装置4の光の出射から反射光の入射までに要した時間に基づいて対象物までの距離を測定する。測距センサ3および光源装置4の間には、信号線11、12および13が接続される。信号線11は、測距センサ3から出力される発光制御信号を伝達する信号線である。ここで、発光制御信号は、光源装置4の光源を発光させるための信号であり、光源の発光の期間(タイミング)を表す信号である。後述するように、同図の信号線11は、差動信号に変換された差動発光制御信号を伝達する。信号線12は、光源装置4を制御するための制御信号を伝達する信号線である。信号線13は、遅延信号を伝達する信号線である。ここで、遅延信号は、光源装置4から出力される信号であり、光源装置4の光源の発光の遅延時間を表す信号である。
 光源装置4は、光源20と、光源駆動装置10とを備える。
 光源20は、発光するものである。この光源20は、例えば、レーザ光を生成するレーザダイオードを使用することができる。
 光源駆動装置10は、光源20を発光させるものである。この光源駆動装置10は、測距センサ3からの制御信号等に基づいて光源20を発光させる。この発光は、例えば、所定の周期において発光および非発光を繰り返す方式を採ることができる。また、光源駆動装置10は、光源20を発光させる際の遅延時間を検出して測距センサ3に対して出力する。同図の光源駆動装置10は、制御部100と、受信部110と、駆動信号生成部120と、発光駆動部130と、位相差検出部140と、フィルタ151および152と、遅延検出部160とを備える。
 制御部100は、光源駆動装置10の全体を制御するものである。この制御部100は、測距センサ3からの制御信号に基づいて光源駆動装置10を制御する。測距センサ3からの制御信号は、信号線12を介して制御部100に入力される。また、同図の制御部100は、後述する遅延検出部160における遅延時間の検出および測距センサ3への遅延時間の出力の制御をさらに行う。制御部100は、信号線109を介して遅延検出部160に制御信号を出力する。
 受信部110は、測距センサ3から出力される発光制御信号を受信するものである。ここで、発光制御信号は、発光期間を表すデジタル信号(パルス信号の列)により構成することができる。例えば、発光制御信号の値「1」の期間を光源の発光期間に対応させることができる。受信部110は、受信した発光制御信号を駆動信号生成部120および位相差検出部140に対して出力する。受信部110からの出力信号は、信号線101を介して出力される。
 なお、同図の測距センサ3は、差動信号に変換された発光制御信号である差動発光制御信号を出力する例を表したものである。この差動発光制御信号は、例えば、LVDS(Low Voltage Differential Signaling)により伝達することができる。この場合、信号線11は、差動信号線路により構成される。受信部110は、LVDSの差動発光制御信号を受信し、シングルエンドの発光制御信号に変換して出力する。差動信号形式の発光制御信号を測距センサ3および光源装置4の間の信号伝達に適用することにより、高速な信号の伝達が可能となる。
 駆動信号生成部120は、受信部110から出力される発光制御信号に基づいて後述する発光駆動部130を駆動する駆動信号を生成するものである。駆動信号生成部120は、生成した駆動信号を発光駆動部130および位相差検出部140に対して出力する。駆動信号生成部120からの出力信号は、信号線102により伝達される。
 発光駆動部130は、光源20を発光させるものである。この発光駆動部130は、光源20を発光させるための発光電流を光源20に供給する。発光駆動部130は、MOSトランジスタ等の半導体素子により構成することができる。発光駆動部130の構成の詳細については後述する。
 位相差検出部140は、光源20の発光期間と発光制御信号との位相差を検出するものである。この位相差を検出することにより、発光制御信号に対する光源20の発光の遅れを検出することができる。測距センサ3が計時した光源装置4からの光の出射から反射光の入射までに要した時間からこの発光の遅れを減算することにより、対象物までの距離の検出の際の誤差を低減することができる。
 同図の位相差検出部140は、受信部110から出力される発光制御信号と駆動信号生成部120から出力される発光制御信号との位相差を検出する。すなわち、同図の位相差検出部140は、駆動信号生成部120から出力される発光制御信号を光源20の発光期間として位相差を検出する。また、同図の位相差検出部140は、検出した位相差を差動信号として出力する。具体的には、互いに逆相となる位相差信号が生成され、2つの信号線105および106を介してそれぞれ出力される。位相差検出部140の構成の詳細については後述する。 
 フィルタ151および152は、位相差検出部140により検出された位相差のうち高周波成分を減衰するものである。これらのフィルタ151および152は、低域通過フィルタにより構成することができる。位相差検出部140から出力される位相差信号は、位相差に応じたパルス幅のパルス信号列により構成される。フィルタ151および152は、このパルス信号の高周波成分を減衰することにより、位相差に応じた電圧の低周波の位相差信号を生成する。フィルタ151は、信号線105および107に接続され、信号線105を介して入力される位相差信号の高周波成分を減衰して信号線107に出力する。フィルタ152は、信号線106および108に接続され、信号線106を介して入力される位相差信号の高周波成分を減衰して信号線108に出力する。
 遅延検出部160は、位相差検出部140により検出された位相差に基づいて光源20における発光の遅延を検出するものでる。同図の遅延検出部160には、信号線107および108が接続され、フィルタ151および152により高周波成分が減衰された差動信号の位相差信号がそれぞれ入力される。そして、遅延検出部160は、差動信号の位相差信号から遅延時間に対応する遅延信号を生成し、信号線13を介して測距センサ3に対して出力する。この際、遅延検出部160は、デジタル信号の遅延信号を出力することができる。
 [発光駆動部の構成]
 図2は、本開示の第1の実施の形態に係る発光駆動部の構成例を示す図である。同図は、発光駆動部130の構成例を表す回路図である。発光駆動部130は、MOSトランジスタ131と、定電流回路132とを備える。なお、同図には、光源20も記載した。
 MOSトランジスタ131のゲートは信号線102に接続され、ソースは定電流回路132のシンク側端子に接続される。定電流回路132のソース側端子は、接地される。MOSトランジスタ131のドレインは信号線14を介して光源20のカソードに接続される。光源20のアノードは、電源線Vccに接続される。ここで、電源線Vccは、光源20の発光電流を流すための電源を供給する電源線である。
