WO2021251666A1 - 개스킷용 수지 조성물 및 이를 포함하는 이차전지용 개스킷 - Google Patents

개스킷용 수지 조성물 및 이를 포함하는 이차전지용 개스킷 Download PDF

Info

Publication number
WO2021251666A1
WO2021251666A1 PCT/KR2021/006719 KR2021006719W WO2021251666A1 WO 2021251666 A1 WO2021251666 A1 WO 2021251666A1 KR 2021006719 W KR2021006719 W KR 2021006719W WO 2021251666 A1 WO2021251666 A1 WO 2021251666A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyarylene sulfide
group
weight
sulfide resin
resin
Prior art date
Application number
PCT/KR2021/006719
Other languages
English (en)
French (fr)
Inventor
김지훈
김성기
김해리
Original Assignee
에스케이케미칼 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 에스케이케미칼 주식회사 filed Critical 에스케이케미칼 주식회사
Publication of WO2021251666A1 publication Critical patent/WO2021251666A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/183Sealing members
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G75/00Macromolecular compounds obtained by reactions forming a linkage containing sulfur with or without nitrogen, oxygen, or carbon in the main chain of the macromolecule
    • C08G75/02Polythioethers
    • C08G75/0204Polyarylenethioethers
    • C08G75/0286Chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/372Sulfides, e.g. R-(S)x-R'
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/54Silicon-containing compounds
    • C08K5/548Silicon-containing compounds containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L81/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen or carbon only; Compositions of polysulfones; Compositions of derivatives of such polymers
    • C08L81/02Polythioethers; Polythioether-ethers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/166Lids or covers characterised by the methods of assembling casings with lids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • C08L2205/025Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group containing two or more polymers of the same hierarchy C08L, and differing only in parameters such as density, comonomer content, molecular weight, structure
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a resin composition for a gasket and a gasket for a secondary battery comprising the same.
  • sealed secondary batteries such as aqueous electrolyte secondary batteries typified by high-capacity alkaline storage batteries and non-aqueous secondary batteries typified by lithium ion secondary batteries are widely used.
  • a sealed secondary battery is accommodated in a battery case (external body) having an opening provided with an electrolyte for immersing the electrode plate group and the electrode plate group including a positive electrode plate, a negative electrode plate, and a separator disposed therebetween, and the battery case sealed by a sealing body for sealing the opening of the
  • a gasket is provided at a contact point between a positive electrode plate or a negative electrode plate electrically connected to the positive electrode or negative electrode terminal to prevent a short circuit between a pair of terminals or to prevent leakage of electrolyte.
  • polyarylene sulfide resin is reported (refer patent document 1).
  • Polyphenylene sulfide is the only polyarylene sulfide currently being mass-marketed, and its production method includes a solution polymerization method that polymerizes paradichlorobenzene and sodium sulfide as raw materials in N-methylpyrrolidone solvent (patented Reference 2), there is a melt polymerization method in which a diiodine aromatic compound and a sulfur compound are polymerized at a high temperature as raw materials without using a solvent.
  • Polyphenylene sulfide resin prepared by solution polymerization is known to adversely affect the heat resistance, flame resistance and durability of molded products because of the use of solvent and the amount of outgas due to chlorine contained in the raw material.
  • the polyphenylene sulfide resin prepared by the melt polymerization method does not use a solvent, so it has excellent productivity and cost structure, has a low amount of outgas, and has improved effects such as excellent corrosion resistance because it does not use a chlorine-based raw material.
  • due to the non-polar end group of the resin it is difficult to modify it to have desired properties due to its low reactivity with processing additives, which limits its use and usage, and the disulfide bond derived from the sulfur compound used as a raw material has a weak structure in the resin.
  • the mechanical strength is not sufficient because it acts as a
  • Such a gasket for a secondary battery is basically required to have chemical resistance to the electrolyte and excellent airtightness.
  • the gasket needs to have excellent mechanical strength so that it can maintain airtightness even in an environment where the internal pressure rises as a mechanical shock is applied to the secondary battery or the solvent is vaporized or decomposed inside the secondary battery by heating to generate gas. do.
  • molded products such as gaskets can be manufactured by injection molding a resin using a mold having a plurality of cavities in order to simultaneously manufacture a plurality of molded products. Since productivity is lowered when molding defects are not generated, the resin used for gaskets and the like is required to have a good cavity balance.
  • the present inventors found that, when polyarylene sulfide resin post-processed with a compatibilizer is used for the manufacture of gaskets, the cavity balance can be improved while achieving both excellent airtightness and mechanical strength. did In addition, by mixing a solution-polymerized polyarylene sulfide resin and a melt-polymerized polyarylene sulfide resin, it was found that a gasket having excellent airtightness and mechanical strength while maintaining a good cavity balance could be manufactured, thereby completing the present invention. .
  • Patent Document 1 Japanese Patent Laid-Open No. 8-321287
  • Patent Document 2 US Patent No. 2,513,188
  • An object of the present invention is to provide a novel polyarylene sulfide resin composition for a gasket and a gasket for a secondary battery comprising the same.
  • the present invention relates to a first polyarylene sulfide resin in which a terminal group derived from a compatibilizer is introduced into a first polyarylene sulfide resin in which a diiodo aromatic compound, a first sulfur compound, and a polymerization inhibitor are melt-polymerized; and at least one additive selected from the group consisting of glass fibers, elastomers, and heat stabilizers.
  • the present invention provides a first polyarylene sulfide resin in which a diiodo aromatic compound, a first sulfur compound, and a polymerization inhibitor are melt-polymerized; a second polyarylene sulfide resin obtained by solution polymerization of a dihalo aromatic compound and a second sulfur compound; and at least one additive selected from the group consisting of glass fibers, elastomers, and heat stabilizers, wherein the second polyarylene sulfide resin is a total of the first polyarylene sulfide resin and the second polyarylene sulfide resin. It provides a resin composition for a gasket, which is included in an amount of 0.0001 to 30% by weight based on the weight.
  • the present invention provides a post-processed first polyarylene sulfide resin in which a terminal group derived from a compatibilizer is introduced into a first polyarylene sulfide resin in which a diiodo aromatic compound, a first sulfur compound, and a polymerization inhibitor are melt-polymerized; a second polyarylene sulfide resin obtained by solution polymerization of a dihalo aromatic compound and a second sulfur compound; and at least one additive selected from the group consisting of glass fibers, elastomers and heat stabilizers, wherein the second polyarylene sulfide resin comprises the post-processed first polyarylene sulfide resin and the second polyarylene sulfide resin. It provides a resin composition for a gasket, which is contained in an amount of 0.0001 to 30% by weight based on the total weight of the.
  • the present invention provides a gasket for a secondary battery comprising a molded article obtained from the above-described resin composition for a gasket.
  • the present invention provides an exterior body having an opening; a sealing body sealing the opening of the exterior body; a positive electrode plate, a negative electrode plate, and an electrolyte provided inside the exterior body; a separator provided between the positive electrode plate and the negative electrode plate; a positive electrode terminal electrically connected to the positive electrode plate; a negative terminal electrically connected to the negative electrode plate; It provides a secondary battery comprising the above-described gasket for secondary battery in contact with the positive terminal or the negative terminal.
  • the polyarylene sulfide resin composition for a gasket of the present invention may have a low outgas amount, excellent airtightness, cavity balance, tensile strength, tensile elongation, and/or crystallinity.
  • the first polyarylene sulfide resin is post-processed in which terminal groups derived from a compatibilizer are introduced into the first polyarylene sulfide resin in which the diiodo aromatic compound, the first sulfur compound, and the polymerization inhibitor are melt-polymerized; and an additive, a resin composition for a gasket (hereinafter, post-processed first polyarylene sulfide resin composition) is provided.
  • the first polyarylene sulfide resin may be prepared by melt polymerization of a composition including a diiodo aromatic compound, a first sulfur compound, and a polymerization inhibitor.
  • the diiodo aromatic compound refers to a compound having an aromatic ring and two iodine atoms directly bonded thereto.
  • Diiodo aromatic compounds include diiodobenzene, diiodotoluene, diiodoxylene, diiodonaphthalene, diiodobiphenyl, diiodobenzophenone, diiododiphenyl ether and diiododiphenyl. It may be at least one selected from the group consisting of sulfones, but is not limited thereto.
  • the aromatic ring of the diiodo aromatic compound is a halo group excluding an iodo group, a phenyl group, a hydroxy group, a nitro group, an amino group, an alkoxy group having 1 to 6 carbon atoms, a carboxy group, a carboxylate, an arylsulfone and an aryl ketone from the group consisting of It may be substituted by at least one selected substituent.
  • the diiodo aromatic compound having an aromatic ring substituted with the above substituent is a diiodo having an unsubstituted aromatic ring from the viewpoint of crystallinity and heat resistance of the resin.
  • substitution positions of the two iodo groups in the diiodo aromatic compound are not particularly limited, but the two substitution positions may be far from each other in the molecule, and may be the para position or the 4,4'-position.
  • the diiodo aromatic compound is present in an amount of 0.5 to 2.0 moles, 0.55 to 1.9 moles, 0.6 to 1.8 moles, 0.65 to 1.7 moles, 0.7 to 1.6 moles, 0.75 to 1.5 moles, or 0.8 to 1.4 moles based on 1 mole of the first sulfur compound.
  • the diiodo aromatic compound may be, for example, p-diiodobenzene.
  • the first sulfur compound may be a single sulfur.
  • Single sulfur refers to a compound composed of sulfur atoms.
  • the single sulfur may be at least one selected from the group consisting of S 8 , S 6 , S 4 and S 2 , and specifically, it may be a mixture including S 8 and S 6 that is generally available, but limited thereto doesn't happen
  • the purity, form, and particle size of the single sulfur are not particularly limited.
  • the form of single sulfur may be granular or powdery at room temperature (23° C., solid.
  • the particle diameter of single sulfur may be 0.001 to 10 mm, 0.01 to 5 mm, or 0.01 to 3 mm, but is not particularly limited thereto. .
  • the polymerization inhibitor may be used without particular limitation as long as it is a compound that inhibits or stops the polymerization reaction of the first polyarylene sulfide resin.
  • the polymerization inhibitor is a compound capable of introducing at least one functional group selected from the group consisting of -OR, -SR, -COOR, -NHR, -SO 3 R, -NHCOR, etc. at the end of the main chain of the polyarylene sulfide resin may be, wherein R may each independently be a hydrogen group, a metal cation such as sodium or lithium, a halo group, an alkyl group having 1 to 6 carbon atoms, or a phenyl group.
  • the polymerization inhibitor may include the functional group, and the functional group may be generated by a polymerization stop reaction or the like.
  • the polymerization inhibitor may be a compound not containing the functional group, specifically, diphenyl disulfide, monoiodobenzene, thiophenol, 2,2'-dibenzothiazolyl disulfide, 2-mercaptobenzothiazole , N-cyclohexyl-2-benzothiazolylsulfenamide, 2-(morpholinothio)benzothiazole and N,N'-dicyclohexyl-1,3-benzothiazole-2-sulfenamide It may be at least one compound.
  • the polymerization inhibitor may be one or more of the compounds represented by the following Chemical Formulas 1 to 3, specifically, may be a compound represented by the Chemical Formula 1.
  • X 1 and X 2 are each independently a hydrogen group, a halo group, an alkyl group having 1 to 3 carbon atoms, a substituted or unsubstituted phenyl group, -OA 1 , -SA 2 , -COOA 3 , -NA 4 A 5 , - SO 3 A 6 and -NHCOA 7 selected from the group consisting of,
  • a 1 to A 7 are each independently a hydrogen group, a sodium cation, a lithium cation, a substituted or unsubstituted alkyl group having 1 to 3 carbon atoms, and a substituted or unsubstituted is selected from the group consisting of a substituted phenyl group
  • Z 1 to Z 4 are each independently a hydrogen group, a substituted or unsubstituted alkyl group having 1 or 2 carbon atoms, and a substituted or unsubstituted alkenyl group having 1 or 2 carbon atoms It is selected from the group consist
  • Z 1 and Z 2 are an alkenyl group having 2 carbon atoms and bonded to two adjacent carbon atoms, they may be connected to each other to form a benzene ring.
  • Z 3 and Z 4 are alkenyl groups having 2 carbon atoms and bonded to two adjacent carbon atoms, they may be connected to each other to form a benzene ring.
  • X 1 or X 2 bonded to one aromatic ring may be the same as or different from each other.
  • Z 1 and Z 3 may be the same as or different from each other, and Z 2 and Z 4 may be the same or different from each other.
  • the substituted phenyl group of X 1 or X 2 may have a substituent of -SH or -SS-Ph.
  • the substituted alkyl group having 1 to 3 carbon atoms and the substituted phenyl group of A 1 to A 7 may have a substituent of an alkyl group or phenyl group having 1 or 2 carbon atoms.
  • Z 1 and Z 2 may be bonded to two adjacent carbon atoms
  • Z 3 and Z 4 may be bonded to two adjacent carbon atoms.
  • At least one or two or more of Z 1 to Z 4 may not be a hydrogen group.
  • at least one of X 1 and X 2 may be selected from the group consisting of -OA 1 , -SA 2 , -COOA 3 , NA 4 A 5 , -SO 3 A 6 , and -NHCOA 7 .
  • both X 1 and X 2 are hydrogen groups, at least one of a combination of Z 1 and Z 2 or a combination of Z 3 and Z 4 may be connected to each other to form a benzene ring.
  • X 3 to X 6 are each independently a hydrogen group, a halo group, an alkyl group having 1 to 5 carbon atoms, -OA 8 , -SA 9 , -COOA 10 , -NA 11 A 12 , -SO 3 A 13 and -NHCOA is selected from the group consisting of 14 , and A 8 to A 14 are each independently selected from the group consisting of a hydrogen group, a sodium cation, a lithium cation, and an alkyl group having 1 to 3 carbon atoms, and R 1 to R 4 are each independently It is selected from the group consisting of an alkylene group having 1 to 5 carbon atoms and an alkoxy group.
  • At least one of X 3 to X 6 may be selected from the group consisting of -OA 8 , -SA 9 , -COOA 10 , -NA 11 A 12 , -SO 3 A 13 and -NHCOA 14 .
  • at least one of X 3 to X 6 may be -SA 9 in which A 9 is a hydrogen group.
  • X 7 to X 12 are each independently a hydrogen group, a halo group, an alkyl group having 1 to 5 carbon atoms, -OA 15 , -SA 16 , -COOA 17 , -NA 18 A 19 , -SO 3 A 20 and -NHCOA is selected from the group consisting of 21 , A 15 to A 21 are each independently selected from the group consisting of a hydrogen group, a sodium cation, a lithium cation, and an alkyl group having 1 to 5 carbon atoms, R 5 and R 6 are each independently It is an alkylene group having 1 to 5 carbon atoms.
  • the polymerization inhibitor may be included in an amount of 0.0001 to 0.1 moles, 0.0002 to 0.08 moles, 0.0005 to 0.05 moles, or 0.001 to 0.05 moles based on 1 mole of the first sulfur compound.
  • a catalyst may be additionally used.
  • the catalyst may be, for example, a nitrobenzene-based catalyst, and specifically, may be at least one selected from the group consisting of 1,3-diiod-4-nitrobenzene and 1-iod-4-nitrobenzene, but is not limited thereto.
  • the catalyst when used, it may be used in an amount of 0.0001 to 0.1 moles, 0.0002 to 0.05 moles, or 0.0005 to 0.01 moles based on 1 mole of the first sulfur compound.
  • melt polymerization may proceed under any conditions as long as the polymerization reaction of the composition including the diiodo aromatic compound and the first sulfur compound can be initiated.
  • melt polymerization may be carried out at a temperature of about 180 to 400 °C, 180 to 350 °C, or 180 to 300 °C, and at a pressure of about 0.001 to 500 torr, 0.001 to 450 torr, or 0.001 to 400 torr. .
  • melt polymerization may proceed under elevated temperature and reduced pressure reaction conditions. In this case, temperature rise and pressure drop are performed at an initial reaction condition of about 180 to 250° C. and a pressure of about 50 to 450 torr, which is the final reaction condition. It is changed to about 270 to 350° C.
  • melt polymerization may be performed under the final reaction conditions at a temperature of about 280 to 300° C. and a pressure of about 0.1 to 2 torr.
  • the order of mixing the diiodo aromatic compound, the first sulfur compound, and the polymerization inhibitor is not particularly limited, but the diiodo aromatic compound, the first sulfur compound, and the polymerization inhibitor are simultaneously mixed, or the diiodo aromatic compound and a polymerization inhibitor may be mixed with a mixture including the first sulfur compound to prepare a composition for melt polymerization.
  • the timing of adding the polymerization inhibitor is not particularly limited, but may be determined in consideration of the final molecular weight of the target polyarylene sulfide. For example, about 0 to 30% by weight, 30 to 70% by weight, or 70 to 100% by weight of the diiodine aromatic compound contained in the initial reactant may be added at a time when the reaction is exhausted. Alternatively, the timing of the polymerization inhibitor may be added when the molecular weight of the polymerization product reaches a certain level.
  • the molecular weight of the polymerization reactant is 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 80% or more, or 90% of the final molecular weight of the target polyarylene sulfide. % or more, 90% or less, 80% or less, 70% or less, 60% or less, 50% or less, 40% or less, 30% or less, 20% or less, 10% or less, a polymerization inhibitor may be added.
  • the molecular weight of the polymerization reactant can be determined, for example, through gel permeation chromatography.
  • the composition including the diiodine aromatic compound and the first sulfur compound may be melt-mixed before the polymerization inhibitor is added.
  • a catalyst may also be included in the composition in the melt mixing step.
  • the melt mixing is not particularly limited as long as all of the compositions can be melt-mixed, but for example, may be performed at a temperature of about 130 to 200°C or about 160 to 190°C. In the case of performing such melt mixing, melt polymerization to be performed later may be more easily performed.
  • the post-processed first polyarylene sulfide resin may be prepared by post-processing the first polyarylene sulfide resin using a compatibilizer.
  • the post-processed first polyarylene sulfide resin may include a first polyarylene sulfide resin; and end groups derived from compatibilizers.
  • the first polyarylene sulfide resin is as described above.
  • the compatibilizer for post-processing the first polyarylene sulfide resin is a compound containing at least one functional group selected from the group consisting of a carboxyl group, a carboxylate group, a hydroxyl group, an amino group, an amide group, a silane group, a sulfide group, and a sulfonate group.
  • the compatibilizer may be one or more of the compounds represented by one of Formulas 4 to 6 below.
  • Y 1 and Y 2 are each independently selected from the group consisting of a hydrogen group, a halo group, -OB 1 , -SB 2 , -COOB 3 , -NB 4 B 5 , -SO 3 B 6 and -NHCOB 7
  • B 1 to B 7 are each independently selected from the group consisting of a hydrogen group, a sodium cation, a lithium cation, a substituted or unsubstituted C1-C3 alkyl group, and a substituted or unsubstituted phenyl group
  • Z 1' to Z 4 ' is each independently selected from the group consisting of a hydrogen group, a substituted or unsubstituted alkyl group having 1 or 2 carbon atoms, and a substituted or unsubstituted alkenyl group having 1 or 2 carbon atoms
  • p 1 and p 2 are each independently an integer of 1 to 3, provided that at least one of Y 1 and Y 2 is -OB 1
  • Z 1 ' and Z 2 ' are alkenyl groups having 2 carbon atoms and bonded to two adjacent carbon atoms, they may be connected to each other to form a benzene ring, and Z 3 ' and Z 4 ' are 2 carbon atoms When it is an alkenyl group and is bonded to two adjacent carbon atoms, they may be connected to each other to form a benzene ring.
  • Y 1 or Y 2 bonded to one aromatic ring may be the same as or different from each other.
  • Z 1 ′ and Z 3 ′ may be the same as or different from each other, and Z 2 ′ and Z 4 ′ may be the same or different from each other.
  • the substituted alkyl group having 1 or 2 carbon atoms or the substituted alkenyl group having 1 or 2 carbon atoms of Z 1' to Z 4' may have a substituent of an alkyl group or phenyl group having 1 or 2 carbon atoms.
  • One of B 1 to B 7 may have a substituent of an alkyl group having 1 to 3 carbon atoms or a substituted phenyl group having 1 or 2 carbon atoms or a substituent of a phenyl group.
  • Z 1 ′ and Z 2 ′ may be bonded to two adjacent carbon atoms, and Z 3 ′ and Z 4 ′ may be bonded to two adjacent carbon atoms. In addition, at least one or two or more of Z 1 ′ to Z 4 ′ may not be a hydrogen group.
  • Y 3 To Y 6 are each independently selected from the group consisting of a hydrogen group, a halo group, -OB 8 , -SB 9 , -COOB 10 , -NB 11 B 12 , -SO 3 B 13 and -NHCOB 14
  • B 8 to B 14 are each independently selected from the group consisting of a hydrogen group, a sodium cation, a lithium cation, and an alkyl group having 1 to 3 carbon atoms
  • R 1 ' to R 4 ' are each independently selected from the group consisting of 1 to 5 carbon atoms.
  • At least one of Y 3 to Y 6 is -OB 8 , -SB 9 , -COOB 10 , -NB 11 B 12 , -SO 3 B 13 and -NHCOB 14 selected from the group consisting of
  • at least one of Y 3 to Y 6 may be —SB 9 in which B 9 is a hydrogen group.
  • Y 7 to Y 12 are each independently selected from the group consisting of a hydrogen group, a halo group, -OB 15 , -SB 16 , -COOB 17 , -NB 18 B 19 , -SO 3 B 20 and -NHCOB 21
  • B 15 to B 21 are each independently selected from the group consisting of a hydrogen group, a sodium cation, a lithium cation, and an alkyl group having 1 to 5 carbon atoms
  • R 5 ' and R 6 ' are each independently selected from the group consisting of 1 to 5 carbon atoms It is an alkylene group.
  • the compatibilizer is selected from the group consisting of 2,2'-dithiobisdibenzoic acid, 4,4'-aminophenyl disulfide, bis(3-hydroxyphenyl) disulfide and bis(4-hydroxyphenyl) disulfide. It may be at least one selected, but is not particularly limited thereto.
  • the compatibilizer may perform a substitution reaction with an iodine atom that may be positioned at the terminal of the first polyarylene sulfide resin, or may serve as a compatibilizer by itself without a reaction. If the first polyarylene sulfide resin is post-processed with a compatibilizer, the atmosphere of the main chain and/or the terminal of the first polyarylene sulfide resin can be changed from hydrophobicity to hydrophilicity, and through this, other resins having hydrophilic functional groups and/or reactive groups , it is possible to improve the compatibility with inorganic fillers, etc., it is possible to improve the mechanical strength of the final product using the same and to significantly reduce the amount of outgas generated by heating.
  • the compatibilizer may react with the first polyarylene sulfide resin to impart end groups to the first polyarylene sulfide resin. Accordingly, the post-processed first polyarylene sulfide resin may have end groups derived from the compatibilizer.
  • the terminal group derived from the compatibilizer may mean a functional group of the compatibilizer.
  • the compatibilizer may be a compound containing a functional group such as a carboxyl group, a carboxylate group, a hydroxyl group, an amino group, an amide group, a silane group, a sulfide group, or a sulfonate group, so the terminal group derived from the compatibilizing agent is also a carboxyl group , may be a functional group such as a carboxylate group, a hydroxyl group, an amino group, an amide group, a silane group, a sulfide group, a sulfonate group.
  • the terminal group derived from the compatibilizer may have a structure represented by one of the following Chemical Formulas 7 to 9.
  • Z 1 ', Z 2 ', Y 1 , Y 3 to Y 5 , Y 7 to Y 9 , R 1 ' to R 5 ' and p 1 are the same as described above.
  • the compatibilizer may be included in an amount of 0.001 to 10% by weight, 0.001 to 5% by weight, 0.01 to 3% by weight, or 0.1 to 2% by weight based on the total weight of the first polyarylene sulfide resin.
  • the reaction efficiency of the compatibilizer is significantly better than when the same compound is added as a polymerization inhibitor during the polymerization of the resin.
  • the content of the functional group can be maximized, and the target content of the functional group to be introduced into the final resin can be achieved through the compatibilizer while using a small amount of the compatibilizer.
  • the reaction efficiency is low because the compound is decomposed by a high-temperature environment required for the polymerization reaction or discharged during the reaction.
  • the first polyarylene sulfide resin when added during polymerization of the first polyarylene sulfide resin, it is possible to minimize by-products that may be generated by the compatibilizer. Therefore, when the first polyarylene sulfide resin is post-processed with a compatibilizer, the amount of outgassing is reduced by reducing the amount of polymerization inhibitor / compatibilizer, which can be a cause of outgas, and by-products are minimized, and at the same time, compatibility is improved.
  • the first polyarylene sulfide resin post-processed with a compatibilizer has an effect of reducing the production cycle as well as excellent cavity balance by improving processability in the injection process as the amount of outgas is reduced as described above.
  • Post-processing using a compatibilizer may be performed by hot mixing.
  • Hot mixing may be performed at a temperature of 290 to 330 °C.
  • it can be carried out in a non-oxidizing atmosphere to achieve a high degree of polymerization while preventing the oxidative crosslinking reaction.
  • the oxygen concentration of the gas phase may be less than 5% by volume or less than 2% by volume, and more specifically, the gas phase may be substantially free of oxygen.
  • iodine that may be partially present at the terminal of the first polyarylene sulfide resin is sufficiently removed and the crystallinity is excellent to reduce shrinkage, so the post-processed first polyarylene sulfide is used to The dimensional stability of the manufactured final article can be improved.
