WO2021253953A1 - 一种车窗调节方法、装置、电子设备及可读存储介质 - Google Patents

一种车窗调节方法、装置、电子设备及可读存储介质 Download PDF

Info

Publication number
WO2021253953A1
WO2021253953A1 PCT/CN2021/086942 CN2021086942W WO2021253953A1 WO 2021253953 A1 WO2021253953 A1 WO 2021253953A1 CN 2021086942 W CN2021086942 W CN 2021086942W WO 2021253953 A1 WO2021253953 A1 WO 2021253953A1
Authority
WO
WIPO (PCT)
Prior art keywords
window
vehicle
target passenger
unmanned vehicle
brightness
Prior art date
Application number
PCT/CN2021/086942
Other languages
English (en)
French (fr)
Inventor
李昌远
蔡宗智
孟醒
Original Assignee
北京航迹科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航迹科技有限公司 filed Critical 北京航迹科技有限公司
Publication of WO2021253953A1 publication Critical patent/WO2021253953A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J3/00Antiglare equipment associated with windows or windscreens; Sun visors for vehicles
    • B60J3/04Antiglare equipment associated with windows or windscreens; Sun visors for vehicles adjustable in transparency

Definitions

  • This application relates to the field of data processing technology, and in particular to a method, device, electronic equipment, and readable storage medium for car window adjustment.
  • driverless cars have gradually entered people's production and life.
  • the driverless car combines the functions of detection, identification, judgment, decision-making, optimization, optimization, execution, feedback, and correction control. It is a smart car that integrates information sharing, wireless communication, artificial intelligence and automatic control technologies. .
  • the window of the driverless car in the existing design adjusts the brightness of the light irradiated from the outside of the car into the car, usually when the people inside the car need to adjust the brightness of the car, the window is adjusted by opening and closing the window , The degree of automation of the adjustment of the window brightness is not high.
  • the purpose of the present application is to provide a vehicle window adjustment method, device, electronic equipment, and readable storage medium, so as to realize the purpose of automatically adjusting the brightness of the light in the vehicle according to the posture of the occupant in the vehicle.
  • an embodiment of the present application provides a vehicle window adjustment method, which is applied to an in-vehicle central control system of an unmanned vehicle, including: obtaining the posture information of a target passenger inside the unmanned vehicle in real time and irradiating The illumination information of the light on the unmanned vehicle; determine the adjustment strategy of the window brightness according to the posture information of the target passenger inside the unmanned vehicle; according to the determined adjustment strategy of the window brightness, The windows on the unmanned vehicle are adjusted.
  • the embodiments of the present application provide the first possible implementation manner of the first aspect, wherein the real-time acquisition of the posture information of the target passenger located inside the unmanned vehicle includes: shooting through a vehicle-mounted camera The received video information inside the unmanned vehicle and/or the contact position information between the target passenger and the seat detected by the sensor on the seat to determine the posture of the target passenger inside the unmanned vehicle information.
  • the embodiments of the present application provide a second possible implementation manner of the first aspect, wherein the posture information includes: the inclination angle of the target passenger's body relative to the ground and the eyes when the target passenger contacts the seat Open and closed state; said determining the adjustment strategy of window brightness according to the posture information of the target passenger inside the unmanned vehicle includes: judging whether the inclination angle of the body relative to the ground when the target passenger is in contact with the seat is less than The preset tilt angle and whether the eyes of the target passenger are in the closed state; if the tilt angle of the body relative to the ground when the target passenger is in contact with the seat is less than the preset tilt angle and the eyes of the target passenger are in the closed state , It is determined that the adjustment strategy of the window brightness is to reduce the light transmittance of the window.
  • the embodiments of the present application provide a third possible implementation manner of the first aspect, wherein the posture information of the target passenger includes the eye open state;
  • the posture information of the target passenger to determine the adjustment strategy of the window brightness, including: determining the adjustment strategy of the window brightness if the target passenger’s face is facing the outside of the unmanned vehicle and the eyes are open In order to increase the light transmittance of the vehicle window; if the face of the target passenger is inside the unmanned vehicle and the eyes are open, the adjustment strategy for the brightness of the vehicle window is determined to reduce the light transmittance of the vehicle window .
  • the embodiments of the present application provide a fourth possible implementation manner of the first aspect, wherein the posture information of the target passenger includes: the eye open state of the target passenger; Before determining the position information of the target passenger in the unmanned vehicle, before determining the adjustment strategy of the window brightness, the method further includes: obtaining the travel progress of the unmanned vehicle; Determining the adjustment strategy of the window brightness by the target passenger's posture information includes: determining the adjustment strategy of the window brightness according to the posture information of the target passenger inside the unmanned vehicle and the travel progress.
  • the embodiments of the present application provide a fifth possible implementation manner of the first aspect, wherein the travel progress includes: the ratio of the mileage corresponding to the unmanned vehicle to the estimated total mileage;
  • the determining the adjustment strategy of the window brightness according to the posture information of the target passenger in the unmanned vehicle includes: determining whether the ratio of the mileage corresponding to the unmanned vehicle to the estimated total mileage is greater than the first A preset value; if the ratio of the mileage corresponding to the unmanned vehicle to the estimated total mileage is less than the first preset value and the eyes of the target passenger are in the closed state, the adjustment strategy for determining the brightness of the window is determined as Reduce the light transmittance of the window; if the ratio of the mileage corresponding to the driverless vehicle to the estimated total mileage is greater than the preset value and the eyes of the target passenger are in the closed state, then determine the adjustment of the window brightness The strategy is to increase the light transmittance of the car windows.
  • the embodiments of the present application provide a sixth possible implementation manner of the first aspect, wherein the determination of the adjustment strategy of the window brightness is based on the posture information of the target passenger inside the unmanned vehicle,
  • the method includes: acquiring environmental information outside the unmanned vehicle; determining the adjustment strategy of the window brightness according to the posture information of the target passenger inside the unmanned vehicle and the environmental information outside the unmanned vehicle.
  • an embodiment of the present application provides a seventh possible implementation manner of the first aspect, wherein the posture information of the target passenger includes the eye open state; the external The environmental information includes: the irradiating direction of the light whose light intensity exceeds a second preset value among the light irradiated on the unmanned vehicle; and determining the vehicle window based on the posture information of the target passenger inside the unmanned vehicle
  • the brightness adjustment strategy includes: judging whether the eyes of the target passenger in the unmanned vehicle are open; if the eyes of the target passenger are open, according to the light whose intensity exceeds a second preset value To determine whether the light irradiated on the unmanned vehicle with a light intensity exceeding a first preset value irradiates the eyes of the target passenger; if it irradiates the light on the unmanned vehicle If the light whose light intensity exceeds the second preset value irradiates the eyes of the target passenger, it is determined that the adjustment strategy of the brightness of the vehicle window is to
  • the embodiments of the present application provide the eighth possible implementation manner of the first aspect, wherein the light intensity of the light irradiated on the unmanned vehicle is The light exceeding the second preset value irradiates the eyes of the target passenger, and the adjustment strategy for determining the brightness of the window is to reduce the light transmittance of the window, including: determining the intersection of the target straight line and the window, and determining the window
  • the brightness adjustment strategy is to reduce the light transmittance at the intersection on the vehicle window;
  • the target straight line is the straight line where the light irradiating the eyes of the target passenger and the light intensity exceeds a second preset value.
  • an embodiment of the present application provides a ninth possible implementation manner of the first aspect, wherein, according to the posture information of the target passenger inside the unmanned vehicle And the external environment information of the unmanned vehicle, determining the adjustment strategy of the window brightness, including: determining the direct light irradiation according to the relative position of each window and the illumination information of the light irradiated on the unmanned vehicle The window of the vehicle is used as the target window; according to the posture information of the target passenger and the illumination information of the light irradiated on the target vehicle window, a window brightness adjustment strategy acting on the target vehicle window is determined.
  • an embodiment of the present application provides a tenth possible implementation manner of the first aspect, wherein the posture information further includes: the target passenger maintains the current posture Duration; before determining the adjustment strategy of the window brightness according to the posture information of the target passenger inside the unmanned vehicle, the method further includes: detecting whether the target passenger maintains the current posture for longer than a preset period of time ;
  • the determining the adjustment strategy of the window brightness according to the posture information of the target passenger in the unmanned vehicle includes: if the target passenger maintains the current posture for more than a preset period of time, determining the adjustment strategy of the window brightness To adjust the light transmittance of the car window.
  • the embodiments of the present application provide an eleventh possible implementation manner of the first aspect, wherein the posture information of the target passenger includes any one or more of the following: The angle of inclination relative to the ground, the state of the eyes closed, and the orientation of the face.
  • an embodiment of the present application provides a twelfth possible implementation manner of the first aspect, in which, after the step of reducing the light transmittance of the vehicle window, further Including: judging whether the light intensity inside the unmanned vehicle exceeds a third preset value; if the light intensity inside the unmanned vehicle exceeds the third preset value, driving the electric curtain corresponding to the window to land .
  • an embodiment of the present application provides a vehicle window adjustment device, including: a first acquisition module for acquiring the posture information of a target passenger inside an unmanned vehicle in real time and irradiating it on the unmanned vehicle
  • the first determination module is used to determine the adjustment strategy of the window brightness according to the posture information of the target passenger inside the unmanned vehicle; the adjustment module is used to determine the window brightness according to the determined
  • the adjustment strategy is to adjust the windows on the unmanned vehicle.
  • an embodiment of the present application also provides a vehicle window control system, including: a vehicle window controller and a vehicle window controlled by the vehicle window controller; , Or the steps of the method for adjusting the window of any one of the first aspect; the window is used to execute according to the window controller as described in the first aspect, or any one of the first aspect The steps of the method of adjusting the window display brightness.
  • an embodiment of the present application also provides an unmanned vehicle, including the window control system as described in the third aspect; the window control system includes a window controller and is controlled by the window control system Car windows.
  • the embodiments of the present application also provide a computer-readable storage medium having a computer program stored on the computer-readable storage medium, and the computer program executes the first aspect or any of the first aspects when the computer program is run by a processor. Steps in one possible implementation.
  • the method for adjusting the window brightness includes: obtaining the posture information of the target passenger inside the unmanned vehicle in real time, and determining the adjustment strategy of the window brightness; The brightness of the window is adjusted.
  • the present application determines the target passenger's demand for the brightness in the vehicle through the posture information of the target passenger, and then automatically determines the adjustment strategy of the window brightness, realizes the automatic adjustment of the window brightness, and improves the automation degree of the window adjustment.
  • the embodiment of the present application provides a window adjustment method, which automatically determines an adjustment strategy to reduce the light transmittance of the window by analyzing the inclination angle of the body relative to the ground and the eye opening state when the target passenger is in contact with the seat. It can meet the needs of the target passengers for the light in the car when they are resting, thereby increasing the degree of automation of the car window adjustment.
  • An embodiment of the present application provides a method for adjusting a vehicle window, which determines to reduce the light transmittance of the vehicle window when the target passenger’s eyes are open and the light intensity exceeds a second preset value. Rate adjustment strategy to realize the automatic determination of the adjustment strategy of the window brightness by combining the target passenger's posture information and the external environment information at the same time, thereby improving the automation degree of the window adjustment.
  • the window adjustment method provided by the embodiment of the present application determines the adjustment strategy of the window brightness according to the travel progress of the unmanned vehicle and the closed state of the eyes of the target passenger, so as to realize the process of the unmanned vehicle in the execution of the service order In the process, the degree of automation of window adjustment is improved.
  • the window adjustment method provided by the embodiment of the present application determines the adjustment strategy for adjusting the brightness of the window according to the length of time the target passenger maintains the current posture, so as to avoid the vehicle caused by the target passenger changing the posture information multiple times in a short period of time. Frequent changes in the brightness of the window bring discomfort to the target passenger, thereby increasing the degree of automation of the window adjustment.
  • Fig. 1 shows a flowchart of a method for adjusting a vehicle window provided by an embodiment of the present application
  • FIG. 2 shows a schematic diagram of the first vehicle window adjustment effect provided by an embodiment of the present application
  • FIG. 3 shows a schematic diagram of a second type of vehicle window adjustment effect provided by an embodiment of the present application
  • FIG. 4 shows a schematic diagram of a third type of vehicle window adjustment effect provided by an embodiment of the present application
  • FIG. 5 shows a schematic structural diagram of a vehicle window adjusting device provided by an embodiment of the present application
  • Fig. 6 shows a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the window of the driverless car in the existing design adjusts the brightness of the light irradiated from the outside of the car into the car, usually when the people inside the car need to adjust the brightness of the car, the window is adjusted by opening and closing the window .
  • the driverless car when the driverless car is driving at high speed, the people in the car cannot open the window; when the outside temperature is high or low, opening or closing the window will affect the temperature inside the car, so the car is adjusted by opening and closing the window.
  • the way of internal light is inhumane to the people in the car, and the degree of automation is not high. Based on this, the embodiments of the present application provide a method and device for adjusting a vehicle window, which are described below through embodiments.
  • a method for adjusting a vehicle window disclosed in the embodiment of the present application is first introduced in detail.
  • the flowchart of a method for adjusting a car window as shown in Fig. 1 includes the following steps:
  • S102 Determine the adjustment strategy of the window brightness according to the posture information of the target passenger inside the unmanned vehicle
  • S103 Adjust the brightness of the window according to the determined adjustment strategy of the window brightness.
  • the unmanned vehicle may be an operating vehicle capable of providing travel services for passengers, or an unmanned vehicle for passenger use.
  • At least one passenger can be seated in the unmanned vehicle at the same time.
  • the driverless vehicle can determine different window brightness adjustment strategies for passengers with different needs. Therefore, the target passenger refers to the need to determine the window brightness adjustment strategy Passengers, and the target passenger can be a certain or several passengers inside the unmanned vehicle.
  • the posture information of the target passenger may refer to the posture information of a certain part of the body of the target passenger inside the unmanned vehicle or the posture information of certain parts, such as stretching, yawning, looking at the mobile phone, watching the scenery, and so on.
  • the light irradiated on the driverless vehicle specifically refers to the light irradiated on the window of the driverless vehicle.
  • the light irradiated on the window of the driverless vehicle can affect the target passenger's ride through the window glass. state.