 MOSトランジスタ131は、光源20に発光電流を供給する半導体素子である。このMOSトランジスタ131は、駆動信号生成部120により生成された駆動信号により駆動される。同図のMOSトランジスタ131には、nチャネルMOSトランジスタを使用することができる。ゲートソース間電圧Vgsの閾値を超える電圧の駆動信号がゲートに印加されるとMOSトランジスタ131は導通状態になる。シンク電流の発光電流が光源20に供給される。
 定電流回路132は、定電流を流す回路である。この定電流回路132は、MOSトランジスタ131が導通した際に光源20に流れる電流を所定の発光電流に制限する回路である。定電流回路132には、MOSトランジスタを使用した定電流回路を使用することができる。
 同図に表したように、発光駆動部130にはMOSトランジスタ131が配置され、駆動信号生成部120はMOSトランジスタ131のゲート駆動信号を生成して出力する。上述のようにMOSトランジスタ131を導通させるためにはVgsの閾値を超える振幅の信号を印加する必要がある。また、光源20を高速に発光させるためには、MOSトランジスタ131の導通および非導通相互の遷移を高速化する必要があり、駆動の際にMOSトランジスタ131のゲート容量を高速に充放電する必要がある。駆動信号生成部120は、比較的振幅が大きく立ち上がりおよび立ち下がり時間が短い駆動信号を生成することとなる。このため、受信部110による発光制御信号の入力から駆動信号の出力までに遅延を生じ、発光制御信号および駆動信号の間に位相差を生じる。前述の位相差検出部140は、この位相差を検出する。
 [位相差検出部の構成]
 図3は、本開示の実施の形態に係る位相差検出部の構成例を示す図である。同図は、位相差検出部140の構成例を表す回路図である。位相差検出部140は、遅延回路141および142と、反転ゲート143および144と、2入力NANDゲート145乃至148とを備える。
 遅延回路141の入力には信号線101が接続され、出力は反転ゲート143を介してNANDゲート145の一方の入力に接続される。NANDゲート145の他方の入力には、信号線101が接続される。遅延回路142の入力には信号線102が接続され、出力は反転ゲート144を介してNANDゲート146の一方の入力に接続される。NANDゲート146の他方の入力には、信号線102が接続される。NANDゲート147の一方の入力にはNANDゲート145の出力が接続され、他方の入力にはNANDゲート148の出力が接続される。NANDゲート148の一方の入力にはNANDゲート146の出力が接続され、他方の入力にはNANDゲート147の出力が接続される。信号線105はNANDゲート147の出力に接続され、信号線106はNANDゲート148の出力に接続される。
 遅延回路141および142は、入力された信号を所定の期間遅延させて出力する回路である。遅延回路141は、受信部110から出力された発光制御信号を遅延させる。この遅延した発光制御信号を反転ゲート143により反転してNANDゲート145に入力するとともに遅延させない発光制御信号をNANDゲート145に入力する。これにより、発光制御信号の立ち上がりに同期するとともに遅延回路141の遅延時間のパルス幅の信号を生成することができる。同様に、駆動信号生成部120により生成された駆動信号の立ち上がりに同期する信号が生成される。これらの信号は、NANDゲート147および148により構成されたフリップフロップ回路に入力される。このフリップフロップ回路は、発光制御信号によりセットされ、駆動信号によりリセットされる。この発光制御信号によるセットから駆動信号によるリセットまでのパルス幅の信号が発光制御信号および駆動信号の位相差に相当する信号であり、信号線105および106に出力される。
 フリップフロップ回路のそれぞれの出力信号は互いに反転した信号である。このため、信号線105および106の信号は、差動の位相差信号となる。この差動の位相差信号がそれぞれフィルタ151および152を介して遅延検出部160に入力される。このように、位相差検出部140が差動の位相差信号を出力し、後述するアナログデジタル変換部161が差動信号のアナログデジタル変換を行う。これにより、光源駆動装置10の製造プロセスや電源電圧、温度等の変化による位相差信号の誤差を低減することができる。
 [遅延検出部の構成]
 図4は、本開示の実施の形態に係る遅延検出部の構成例を示す図である。同図は、遅延検出部160の構成例を表す図である。遅延検出部160は、アナログデジタル変換部161と、遅延保持部162とを備える。
 アナログデジタル変換部161は、位相差信号をデジタル信号に変換するものである。同図のアナログデジタル変換部161は、フィルタ151および152により高周波成分が減衰された位相差信号をデジタルの信号に変換する。このデジタル信号に変換される位相差信号は、発光制御信号および駆動信号の位相差に対応する電圧の信号であり、発光制御信号に対する駆動信号の遅れに応じた電圧の信号である。このような処理により、発光制御信号および駆動信号の位相差に基づく遅延時間を検出することができる。また、発光制御信号に対する駆動信号の遅延時間に相当するデジタルの信号である遅延信号を生成することができる。この遅延信号は、信号線169を介して遅延保持部162に出力される。また、アナログデジタル変換部161におけるアナログデジタル変換は、制御部100からの制御信号により制御される。
 遅延保持部162は、アナログデジタル変換部161から出力された遅延信号を保持するものである。この遅延保持部162は、保持した遅延時間を所望のタイミングにおいて測距センサ3に対して出力する。遅延保持部162は、デジタル信号を保持するレジスタにより構成することができる。また、アナログデジタル変換部161が複数のアナログデジタル変換を行って複数の遅延信号を生成し、遅延保持部162が複数の遅延信号を保持するとともにそれらの平均値を遅延時間として出力することもできる。遅延保持部162は、制御部100からの制御信号により制御される。
 [位相差および遅延の検出]
 図5は、本開示の実施の形態に係る位相差および遅延の検出の一例を示す図である。同図は、光源駆動装置10における発光制御信号および駆動信号の位相差の検出の一例を表すタイミング図である。同図において、「差動発光制御信号」は、信号線11により伝達されて受信部110に入力される差動発光制御信号を表す。「発光制御信号」は、受信部110から出力される発光制御信号を表す。「駆動信号」は、駆動信号生成部120から出力される駆動信号を表す。「NANDゲート145出力」および「NANDゲート146出力」は、それぞれ図3において説明したNANDゲート145および146の出力信号を表す。「位相差検出部出力(信号線105)」は信号線105に出力される位相差検出部140の出力信号を表し、「位相差検出部出力(信号線106)」は信号線106に出力される位相差検出部140出力信号を表す。「フィルタ151出力」および「フィルタ152出力」は、フィルタ151および152の出力信号をそれぞれ表す。