  • high-temperature mixing may be performed under a reactor capable of heating and stirring.
  • the reactor may be a reactor of various materials such as SUS.
  • High-temperature mixing may be performed in a twin screw extruder, and the diameter ratio (L/D) of the twin screw extruder may be about 30 to 50.
  • the first polyarylene sulfide resin may be introduced through the main inlet of the twin-screw extruder, and other polymer materials such as thermoplastic resins or thermoplastic elastomers, fillers, etc. are separately provided through the side feeder located on the side of the extruder.
  • the position of the side inlet may be about 1/3 to 1/2 from the outlet side of the entire barrel of the extruder, and through this, the filler and the like can be prevented from being broken by rotation and friction by the extruder screw in the extruder.
  • the first polyarylene sulfide resin may be mixed with other additives added in a small amount before being added to the main inlet.
  • the post-processed first polyarylene sulfide resin is mainly composed of arylene sulfide units, but is usually derived from the first sulfur compound of the raw material, and the units according to the disulfide bond represented by [-SS-] are also the main chain can be included in
  • the structural formula of the final polyarylene sulfide resin including a unit according to a disulfide bond may have the form of a copolymer suggested by Eastman (US Patent No. 47680000).
  • the structural formula of the copolymer may be expressed as in Structural Formula 1 below.
  • the content of x is 0.900 to 0.999, 0.950 to 0.999 or 0.990 to 0.999. .
  • the disulfide bond fraction of the post-processed first polyarylene sulfide may be 0.001 to 10.0 wt%, specifically, 0.1 wt% or more, 0.3 wt% or more, 0.5 wt% or more, or 0.7 wt% or more, and 10.0 wt% or less , 5.0 wt% or less, 2.0 wt% or less, 1.8 wt% or less, 1.6 wt% or less, 1.5 wt% or less, 1.4 wt% or less, 1.3 wt% or less, 1.2 wt% or less, 1.1 wt% or less, or 1 wt% or less can
  • the fraction (wt%) of disulfide bonds may be defined as the difference between the theoretical amount of sulfur in polyarylene sulfide and the amount of sulfur measured by elemental analysis with respect to the theoretical amount of sulfur in polyarylene sulfide.
  • Disulfide bond fraction (wt%) ⁇ (total weight of sulfur detected by elemental analysis) - (theoretical weight of sulfur in polyarylene sulfide) ⁇ / (theoretical weight of sulfur in polyarylene sulfide)
  • the post-processed first polyarylene sulfide resin may include iodine derived from a diiodo aromatic compound, and the content of iodine is 100 to 10,000 ppm based on the total weight of the post-processed first polyarylene sulfide resin, specifically , 250 ppm or more, 500 ppm or more, 750 ppm or more, or 900 ppm or more, 9,000 ppm or less, 8,000 ppm or less, 7,000 ppm or less, 6,000 ppm or less, 5,000 ppm or less, 4,000 ppm or less, 3,000 ppm or less, 2,500 ppm or less, 2,250 ppm or less, 2,200 ppm or less, 2,100 ppm or less, 2,000 ppm or less, 1900 ppm or less, 1,800 ppm or less, 1,700 ppm or less, 1,600 ppm or less, or 1,500 ppm or less.
  • the post-processed first polyarylene sulfide resin has a melt viscosity of 10 poise or more, 100 poise or more, 500 poise or more, 1,000 poise or more, 5,000 poise or more, 10,000 poise or more, 15,000 poise or more, 17,000 poise or more, 18,000 poise or more, 19,000 poise or more. poise or more, 20,000 poise or more, 21,000 poise or more, 21,000 poise or more, 22,000 poise or more, or 23,000 poise or more, and 70,000 poise or less, 50,000 poise or less, 40,000 poise or less, 30,000 poise or less, 25,000 poise or less, 23,000 poise or less, or 20,000 It can be less than or equal to poise.
  • the melt viscosity is measured at 300° C. with a rotating disk viscometer, and when the viscosity is measured in an angular frequency section of 0.6 to 500 rad/s by a frequency sweep method, the viscosity at an angular frequency of 1.84 rad/s can be defined as
  • the non-linearity index may be 0.001 or more, 0.01 or more, 0.05 or more, 0.09 or more, or 0.10 or more, and 0.50 or less, 0.40 or less, 0.30 or less, 0.20 or less, 0.15 or less, 0.14 or less, 0.13 or less, 0.12 or less, 0.11 or less or 0.10 or less.
  • the non-linearity index may be an index related to the molecular weight of the measurement target or molecular structure such as linear, branched, or cross-linked.
  • the nonlinear index is measured at 300° C. with a rotating disk viscometer, and when the viscosity change rate in the shear rate section of 0.03 to 25 s ⁇ 1 is measured by the frequency sweep method, it can be defined through Equation 2 below.
  • Nonlinearity index 1 - (melt viscosity at a shear rate of 17.3 s -1 ) / (melt viscosity at a shear rate of 3.22 s -1).
  • the post-processed first polyarylene sulfide resin having a nonlinearity index in the above-described specific range is, for example, a method of solution polymerization of a mixture for melt polymerization including a diiodo aromatic compound, a first sulfur compound, and a polymerization inhibitor.
  • this polyarylene sulfide resin it is possible to obtain this polyarylene sulfide resin by making it high molecular weight to some extent.
  • the post-processed first polyarylene sulfide resin may have a branching index ( ⁇ ) of 0.10 or more, 0.20 or more, 0.30 or more, 0.40 or more, 0.50 or more, 0.60 or more, 0.61 or more, 0.62 or more, or 0.65 or more, 1.00 or less, 0.90 or less , 0.80 or less or 0.70 or less.
  • is calculated through the Mark-Howink equation represented by Equation 3 below. In general, the closer ⁇ is to 1, the more it is a linear polymer, and the closer it is to 0, the more it is a branched polymer.
  • is an intrinsic viscosity
  • M is a weight average molecular weight
  • K is a constant.
  • the post-processed first polyarylene sulfide resin may have a melting point of 250 to 300 °C, 260 to 300 °C, 265 to 300 °C, or 270 to 290 °C.
  • the melting point is measured using a differential scanning calorimeter (DSC) from 30°C to 320°C at a rate of 10°C/min, cooled to 30°C, and then from 30°C to 320°C again. It may be measured while the temperature is raised at a rate of 10 °C / min.
  • DSC differential scanning calorimeter
  • the post-processed first polyarylene sulfide resin may have a crystallization temperature of 150 to 300 °C, 200 to 250 °C, 210 to 240 °C, 215 to 230 °C, or 216 to 225 °C.
  • the crystallization temperature is increased, not only the crystallization rate is increased, but also the crystallinity is affected, so that the mechanical properties of the final composition can be improved.
  • the crystallization temperature is increased at a rate of 10°C/min from 30°C to 320°C using a differential scanning calorimeter differential scanning calorimeter, cooled to 30°C, and then again from 30°C to 320°C at a rate of 10°C/min. It may be measured while raising the temperature to
  • the molecular weight of the post-processed first polyarylene sulfide resin may be measured by weight average molecular weight, number average molecular weight, peak peak molecular weight, and the like.
  • the weight average molecular weight of the post-processed first polyarylene sulfide resin is not particularly limited as long as the effects of the present invention are not impaired, but in terms of mechanical strength, 25,000 g/mol or more, 30,000 g/mol or more, 40,000 g/mol or more Alternatively, it may be 50,000 g/mol or more, and may be 100,000 g/mol or less, 80,000 g/mol or less, 65,000 g/mol or less, or 55,000 g/mol or less in terms of cavity balance.
  • the weight average molecular weight of the post-processed first polyarylene sulfide resin is adjusted to 25,000 to 60,000 g/mol, 30,000 to 55,000 g/mol, 30,000 to 80,000 g/mol or 60,000. to 100,000 g/mol.
  • the number average molecular weight is 1,000 g/mol or more, 5,000 g/mol or more, 7,500 g/mol or more, 9,000 g/mol or more, 10,000 g/mol or more, 11,000 g/mol or more, 12,000 g/mol or more, or 12,400 g/mol or more.
  • the peak peak molecular weight may be 10,000 g/mol or more, 15,000 g/mol or more, 20,000 g/mol or more, 25,000 g/mol or more, 27,000 g/mol or more, 27,900 g/mol or more, and 140,000 g/mol or less, 100,000 or more.
  • g/mol or less 75,000 g/mol or less, 50,000 g/mol or less, 45,000 g/mol or less, 43,000 g/mol or less, 35,000 g/mol or less, or 30,000 g/mol or less.
  • the amount of outgas of the post-processed first polyarylene sulfide resin may be 0.001 to 0.50 wt%, 0.001 to 0.20 wt%, or 0.01 to 0.10 wt%.
  • the amount of outgas is quantified in wt% by using a gas chromatograph (GC) mass spectrometer to measure the amount of gas generated when a sample of a predetermined amount of polyarylene sulfide resin or resin composition is heated at 330° C. for 20 minutes. it could be
  • GC gas chromatograph
  • the terminal of the post-processed first polyarylene sulfide resin may include a carboxyl group, a carboxylate group, a hydroxyl group, an amino group, an amide group, a silane group, a sulfide group, a sulfonate group, and the like. Specifically, it may include a functional group derived from a compound represented by one of Formulas 4 to 6 described above.
  • the first polyarylene sulfide resin post-processed with a compatibilizer has excellent compatibility with other resins and inorganic fillers having a hydrophilic functional group and/or a reactive group, so the amount of outgas may be lower than that of polyarylene sulfide resin that is not post-processed, and also , compared to polyarylene sulfide resin prepared by using the same compound as a polymerization inhibitor during the polymerization of the resin, the amount of polymerization inhibitor / compatibilizer that can cause outgas can be lowered and by-products can be minimized. , the amount of outgas may be low.
  • the polyarylene sulfide resin post-processed with a compatibilizer improves processability in the injection process, thereby improving the cavity balance and reducing the production cycle. effect can be exhibited.
  • the first polyarylene sulfide resin post-processed with a compatibilizer may have excellent mechanical strength, such as tensile strength and tensile elongation, and airtightness as compatibility is improved.
  • Additives are not limited as long as they do not impair the effects of the present invention, but specifically, fibrous reinforcing materials, inorganic fillers, antioxidants, stabilizers, processing heat stabilizers, plasticizers, mold release agents, colorants, lubricants, weathering stabilizers, foaming agents, rust inhibitors, waxes, nucleating agents , other resin components, anti-drip agents, additional compatibilizers, and the like.
  • the fibrous reinforcement is, for example, glass fiber, PAN-based or pitch-based carbon fiber, silica fiber, silica alumina fiber, zirconia fiber, boron nitride fiber, silicon nitride fiber, boron fiber, aluminum borate fiber, potassium titanate fiber, stainless steel, aluminum, titanium. , copper, and inorganic fibrous substances of metal fibrous substances such as pearls; and organic fibrous materials such as aramid fibers.
  • the inorganic filler examples include silicates such as mica, talc, wollastonite, sericite, kaolin, clay, bentonite, asbesto, aluminasilicate, zeolite, and pyrophyllite; carbonates such as calcium carbonate, magnesium carbonate, and dolomite; sulfates such as calcium sulfate and barium sulfate; metal oxides such as alumina, magnesium oxide, silica, zirconia, titania, and iron oxide; glass beads; glass flakes; ceramic beads; boron nitride; silicon carbide; Calcium phosphate and the like. These fibrous reinforcing materials and inorganic fillers may be used individually or in mixture of 2 or more types.
  • silicates such as mica, talc, wollastonite, sericite, kaolin, clay, bentonite, asbesto, aluminasilicate, zeolite, and pyrophyllite
  • carbonates such as
  • the glass fiber may be surface-treated to improve interfacial adhesion with the resin, and the surface treatment may be performed using an epoxy and a silane having an amino group.
  • the glass fiber may be an alumino-borosilicate glass.
  • the glass fibers may, for example, have an average diameter of 6 to 15 ⁇ m and an average length of 2 to 8 mm or 2 to 6 mm.
  • the heat stabilizer can be used to prevent the resin from decomposing due to the action of heat and light during the manufacturing process or use of the resin, and can be used in a high-temperature environment when mixing or molding polyarylene sulfide resin with other additives or resins. By minimizing the generated side reactions, the physical properties of the final polyarylene sulfide resin composition can be improved.
  • Heat stabilizer is calcium magnesium zinc-based heat stabilizer, calcium zinc-based heat stabilizer, organotin-based heat stabilizer, metal ore-based heat stabilizer, barium zinc-based heat stabilizer, epoxy zinc-based heat stabilizer, magnesium aluminum carbonate-based heat stabilizer, zinc-based heat stabilizer and a metal-based thermal stabilizer such as a lead-based thermal stabilizer, and a non-metallic thermal stabilizer such as an epoxy-based thermal stabilizer and an organic phosphite-based thermal stabilizer.
  • a commercially available thermal stabilizer includes CLC-120 from Dubon, a magnesium aluminum carbonate-based thermal stabilizer.
  • heat stabilizer for example, a primary phenolic stabilizer, a secondary phosphorus stabilizer, and a primary and secondary mixed stabilizer may be used. It is preferred that the material has good thermal stability.
  • preferred stabilizers include ADEKA's AO-60, AO-80, Chemtura's Ultanox627A, Doverphos S9228, and the like.
  • the release agent may specifically be a silicone-based release agent, a wax-based release agent, a fluorine-based release agent, a surfactant-based release agent, or a mixed release agent.
  • a commercially available release agent includes Mitsui's Hi-Wax TM .
  • the nucleating agent can be used to accelerate the crystallization rate, and by using the nucleating agent, the crystallinity can be increased even in a low-temperature mold to improve the surface properties of the resin.
  • the nucleating agent may be an inorganic material having high temperature thermal stability, and may include talc, calcium silicate, silica, boron nitride, and the like.
  • boron nitride may be in the form of a hexagonal system, and the purity may be one having a B 2 O 3 content of 0.5 wt % or less based on the total weight of boron nitride.
  • boronitride having a purity of 95% by weight or more may be used.
  • the resin component is, for example, ethylene, butylene, pentene, butadiene, isoprene, chloroprene, styrene, ⁇ -methylstyrene, vinyl acetate, vinyl chloride, acrylic acid ester, methacrylic acid ester, (meth) acrylonitrile of a monomer homopolymers or copolymers; polyesters such as polyurethane, polybutylene terephthalate, and polyethylene terephthalate; polyacetal; polycarbonate; polysulfone; polyallyl sulfone; polyethersulfone; polyphenylene ether; polyether ketone; polyether ether ketone; polyimide; polyamideimide; polyetherimide; silicone resin; epoxy resin; phenoxy resin; liquid crystal polymer; polyaryl ether; It may be a homopolylene, pentene, butadiene, isoprene, chloroprene, styrene, ⁇
  • the other resin components may include an elastomer to improve impact strength
  • the elastomer is a polyvinyl chloride-based elastomer, a polyolefin-based elastomer, a polyurethane-based elastomer, a polyester-based elastomer, a polyamide-based elastomer, and a polybutadiene-based elastomer. and a terpolymer of glycidyl methacrylate and methyl acrylic ester.
  • the other resin component may include a thermoplastic elastomer (TPE).
  • TPE thermoplastic elastomer
  • Thermoplastic elastomers are specifically thermoplastic polyether block amides (TPA), thermoplastic polyurethane elastomers (TPU), thermoplastic copolyester elastomers (TPC), styrene block copolymer-based thermoplastic elastomers (TPS), thermoplastics and vulcanization. It may be a thermoplastic elastomer (TPV) made of an elastomer, or the like.
  • the thermoplastic elastomer may be an epoxy elastomer including an epoxy functional group, such as a copolymer of ethylene and glycidyl methacrylate.
  • a commercially available thermoplastic elastomer is Sumimoto's IGETABOND ® BF-E.
  • the anti-drip agent may be used to prevent dripping when the polyarylene sulfide resin composition is burned.
  • the anti-drip agent may include a fluorine-based anti-drip agent.
  • the anti-drip agent is a fluorine-based resin (polytetrafluoroethylene, polyvinylidene fluoride, polyhexafluoropropylene, etc.), perfluoroalkanesulfonic acid alkali metal salt compound (perfluoromethanesulfonic acid sodium salt, perfluoro -n-butanesulfonate potassium salt, perfluoro-t-butanesulfonic acid potassium salt, perfluorooctanesulfonate sodium salt, perfluoro-2-ethylhexanesulfonate calcium salt, etc.), perfluoroalkanesulfonate It may include an alkaline earth metal salt of phonic acid, and more specifically, it may include polytetrafluoro
  • the additional compatibilizer means a compatibilizer additionally included in the polyarylene sulfide resin composition in addition to the compatibilizer used for post-processing the first polyarylene sulfide resin.
  • the additional compatibilizer may be a compatibilizer other than the compound represented by one of Formulas 4 to 6.
  • the additional compatibilizer may be an epoxy silane-based compatibilizer, and commercially available additional compatibilizers include Silquest ® A-186 and A-187 from Momentive Performance Materials.
  • the metallic additive can promote the compatibilization reaction between the polyarylene sulfide resin and the thermoplastic elastomer, especially when used with a thermoplastic elastomer.
  • Zinc salts, magnesium salts, calcium salts, sodium salts, lithium salts, etc. can be used as these metallic additives, and they are thermally stable and help the reaction between the glycidyl functional group of the elastomer and the compatible functional group of the polyarylene sulfide resin.
  • Preferred metallic additives include zinc stearate (Sigma Aldrich-307564), calcium stearate (Sigma Aldrich-26411), magnesium acetate (Sigma Aldrich-228648), magnesium stearate salt (Sigma Aldrich). -415057), sodium stearate (Sigma-Aldrich-S3381), and lithium carbonate (Sigma-Aldrich-203629).
  • the additive may specifically include at least one selected from the group consisting of a fibrous reinforcement, a heat stabilizer, and an elastomer, and specifically, the additive may include a heat stabilizer. More specifically, the additive may include glass fibers or include an elastomer and a heat stabilizer.
  • the resin composition for the gasket may include the post-processed first polyarylene sulfide resin and additives.
  • the post-processed first polyarylene sulfide resin composition contains 0.1 wt% or more, 1 wt% or more of the post-processed first polyarylene sulfide resin based on the total weight of the post-processed first polyarylene sulfide resin composition , 2% by weight or more, 5% by weight or more, 10% by weight or more, 15% by weight or more, 20% by weight or more, 30% by weight or more, 40% by weight or more, 50% by weight or more, or 60% by weight or more; , 99.9 wt% or less, 99 wt% or less, 98 wt% or less, 95 wt% or less, 90 wt% or less, 85 wt% or less, 80 wt% or less, 75 wt% or less, 70 wt% or less, or 65 wt% or less can be included as
  • the post-processed first polyarylene sulfide resin composition based on the total weight of the post-processed first polyarylene sulfide resin composition, 0.01 wt% or more, 0.1 wt% or more, 1 wt% or more, 5 wt% or more, 10% by weight or more, 20% by weight or more, or 30% by weight or more, 90% by weight or less, 80% by weight or less, 70% by weight or less, 60% by weight or less, 50% by weight or less, 45% by weight or less or less, 40% by weight or less, 30% by weight or less, 20% by weight or less, or 15% by weight or less.
  • the post-processed first polyarylene sulfide resin composition comprises 10 to 70 wt%, 10 to 60 wt%, 10 to 50 wt% of glass fibers based on the total weight of the post-processed first polyarylene sulfide resin composition. weight percent, 15 to 45 weight percent, 20 to 40 weight percent, or 25 to 35 weight percent, and 0.1 to 20 weight percent, 1 to 20 weight percent, 5 to 15 weight percent, or 7 to 35 weight percent elastomer. It may be included in 10% by weight.
  • the heat stabilizer may be included in an amount of 0.01 to 5% by weight, 0.01 to 2% by weight, or 0.05 to 1% by weight on the same basis.
  • the post-processed first polyarylene sulfide resin composition includes 10 to 70% by weight of glass fibers based on the total weight of the post-processed first polyarylene sulfide resin composition, or 0.1 to 0.1 to each of an elastomer and a heat stabilizer It may be included in 20% by weight and 0.01 to 5% by weight.
  • the post-processed first polyarylene sulfide resin composition compared to the first polyarylene sulfide resin composition that is not post-processed with a compatibilizer, maintains a good amount of outgas, and has excellent airtightness, cavity balance, and mechanical strength. .
  • the first polyarylene sulfide resin and additives are the same as described above.
  • the second polyarylene sulfide resin may be prepared by solution polymerization of a dihalo aromatic compound and a second sulfur compound.
  • the second polyarylene sulfide resin is not particularly limited as long as it is prepared including solution polymerization of a dihalo aromatic compound and a second sulfur compound.
  • a commercial method for preparing such a polyarylene sulfide resin a Macallum process of solution polymerization of p-dichlorobenzene and sodium sulfide in the presence of a polar organic solvent such as N-methyl pyrrolidone (Macallum process) This is known A typical process is described in US Pat. No. 2,513,188.
  • the melt polymerization may be performed in the presence of an organic polar solvent.
  • the organic polar solvent is, for example, N,N-dimethylformamide, N,N-dimethylacetamide, N,N-diethylacetamide, N,N-dipropylacetamide, N,N-dimethylbenzoic acid amide, caprolactam.
  • the dihalo aromatic compound refers to a compound having an aromatic ring and two halo groups directly bonded thereto.
  • the halogen atom of the halo group may be each atom of fluorine, chlorine, bromine and iodine, and two halo groups present in the dihalo aromatic compound may be the same or different from each other. More specifically, both halogen atoms may be chlorine.
  • Dihalo aromatic compounds include, for example, o-dihalobenzene, m-dihalobenzene, p-dihalobenzene, dihalotoluene, dihalonaphthalene, methoxy-dihalobenzene, dihalobiphenyl, dihalobenzoic acid, dihalodiphenyl It may be at least one selected from the group consisting of ether, dihalodiphenylsulfone, dihalodiphenylsulfoxide and dihalodiphenylketone.
  • the dihalo aromatic compound may be, for example, 1,4-dichlorobenzene, but is not particularly limited thereto.
  • the second sulfur compound may be at least one selected from the group consisting of an alkali metal sulfide and an alkali metal sulfide-forming compound capable of forming the alkali metal sulfide.
  • the second sulfur compound may be at least one selected from the group consisting of alkali metal hydrosulfide and the alkali metal hydrosulfide-forming compound.
  • the second sulfur compound includes, for example, alkali metal hydrosulfides such as lithium hydrosulfide, sodium hydrosulfide, potassium hydrosulfide, rubidium hydrosulfide and cesium hydrosulfide, and alkali metal hydrosulfides such as lithium sulfide, sodium sulfide, potassium sulfide, rubidium sulfide and cesium sulfide. It may be a metal sulfide, but is not particularly limited thereto.
  • the alkali metal sulfide-forming compound or the alkali metal hydrosulfide-forming compound may be, for example, hydrogen sulfide.
  • alkali metal hydroxide eg NaOH
  • alkali metal hydrosulfide eg NaSH
  • alkali metal sulfide eg Na 2 S
  • the second sulfur compound may be at least one selected from the group consisting of anhydrides, hydrates, and aqueous solutions.
  • the second sulfur compound may be, for example, sodium sulfide hydrate, but is not particularly limited thereto.
  • the resin composition for the gasket may include the first polyarylene sulfide resin, the second polyarylene sulfide resin, and an additive.
  • the solution-polymerized polyarylene sulfide resin which is prepared by solution polymerization of a dihalo aromatic compound and a sulfur compound, has excellent physical properties such as a high crystallization temperature and mechanical strength, but is out due to the use of a solvent that can cause outgas It has a disadvantage in that the amount of gas is high, and thus the cavity balance is low.
  • the melt-polymerized polyarylene sulfide resin which is prepared by melt polymerization of a mixture containing a diiodo aromatic compound, a sulfur compound, and a polymerization inhibitor, has a remarkably low amount of outgas, but a disulfide bond with a weak structure due to the manufacturing method. It has a disadvantage in that mechanical strength is low as it is included.
  • the present inventors surprisingly found that by mixing the solution-polymerized polyarylene sulfide resin and the melt-polymerized polyarylene sulfide resin, the amount of outgas is low at a level comparable to that of the melt-polymerized polyarylene sulfide resin, and the cavity balance is excellent while , discovered that a polyarylene sulfide mixed resin composition having mechanical strength and airtightness comparable to or superior to that of a solution-polymerized polyarylene sulfide resin can be prepared.
  • the effect of the mixed resin composition is not limited to a specific theory, but may be achieved by reaction of the first polyarylene sulfide resin and the second polyarylene sulfide resin. Specifically, when the first polyarylene sulfide resin and the second polyarylene sulfide resin are mixed, the disulfide bond of the first polyarylene sulfide resin is cleaved to further react with the terminal halogen of the second polyarylene sulfide. can do.
  • the disulfide bond which is a weak structure of the first polyarylene sulfide, is removed and the molecular weight increases, and at the same time, the halogen of the second polyarylene sulfide can be additionally removed, so that not only mechanical properties are improved but also the amount of outgas This can be significantly reduced.
  • melt mixing may be performed under any conditions as long as the first polyarylene sulfide resin and the second polyarylene sulfide resin can be melted.
  • melt mixing may be performed in a single-screw or twin-screw kneader and extruder, a polymerization reactor, a kneader reactor, and the like. More specifically, melt mixing may be performed in a twin-screw extruder, and may be performed at a temperature of 280 to 330°C, preferably 290 to 310°C.
  • the discharge amount of the resin component may be 5 to 50 kg/hr at a rotational speed of 250 rpm, and may be adjusted to 20 to 35 kg/hr in consideration of dispersibility. It is preferable that the ratio (discharge amount/screw rotation speed) of the discharge amount (kg/hr) of a resin component and screw rotation speed (rpm) is especially 0.08-0.14 kg/hr*rpm.
  • the polyarylene sulfide mixed resin composition contains the first polyarylene sulfide resin in 0.1 wt% or more, 1 wt% or more, 2 wt% or more, 5 wt% or more, based on the total weight of the polyarylene sulfide mixed resin composition, 10 It may include at least 15 wt%, at least 15 wt%, at least 20 wt%, at least 30 wt%, at least 40 wt%, at least 45 wt%, at least 50 wt%, at least 60 wt%, or at least 70 wt%, 99.9 Weight % or less, 99 wt% or less, 98 wt% or less, 95 wt% or less, 90 wt% or less, 89 wt% or less, 85 wt% or less, 80 wt% or less, 75 wt% or less, 70 wt% or less, 65 wt% or less Weight % or less, 60 w
  • the polyarylene sulfide mixed resin composition contains the second polyarylene sulfide resin in an amount of 0.1 wt% or more, 1 wt% or more, 2 wt% or more, 5 wt% or more, based on the total weight of the polyarylene sulfide mixed resin composition.