  • the light irradiated on the driverless vehicle here can include any luminous and luminous light source (such as the sun, turned on electric lights, burning combustibles, etc.) directly on the window of the driverless vehicle; also It may include light reflected or refracted by other objects on the window of an unmanned vehicle, such as sunlight reflected by glass on a building.
  • the illumination information of the light irradiated on the unmanned vehicle may specifically include the light intensity, the irradiation direction of the light whose light intensity exceeds the second preset value, and the continuous light duration.
  • the on-board central control system can obtain the posture information of the target passenger inside the unmanned vehicle and the illumination information of the light irradiated on the unmanned vehicle in real time.
  • the on-board central control system can determine the unmanned driving by using the video information inside the unmanned vehicle captured by the on-board camera and/or the contact position information between the target passenger and the seat detected by the sensor on the seat The posture information of the target passenger inside the vehicle.
  • the video information inside the unmanned vehicle captured by the on-board camera contains the image information of the target passenger.
  • the video information inside the unmanned vehicle captured by the on-board camera may also include the duration information when the target passenger is in various postures.
  • the sensor on the seat can include pressure sensor, temperature sensor or contact sensor, etc.
  • the sensor can be set in different positions on the seat.
  • the pressure sensor is used to detect the pressure of the target passenger contacting the seat, and the temperature sensor and contact sensor are used To detect the contact position of the target passenger with the seat.
  • the sensor on the seat can also be connected with a timer to record the length of time when the target passenger is in contact with the seat.
  • the posture information of the target passenger may reflect the riding state of the target passenger.
  • the riding state of the target passenger may be a resting state and an observing state
  • the observing state may specifically include observing the state in the vehicle (for example, watching in-vehicle video) and observing the state outside the vehicle (for example, watching the scenery outside the vehicle).
  • the determined adjustment strategy of the window brightness is an adjustment strategy made for the target passenger.
  • the driverless vehicle can determine different window brightness adjustment strategies for different target passengers, so that the driverless vehicle can adjust the window brightness more automatically and humanely.
  • the posture information of the target passenger it is possible to determine how to adjust the window and which window or windows to adjust the strategy, so that the light irradiated on the unmanned vehicle can match the current posture of the target passenger, thereby improving the unmanned The degree of automation of the brightness adjustment of the windows of the driving vehicle.
  • step S103 according to the determined adjustment strategy of the window brightness, the color and pattern of the window to be adjusted or the corresponding electric curtain can be adjusted specifically to realize the adjustment of the window brightness.
  • the posture information of the target passenger includes any one or more of the following: the inclination angle of the body relative to the ground when the target passenger is in contact with the seat, the state of eye opening and the face orientation, that is, the posture information of the target passenger It can be one or more of them.
  • the target passenger's posture information is different, the target passenger's riding state may be different, and then the determined vehicle brightness adjustment strategy is also different.
  • the embodiment of the application determines the target passenger's demand for the brightness in the car according to the posture information of the target passenger, and then automatically determines the adjustment strategy of the window brightness, realizes the automatic adjustment of the window brightness, and improves the automation of the window adjustment degree.
  • the posture information may include the inclination angle of the body relative to the ground when the target passenger is in contact with the seat and the eye opening state.
  • step S102 that is, determining the adjustment strategy of the window brightness according to the posture information of the target passenger inside the unmanned vehicle, the following steps may be included:
  • a1 Determine whether the inclination angle of the body relative to the ground when the target passenger is in contact with the seat is less than the preset inclination angle and whether the eyes of the target passenger are in the closed state;
  • the adjustment strategy for determining the brightness of the window is to reduce the light transmittance of the window.
  • step a1 the inclination angle of the body relative to the ground when the target passenger contacts the seat can be determined by manually adjusting the posture of the seat by the target passenger.
  • the eye-opening state of the target passenger can be determined by the video information inside the unmanned vehicle captured by the on-board camera.
  • step a2 when the target passenger adjusts the seat to lie flat or the tilt angle relative to the ground is small and the eyes are closed, it means that the target passenger wants to rest, so the tilt angle of the body relative to the ground when the target passenger contacts the seat If the tilt angle is smaller than the preset angle and the eyes of the target passenger are in the closed state, the light transmittance of the window can be reduced.
  • the car window glass When reducing the light transmittance of the car window, the car window glass can be adjusted to a darker color, or a pattern can be displayed on the car window glass to reduce the brightness of the light directly entering the driverless vehicle through the car window.
  • the posture information of the target passenger includes the face orientation and eye opening state of the target passenger.
  • step S102 that is, determining the adjustment strategy of the window brightness according to the posture information of the target passenger inside the unmanned vehicle, the following steps may be included:
  • a3 If the face of the target passenger is facing the exterior of the driverless vehicle and the eyes are open, the adjustment strategy of the window brightness is determined to increase the light transmittance of the window; if the face of the target passenger is unmanned When driving the interior of the vehicle with the eyes open, it is determined that the adjustment strategy of the window brightness is to reduce the light transmittance of the window.
  • the on-board central control system can determine the face orientation of the target passenger and whether the eyes of the target passenger are open through the video information inside the unmanned vehicle captured by the on-board camera.
  • the face orientation of the target passenger is the same as the sight direction of the target passenger. Therefore, the sight direction of the target passenger can be judged by the face orientation of the target passenger.
  • the orientation is toward the outside of the unmanned vehicle and the eyes are open, that is, the direction of the target passenger's line of sight is toward the outside of the unmanned vehicle, so it is determined that the target passenger is in the state of observing the outside of the vehicle (for example, watching the scenery);
  • the target passenger’s face is facing the inside of the unmanned vehicle and the eyes are open, that is, the target passenger’s line of sight is facing the inside of the unmanned vehicle, it is determined that the target passenger is in the state of observing the inside of the vehicle (for example, watching Car video).
  • the adjustment strategy of the window brightness if the target passenger is observing the state outside the vehicle, the light transmittance of the window is increased; if the target passenger is In the state of observing the interior of the car, it is determined that the adjustment strategy for the brightness of the car window is to reduce the light transmittance of the car window.
  • the window glass can be adjusted to a lighter color, or the window glass can be hidden The pattern increases the brightness of the light directly shining into the driverless vehicle through the window.
  • the target passenger When the target passenger is in the state of observing the interior of the vehicle, it indicates that the target passenger expects the light transmittance of the window glass to be in a low state. It is best that the light transmittance of the window glass should not be too strong to avoid physical reflection in the car. It’s not clear, so the window glass can be adjusted to a darker color, or the pattern on the window glass can be displayed to reduce the brightness of the light that directly enters the driverless vehicle through the window.
  • the eyes of the target passenger are open, and the face of the target passenger is inside the unmanned vehicle and is consistent with the sight direction of the target passenger.
  • Determine the target passenger In the state of observing the interior of the vehicle (for example, watching in-vehicle video), the light transmittance of multiple shaded areas in the vehicle window of FIG. 2 is reduced, thereby reducing the brightness of the light that directly enters the driverless vehicle through the vehicle window.
  • the journey progress of the unmanned vehicle to the destination can also be obtained, and then according to the unmanned vehicle
  • the posture information and travel progress of the target passenger inside the driving vehicle determine the adjustment strategy of the window brightness.
  • an unmanned vehicle can be either an operating vehicle that can provide travel services for passengers, or an unmanned vehicle for passenger use.
  • the unmanned vehicle when the unmanned vehicle is a vehicle that is in operation and can provide travel services for passengers, the unmanned vehicle can be obtained based on the service order assigned to the unmanned vehicle and the current time or location information.
  • the journey progress of the vehicle Specifically, the travel progress of the unmanned vehicle can be obtained according to the service start location, service end location, and current location information on the service order assigned to the unmanned vehicle. Or according to the service start time, service termination time, and current time information on the service order assigned to the unmanned vehicle, the journey progress of the unmanned vehicle can be obtained.
  • the service order may be a service order placed by the passenger at the service request terminal.
  • Unmanned vehicles can provide travel services for passengers based on service orders.
  • the passenger who needs to use the driverless vehicle to provide travel services can be the person who placed the order at the service request terminal, or not the person who placed the order at the service request terminal, that is, the passenger can use the service request terminal You can place an order for yourself, or you can place an order for another person. Therefore, the passenger mentioned in the embodiment of the application refers to a person who actually rides in an unmanned vehicle, but not necessarily the person who places the order at the service request terminal.
  • Itinerary progress refers to the completion of the service mileage or the completion of the service time after the unmanned vehicle receives the assigned service order. Specifically, it can be the completion of the service order from the service start position to the service end position, or It is the completion of the service order from the time the service starts to the time the service ends.
  • the service platform can allocate the service order to the unmanned vehicle in operation according to the service order distribution rule.
  • the on-board central control system in the unmanned vehicle can obtain the travel progress of the unmanned vehicle.
  • the unmanned vehicle When the unmanned vehicle is an unmanned vehicle for the passenger's own use, it can be based on the itinerary information input by the passenger on the service request terminal that establishes a communication connection with the unmanned vehicle or the itinerary information input on the unmanned vehicle, As well as the current time information or location information, the journey progress of the unmanned vehicle can be obtained.
  • step S102 may be performed according to the following steps:
  • a4 Determine whether the ratio of the mileage corresponding to the unmanned vehicle to the estimated total mileage is greater than the first preset value
  • the adjustment strategy for determining the brightness of the window is to reduce the light transmission of the window If the ratio of the mileage corresponding to the unmanned vehicle to the estimated total mileage is greater than the preset value and the eyes of the target passenger are closed, the adjustment strategy for determining the window brightness is to increase the light transmittance of the window.
  • the estimated total mileage refers to the distance traveled by the unmanned vehicle from the service start position to the service end position in the route selected by the unmanned vehicle.
  • the mileage driven refers to the distance traveled by the unmanned vehicle from the starting position of the service to the current position in the route selected by the unmanned vehicle.
  • the first preset value can be a value close to 1, such as 0.9.
  • the ratio of the preset mileage to the estimated total mileage reaches the first preset value, it indicates that the unmanned vehicle has a corresponding value.
  • the mileage is calculated to resolve the estimated total mileage, which means that the unmanned vehicle is about to reach the end of service position.
  • the first preset value can be set according to the actual situation, and is not limited to a value close to 1. For example, when the total mileage is expected to be short, the first preset value can be set to a value close to 0.5 etc.
  • the adjustment strategy of the window brightness is to reduce the light transmittance of the window, which can meet the needs of the target passengers who want to stay at rest.
  • the adjustment strategy of the window brightness is to increase the light transmittance of the window to remind the target passengers to prepare to get off the car, so that the target passengers can change the riding state in advance.
  • step S102 may include:
  • a6 Determine whether the ratio of the current consumed time to the estimated total consumed time is greater than the fourth preset value
  • the adjustment strategy for the brightness of the window is determined to be to reduce the light transmittance of the window;
  • the ratio of the consumption time to the estimated total consumption time is greater than the preset value and the eyes of the target passenger are in a closed state, it is determined that the adjustment strategy of the window brightness is to increase the light transmittance of the window.
  • the estimated total consumption time refers to the consumption time of the unmanned vehicle from the time the service starts to the time when the service ends in the route selected by the unmanned vehicle.
  • Elapsed time refers to the time consumed by the driverless vehicle from the time the service starts to the current time in the route selected by the driverless vehicle.
  • the fourth preset value has the same effect as the first preset value.
  • the ratio of the consumed time to the estimated total consumed time is less than the fourth preset value, it can indicate that the unmanned vehicle is not in service yet
  • the adjustment strategy of the window brightness is to reduce the light transmittance of the window, which can meet the needs of the target passenger to stay at rest.
  • the adjustment strategy of the window brightness can be determined In order to increase the light transmittance of the windows, to remind the target passengers to prepare to get off the bus, so that the target passengers can switch the riding state in advance.
  • the external environment information of the unmanned vehicle also has a great influence on the brightness of the light inside the vehicle. Therefore, in addition to considering the posture information of the target passenger inside the unmanned vehicle, the brightness of the windows is determined In addition to the adjustment strategy, you can also consider determining the adjustment strategy of the window brightness according to the external environmental information of the unmanned vehicle. Therefore, when step S102 is performed, the external environmental information of the unmanned vehicle can also be obtained; and then according to the unmanned vehicle The posture information of the target passenger inside the vehicle and the environmental information outside the unmanned vehicle determine the adjustment strategy of the window brightness.
  • the external environment information of the unmanned vehicle may include lighting information, information about obstructions that block the light, road condition information, etc.
  • the lighting information may include the light intensity, the light direction, and the light in the light irradiated on the unmanned vehicle
  • the irradiation direction of the light whose intensity exceeds the second preset value, etc., when the light intensity is strong (for example, when the sun is direct on a sunny day), the on-board central control system may need to reduce the brightness of the window according to the posture information of the target passenger and the light intensity;
  • Object information can include the height of the occluder, the length of the occluder, the area of the occluder, etc.
  • the on-board central control system may need to be based on the posture information of the target passenger and the occluder Area to improve the brightness of the car windows.
  • step S102 may include the following steps:
  • a8 Determine whether the eyes of the target passenger inside the unmanned vehicle are open
  • a9 If the eyes of the target passenger are open, judge whether the light irradiated on the unmanned vehicle has the light intensity exceeding the second preset value according to the irradiating direction of the light whose light intensity exceeds the second preset value Illuminate to the eyes of the target passenger;
  • a10 If the light irradiated on the unmanned vehicle with a light intensity exceeding the second preset value irradiates the eyes of the target passenger, it is determined that the adjustment strategy of the window brightness is to reduce the light transmittance of the window.
  • step a8 the on-board central control system can determine whether the eyes of the target passenger are open through the video information inside the unmanned vehicle captured by the on-board camera.
  • step a9 if the target passenger's eyes are in the open state, it is determined that the target passenger is in the observation state.
  • the observation state may specifically include observing the state inside the vehicle and observing the state outside the vehicle. The above two conditions of the observation state are mainly determined according to the line of sight of the target passenger.