 なお、同図の「差動発光制御信号」の実線と点線は、2つの差動信号を表す。また、同図の「発光制御信号」、「駆動信号」、「NANDゲート145出力」、「NANDゲート146出力」および「位相差検出部出力」は、2値化された信号波形により表されたものである。また、同図の点線は、0Vのレベルを表す。
 測距センサ3から出力された差動発光制御信号が受信部110によりシングルエンドの発光制御信号に変換される。同図に表したように、発光制御信号には、デューティ比50%の矩形波を使用することができる。この発光制御信号が駆動信号生成部120に入力されると駆動信号が生成されて出力される。同図に表したように、駆動信号は、発光制御信号に対して遅延時間分だけ位相が遅れた信号となる。これら発光制御信号および駆動信号が位相差検出部140に入力され、それぞれの信号の立ち上がりに同期したパルス信号がNANDゲート145および146から出力される。
 これらのパルス信号がフリップフロップ回路を構成するNANDゲート147および148に入力される。NANDゲート145の出力信号の立ち下がりに同期してNANDゲート147の出力信号(信号線105の信号)およびNANDゲート148の出力信号(信号線106の信号)がそれぞれ値「1」および値「0」に遷移する。次に、NANDゲート146の出力信号の立ち下がりに同期してNANDゲート147の出力信号(信号線105の信号)およびNANDゲート148の出力信号(信号線106の信号)が反転し、それぞれ値「0」および値「1」に遷移する。
 同図の前半は発光制御信号に対する駆動信号の遅延が比較的小さい場合を表し、後半は発光制御信号に対する駆動信号の遅延が比較的大きい場合を表す。位相差検出部140の差動の出力信号のパルス幅は、発光制御信号に対する駆動信号の遅延時間に応じたパルス幅となる。これら位相差検出部140の出力信号がフィルタ151および152に入力されて高い周波数成分が減衰されると、位相差検出部140の出力信号のパルス幅に応じた電圧の差動信号に変換される。このフィルタ151および152の出力信号をアナログデジタル変換することにより、発光制御信号および駆動信号の位相差に基づく遅延を検出することができる。
 [距離の検出]
 図6は、本開示の実施の形態に係る距離の検出の一例を示す図である。同図は、光源装置4における光源20の駆動および遅延の検出の一例を表すタイミング図である。
 同図におけるAは、対象物との距離を測定するマイクロフレームを表したものである。距離の測定は、光源装置4を発光させながら対象物からの反射光を測距センサ3によって受光し、1画面分の画像を取得することにより行う。この画像を取得する期間がマイクロフレームに該当する。同図におけるAの「マイクロフレーム信号」は、このマイクロフレームの区切りを表す信号であり、値「1」の期間に画像を生成し、値「0」の期間に生成された画像のデータが転送される。なお、マイクロフレーム信号は、測距センサ3の内部信号である。
 画像生成の際の条件等を変えた複数のマイクロフレームにより距離の測定を行うことができる。例えば、光源装置4の発光と測距センサ3の受光との位相をマイクロフレーム毎に0、90、180および270°に変えて4つの画像を生成する。次に、これら4つの画像から光源装置4における出射光および対象物からの反射光の位相差を算出して対象物までの距離を測定することができる。距離の測定の詳細については後述する。
 この4つのマイクロフレームの期間は対象物までの距離を測定するフレームを構成する。このフレームは、複数回繰り返すことができ、複数のフレームにおける距離の平均値を対象物までの距離にすることができる。
 同図におけるBは、各マイクロフレームにおける遅延の検出の一例を表す図である。同図におけるBの「発光制御信号」は、受信部110から出力される発光制御信号を表す。「遅延検出信号」は、光源駆動装置10に遅延の検出を指示する信号である。この「遅延検出信号」は、図1において説明した測距センサ3から信号線12を介して出力される制御信号の一例である。「AD変換信号」は、制御部100から遅延検出部160のアナログデジタル変換部161に出力される制御信号であり、アナログデジタル変換を指示する信号である。「遅延出力」は、光源駆動装置10から出力される遅延信号を表す。
 マイクロフレーム信号が値「1」になると、パルス列の差動発光制御信号が測距センサ3から出力される。この出力された差動発光制御信号が受信部110により受信されて発光制御信号に変換されて駆動信号生成部120および位相差検出部140に出力される。所定のパルス数の差動発光制御信号が出力された後に、測距センサ3は、値「1」の遅延検出信号を出力する。遅延検出信号が出力されると、制御部100は、値「1」のAD変換信号をアナログデジタル変換部161に対して出力する。このAD変換信号が入力されると、アナログデジタル変換部161は、フィルタ151および152から出力される位相差信号のアナログデジタル変換を行う。このアナログデジタル変換により生成されたデジタル信号の遅延時間は、遅延保持部162に保持される。
 同図におけるBは、アナログデジタル変換を8回行う例を表したものである。制御部100は、AD変換信号を8回出力する。アナログデジタル変換部161は、AD変換信号が入力される毎にアナログデジタル変換を行って検出した遅延時間を遅延保持部162に対して出力する。遅延保持部162は、これら複数の遅延時間を保持する。その後、遅延検出信号の出力が停止されると、遅延保持部162は、保持した複数の遅延時間の平均値を算出して遅延データを生成し、信号線13を介して測距センサ3に出力する。
 また、マイクロフレーム信号が値「1」になると、測距センサ3による反射光の検出が開始され、反射光に基づく画像信号が生成される。画像信号の生成は、後述する測距センサ3に配置された撮像素子350により行われる。この撮像素子350は、反射光の光電変換を行い、光電変換により生成された電荷に基づいて画像信号を生成する。この際、撮像素子350は、マイクロフレーム信号が値「1」の期間に光電変換により生成した電荷を蓄積し、マイクロフレーム信号が値「0」になると蓄積した画像信号に基づいて画像信号を生成して後述する画像処理部360に出力(転送)する。この画像処理部360により対象物が検出されるとともに検出された対象物に対する光源駆動装置10の発光から反射光の検出までの時間が計時される。この計時された時間から遅延保持部162によって出力された遅延信号に基づく遅延時間が減算され、距離が算出される。この遅延時間の減算により、光源駆動装置10における発光の遅延に基づく誤差を低減することができる。