  • the polyarylene sulfide mixed resin composition may include 10 to 99.9 wt% of the first polyarylene sulfide resin and the second polyarylene sulfide resin based on the total weight of the polyarylene sulfide mixed resin composition, More specifically, it may be included in an amount of 20 to 99% by weight, 30 to 99% by weight, 30 to 95% by weight, 30 to 70% by weight, or 50 to 70% by weight.
  • the polyarylene sulfide mixed resin composition contains the second polyarylene sulfide resin in an amount of 30% by weight or less, specifically 0.0001 to 30% by weight based on the total weight of the first polyarylene sulfide resin and the second polyarylene sulfide resin. It may be included in % by weight, more specifically, 5% by weight or more, 10% by weight or more, 15% by weight or more, 20% by weight or more, or 25% by weight or more, and 25% by weight or less, 20% by weight or more It may be included in an amount of 15% by weight or less, 10% by weight or less, or 5% by weight or less.
  • the effect by mixing the first polyarylene sulfide resin and the second polyarylene sulfide resin becomes significant, the amount of outgas is reduced, and the cavity balance and tensile elongation are improved can be
  • the polyarylene sulfide mixed resin composition contains an additive in an amount of 0.01 wt% or more, 0.1 wt% or more, 1 wt% or more, 5 wt% or more, 10 wt% or more, based on the total weight of the polyarylene sulfide mixed resin composition, 20% by weight or more or 30% by weight or more, 90% by weight or less, 80% by weight or less, 70% by weight or less, 60% by weight or less, 50% by weight or less, 45% by weight or less, 40% by weight or less, 30% by weight or less, 20% by weight or less, or 15% by weight or less may be included.
  • the polyarylene sulfide mixed resin composition contains 10 to 70% by weight, 10 to 60% by weight, 10 to 50% by weight, 15 to 45% by weight of glass fibers, based on the total weight of the polyarylene sulfide mixed resin composition. weight percent, 20 to 40 weight percent, or 25 to 35 weight percent, and 0.1 to 20 weight percent, 1 to 20 weight percent, 5 to 15 weight percent, or 7 to 10 weight percent elastomer.
  • the heat stabilizer may be included in an amount of 0.01 to 5% by weight, 0.01 to 2% by weight, or 0.05 to 1% by weight on the same basis.
  • the polyarylene sulfide mixed resin composition contains 10 to 70% by weight of glass fibers based on the total weight of the polyarylene sulfide mixed resin composition, or 0.1 to 20% by weight and 0.01 to 20% by weight of an elastomer and a heat stabilizer, respectively It may be included in 5% by weight.
  • the polyarylene sulfide mixed resin means a resin composed of the first polyarylene sulfide and the second polyarylene sulfide, and the melt viscosity, non-linearity index, branching index ( ⁇ ), molecular weight of the polyarylene sulfide mixed resin And the melting point is the same as described above for the post-processed first polyarylene sulfide resin.
  • the polyarylene sulfide mixed resin may have a disulfide bond fraction of 0.001 to 10.0% by weight, specifically, 0.1% by weight or more, 0.3% by weight or more, 0.5% by weight or more, 0.75% by weight or more, or 1.0% by weight or more, and 10.0 Weight % or less, 5.0 wt% or less, 2.0 wt% or less, 1.8 wt% or less, 1.6 wt% or less, or 1.4 wt% or less.
  • the polyarylene sulfide mixed resin may contain iodine derived from a diiodo aromatic compound, and the content of iodine is 1 to 10,000 ppm, specifically, 5 ppm or more, based on the total weight of the polyarylene sulfide mixed resin; 10 ppm or more, 20 ppm or more, 40 ppm or more, 100 ppm or more, 500 ppm or more, or 1,000 ppm or more, and 9,000 ppm or less, 8,000 ppm or less, 7,000 ppm or less, 6,000 ppm or less, 5,000 ppm or less, 4,000 ppm or less, It may be 3,000 ppm or less, 2,500 ppm or less, 2,300 ppm or less, 2,000 ppm or less, 1,900 ppm or less, or 1,800 ppm or less.
  • the crystallization temperature of the polyarylene sulfide mixed resin may be as high as that of the second polyarylene sulfide resin.
  • the polyarylene sulfide mixed resin may have a crystallization temperature of 150 to 300 °C, 200 to 280 °C, 210 to 260 °C, 210 to 270 °C, 220 to 260 °C, 225 to 255 °C, or 230 to 250 °C.
  • the crystallization temperature of the polyarylene sulfide mixed resin is increased, not only the crystallization rate is increased, but also the crystallinity is affected, so that the mechanical properties of the final composition including the resin can be improved.
  • the amount of outgas of the polyarylene sulfide mixed resin may be 0.001 to 5% by weight, and specifically, 0.001% by weight or more, 0.01% by weight or more, 0.1% by weight or more, 0.2% by weight or more, 0.3% by weight or more, or 0.35% by weight or more. % or more, 3 wt% or less, 2 wt% or less, 1.5 wt% or less, 1.4 wt% or less, 1.35 wt% or less, 1.3 wt% or less, 1.2 wt% or less, 1.1 wt% or less, 1 wt% or less, It may be 0.8 wt% or less, 0.6 wt% or less, or 0.5 wt% or less.
  • This polyarylene sulfide mixed resin composition has a low outgas amount comparable to that of the first polyarylene sulfide resin composition and has excellent cavity balance, and has a tensile strength comparable to or superior to that of the second polyarylene sulfide resin composition; It may have tensile elongation and airtightness.
  • the first polyarylene sulfide resin is post-processed in which terminal groups derived from a compatibilizer are introduced into the first polyarylene sulfide resin in which the diiodo aromatic compound, the first sulfur compound, and the polymerization inhibitor are melt-polymerized; a second polyarylene sulfide resin obtained by solution polymerization of a dihalo aromatic compound and a second sulfur compound; and an additive, a resin composition for a gasket is provided.
  • the post-processed first polyarylene sulfide resin, the second polyarylene sulfide resin, and additives are the same as described above.
  • the resin composition for the gasket may include the post-processed first polyarylene sulfide resin, the second polyarylene sulfide resin, and additives (hereinafter, post-processed polyarylene sulfide mixed resin composition). Their mixing is as described above.
  • post-processing of the first polyarylene sulfide resin may be performed before mixing the first polyarylene sulfide resin and the second polyarylene sulfide resin, may be performed with mixing, or may be performed after mixing have. In addition, it may be carried out before mixing and additionally performed with or after mixing, and other combinations are possible without limitation.
  • post-processing of the first polyarylene sulfide resin is performed by adding a compatibilizer to the twin-screw extruder when the first polyarylene sulfide resin and the second polyarylene sulfide resin are put into a twin-screw extruder and melt-mixed.
  • the conditions can be set so that the ratio (discharge amount/screw rotation speed) of the discharge amount (kg/hr) of the resin component and the screw rotation speed (rpm) of the twin screw extruder becomes 0.02-0.2 kg/hr ⁇ rpm.
  • the terminal of the post-processed polyarylene sulfide mixed resin may include a functional group such as a carboxyl group, a carboxylate group, a hydroxyl group, an amino group, an amide group, a silane group, a sulfide group, and a sulfonate group.
  • a functional group such as a carboxyl group, a carboxylate group, a hydroxyl group, an amino group, an amide group, a silane group, a sulfide group, and a sulfonate group.
  • the post-processed polyarylene sulfide mixed resin composition comprises 0.1 wt% or more, 1 wt% or more, 2 wt% or more, based on the total weight of the post-processed first polyarylene sulfide resin, post-processed polyarylene sulfide mixed resin composition, 5% or more, 10% or more, 15% or more, 20% or more, 30% or more, 40% or more, 45% or more, 50% or more, 60% or more, or 70% or more 99.9 wt% or less, 99 wt% or less, 98 wt% or less, 95 wt% or less, 90 wt% or less, 89 wt% or less, 85 wt% or less, 80 wt% or less, 75 wt% or less, 70% by weight or less, 65% by weight or less, 60% by weight or less, 55% by weight or less, or 50% by weight or less.
  • the post-processed polyarylene sulfide mixed resin composition comprises 0.1 wt% or more, 1 wt% or more, 2 wt% or more, based on the total weight of the post-processed polyarylene sulfide mixed resin composition of the second polyarylene sulfide resin; 5% by weight or more, 10% by weight or more, 15% by weight or more, or 20% by weight or more, 99.9% by weight or less, 99% by weight or less, 90% by weight or less, 70% by weight or less, 50% by weight or less, 42 wt% or less, 40 wt% or less, 38 wt% or less, 30 wt% or less, 25 wt% or less, 20 wt% or less, 20 wt% or less, 15 wt% or less, or 10 wt% or less.
  • the post-processed polyarylene sulfide mixed resin composition contains 10 to 99.9 wt% of the post-processed first polyarylene sulfide resin and the second polyarylene sulfide resin based on the total weight of the post-processed polyarylene sulfide mixed resin composition may be included, and more specifically 20 to 99% by weight, 30 to 99% by weight, 30 to 95% by weight, 30 to 70% by weight or 50 to 70% by weight.
  • the post-processed polyarylene sulfide mixed resin composition contains the second polyarylene sulfide resin in an amount of 30% by weight or less, based on the total weight of the post-processed first polyarylene sulfide resin and the second polyarylene sulfide resin, specifically as 0.0001 to 30% by weight, more specifically, 5% by weight or more, 10% by weight or more, 15% by weight or more, 20% by weight or more, or 25% by weight or more, and 25% by weight or less , 20% by weight or less, 15% by weight or less, 10% by weight or less, or 5% by weight or less.
  • the effect of mixing the post-processed first polyarylene sulfide resin and the second polyarylene sulfide resin becomes significant, and the amount of outgas decreases, cavity balance, and tensile strength and tensile elongation may be improved.
  • the post-processed polyarylene sulfide mixed resin composition contains an additive of 0.01 wt% or more, 0.1 wt% or more, 1 wt% or more, 5 wt% or more, 10 based on the total weight of the post-processed polyarylene sulfide mixed resin composition It may include at least 20 wt%, or at least 30 wt%, 90 wt% or less, 80 wt% or less, 70 wt% or less, 60 wt% or less, 50 wt% or less, 45 wt% or less, 40 wt% or more, 20 wt% or more, or 30 wt% or more Weight % or less, 30 wt% or less, 20 wt% or less, or 15 wt% or less may be included.
  • the post-processed polyarylene sulfide mixed resin composition contains 10 to 70 wt%, 10 to 60 wt%, and 10 to 50 wt% of glass fibers based on the total weight of the post-processed polyarylene sulfide mixed resin composition. , 15 to 45 wt%, 20 to 40 wt%, or 25 to 35 wt% of the elastomer, 0.1 to 20 wt%, 1 to 20 wt%, 5 to 15 wt%, or 7 to 10 wt% % can be included.
  • the heat stabilizer may be included in an amount of 0.01 to 5% by weight, 0.01 to 2% by weight, or 0.05 to 1% by weight on the same basis.
  • the post-processed polyarylene sulfide mixed resin composition may contain 10 to 70% by weight of glass fibers based on the total weight of the post-processed polyarylene sulfide mixed resin composition, or 0.1 to 20% by weight of an elastomer and a heat stabilizer, respectively % and may be included in an amount of 0.01 to 5% by weight.
  • the post-processed polyarylene sulfide mixed resin means a resin composed of the post-processed first polyarylene sulfide and the second polyarylene sulfide, and the melt viscosity, non-linearity index, and branching of the post-processed polyarylene sulfide mixed resin Index ( ⁇ ), molecular weight, melting point, disulfide bond fraction, iodine content, crystallization temperature, and outgas amount are the same as described above for the polyarylene sulfide mixed resin.
  • post-processed polyarylene sulfide mixed resin Index
  • the post-processed polyarylene sulfide mixed resin composition has a low outgas amount comparable to that of the first polyarylene sulfide resin composition and has excellent cavity balance, while the first polyarylene sulfide resin composition and the second polyarylene sulfide It can exhibit superior mechanical strength and airtightness than all of the resin compositions.
  • This effect is not limited to a specific theory, but may be achieved by the reaction of the first polyarylene sulfide resin and the second polyarylene sulfide resin. Specifically, when the first polyarylene sulfide resin and the second polyarylene sulfide resin are mixed, the disulfide bond of the first polyarylene sulfide resin is cleaved to further react with the terminal halogen of the second polyarylene sulfide. can do.
  • the disulfide bond which is a weak structure of the first polyarylene sulfide, is removed and the molecular weight increases, and at the same time, the halogen of the second polyarylene sulfide can be additionally removed, so that not only mechanical properties are improved but also the amount of outgas This can be significantly reduced.
  • the first polyarylene sulfide resin is post-processed using a compatibilizer, compatibility with other resins and inorganic fillers having hydrophilic functional groups and/or reactive groups is improved, and the mechanical properties of the final article manufactured using the mixed resin Strength can be improved and the amount of outgas generated by heating can be significantly reduced.
  • the reaction efficiency of the compatibilizer is significantly superior to that of adding the same compound as a polymerization inhibitor during the polymerization of the resin, so that the content of functional groups remaining in the final resin can be maximized.
  • the target content of functional groups to be introduced into the final resin can be achieved through the compatibilizer.
  • the amount of outgas is further increased by lowering the amount of polymerization inhibitor / compatibilizer that can be a cause of outgas, and minimizing byproducts that can be generated by the compatibilizer in a high-temperature environment required for polymerization reaction. reduced, and at the same time, compatibility is improved, so that not only the cavity balance is excellent, but also physical properties such as tensile strength, tensile elongation, and airtightness can be improved.
  • a gasket for a secondary battery comprising a resin composition for the gasket.
  • the exterior body having an opening; a sealing body sealing the opening of the exterior body; a positive electrode plate, a negative electrode plate, and an electrolyte provided inside the exterior body; a separator provided between the positive electrode plate and the negative electrode plate; a positive electrode terminal electrically connected to the positive electrode plate; a negative terminal electrically connected to the negative electrode plate;
  • a secondary battery is provided, including the above-described gasket for secondary battery in contact with the positive terminal or the negative terminal.
  • the resin composition for the gasket includes the above-described first polyarylene sulfide resin, post-processed first polyarylene sulfide resin, second polyarylene sulfide resin, polyarylene sulfide mixed resin, or post-processed polyarylene sulfide mixed resin. may include.
  • the gasket for a secondary battery may be a molded article obtained from the resin composition for the gasket.
  • the resin composition for the gasket may be molded in various methods and shapes without limitation. Typically, the resin composition may be cut into pellets, and by supplying these pellets to a molding machine and melt molding, a molded article having a desired shape can be finally obtained.
  • Melt molding may be, for example, injection molding, extrusion molding, compression molding, or the like, and specifically may be injection molding.
  • the mold temperature during injection molding may be about 50 ° C. or more, 60 ° C. or more, or 80 ° C. or more in consideration of crystallization, and about 190 ° C. or less, 170 ° C. or less, or 160 ° C. or less in consideration of the deformation of the specimen.
  • the molding may be in various forms such as films, sheets, and fibers.
  • the above-described resin composition for a gasket has good airtightness as well as excellent cavity balance and mechanical strength. , it can be usefully used as a secondary battery gasket.
  • thermocouple capable of measuring the internal temperature of the reactor and a vacuum line capable of filling nitrogen and applying a vacuum were attached to the 5 L reactor, and 5,240 g of paradiiodobenzene and 450 g of elemental sulfur were added to the reactor.
  • the composition in the reactor containing paradiiodobenzene and elemental sulfur was heated to 180° C. to completely melt and mix it, starting from the initial reaction conditions of a temperature of 220° C. and a pressure of 350 torr, the temperature is gradually increased and reduced, and the temperature is 300° C.
  • the polymerization reaction was carried out under the final reaction conditions of a pressure of 1 torr or less.
  • the filtered cake was further washed with 2,880 g of NMP, and 10 L of ion-exchanged water was added to the cake containing NMP, which was then stirred in an autoclave at 200° C. for 10 minutes, followed by further filtration.
  • the final filtered cake was dried at 130° C. for 3 hours to prepare PPS b as a second polyarylene sulfide resin.
  • PPS c2 was prepared as a post-processed first polyarylene sulfide resin.
  • Preparation c1 except that 0.3 parts by weight of 3-(triethoxysilyl)propane-1-thiol (Power chemical (China) SiSiB-PC2310) was used instead of 0.3 parts by weight of 2,2'-dithiodibenzoic acid as a compatibilizer
  • PPS c5 was prepared as the post-processed first polyarylene sulfide resin.
  • the first polyarylene sulfide resin, the second polyarylene sulfide resin, and the post-processed first polyarylene sulfide resin prepared according to the above-described preparation example were mixed in a twin-screw kneading extruder (Toshiba Group) in the weight ratios shown in Tables 1 to 5 below.
  • a polyarylene sulfide resin composition (composition prior to mixing of additives) was prepared by melt-kneading at 300° C. at 300° C. (manufactured by Kai Co., Ltd., TEM-35B), and processing it into pellets using a small strand cutter.
  • the polyarylene sulfide resin composition was uniformly mixed using a tumbler at the weight ratios shown in Tables 1 to 5 together with glass fiber, elastomer and heat stabilizer, and a twin-screw kneading extruder (manufactured by Toshiba Kikai Co., Ltd., TEM-35B) was melt-kneaded at 300° C., and then processed into pellets using a small strand cutter to prepare a polyarylene sulfide resin composition (composition after mixing with additives).
  • a twin-screw kneading extruder manufactured by Toshiba Kikai Co., Ltd., TEM-35B
  • PPS A1-1 to A2 as the first polyarylene sulfide resin composition, PPS B1 and B2 as the second polyarylene sulfide resin composition, and PPS C1-1 to C2 as the post-processed first polyarylene sulfide resin composition , PPS D1-1 to D2-5 as a polyarylene sulfide mixed resin composition, and PPS E1-1 to E2-4 as a post-processed polyarylene sulfide mixed resin composition were obtained.
  • the glass fiber, the elastomer and the heat stabilizer are specifically shown in Table 6 below.
  • the melting point, crystallization temperature, melt viscosity, nonlinear index, molecular weight, branching index, disulfide bond fraction, outgas amount and iodine content were measured for the composition before mixing with additives It was derived, and with respect to the composition after mixing the additives, outgas amount, cavity balance, tensile strength, tensile elongation and airtightness were measured/evaluated by the following methods, and are shown in Tables 7 to 13 below.
  • the temperature was raised from 30°C to 320°C at a rate of 10°C/min, and after cooling to 30°C at a rate of 10°C/min, The melting point and crystallization temperature were measured again while the temperature was raised from 30°C to 320°C at a rate of 10°C/min.
  • Melt viscosity is, when the viscosity is measured in the frequency range of 0.6 to 500 rad/s by a frequency sweep method at 300° C. with a rotating disk viscometer, the viscosity at each frequency condition of 1.84 rad/s has been defined
  • the nonlinear index was calculated through Equation 2 below.
  • Nonlinearity index 1 - (melt viscosity at a shear rate of 17.3 s -1 ) / (melt viscosity at a shear rate of 3.22 s -1).
  • the number average molecular weight, weight average molecular weight, and peak peak molecular weight of the polyarylene sulfide resin composition were measured by gel permeation chromatography under the following measurement conditions. For all molecular weight measurements, six types of monodisperse polystyrene were used for calibration.
  • the branching index was defined as an ⁇ value calculated by applying the viscosity measured from the triple system detector to the Mark-Howink equation of Equation 3 below.
  • the Mark Howink equation is a relationship between molecular weight and intrinsic viscosity of a polymer, and the branching index ( ⁇ ) indicates the degree of branching of the polymer. That is, the closer ⁇ is to 1, the more linear the polymer, and the closer to 0, the more branched the polymer is.
  • is an intrinsic viscosity
  • M is a weight average molecular weight
  • K is a constant.
  • the binding fraction of disulfide was calculated through Equation 1 below.
  • Disulfide bond fraction (wt%) ⁇ (total weight of sulfur detected by elemental analysis) - (theoretical weight of sulfur in polyarylene sulfide) ⁇ / (theoretical weight of sulfur in polyarylene sulfide)
  • composition before mixing of additives The amount of gas generated by heating a predetermined amount of a sample of the polyarylene sulfide resin composition at 330° C. for 20 minutes was quantified in weight % using a gas chromatograph (GC) mass spectrometer.
  • GC gas chromatograph
  • composition after mixing of additives A sample of a predetermined amount of the polyarylene sulfide resin composition was heated at 325° C. for 15 minutes, and the amount of gas generated was quantified in weight % using a gas chromatograph (GC) mass spectrometer.
  • GC gas chromatograph
  • the iodine content of the polyarylene sulfide resin composition was measured by ion chromatograph (IC) using IC (AQF) Thermo Scientific, ICS-2500 (Mitsubishi AQF-100).
  • the polyarylene sulfide resin composition was injection molded using a washer mold having 40 cavities under the minimum molding conditions in which the cavity (C1) closest to the primary spool was completely filled. Molding conditions were set to a 75-ton molding machine, a cylinder temperature of 320°C, a mold temperature of 140°C, and no holding pressure. Among the cavities in the same runner as the cavity (C1), the filling degree (% by weight) of the cavity (C10) furthest from the primary spool was calculated as the weight ratio of the molded part of the cavity (C1) to the molded part of the cavity (C1) . Since it can be said that the cavity balance is excellent as the filling degree of the cavity C10 is high, the cavity balance of each polyarylene sulfide resin composition was evaluated based on the following criteria based on the filling degree.
  • A 80% by weight or more and less than 90% by weight
  • the tensile strength and tensile elongation of the polyarylene sulfide resin composition were measured using Zwick's Z010 according to the ISO 527-2 method.
  • PPS C2 including the first polyarylene sulfide resin and additives post-processed with a compatibilizer includes a first polyarylene sulfide resin and additives that are not post-processed with a compatibilizer while maintaining a good amount of outgas It was confirmed that the cavity balance, tensile strength, tensile elongation, and airtightness were all superior to that of PPS A2.
  • PPS D1-1 to D1-3 and D1-6 to D1-8 comprising the first polyarylene sulfide resin, the second polyarylene sulfide resin and additives are the first polyarylene
  • PPS A1-1 containing a sulfide resin and additives the cavity balance, tensile strength, tensile elongation and airtightness are excellent, and compared to PPS B1 containing the second polyarylene sulfide resin and additives, the outgas amount, cavity balance and It was confirmed that the tensile elongation was excellent.
  • PPS D1-7 and D1-8 containing an elastomer as an additive had somewhat lower tensile strength than PPS D1-1 to PPS D1-6, but still higher than PPS A1-1, and PPS A1-1 and the tensile elongation was significantly higher than that of PPS B1.
  • PPS D1-1 to D1-3 and D1-6 to D1-8 are the content of the second polyarylene sulfide resin based on the total weight of the first polyarylene sulfide resin and the second polyarylene sulfide resin. It was confirmed that the outgas amount, cavity balance, and tensile elongation were significantly superior to those of PPS D1-4 and D1-5, which were more than 30% by weight.
  • PPS D2-1 to D2-3 and D2-5 comprising the first polyarylene sulfide resin, the second polyarylene sulfide resin and the additive are the first polyarylene sulfide resin and the additive.
  • PPS A2-1 containing was able to confirm
  • the content of the second polyarylene sulfide resin is greater than 30% by weight based on the total weight of the first polyarylene sulfide resin and the second polyarylene sulfide resin. It was confirmed that the amount of outgas, cavity balance, and tensile elongation were significantly superior to that of PPS D2-4.
  • PPS D2-1 to D2-3, which additionally contain a heat stabilizer as an additive, have significantly higher tensile strength and tensile elongation than PPS D2-5 which does not contain a heat stabilizer.
  • PPS E1-1 to E1-3 and E1-6 to E1-13 containing the post-processed first polyarylene sulfide resin, the second polyarylene sulfide resin and additives are the first poly It has superior cavity balance, tensile strength, tensile elongation and airtightness compared to PPS A1-1 containing arylene sulfide resin and additives, and outgas amount and cavity balance compared to PPS B1 containing the second polyarylene sulfide resin and additives and excellent tensile elongation, and superior cavity balance and tensile elongation compared to PPS D1-2 including the first polyarylene sulfide resin, the second polyarylene sulfide resin, and additives.
  • PPS E1-7 to E1-13 containing an elastomer as an additive had somewhat lower tensile strength than PPS E1-1 to PPS E1-6, but still higher than PPS A1-1, and PPS A1-1 , the tensile elongation was significantly higher than that of PPS B1 and PPS D1-2.
  • the content of the second polyarylene sulfide resin is based on the total weight of the first polyarylene sulfide resin and the second polyarylene sulfide resin. It was confirmed that the outgas amount, cavity balance, and tensile elongation were excellent even compared to PPS E1-4 and E1-5, which were more than 30% by weight.
  • PPS E2-1 to E2-3 containing the post-processed first polyarylene sulfide resin, second polyarylene sulfide resin and additives include the first polyarylene sulfide resin and additives It has superior cavity balance, tensile strength, tensile elongation and airtightness compared to PPS A2, and has excellent outgas volume, cavity balance, tensile strength and tensile elongation compared to PPS B2 containing the second polyarylene sulfide resin and additives, It was confirmed that the cavity balance and tensile elongation were excellent compared to PPS D2-2 including the first polyarylene sulfide resin, the second polyarylene sulfide resin, and additives.
  • PPS E2-1 to E2-3 are PPS E2- in which the content of the second polyarylene sulfide resin is greater than 30% by weight based on the total weight of the first polyarylene sulfide resin and the second polyarylene sulfide resin. It was confirmed that the outgas amount, cavity balance, tensile strength and tensile elongation were superior compared to 4 as well.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