  • the second preset value refers to a preset value of light intensity. According to the irradiation direction of the light with the light intensity exceeding the second preset value, it can be determined whether the light with the light intensity exceeding the first preset value in the light irradiated on the unmanned vehicle irradiates the eyes of the target passenger.
  • step a10 when the eyes of the target passenger are in an open state, under normal circumstances, the target passenger does not expect the light with too strong light intensity to illuminate the eyes.
  • the adjustment strategy of the window brightness can be determined to reduce the light transmittance of the window, and the specific adjustment is determined The strategy can be to adjust the window glass to a darker color, or display a pattern on the window glass, or set a different shape of the light-transmitting area on the window glass to reduce the direct light into the driverless vehicle through the window brightness.
  • the eyes of the target passenger are open. It can be seen that the light shining on the unmanned vehicle hits the eyes of the target passenger, confirm the window
  • the brightness adjustment strategy is to reduce the light transmittance of the vehicle window.
  • multiple darker vertical stripes are set on the window glass near the target passenger to achieve the effect of reducing the light transmittance of the vehicle window.
  • step a10 considering the direction of light whose light intensity exceeds the second preset value, it can be determined that the adjustment strategy of the window brightness is to reduce the light transmittance of some of the windows, which can be specifically executed according to the following steps:
  • b1 Determine the intersection of the target straight line and the window, and determine the window brightness adjustment strategy to reduce the light transmittance at the intersection on the window; the target straight line is irradiated to the eyes of the target passenger and the light intensity exceeds the second preset The straight line where the numerical ray lies.
  • the target straight line when the light irradiated to the eyes of the target passenger is directed from the light source to the eyes of the target passenger, the target straight line may be the line between the light source and the eyes of the target passenger; when it is irradiated to the eyes of the target passenger When the light is reflected to the eyes of the target passenger, the target straight line can be the line between the intersection of the reflected light at the reflective interface and the eyes of the target passenger; when the light irradiates the eyes of the target passenger, it is refracted to the target passenger In the case of the eyes, the target straight line can be the line between the intersection of the refracted rays at the refraction interface and the eyes of the target passenger.
  • the intersection point of the target straight line and the window is determined according to the direction of the target straight line, so that the adjustment strategy of the window brightness is determined to reduce the light transmittance at the intersection on the window.
  • the specific adjustment strategy may be to adjust the window glass at the intersection of the vehicle window to a darker color, or display a pattern on the window glass at the intersection to reduce the direct light to the eyes of the target passenger.
  • the light transmittance of the intersection of the light on the window and the window can be adjusted, but considering the difficulty and cost of specific implementation, the light transmittance of the area where the intersection is located can be adjusted in practice.
  • the intersection of the light with the light intensity exceeding the preset intensity value and the window of the light emitted by the sun is determined , And then determine that the adjustment strategy of the window brightness is to reduce the area where the intersection is located, that is, the light transmittance of the shaded part of the window in the upper left corner of Figure 4, so the light transmittance of the shaded part in Figure 4 is used to reduce direct exposure to passengers The light from the eyes.
  • the light transmittance of the part of the window area where the intersection is located can be reduced.
  • only the light transmittance at the intersection on the window can be reduced. Therefore, reducing the light transmittance at the intersection on the vehicle window and reducing the light transmittance of the part of the window area where the intersection is located are both within the scope of protection claimed in the present application.
  • an unmanned vehicle may include roof glass and side glass, and the light transmittance of the roof glass and the side glass may be different. Therefore, when performing step S102, the following steps can be performed:
  • a11 According to the relative position of each window and the illumination information of the light irradiated on the unmanned vehicle, determine the window directly irradiated by the light as the target window;
  • a12 Determine the window brightness adjustment strategy that acts on the target window according to the posture information of the target passenger and the illumination information of the light irradiated on the unmanned vehicle.
  • the target window closest to the target passenger can be determined according to the relative position of each window, and the window directly irradiated by the light can be determined as the target according to the illumination information of the light irradiated on the driverless vehicle Car windows.
  • step a12 according to the posture information of the target passenger and the illumination information irradiated on the target window, the window brightness adjustment strategy acting on the target window is determined.
  • the vehicle-mounted central control system can determine the adjustment strategy of the window brightness according to any combination of the target passenger's posture information and external environmental information.
  • the process of determining the adjustment strategy of the window brightness requires a certain amount of time. Therefore, in specific implementation, the target passenger can maintain the current posture for longer than the preset time. In the case of duration, determine the adjustment strategy of the window brightness.
  • the posture information further includes: the length of time the target passenger maintains the current posture.
  • the time period during which the target passenger maintains the current posture may also be considered, and the light transmittance of the vehicle window can be adjusted according to the period during which the target passenger maintains the current posture.
  • the time information of the target passenger in various postures in the unmanned vehicle captured by the on-board camera or the time when the target passenger is in contact with the seat recorded by the sensor on the seat through the connected timer can be used.
  • the duration information is to detect whether the duration of the target passenger maintaining the current posture exceeds the preset duration.
  • step S102 when step S102 is executed, the following steps may be included:
  • a13 If the duration of the target passenger maintaining the current posture exceeds the preset duration, it is determined that the adjustment strategy of the window brightness is to adjust the light transmittance of the window.
  • the electric curtain corresponding to the window can also be adjusted, which specifically includes the following steps:
  • c1 Determine whether the light intensity inside the unmanned vehicle exceeds the third preset value
  • step c1 the third preset value is less than the second preset value of the light intensity value, by judging whether the light intensity inside the unmanned vehicle exceeds the third preset value, it is determined that the light transmittance of the car window is reduced After that, whether the light intensity inside the unmanned vehicle meets the needs of the vehicle in the current riding state.
  • step c2 if the light intensity inside the unmanned vehicle exceeds the third preset value, it means that after reducing the light transmittance of the window, the light intensity inside the unmanned vehicle may not meet the needs of the vehicle in the current posture For example, when a passenger is at rest, the interior of the driverless vehicle may need to be in a relatively dark environment. At this time, the electric curtain corresponding to the window can be driven to land, which can assist in adjusting the brightness of the window to make the driverless driving The brightness of the interior of the vehicle reaches an ideal state to meet the needs of target passengers.
  • the embodiments of the present application also provide a vehicle window adjusting device, electronic equipment, and computer-readable storage medium, etc.
  • a vehicle window adjusting device electronic equipment, and computer-readable storage medium, etc.
  • FIG. 5 is a block diagram showing a vehicle window adjustment device according to some embodiments of the present application, and the function implemented by the vehicle window adjustment device corresponds to the steps of the above-mentioned method for executing the window adjustment method on the terminal device.
  • the device can be understood as a component of a server including a processor, and the component can implement the above-mentioned vehicle window adjustment method.
  • the vehicle window adjustment device may include:
  • the first acquiring module 501 is configured to acquire the posture information of the target passenger inside the unmanned vehicle and the illumination information of the light irradiated on the unmanned vehicle in real time;
  • the first determining module 502 is configured to determine the adjustment strategy of the window brightness according to the posture information of the target passenger inside the unmanned vehicle;
  • the adjustment module 503 is configured to adjust the windows of the driverless vehicle according to the determined adjustment strategy of the window brightness.
  • the first obtaining module 501 is specifically configured to:
  • the posture information includes: the inclination angle of the target passenger's body relative to the ground when the target passenger is in contact with the seat, and the eye opening and closing state;
  • the first determining module 502 includes:
  • the first judgment module is used to judge whether the inclination angle of the body relative to the ground when the target passenger is in contact with the seat is less than a preset inclination angle and whether the eyes of the target passenger are in a closed state;
  • the second determining module is configured to determine that if the inclination angle of the body relative to the ground when the target passenger is in contact with the seat is less than the preset inclination angle and the eyes of the target passenger are in a closed state, then determine the adjustment strategy of the window brightness as Reduce the light transmittance of the car windows.
  • the posture information of the target passenger includes: the face orientation and eye open state of the target passenger;
  • the first determining module 502 is specifically configured to determine that if the face of the target passenger faces the outside of the driverless vehicle and the eyes are open, determine that the adjustment strategy of the window brightness is to increase the window brightness. Light transmittance; if the face of the target passenger is inside the unmanned vehicle and the eyes are open, it is determined that the adjustment strategy of the window brightness is to reduce the light transmittance of the window.
  • the posture information of the target passenger includes: the eye open state of the target passenger; the vehicle window adjustment device may include:
  • the second acquiring module is used to acquire the travel progress of the unmanned vehicle
  • the first determination module is configured to determine the adjustment strategy of the window brightness according to the posture information of the target passenger inside the unmanned vehicle and the travel progress.
  • the travel progress includes: the ratio of the mileage corresponding to the unmanned vehicle to the estimated total mileage;
  • the first determining module 502 includes:
  • the second judgment module is used to judge whether the ratio of the mileage corresponding to the unmanned vehicle to the estimated total mileage is greater than a first preset value
  • the third determining module is used to determine the brightness of the window if the ratio of the mileage corresponding to the unmanned vehicle to the estimated total mileage is less than the first preset value and the eyes of the target passenger are closed
  • the adjustment strategy is to reduce the light transmittance of the window; if the ratio of the mileage corresponding to the unmanned vehicle to the estimated total mileage is greater than a preset value and the eyes of the target passenger are in a closed state, the window is determined
  • the brightness adjustment strategy is to increase the light transmittance of the car window.
  • the first determining module 502 includes:
  • the third acquisition module is used to acquire environmental information outside the unmanned vehicle
  • the fourth determining module is used to determine the adjustment strategy of the window brightness according to the posture information of the target passenger inside the unmanned vehicle and the environmental information outside the unmanned vehicle.
  • the posture information of the target passenger includes the eye-opening state;
  • the environmental information includes: the light intensity of the light irradiated on the unmanned vehicle exceeds a second preset value The direction of the light;
  • the first determining module includes:
  • the third judgment module is used to judge whether the eyes of the target passenger in the unmanned vehicle are in an open state
  • the fourth judgment module is used for judging the light intensity of the light irradiated on the unmanned vehicle according to the irradiating direction of the light whose light intensity exceeds a second preset value if the eyes of the target passenger are open Whether the light exceeding the first preset value irradiates the eyes of the target passenger;
  • the fifth determining module is configured to determine that the adjustment strategy of the window brightness is to reduce the brightness of the vehicle window if the light whose light intensity exceeds a second preset value among the light irradiated on the unmanned vehicle irradiates the eyes of the target passenger The light transmittance of the car window.
  • the fifth determining module is specifically configured to: determine the intersection of the target straight line and the window, and determine that the adjustment strategy of the window brightness is to reduce the light transmittance at the intersection on the window;
  • the target straight line is a straight line on which rays of light irradiated to the eyes of the target passenger and whose light intensity exceeds a second preset value are located.
  • the fourth determining module includes:
  • the sixth determining module is configured to determine the window directly irradiated by the light as the target window according to the relative position of each window and the illumination information of the light irradiated on the unmanned vehicle;
  • the seventh determining module is used to determine the window brightness adjustment strategy that acts on the target car window according to the posture information of the target passenger and the illumination information of the light irradiated on the target car window.
  • the posture information further includes: the length of time the target passenger maintains the current posture;
  • the vehicle window adjusting device may further include:
  • the detection module is used to detect whether the duration of the target passenger maintaining the current posture exceeds a preset duration
  • the first determining module 502 is configured to: if the duration of the target passenger maintaining the current posture exceeds a preset duration, determine that the adjustment strategy of the window brightness is to adjust the light transmittance of the window.
  • the posture information of the target passenger includes any one or more of the following: the inclination angle of the target passenger's body relative to the ground when the target passenger is in contact with the seat, the eye open state, and the face orientation.
  • the vehicle window adjusting device may further include:
  • the fifth judgment module is used to judge whether the light intensity inside the unmanned vehicle exceeds a third preset value
  • the driving module is used for driving the electric curtain corresponding to the vehicle window to descend if the light intensity inside the unmanned vehicle exceeds a third preset value.
  • the embodiment of the present application also provides a vehicle window control system, including: a vehicle window controller and a vehicle window controlled by the vehicle window controller;
  • the vehicle window controller is used to execute the steps of the vehicle window adjustment method provided in the embodiments of the present application.
  • the vehicle window is used to display brightness according to the steps of the vehicle window adjustment method executed by the vehicle window controller.
  • An embodiment of the application also provides an unmanned vehicle, including the above-mentioned window control system; the window control system includes a window controller and a window controlled by the window control system.
  • the window controller is used to execute the steps of the window adjustment method provided in the embodiment of the present application; the window is used to display brightness according to the steps of the window adjustment method executed by the window controller.
  • FIG. 6 a schematic structural diagram of an electronic device provided by an embodiment of this application.
  • the electronic device includes a processor 601, a memory 602, and a bus 603.
  • the memory 602 stores execution instructions.
  • the processor 601 and the memory 602 communicate through a bus 603, and the processor 601 executes the steps of a method for adjusting a vehicle window as shown in FIG. 1 stored in the memory 602.
  • the computer program product for performing the vehicle window adjustment method includes a computer-readable storage medium storing a non-volatile program code executable by a processor, and instructions included in the program code can be used to execute the foregoing method
  • a computer-readable storage medium storing a non-volatile program code executable by a processor, and instructions included in the program code can be used to execute the foregoing method
  • the disclosed system, device, and method can be implemented in other ways.
  • the device embodiments described above are merely illustrative.
  • the division of the units is only a logical function division, and there may be other divisions in actual implementation.
  • multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual couplings or direct couplings or communication connections may be indirect couplings or communication connections between devices or units through some communication interfaces, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software function unit and sold or used as an independent product, it can be stored in a non-volatile computer readable storage medium executable by a processor.
  • the technical solution of this application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Abstract