 以上説明したように、本開示の第1の実施の形態の光源駆動装置10は、駆動信号生成部120に入力される発光制御信号と駆動信号生成部120から出力される駆動信号との位相差を検出することにより、光源20における発光の遅延を検出する。この検出された遅延を用いて対象物との距離の補正を行うことにより、距離測定の誤差を低減することができる。
 <2.第2の実施の形態>
 上述の第1の実施の形態の光源駆動装置10は、駆動信号生成部120の遅延を検出していた。これに対し、本開示の第2の実施の形態の光源駆動装置10は、受信部の遅延をさらに検出する点で、上述の第1の実施の形態と異なる。
 [光源装置の構成]
 図7は、本開示の第2の実施の形態に係る光源装置の構成例を示す図である。同図は、図1と同様に、光源装置4の構成例を表す図である。光源駆動装置10の駆動信号生成部120および位相差検出部140の間に受信部170がさらに配置される点で、図1において説明した光源装置4と異なる。
 受信部170は、受信部110と同様の遅延特性を有する受信部である。受信部170の非反転入力は信号線102に接続され、反転入力は電源線Vdd/2に接続される。受信部170の出力は信号線103に接続される。電源線Vdd/2は、受信部170の電源電圧の1/2の電圧の電源を供給する電源線である。電源電圧の1/2の電圧が反転入力に印加されるため、受信部170は、非反転バッファとして動作する。また、信号線103は、図3において説明した遅延回路142およびNANDゲート146の入力に接続される信号線である。同図の位相差検出部140には、受信部170を経由した駆動信号が入力される。このため、同図の位相差検出部140は、駆動信号生成部120および受信部170の遅延に基づく位相差を検出する。上述のように、受信部170は受信部110と同様の遅延特性を有するため、同図の光源駆動装置10は、受信部110および駆動の遅延を検出することができる。
 これ以外の光源駆動装置10の構成は本開示の第1の実施の形態において説明した光源駆動装置10の構成と同様であるため、説明を省略する。
 以上説明したように、本開示の第2の実施の形態の光源駆動装置10は、駆動信号生成部120および位相差検出部140の間に受信部170を配置して駆動信号を遅延させることにより、受信部110の遅延時間を検出することができる。距離測定の誤差をさらに低減することができる。
 <3.第3の実施の形態>
 上述の第1の実施の形態の光源駆動装置10は、発光制御信号および駆動信号の位相差を検出していた。これに対し、本開示の第3の実施の形態の光源駆動装置10は、発光制御信号と光源20の発光電流に基づく信号との位相差を検出する点で、上述の第1の実施の形態と異なる。
 [発光駆動部の構成]
 図8は、本開示の第3の実施の形態に係る発光駆動部の構成例を示す図である。同図は、図2と同様に、発光駆動部130の構成例を表す回路図である。同図の発光駆動部130は、駆動信号生成部120および位相差検出部140との接続が記載される点で、図2の発光駆動部130と異なる。
 同図の位相差検出部140は、発光制御信号と駆動電圧信号との位相差を検出する。ここで、駆動電圧信号は、光源20の発光期間を表す信号であり、発光電流に基づいて生成される信号である。
 駆動電圧検出部180は、駆動電圧信号を生成するものである。この駆動電圧検出部180は、信号線14を介して取得したMOSトランジスタ131のドレイン電圧を位相差検出部140の論理回路の信号レベルに変換するとともに論理を反転することにより駆動電圧信号を生成する。生成された駆動電圧信号は、信号線104を介して位相差検出部140に入力される。
 発光駆動部130において、駆動信号の入力から光源20への発光電流の供給までには遅延時間を生じる。MOSトランジスタ131が導通状態に遷移する時間が必要なためである。そこで、MOSトランジスタ131のドレイン電圧を検出して駆動電圧信号を生成し、位相差検出部140に入力することにより、発光駆動部130の遅延時間を検出することができる。
 これ以外の光源駆動装置10の構成は本開示の第1の実施の形態において説明した光源駆動装置10の構成と同様であるため、説明を省略する。
 以上説明したように、本開示の第3の実施の形態の光源駆動装置10は、発光駆動部130のMOSトランジスタ131のドレイン電圧から駆動電圧信号を生成して発光制御信号との位相差を検出する。これにより、発光駆動部130の遅延時間を検出することができ、距離測定の誤差をさらに低減することができる。
 <4.第4の実施の形態>
 上述の第3の実施の形態の光源駆動装置10は、発光制御信号および駆動電圧信号の位相差を検出していた。これに対し、本開示の第4の実施の形態の光源駆動装置10は、発光制御信号と光源20の発光との位相差を検出する点で、上述の第3の実施の形態と異なる。
 [発光駆動部の構成]
 図9は、本開示の第4の実施の形態に係る発光駆動部の構成例を示す図である。同図は、図8と同様に、発光駆動部130の構成例を表す回路図である。駆動電圧検出部180の代わりに受光素子30および受光部190を備える点で、図8の発光駆動部130と異なる。
 同図の位相差検出部140は、発光制御信号と受光信号との位相差を検出する。ここで、受光信号は、光源20の発光期間を表す信号であり、光源20の発光を検出して生成される信号である。
 受光素子30は、光源20の光を受光するものである。この受光素子30は、照射された光の変化を電気信号に変換することにより受光する。受光素子30は、例えば、受光ダイオードにより構成することができる。同図の受光素子30は、カソードが電源線Vddに接続されて電源が供給される。受光素子30には、受光量に応じた電流が流れる。
 受光部190は、光源20の発光を検出するものである。受光部190は、抵抗191と、非反転バッファ192とを備える。非反転バッファ192の入力は受光素子30のアノードおよび抵抗191の一端に接続される。抵抗191の他の一端は、接地される。非反転バッファ192の出力は、信号線104に接続される。上述のように、受光素子30には、受光量に応じた電流が流れる。抵抗191は、この電流の変化を電圧の変化に変換するものである。この電圧の変化は、非反転バッファ192により増幅され、受光信号として出力される。
 光源20において、発光電流の供給から光の出射までには遅延時間を生じる。レーザ光の発振の開始には遅延時間を伴うためである。そこで、受光素子30および受光部190を配置して光源20の発光を直接検出し、受光信号を生成する。この受光信号を位相差検出部140に入力することにより、発光駆動部130および光源20の遅延時間を検出することができる。