본 발명은 신규한 개스킷용 폴리아릴렌 설파이드 수지 조성물 및 이를 포함하는 이차전지용 개스킷에 관한 것으로서, 구현예의 개스킷용 수지 조성물은 낮은 아웃가스량, 우수한 기밀성, 캐비티 밸런스, 인장강도, 인장신율 및/또는 결정화도를 가질 수 있다.

Description

개스킷용 수지 조성물 및 이를 포함하는 이차전지용 개스킷
본 발명은 개스킷용 수지 조성물 및 이를 포함하는 이차전지용 개스킷에 관한 것이다.
휴대 기기 등의 구동용 전원으로서, 고용량의 알칼리 축전지로 대표되는 수계 전해액 이차전지, 리튬 이온 이차 전지로 대표되는 비수계 이차전지 등의 밀폐형 이차전지가 널리 사용되고 있다.
일반적으로, 밀폐형 이차전지는, 양극판, 음극판 및 이들 사이에 배치된 세퍼레이터를 포함하는 극판군과 극판군을 침지하기 위한 전해액이 개구가 구비된 전지 케이스(외장체)의 내부에 수용되고, 전지 케이스의 개구를 밀봉하기 위한 밀봉체에 의해 밀폐된다. 이러한 밀폐형 이차전지에서, 예컨대 양극판 또는 음극판과 전기적으로 접속되어 있는 양극 또는 음극 단자와의 접점에는 한 쌍의 단자간에서의 단락 방지나 전해액의 누출 방지를 위하여 개스킷이 구비된다.
이러한 개스킷의 재료와 관련하여, 폴리아릴렌 설파이드 수지를 사용하는 기술이 보고되어 있다(특허문헌 1 참조). 현재 대량 판매되고 있는 폴리아릴렌 설파이드는 폴리페닐렌 설파이드가 유일하고, 그 생산 방법으로는 N-메틸피롤리돈 용매 내에서 파라디클로로벤젠 및 황화나트륨을 원료로 중합하는 방식인 용액 중합 방법과(특허문헌 2 참조), 용매를 사용하지 않고 디요오드 방향족 화합물과 황 화합물을 원료로 고온에서 중합하는 방식인 용융 중합 방법이 있다.
용액 중합 방법으로 제조된 폴리페닐렌 설파이드 수지는 용매의 사용과 원료물질에 포함된 염소에 기인한 아웃가스량이 많아서 성형품의 내열성, 내염성 및 내구성에 좋지 않은 영향을 미치는 것으로 알려져 있다.
용융 중합 방법으로 제조된 폴리페닐렌 설파이드 수지는, 용매를 사용하지 않아 생산성과 원가 구조가 우수하며 아웃가스량이 낮을 뿐만 아니라, 염소계 원료를 사용하지 않아 내부식성이 우수하다는 등 개선된 효과를 가진다. 그러나, 수지의 비극성 말단기로 인해 가공 첨가제와 반응성이 낮아 원하는 특성을 갖도록 개질하기 어려워 그 용도나 사용법에 제한이 있다는 점과, 원료로 사용되는 황 화합물에서 유래하는 디설파이드 결합이 수지 내에서 취약 구조로 작용하여 기계적 강도가 충분하지 못하다는 점에서 한계가 있다.
이러한 이차전지용 개스킷은 기본적으로 전해액에 대한 내화학성과 우수한 기밀성을 가질 것이 요구된다. 또한, 개스킷은 이차전지에 기계적 충격이 가해지거나, 가열에 의해 이차전지 내부에서 용매가 기화 또는 분해되어 가스가 발생함에 따라 내부 압력이 상승하는 환경에서도 기밀성을 유지할 수 있도록 우수한 기계적 강도를 가지는 것이 필요하다.
한편, 개스킷 등의 성형품은 복수의 성형품을 동시에 제조하기 위하여 복수의 캐비티를 갖는 금형을 사용하여 수지를 사출 성형하여 제조될 수 있는데, 이와 같은 사출 성형시 일부의 캐비티에 성형용 재료가 충분히 충전되지 않는 성형 불량이 발생하면 생산성이 낮아지므로, 개스킷 등에 사용되는 수지는 양호한 캐비티 밸런스를 가질 것이 요구된다.
이러한 문제점을 해결하기 위해 예의 연구한 결과, 본 발명자들은 상용화제로 후가공한 폴리아릴렌 설파이드 수지를 개스킷의 제조에 사용하는 경우, 우수한 기밀성과 기계적 강도를 양립하면서도 캐비티 밸런스도 개선할 수 있다는 점을 발견하였다. 또한, 용액 중합된 폴리아릴렌 설파이드 수지와 용융 중합된 폴리아릴렌 설파이드 수지를 혼합함으로써 양호한 캐비티 밸런스를 유지하면서 우수한 기밀성 및 기계적 강도를 갖는 개스킷을 제조할 수 있다는 점을 발견하여 본 발명을 완성하였다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 일본특허공개공보 특개평 제8-321287호
(특허문헌 2) 미국등록특허 제2,513,188호
본 발명의 목적은 신규한 개스킷용 폴리아릴렌 설파이드 수지 조성물과 이를 포함하는 이차전지용 개스킷을 제공하는 것이다.
본 발명은 디요오도 방향족 화합물, 제1 황 화합물 및 중합금지제가 용융 중합된 제1 폴리아릴렌 설파이드 수지에 상용화제로부터 유도된 말단기가 도입된 후가공된 제1 폴리아릴렌 설파이드 수지; 및 유리 섬유, 엘라스토머 및 열 안정제로 구성된 군에서 선택되는 적어도 하나의 첨가제를 포함하는, 개스킷용 수지 조성물을 제공한다.
또한, 본 발명은 디요오도 방향족 화합물, 제1 황 화합물 및 중합금지제가 용융 중합된 제1 폴리아릴렌 설파이드 수지; 디할로 방향족 화합물 및 제2 황 화합물이 용액 중합된 제2 폴리아릴렌 설파이드 수지; 및 유리 섬유, 엘라스토머 및 열 안정제로 구성된 군에서 선택되는 적어도 하나의 첨가제를 포함하고, 상기 제2 폴리아릴렌 설파이드 수지는 상기 제1 폴리아릴렌 설파이드 수지 및 상기 제2 폴리아릴렌 설파이드 수지의 총 중량을 기준으로 0.0001 내지 30중량%로 포함되는, 개스킷용 수지 조성물을 제공한다.
또한, 본 발명은 디요오도 방향족 화합물, 제1 황 화합물 및 중합금지제가 용융 중합된 제1 폴리아릴렌 설파이드 수지에 상용화제로부터 유도된 말단기가 도입된, 후가공된 제1 폴리아릴렌 설파이드 수지; 디할로 방향족 화합물 및 제2 황 화합물이 용액 중합된 제2 폴리아릴렌 설파이드 수지; 및 유리 섬유, 엘라스토머 및 열 안정제로 구성된 군에서 선택되는 적어도 하나의 첨가제를 포함하고, 상기 제2 폴리아릴렌 설파이드 수지는 상기 후가공된 제1 폴리아릴렌 설파이드 수지 및 상기 제2 폴리아릴렌 설파이드 수지의 총 중량을 기준으로 0.0001 내지 30중량%로 포함되는, 개스킷용 수지 조성물을 제공한다.
아울러 본 발명은 상술한 개스킷용 수지 조성물로부터 얻어진 성형품을 포함하는, 이차전지용 개스킷을 제공한다.
나아가, 본 발명은 개구가 구비된 외장체; 상기 외장체의 개구를 밀봉하는 밀봉체; 상기 외장체의 내부에 구비된 양극판, 음극판 및 전해액; 상기 양극판 및 상기 음극판 사이에 구비된 세퍼레이터; 상기 양극판과 전기적으로 접속된 양극 단자; 상기 음극판과 전기적으로 접속된 음극 단자; 상기 양극 단자 또는 음극 단자와 접촉하는 상술한 이차전지용 개스킷을 포함하는, 이차전지를 제공한다.
본 발명의 개스킷용 폴리아릴렌 설파이드 수지 조성물은 낮은 아웃가스량, 우수한 기밀성, 캐비티 밸런스, 인장강도, 인장신율 및/또는 결정화도를 가질 수 있다.
이하 본 발명에 대해 보다 구체적으로 설명한다. 본 발명은 이하에서 개시된 내용에 한정되는 것이 아니라 발명의 요지가 변경되지 않는 한, 다양한 형태로 변형될 수 있다.
[후가공된 폴리아릴렌 설파이드 수지 조성물]
실시예에 따르면, 디요오도 방향족 화합물, 제1 황 화합물 및 중합금지제가 용융 중합된 제1 폴리아릴렌 설파이드 수지에 상용화제로부터 유도된 말단기가 도입된 후가공된 제1 폴리아릴렌 설파이드 수지; 및 첨가제를 포함하는, 개스킷용 수지 조성물(이하, 후가공된 제1 폴리아릴렌 설파이드 수지 조성물)이 제공된다.
다른 실시예에 따르면, 디요오도 방향족 화합물, 제1 황 화합물 및 중합금지제가 용융 중합된 제1 폴리아릴렌 설파이드 수지를 준비하는 단계; 첨가제 및 상기 제1 폴리아릴렌 설파이드 수지를 혼합하는 단계; 및 상기 제1 폴리아릴렌 설파이드 수지를 상용화제를 사용하여 후가공하는 단계를 포함하는, 개스킷용 수지 조성물의 제조방법이 제공된다.
제1 폴리아릴렌 설파이드 수지
제1 폴리아릴렌 설파이드 수지는 디요오도 방향족 화합물, 제1 황 화합물 및 중합금지제를 포함하는 조성물을 용융 중합하여 제조될 수 있다.
디요오도 방향족 화합물은 방향족 고리 및 이에 직접 결합한 2개의 요오드 원자를 갖는 화합물을 의미한다. 디요오도 방향족 화합물은 디요오도벤젠, 디요오도톨루엔, 디요오도자일렌, 디요오도나프탈렌, 디요오도비페닐, 디요오도벤조페논, 디요오도디페닐에테르 및 디요오도디페닐설폰으로 구성된 군에서 선택되는 적어도 하나일 수 있으나, 이에 한정되지 않는다.
디요오도 방향족 화합물의 방향족 고리는, 요오도기를 제외한 할로기, 페닐기, 히드록시기, 니트로기, 아미노기, 탄소 원자 수 1 내지 6의 알콕시기, 카르복시기, 카복실레이트, 아릴설폰 및 아릴케톤으로 구성된 군에서 선택되는 적어도 하나의 치환기에 의해서 치환될 수 있다. 디요오도 방향족 화합물의 방향족 고리가 상기 치환기에 의해 치환된 경우, 상기 치환기로 치환된 방향족 고리를 갖는 디요오도 방향족 화합물은 수지의 결정화도 및 내열성 등의 관점에서 치환되지 않은 방향족 고리를 갖는 디요오도 방향족 화합물을 기준으로 0.0001 내지 5중량% 또는 0.001 내지 1중량%일 수 있다. 디요오도 방향족 화합물에 존재하는 2개의 요오도기의 치환 위치는 특별히 한정되지 않지만, 2개의 치환 위치가 서로 분자 내에서 먼 위치에 있을 수 있으며, para 위치 또는 4,4'- 위치일 수 있다.
디요오도 방향족 화합물은 제1 황 화합물 1몰에 대해서 0.5 내지 2.0몰, 0.55 내지 1.9몰, 0.6 내지 1.8몰, 0.65 내지 1.7몰, 0.7 내지 1.6몰, 0.75 내지 1.5몰 또는 0.8 내지 1.4몰의 양으로 포함될 수 있다. 디요오도 방향족 화합물은 예컨대 p-디요오도벤젠일 수 있다.
제1 황 화합물은 단체황일 수 있다. 단체황은 황 원자로 구성된 화합물을 의미한다. 단체황은 S8, S6, S4 및 S2로 구성된 군에서 선택되는 적어도 하나일 수 있으며, 구체적으로, 범용적으로 입수할 수 있는 S8 및 S6을 포함하는 혼합물일 수 있으나, 이에 한정되지 않는다. 단체황의 순도, 형태 및 입경은 특별히 한정되지 않는다. 예컨대, 단체황의 형태는 실온(23℃에서 고체인 입형상 또는 분말상일 수 있다. 또한, 단체 황의 입경은 0.001 내지 10 mm, 0.01 내지 5 mm 또는 0.01 내지 3 mm일 수 있으나, 이에 특별히 한정되지 않는다.
중합금지제는, 제1 폴리아릴렌 설파이드 수지의 중합 반응을 금지 또는 정지하는 화합물이면, 특별히 제한 없이 사용될 수 있다. 중합금지제는 폴리아릴렌설파이드 수지의 주쇄 말단에 -OR, -SR, -COOR, -NHR, -SO3R, -NHCOR 등으로 이루어지는 군에서 선택되는 적어도 1종의 관능기를 도입할 수 있는 화합물일 수도 있으며, 여기서 R은 각각 독립적으로 수소기, 나트륨, 리튬 등의 금속 양이온, 할로기, 탄소 원자 수 1 내지 6의 알킬기 또는 페닐기일 수 있다. 중합금지제는 상기 관능기를 포함할 수 있고, 중합의 정지 반응 등에 의해 상기 관능기를 생성할 수 있다. 또한, 중합금지제는 상기 관능기를 포함하지 않는 화합물일 수 있으며, 구체적으로, 디페닐디설파이드, 모노요오도벤젠, 티오페놀, 2,2'-디벤조티아졸릴디설파이드, 2-메르캅토벤조티아졸, N-사이클로헥실-2-벤조티아졸릴설펜아미드, 2-(모르폴리노티오)벤조티아졸 및 N,N'-디사이클로헥실-1,3-벤조티아졸-2-설펜아미드에서 선택되는 적어도 1종의 화합물일 수 있다.
또한, 상기 중합금지제는 아래 화학식 1 내지 3으로 표시되는 화합물 중 1종 이상일 수 있으며, 구체적으로 화학식 1로 표시되는 화합물일 수 있다.
[화학식 1]
Figure PCTKR2021006719-appb-I000001
X1 및 X2는 각각 독립적으로 수소기, 할로기, 탄소 원자 수 1 내지 3의 알킬기, 치환 또는 비치환된 페닐기, -OA1, -SA2, -COOA3, -NA4A5, -SO3A6 및 -NHCOA7로 구성된 군에서 선택되고, A1 내지 A7은 각각 독립적으로 수소기, 나트륨 양이온, 리튬 양이온, 치환 또는 비치환된 탄소 원자 수 1 내지 3의 알킬기 및 치환 또는 비치환된 페닐기로 구성된 군에서 선택되며, Z1 내지 Z4는 각각 독립적으로 수소기, 치환 또는 비치환된 탄소 원자 수 1 또는 2의 알킬기 및 치환 또는 비치환된 탄소 원자 수 1 또는 2의 알케닐기로 구성된 군에서 선택되고, m1 및 m2는 각각 독립적으로 1 내지 3의 정수이다.
Z1 및 Z2가 탄소 원자 수 2인 알케닐기이며 이웃한 두 탄소 원자에 결합되는 경우, 서로 연결되어 벤젠고리를 형성할 수 있다. 또한, Z3 및 Z4가 탄소 원자 수 2인 알케닐기이며 이웃한 두 탄소 원자에 결합되는 경우, 서로 연결되어 벤젠고리를 형성할 수 있다.
m1 또는 m2가 2 이상일 경우, 하나의 방향족 고리에 결합되는 2 이상의 X1 또는 X2는 서로 동일하거나 상이할 수 있다. 또한, Z1 및 Z3는 서로 동일하거나 상이할 수 있으며, Z2 및 Z4는 서로 동일하거나 상이할 수 있다.
X1 또는 X2의 치환된 페닐기는 -SH 또는 -S-S-Ph의 치환기를 가질 수 있다. 또한, A1 내지 A7의 치환된 탄소 원자 수 1 내지 3의 알킬기 및 치환된 페닐기는 탄소 원자 수 1 또는 2의 알킬기 또는 페닐기의 치환기를 가질 수 있다.
Z1 및 Z2는 이웃한 두 탄소 원자에 결합될 수 있고, Z3 및 Z4는 이웃한 두 탄소 원자에 결합될 수 있다.
또한, Z1 내지 Z4 중 적어도 하나 또는 2 이상은 수소기가 아닐 수 있다. 또한, X1 및 X2 중 적어도 하나는 -OA1, -SA2, -COOA3, NA4A5, -SO3A6 및 -NHCOA7로 구성된 군에서 선택될 수 있다. 또한, 예컨대, X1 및 X2가 모두 수소기인 경우, Z1 및 Z2의 조합 또는 Z3 및 Z4의 조합 중 적어도 하나는 서로 연결되어 벤젠고리를 형성할 수 있다.
[화학식 2]
Figure PCTKR2021006719-appb-I000002
X3 내지 X6는 각각 독립적으로 수소기, 할로기, 탄소 원자 수 1 내지 5의 알킬기, -OA8, -SA9, -COOA10, -NA11A12, -SO3A13 및 -NHCOA14로 구성된 군에서 선택되고, A8 내지 A14는 각각 독립적으로 수소기, 나트륨 양이온, 리튬 양이온 및 탄소 원자 수 1 내지 3의 알킬기로 구성된 군에서 선택되며, R1 내지 R4는 각각 독립적으로 탄소 원자 수 1 내지 5의 알킬렌기 및 알콕시기로 구성된 군에서 선택된다.
상기 X3 내지 X6 중 적어도 하나는 -OA8, -SA9, -COOA10, -NA11A12, -SO3A13 및 -NHCOA14로 구성된 군에서 선택될 수 있다. 또한, X3 내지 X6 중 적어도 하나는 A9가 수소기인 -SA9일 수 있다.
[화학식 3]
Figure PCTKR2021006719-appb-I000003
X7 내지 X12는 각각 독립적으로 수소기, 할로기, 탄소 원자 수 1 내지 5의 알킬기, -OA15, -SA16, -COOA17, -NA18A19, -SO3A20 및 -NHCOA21로 구성된 군에서 선택되고, A15 내지 A21은 각각 독립적으로 수소기, 나트륨 양이온, 리튬 양이온 및 탄소 원자 수 1 내지 5의 알킬기로 구성된 군에서 선택되며, R5 및 R6은 각각 독립적으로 탄소 원자 수 1 내지 5의 알킬렌기이다.
또한, 중합금지제는 제1 황 화합물 1몰에 대해서 0.0001 내지 0.1몰, 0.0002 내지 0.08몰, 0.0005 내지 0.05몰 또는 0.001 내지 0.05몰의 양으로 포함될 수 있다.
한편, 상기 용융 중합에서는 촉매가 추가로 사용될 수 있다. 촉매는 예컨대 니트로벤젠계 촉매일 수 있으며, 구체적으로 1,3-디요오드-4-니트로벤젠 및 1-요오드-4-니트로벤젠으로 구성된 군에서 선택되는 하나 이상일 수 있으나, 이에 제한되지 않는다. 상기 촉매가 사용될 경우 제1 황 화합물 1몰에 대하여 0.0001 내지 0.1몰, 0.0002 내지 0.05몰 또는 0.0005 내지 0.01몰의 양으로 사용될 수 있다.
용융 중합은 디요오도 방향족 화합물 및 제1 황 화합물을 포함하는 조성물의 중합 반응이 개시될 수 있는 조건이면 어떠한 조건에서든 진행될 수 있다. 예컨대, 용융 중합은 약 180 내지 400℃, 180 내지 350℃ 또는 180 내지 300℃의 온도에서 수행될 수 있으며, 약 0.001 내지 500 torr, 0.001 내지 450 torr 또는 0.001 내지 400 torr의 압력에서 수행될 수 있다. 더욱 구체적으로, 용융 중합은 승온 감압 반응 조건에서 진행될 수 있는데, 이 경우, 온도 약 180 내지 250℃ 및 압력 약 50 내지 450 torr의 초기 반응 조건에서 온도 상승 및 압력 강하를 수행하여 최종 반응 조건인 온도 약 270 내지 350℃ 및 압력 약 0.001 내지 20 torr로 변화시키며, 약 0.1 내지 30시간 동안 진행할 수 있다. 보다 구체적으로, 최종 반응 조건을 온도 약 280 내지 300℃ 및 압력 약 0.1 내지 2 torr로 하여 용융 중합을 진행할 수 있다.
한편, 상기 디요오도 방향족 화합물, 제1 황 화합물 및 중합금지제의 혼합 순서는 특별히 한정되지 않지만, 디요오도 방향족 화합물, 제1 황 화합물 및 중합금지제를 동시에 혼합하거나, 디요오도 방향족 화합물 및 제1 황 화합물을 포함하는 혼합물에 중합금지제를 혼합하여 용융 중합을 위한 조성물을 제조할 수 있다.
중합금지제를 디요오도 방향족 화합물 및 제1 황 화합물과 동시에 혼합하지 않는 경우, 중합금지제의 투입 시기는 특별히 제한되지는 않지만 목표하는 폴리아릴렌 설파이드의 최종 분자량을 고려하여 결정할 수 있다. 예컨대, 초기 반응물 내에 포함된 디요오드 방향족 화합물이 약 0 내지 30중량%, 30 내지 70중량% 또는 70 내지 100중량%가 반응하여 소진된 시점에서 투입될 수 있다. 달리, 중합금지제의 투입 시기는 중합 반응물의 분자량이 일정 수준에 도달하였을 때 투입될 수 있다. 예컨대, 중합 반응물의 분자량이 목표하는 폴리아릴렌 설파이드의 최종 분자량의 10% 이상, 20% 이상, 30% 이상, 40% 이상, 50% 이상, 60% 이상, 70% 이상, 80% 이상 또는 90% 이상이거나, 90% 이하, 80% 이하, 70% 이하, 60% 이하, 50% 이하, 40% 이하, 30% 이하, 20% 이하, 10% 이하일 때 중합금지제가 투입될 수 있다. 중합 반응물의 분자량은 예컨대 겔 침투 크로마토그래피를 통해 측정할 수 있다.
또한, 중합금지제의 투입 전에 디요오드 방향족 화합물과 제1 황 화합물을 포함하는 조성물은 용융 혼합될 수 있다. 이 경우, 촉매 또한 용융 혼합 단계에서 조성물에 포함될 수 있다. 상기 용융 혼합은 상기 조성물이 모두 용융 혼합될 수 있는 조건이면 특별히 한정되지 않으나, 예컨대, 약 130 내지 200℃ 또는 약 160 내지 190℃의 온도에서 진행할 수 있다. 이러한 용융 혼합을 진행할 경우, 추후 수행되는 용융 중합이 보다 용이하게 진행될 수 있다.
상용화제로 후가공된 제1 폴리아릴렌설파이드 수지
후가공된 제1 폴리아릴렌 설파이드 수지는 제1 폴리아릴렌 설파이드 수지를 상용화제를 사용하여 후가공하여 제조될 수 있다.
또한, 후가공된 제1 폴리아릴렌 설파이드 수지는 제1 폴리아릴렌 설파이드 수지; 및 상용화제로부터 유도된 말단기를 포함할 수 있다.
제1 폴리아릴렌 설파이드 수지는 상술한 바와 같다.
제1 폴리아릴렌 설파이드 수지를 후가공하기 위한 상용화제는 카르복실기, 카르복실레이트기, 히드록시기, 아미노기, 아마이드기, 실란기, 설파이드기, 설포네이트기로 구성된 군에서 선택된 적어도 하나의 관능기를 포함하는 화합물일 수 있다. 구체적으로, 상용화제는 하기 화학식 4 내지 6 중 하나로 표시되는 화합물 중 1종 이상일 수 있다.
[화학식 4]
Figure PCTKR2021006719-appb-I000004
Y1 및 Y2는 각각 독립적으로 수소기, 할로기, -OB1, -SB2, -COOB3, -NB4B5, -SO3B6 및 -NHCOB7로 구성된 군에서 선택되고, B1 내지 B7은 각각 독립적으로 수소기, 나트륨 양이온, 리튬 양이온, 치환 또는 비치환된 탄소 원자 수 1 내지 3의 알킬기 및 치환 또는 비치환된 페닐기로 구성된 군에서 선택되며, Z1' 내지 Z4'는 각각 독립적으로 수소기, 치환 또는 비치환된 탄소 원자 수 1 또는 2의 알킬기 및 치환 또는 비치환된 탄소 원자 수 1 또는 2의 알케닐기로 구성된 군에서 선택되고, p1 및 p2는 각각 독립적으로 1 내지 3의 정수이며, 단, Y1 및 Y2 중 적어도 하나는 -OB1, -SB2, -COOB3, -NB4B5, -SO3B6 및 -NHCOB7로 구성된 군에서 선택된다.
Z1' 및 Z2'가 탄소 원자 수 2인 알케닐기이며 이웃한 두 탄소 원자에 결합되는 경우, 서로 연결되어 벤젠고리를 형성할 수 있고, Z3' 및 Z4'가 탄소 원자 수 2인 알케닐기이며 이웃한 두 탄소 원자에 결합되는 경우, 서로 연결되어 벤젠고리를 형성할 수 있다.
p1 또는 p2가 2 이상일 경우, 하나의 방향족 고리에 결합되는 2 이상의 Y1 또는 Y2는 서로 동일하거나 상이할 수 있다. 또한, Z1' 및 Z3'는 서로 동일하거나 상이할 수 있으며, Z2' 및 Z4'는 서로 동일하거나 상이할 수 있다.
상기 Z1' 내지 Z4'의 치환된 탄소 원자 수 1 또는 2의 알킬기 또는 치환된 탄소 원자 수 1 또는 2의 알케닐기는 탄소 원자 수 1 또는 2의 알킬기 또는 페닐기의 치환기를 가질 수 있다.
B1 내지 B7 중 하나가 치환된 탄소 원자 수 1 내지 3의 알킬기 또는 치환된 페닐기는 탄소 원자 수 1 또는 2의 알킬기 또는 페닐기의 치환기를 가질 수 있다.
Z1' 및 Z2'는 이웃한 두 탄소 원자에 결합될 수 있고, Z3' 및 Z4'는 이웃한 두 탄소 원자에 결합될 수 있다. 또한, Z1' 내지 Z4' 중 적어도 하나 또는 2 이상은 수소기가 아닐 수 있다.
[화학식 5]
Figure PCTKR2021006719-appb-I000005
Y3 내지 Y6은 각각 독립적으로 수소기, 할로기, -OB8, -SB9, -COOB10, -NB11B12, -SO3B13 및 -NHCOB14로 구성된 군에서 선택되고, B8 내지 B14는 각각 독립적으로 수소기, 나트륨 양이온, 리튬 양이온 및 탄소 원자 수 1 내지 3의 알킬기로 구성된 군에서 선택되며, R1' 내지 R4'는 각각 독립적으로 탄소 원자 수 1 내지 5의 알킬렌기 및 알콕시기로 구성된 군에서 선택되고, 단, Y3 내지 Y6 중 적어도 하나는 -OB8, -SB9, -COOB10, -NB11B12, -SO3B13 및 -NHCOB14로 구성된 군에서 선택된다. 여기서, Y3 내지 Y6 중 적어도 하나는 B9가 수소기인 -SB9일 수 있다.
[화학식 6]
Figure PCTKR2021006719-appb-I000006
Y7 내지 Y12는 각각 독립적으로 수소기, 할로기, -OB15, -SB16, -COOB17, -NB18B19, -SO3B20 및 -NHCOB21로 구성된 군에서 선택되고, B15 내지 B21은 각각 독립적으로 수소기, 나트륨 양이온, 리튬 양이온 및 탄소 원자 수 1 내지 5의 알킬기로 구성된 군에서 선택되며, R5' 및 R6'는 각각 독립적으로 탄소 원자 수 1 내지 5의 알킬렌기이다.
또한, 구체적으로, 상용화제는 2,2'-디티오비스디벤조산, 4,4'-아미노페닐 디설파이드, 비스(3-히드록시페닐) 디설파이드 및 비스(4-히드록시페닐) 디설파이드로 구성된 군에서 선택된 적어도 하나일 수 있으나, 이에 특별히 한정되지 않는다.
상기 상용화제는 제1 폴리아릴렌 설파이드 수지의 말단에 위치할 수 있는 요오드 원자와 치환 반응을 일으키거나, 반응 없이 자체적으로 상용화제의 역할을 수행할 수 있다. 상용화제로 제1 폴리아릴렌 설파이드 수지를 후가공하면, 제1 폴리아릴렌 설파이드 수지의 주쇄 및/또는 말단의 분위기를 소수성에서 친수성으로 변화시킬 수 있으며, 이를 통해 친수성 관능기 및/또는 반응기를 갖는 기타 수지, 무기 충진재 등에 대한 상용성을 향상시킬 수 있으므로, 이를 이용한 최종 물품의 기계적 강도를 향상시키고 가열에 의해 발생하는 아웃가스의 양을 현저히 감소시킬 수 있다.