一种车窗调节方法、装置、电子设备及可读存储介质,其中,该方法应用于无人驾驶车辆的车载中控系统,包括:实时获取位于无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略;根据确定的车窗亮度的调节策略,对车窗亮度进行调节。

Description

一种车窗调节方法、装置、电子设备及可读存储介质
优先权声明
本申请要求2020年06月18日提交的申请号为202010561630.1的中国专利申请的优先权,所述申请以全文引用的方式并入本文中。
技术领域
本申请涉及数据处理技术领域,尤其是涉及一种车窗调节方法、装置、电子设备及可读存储介质。
背景技术
随着无人驾驶技术的发展,无人驾驶汽车逐步进入人们的生产生活。无人驾驶汽车兼具探测、识别、判断、决策、优化、优选、执行、反馈、纠控等功能,是一种将信息共享、无线通信、人工智能及自动控制等技术高度融合的智慧型汽车。
现有设计中的无人驾驶汽车的车窗对于从车外照射到车内的光线亮度的调节,通常是车内人员在需要调节车内亮度的时候,通过开窗和关窗的方式进行调节,对车窗亮度的调节自动化程度不高。
发明内容
有鉴于此,本申请的目的在于提供一种车窗调节方法、装置、电子设备及可读存储介质,以实现根据车内人员的姿态,自动调节车内光线亮度的目的。
第一方面,本申请实施例提供了一种车窗调节方法,应用于无人驾驶车辆的车载中控系统,包括:实时获取位于所述无人驾驶车辆内部的目标乘客的姿态信息以及照射到所述无人驾驶车辆上的光线的光照信息;根据所述无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略;根据所述确定的车窗亮度的调节策略,对所述无人驾驶车辆上的车窗进行调节。
结合第一方面,本申请实施例提供了第一方面的第一种可能的实施方式,其中,所述实时获取位于所述无人驾驶车辆内部的目标乘客的姿态信息,包括:通过车载摄像头拍摄到的所述无人驾驶车辆内部的视频信息和/或座椅上的传感器检测到的所述目标乘客与所述座椅的接触位置信息,确定所述无人驾驶车辆内部的目标乘客的姿态信息。
结合第一方面,本申请实施例提供了第一方面的第二种可能的实施方式,其中,所述姿态信息包括:所述目标乘客与座椅接触时身体相对于地面的倾斜角度和眼部睁合状态;所述根据所述无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策 略,包括:判断所述目标乘客与座椅接触时身体相对于地面的倾斜角度是否小于预设倾斜角度且所述目标乘客的眼部是否处于闭合状态;若所述目标乘客与座椅接触时身体相对于地面的倾斜角度小于预设倾斜角度且所述目标乘客的眼部处于闭合状态,则确定车窗亮度的调节策略为降低车窗的透光率。
结合第一方面,本申请实施例提供了第一方面的第三种可能的实施方式,其中,所述目标乘客的姿态信息包括眼部睁合状态;所述根据所述无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略,包括:若所述目标乘客的面部朝向为朝向所述无人驾驶车辆的外部且眼部处于睁开状态,则确定车窗亮度的调节策略为提高车窗的透光率;若所述目标乘客的面部朝向为所述无人驾驶车辆的内部且眼部处于睁开状态,则确定车窗亮度的调节策略为降低车窗的透光率。
结合第一方面,本申请实施例提供了第一方面的第四种可能的实施方式,其中,所述目标乘客的姿态信息包括:所述目标乘客的眼部睁合状态;在所述根据所述无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略之前,所述方法还包括:获取所述无人驾驶车辆的行程进度;所述根据所述无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略,包括:根据所述无人驾驶车辆内部的目标乘客的姿态信息和所述行程进度,确定车窗亮度的调节策略。
结合第一方面,本申请实施例提供了第一方面的第五种可能的实施方式,其中,所述行程进度包括:所述无人驾驶车辆对应的已行驶里程占预计总行驶里程的比值;
所述根据所述无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略,包括:判断所述无人驾驶车辆对应的已行驶里程占预计总行驶里程的比值是否大于第一预设数值;若所述无人驾驶车辆对应的已行驶里程与预计总行驶里程的比值小于第一预设数值且所述目标乘客的眼部处于闭合状态,则确定车窗亮度的调节策略为降低车窗的透光率;若所述无人驾驶车辆对应的已行驶里程与预计总行驶里程的比值大于预设数值且所述目标乘客的眼部处于闭合状态,则确定车窗亮度的调节策略为提高车窗的透光率。
结合第一方面,本申请实施例提供了第一方面的第六种可能的实施方式,其中,所述根据所述无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略,包括:获取所述无人驾驶车辆外部的环境信息;根据所述无人驾驶车辆内部的目标乘客的姿态信息以及所述无人驾驶车辆外部的环境信息,确定车窗亮度的调节策略。
结合第一方面的第六种可能的实施方式,本申请实施例提供了第一方面的第七 种可能的实施方式,其中,所述目标乘客的姿态信息包括眼部睁合状态;所述外部环境信息包括:照射到所述无人驾驶车辆上的光线中光线强度超过第二预设数值的光线的照射方向;所述根据所述无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略,包括:判断所述无人驾驶车辆内部目标乘客的眼部是否处于睁开状态;若所述目标乘客的眼部处于睁开状态,根据光线强度超过第二预设数值的光线的照射方向,判断照射到所述无人驾驶车辆上的光线中光线强度超过第一预设数值的光线是否照射到所述目标乘客的眼部;若照射到所述无人驾驶车辆上的光线中光线强度超过第二预设数值的光线照射到所述目标乘客的眼部,则确定车窗亮度的调节策略为降低车窗的透光率。
结合第一方面的第七种可能的实施方式,本申请实施例提供了第一方面的第八种可能的实施方式,其中,所述若照射到所述无人驾驶车辆上的光线中光线强度超过第二预设数值的光线照射到所述目标乘客的眼部,则确定车窗亮度的调节策略为降低车窗的透光率,包括:确定目标直线与车窗的交点,并确定车窗亮度的调节策略为降低车窗上交点处的透光率;所述目标直线是照射到所述目标乘客的眼部的且光线强度超过第二预设数值的光线所在的直线。
结合第一方面的第六种可能的实施方式中,本申请实施例提供了第一方面的第九种可能的实施方式,其中,所述根据所述无人驾驶车辆内部的目标乘客的姿态信息以及所述无人驾驶车辆外部的环境信息,确定车窗亮度的调节策略,包括:根据每个车窗的相对位置以及照射到所述无人驾驶车辆上的光线的光照信息,确定光线直接照射的车窗作为目标车窗;根据目标乘客的姿态信息以及照射到所述目标车窗上的光线的光照信息,确定作用于所述目标车窗的车窗亮度调节策略。
结合第一方面中上述任一种可能的实施方式中,本申请实施例提供了第一方面的第十种可能的实施方式,其中,所述姿态信息还包括:所述目标乘客保持当前姿态的时长;在所述根据所述无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略之前,所述方法还包括:检测所述目标乘客保持当前姿态的时长是否超过预设时长;
所述根据所述无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略,包括:若所述目标乘客保持当前姿态的时长超过预设时长,则确定车窗亮度的调节策略为调节车窗的透光率。
结合第一方面,本申请实施例提供了第一方面的第十一种可能的实施方式,其中,所述目标乘客的姿态信息包括以下任意一种或多种:目标乘客与座椅接触时身体相对于地面的倾斜角度、眼部睁合状态和面部朝向。
结合第一方面的第六种或第七种可能的实施方式,本申请实施例提供了第一方面的第十二种可能的实施方式,其中,在步骤降低车窗的透光率之后,还包括:判断所述无人驾驶车辆内部的光线强度是否超过第三预设数值;若所述无人驾驶车辆内部的光线强度超过第三预设数值,则驱动所述车窗对应的电动窗帘降落。
第二方面,本申请实施例提供了一种车窗调节装置,包括:第一获取模块,用于实时获取位于无人驾驶车辆内部的目标乘客的姿态信息以及照射到所述无人驾驶车辆上的光线的光照信息;第一确定模块,用于根据所述无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略;调节模块,用于根据所述确定的车窗亮度的调节策略,对所述无人驾驶车辆上的车窗进行调节。第三方面,本申请实施例还提供一种车窗控制系统,包括:车窗控制器和由所述车窗控制器控制的车窗;所述车窗控制器,用于执行如第一方面,或第一方面中任一项所述的车窗调节方法的步骤;所述车窗,用于根据所述车窗控制器执行的如第一方面,或第一方面中任一项所述的车窗调节方法的步骤显示亮度。
第四方面,本申请实施例还提供一种无人驾驶车辆,包括如第三方面所述的车窗控制系统;所述车窗控制系统包括车窗控制器和由所述车窗控制系统控制的车窗。
第五方面,本申请实施例还提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行上述第一方面,或第一方面中任一种可能的实施方式中的步骤。
本申请实施例提供的一种车窗调节方法,包括:实时获取位于无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略;根据确定的车窗亮度的调节策略,对车窗亮度进行调节。本申请通过目标乘客的姿态信息,确定出目标乘客对车内亮度的需求,进而自动确定出车窗亮度的调节策略,实现自动对车窗亮度进行调节,提高了车窗调节的自动化程度。
本申请实施例提供的一种车窗调节方法,通过分析目标乘客与座椅接触时身体相对于地面的倾斜角度和眼部睁合状态,自动确定出降低车窗的透光率的调节策略,可以满足目标乘客处于休息状态时对车内光线的需求,从而提高车窗调节的自动化程度。
本申请实施例提供的一种车窗调节方法,通过在目标乘客的眼部处于睁开状态且光线强度超过第二预设数值的光线的照射方向的情况下,确定出降低车窗的透光率的调节策略,以实现同时结合目标乘客的姿态信息和外部环境信息,自动确定车窗亮度的调节策略,从而提高车窗调节的自动化程度。
本申请实施例提供的一种车窗调节方法,通过根据无人驾驶车辆的行程进度以及目标乘客的眼部闭合状态,确定车窗亮度的调节策略,实现无人驾驶车辆在执行服务订单的进程中,提高车窗调节的自动化程度。
本申请实施例提供的一种车窗调节方法,根据目标乘客保持当前姿态的时长,确定调节车窗亮度的调节策略,避免了由于目标乘客在较短的时间内多次变换姿态信息后引起车窗亮度频繁变换给目标乘客带来不适的感觉的情况,从而提高车窗调节的自动化程度。
为使本申请的上述目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附附图,作详细说明如下。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1示出了本申请实施例所提供的一种车窗调节方法的流程图;
图2示出了本申请实施例所提供的第一种车窗调节效果示意图;
图3示出了本申请实施例所提供的第二种车窗调节效果示意图;
图4示出了本申请实施例所提供的第三种车窗调节效果示意图;
图5示出了本申请实施例所提供的一种车窗调节装置的结构示意图;
图6示出了本申请实施例所提供的一种电子设备的结构示意图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。通常在此处附图中描述和示出的本申请实施例的组件可以以各种不同的配置来布置和设计。因此,以下对在附图中提供的本申请的实施例的详细描述并非旨在限制要求保护的本申请的范围,而是仅仅表示本申请的选定实施例。基于本申请的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都属于本申请保护的范围。
现有设计中的无人驾驶汽车的车窗对于从车外照射到车内的光线亮度的调节, 通常是车内人员在需要调节车内亮度的时候,通过开窗和关窗的方式进行调节。但是当无人驾驶汽车处于高速行驶状态,车内人员是不能开窗的;当外界温度较高或较低时,开窗或关窗会影响车内温度,因此通过开窗和关窗调节车内光线的方式对车内人员是不人性化的,而且自动化程度不高。基于此,本申请实施例提供了一种车窗调节方法和装置,下面通过实施例进行描述。
为便于对本实施例进行理解,首先对本申请实施例所公开的一种车窗调节方法进行详细介绍。如图1所示的一种车窗调节方法的流程图中,包括以下步骤:
S101:实时获取位于无人驾驶车辆内部的目标乘客的姿态信息以及照射到无人驾驶车辆上的光线的光照信息;
S102:根据无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略;
S103:根据确定的车窗亮度的调节策略,对车窗亮度进行调节。
步骤S101中,无人驾驶车辆可以是处于运营状态的、能够为乘客提供出行服务的车辆,也可以是乘客自用的无人驾驶车辆。
无人驾驶车辆内部可以同时乘坐至少一位乘客。当无人驾驶车辆内部乘坐多位乘客时,无人驾驶车辆可以针对有不同需求的乘客确定不同的车窗亮度的调节策略,因此,目标乘客指的是在需要确定车窗亮度的调节策略的乘客,并且目标乘客可以是无人驾驶车辆内部的某位或某几位乘客。