 これ以外の光源駆動装置10の構成は本開示の第3の実施の形態において説明した光源駆動装置10の構成と同様であるため、説明を省略する。
 以上説明したように、本開示の第4の実施の形態の光源駆動装置10は、光源20の光を検出して受光信号を生成し、発光制御信号との位相差を検出する。これにより、発光駆動部130および光源20の遅延時間を検出することができ、距離測定の誤差をさらに低減することができる。
 <5.測距センサ>
 上述の測距装置に適用される測距センサ3の構成について説明する。
 [測距センサの構成]
 図10は、本開示の実施の形態に係る測距センサの構成例を示す図である。同図は、測距センサ3の構成例を表す図である。同図の測距センサ3は、測距制御装置2の指示に基づいて対象物までの距離を測定し、測定結果を測距制御装置2に対して出力する。測距制御装置に2は、例えば、アプリケーションプロセッサを使用することができる。
 測距センサ3は、ホストインターフェース部310と、システム制御部320と、光源装置制御部330と、送信部340と、撮像素子350と、画像処理部360と、遅延検出部370とを備える。
 ホストインターフェース部310は、測距制御装置2とのやり取りを行うものである。測距制御装置2からは制御信号が出力される。測距センサ3は自身の状態を表すステータスを出力するとともに後述する距離マップ画像を測距制御装置2に対して出力する。これらの信号のやり取りは、ホストインターフェース部310が行う。
 システム制御部320は、測距センサ3の全体を制御し、測距制御装置2から出力された制御信号に基づいて距離の測定の制御を行うものである。システム制御部320は、光源装置4の発光のタイミングを表す発光タイミング信号を生成し、光源装置制御部330、画像処理部360および遅延検出部370に出力する。
 光源装置制御部330は、光源装置4を制御するものである。この光源装置制御部330は、システム制御部320から出力され発光タイミング信号に基づいて発光制御信号を生成し、送信部340に対して出力する。また、光源装置制御部330は、図1において説明した制御信号を生成し、信号線12を介して制御部100に出力する。
 送信部340は、発光制御信号を差動信号である差動発光制御信号に変換し、信号線11を介して光源装置4に送信するものである。
 遅延検出部370は、光源装置制御部330の遅延を検出するものである。この遅延検出部370は、発光タイミング信号と発光制御信号との位相差に基づいて光源装置制御部330の遅延を検出する。検出された遅延は、画像処理部360に対して出力される。
 撮像素子350は、撮像を行う半導体の素子である。この撮像素子350は、対象物の撮像を行い、対象物の画像を生成する。生成された画像は、画像処理部360に対して出力される。
 画像処理部360は、撮像素子350から出力される画像を処理するものである。この画像処理部360は、撮像素子350から出力される画像に基づいて対象部までの距離を検出する。具体的には、画像処理部360は、発光タイミング信号がシステム制御部320から出力されると、計時を開始する。その後、撮像素子350からの画像に基づいて反射光を検出し、計時を停止する。この計時された光の飛行時間から対象物までの距離を検出する。この際、画像処理部360は、計時された光の飛行時間から光源駆動装置10により検出された遅延と遅延検出部370により検出された遅延とを減算する。これにより、光源駆動装置10および光源装置制御部330の遅延に基づく誤差を低減することができる。また、画像処理部360は、対象物までの距離に基づいて距離マップ画像を生成することができる。この距離マップ画像により、対象物の立体的な形状を取得することができる。画像処理部360は、生成した距離マップ画像を測距制御装置2に対して出力する。
 なお、撮像素子350は、請求の範囲に記載のセンサの一例である。画像処理部360は、請求の範囲に記載の処理回路の一例である。測距センサ3は、請求の範囲に記載の測距装置の一例である。
 [遅延検出部の構成]
 図11は、本開示の実施の形態に係る遅延検出部の構成例を示す図である。同図は、遅延検出部370の構成例を表す図である。遅延検出部370は、位相差検出部371と、フィルタ372と、アナログデジタル変換部373とを備える。
 位相差検出部371は、システム制御部320から出力される発光タイミング信号と光源装置制御部330から出力される発光制御信号との位相差を検出するものである。検出された位相差は、フィルタ372に対して出力される。
 フィルタ372は、位相差検出部371から出力される位相差の高周波成分を減衰するものである。高周波成分が減衰された位相差は、アナログデジタル変換部373に対して出力される。
 アナログデジタル変換部373は、高周波成分が減衰された位相差のアナログデジタル変換を行い、デジタル信号の遅延時間を生成するものである。生成された遅延時間は、画像処理部360に対して出力される。
 なお、測距センサ3の構成は、この例に限定されない。例えば、遅延検出部370を省略することもできる。この場合、画像処理部360は、光源駆動装置10から出力される遅延に基づいて光の飛行時間の補正を行う。
 以上説明したように、本開示の測距センサ3は、光源駆動装置10の遅延時間に加えて自身の光源装置制御部330の遅延を検出し、光の飛行時間から減算する。これにより、距離の測定の誤差を低減することができる。
 なお、第2の実施の形態の光源駆動装置10の構成は、他の実施の形態と組み合わせることができる。具体的には、図7の光源駆動装置10構成は、第3および第4の実施の形態の光源駆動装置10に適用することができる。
 <6.測距装置>
 上述の光源装置4および測距センサ3を使用する測距装置について説明する。
 [測距装置の構成]
 図12は、本開示の実施の形態に係る測距装置の構成例を示す図である。同図は、測距装置1の構成例を表すブロック図である。同図の測距装置1は、測距センサ3と、光源装置4と、レンズ5とを備える。なお、同図には、測距制御装置2および距離測定の対象物901を記載した。
 レンズ5は、測距センサ3の撮像素子350に対象物を結像するレンズである。
 同図の測距センサ3は、光源装置4を制御して出射光902を対象物901に出射させる。出射光902が対象物901から反射されて反射光903となる。測距センサ3は、反射光903を検出した際に、出射光902の出射から反射光903の検出までの時間を計時し、対象物901までの距離を測定する。この測定された距離は、距離データとして測距制御装置2に出力される。
 [測距処理]