상용화제는 제1 폴리아릴렌 설파이드 수지와 반응하여 제1 폴리아릴렌 설파이드 수지에 말단기를 부여할 수 있다. 따라서, 후가공된 제1 폴리아릴렌 설파이드 수지는 상용화제로부터 유도된 말단기를 가질 수 있다.
상기 상용화제로부터 유도된 말단기는 상용화제가 갖는 관능기를 의미할 수 있다. 구체적으로, 상용화제는 카르복실기, 카르복실레이트기, 히드록시기, 아미노기, 아마이드기, 실란기, 설파이드기, 설포네이트기 등의 관능기를 포함하는 화합물이 사용될 수 있으므로, 상용화제로부터 유도된 말단기 또한 카르복실기, 카르복실레이트기, 히드록시기, 아미노기, 아마이드기, 실란기, 설파이드기, 설포네이트기 등의 관능기일 수 있다.
더욱 구체적으로, 상기 상용화제로부터 유도된 말단기는, 하기 화학식 7 내지 9 중 하나로 표시되는 구조를 가질 수 있다.
[화학식 7]
Figure PCTKR2021006719-appb-I000007
[화학식 8]
Figure PCTKR2021006719-appb-I000008
[화학식 9]
Figure PCTKR2021006719-appb-I000009
상기 식에서, Z1', Z2', Y1, Y3 내지 Y5, Y7 내지 Y9, R1' 내지 R5' 및 p1은 상술한 바와 같다.
상용화제는 제1 폴리아릴렌 설파이드 수지의 총 중량을 기준으로 0.001 내지 10중량%, 0.001 내지 5중량%, 0.01 내지 3중량% 또는 0.1 내지 2중량%의 양으로 포함될 수 있다. 제1 폴리아릴렌 설파이드 수지를 중합 후에 상용화제를 사용하여 후가공하는 경우, 동일한 화합물을 수지의 중합 도중에 중합금지제로서 투입하는 경우에 비해 상용화제의 반응 효율이 현저히 우수하므로, 최종 수지에 잔류하는 관능기의 함량을 극대화할 수 있으며, 또한, 상용화제를 적게 사용하면서도 상용화제를 통해 최종 수지에 도입하고자 하는 관능기의 목표 함량을 달성할 수 있다. 동일한 화합물을 중합금지제로서 투입하는 경우, 해당 화합물이 중합 반응에 요구되는 고온 환경에 의해 분해되거나 반응 중에 배출되는 등의 이유로 반응 효율이 낮다. 더욱이, 제1 폴리아릴렌 설파이드 수지의 중합 도중에 투입하였을 때 상용화제에 의해 발생할 수 있는 부산물을 최소화할 수 있다. 따라서, 제1 폴리아릴렌 설파이드 수지를 상용화제로 후가공하는 경우, 아웃가스의 원인이 될 수 있는 중합금지제/상용화제의 첨가량을 낮추고 부산물을 최소화하여 아웃가스량을 감소시킴과 동시에 상용성을 향상시켜 인장강도, 인장신율, 기밀성 등의 물성을 개선할 수 있다. 또한, 상용화제로 후가공된 제1 폴리아릴렌 설파이드 수지는 상술한 바와 같이 아웃가스의 양이 감소됨에 따라, 사출 공정에서 공정성이 개선되어 캐비티 밸런스가 우수할 뿐 아니라, 생산 사이클을 감소시키는 효과를 나타낼 수 있다.
상용화제를 사용하는 후가공은 고온 혼합에 의해 수행될 수 있다. 고온 혼합은 290 내지 330℃의 온도에서 수행될 수 있다. 또한, 산화 가교 반응을 방지하면서 높은 중합도를 달성하기 위해 비산화성 분위기에서 수행될 수 있다. 비산화성 분위기에서 기상(氣相)의 산소 농도는 5부피% 미만 또는 2부피% 미만일 수 있으며, 더욱 구체적으로는 기상이 산소를 실질적으로 함유하지 않을 수 있다. 고온 혼합을 통해 후가공되는 경우, 제1 폴리아릴렌 설파이드 수지의 말단에 일부 존재할 수 있는 요오드가 충분히 제거되고 결정성이 우수해져 수축률이 감소할 수 있으므로, 후가공된 제1 폴리아릴렌 설파이드를 이용하여 제조된 최종 물품의 치수 안정성이 향상될 수 있다.
또한, 고온 혼합은 가열 교반이 가능한 반응기 하에서 진행될 수 있다. 예컨대, 상기 반응기는 SUS 등의 다양한 재질의 반응기일 수 있다. 고온 혼합은 이축 압출기(twin screw extruder)에서 수행될 수 있으며, 상기 이축 압출기의 직경비(L/D)는 약 30 내지 50일 수 있다. 예컨대, 제1 폴리아릴렌 설파이드 수지를 2축 압출기의 주 투입구를 통해 투입할 수 있으며, 열가소성 수지 또는 열가소성 엘라스토머의 다른 고분자 소재나, 충진재 등은 압출기의 측면에 위치한 투입구(side feeder)를 통해 별도로 투입할 수 있다. 측면 투입구의 위치는 압출기 전체 배럴의 배출구 측으로부터 약 1/3 내지 1/2 지점으로 될 수 있으며, 이를 통해 충진재 등이 압출기 내에서 압출기 스크루에 의한 회전 및 마찰에 의해 깨지는 것이 방지할 수 있다. 또한, 제1 폴리아릴렌 설파이드 수지는 주 투입구에 투입되기 전에 소량 첨가되는 기타 첨가제와 혼합될 수도 있다.
한편, 후가공된 제1 폴리아릴렌 설파이드 수지는, 아릴렌설파이드 단위로 주로 구성되지만, 통상적으로, 원료의 제1 황 화합물에서 유래되는, [-S-S-]로 표시되는 디설파이드 결합에 따른 단위도 주쇄에 포함할 수 있다. 디설파이드 결합에 따른 단위를 포함하는 최종 폴리아릴렌 설파이드 수지의 구조식은 Eastman社에서 제시한 공중합체의 형태를 가지게 될 수 있다(미국 특허 제47680000호). 공중합체의 구조식은 하기 구조식 1과 같이 표현될 수 있다.
[구조식 1] -(Ar-S)x-(Ar-S-S)y-
후가공된 제1 폴리아릴렌 설파이드 수지는, 구조식 1에서 아릴렌설파이드 구조에 해당하는 x와, 공중합설파이드 구조에 해당하는 y의 합이 1이라고 할 때, x가 함량이 0.900 내지 0.999, 0.950 내지 0.999 또는 0.990 내지 0.999일 수 있다. . 또한, 후가공된 제1 폴리아릴렌 설파이드의 디설파이드 결합 분율은 0.001 내지 10.0중량%, 구체적으로, 0.1중량% 이상, 0.3중량% 이상, 0.5중량% 이상 또는 0.7중량% 이상일 수 있고, 10.0중량% 이하, 5.0중량% 이하, 2.0중량% 이하, 1.8중량% 이하, 1.6중량% 이하, 1.5중량% 이하, 1.4중량% 이하, 1.3중량% 이하, 1.2중량% 이하, 1.1중량% 이하 또는 1중량% 이하일 수 있다. 본 명세서에서 디설파이드 결합의 분율(중량%)은 폴리아릴렌 설파이드 내의 이론적인 황량에 대하여 폴리아릴렌 설파이드 내의 이론적인 황량과 원소 분석(elemental analysis)으로 측정된 황량의 차이로 정의될 수 있다.
[수학식 1]
디설파이드 결합 분율(중량%) = {(원소 분석(elemental analysis)으로 검출된 황의 총 중량) - (폴리아릴렌 설파이드 내의 황의 이론 중량)} / (폴리아릴렌 설파이드 내의 황의 이론 중량)
후가공된 제1 폴리아릴렌 설파이드 수지는 디요오도 방향족 화합물로부터 유래한 요오드를 포함할 수 있으며, 요오드의 함량은 후가공된 제1 폴리아릴렌 설파이드 수지의 총 중량을 기준으로 100 내지 10,000 ppm, 구체적으로, 250 ppm 이상, 500 ppm 이상, 750 ppm 이상 또는 900 ppm 이상일 수 있고, 9,000 ppm 이하, 8,000 ppm 이하, 7,000 ppm 이하, 6,000 ppm 이하, 5,000 ppm 이하, 4,000 ppm 이하, 3,000 ppm 이하, 2,500 ppm 이하, 2,250 ppm 이하, 2,200 ppm 이하, 2,100 ppm 이하, 2,000 ppm 이하, 1,900 ppm 이하, 1,800 ppm 이하, 1,700 ppm 이하, 1,600 ppm 이하 또는 1,500 ppm 이하일 수 있다.
후가공된 제1 폴리아릴렌 설파이드 수지는 용융점도가 10 poise 이상, 100 poise 이상, 500 poise 이상, 1,000 poise 이상, 5,000 poise 이상, 10,000 poise 이상, 15,000 poise 이상, 17,000 poise 이상, 18,000 poise 이상, 19,000 poise 이상, 20,000 poise 이상, 21,000 poise 이상, 21,000 poise 초과, 22,000 poise 이상 또는 23,000 poise 이상일 수 있으며, 70,000 poise 이하, 50,000 poise 이하, 40,000 poise 이하, 30,000 poise 이하, 25,000 poise 이하, 23,000 poise 이하 또는 20,000 poise 이하일 수 있다. 본 명세서에서 용융점도는 회전 원판 점도계(rotating disk viscometer)로 300℃에서 측정하고, frequency sweep 방법으로 0.6 내지 500 rad/s의 각진동수 구간에서 점도를 측정하였을 때, 1.84 rad/s의 각진동수에서의 점도로 정의될 수 있다.
또한, 비선형지수는 0.001 이상, 0.01 이상, 0.05 이상, 0.09 이상 또는 0.10 이상일 수 있으며, 0.50 이하, 0.40 이하, 0.30 이하, 0.20 이하, 0,15 이하, 0.14 이하, 0.13 이하, 0.12 이하, 0.11 이하 또는 0.10 이하일 수 있다. 비선형지수를 이러한 범위로 조정함으로써, 후가공된 폴리아릴렌 설파이드 수지가 향상된 가공성과 양호한 캐비티 밸런스를 갖도록 할 수 있다. 비선형지수는, 측정대상의 분자량 또는 직쇄, 분기, 가교와 같은 분자 구조에 관한 지표로 될 수 있다. 통상적으로, 이 값이 0에 가까우면 수지의 분자 구조가 직쇄상인 것을 나타내고, 이 값이 커짐에 따라서, 분기나 가교 구조가 많이 포함 되는 것을 나타낸다. 본 명세서에서 비선형지수는 회전 원판 점도계로 300℃에서 측정하고, frequency sweep 방법으로 0.03 내지 25 s-1의 전단속도 구간에서의 점도변화율을 측정하였을 때, 하기 수학식 2를 통해 정의될 수 있다.
[수학식 2]
비선형 지수 = 1 - (17.3 s-1의 전단 속도일 때의 용융점도) / (3.22 s-1의 전단 속도일 때의 용융점도).
상술한 특정 범위의 비선형지수를 갖는 후가공된 제1 폴리아릴렌 설파이드 수지는, 예를 들면, 디요오도 방향족 화합물, 제1 황 화합물 및 중합금지제를 포함하는 용융 중합용 혼합물을 용액 중합시키는 방법에 있어서, 이러한 폴리아릴렌 설파이드 수지를 어느 정도 고분자량화시킴에 의해 얻는 것이 가능하다.
후가공된 제1 폴리아릴렌 설파이드 수지는 분지지수(α)가 0.10 이상, 0.20 이상, 0.30 이상, 0.40 이상, 0.50 이상, 0.60 이상, 0.61 이상, 0.62 이상 또는 0.65 이상일 수 있으며, 1.00 이하, 0.90 이하, 0.80 이하 또는 0.70 이하일 수 있다. 본 명세서에서 α는 하기 수학식 3으로 표시되는 마크 호윙크 식(Mark-Howink equation)을 통해 계산된다. 통상적으로, α가 1에 가까울수록 선형 고분자이고, 0에 가까울수록 분지형 고분자인 것을 나타낸다.
[수학식 3]
[η] = K Mα
상기 식에서, 상기 η은 고유점도, M은 중량 평균 분자량, K는 상수이다.
또한, 후가공된 제1 폴리아릴렌 설파이드 수지는 융점이 250 내지 300℃, 260 내지 300℃, 265 내지 300℃ 또는 270 내지 290℃일 수 있다. 본 명세서에서 융점은 시차주사열량계 시차주사 열량분석기(differential scanning calorimeter; DSC)를 이용하여 30℃에서 320℃까지 10℃/min의 속도로 승온하고 30℃까지 냉각시킨 후에 다시 30℃에서 320℃까지 10℃/min의 속도로 승온하면서 측정된 것일 수 있다.
후가공된 제1 폴리아릴렌 설파이드 수지는 결정화 온도가 150 내지 300℃, 200 내지 250℃, 210 내지 240℃, 215 내지 230℃ 또는 216 내지 225℃일 수 있다. 결정화 온도가 높아지면, 결정화 속도가 빨라질 뿐만 아니라 결정화도에도 영향을 미쳐 최종 조성물의 기계적 물성이 향상될 수 있다. 본 명세서에서 결정화 온도는 시차주사열량계 시차주사 열량분석기를 이용하여 30℃에서 320℃까지 10℃/min의 속도로 승온하고 30℃까지 냉각시킨 후에 다시 30℃에서 320℃까지 10℃/min의 속도로 승온하면서 측정된 것일 수 있다.
후가공된 제1 폴리아릴렌 설파이드 수지의 분자량은, 중량 평균 분자량, 수 평균 분자량, 피크 정점 분자량 등으로 측정될 수 있다. 후가공된 제1 폴리아릴렌 설파이드 수지의 중량 평균 분자량은, 본 발명의 효과를 손상시키지 않으면 특별히 제한되지 않지만, 기계적 강도의 측면에서 25,000 g/mol 이상, 30,000 g/mol 이상, 40,000 g/mol 이상 또는 50,000 g/mol 이상일 수 있으며, 캐비티 밸런스의 측면에서 100,000 g/mol 이하, 80,000 g/mol 이하, 65,000 g/mol 이하 또는 55,000 g/mol 이하일 수 있다. 또한, 우수한 기계적 강도와 양호한 캐비티 밸런스를 달성하기 위해, 후가공된 제1 폴리아릴렌 설파이드 수지의 중량 평균 분자량을 25,000 내지 60,000 g/mol, 30,000 내지 55,000 g/mol, 30,000 내지 80,000 g/mol 또는 60,000 내지 100,000 g/mol로 조정할 수 있다. 또한, 수 평균 분자량은, 1,000 g/mol 이상, 5,000 g/mol 이상, 7,500 g/mol 이상, 9,000 g/mol 이상, 10,000 g/mol 이상, 11,000 g/mol 이상, 12,000 g/mol 이상 또는 12,400 g/mol 이상일 수 있고, 30,000 g/mol 이하, 25,000 g/mol 이하, 20,000 g/mol 이하, 15,000 g/mol 이하, 13,500 g/mol 이하, 13,000 g/mol 이하 또는 12,000 g/mol 이하일 수 있다. 피크 정점 분자량은, 10,000 g/mol 이상, 15,000 g/mol 이상, 20,000 g/mol 이상, 25,000 g/mol 이상, 27,000 g/mol 이상, 27,900 g/mol 이상일 수 있고, 140,000 g/mol 이하, 100,000 g/mol 이하, 75,000 g/mol 이하, 50,000 g/mol 이하, 45,000 g/mol 이하, 43,000 g/mol 이하, 35,000 g/mol 이하 또는 30,000 g/mol 이하일 수 있다.
후가공된 제1 폴리아릴렌 설파이드 수지의 아웃가스량은, 0.001 내지 0.50중량%, 0.001 내지 0.20중량% 또는 0.01 내지 0.10중량%일 수 있다. 본 명세서에서 아웃가스량은 가스 크로마토그래프(GC) 질량 분석 장치를 사용해서, 폴리아릴렌 설파이드 수지 또는 수지 조성물의 소정량의 샘플을 330℃에서 20분간 가열하였을 때 발생하는 가스량을 중량%로 정량한 것일 수 있다.
후가공된 제1 폴리아릴렌 설파이드 수지의 말단은 카르복실기, 카르복실레이트기, 히드록시기, 아미노기, 아마이드기, 실란기, 설파이드기, 설포네이트기 등을 포함할 수 있다. 구체적으로, 상술한 화학식 4 내지 6 중 하나로 표시되는 화합물로부터 유래하는 작용기를 포함할 수 있다.
상용화제로 후가공된 제1 폴리아릴렌 설파이드 수지는 친수성 관능기 및/또는 반응기를 갖는 기타 수지, 무기 충진재 등에 대한 상용성이 우수하여 후가공되지 않은 폴리아릴렌설파이드 수지에 비해 아웃가스량이 낮을 수 있으며, 또한, 동일 화합물을 수지의 중합 도중에 중합금지제로서 사용하여 제조된 폴리아릴렌 설파이드 수지에 비해, 아웃가스의 원인이 될 수 있는 중합금지제/상용화제의 첨가량을 낮출 수 있고 부산물이 최소화될 수 있으므로, 아웃가스량이 낮을 수 있다.
또한, 특정 이론에 구속되지는 않지만, 이와 같이 아웃가스의 양이 적어짐에 따라, 상용화제로 후가공된 폴리아릴렌 설파이드 수지는 사출 공정에서 공정성이 개선되어 캐비티 밸런스가 우수할 뿐만 아니라, 생산 사이클을 감소시키는 효과를 나타낼 수 있다.
또한, 상용화제로 후가공된 제1 폴리아릴렌 설파이드 수지는 상용성이 개선됨에 따라 인장강도, 인장신율 등의 기계적 강도 및 기밀성이 우수할 수 있다.
첨가제
첨가제는 본 발명이 나타내는 효과를 손상시키지 않는다면 제한되지 않으나, 구체적으로 섬유상 강화재, 무기질 필러, 산화방지제, 안정제, 가공열안정제, 가소제, 이형제, 착색제, 활제, 내후성안정제, 발포제, 방청제, 왁스, 핵제, 그 밖의 수지 성분, 드립 방지제(anti-drip agent), 추가 상용화제 등을 포함할 수 있다.
섬유상 강화재는 예컨대 유리 섬유, PAN계 또는 피치계의 탄소 섬유, 실리카 섬유, 실리카·알루미나 섬유, 지르코니아 섬유, 질화붕소 섬유, 질화규소 섬유, 붕소 섬유, 붕산알루미늄 섬유, 티탄산칼륨 섬유, 스테인리스, 알루미늄, 티타늄, 구리, 진주 등의 금속의 섬유상물의 무기질 섬유상 물질; 및 아라미드 섬유 등의 유기질 섬유상 물질일 수 있다. 무기질 필러로서는, 예컨대, 마이카, 탈크, 규회석(wollastonite), 세리사이트, 카올린, 클레이, 벤토나이트, 아스베스토, 알루미나실리케이트, 제올라이트, 파이로필라이트 등의 규산염; 탄산칼슘, 탄산마그네슘, 돌로마이트 등의 탄산염; 황산칼슘, 황산바륨 등의 황산염; 알루미나, 산화마그네슘, 실리카, 지르코니아, 티타니아, 산화철 등의 금속 산화물; 유리 비드; 유리 플레이크; 세라믹 비드; 질화붕소; 탄화규소; 인산칼슘 등일 수 있다. 이러한 섬유상 강화재 및 무기질 필러는, 단독으로 사용할 수도 있고 2종 이상을 혼합하여 사용할 수도 있다.
구체적으로, 유리 섬유는 수지와의 계면 접착력을 향상시키기 위해 표면 처리될 수 있으며, 표면 처리는 에폭시 및 아미노기가 있는 실란을 사용하여 수행될 수 있다. 예컨대, 유리 섬유는 알루미노-보로실리케이트 유리일 수 있다. 또한, 유리 섬유는 예컨대 평균 직경이 6 내지 15 ㎛이고, 평균 길이가 2 내지 8 ㎜ 또는 2 내지 6 ㎜일 수 있다.
열 안정제는 수지의 제조 공정 중 또는 사용 중에 열 및 광선의 작용으로 인해수지가 분해되는 것을 방지하기 위하여 사용될 수 있으며, 폴리아릴렌 설파이드 수지를 다른 첨가제 또는 수지와 혼합하거나 성형할 때의 고온 환경에서 발생하는 부반응을 최소화시켜, 최종 폴리아릴렌 설파이드 수지 조성물의 물성을 향상시킬 수 있다. 열 안정제는 칼슘 마그네슘 아연계 열 안정제, 칼슘 아연계 열 안정제, 유기주석계 열 안정제, 금속석금계 열 안정제, 바륨 아연계 열 안정제, 에폭시 아연계 열 안정제, 마그네슘 알루미늄 카보네이트계 열 안정제, 아연계 열 안정제, 납계 열 안정제 등의 금속계 열 안정제와, 에폭시계 열 안정제, 유기아인산염계 열 안정제 등의 비금속계 열 안정제를 포함할 수 있다. 열 안정제는 시판되고 있는 열 안정제로는 마그네슘 알루미늄 카보네이트계 열 안정제인 두본社의 CLC-120이 있다.
또한, 열 안정제는 예컨대 1차 페놀계 안정제, 2차 인계 안정제 및 1차-2차 혼합형 안정제를 사용할 수 있으며, 1차 및 2차 안정제 모두 해당 물질의 분자량이 높거나, 고온에서의 체류 시 해당 물질의 열 안정성이 우수한 것이 바람직하다. 이러한 점에서 바람직한 안정제로는 ADEKA社 AO-60, AO-80, Chemtura社의 Ultanox627A, Doverphos S9228 등이 있다.
또한, 이형제는 구체적으로 실리콘계 이형제, 왁스계 이형제, 불소계 이형제, 계면활성제계 이형제 또는 혼합계 이형제일 수 있다. 시판되고 있는 이형제로는 미쯔이社의 Hi-WaxTM이 있다.
핵제는 결정화 속도를 촉진하기 위해 사용될 수 있으며, 핵제를 사용함으로써 저온 금형에서도 결정화도를 높여 수지의 표면 특성을 향상시킬 수 있다. 핵제는 고온 열 안정성이 있는 무기물 형태의 물질일 수 있으며, 탈크, 칼슘실리케이트, 실리카, 보론나이트라이드 등을 포함할 수 있다. 구체적으로, 보론나이트라이드는 육방정계 형태일 수 있고, 순도는 보로나이트라이드 전체 중량을 기준으로 B2O3 함량이 0.5중량% 이하인 것이 사용될 수 있다. 또는 순도가 95중량% 이상인 보로나이트라이드가 사용될 수 있다.
또한, 그 밖의 수지가 제1 폴리아릴렌 설파이드 수지에 요구되는 특성에 맞춰서 적량 포함될 수 있다. 여기에서 수지 성분은 예컨대 에틸렌, 부틸렌, 펜텐, 부타디엔, 이소프렌, 클로로프렌, 스티렌, α-메틸스티렌, 아세트산비닐, 염화비닐, 아크릴산에스테르, 메타크릴산에스테르, (메타)아크릴로니트릴 등의 단량체의 단독 중합체 또는 공중합체; 폴리우레탄, 폴리부틸렌테레프탈레이트, 폴리에틸렌테레프탈레이트 등의 폴리에스테르; 폴리아세탈; 폴리카보네이트; 폴리설폰; 폴리알릴설폰; 폴리에테르설폰; 폴리페닐렌에테르; 폴리에테르케톤; 폴리에테르에테르케톤; 폴리이미드; 폴리아미드이미드; 폴리에테르이미드; 실리콘 수지; 에폭시 수지; 페녹시 수지; 액정 폴리머; 폴리아릴에테르; 등의 단독 중합체, 랜덤 공중합체 또는 블록 공중합체, 그래프트 공중합체 등일 수 있다.
구체적으로, 그 밖의 수지 성분은 충격 강도 향상을 위해 엘라스토머를 포함할 수 있으며, 엘라스토머는 폴리염화비닐계 엘라스토머, 폴리올레핀계 엘라스토머, 폴리우레탄계 엘라스토머, 폴리에스테르계 엘라스토머, 폴리아미드계 엘라스토머, 폴리부타디엔계 엘라스토머 및 글리시딜 메타 아크릴레이트와 메틸 아크릴 에스테르의 삼원 공중합체로 구성된 군에서 선택될 수 있다.
또한, 그 밖의 수지 성분은 열가소성 엘라스토머(thermoplastic elastomer; TPE)를 포함할 수 있다. 열가소성 엘라스토머는 구체적으로 열가소성플라스틱 폴리에테르 블록 아미드(TPA), 열가소성플라스틱 폴리우레탄 엘라스토머(TPU), 열가소성플라스틱 코폴리에스테르 엘라스토머(TPC), 스티렌 블록 코폴리머계 열가소성플라스틱 엘라스토머(TPS), 열가소성 플라스틱 및 가황 엘라스토머로 제조된 열가소성플라스틱 엘라스토머(TPV) 등일 수 있다. 열가소성 엘라스토머는 에폭시 작용기를 포함하는 에폭시 엘라스토머일 수 있으며, 예컨대 에틸렌 및 글리시딜메타아크릴레이트의 공중합체일 수 있다. 시판되고 있는 열가소성 엘라스토머로는 스미모토社의 IGETABOND® BF-E가 있다.
드립 방지제는 폴리아릴렌 설파이드 수지 조성물이 연소될 때 적하(drip)가 발생하는 것을 방지하기 위해 사용될 수 있다. 드립 방지제는 불소계 드립 방지제를 포함할 수 있다. 구체적으로, 드립 방지제는 불소계 수지(폴리테트라플루오로에틸렌, 폴리불화비닐리덴, 폴리헥사플루오로프로필렌 등), 퍼플루오로알칸설폰산 알칼리금속염 화합물(퍼플루오로메탄설폰산나트륨염, 퍼플루오로-n-부탄설폰산칼륨염, 퍼플루오로-t-부탄설폰산칼륨염, 퍼플루오로옥탄설폰산나트륨염, 퍼플루오로-2-에틸헥산설폰산칼슘염 등), 퍼플루오로알칸설폰산 알칼리토류금속염 등을 포함할 수 있고, 보다 구체적으로, 폴리테트라플루오로에틸렌을 포함할 수 있다. 시판되고 있는 드립 방지제로는 한나노텍社의 FS-100, FS-200, FS-300 등이 있다.
추가 상용화제는 제1 폴리아릴렌 설파이드 수지를 후가공하기 위해 사용하는 상용화제 이외에 폴리아릴렌 설파이드 수지 조성물에 추가로 포함되는 상용화제를 의미한다. 구체적으로, 추가 상용화제는 상기 화학식 4 내지 6 중 하나로 표시되는 화합물 이외의 상용화제일 수 있다. 예컨대, 추가 상용화제는 에폭시 실란계 상용화제일 수 있으며, 시판되고 있는 추가 상용화제로는 Momentive Performance Materials社의 Silquest® A-186, A-187 등이 있다.
또한, 금속성 첨가제는 특히 열가소성 엘라스토머와 함께 사용될 경우, 폴리아릴렌 설파이드 수지 및 열가소성 엘라스토머 간의 상용화 반응을 촉진할 수 있다. 이러한 금속성 첨가제로는 아연염, 마그네슘염, 칼슘염, 나트륨염, 리튬염 등이 사용될 수 있으며, 열적으로 안정적이면서 엘라스토머의 글리시딜 작용기와 폴리아릴렌설파이드 수지의 상용성 관능기간의 반응에 도움을 줄 수 있는 것이 바람직하다. 해당 요구사항에 부합하는 바람직한 금속성 첨가제로는 스테아르산 아연염(시그마 알드리치-307564), 스테아르산 칼슘염(시그마 알드리치-26411), 아세트산 마그네슘염(시그마 알드리치-228648), 스테아르산 마그네슘염(시그마 알드리치-415057), 스테아르산 나트륨염(시그마 알드리치-S3381), 탄산리튬(시그마 알드리치-203629) 등이 있다.
첨가제는 구체적으로 섬유상 강화재, 열 안정제 및 엘라스토머로 구성되는 군에서 선택되는 하나 이상을 포함할 수 있고, 구체적으로, 첨가제는 열 안정제를 포함할 수 있다. 더욱 구체적으로, 첨가제는 유리 섬유를 포함하거나, 엘라스토머 및 열 안정제를 포함할 수 있다.