目标乘客的姿态信息可以指的是无人驾驶车辆内部的目标乘客身体的某个部位的姿态信息或者是某些部位的姿态信息,例如伸懒腰、打哈欠、看手机、看风景等等。
照射到无人驾驶车辆上的光线具体指的是照射到无人驾驶车辆的车窗上的光线,照射到无人驾驶车辆的车窗上的光线可以透过车窗玻璃影响目标乘客的乘车状态。这里照射到无人驾驶车辆上的光线可以包括任何能发光且正在发光的光源(例如太阳、打开的电灯、燃烧着的可燃物等等)直射到无人驾驶车辆的车窗上的光线;还可以包括其他物体反射或者折射到无人驾驶车辆的车窗上的光线,例如建筑物上的玻璃反射的太阳光线。
照射到无人驾驶车辆上的光线的光照信息具体可以包括光照强度、光线强度超过第二预设数值的光线的照射方向、连续光照时长等。
当无人驾驶车辆处于运营状态的过程中,车载中控系统可以实时获取位于无人驾驶车辆内部的目标乘客的姿态信息以及照射到无人驾驶车辆上的光线的光照信息。
在具体实施过程中,车载中控系统可以通过车载摄像头拍摄到的无人驾驶车辆内部的视频信息和/或座椅上的传感器检测到的目标乘客与座椅的接触位置信息,确定无人驾驶车辆内部的目标乘客的姿态信息。
其中,车载摄像头拍摄到的无人驾驶车辆内部的视频信息包含目标乘客的图像信息。车载摄像头拍摄到的无人驾驶车辆内部的视频信息还可以包括目标乘客处于各种姿态时的时长信息。
座椅上的传感器可以包括压力传感器、温度传感器或接触式传感器等,传感器可以设置在座椅上的不同位置,压力传感器用来检测目标乘客与座椅接触的压力,温度传感器和接触式传感器用来检测目标乘客与座椅接触的位置。座椅上的传感器也可以与计时器连接,记录目标乘客与座椅接触时的时长信息。
步骤S102中,目标乘客的姿态信息可以反应出目标乘客的乘车状态。例如目标乘客的乘车状态可以为休息状态和观察状态,观察状态又具体可以包括观察车内状态(例如观看车载视频)和观察车外状态(例如看车外的风景)。
根据无人驾驶车辆内部的目标乘客的姿态信息,确定的车窗亮度的调节策略都是针对该目标乘客做出的调节策略。无人驾驶车辆可以分别为不同的目标乘客确定不同的车窗亮度的调节策略,从而使得无人驾驶车辆在调节车窗亮度时更自动化和人性化。
根据目标乘客的姿态信息,可以确定如何对车窗进行调节以及对哪个或哪些车窗进行调节的策略,以使照射到无人驾驶车辆上的光线能够匹配目标乘客当前的姿态,从而提高无人驾驶车辆的车窗调节亮度的自动化程度。
步骤S103中,根据确定的车窗亮度的调节策略,具体可以针对需要进行调节的车窗的颜色、花纹或者对应的电动窗帘进行调节,以实现对车窗亮度进行调节。
在具体实施中,目标乘客的姿态信息包括以下任意一种或多种:目标乘客与座椅接触时身体相对于地面的倾斜角度、眼部睁合状态和面部朝向,也就是目标乘客的姿态信息可以为其中的一种或多种。目标乘客的姿态信息不同,目标乘客的乘车状态可能就不同,进而确定的车辆亮度的调节策略也就存在差异。
本申请实施例通过根据目标乘客的姿态信息,确定出目标乘客对车内亮度的需求,进而自动确定出车窗亮度的调节策略,实现自动对车窗亮度进行调节,提高了车窗调节的自动化程度。
在一种可能的实施方式中,姿态信息可以包括目标乘客与座椅接触时身体相对于地面的倾斜角度和眼部睁合状态。
在执行步骤S102,即根据无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略时,可以包括以下步骤:
a1:判断目标乘客与座椅接触时身体相对于地面的倾斜角度是否小于预设倾斜角度且目标乘客的眼部是否处于闭合状态;
a2:若目标乘客与座椅接触时身体相对于地面的倾斜角度小于预设倾斜角度且目标乘客的眼部处于闭合状态,则确定车窗亮度的调节策略为降低车窗的透光率。
步骤a1中,目标乘客与座椅接触时身体相对于地面的倾斜角度可以通过目标乘客手动调整座椅的姿态来确定。
目标乘客的眼部睁合状态可以通过车载摄像头拍摄到的无人驾驶车辆内部的视频信息来确定。
步骤a2中,当目标乘客将座椅调整为平躺或相对于地面的倾斜角度较小且眼部闭合时,说明目标乘客期望休息,因此目标乘客与座椅接触时身体相对于地面的倾斜角度小于预设倾斜角度且目标乘客的眼部处于闭合状态,则可以降低车窗的透光率。
在降低车窗的透光率时,具体可以将车窗玻璃调节为较深的颜色,或者在车窗玻璃上显示花纹,以降低通过车窗直射到无人驾驶车辆内部的光线亮度。
在一种可行的实施方式中,目标乘客的姿态信息包括目标乘客的面部朝向和眼部睁合状态。
在执行步骤S102,即根据无人驾驶车辆内部目标乘客的姿态信息,确定车窗亮度的调节策略时,可以包括以下步骤:
a3:若目标乘客的面部朝向为朝向无人驾驶车辆的外部且眼部处于睁开状态,则确定车窗亮度的调节策略为提高车窗的透光率;若目标乘客的面部朝向为无人驾驶车辆的内部且眼部处于睁开状态,则确定车窗亮度的调节策略为降低车窗的透光率。
车载中控系统可以通过车载摄像头拍摄到的无人驾驶车辆内部的视频信息来确定目标乘客的面部朝向以及目标乘客的眼部是否处于睁开状态。
考虑到一般情况下目标乘客眼部处于睁开状态时,目标乘客的面部朝向与目标乘客的视线方向是一致的,因此通过目标乘客的面部朝向可以判断目标乘客的视线方向,当目标乘客的面部朝向为朝向无人驾驶车辆的外部且眼部处于睁开状态,也就是目标乘客的视线方向是朝向无人驾驶车辆的外部的,因此则确定目标乘客处于观察车外状态(例如观看风景);当目标乘客的面部朝向为无人驾驶车辆的内部且眼部处于睁开状态,也就是目标乘客的视线方向是朝向无人驾驶车辆的内部的,则确定目标乘客处于观察车 内状态(例如观看车载视频)。
针对上述确定的目标乘客处于观察车外状态或观察车内状态的情况,在确定车窗亮度的调节策略时,若目标乘客处于观察车外状态,则提高车窗的透光率;若目标乘客处于观察车内状态,则确定车窗亮度的调节策略为降低车窗的透光率。
当目标乘客处于观察车外状态时,表明目标乘客期望车窗玻璃的透光率提高,这样有利于观察车外状态,具体可以将车窗玻璃调节为较浅的颜色,或者隐藏车窗玻璃上的花纹,增加通过车窗直射到无人驾驶车辆内部的光线亮度。
当目标乘客处于观察车内状态时,表明目标乘客期望车窗玻璃的透光率处于一个较低的状态,最好是车窗玻璃的透光率不能太强,以免造成车内物理反光,看不清楚,因此具体可以将车窗玻璃调节为较深的颜色,或者显示车窗玻璃上的花纹,降低通过车窗直射到无人驾驶车辆内部的光线亮度。
如图2所示的第一种车窗调节效果示意图中,目标乘客眼部处于睁开状态,目标乘客的面部朝向为无人驾驶车辆内部且与目标乘客的视线方向是一致的,确定目标乘客处于观察车内状态(例如观看车载视频),因此,通过在图2的车窗中对多个阴影区域降低透光率,从而降低通过车窗直射到无人驾驶车辆内部的光线亮度。
在一种可行的实施方式中,在根据无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略之前,还可以获取无人驾驶车辆到达目的地的行程进度,然后根据无人驾驶车辆内部的目标乘客的姿态信息和行程进度,确定车窗亮度的调节策略。
前面已经提到,无人驾驶车辆既可以是处于运营状态的、能够为乘客提供出行服务的车辆,也可以是乘客自用的无人驾驶车辆。
因此,当无人驾驶车辆为处于运营状态的、能够为乘客提供出行服务的车辆的情况时,可以根据无人驾驶车辆所分配到的服务订单以及当前的时间信息或者位置信息,获取无人驾驶车辆的行程进度。具体地,可以根据无人驾驶车辆所分配到的服务订单上的服务开始位置、服务终止位置以及当前的位置信息,即可获取无人驾驶车辆的行程进度。或者根据无人驾驶车辆所分配到的服务订单上的服务开始时间、服务终止时间以及当前的时间信息,即可获取无人驾驶车辆的行程进度。
服务订单可以是乘客在服务请求终端所下达的服务订单。无人驾驶车辆能够根据服务订单为乘客提供出行服务。
这里需要说明的是,需要使用无人驾驶车辆为其提供出行服务的乘客可以是在服务请求终端下单的本人,也可以不是在服务请求终端下单的本人,也就是乘客可以在 服务请求终端为自己下单,也可以为他人下单,因此本申请实施例中提及的乘客指的是实际乘坐无人驾驶车辆的人,但并不一定是在服务请求终端下单的人。
行程进度指的是在无人驾驶车辆接收到所分配的服务订单之后,服务里程的完成情况或者服务时间的完成情况,具体可以是服务订单从服务起始位置到服务终止位置的完成情况,或者是服务订单从服务开始时刻到服务终止时刻的完成情况。
用户在服务请求终端下单之后,服务平台可以按照服务订单分配规则将服务订单分配给处于运营状态下的无人驾驶车辆。无人驾驶车辆中的车载中控系统可以获取到无人驾驶车辆的行程进度。
当无人驾驶车辆为乘客自用的无人驾驶车辆的情况时,可以根据乘客在与无人驾驶车辆建立通信连接的服务请求终端上输入的行程信息或者在无人驾驶车辆上输入的行程信息,以及当前的时间信息或位置信息,获取无人驾驶车辆的行程进度。
在具体实施中,行程进度可以包括无人驾驶车辆对应的已行驶里程占预计总行驶里程的比值,因此,步骤S102可以按照以下步骤执行:
a4:判断无人驾驶车辆对应的已行驶里程占预计总行驶里程的比值是否大于第一预设数值;
a5:若无人驾驶车辆对应的已行驶里程与预计总行驶里程的比值小于第一预设数值且目标乘客的眼部处于闭合状态,则确定车窗亮度的调节策略为降低车窗的透光率;若无人驾驶车辆对应的已行驶里程与预计总行驶里程的比值大于预设数值且目标乘客的眼部处于闭合状态,则确定车窗亮度的调节策略为提高车窗的透光率。
在步骤a4中,预计总行驶里程指的是在无人驾驶车辆所选择行驶的路线中,无人驾驶车辆从服务起始位置行驶到服务终止位置的路程。已行驶里程指的是在无人驾驶车辆所选择行驶的路线中,无人驾驶车辆从服务起始位置行驶到当前位置已经行驶的路程。
在步骤a5中,第一预设数值可以是接近1的数值,例如0.9,当预设的已行驶里程与预计总行驶里程的比值达到第一预设数值时,说明无人驾驶车辆对应的已行驶里程解决预计总行驶里程,也就是说明无人驾驶车辆即将达到服务终止位置。在具体实施过程中,第一预设数值可以根据实际情况进行设置,并不限于是接近1的数值,比如预计总行驶里程较短时,可以将该第一预设数值设置为接近0.5的数值等等。
这里,当无人驾驶车辆对应的已行驶里程与预计总行驶里程的比值小于第一预设数值时,可以表示无人驾驶车辆还未接近服务终止位置,如果这时目标乘客的眼部处 于闭合状态,可以确定车窗亮度的调节策略为降低车窗的透光率,能够满足目标乘客想要保持休息状态的需求。
当无人驾驶车辆对应的已行驶里程与预计总行驶里程的比值大于第一预设数值,可以表示无人驾驶车辆即将到达服务终止位置,如果这时目标乘客的眼部处于闭合状态,可以确定车窗亮度的调节策略为提高车窗的透光率,以提醒目标乘客准备下车,使得目标乘客能够提前转换乘车状态。
在一种可行的实施方式中,行程进度也可以包括当前已消耗时长与预计总消耗时长的比值,因此,步骤S102可以包括:
a6:判断当前已消耗时长与预计总消耗时长的比值是否大于第四预设数值;
a7:若当前已消耗时长与预计总消耗时长的比值小于第四预设数值且目标乘客的眼部处于闭合状态,则确定车窗亮度的调节策略为降低车窗的透光率;若当前已消耗时长与预计总消耗时长的比值大于预设数值且目标乘客的眼部处于闭合状态,则确定车窗亮度的调节策略为提高车窗的透光率。
步骤a6中,预计总消耗时长指的是在无人驾驶车辆所选择行驶的路线中,无人驾驶车辆从服务开始时刻行驶到服务终止时刻的消耗时长。已消耗时长指的是在无人驾驶车辆所选择行驶的路线中,无人驾驶车辆从服务开始时刻行驶到当前时刻已经消耗的时长。
步骤a7中,第四预设数值与第一预设数值的作用是相同的,当已消耗时长与预计总消耗时长的比值小于第四预设数值时,可以表示无人驾驶车辆还未接近服务终止位置,如果这时目标乘客的眼部处于闭合状态,可以确定车窗亮度的调节策略为降低车窗的透光率,能够满足目标乘客想要保持休息状态的需求。
当已消耗时长与预计总消耗时长的比值大于第一预设数值,可以表示无人驾驶车辆即将到达服务终止位置,如果这时目标乘客的眼部处于闭合状态,可以确定车窗亮度的调节策略为提高车窗的透光率,以提醒目标乘客准备下车,使得目标乘客能够提前转换乘车状态。
无人驾驶车辆在行驶过程中,无人驾驶车辆外部的环境信息的车辆内部的光线亮度也有很大的影响,因此除了考虑根据无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略外,还可以考虑根据无人驾驶车辆外部的环境信息,确定车窗亮度的调节策略,因此,在执行步骤S102时,还可以获取无人驾驶车辆外部的环境信息;然后根据无人驾驶车辆内部的目标乘客的姿态信息以及无人驾驶车辆外部的环境信息, 确定车窗亮度的调节策略。
其中,无人驾驶车辆外部的环境信息可以包括光照信息、遮挡光线的遮挡物信息、路况信息等,具体地,光照信息可以包括光线强度、光照方向、照射到无人驾驶车辆上的光线中光线强度超过第二预设数值的光线的照射方向等,当光线强度较强时(例如晴天阳光直射时),车载中控系统可能需要根据目标乘客的姿态信息以及光线强度,降低车窗亮度;遮挡物信息可以包括遮挡物高度、遮挡物长度、遮挡物面积等,当遮挡光线的遮挡物面积较大时(例如穿过隧道时),车载中控系统可能需要根据目标乘客的姿态信息以及遮挡物面积,提高车窗亮度。
在一种可行的实施方式中,目标乘客的姿态信息包括眼部睁合状态;环境信息包括:照射到无人驾驶车辆上的光线中光线强度超过第二预设数值的光线的照射方向。因此步骤S102可以包括以下步骤:
a8:判断无人驾驶车辆内部目标乘客的眼部是否处于睁开状态;
a9:若目标乘客的眼部处于睁开状态,根据光线强度超过第二预设数值的光线的照射方向,判断照射到无人驾驶车辆上的光线中光线强度超过第二预设数值的光线是否照射到目标乘客的眼部;