 図13は、本開示の実施の形態に係る測距の一例を示す図である。同図におけるAは、光源装置4から出射された出射光と対象物により反射された反射光との関係を表す図である。同図におけるAにおいて、正のx軸の方向が出射光の位相に対応する。同図におけるAの「R」は反射光を表す。出射光および反射光Rの間には、距離に応じた位相差θを生じる。この位相差θを検出することにより、対象物までの距離を測定することができる。ここで、Iは出射光と同相の成分を表し、Qは出射光と直交する成分を表す。位相差θは次式により表すことができる。
  θ=arctan(Q/I)
ここで、Iは出射光と同相の反射光の波高値を表す。Qは直交する反射光の波高値を表す。同図におけるAは、正弦波の出射光等を想定したものであるが、パルス波の出射光等においても上述の式によりθを算出することができる。これは、出射光に対して90度位相が異なる複数のタイミングにおいて反射光を検出することにより行うことができる。同図におけるBは、この様子を表したものである。
 同図におけるBの「出射光」および「反射光」は、それぞれ出射光および反射光の波形を表す。反射光は、出射光に対してΔT遅れた波形となる。このΔTが対象物との間を往復する時間となる。対象物までの距離Dは、次式により表すことができる。
  D=c×ΔT/2=c×θ/(4π×f)
ここで、cは光速を表す。fは出射光の周波数を表す。
 また、同図におけるBの「Q0」、「Q180」、「Q90」、および「Q270」は、それぞれ、出射光に対して、0、180、90および270度ずれた位相において反射光を検出する場合を表したものである。「Q0」等の波形の値「1」の期間に反射光の検出が行われる。「Q0」等の波形において斜線のハッチングを付した部分が検出される反射光を表す。この「Q0」等により、IおよびQは、次のように表すことができる。
  I=Q0-Q180
  Q=Q90-Q270
これにより、θは、次式により表すことができる。
  θ=arctan((Q90-Q270)/(Q0-Q180))
このθを上記の式に代入することにより、対象物までの距離Dを算出することができる。
 最後に、上述した各実施の形態の説明は本開示の一例であり、本開示は上述の実施の形態に限定されることはない。このため、上述した各実施の形態以外であっても、本開示に係る技術的思想を逸脱しない範囲であれば、設計等に応じて種々の変更が可能であることは勿論である。
 また、本明細書に記載された効果はあくまで例示であって限定されるものでは無い。また、他の効果があってもよい。
 また、上述の実施の形態における図面は、模式的なものであり、各部の寸法の比率等は現実のものとは必ずしも一致しない。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれることは勿論である。
 また、上述の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、DVD(Digital Versatile Disc)およびメモリカード等を用いることができる。
 なお、本技術は以下のような構成もとることができる。
(1)光源を発光させる発光電流を供給する発光駆動部と、
 前記光源を発光させる発光制御信号に基づいて前記発光駆動部を駆動するための駆動信号を生成する駆動信号生成部と、
 前記光源の発光期間と前記発光制御信号との位相差を検出する位相差検出部と、
 前記検出された位相差に基づいて前記発光の遅延を検出する遅延検出部と
を具備する光源駆動装置。
(2)前記位相差検出部は、前記駆動信号を前記光源の発光期間として前記発光制御信号との位相差を検出する前記(1)に記載の光源駆動装置。
(3)前記位相差検出部は、前記発光電流に基づく信号を前記光源の発光期間として前記発光制御信号との位相差を検出する前記(1)に記載の光源駆動装置。
(4)前記光源の発光を検出する受光部をさらに具備し、
 前記位相差検出部は、前記検出した発光の期間を前記光源の発光期間として前記発光制御信号との位相差を検出する
前記(1)に記載の光源駆動装置。
(5)前記位相差検出部は、前記検出した位相差に応じた差動信号を出力し、
 前記遅延は、前記位相差検出部から出力された差動信号に基づいて前記発光の遅延を検出する
前記(1)から(4)の何れかに記載の光源駆動装置。
(6)前記検出された位相差のうち高周波成分を減衰するフィルタをさらに具備し、
 前記遅延検出部は、前記高周波成分が減衰された位相差に基づいて前記遅延を検出する前記(1)から(5)の何れかに記載の光源駆動装置。
(7)信号線路により伝達される前記発光制御信号を受信して当該受信した発光制御信号を出力する受信部をさらに具備し、
 前記駆動信号生成部は、前記受信部から出力される発光制御信号に基づいて前記駆動信号を生成し、
 前記位相差検出部は、前記光源の発光期間と前記受信部から出力される発光制御信号との位相差を検出する
前記(1)から(6)の何れかに記載の光源駆動装置。
(8)前記信号線路は、差動信号に変換された前記発光制御信号である差動発光制御信号を伝達し、
 前記受信部は、前記伝達された差動発光制御信号を受信して前記発光制御信号に変換する
前記(7)に記載の光源駆動装置。
(9)前記生成された駆動信号が入力される第2の受信部をさらに具備し、
 前記位相差検出部は、前記光源の発光期間と前記第2の受信部から出力される前記駆動信号との位相差を検出する
前記(7)に記載の光源駆動装置。
(10)光源と、
 前記光源を発光させる発光電流を供給する発光駆動部と、
 前記光源を発光させるための発光制御信号に基づいて前記発光駆動部を駆動するための駆動信号を生成する駆動信号生成部と、
 前記光源の発光期間と前記発光制御信号との位相差を検出する位相差検出部と、
 前記検出された位相差に基づいて前記発光の遅延を検出する遅延検出部と
を具備する光源装置。
(11)光源と、
 前記光源を発光させる発光電流を供給する発光駆動部と、
 前記光源を発光させるための発光制御信号に基づいて前記発光駆動部を駆動するための駆動信号を生成する駆動信号生成部と、
 前記光源の発光期間と前記発光制御信号との位相差を検出する位相差検出部と、
 前記検出された位相差に基づいて前記発光の遅延を検出する遅延検出部と、
 前記光源の発光により出射された光が対象物により反射された反射光を検出するセンサと、
 前記光の出射から前記反射光の検出までを計時することにより前記対象物までの距離を検出する処理を行う処理回路と
を具備する測距装置。
 1 測距装置
 2 測距制御装置
 3 測距センサ
 4 光源装置
 10 光源駆動装置
 20 光源
 30 受光素子
 110 受信部
 120 駆動信号生成部 
 130 発光駆動部
 140、371 位相差検出部
 151、152、372 フィルタ
 160、370 遅延検出部
 161、373 アナログデジタル変換部
 170 受信部
 180 駆動電圧検出部
 190 受光部
 320 システム制御部
 330 光源装置制御部
 350 撮像素子
 360 画像処理部