후가공된 제1 폴리아릴렌 설파이드 수지 조성물
개스킷용 수지 조성물은 후가공된 제1 폴리아릴렌 설파이드 수지 및 첨가제를 포함할 수 있다.
구체적으로, 후가공된 제1 폴리아릴렌 설파이드 수지 조성물은, 후가공된 제1 폴리아릴렌 설파이드 수지 조성물의 총 중량을 기준으로 후가공된 제1 폴리아릴렌 설파이드 수지를 0.1중량% 이상, 1중량% 이상, 2중량% 이상, 5중량% 이상, 10중량% 이상, 15중량% 이상, 20중량% 이상, 30중량% 이상, 40중량% 이상, 50중량% 이상 또는 60중량% 이상으로 포함할 수 있고, 99.9중량% 이하, 99중량% 이하, 98중량% 이하, 95중량% 이하, 90중량% 이하, 85중량% 이하, 80중량% 이하, 75중량% 이하, 70중량% 이하 또는 65중량% 이하로 포함할 수 있다.
한편, 후가공된 제1 폴리아릴렌 설파이드 수지 조성물은, 후가공된 제1 폴리아릴렌 설파이드 수지 조성물의 총 중량을 기준으로 첨가제를 0.01중량% 이상, 0.1중량% 이상, 1중량% 이상, 5중량% 이상, 10중량% 이상, 20중량% 이상 또는 30중량% 이상으로 포함할 수 있고, 90중량% 이하, 80중량% 이하, 70중량% 이하, 60중량% 이하, 50중량% 이하, 45중량% 이하, 40중량% 이하, 30중량% 이하, 20중량% 이하 또는 15중량% 이하로 포함할 수 있다.
더욱 구체적으로, 후가공된 제1 폴리아릴렌 설파이드 수지 조성물은, 후가공된 제1 폴리아릴렌 설파이드 수지 조성물의 총 중량을 기준으로 유리 섬유를 10 내지 70중량%, 10 내지 60중량%, 10 내지 50중량%, 15 내지 45중량%, 20 내지 40중량%, 또는 25 내지 35중량%로 포함할 수 있고, 엘라스토머를 0.1 내지 20중량%, 1 내지 20중량%, 5 내지 15중량%, 또는 7 내지 10중량%로 포함할 수 있다. 또한, 동일 기준으로 열 안정제를 0.01 내지 5중량%, 0.01 내지 2중량% 또는 0.05 내지 1중량%로 포함할 수 있다.
또한, 후가공된 제1 폴리아릴렌 설파이드 수지 조성물은, 후가공된 제1 폴리아릴렌 설파이드 수지 조성물의 총 중량을 기준으로 유리 섬유를 10 내지 70중량%로 포함하거나, 엘라스토머 및 열 안정제를 각각 0.1 내지 20중량% 및 0.01 내지 5중량%로 포함할 수 있다.
이러한 후가공된 제1 폴리아릴렌 설파이드 수지 조성물은, 상용화제로 후가공되지 않은 제1 폴리아릴렌 설파이드 수지 조성물에 비해, 양호한 아웃가스량을 유지하면서도, 기밀성, 캐비티 밸런스 및 기계적 강도가 우수한 효과를 나타낼 수 있다.
[폴리아릴렌 설파이드 혼합 수지 조성물]
실시예에 따르면, 디요오도 방향족 화합물, 제1 황 화합물 및 중합금지제가 용융 중합된 제1 폴리아릴렌 설파이드 수지; 디할로 방향족 화합물 및 제2 황 화합물이 용액 중합된 제2 폴리아릴렌 설파이드 수지; 및 첨가제를 포함하는, 개스킷용 수지 조성물(이하, 폴리아릴렌 설파이드 혼합 수지 조성물)이 제공된다.
다른 실시예에 따르면, 디요오도 방향족 화합물, 제1 황 화합물 및 중합금지제가 용융 중합된 제1 폴리아릴렌 설파이드 수지를 준비하는 단계; 디할로 방향족 화합물 및 제2 황 화합물이 용액 중합된 제2 폴리아릴렌 설파이드 수지를 준비하는 단계; 및 첨가제, 상기 제1 폴리아릴렌 설파이드 수지 및 상기 제2 폴리아릴렌 설파이드 수지를 혼합하는 단계를 포함하는, 개스킷용 수지 조성물의 제조방법이 제공된다.
제1 폴리아릴렌 설파이드 수지 및 첨가제는 상술한 바와 같다.
제2 폴리아릴렌 설파이드 수지
제2 폴리아릴렌 설파이드 수지는 디할로 방향족 화합물 및 제2 황 화합물을 용액 중합하여 제조될 수 있다.
제2 폴리아릴렌 설파이드 수지는 디할로 방향족 화합물 및 제2 황 화합물을 용액 중합하는 단계를 포함하여 제조되는 한 특별히 제한되지 않는다. 이러한 폴리아릴렌 설파이드 수지의 상업적 제조 방법으로는, N-메틸파이롤리돈(N-methyl pyrrolidone) 등의 극성 유기 용매 존재 하에서 p-디클로로벤젠 및 황화나트륨을 용액 중합하는 맥컬럼 공정(Macallum process)이 알려져 있다. 전형적인 공정은 미국 특허 제2,513,188호에 기재되어 있다.
상기 용융 중합은 유기 극성용매 존재 하에서 수행될 수 있다. 상기 유기 극성용매는 예컨대 N,N-디메틸포름아미드, N,N-디메틸아세트아미드, N,N-디에틸아세트아미드, N,N-디프로필아세트아미드, N,N-디메틸벤조산아미드, 카프로락탐, N-프로필카프로락탐, N-메틸카프로락탐, N-사이클로헥실카프로락탐, N-메틸-2-피롤리논, N-에틸-2-피롤리디논, N-이소프로필-2-피롤리디논, N-이소부틸-2-피롤리디논, N-프로필-2-피롤리디논, N-부틸-2-피롤리디논, N-시클헥실-2-피롤리디논, N-메틸-3-메틸-2-피롤리디논, N-사이클로헥실-2-피롤리디논, N-메틸-2-피페리돈, N-메틸-2-옥소-헥사메틸렌이민, N-에틸-2-옥소-헥사메틸렌이민, 헥사메틸인산트리아미드, 헥사에틸인산트리아미드, 테트라메틸요소, 1,3-디메틸에틸렌요소, 1,3-디메틸에틸렌요소, 1,3-디메틸프로필렌요소, 1-메틸-1-옥소술포란, 1-에틸-1-옥소술포란, 1-페닐-1-옥소술포란, 1-메틸-1-옥소포스판, 1-프로필-1-옥소포스판 및 1-페닐-1-옥소포스판으로 구성된 군으로부터 선택된 적어도 하나일 수 있다. 유기 극성용매는 예컨대 N-메틸파이롤리돈일 수 있다.
디할로 방향족 화합물은 방향족 고리 및 이에 직접 결합한 2개의 할로기를 갖는 화합물을 의미한다. 여기서 할로기의 할로겐 원자는 불소, 염소, 브롬 및 요오드의 각 원자일 수 있고, 디할로 방향족 화합물에 존재하는 2개의 할로기는 서로 동일하거나 상이할 수 있다. 더욱 구체적으로, 2개의 할로겐 원자는 모두 염소일 수 있다. 디할로 방향족 화합물은 예컨대 o-디할로벤젠, m-디할로벤젠, p-디할로벤젠, 디할로톨루엔, 디할로나프탈렌, 메톡시-디할로벤젠, 디할로비페닐, 디할로안식향산, 디할로디페닐에테르, 디할로디페닐설폰, 디할로디페닐설폭사이드 및 디할로디페닐케톤로 구성된 군에서 선택된 적어도 하나일 수 있다. 디할로 방향족 화합물은 예컨대 1,4-디클로로벤젠일 수 있으나, 이에 특별히 제한되지 않는다.
상기 제2 황 화합물은 알칼리 금속 황화물 및 상기 알칼리 금속 황화물을 형성할 수 있는 알칼리 금속 황화물 형성성 화합물로 구성된 군에서 선택되는 적어도 하나일 수 있다. 또한, 상기 제2 황 화합물은 알칼리 금속 수황화물 및 상기 알칼리 금속 수황화물 형성성 화합물로 구성된 군에서 선택되는 적어도 하나일 수 있다. 제2 황 화합물은 예컨대 수황화리튬, 수황화나트륨, 수황화칼륨, 수황화루비듐 및 수황화세슘과 같은 알칼리 금속 수황화물과, 황화리튬, 황화나트륨, 황화칼륨, 황화루비듐 및 황화세슘과 같은 알칼리 금속 황화물일 수 있으나, 이에 특별히 제한되지 않는다. 알칼리 금속 황화물 형성성 화합물 또는 알칼리 금속 수황화물 형성성 화합물은 예컨대 황화수소일 수 있다. 알칼리 금속 수산화물(예컨대, NaOH)에 황화수소를 불어 넣음으로써, 알칼리 금속 수황화물(예컨대, NaSH)이나 알칼리 금속 황화물(예컨대, Na2S)을 생성시킬 수 있다. 제2 황 화합물은 무수물, 수화물 및 수용액로 구성된 군에서 선택된 적어도 하나일 수 있다. 제2 황 화합물은 예컨대 황화나트륨 수화물일 수 있으나, 이에 특별히 제한되지 않는다.
폴리아릴렌 설파이드 혼합 수지 조성물
개스킷용 수지 조성물은 제1 폴리아릴렌 설파이드 수지, 제2 폴리아릴렌 설파이드 수지 및 첨가제를 포함하는 것일 수 있다.
디할로 방향족 화합물 및 황 화합물을 용액 중합하여 제조되는, 용액 중합된 폴리아릴렌 설파이드 수지는 높은 결정화 온도, 기계적 강도 등 우수한 물성을 가지지만, 아웃가스의 원인이 될 수 있는 용매의 사용으로 인해 아웃가스량이 높으며, 그에 따라 캐비티 밸런스가 낮다는 단점을 가진다. 반면, 디요오도 방향족 화합물, 황 화합물 및 중합금지제를 포함하는 혼합물을 용융 중합하여 제조되는, 용융 중합된 폴리아릴렌 설파이드 수지는, 아웃가스량이 현저히 낮지만, 제법적 특성상 취약 구조인 디설파이드 결합을 포함함에 따라 기계적 강도가 낮다는 단점을 가진다.
그런데 본 발명자들은 놀랍게도 이러한 용액 중합된 폴리아릴렌 설파이드 수지와 용융 중합된 폴리아릴렌 설파이드 수지를 혼합함으로써, 아웃가스량이 용융 중합된 폴리아릴렌 설파이드 수지와 대등한 수준으로 낮으며 캐비티 밸런스가 우수하면서도, 용액 중합된 폴리아릴렌 설파이드 수지와 대등하거나 우수한 기계적 강도 및 기밀성을 가지는 폴리아릴렌 설파이드 혼합 수지 조성물을 제조할 수 있음을 발견하였다.
이러한 혼합 수지 조성물의 효과는 특정 이론에 구속되지는 않으나 제1 폴리아릴렌 설파이드 수지 및 제2 폴리아릴렌 설파이드 수지의 반응에 의해 달성되는 것일 수 있다. 구체적으로, 제1 폴리아릴렌 설파이드 수지 및 제2 폴리아릴렌 설파이드 수지를 혼합하면, 제1 폴리아릴렌 설파이드 수지가 가지는 디설파이드 결합이 개열하여 제2 폴리아릴렌 설파이드가 가진 말단의 할로겐과 추가 반응할 수 있다. 따라서, 제1 폴리아릴렌 설파이드의 취약 구조인 디설파이드 결합이 제거되고 또한 분자량이 증가함과 동시에, 제2 폴리아릴렌 설파이드의 할로겐을 추가로 제거할 수 있으므로, 기계적 물성이 향상될 뿐만 아니라 아웃가스량이 현저히 감소될 수 있다.
제1 폴리아릴렌 설파이드 수지, 제2 폴리아릴렌 설파이드 수지 및 첨가제의 혼합은 용융 혼합을 통해 수행될 수 있다. 용융 혼합은 제1 폴리아릴렌 설파이드 수지 및 제2 폴리아릴렌 설파이드 수지를 용융시킬 수 있는 조건이면 어떠한 조건에서든 진행될 수 있다. 예컨대, 용융 혼합은 1축 혹은 2축 혼련압출기, 중합반응기, 니더반응기 등에서 수행될 수 있다. 더욱 구체적으로, 용융 혼합은 2축 압출기에서 수행될 수 있으며, 280 내지 330℃, 바람직하게는 290 내지 310℃의 온도에서 수행될 수 있다. 이 때, 수지 성분의 토출량은 회전수 250 rpm으로 5 내지 50 kg/hr일 수 있으며, 분산성을 고려하여 20 내지 35 kg/hr로 조정할 수 있다. 수지 성분의 토출량(kg/hr)과 스크루 회전수(rpm)의 비율(토출량/스크루 회전수)은, 특히 0.08 내지 0.14 kg/hr·rpm인 것이 바람직하다. 상기 혼합시 진공 라인이 구비된 반응기에서 탈포(degassing)하여, 아웃가스량이 더욱 감소한 폴리아릴렌 설파이드 혼합 수지를 제조할 수 있다.
폴리아릴렌 설파이드 혼합 수지 조성물은 제1 폴리아릴렌 설파이드 수지를 폴리아릴렌 설파이드 혼합 수지 조성물의 총 중량을 기준으로 0.1중량% 이상, 1중량% 이상, 2중량% 이상, 5중량% 이상, 10중량% 이상, 15중량% 이상, 20중량% 이상, 30중량% 이상, 40중량% 이상, 45중량% 이상, 50중량% 이상, 60중량% 이상 또는 70중량% 이상으로 포함할 수 있고, 99.9중량% 이하, 99중량% 이하, 98중량% 이하, 95중량% 이하, 90중량% 이하, 89중량% 이하, 85중량% 이하, 80중량% 이하, 75중량% 이하, 70중량% 이하, 65중량% 이하, 60중량% 이하, 55중량% 이하 또는 50중량% 이하로 포함할 수 있다.
또한, 폴리아릴렌 설파이드 혼합 수지 조성물은 제2 폴리아릴렌 설파이드 수지를 폴리아릴렌 설파이드 혼합 수지 조성물의 총 중량을 기준으로 0.1중량% 이상, 1중량% 이상, 2중량% 이상, 5중량% 이상, 10중량% 이상, 15중량% 이상 또는 20중량% 이상으로 포함할 수 있고, 99.9중량% 이하, 99중량% 이하, 90중량% 이하, 70중량% 이하, 50중량% 이하, 42중량% 이하, 40중량% 이하, 38중량% 이하, 30중량% 이하, 25중량% 이하, 20중량% 이하, 20중량% 미만, 15중량% 이하 또는 10중량% 이하로 포함할 수 있다.
또한, 폴리아릴렌 설파이드 혼합 수지 조성물은 폴리아릴렌 설파이드 혼합 수지 조성물의 총 중량을 기준으로 제1 폴리아릴렌 설파이드 수지 및 제2 폴리아릴렌 설파이드 수지를 10 내지 99.9중량%로 포함할 수 있고, 보다 구체적으로 20 내지 99중량%, 30 내지 99중량%, 30 내지 95중량%, 30 내지 70중량% 또는 50 내지 70중량%로 포함할 수 있다.
폴리아릴렌 설파이드 혼합 수지 조성물은 상기 제2 폴리아릴렌 설파이드 수지를 상기 제1 폴리아릴렌 설파이드 수지 및 상기 제2 폴리아릴렌 설파이드 수지의 총 중량을 기준으로 30중량% 이하, 구체적으로 0.0001 내지 30중량%로 포함할 수 있으며, 더욱 구체적으로, 5중량% 이상, 10중량% 이상, 15중량% 이상, 20중량% 이상 또는 25중량% 이상으로 포함할 수 있고, 25중량% 이하, 20중량% 이하, 15중량% 이하, 10중량% 이하 또는 5중량% 이하로 포함할 수 있다. 상기 범위로 제2 폴리아릴렌 설파이드 수지를 포함하는 경우, 제1 폴리아릴렌 설파이드 수지 및 제2 폴리아릴렌 설파이드 수지의 혼합에 의한 효과가 현저해져 아웃가스량이 감소하고 캐비티 밸런스 및 인장신율이 향상될 수 있다.
또한, 폴리아릴렌 설파이드 혼합 수지 조성물은 폴리아릴렌 설파이드 혼합 수지 조성물의 총 중량을 기준으로 첨가제를 0.01중량% 이상, 0.1중량% 이상, 1중량% 이상, 5중량% 이상, 10중량% 이상, 20중량% 이상 또는 30중량% 이상으로 포함할 수 있고, 90중량% 이하, 80중량% 이하, 70중량% 이하, 60중량% 이하, 50중량% 이하, 45중량% 이하, 40중량% 이하, 30중량% 이하, 20중량% 이하 또는 15중량% 이하로 포함할 수 있다.
더욱 구체적으로, 폴리아릴렌 설파이드 혼합 수지 조성물은, 폴리아릴렌 설파이드 혼합 수지 조성물의 총 중량을 기준으로 유리 섬유를 10 내지 70중량%, 10 내지 60중량%, 10 내지 50중량%, 15 내지 45중량%, 20 내지 40중량%, 또는 25 내지 35중량%로 포함할 수 있고, 엘라스토머를 0.1 내지 20중량%, 1 내지 20중량%, 5 내지 15중량%, 또는 7 내지 10중량%로 포함할 수 있다. 또한, 동일 기준으로 열 안정제를 0.01 내지 5중량%, 0.01 내지 2중량% 또는 0.05 내지 1중량%로 포함할 수 있다.
또한, 폴리아릴렌 설파이드 혼합 수지 조성물은, 폴리아릴렌 설파이드 혼합 수지 조성물의 총 중량을 기준으로 유리 섬유를 10 내지 70중량%로 포함하거나, 엘라스토머 및 열 안정제를 각각 0.1 내지 20중량% 및 0.01 내지 5중량%로 포함할 수 있다.
한편, 폴리아릴렌 설파이드 혼합 수지는 제1 폴리아릴렌 설파이드 및 제2 폴리아릴렌 설파이드로 구성된 수지를 의미하고, 상기 폴리아릴렌 설파이드 혼합 수지의 용융점도, 비선형지수, 분지지수(α), 분자량 및 융점은 상기 후가공된 제1 폴리아릴렌 설파이드 수지에 대해 상술한 바와 같다.
또한, 폴리아릴렌 설파이드 혼합 수지는 디설파이드 결합 분율이 0.001 내지 10.0중량%, 구체적으로, 0.1중량% 이상, 0.3중량% 이상, 0.5중량% 이상, 0.75중량% 이상 또는 1.0중량% 이상일 수 있고, 10.0중량% 이하, 5.0중량% 이하, 2.0중량% 이하, 1.8중량% 이하, 1.6중량% 이하 또는 1.4중량% 이하일 수 있다.
폴리아릴렌 설파이드 혼합 수지는 디요오도 방향족 화합물로부터 유래한 요오드를 포함할 수 있으며, 요오드의 함량은 폴리아릴렌 설파이드 혼합 수지의 총 중량을 기준으로 1 내지 10,000 ppm, 구체적으로, 5 ppm 이상, 10 ppm 이상, 20 ppm 이상, 40 ppm 이상, 100 ppm 이상, 500 ppm 이상 또는 1,000 ppm 이상일 수 있고, 9,000 ppm 이하, 8,000 ppm 이하, 7,000 ppm 이하, 6,000 ppm 이하, 5,000 ppm 이하, 4,000 ppm 이하, 3,000 ppm 이하, 2,500 ppm 이하, 2,300 ppm 미만, 2,000 ppm 이하, 1,900 ppm 이하 또는 1,800 ppm 이하일 수 있다.
폴리아릴렌 설파이드 혼합 수지의 결정화 온도는 제2 폴리아릴렌 설파이드 수지와 대등한 수준으로 높을 수 있다. 예컨대 폴리아릴렌 설파이드 혼합 수지는 결정화 온도가 150 내지 300℃, 200 내지 280℃, 210 내지 260℃ 210 내지 270℃, 220 내지 260℃, 225 내지 255℃ 또는 230 내지 250℃일 수 있다. 폴리아릴렌 설파이드 혼합 수지의 결정화 온도가 높아지면, 결정화 속도가 빨라질 뿐만 아니라 결정화도에도 영향을 미쳐 상기 수지를 포함하는 최종 조성물의 기계적 물성이 향상될 수 있다.
폴리아릴렌 설파이드 혼합 수지의 아웃가스량은, 0.001 내지 5중량%일 수 있고, 구체적으로, 0.001중량% 이상, 0.01중량% 이상, 0.1중량% 이상, 0.2중량% 이상, 0.3중량% 이상 또는 0.35중량% 이상일 수 있고, 3중량% 이하, 2중량% 이하, 1.5중량% 이하, 1.4중량% 이하, 1.35중량% 이하, 1.3중량% 이하, 1.2중량% 이하, 1.1중량% 이하, 1중량% 이하, 0.8중량% 이하, 0.6중량% 이하 또는 0.5중량% 이하일 수 있다.
이러한 폴리아릴렌 설파이드 혼합 수지 조성물은, 아웃가스량이 제1 폴리아릴렌 설파이드 수지 조성물과 대등한 수준으로 낮으며 캐비티 밸런스가 우수하면서도, 제2 폴리아릴렌 설파이드 수지 조성물과 대등하거나 그보다 우수한 인장강도, 인장신율 및 기밀성을 가질 수 있다.
[후가공된 폴리아릴렌 설파이드 혼합 수지 조성물]
실시예에 따르면, 디요오도 방향족 화합물, 제1 황 화합물 및 중합금지제가 용융 중합된 제1 폴리아릴렌 설파이드 수지에 상용화제로부터 유도된 말단기가 도입된 후가공된 제1 폴리아릴렌 설파이드 수지; 디할로 방향족 화합물 및 제2 황 화합물이 용액 중합된 제2 폴리아릴렌 설파이드 수지; 및 첨가제를 포함하는, 개스킷용 수지 조성물이 제공된다.
다른 실시예에 따르면, 디요오도 방향족 화합물, 제1 황 화합물 및 중합금지제가 용융 중합된 제1 폴리아릴렌 설파이드 수지를 준비하는 단계; 디할로 방향족 화합물 및 제2 황 화합물이 용액 중합된 제2 폴리아릴렌 설파이드 수지를 준비하는 단계; 첨가제, 상기 제1 폴리아릴렌 설파이드 수지 및 상기 제2 폴리아릴렌 설파이드 수지를 혼합하는 단계; 및 상기 제1 폴리아릴렌 설파이드 수지를 상용화제를 사용하여 후가공하는 단계를 포함하는, 개스킷용 수지 조성물의 제조방법이 제공된다.
후가공된 제1 폴리아릴렌 설파이드 수지, 제2 폴리아릴렌 설파이드 수지 및 첨가제는 상술한 바와 같다.
후가공된 폴리아릴렌 설파이드 혼합 수지 조성물
개스킷용 수지 조성물은 후가공된 제1 폴리아릴렌 설파이드 수지, 제2 폴리아릴렌 설파이드 수지 및 첨가제를 포함할 수 있다(이하, 후가공된 폴리아릴렌 설파이드 혼합 수지 조성물). 이들의 혼합은 상술한 바와 같다.
다만, 제1 폴리아릴렌 설파이드 수지의 후가공은 제1 폴리아릴렌 설파이드 수지 및 제2 폴리아릴렌 설파이드 수지를 혼합하기 전에 수행될 수 있고, 혼합과 함께 수행될 수 있으며, 혼합한 후 수행될 수도 있다. 또한, 혼합하기 전에 수행되고 추가로 혼합과 함께 수행되거나 혼합한 후 수행될 수도 있으며, 다른 조합도 제한 없이 가능하다. 예컨대, 제1 폴리아릴렌 설파이드 수지의 후가공은 제1 폴리아릴렌 설파이드 수지 및 제2 폴리아릴렌 설파이드 수지를 2축 압출기에 투입하여 용융 혼합할 때 상용화제를 2축 압출기에 함께 투입하여 수행될 수 있다. 이 때, 2축 압출기에서 수지 성분의 토출량(㎏/hr)과 스크루 회전수(rpm)와의 비율(토출량/스크루 회전수)이 0.02~0.2 ㎏/hr·rpm가 되도록 조건을 설정할 수 있다.
후가공된 폴리아릴렌 설파이드 혼합 수지의 말단은 카르복실기, 카르복실레이트기, 히드록시기, 아미노기, 아마이드기, 실란기, 설파이드기, 설포네이트기 등의 관능기를 포함할 수 있다.
후가공된 폴리아릴렌 설파이드 혼합 수지 조성물은 후가공된 제1 폴리아릴렌 설파이드 수지를 후가공된 폴리아릴렌 설파이드 혼합 수지 조성물의 총 중량을 기준으로 0.1중량% 이상, 1중량% 이상, 2중량% 이상, 5중량% 이상, 10중량% 이상, 15중량% 이상, 20중량% 이상, 30중량% 이상, 40중량% 이상, 45중량% 이상, 50중량% 이상, 60중량% 이상 또는 70중량% 이상으로 포함할 수 있고, 99.9중량% 이하, 99중량% 이하, 98중량% 이하, 95중량% 이하, 90중량% 이하, 89중량% 이하, 85중량% 이하, 80중량% 이하, 75중량% 이하, 70중량% 이하, 65중량% 이하, 60중량% 이하, 55중량% 이하 또는 50중량% 이하로 포함할 수 있다.
또한, 후가공된 폴리아릴렌 설파이드 혼합 수지 조성물은 제2 폴리아릴렌 설파이드 수지를 후가공된 폴리아릴렌 설파이드 혼합 수지 조성물의 총 중량을 기준으로 0.1중량% 이상, 1중량% 이상, 2중량% 이상, 5중량% 이상, 10중량% 이상, 15중량% 이상 또는 20중량% 이상으로 포함할 수 있고, 99.9중량% 이하, 99중량% 이하, 90중량% 이하, 70중량% 이하, 50중량% 이하, 42중량% 이하, 40중량% 이하, 38중량% 이하, 30중량% 이하, 25중량% 이하, 20중량% 이하, 20중량% 미만, 15중량% 이하 또는 10중량% 이하로 포함할 수 있다.
또한, 후가공된 폴리아릴렌 설파이드 혼합 수지 조성물은 후가공된 폴리아릴렌 설파이드 혼합 수지 조성물의 총 중량을 기준으로 후가공된 제1 폴리아릴렌 설파이드 수지 및 제2 폴리아릴렌 설파이드 수지를 10 내지 99.9중량%로 포함할 수 있고, 보다 구체적으로 20 내지 99중량%, 30 내지 99중량%, 30 내지 95중량%, 30 내지 70중량% 또는 50 내지 70중량%로 포함할 수 있다.
후가공된 폴리아릴렌 설파이드 혼합 수지 조성물은 상기 제2 폴리아릴렌 설파이드 수지를 상기 후가공된 제1 폴리아릴렌 설파이드 수지 및 상기 제2 폴리아릴렌 설파이드 수지의 총 중량을 기준으로 30중량% 이하, 구체적으로 0.0001 내지 30중량%로 포함할 수 있으며, 더욱 구체적으로, 5중량% 이상, 10중량% 이상, 15중량% 이상, 20중량% 이상 또는 25중량% 이상으로 포함할 수 있고, 25중량% 이하, 20중량% 이하, 15중량% 이하, 10중량% 이하 또는 5중량% 이하로 포함할 수 있다. 상기 범위로 제2 폴리아릴렌 설파이드 수지를 포함하는 경우, 후가공된 제1 폴리아릴렌 설파이드 수지 및 제2 폴리아릴렌 설파이드 수지의 혼합에 의한 효과가 현저해져 아웃가스량이 감소하고 캐비티 밸런스, 인장강도 및 인장신율이 향상될 수 있다.
또한, 후가공된 폴리아릴렌 설파이드 혼합 수지 조성물은 후가공된 폴리아릴렌 설파이드 혼합 수지 조성물의 총 중량을 기준으로 첨가제를 0.01중량% 이상, 0.1중량% 이상, 1중량% 이상, 5중량% 이상, 10중량% 이상, 20중량% 이상 또는 30중량% 이상으로 포함할 수 있고, 90중량% 이하, 80중량% 이하, 70중량% 이하, 60중량% 이하, 50중량% 이하, 45중량% 이하, 40중량% 이하, 30중량% 이하, 20중량% 이하 또는 15중량% 이하로 포함할 수 있다.
더욱 구체적으로, 후가공된 폴리아릴렌 설파이드 혼합 수지 조성물은, 후가공된 폴리아릴렌 설파이드 혼합 수지 조성물의 총 중량을 기준으로 유리 섬유를 10 내지 70중량%, 10 내지 60중량%, 10 내지 50중량%, 15 내지 45중량%, 20 내지 40중량%, 또는 25 내지 35중량%로 포함할 수 있고, 엘라스토머를 0.1 내지 20중량%, 1 내지 20중량%, 5 내지 15중량%, 또는 7 내지 10중량%로 포함할 수 있다. 또한, 동일 기준으로 열 안정제를 0.01 내지 5중량%, 0.01 내지 2중량% 또는 0.05 내지 1중량%로 포함할 수 있다.