a10:若照射到无人驾驶车辆上的光线中光线强度超过第二预设数值的光线照射到目标乘客的眼部,则确定车窗亮度的调节策略为降低车窗的透光率。
步骤a8中,车载中控系统可以通过车载摄像头拍摄到的无人驾驶车辆内部的视频信息来确定目标乘客的眼部是否处于睁开状态。
在步骤a9中:若标乘客的眼部处于睁开状态,则确定目标乘客处于观察状态,观察状态具体可以包括观察车内状态以及观察车外状态。上述观察状态的两种情况主要是根据目标乘客的视线来确定的。
第二预设数值指的是预设的光线强度的数值。根据光线强度超过第二预设数值的光线的照射方向,可以判断照射到所述无人驾驶车辆上的光线中光线强度超过第一预设数值的光线是否照射到目标乘客的眼部。
步骤a10中,当目标乘客的眼部处于睁开状态,正常情况下,目标乘客都不期望光线强度太强的光线照射到眼部。当照射到无人驾驶车辆上的光线中光线强度超过第一预设数值的光线照射到目标乘客的眼部,可以确定车窗亮度的调节策略为降低车窗的透光率,具体确定的调节策略可以为将车窗玻璃调节为较深的颜色,或者在车窗玻璃上显示花纹,或者在车窗玻璃上设置透光区域的不同形状,降低通过车窗直射到无人驾驶 车辆内部的光线亮度。
如图3所示的第二种车窗调节效果示意图中,目标乘客的眼部正处于睁开状态,可以看出照射到无人驾驶车辆上的光线照射到了目标乘客的眼部,确定车窗亮度的调节策略为降低车窗的透光率,图3中通过在目标乘客靠近的车窗玻璃上设置了多个颜色较深的竖直条纹,以实现降低车窗的透光率的效果。
针对步骤a10,考虑到根据光线强度超过第二预设数值的光线的照射方向,可以确定车窗亮度的调节策略为降低部分车窗的透光率,具体可以按照以下步骤执行:
b1:确定目标直线与车窗的交点,并确定车窗亮度的调节策略为降低车窗上交点处的透光率;目标直线是照射到目标乘客的眼部的且光线强度超过第二预设数值的光线所在的直线。
具体地,当照射到目标乘客的眼部的光线是从光源直射到目标乘客的眼部时,目标直线可以是光源与目标乘客的眼部之间的连线;当照射到目标乘客的眼部的光线是反射到目标乘客的眼部时,目标直线可以是反射光线在反射界面的交点与目标乘客的眼部之间的连线;当照射到目标乘客的眼部的光线是折射到目标乘客的眼部时,目标直线可以是折射光线在折射界面的交点与目标乘客的眼部之间的连线。
确定出目标直线后,在根据目标直线的方向,确定目标直线与车窗的交点,从而确定车窗亮度的调节策略为降低车窗上交点处的透光率。具体确定的调节策略可以为将车窗上交点处的车窗玻璃调节为较深的颜色,或者在交点处的车窗玻璃上显示花纹,减少直射到目标乘客眼部的光线。
在理想状态下,可以对车窗上光线与车窗的交点的透光率进行调节,但是考虑到具体实施时的难度和成本,实际中可以对交点所在的区域的透光率进行调节。
如图4所示的第三种车窗调节效果示意图中,根据太阳的位置与目标乘客的眼部的位置,确定出太阳发出的光线中光线强度超过预设强度值的光线与车窗的交点,然后确定车窗亮度的调节策略为降低交点所在的区域,也就是图4左上角的车窗中阴影部分的透光率,因此图4中通过阴影部分的透光率,以减少直射到乘客眼部的光线。
在具体实施中,考虑到实际可操作性,这里可以降低交点所在的部分车窗面积的透光率。理想情况下,可以仅仅降低车窗上交点处的透光率。因此,降低车窗上交点处的透光率和降低交点所在的部分车窗面积的透光率都在本申请要求保护的范围之内。
在一种可行的实施方式中,考虑到无人驾驶车辆可以包括车顶玻璃和侧面的玻璃,而车顶的玻璃和侧面的玻璃的透光率可能是有差异的。因此在执行步骤S102时, 可以按照以下步骤执行:
a11:根据每个车窗的相对位置以及照射到无人驾驶车辆上的光线的光照信息,确定光线直接照射的车窗作为目标车窗;
a12:根据目标乘客的姿态信息以及照射到无人驾驶车辆上的光线的光照信息,确定作用于目标车窗的车窗亮度调节策略。
步骤a11中,具体可以根据每个车窗的相对位置,确定与目标乘客距离最近的目标车窗,以及根据照射到无人驾驶车辆上的光线的光照信息,确定光线直接照射的车窗作为目标车窗。
步骤a12中,根据目标乘客的姿态信息以及照射到目标车窗上的光照信息,确定作用于目标车窗的车窗亮度调节策略。
在具体实施中,车载中控系统可以根据目标乘客的姿态信息和外部的环境信息的任意结合方式,确定车窗亮度的调节策略。
考虑到目标乘客在乘车时会有变换乘车姿态的情况,确定车窗亮度的调节策略的过程需要一定的时长,因此,在具体实施中,可以在目标乘客保持当前姿态的时长超过预设时长的情况下,确定车窗亮度的调节策略。
因此,在一种可行的实施方式中,姿态信息还包括:目标乘客保持当前姿态的时长。
在具体实施中,还可以考虑目标乘客保持当前姿态的时长,根据目标乘客保持当前姿态的时长对车窗的透光率进行调节。在执行步骤S102之前,可以根据车载摄像头拍摄到的无人驾驶车辆内部的目标乘客处于各种姿态时的时长信息或者是座椅上的传感器通过连接的计时器记录的目标乘客与座椅接触时的时长信息,检测目标乘客保持当前姿态的时长是否超过预设时长。
因此在执行步骤S102时,可以包括步骤:
a13:若目标乘客保持当前姿态的时长超过预设时长,则确定车窗亮度的调节策略为调节车窗的透光率。
在一种可行的实施方式中,针对上述确定的乘车状态的条件下,如果降低车窗的透光率之后,还可以调节车窗对应的电动窗帘,具体包括以下步骤:
c1:判断无人驾驶车辆内部的光线强度是否超过第三预设数值;
c2:若无人驾驶车辆内部的光线强度超过第三预设数值,则驱动车窗对应的电动窗帘降落。
在步骤c1中,第三预设数值小于第二预设数值的光线强度的数值,通过判断无人驾驶车辆内部的光线强度是否超过第三预设数值,来判断在降低车窗的透光率之后,无人驾驶车辆内部的光线强度是否满足乘车处于当前乘车状态下的需要。
步骤c2中,若无人驾驶车辆内部的光线强度超过第三预设数值,说明在降低车窗的透光率之后,无人驾驶车辆内部的光线强度可能未满足乘车处于当前姿态下的需要,例如乘客处于休息状态,可能需要无人驾驶车辆内部处于一个光线相对较暗的环境,此时可以通过驱动车窗对应的电动窗帘降落,可以辅助调节车窗亮度的调节,以使无人驾驶车辆内部的亮度达到理想的状态,满足目标乘客的需求。
基于相同的技术构思,本申请实施例还提供一种车窗调节装置、电子设备、以及计算机可读存储介质等,具体可参见以下实施例。
图5是示出本申请的一些实施例的车窗调节装置的框图,该车窗调节装置实现的功能对应上述在终端设备上执行车窗调节方法的步骤。该装置可以理解为一个包括处理器的服务器的组件,该组件能够实现上述车窗调节方法,如图5所示,该车窗调节装置可以包括:
第一获取模块501,用于实时获取位于无人驾驶车辆内部的目标乘客的姿态信息以及照射到所述无人驾驶车辆上的光线的光照信息;
第一确定模块502,用于根据所述无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略;
调节模块503,用于根据所述确定的车窗亮度的调节策略,对所述无人驾驶车辆上的车窗进行调节。
在一种可行的实施方式中,所述第一获取模块501,具体用于:
通过车载摄像头获取所述无人驾驶车辆内部的视频信息和/或座椅上的传感器检测到的所述目标乘客与所述座椅的接触位置信息,确定所述无人驾驶车辆内部的目标乘客的姿态信息。
在一种可行的实施方式中,所述姿态信息包括:所述目标乘客与座椅接触时身体相对于地面的倾斜角度和眼部睁合状态;
所述第一确定模块502,包括:
第一判断模块,用于判断所述目标乘客与座椅接触时身体相对于地面的倾斜角度是否小于预设倾斜角度且所述目标乘客的眼部是否处于闭合状态;
第二确定模块,用于若所述目标乘客与座椅接触时身体相对于地面的倾斜角度 小于预设倾斜角度且所述目标乘客的眼部处于闭合状态,则确定车窗亮度的调节策略为降低车窗的透光率。
在一种可行的实施方式中,所述目标乘客的姿态信息包括:所述目标乘客的面部朝向和眼部睁合状态;
所述第一确定模块502,具体用于若所述目标乘客的面部朝向为朝向所述无人驾驶车辆的外部且眼部处于睁开状态,则确定车窗亮度的调节策略为提高车窗的透光率;若所述目标乘客的面部朝向为所述无人驾驶车辆的内部且眼部处于睁开状态,则确定车窗亮度的调节策略为降低车窗的透光率。
在一种可行的实施方式中,所述目标乘客的姿态信息包括:所述目标乘客的眼部睁合状态;所述车窗调节装置可以包括:
第二获取模块,用于获取所述无人驾驶车辆的行程进度;
所述第一确定模块,用于根据所述无人驾驶车辆内部的目标乘客的姿态信息和所述行程进度,确定车窗亮度的调节策略。
在一种可行的实施方式中,所述行程进度包括:所述无人驾驶车辆对应的已行驶里程占预计总行驶里程的比值;
所述第一确定模块502,包括:
第二判断模块,用于判断所述无人驾驶车辆对应的已行驶里程占预计总行驶里程的比值是否大于第一预设数值;
第三确定模块,用于若所述无人驾驶车辆对应的已行驶里程与预计总行驶里程的比值小于第一预设数值且所述目标乘客的眼部处于闭合状态,则确定车窗亮度的调节策略为降低车窗的透光率;若所述无人驾驶车辆对应的已行驶里程与预计总行驶里程的比值大于预设数值且所述目标乘客的眼部处于闭合状态,则确定车窗亮度的调节策略为提高车窗的透光率。
在一种可行的实施方式中,所述第一确定模块502,包括:
第三获取模块,用于获取所述无人驾驶车辆外部的环境信息;
第四确定模块,用于根据所述无人驾驶车辆内部的目标乘客的姿态信息以及所述无人驾驶车辆外部的环境信息,确定车窗亮度的调节策略。
在一种可行的实施方式中,所述目标乘客的姿态信息包括眼部睁合状态;所述环境信息包括:照射到所述无人驾驶车辆上的光线中光线强度超过第二预设数值的光线的照射方向;
所述第一确定模块,包括:
第三判断模块,用于判断所述无人驾驶车辆内部目标乘客的眼部是否处于睁开状态;
第四判断模块,用于若所述目标乘客的眼部处于睁开状态,根据光线强度超过第二预设数值的光线的照射方向,判断照射到所述无人驾驶车辆上的光线中光线强度超过第一预设数值的光线是否照射到所述目标乘客的眼部;
第五确定模块,用于若照射到所述无人驾驶车辆上的光线中光线强度超过第二预设数值的光线照射到所述目标乘客的眼部,则确定车窗亮度的调节策略为降低车窗的透光率。
在一种可行的实施方式中,所述第五确定模块,具体用于:确定目标直线与车窗的交点,并确定车窗亮度的调节策略为降低车窗上交点处的透光率;所述目标直线是照射到所述目标乘客的眼部的且光线强度超过第二预设数值的光线所在的直线。
在一种可行的实施方式中,所述第四确定模块,包括:
第六确定模块,用于根据每个车窗的相对位置以及照射到所述无人驾驶车辆上的光线的光照信息,确定光线直接照射的车窗作为目标车窗;
第七确定模块,用于根据目标乘客的姿态信息以及照射到所述目标车窗上的光线的光照信息,确定作用于所述目标车窗的车窗亮度调节策略。
在一种可行的实施方式中,所述姿态信息还包括:所述目标乘客保持当前姿态的时长;
所述车窗调节装置还可以包括:
检测模块,用于检测所述目标乘客保持当前姿态的时长是否超过预设时长;
所述第一确定模块502,用于:若所述目标乘客保持当前姿态的时长超过预设时长,则确定车窗亮度的调节策略为调节车窗的透光率。
在一种可行的实施方式中,所述目标乘客的姿态信息包括以下任意一种或多种:目标乘客与座椅接触时身体相对于地面的倾斜角度、眼部睁合状态和面部朝向。
在一种可行的实施方式中,所述车窗调节装置还可以包括:
第五判断模块,用于判断所述无人驾驶车辆内部的光线强度是否超过第三预设数值;
驱动模块,用于若所述无人驾驶车辆内部的光线强度超过第三预设数值,则驱动所述车窗对应的电动窗帘降落。
本申请实施例还提供一种车窗控制系统,包括:车窗控制器和由车窗控制器控制的车窗;
所述车窗控制器,用于执行本申请实施例所提供的车窗调节方法的步骤。
所述车窗,用于根据车窗控制器执行的上述车窗调节方法的步骤显示亮度。
本申请实施例还提供一种无人驾驶车辆,包括上述车窗控制系统;车窗控制系统包括车窗控制器和由车窗控制系统控制的车窗。
其中,车窗控制器,用于执行本申请实施例所提供的车窗调节方法的步骤;车窗,用于根据车窗控制器执行的上述车窗调节方法的步骤显示亮度。
如图6所示,为本申请实施例所提供的一种电子设备的结构示意图,该电子设备包括:处理器601、存储器602和总线603,存储器602存储有执行指令,当电子设备运行时,处理器601与存储器602之间通过总线603通信,处理器601执行存储器602中存储的如图1所示的一种车窗调节方法的步骤。
本申请实施例所提供的进行车窗调节方法的计算机程序产品,包括存储了处理器可执行的非易失的程序代码的计算机可读存储介质,所述程序代码包括的指令可用于执行前面方法实施例中所述的方法,具体实现可参见方法实施例,在此不再赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个处理器可执行的非易失的计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上所述实施例,仅为本申请的具体实施方式,用以说明本申请的技术方案,而非对其限制,本申请的保护范围并不局限于此,尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,其依然可以对前述实施例所记载的技术方案进行修改或可轻易想到变化,或者对其中部分技术特征进行等同替换;而这些修改、变化或者替换,并不使相应技术方案的本质脱离本申请实施例技术方案的精神和范围,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (17)