Claims (11)

  1.  光源を発光させる発光電流を供給する発光駆動部と、
     前記光源を発光させる発光制御信号に基づいて前記発光駆動部を駆動するための駆動信号を生成する駆動信号生成部と、
     前記光源の発光期間と前記発光制御信号との位相差を検出する位相差検出部と、
     前記検出された位相差に基づいて前記発光の遅延を検出する遅延検出部と
    を具備する光源駆動装置。
  2.  前記位相差検出部は、前記駆動信号を前記光源の発光期間として前記発光制御信号との位相差を検出する請求項1記載の光源駆動装置。
  3.  前記位相差検出部は、前記発光電流に基づく信号を前記光源の発光期間として前記発光制御信号との位相差を検出する請求項1記載の光源駆動装置。
  4.  前記光源の発光を検出する受光部をさらに具備し、
     前記位相差検出部は、前記検出した発光の期間を前記光源の発光期間として前記発光制御信号との位相差を検出する
    請求項1記載の光源駆動装置。
  5.  前記位相差検出部は、前記検出した位相差に応じた差動信号を出力し、
     前記遅延は、前記位相差検出部から出力された差動信号に基づいて前記発光の遅延を検出する
    請求項1記載の光源駆動装置。
  6.  前記検出された位相差のうち高周波成分を減衰するフィルタをさらに具備し、
     前記遅延検出部は、前記高周波成分が減衰された位相差に基づいて前記遅延を検出する請求項1記載の光源駆動装置。
  7.  信号線路により伝達される前記発光制御信号を受信して当該受信した発光制御信号を出力する受信部をさらに具備し、
     前記駆動信号生成部は、前記受信部から出力される発光制御信号に基づいて前記駆動信号を生成し、
     前記位相差検出部は、前記光源の発光期間と前記受信部から出力される発光制御信号との位相差を検出する
    請求項1記載の光源駆動装置。
  8.  前記信号線路は、差動信号に変換された前記発光制御信号である差動発光制御信号を伝達し、
     前記受信部は、前記伝達された差動発光制御信号を受信して前記発光制御信号に変換する
    請求項7記載の光源駆動装置。
  9.  前記生成された駆動信号が入力される第2の受信部をさらに具備し、
     前記位相差検出部は、前記光源の発光期間と前記第2の受信部から出力される前記駆動信号との位相差を検出する
    請求項7記載の光源駆動装置。
  10.  光源と、
     前記光源を発光させる発光電流を供給する発光駆動部と、 前記光源を発光させるための発光制御信号に基づいて前記発光駆動部を駆動するための駆動信号を生成する駆動信号生成部と、
     前記光源の発光期間と前記発光制御信号との位相差を検出する位相差検出部と、
     前記検出された位相差に基づいて前記発光の遅延を検出する遅延検出部と
    を具備する光源装置。
  11.  光源と、
     前記光源を発光させる発光電流を供給する発光駆動部と、
     前記光源を発光させるための発光制御信号に基づいて前記発光駆動部を駆動するための駆動信号を生成する駆動信号生成部と、
     前記光源の発光期間と前記発光制御信号との位相差を検出する位相差検出部と、
     前記検出された位相差に基づいて前記発光の遅延を検出する遅延検出部と、
     前記光源の発光により出射された光が対象物により反射された反射光を検出するセンサと、
     前記光の出射から前記反射光の検出までを計時することにより前記対象物までの距離を検出する処理を行う処理回路と
    を具備する測距装置。
PCT/JP2021/016704 2020-06-15 2021-04-27 光源駆動装置、光源装置および測距装置 WO2021256094A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-103106 2020-06-15
JP2020103106A JP2021197284A (ja) 2020-06-15 2020-06-15 光源駆動装置、光源装置および測距装置