또한, 후가공된 폴리아릴렌 설파이드 혼합 수지 조성물은, 후가공된 폴리아릴렌 설파이드 혼합 수지 조성물의 총 중량을 기준으로 유리 섬유를 10 내지 70중량%로 포함하거나, 엘라스토머 및 열 안정제를 각각 0.1 내지 20중량% 및 0.01 내지 5중량%로 포함할 수 있다.
한편, 후가공된 폴리아릴렌 설파이드 혼합 수지는 후가공된 제1 폴리아릴렌 설파이드 및 제2 폴리아릴렌 설파이드로 구성된 수지를 의미하고, 상기 후가공된 폴리아릴렌 설파이드 혼합 수지의 용융점도, 비선형지수, 분지지수(α), 분자량, 융점, 디설파이드 결합 분율, 요오드 함량, 결정화 온도 및 아웃가스량은 상기 폴리아릴렌 설파이드 혼합 수지에 대해 상술한 바와 같다.
후가공된 폴리아릴렌 설파이드 혼합 수지 조성물은, 아웃가스량이 제1 폴리아릴렌 설파이드 수지 조성물과 대등한 수준으로 낮으며 캐비티 밸런스가 우수하면서도, 제1 폴리아릴렌 설파이드 수지 조성물 및 제2 폴리아릴렌 설파이드 수지 조성물 모두보다 우수한 기계적 강도 및 기밀성을 나타낼 수 있다.
이러한 효과는 특정 이론에 구속되지는 않으나 제1 폴리아릴렌 설파이드 수지 및 제2 폴리아릴렌 설파이드 수지의 반응에 의해 달성되는 것일 수 있다. 구체적으로, 제1 폴리아릴렌 설파이드 수지 및 제2 폴리아릴렌 설파이드 수지를 혼합하면, 제1 폴리아릴렌 설파이드 수지가 가지는 디설파이드 결합이 개열하여 제2 폴리아릴렌 설파이드가 가진 말단의 할로겐과 추가 반응할 수 있다. 따라서, 제1 폴리아릴렌 설파이드의 취약 구조인 디설파이드 결합이 제거되고 또한 분자량이 증가함과 동시에, 제2 폴리아릴렌 설파이드의 할로겐을 추가로 제거할 수 있으므로, 기계적 물성이 향상될 뿐만 아니라 아웃가스량이 현저히 감소될 수 있다.
더욱이, 제1 폴리아릴렌 설파이드 수지가 상용화제를 이용하여 후가공되므로, 친수성 관능기 및/또는 반응기를 갖는 기타 수지, 무기 충진재 등에 대한 상용성이 향상되어, 혼합 수지를 이용하여 제조되는 최종 물품의 기계적 강도를 향상시키고 가열에 의해 발생하는 아웃가스의 양을 현저히 감소시킬 수 있다. 또한, 동일한 화합물을 수지의 중합 도중에 중합금지제로서 투입하는 경우에 비해 상용화제의 반응 효율이 현저히 우수하여, 최종 수지에 잔류하는 관능기의 함량을 극대화할 수 있으며, 또한, 상용화제를 적게 사용하면서도 상용화제를 통해 최종 수지에 도입하고자 하는 관능기의 목표 함량을 달성할 수 있다. 따라서, 상용화제로 후가공하는 경우, 아웃가스의 원인이 될 수 있는 중합금지제/상용화제의 첨가량을 낮추고, 중합 반응에 요구되는 고온 환경에서 상용화제에 의해 발생할 수 있는 부산물을 최소화하여 아웃가스량을 더욱 감소시키며, 그와 동시에 상용성을 향상시켜, 캐비티 밸런스가 우수할 뿐만 아니라, 인장강도, 인장신율, 기밀성 등의 물성을 개선할 수 있다.
[개스킷]
일 실시예에 따르면, 개스킷용 수지 조성물을 포함하는 이차전지용 개스킷이 제공된다.
또 다른 일 실시예에 따르면, 개구가 구비된 외장체; 상기 외장체의 개구를 밀봉하는 밀봉체; 상기 외장체의 내부에 구비된 양극판, 음극판 및 전해액; 상기 양극판 및 상기 음극판 사이에 구비된 세퍼레이터; 상기 양극판과 전기적으로 접속된 양극 단자; 상기 음극판과 전기적으로 접속된 음극 단자; 상기 양극 단자 또는 음극 단자와 접촉하는 상술한 이차전지용 개스킷을 포함하는, 이차전지가 제공된다.
상기 개스킷용 수지 조성물은 상술한 제1 폴리아릴렌 설파이드 수지, 후가공된 제1 폴리아릴렌 설파이드 수지, 제2 폴리아릴렌 설파이드 수지, 폴리아릴렌 설파이드 혼합 수지 또는 후가공된 폴리아릴렌 설파이드 혼합 수지를 포함하는 것일 수 있다.
또한, 상기 이차전지용 개스킷은 상기 개스킷용 수지 조성물로부터 얻어진 성형품일 수 있다. 상기 개스킷용 수지 조성물은 제한 없이 다양한 방법과 형태로 성형될 수 있다. 통상적으로는 상기 수지 조성물은 펠렛상으로 커팅될 수 있으며, 이러한 펠렛을 성형기에 공급하여 용융 성형함으로써 최종적으로 목적하는 형상의 성형물을 수득할 수 있다. 용융 성형은 예컨대 사출 성형, 압출 성형, 압축 성형 등일 수 있으며, 구체적으로 사출 성형일 수 있다. 사출 성형시 금형 온도는 결정화를 고려하여 약 50℃ 이상, 60℃ 이상 또는 80℃ 이상일 수 있고, 시험편의 변형을 고려하여 약 190℃ 이하, 170℃ 이하 또는 160℃ 이하일 수 있다. 성형물은 필름, 시트, 섬유 등의 다양한 형태일 수 있다.
상술한 개스킷용 수지 조성물은 기밀성이 양호할 뿐만 아니라, 캐비티 밸런스 및 기계적 강도가 모두 우수할 수 있어, 기계적 또는 열적 충격이 가해지더라도 기밀성을 유지할 수 있으며 성형 불량률이 감소함에 따라 생산성을 개선할 수 있으므로, 이차전지 개스킷 용도로 유용하게 사용될 수 있다.
이하 실시예에 의해 본 발명을 보다 구체적으로 설명한다. 이하의 실시예들은 본 발명을 예시하는 것일 뿐이며, 본 발명의 범위가 이들로 한정되지는 않는다.
[제조예]
1. 제1 폴리아릴렌 설파이드 수지
제조예 a1: PPS a1의 제조
5 L 반응기에 반응기의 내온 측정이 가능한 써모커플(thermocouple)과, 질소 충진 및 진공 부과가 가능한 진공 라인을 부착하고, 상기 반응기에 파라디요오드벤젠 5,240 g 및 원소 황 450 g을 투입하였다. 파라디요오드벤젠 및 원소 황을 포함하는 반응기 내의 조성물을 180℃로 가열하여 완전히 용융 및 혼합한 후, 220℃의 온도 및 350 torr의 압력의 초기 반응 조건에서 시작하여 서서히 승온 감압하여, 300℃의 온도 및 1 torr 이하의 압력의 최종 반응 조건에서 중합 반응을 진행하였다. 중합 반응물의 샘플을 채취하여 겔 침투 크로마토그래피로 샘플의 분자량을 측정하였을 때, 중합 반응물의 중량 평균 분자량(Mw)이 약 15,000 g/mol에 도달한 시점에, 상기 반응기에 중합금지제로서 디페닐디설파이드(시그마 알드리치-169021) 24 g을 투입하고 1시간 동안 반응을 진행한 후, 0.5 torr 이하의 압력으로 서서히 감압하여 1시간 동안 반응을 추가로 진행한 다음 종료하고, 반응이 완료된 수지를 소형 스트랜드 커터기를 사용해 펠렛 형태로 가공하여, 제1 폴리아릴렌 설파이드 수지로서 PPS a1을 제조하였다.
제조예 a2: PPS a2의 제조
중합금지제로서 디페닐디설파이드 24 g 대신에 2,2'-디티오디벤조산 4.5 g(시그마알드리치-43761, 순도 95.0% 이상)을 사용한 것 이외에는, 제조예 a1과 동일하게 수행하여, 제1 폴리아릴렌 설파이드 수지로서 PPS a2 약 1,500 g을 제조하였다.
2. 제2 폴리아릴렌 설파이드 수지
제조예 b: PPS b의 제조
반응기에 황화나트륨 5수염 3,027 g 및 극성 유기 용매로서 NMP 5,400 g을 투입하고, 질소 분위기 하에서 200℃로 승온하여 물-NMP 혼합물을 증류 제거하였다. 다음으로, 반응기에 파라디클로로벤젠 2,646 g 및 파라클로로벤조산 17.01 g을 NMP 2,070 g에 용해시킨 용액을 투입하고, 이들을 질소 분위기 하에서 220 내지 240℃에서 8 내지 12시간 동안 중합 반응을 진행하였다. 반응기를 냉각한 후, 중합 반응물을 취출하고 여과하였다. 여과된 케이크를 NMP 2,880 g을 사용하여 추가로 세정하고, NMP를 함유하는 케이크에 이온 교환수 10 L를 가한 후 이를 오토클레이브에서 200℃에서 10분 동안 교반한 다음, 추가로 여과하였다. 최종 여과된 케이크를 130℃에서 3시간 동안 건조하여, 제2 폴리아릴렌 설파이드 수지로서 PPS b를 제조하였다.
3. 후가공된 제1 폴리아릴렌 설파이드 수지
제조예 c1: PPS c1의 제조
제조예 a1에 따라 제조된 제1 폴리아릴렌 설파이드 수지(PPS a1) 99.7 중량부(1,496 g)와 상용화제로서 2,2'-디티오디벤조산(시그마알드리치-43761, 순도 95.0% 이상) 0.3 중량부(4.5 g)를 2축 혼련 압출기에 투입한 후 300℃의 온도에서 용융 혼합(melt blending)을 수행하였다. 용융 혼합된 폴리아릴렌 설파이드 수지를 소형 스트랜드 커터기를 사용해 펠렛 형태로 가공하여, 후가공된 제1 폴리아릴렌 설파이드 수지로서 PPS c1을 제조하였다.
제조예 c2: PPS c2의 제조
상용화제로서 2,2'-디티오디벤조산 0.3 중량부 대신에 4,4'-디티오디아닐린(시그마알드리치-369462, 순도 98% 이상) 0.3 중량부를 사용한 것 이외에는, 제조예 c1과 동일하게 수행하여, 후가공된 제1 폴리아릴렌 설파이드 수지로서 PPS c2를 제조하였다.
제조예 c3: PPS c3의 제조
상용화제로서 2,2'-디티오디벤조산 0.3 중량부 대신에 비스(3-하이드록시페닐) 디설파이드(TCI(도쿄케미칼)-B3149, 순도 97.0% 이상(GC)) 0.3 중량부를 사용한 것 이외에는, 제조예 c1과 동일하게 수행하여, 후가공된 제1 폴리아릴렌 설파이드 수지로서 PPS c3을 제조하였다.
제조예 c4: PPS c4의 제조
상용화제로서 2,2'-디티오디벤조산 0.3 중량부 대신에 비스(4-하이드록시페닐) 디설파이드(TCI(도쿄케미칼)-B3827, 순도 98.0% 이상(GC)) 0.3 중량부를 사용한 것 이외에는, 제조예 c1과 동일하게 수행하여, 후가공된 제1 폴리아릴렌 설파이드 수지로서 PPS c4를 제조하였다.
제조예 c5: PPS c5의 제조
상용화제로서 2,2'-디티오디벤조산 0.3 중량부 대신에 3-(트리에톡시실릴)프로판-1-티올(Power chemical(중국업체) SiSiB-PC2310) 0.3 중량부 사용한 것 이외에는, 제조예 c1과 동일하게 수행하여, 후가공된 제1 폴리아릴렌 설파이드 수지로서 PPS c5를 제조하였다.
제조예 c6: PPS c6의 제조
상용화제로서 2,2'-디티오디벤조산 0.3 중량부 대신에 1,2-비스(3-(트리에톡시실릴)프로필)디설페인(Power chemical(중국업체) SiSiB-PC2200) 0.3 중량부를 사용한 것 이외에는, 제조예 c1과 동일하게 수행하여, 후가공된 제1 폴리아릴렌 설파이드 수지로서 PPS c6를 제조하였다.
4. 폴리아릴렌 설파이드 수지 조성물
상술한 제조예에 따라 제조된 제1 폴리아릴렌 설파이드 수지, 제2 폴리아릴렌 설파이드 수지 및 후가공된 제1 폴리아릴렌 설파이드 수지를 하기 표 1 내지 5에 기재된 중량비로 2축 혼련 압출기(도시바 기카이 가부시키가이샤제, TEM-35B)에서 300℃에서 용융 혼련하고, 이를 소형 스트랜드 커터기를 사용해 펠렛 형태로 가공하여, 폴리아릴렌 설파이드 수지 조성물(첨가제 혼합 전 조성물)을 제조하였다. 이후, 상기 폴리아릴렌 설파이드 수지 조성물을 유리 섬유, 엘라스토머 및 열 안정제와 함께 하기 표 1 내지 5에 기재된 중량비로 텀블러를 사용하여 균일하게 혼합하고, 2축 혼련 압출기(도시바 기카이 가부시키가이샤제, TEM-35B)에서 300℃에서 용융 혼련한 후, 이를 소형 스트랜드 커터기를 사용해 펠렛 형태로 가공하여, 폴리아릴렌 설파이드 수지 조성물(첨가제 혼합 후 조성물)을 제조하였다.
구체적으로, 제1 폴리아릴렌 설파이드 수지 조성물로서 PPS A1-1 내지 A2, 제2 폴리아릴렌 설파이드 수지 조성물로서 PPS B1 및 B2, 후가공된 제1 폴리아릴렌 설파이드 수지 조성물로서 PPS C1-1 내지 C2, 폴리아릴렌 설파이드 혼합 수지 조성물로서 PPS D1-1 내지 D2-5 및 후가공된 폴리아릴렌 설파이드 혼합 수지 조성물로서 PPS E1-1 내지 E2-4를 수득하였다.
Figure PCTKR2021006719-appb-T000001
Figure PCTKR2021006719-appb-T000002
Figure PCTKR2021006719-appb-T000003
Figure PCTKR2021006719-appb-T000004
Figure PCTKR2021006719-appb-T000005
상기 유리 섬유, 엘라스토머 및 열 안정제는 구체적으로 하기 표 6과 같다.
Figure PCTKR2021006719-appb-T000006
[실험예]
상기 제조예에 따라 제조된 폴리아릴렌 설파이드 수지 조성물 중에서, 첨가제 혼합 전 조성물에 대하여, 융점, 결정화 온도, 용융점도, 비선형 지수, 분자량, 분지지수, 디설파이드 결합 분율, 아웃가스량 및 요오드 함량을 측정/도출하였으며, 첨가제 혼합 후 조성물에 대하여, 아웃가스량, 캐비티 밸런스, 인장강도, 인장신율 및 기밀성을 하기 방법으로 측정/평가하여, 하기 표 7 내지 13에 나타내었다.
(1) 융점(Tm) 및 결정화 온도(Tc)
TA instrument社의 Q20 model 시차주사 열량분석기(differential scanning calorimeter; DSC)를 이용하여 30℃에서 320℃까지 10℃/min의 속도로 승온하고, 10℃/min의 속도로 30℃까지 냉각한 후에, 다시 30℃에서 320℃까지 10℃/min의 속도로 승온하면서 융점 및 결정화 온도가 측정되었다.
(2) 용융점도(melt viscosity; MV) 및 비선형 지수
용융점도는, 회전 원판 점도계(rotating disk viscometer)로, 300℃에서 frequency sweep 방법으로 0.6 내지 500 rad/s의 각 진동수 범위에서 점도를 측정하였을 때, 1.84 rad/s의 각 진동수 조건에서의 점도로 정의되었다.
비선형 지수는 하기 수학식 2를 통해 계산되었다.
[수학식 2]
비선형 지수 = 1 - (17.3 s-1의 전단 속도일 때의 용융점도) / (3.22 s-1의 전단 속도일 때의 용융점도).
(3) 수 평균 분자량(Mn), 중량 평균 분자량(Mw) 및 피크 정점 분자량(Mp)
폴리아릴렌 설파이드 수지 조성물의 수 평균 분자량, 중량 평균 분자량, 피크 정점 분자량은 겔 침투 크로마토그래피로 하기 측정 조건에서 측정되었다. 모든 분자량 측정에서는 6종류의 단분산 폴리스티렌을 교정에 사용하였다.
[겔 침투 크로마토그래피 측정 조건]
장치: Agilent PL-220
칼럼: Agilent, PLgel pore size 105Å + 104Å + 500Å + 50Å(4개 칼럼)
칼럼 온도: 210℃
용매: 1-클로로나프탈렌
측정 방법: 3중 시스템 검출기(RI, viscometer, light scatter 15°와 90°)
(4) 분지지수(branch ratio; α)
분지지수는, 상기 3중 시스템 검출기로부터 측정되는 점도를, 하기 수학식 3의 마크 호윙크 식(Mark-Howink equation)에 적용하여 계산되는 α값으로 정의되었다. 마크 호윙크식은 고분자의 분자량과 고유점도의 관계식이며, 분지지수(α)는 고분자의 분지 정도를 나타낸다. 즉, α가 1에 가까울수록 고분자가 선형이며, 0에 가까울수록 고분자가 분지형임을 나타낸다.
[수학식 3]
[η] = KMα
상기 식에서, 상기 η은 고유점도, M은 중량 평균 분자량, K는 상수이다.
(5) 디설파이드 결합(-S-S-) 분율
디설파이드의 결합 분율은 하기 수학식 1을 통해 계산되었다.
[수학식 1]
디설파이드 결합 분율(중량%) = {(원소 분석(elemental analysis)으로 검출된 황의 총 중량) - (폴리아릴렌 설파이드 내의 황의 이론 중량)} / (폴리아릴렌 설파이드 내의 황의 이론 중량)
(6) 아웃가스량
첨가제 혼합 전 조성물: 폴리아릴렌설파이드 수지 조성물의 소정량의 샘플을 330℃에서 20분 동안 가열하여 발생하는 가스의 양을 가스 크로마토그래프(GC) 질량 분석 장치를 사용하여 중량%로 정량하였다.
첨가제 혼합 후 조성물: 폴리아릴렌설파이드 수지 조성물의 소정량의 샘플을 325℃에서 15분 동안 가열하여 발생하는 가스의 양을 가스 크로마토그래프(GC) 질량 분석 장치를 사용하여 중량%로 정량하였다.
(7) 요오드 함량
폴리아릴렌 설파이드 수지 조성물의 요오드 함량은, IC(AQF) Thermo Scientific社, ICS-2500(Mitsubishi社 AQF-100)를 사용하여 이온크로마토그램(ion chromatograph; IC)으로 측정하였다.
(8) 캐비티 밸런스
폴리아릴렌 설파이드 수지 조성물을, 40개의 캐비티를 갖는 와셔 금형을 사용하여 1차 스풀에 가장 가까운 위치의 캐비티(C1)가 완전히 충전되는 최저한의 성형 조건에서 사출 성형하였다. 성형 조건은 75톤 성형기, 실린더 온도 320℃, 금형 온도 140℃, 보압 없음으로 설정하였다. 캐비티(C1)와 같은 러너에 있는 캐비티 중에서, 1차 스풀로부터 가장 먼 캐비티(C10)의 충전도(중량%)를, 캐비티(C1)의 성형품에 대한 캐비티(C10)의 성형품의 중량비로 계산하였다. 캐비티(C10)의 충전도가 높을수록 캐비티 밸런스가 우수하다고 할 수 있으므로, 충전도를 기준으로 각 폴리아릴렌 설파이드 수지 조성물의 캐비티 밸런스를 아래 기준으로 평가하였다.
AA: 90중량% 이상
A: 80중량% 이상 90중량% 미만
B: 70중량% 이상 80중량% 미만
C: 60중량% 이상 70중량% 미만
D: 60중량% 미만
(9) 인장강도 및 인장신율
폴리아릴렌 설파이드 수지 조성물의 인장강도 및 인장신율은 ISO 527-2법에 따라 Zwick社 Z010을 사용하여 측정하였다.
(10) 기밀성
폴리아릴렌 설파이드 수지 조성물을 8 mm(길이) * 8 mm(너비) * 10 mm(두께)의 상자형 성형품으로 가공하고, 상기 성형품 내부에 전해액을 주입한 후, 압축 응력 완화 시험에서 사용하는 8 mm(길이) * 8 mm(너비) * 3 mm(두께)의 평판으로 일정 응력(10% 변형 하)으로 밀봉한 기밀 시험용 샘플을 제조하였다. 여기서 전해액은 LiPF6가 1 mol/L의 농도로 에틸렌카보네이트 및 디메틸카보네이트 혼합 용매(부피비 1:1)에 용해된 용액이다. 기밀 시험용 샘플을 60℃의 건열 하에서 100시간 방치해, 전해액의 누설 정도에 대하여 확인하였으며, 그 결과를 아래 기준으로 평가하였다.
○: 100시간 후에 전해액의 누설이 발생하지 않음
X: 100시간 후에 전해액의 누설이 발생함
후가공된 제1 폴리아릴렌 설파이드 수지 조성물
Figure PCTKR2021006719-appb-T000007
상기 표에서 볼 수 있듯이, 상용화제로 후가공된 제1 폴리아릴렌 설파이드 수지 및 첨가제를 포함하는 PPS C1-1 내지 C1-9는, 양호한 아웃가스량을 유지하면서도, 상용화제로 후가공되지 않은 제1 폴리아릴렌 설파이드 수지 및 첨가제를 포함하는 PPS A1-1 및 화학식 4의 화합물을 중합금지제로 사용하여 제조된 제1 폴리아릴렌 설파이드 수지 및 첨가제를 포함하는 A1-2에 비해 캐비티 밸런스, 인장강도, 인장신율 및 기밀성이 모두 우수함을 확인할 수 있었다.
Figure PCTKR2021006719-appb-T000008
상기 표에서 볼 수 있듯이, 상용화제로 후가공된 제1 폴리아릴렌 설파이드 수지 및 첨가제를 포함하는 PPS C2는, 양호한 아웃가스량을 유지하면서도, 상용화제로 후가공되지 않은 제1 폴리아릴렌 설파이드 수지 및 첨가제를 포함하는 PPS A2에 비해 캐비티 밸런스, 인장강도, 인장신율 및 기밀성이 모두 우수함을 확인할 수 있었다.
폴리아릴렌 설파이드 혼합 수지 조성물
Figure PCTKR2021006719-appb-T000009
상기 표에서 볼 수 있듯이, 제1 폴리아릴렌 설파이드 수지, 제2 폴리아릴렌 설파이드 수지 및 첨가제를 포함하는 PPS D1-1 내지 D1-3 및 D1-6 내지 D1-8은, 제1 폴리아릴렌 설파이드 수지 및 첨가제를 포함하는 PPS A1-1에 비해, 캐비티 밸런스, 인장강도, 인장신율 및 기밀성이 우수하며, 제2 폴리아릴렌 설파이드 수지 및 첨가제를 포함하는 PPS B1에 비해 아웃가스량, 캐비티 밸런스 및 인장신율이 우수함을 확인할 수 있었다.
다만, 첨가제로서 엘라스토머를 함께 포함하는 PPS D1-7 및 D1-8은 PPS D1-1 내지 PPS D1-6에 비해 인장강도가 다소 낮았으나, 여전히 PPS A1-1에 비해서는 높고, PPS A1-1 및 PPS B1에 비해 인장신율이 현저히 높았다.
더욱이, PPS D1-1 내지 D1-3 및 D1-6 내지 D1-8은, 제1 폴리아릴렌 설파이드 수지 및 제2 폴리아릴렌 설파이드 수지의 총 중량을 기준으로 제2 폴리아릴렌 설파이드 수지의 함량이 30중량% 초과인 PPS D1-4 및 D1-5에 비해 아웃가스량, 캐비티 밸런스 및 인장신율이 현저히 우수함을 확인할 수 있었다.
Figure PCTKR2021006719-appb-T000010
상기 표에서 볼 수 있듯이, 제1 폴리아릴렌 설파이드 수지, 제2 폴리아릴렌 설파이드 수지 및 첨가제를 포함하는 PPS D2-1 내지 D2-3 및 D2-5는, 제1 폴리아릴렌 설파이드 수지 및 첨가제를 포함하는 PPS A2-1에 비해, 캐비티 밸런스, 인장강도, 인장신율 및 기밀성이 우수하며, 제2 폴리아릴렌 설파이드 수지 및 첨가제를 포함하는 PPS B2에 비해 아웃가스량, 캐비티 밸런스 및 인장신율이 우수함을 확인할 수 있었다.
더욱이, PPS D2-1 내지 D2-3 및 D2-5는 제1 폴리아릴렌 설파이드 수지 및 제2 폴리아릴렌 설파이드 수지의 총 중량을 기준으로 제2 폴리아릴렌 설파이드 수지의 함량이 30중량% 초과인 PPS D2-4에 비해 아웃가스량, 캐비티 밸런스 및 인장신율이 현저히 우수함을 확인할 수 있었다.
특히, 첨가제로서 열 안정제를 추가로 포함하는 PPS D2-1 내지 D2-3은 열 안정제를 포함하지 않는 PPS D2-5에 비해 인장강도 및 인장신율이 현저히 높았다.
후가공된 폴리아릴렌 설파이드 혼합 수지 조성물
Figure PCTKR2021006719-appb-T000011
Figure PCTKR2021006719-appb-T000012
상기 표에서 볼 수 있듯이, 후가공된 제1 폴리아릴렌 설파이드 수지, 제2 폴리아릴렌 설파이드 수지 및 첨가제를 포함하는 PPS E1-1 내지 E1-3 및 E1-6 내지 E1-13은, 제1 폴리아릴렌 설파이드 수지 및 첨가제를 포함하는 PPS A1-1에 비해 캐비티 밸런스, 인장강도, 인장신율 및 기밀성이 우수하며, 제2 폴리아릴렌 설파이드 수지 및 첨가제를 포함하는 PPS B1에 비해 아웃가스량, 캐비티 밸런스 및 인장신율이 우수하고, 제1 폴리아릴렌 설파이드 수지, 제2 폴리아릴렌 설파이드 수지 및 첨가제를 포함하는 PPS D1-2에 비해 캐비티 밸런스 및 인장신율이 우수함을 확인할 수 있었다.
다만, 첨가제로서 엘라스토머를 함께 포함하는 PPS E1-7 내지 E1-13은 PPS E1-1 내지 PPS E1-6에 비해 인장강도가 다소 낮았으나, 여전히 PPS A1-1에 비해서는 높고, PPS A1-1, PPS B1 및 PPS D1-2에 비해 인장신율이 현저히 높았다.
더욱이, PPS E1-1 내지 E1-3 및 E1-6 내지 E1-13은 제1 폴리아릴렌 설파이드 수지 및 제2 폴리아릴렌 설파이드 수지의 총 중량을 기준으로 제2 폴리아릴렌 설파이드 수지의 함량이 30중량% 초과인 PPS E1-4 및 E1-5에 비해서도 아웃가스량, 캐배티 밸런스 및 인장신율이 우수함을 확인할 수 있었다.
Figure PCTKR2021006719-appb-T000013
상기 표에서 볼 수 있듯이, 후가공된 제1 폴리아릴렌 설파이드 수지, 제2 폴리아릴렌 설파이드 수지 및 첨가제를 포함하는 PPS E2-1 내지 E2-3은, 제1 폴리아릴렌 설파이드 수지 및 첨가제를 포함하는 PPS A2에 비해 캐비티 밸런스, 인장강도, 인장신율 및 기밀성이 우수하며, 제2 폴리아릴렌 설파이드 수지 및 첨가제를 포함하는 PPS B2에 비해 아웃가스량, 캐비티 밸런스, 인장강도 및 인장신율이 우수하고, 제1 폴리아릴렌 설파이드 수지, 제2 폴리아릴렌 설파이드 수지 및 첨가제를 포함하는 PPS D2-2에 비해 캐비티 밸런스 및 인장신율이 우수함을 확인할 수 있었다.
더욱이, PPS E2-1 내지 E2-3은 제1 폴리아릴렌 설파이드 수지 및 제2 폴리아릴렌 설파이드 수지의 총 중량을 기준으로 제2 폴리아릴렌 설파이드 수지의 함량이 30중량% 초과인 PPS E2-4에 비해서도 아웃가스량, 캐배티 밸런스, 인장강도 및 인장신율이 우수함을 확인할 수 있었다.