  1. 一种车窗调节方法,其特征在于,应用于无人驾驶车辆的车载中控系统,包括:
    实时获取位于所述无人驾驶车辆内部的目标乘客的姿态信息;
    根据所述无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略;
    根据所述确定的车窗亮度的调节策略,对所述无人驾驶车辆上的车窗进行调节。
  2. 根据权利要求1所述的车窗调节方法,其特征在于,所述实时获取位于所述无人驾驶车辆内部的目标乘客的姿态信息,包括:
    通过车载摄像头拍摄到的所述无人驾驶车辆内部的视频信息和/或座椅上的传感器检测到的所述目标乘客与所述座椅的接触位置信息,确定所述无人驾驶车辆内部的目标乘客的姿态信息。
  3. 根据权利要求1所述的车窗调节方法,其特征在于,所述姿态信息包括:所述目标乘客与座椅接触时身体相对于地面的倾斜角度和眼部睁合状态;
    所述根据所述无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略,包括:
    判断所述目标乘客与座椅接触时身体相对于地面的倾斜角度是否小于预设倾斜角度且所述目标乘客的眼部是否处于闭合状态;
    若所述目标乘客与座椅接触时身体相对于地面的倾斜角度小于预设倾斜角度且所述目标乘客的眼部处于闭合状态,则确定车窗亮度的调节策略为降低车窗的透光率。
  4. 根据权利要求1所述的车窗调节方法,其特征在于,所述目标乘客的姿态信息包括:所述目标乘客的面部朝向和眼部睁合状态;
    所述根据所述无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略,包括:
    若所述目标乘客的面部朝向为朝向所述无人驾驶车辆的外部且眼部处于睁开状态,则确定车窗亮度的调节策略为提高车窗的透光率;若所述目标乘客的面部朝向为所述无人驾驶车辆的内部且眼部处于睁开状态,则确定车窗亮度的调节策略为降低车窗的透光率。
  5. 根据权利要求1所述的车窗调节方法,其特征在于,所述目标乘客的姿态信息包括:所述目标乘客的眼部睁合状态;在所述根据所述无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略之前,所述方法还包括:
    获取所述无人驾驶车辆的行程进度;
    所述根据所述无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略,包括:
    根据所述无人驾驶车辆内部的目标乘客的姿态信息和所述行程进度,确定车窗亮度的调节策略。
  6. 根据权利要求1所述的车窗调节方法,其特征在于,所述行程进度包括:所述无人驾驶车辆对应的已行驶里程占预计总行驶里程的比值;
    所述根据所述无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略,包括:
    判断所述无人驾驶车辆对应的已行驶里程占预计总行驶里程的比值是否大于第一预设数值;
    若所述无人驾驶车辆对应的已行驶里程与预计总行驶里程的比值小于第一预设数值且所述目标乘客的眼部处于闭合状态,则确定车窗亮度的调节策略为降低车窗的透光率;若所述无人驾驶车辆对应的已行驶里程与预计总行驶里程的比值大于预设数值且所述目标乘客的眼部处于闭合状态,则确定车窗亮度的调节策略为提高车窗的透光率。
  7. 根据权利要求1所述的车窗调节方法,其特征在于,所述根据所述无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略,包括:
    获取所述无人驾驶车辆外部的环境信息;
    根据所述无人驾驶车辆内部的目标乘客的姿态信息以及所述无人驾驶车辆外部的环境信息,确定车窗亮度的调节策略。
  8. 根据权利要求7所述的车窗调节方法,其特征在于,所述目标乘客的姿态信息包括眼部睁合状态;所述环境信息包括:照射到所述无人驾驶车辆上的光线中光线强度超过第二预设数值的光线的照射方向;
    所述根据所述无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略, 包括:
    判断所述无人驾驶车辆内部目标乘客的眼部是否处于睁开状态;
    若所述目标乘客的眼部处于睁开状态,根据光线强度超过第二预设数值的光线的照射方向,判断照射到所述无人驾驶车辆上的光线中光线强度超过第一预设数值的光线是否照射到所述目标乘客的眼部;
    若照射到所述无人驾驶车辆上的光线中光线强度超过第二预设数值的光线照射到所述目标乘客的眼部,则确定车窗亮度的调节策略为降低车窗的透光率。
  9. 根据权利要求8所述的车窗调节方法,其特征在于,所述若照射到所述无人驾驶车辆上的光线中光线强度超过第二预设数值的光线照射到所述目标乘客的眼部,则确定车窗亮度的调节策略为降低车窗的透光率,包括:
    确定目标直线与车窗的交点,并确定车窗亮度的调节策略为降低车窗上交点处的透光率;所述目标直线是照射到所述目标乘客的眼部的且光线强度超过第二预设数值的光线所在的直线。
  10. 根据权利要求7所述的车窗调节方法,其特征在于,所述根据所述无人驾驶车辆内部的目标乘客的姿态信息以及所述无人驾驶车辆外部的环境信息,确定车窗亮度的调节策略,包括:
    根据每个车窗的相对位置以及照射到所述无人驾驶车辆上的光线的光照信息,确定光线直接照射的车窗作为目标车窗;
    根据目标乘客的姿态信息以及照射到所述目标车窗上的光线的光照信息,确定作用于所述目标车窗的车窗亮度调节策略。
  11. 根据权利要求1-10任一所述的车窗调节方法,其特征在于,所述姿态信息还包括:所述目标乘客保持当前姿态的时长;
    在所述根据所述无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略之前,所述方法还包括:
    检测所述目标乘客保持当前姿态的时长是否超过预设时长;
    所述根据所述无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略,包括:
    若所述目标乘客保持当前姿态的时长超过预设时长,则确定车窗亮度的调节策略为调节车窗的透光率。
  12. 根据权利要求1所述的车窗调节方法,其特征在于,所述目标乘客的姿态信息包括以下任意一种或多种:目标乘客与座椅接触时身体相对于地面的倾斜角度、眼部睁合状态和面部朝向。
  13. 根据权利要求7-8任一所述的车窗调节方法,其特征在于,在步骤降低车窗的透光率之后,还包括:
    判断所述无人驾驶车辆内部的光线强度是否超过第三预设数值;
    若所述无人驾驶车辆内部的光线强度超过第三预设数值,则驱动所述车窗对应的电动窗帘降落。
  14. 一种车窗调节装置,其特征在于,包括:
    第一获取模块,用于实时获取位于无人驾驶车辆内部的目标乘客的姿态信息以及照射到所述无人驾驶车辆上的光线的光照信息;
    第一确定模块,用于根据所述无人驾驶车辆内部的目标乘客的姿态信息,确定车窗亮度的调节策略;
    调节模块,用于根据所述确定的车窗亮度的调节策略,对所述无人驾驶车辆上的车窗进行调节。
  15. 一种车窗控制系统,其特征在于,包括:车窗控制器和由所述车窗控制器控制的车窗;
    所述车窗控制器,用于执行如权利要求1至13任一项所述的车窗调节方法的步骤;
    所述车窗,用于根据所述车窗控制器执行的如权利要求1至13任一项所述的车窗调节方法的步骤显示亮度。
  16. 一种无人驾驶车辆,其特征在于,包括如权利要求15所述的车窗控制系统;所述车窗控制系统包括车窗控制器和由所述车窗控制系统控制的车窗。
  17. 一种计算机可读存储介质,其特征在于,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器运行时执行如权利要求1至13任一所述的车窗调节方法的步骤。
PCT/CN2021/086942 2020-06-18 2021-04-13 一种车窗调节方法、装置、电子设备及可读存储介质 WO2021253953A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010561630.1A CN111674246B (zh) 2020-06-18 2020-06-18 一种车窗调节方法、装置、电子设备及可读存储介质
CN202010561630.1 2020-06-18