Publications (1)

Publication Number Publication Date
WO2021256094A1 true WO2021256094A1 (ja) 2021-12-23

Family

ID=79195898

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/016704 WO2021256094A1 (ja) 2020-06-15 2021-04-27 光源駆動装置、光源装置および測距装置

Country Status (2)

Country Link
JP (1) JP2021197284A (ja)
WO (1) WO2021256094A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023153375A1 (ja) * 2022-02-09 2023-08-17

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025497A1 (ja) * 2013-08-23 2015-02-26 パナソニックIpマネジメント株式会社 測距システム及び信号発生装置
WO2017022152A1 (ja) * 2015-07-31 2017-02-09 パナソニックIpマネジメント株式会社 測距撮像装置、及び、固体撮像装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015025497A1 (ja) * 2013-08-23 2015-02-26 パナソニックIpマネジメント株式会社 測距システム及び信号発生装置
WO2017022152A1 (ja) * 2015-07-31 2017-02-09 パナソニックIpマネジメント株式会社 測距撮像装置、及び、固体撮像装置

Also Published As

Publication number Publication date
JP2021197284A (ja) 2021-12-27

Similar Documents

Publication Publication Date Title
JP6673084B2 (ja) 光飛行型測距装置
CN109521435B (zh) 距离计测装置
JP6045963B2 (ja) 光測距装置
JP5688900B2 (ja) 反射性対象に対する距離を求めるための方法及び装置
JP6933473B2 (ja) 距離計測装置および距離画像撮影装置
US11984908B2 (en) Analogue-to-digital converter
JP6558122B2 (ja) 光飛行型測距装置
JP2011511261A5 (ja)
JPWO2014208018A1 (ja) 測距システム、及び撮像センサ
CN107272010B (zh) 距离传感器及其距离测量方法、3d图像传感器
WO2021256094A1 (ja) 光源駆動装置、光源装置および測距装置
CN111198382A (zh) 飞时测距传感器以及飞时测距方法
JP2020148682A (ja) 距離測定装置及びスキュー補正方法
CN112114322A (zh) 飞时测距装置及飞时测距方法
JP6838532B2 (ja) センサ装置および測定方法
JP2006329902A (ja) 測距装置及び測距方法
WO2020208927A1 (ja) 発光駆動装置および発光装置
US7782241B2 (en) Signal processing method and device, and analog/digital converting device
TWI700507B (zh) 飛行時間測距裝置以及飛行時間測距方法
CN110389356B (zh) 成像系统和由成像系统执行的方法
CN110492871B (zh) 一种后沿定时的恒比定时电路
CN109412012B (zh) 激光源产生电路及均衡方法
CN113497892A (zh) 摄影装置、测距装置及方法、以及存储介质、计算机装置
JP2004226069A (ja) 測距装置
WO2021181857A1 (ja) 遅延補正回路および駆動回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826240

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21826240

Country of ref document: EP

Kind code of ref document: A1