Claims (17)

  1. 디요오도 방향족 화합물, 제1 황 화합물 및 중합금지제가 용융 중합된 제1 폴리아릴렌 설파이드 수지에 상용화제로부터 유도된 말단기가 도입된 후가공된 제1 폴리아릴렌 설파이드 수지; 및
    유리 섬유, 엘라스토머 및 열 안정제로 구성된 군에서 선택되는 적어도 하나의 첨가제를 포함하는, 개스킷용 수지 조성물.
  2. 제 1 항에 있어서,
    상기 첨가제는 상기 유리 섬유를 포함하거나, 상기 엘라스토머 및 상기 열 안정제를 포함하는, 개스킷용 수지 조성물.
  3. 제 1 항에 있어서,
    상기 후가공된 제1 폴리아릴렌 설파이드 수지의 아웃가스량이 0.001 내지 0.20중량%이거나,
    상기 후가공된 제1 폴리아릴렌 설파이드 수지의 디설파이드 결합 분율이 0.1 내지 2.0중량%인, 개스킷용 수지 조성물.
  4. 제 1 항에 있어서,
    상기 상용화제는 카르복실기, 카르복실레이트기, 히드록시기, 아미노기, 아마이드기, 실란기, 설파이드기 및 설포네이트기로 구성된 군에서 선택된 적어도 하나의 관능기를 포함하는, 개스킷용 수지 조성물.
  5. 제 1 항에 있어서,
    상기 상용화제는 하기 화학식 4 내지 6 중 하나로 표시되는 화합물인, 개스킷용 수지 조성물:
    [화학식 4]
    Figure PCTKR2021006719-appb-I000010
    상기 식에서,
    Y1 및 Y2는 각각 독립적으로 수소기, 할로기, -OB1, -SB2, -COOB3, -NB4B5, -SO3B6 및 -NHCOB7로 구성된 군에서 선택되고,
    B1 내지 B7은 각각 독립적으로 수소기, 나트륨 양이온, 리튬 양이온, 치환 또는 비치환된 탄소 원자 수 1 내지 3의 알킬기 및 치환 또는 비치환된 페닐기로 구성된 군에서 선택되며,
    Z1' 내지 Z4'는 각각 독립적으로 수소기, 치환 또는 비치환된 탄소 원자 수 1 또는 2의 알킬기 및 치환 또는 비치환된 탄소 원자 수 1 또는 2의 알케닐기로 구성된 군에서 선택되고,
    p1 및 p2는 각각 독립적으로 1 내지 3의 정수이며,
    Z1' 및 Z2'가 탄소 원자 수 2인 알케닐기이며 이웃한 두 탄소 원자에 결합되는 경우, 서로 연결되어 벤젠고리를 형성할 수 있고,
    Z3' 및 Z4'가 탄소 원자 수 2인 알케닐기이며 이웃한 두 탄소 원자에 결합되는 경우, 서로 연결되어 벤젠고리를 형성할 수 있으며,
    상기 Z1' 내지 Z4'의 치환된 탄소 원자 수 1 또는 2의 알킬기 또는 치환된 탄소 원자 수 1 또는 2의 알케닐기는 탄소 원자 수 1 또는 2의 알킬기 또는 페닐기의 치환기를 가지고,
    상기 B1 내지 B7의 치환된 탄소 원자 수 1 내지 3의 알킬기 또는 치환된 페닐기는 탄소 원자 수 1 또는 2의 알킬기 또는 페닐기의 치환기를 가지며,
    단, Y1 및 Y2 중 적어도 하나는 -OB1, -SB2, -COOB3, -NB4B5, -SO3B6 및 -NHCOB7로 구성된 군에서 선택되고;
    [화학식 5]
    Figure PCTKR2021006719-appb-I000011
    상기 식에서,
    Y3 내지 Y6는 각각 독립적으로 수소기, 할로기, -OB8, -SB9, -COOB10, -NB11B12, -SO3B13 및 -NHCOB14로 구성된 군에서 선택되고,
    B8 내지 B14는 각각 독립적으로 수소기, 나트륨 양이온, 리튬 양이온 및 탄소 원자 수 1 내지 3의 알킬기로 구성된 군에서 선택되며,
    R1' 내지 R4'는 각각 독립적으로 탄소 원자 수 1 내지 5의 알킬렌기 및 알콕시기로 구성된 군에서 선택되고,
    단, Y3 내지 Y6 중 적어도 하나는 B9가 수소기인 -SB9이며;
    [화학식 6]
    Figure PCTKR2021006719-appb-I000012
    상기 식에서,
    Y7 내지 Y12는 각각 독립적으로 수소기, 할로기, -OB15, -SB16, -COOB17, -NB18B19, -SO3B20 및 -NHCOB21로 구성된 군에서 선택되고,
    B15 내지 B21은 각각 독립적으로 수소기, 나트륨 양이온, 리튬 양이온 및 탄소 원자 수 1 내지 5의 알킬기로 구성된 군에서 선택되며,
    R5' 및 R6'은 각각 독립적으로 탄소 원자 수 1 내지 5의 알킬렌기이다.
  6. 제 1 항에 있어서,
    상기 제1 폴리아릴렌 설파이드 수지가 280 내지 330℃의 온도에서 상기 상용화제를 사용하여 후가공된, 개스킷용 수지 조성물.
  7. 디요오도 방향족 화합물, 제1 황 화합물 및 중합금지제가 용융 중합된 제1 폴리아릴렌 설파이드 수지;
    디할로 방향족 화합물 및 제2 황 화합물이 용액 중합된 제2 폴리아릴렌 설파이드 수지; 및
    유리 섬유, 엘라스토머 및 열 안정제로 구성된 군에서 선택되는 적어도 하나의 첨가제를 포함하고,
    상기 제2 폴리아릴렌 설파이드 수지는 상기 제1 폴리아릴렌 설파이드 수지 및 상기 제2 폴리아릴렌 설파이드 수지의 총 중량을 기준으로 0.0001 내지 30중량%로 포함되는, 개스킷용 수지 조성물.
  8. 제 7 항에 있어서,
    상기 제1 폴리아릴렌 설파이드 수지 및 상기 제2 폴리아릴렌 설파이드 수지로 구성된 폴리아릴렌 설파이드 혼합 수지가 0.01 내지 1.40중량%의 아웃가스량과 0.1 내지 2.0중량%의 디설파이드 결합 분율을 갖는, 개스킷용 수지 조성물.
  9. 제 7 항에 있어서,
    상기 제1 폴리아릴렌 설파이드 수지 및 상기 제2 폴리아릴렌 설파이드 수지가 280 내지 330℃에서 용융 혼합된, 개스킷용 수지 조성물.
  10. 제 7 항에 있어서,
    상기 수지 조성물의 총 중량을 기준으로,
    상기 제1 폴리아릴렌 설파이드 수지를 1 내지 89중량%로 포함하고,
    상기 제2 폴리아릴렌 설파이드 수지를 1 내지 38중량%로 포함하며,
    상기 유리 섬유를 10 내지 70중량%로 포함하는, 개스킷용 수지 조성물.
  11. 제 7 항에 있어서,
    상기 수지 조성물의 총 중량을 기준으로,
    상기 제1 폴리아릴렌 설파이드 수지를 1 내지 98중량%로 포함하고,
    상기 제2 폴리아릴렌 설파이드 수지를 1 내지 42중량%로 포함하며,
    상기 엘라스토머를 0.1 내지 20중량%로 포함하고,
    상기 열 안정제를 0.01 내지 5중량%로 포함하는, 개스킷용 수지 조성물.
  12. 디요오도 방향족 화합물, 제1 황 화합물 및 중합금지제가 용융 중합된 제1 폴리아릴렌 설파이드 수지에 상용화제로부터 유도된 말단기가 도입된, 후가공된 제1 폴리아릴렌 설파이드 수지;
    디할로 방향족 화합물 및 제2 황 화합물이 용액 중합된 제2 폴리아릴렌 설파이드 수지; 및
    유리 섬유, 엘라스토머 및 열 안정제로 구성된 군에서 선택되는 적어도 하나의 첨가제를 포함하고,
    상기 제2 폴리아릴렌 설파이드 수지는 상기 후가공된 제1 폴리아릴렌 설파이드 수지 및 상기 제2 폴리아릴렌 설파이드 수지의 총 중량을 기준으로 0.0001 내지 30중량%로 포함되는, 개스킷용 수지 조성물.
  13. 제 12 항에 있어서,
    상기 후가공된 제1 폴리아릴렌 설파이드 수지 및 상기 제2 폴리아릴렌 설파이드 수지로 구성된 후가공된 폴리아릴렌 설파이드 혼합 수지가 0.01 내지 1.40중량%의 아웃가스량과 0.1 내지 2.0중량%의 디설파이드 결합 분율을 갖는, 개스킷용 수지 조성물.
  14. 제 12 항에 있어서,
    상기 수지 조성물의 총 중량을 기준으로,
    상기 후가공된 제1 폴리아릴렌 설파이드 수지를 1 내지 89중량%로 포함하고,
    상기 제2 폴리아릴렌 설파이드 수지를 1 내지 38중량%로 포함하며,
    상기 유리 섬유를 10 내지 70중량%로 포함하는, 개스킷용 수지 조성물.
  15. 제 12 항에 있어서,
    상기 수지 조성물의 총 중량을 기준으로,
    상기 후가공된 제1 폴리아릴렌 설파이드 수지를 1 내지 98중량%로 포함하고,
    상기 제2 폴리아릴렌 설파이드 수지를 1 내지 42중량%로 포함하며,
    상기 엘라스토머를 0.1 내지 20중량%로 포함하고,
    상기 열 안정제를 0.01 내지 5중량%로 포함하는, 개스킷용 수지 조성물.
  16. 제 1 항 내지 제 15 항 중 어느 한 항에 따른 수지 조성물로부터 얻어진 성형품을 포함하는, 이차전지용 개스킷.
  17. 개구가 구비된 외장체;
    상기 외장체의 개구를 밀봉하는 밀봉체;
    상기 외장체의 내부에 구비된 양극판, 음극판 및 전해액;
    상기 양극판 및 상기 음극판 사이에 구비된 세퍼레이터;
    상기 양극판과 전기적으로 접속된 양극 단자;
    상기 음극판과 전기적으로 접속된 음극 단자;
    상기 양극 단자 또는 음극 단자와 접촉하는 제 16 항에 따른 이차전지용 개스킷을 포함하는, 이차전지.
PCT/KR2021/006719 2020-06-09 2021-05-31 개스킷용 수지 조성물 및 이를 포함하는 이차전지용 개스킷 WO2021251666A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2020-0069570 2020-06-09
KR1020200069570A KR20210152726A (ko) 2020-06-09 2020-06-09 개스킷용 수지 조성물 및 이를 포함하는 이차전지용 개스킷

Publications (1)

Publication Number Publication Date
WO2021251666A1 true WO2021251666A1 (ko) 2021-12-16

Family

ID=78846206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/006719 WO2021251666A1 (ko) 2020-06-09 2021-05-31 개스킷용 수지 조성물 및 이를 포함하는 이차전지용 개스킷

Country Status (3)

Country Link
KR (1) KR20210152726A (ko)
TW (1) TW202204480A (ko)
WO (1) WO2021251666A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0129463B1 (ko) * 1988-07-25 1998-04-07 알. 더블유. 보우르니, 주니어 코폴리(아릴렌 설파이드)와 폴리(아릴렌 설파이드)의 혼합물
KR20160049537A (ko) * 2013-08-30 2016-05-09 디아이씨 가부시끼가이샤 개스킷용 수지 조성물, 그 제조 방법 및 이차전지용 개스킷
JP6228134B2 (ja) * 2012-12-27 2017-11-08 ポリプラスチックス株式会社 ガスケット用樹脂組成物及び二次電池用ガスケット
JP2018035230A (ja) * 2016-08-30 2018-03-08 Dic株式会社 ポリアリーレンスルフィド樹脂組成物、その成形品およびそれらの製造方法
KR20200002730A (ko) * 2012-08-07 2020-01-08 에스케이케미칼 주식회사 폴리아릴렌 설파이드 수지 및 그의 제조 방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2513188A (en) 1948-09-10 1950-06-27 Macallum Alexander Douglas Mixed phenylene sulfide resins
US5656392A (en) 1995-03-20 1997-08-12 Matsushita Electric Industrial Co., Ltd. Organic electrolyte batteries

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR0129463B1 (ko) * 1988-07-25 1998-04-07 알. 더블유. 보우르니, 주니어 코폴리(아릴렌 설파이드)와 폴리(아릴렌 설파이드)의 혼합물
KR20200002730A (ko) * 2012-08-07 2020-01-08 에스케이케미칼 주식회사 폴리아릴렌 설파이드 수지 및 그의 제조 방법
JP6228134B2 (ja) * 2012-12-27 2017-11-08 ポリプラスチックス株式会社 ガスケット用樹脂組成物及び二次電池用ガスケット
KR20160049537A (ko) * 2013-08-30 2016-05-09 디아이씨 가부시끼가이샤 개스킷용 수지 조성물, 그 제조 방법 및 이차전지용 개스킷
JP2018035230A (ja) * 2016-08-30 2018-03-08 Dic株式会社 ポリアリーレンスルフィド樹脂組成物、その成形品およびそれらの製造方法

Also Published As

Publication number Publication date
KR20210152726A (ko) 2021-12-16
TW202204480A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
WO2018105907A1 (ko) 내열성과 유동성이 우수한 폴리카보네이트 수지 조성물 및 이를 포함하는 성형품
WO2017057847A1 (ko) 고분자 조성물, 고분자 조성물의 제조 방법, 전자기기 및 전자기기의 제조 방법
WO2015046956A1 (ko) 변성 폴리페닐렌 옥사이드 및 이를 이용하는 동박 적층판
WO2017061826A1 (ko) 방담제
WO2021251666A1 (ko) 개스킷용 수지 조성물 및 이를 포함하는 이차전지용 개스킷
WO2017191914A2 (ko) 아미노실란계 화합물의 신규 제조방법
WO2021230590A1 (ko) 워터섹션 부품용 수지 조성물 및 이를 포함하는 워터섹션 부품
WO2021261823A1 (ko) 전기자동차 부품용 수지 조성물 및 이를 포함하는 전기자동차 부품
WO2021177729A1 (ko) 폴리아릴렌 설파이드 수지 조성물 및 이의 제조방법
WO2021167294A1 (ko) 폴리아릴렌 설파이드 수지 및 이의 제조방법
WO2020159086A1 (ko) 폴리아미드 수지 필름 및 이를 이용한 수지 적층체
WO2020009481A1 (ko) 폴리아릴렌 설파이드의 제조 방법
WO2023055099A1 (ko) 열가소성 수지 및 이로부터 제조된 성형품
WO2022092635A1 (ko) 폴리아릴렌 설파이드 수지 및 이의 제조방법
WO2019190289A1 (ko) 블록 공중합체 조성물
WO2020184972A1 (ko) 폴리이미드 공중합체, 폴리이미드 공중합체의 제조방법, 이를 이용한 감광성 수지 조성물, 감광성 수지 필름 및 광학 장치
WO2022092716A1 (ko) 폴리아릴렌 설파이드 멀티 필라멘트 섬유
WO2020060262A1 (ko) 프탈로니트릴 올리고머를 포함하는 경화성 수지 조성물 및 이의 프리폴리머
WO2016182215A1 (ko) 금속과의 접착성이 우수한 폴리아릴렌 설파이드 조성물
WO2016122144A1 (ko) 변성 이소부틸렌-이소프렌 고무, 이의 제조방법 및 경화물
WO2023003238A1 (ko) 폴리아릴렌 설파이드 모노필라멘트 섬유
WO2022055235A1 (ko) 폴리이미드계 수지 필름 및 이를 이용한 디스플레이 장치용 기판, 및 광학 장치
WO2022010311A1 (ko) 폴리아릴렌 설파이드 공중합체, 이의 제조방법, 및 이로부터 제조된 성형품
WO2023013941A1 (ko) 폴리아릴렌 설파이드 스테이플 섬유 및 이의 제조방법
WO2021157878A1 (ko) 폴리아릴렌 설파이드 수지의 중합금지제

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822829

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822829

Country of ref document: EP

Kind code of ref document: A1