Publications (1)

Publication Number Publication Date
WO2021253953A1 true WO2021253953A1 (zh) 2021-12-23

Family

ID=72436578

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086942 WO2021253953A1 (zh) 2020-06-18 2021-04-13 一种车窗调节方法、装置、电子设备及可读存储介质

Country Status (2)

Country Link
CN (2) CN114654974B (zh)
WO (1) WO2021253953A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114557566A (zh) * 2022-02-08 2022-05-31 珠海格力电器股份有限公司 床体姿态调整系统、方法、存储介质及电子设备
CN114675442A (zh) * 2022-03-04 2022-06-28 北京梧桐车联科技有限责任公司 车内光线强度的控制方法、装置、系统及存储介质

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114654974B (zh) * 2020-06-18 2024-03-22 北京航迹科技有限公司 一种车窗调节方法、装置、电子设备及可读存储介质
CN111703301B (zh) * 2020-06-18 2022-03-04 北京航迹科技有限公司 一种车窗内容显示方法、装置、电子设备及可读存储介质
CN112644255A (zh) * 2020-12-17 2021-04-13 广州橙行智动汽车科技有限公司 一种调节车内透光的方法、装置、存储介质及车辆
CN112706591B (zh) * 2021-01-14 2022-09-13 南京天擎汽车电子有限公司 车窗透光度调节方法、装置、设备和介质
CN115989155A (zh) * 2021-08-16 2023-04-18 华为技术有限公司 一种透光率调整方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101654058A (zh) * 2009-09-08 2010-02-24 奇瑞汽车股份有限公司 车窗透光度的调整方法及装置
DE102010006293A1 (de) * 2010-01-30 2011-08-04 Daimler AG, 70327 Blendschutzvorrichtung für ein Fahrzeug
CN107962935A (zh) * 2016-10-20 2018-04-27 福特全球技术公司 车辆车窗透光率控制装置和方法
CN110857022A (zh) * 2018-08-23 2020-03-03 上海博泰悦臻网络技术服务有限公司 一种调节玻璃的透明度的方法、装置及车辆
CN111674246A (zh) * 2020-06-18 2020-09-18 北京航迹科技有限公司 一种车窗调节方法、装置、电子设备及可读存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5298732A (en) * 1993-02-18 1994-03-29 Emee, Inc. Automatic visor for continuously repositioning a shading object to shade a designated location from a direct radiation source
JP2005035384A (ja) * 2003-07-14 2005-02-10 Nissan Motor Co Ltd 車両用自動遮光装置
US8482834B2 (en) * 2010-12-07 2013-07-09 David A. Cordova Window tinting systems
JP2015063190A (ja) * 2013-09-24 2015-04-09 トヨタ自動車株式会社 自動防眩装置
EP3153346B1 (en) * 2015-10-07 2019-09-25 Volvo Car Corporation A seat system for autonomous vehicles
CN106994884B (zh) * 2017-05-05 2023-07-14 华域视觉科技(上海)有限公司 基于oled显示技术的主动防炫目方法及装置
CN109808464B (zh) * 2019-01-24 2020-09-25 北京梧桐车联科技有限责任公司 一种前挡玻璃透光率调节方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101654058A (zh) * 2009-09-08 2010-02-24 奇瑞汽车股份有限公司 车窗透光度的调整方法及装置
DE102010006293A1 (de) * 2010-01-30 2011-08-04 Daimler AG, 70327 Blendschutzvorrichtung für ein Fahrzeug
CN107962935A (zh) * 2016-10-20 2018-04-27 福特全球技术公司 车辆车窗透光率控制装置和方法
CN110857022A (zh) * 2018-08-23 2020-03-03 上海博泰悦臻网络技术服务有限公司 一种调节玻璃的透明度的方法、装置及车辆
CN111674246A (zh) * 2020-06-18 2020-09-18 北京航迹科技有限公司 一种车窗调节方法、装置、电子设备及可读存储介质

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114557566A (zh) * 2022-02-08 2022-05-31 珠海格力电器股份有限公司 床体姿态调整系统、方法、存储介质及电子设备
CN114675442A (zh) * 2022-03-04 2022-06-28 北京梧桐车联科技有限责任公司 车内光线强度的控制方法、装置、系统及存储介质
CN114675442B (zh) * 2022-03-04 2023-11-14 北京梧桐车联科技有限责任公司 车内光线强度的控制方法、装置、系统及存储介质

Also Published As

Publication number Publication date
CN111674246B (zh) 2022-04-19
CN114654974A (zh) 2022-06-24
CN114654974B (zh) 2024-03-22
CN111674246A (zh) 2020-09-18

Similar Documents

Publication Publication Date Title
WO2021253953A1 (zh) 一种车窗调节方法、装置、电子设备及可读存储介质
CN108688554B (zh) 车辆用灯泡
KR101859047B1 (ko) 헤드 램프, 차량 운전 보조 장치 및 차량
US20160096466A1 (en) Light control device
KR102129478B1 (ko) 자동차의 운전자 시야 관점에서의 광 조건 개선 방법
KR101768500B1 (ko) 운전 보조 장치 및 그 제어방법
CN109466424A (zh) 一种智能远光灯控制系统及智能控制方法
KR20160091293A (ko) 차량용 사이드 미러 카메라 시스템
JP4687573B2 (ja) 車両用運転支援装置
US20180126907A1 (en) Camera-based system for reducing reflectivity of a reflective surface
CN109808585A (zh) 一种车灯控制方法、装置、系统及车辆
CN112334361B (zh) 信息显示装置和信息显示方法
CN109367484A (zh) 汽车后视镜
CN112896032B (zh) 用于驾驶员的可变光束模式灯系统及其控制方法
JPH0953917A (ja) 車両用視線方向計測装置
CN109624667A (zh) 一种汽车智能防交通摄像装置炫目的方法及系统
US20220194296A1 (en) Vehicle systems and methods for assistance drivers to reduce reflective light interference from rear sides
US11487281B2 (en) Systems and methods for executing remotely-controlled automated vehicle parking operations
CN109318811A (zh) 汽车光线识别系统及包括其的汽车
KR20230082712A (ko) 차량
CN109747417B (zh) 一种车载防眩显示器、显示系统、汽车和防眩方法
CN111016832B (zh) 一种汽车取色装置、汽车色彩控制系统及方法
US20230356728A1 (en) Using gestures to control machines for autonomous systems and applications
CN117048495A (zh) 防眩目装置及控制方法
CN117246112A (zh) 车辆遮光的方法、装置、电子设备及可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826171

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM1205A DATED 27/03/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21826171

Country of ref document: EP

Kind code of ref document: A1