WO2021249921A1 - Nanopartikel als bioresorbierbare und röntgenopake wirkstoffträger für die therapie von krebserkrankungen der bauchspeicheldrüse - Google Patents

Nanopartikel als bioresorbierbare und röntgenopake wirkstoffträger für die therapie von krebserkrankungen der bauchspeicheldrüse Download PDF

Info

Publication number
WO2021249921A1
WO2021249921A1 PCT/EP2021/065133 EP2021065133W WO2021249921A1 WO 2021249921 A1 WO2021249921 A1 WO 2021249921A1 EP 2021065133 W EP2021065133 W EP 2021065133W WO 2021249921 A1 WO2021249921 A1 WO 2021249921A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanoparticles
molecules
coating
group
active
Prior art date
Application number
PCT/EP2021/065133
Other languages
English (en)
French (fr)
Inventor
Christian Redlich
Peter Quadbeck
Georg Pöhle
Jens-Peter Kühn
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Technische Universität Dresden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V., Technische Universität Dresden filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO2021249921A1 publication Critical patent/WO2021249921A1/de

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/513Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6927Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores
    • A61K47/6929Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being a solid microparticle having no hollow or gas-filled cores the form being a nanoparticle, e.g. an immuno-nanoparticle
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K51/00Preparations containing radioactive substances for use in therapy or testing in vivo
    • A61K51/12Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules
    • A61K51/1241Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules particles, powders, lyophilizates, adsorbates, e.g. polymers or resins for adsorption or ion-exchange resins
    • A61K51/1244Preparations containing radioactive substances for use in therapy or testing in vivo characterised by a special physical form, e.g. emulsion, microcapsules, liposomes, characterized by a special physical form, e.g. emulsions, dispersions, microcapsules particles, powders, lyophilizates, adsorbates, e.g. polymers or resins for adsorption or ion-exchange resins microparticles or nanoparticles, e.g. polymeric nanoparticles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5169Proteins, e.g. albumin, gelatin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/18Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes

Definitions

  • pancreatic cancer is often only detected in the later stages, since in many cases no symptoms or unspecific symptoms occur in the early stages. Due to the rapid growth and aggressive metastasis (especially to the liver, lymph nodes and lungs), the tumors are in a diagnosis later stages i. A. inoperable and difficult to treat with chemotherapy or radio therapy. From a therapeutic point of view, the limited effectiveness of systemically administered drugs (eg gemcitabine, erlotinib or fluorouracil) is problematic. Due to the short circulation time
  • nanoparticulate active ingredient carriers makes it possible to achieve a higher active ingredient concentration in the tumor tissue.
  • Active ingredients bound to or encapsulated in nanocarriers have a longer circulation time and / or a more favorable release profile than unbound active ingredients.
  • Particles as nanocarriers with a diameter of less than BO nm can also penetrate the desmoplastic stroma that occurs in ductal adenocarcinomas.
  • nanocarriers can be functionalized with target molecules. These enable the targeted transport of active substances into the tumor tissue, for example by binding to receptors that are formed to a greater extent on the cell surface of tumor cells. Drug delivery specifically targeting abnormal cells also reduces side effects caused by toxic effects on healthy cells.
  • this object is achieved with bioresorbable nanoparticles formed from Refraktärme tall.
  • the nanoparticles are formed according to claim 1.
  • the nanoparticles according to the invention are intended as bioresorbable and X-ray opaque active substance carriers for the therapy of cancer diseases of the pancreas.
  • a material is designated as bio-absorbable if it is degradable in the body and the degradation products are either excreted directly from the body or used in the course of regular metabolic processes or converted into forms that can be used by the body.
  • An implant or part of an implant that is formed from a bioabsorbable material loses its original shape over time after implantation. During the breakdown, the concentrations of the elements contained in the material in the body can exceed normal values. After the material has completely broken down at the site of implantation, these concentrations return to normal values.
  • the nanoparticles consist either of pure tungsten or an alloy in which, in addition to at least 38% by mass of tungsten, at least one other chemical element selected from molybdenum (Mo), rhenium (Re), tantalum (Ta), niobium ( Nb) and hafnium (Hf).
  • Mo molybdenum
  • Re rhenium
  • Ta tantalum
  • Nb niobium
  • Hf hafnium
  • the nanoparticles should have a maximum particle size of 200 nm, which can be determined by means of dynamic light scattering.
  • the maximum particle size should advantageously be limited to 30 nm and the mean particle size should be 10 nm, which can be determined by means of dynamic light scattering.
  • a coating with a biocompatible and bioresorbable substance can be formed on the outer surface of the nanoparticles.
  • Bioactive substances are bound, preferably covalently, to the outer surface of the particles or a coating formed on the outer surface.
  • the bioactive substances include active ingredients with proven effectiveness against malignant tumor cells of ductal adenocarcinomas and / or PanNETs.
  • Target molecules aligned with the malignant tumor cells of the type may also be present.
  • nanoparticles made of tungsten are particularly suitable for the transport of active substances and their improved targeted release for a therapeutic effect.
  • Active ingredient carriers of this type decompose after fulfillment development of their function in the organism.
  • Excretion takes place renally, since the end product of the corrosion of tungsten under physiological conditions is the dissolved ion WO4 2 (tungstate).
  • tungsten is radio-opaque, which makes it possible to monitor biodistribution using X-ray-based imaging methods (e.g. computed tomography (CT)).
  • CT computed tomography
  • the invention also includes particles made of alloys (at least 38% by mass of tungsten and at least one further element selected from Mo, Ta, Nb, Re, Hf), which have the same special combination of bioresorbability and strong X-ray absorption.
  • a coating formed on the outer surface of the particles can be formed, for example, with a coating material selected from the group consisting of protein, carbohydrate and combinations thereof, particularly preferably with a coating material selected from the group consisting of human serum albumin, dextran, alginate and combination nen of this, be formed.
  • the coating can bring about an increase in the duration of the circulation of the nanoparticles in the bloodstream, so that the time interval until the nanoparticle is completely converted to its oxides, which are soluble under physiological conditions, is longer than in the uncoated state. In particular, a circulation time of at least 2 hours can be achieved.
  • the coating can improve the biocompatibility of the nanoparticles.
  • the coating can improve the dispersion stability of the nanoparticles.
  • the coating can delay the breakdown of the nanoparticles in the organism. The complete degradation of a coated nanoparticle should be achieved within a time interval of a maximum of 21 days after administration.
  • functional groups of the molecules from which the coating is built up can serve to create covalent bonds to linker molecules, which in turn are covalently linked to a bioactive substance.
  • the linker molecules should have at least two functional groups. Each of these groups can preferably be a carboxy group, an amino group, a sulphate group or a phosphate group.
  • Each of these groups can preferably be a carboxy group, an amino group, a sulphate group or a phosphate group.
  • linker molecules should be tailored to the available functional groups of the bioactive substances and the respective nanoparticle or the coating formed on the outer surface of the nanoparticle, in particular hydroxyl groups, carboxy groups and amino
  • Linker molecules of different chemical compositions can be used to connect the active ingredients and the target molecules.
  • linker molecules are used that contain at least two
  • carboxy groups in particular aliphatic dicarboxylic acids such as butanedioic acid (C 4 H 6 O 4 ) or pentanedioic acid (C 5 H 8 O 4 ). If there are hydroxyl groups on the surface of the nanoparticle or in the bioactive substance, a covalent bond (ester bond) is achieved in the course of a condensation reaction of a carboxyl group with a hydroxyl group.
  • linker molecules can be used which have at least one carboxy group and at least one amino group, in particular monoamides of aliphatic dicarboxylic acids such as 4-amino-4-oxobutanoic acid (C 4 H 7 NO 3 ) or amino acids such as b-alanine ( C 3 H 7 NO 2 )
  • e-aminocaproic acid C 6 H 13 NO 2
  • carboxy groups or amino groups are available on the surface of the nanoparticle or in the bioactive substance, a covalent bond (amide bond) can be obtained in the course of a condensation reaction of a carboxy group and an amino group.
  • linker molecules can be used which have at least one phosphate group by means of which a particle and a bioactive substance in the form of a phospho-diester bond can be covalently connected.
  • Exemplary active ingredients with proven effectiveness against malignant tumor cells of ductal adenocarcinomas and PanNETs are 5-fluorouracil, gemcitabine and erlotinib.
  • the active ingredients 5-fluorouracil and / or erlotinib are preferred.
  • the active ingredient particularly preferably contains either Erlotinib or a combination of 5-fluorouracil and Erlotinib, or the active ingredient consists of it.
  • a preferred target molecule for malignant cells of ductal adenocarcinomas is Erlotinib, which can bind to the Epidermal Growth Factor Receptor, which is increasingly developed on the surface of such cells. It is known that said cells can also be targeted by molecules that bind to the urokinase receptor (uPAR) or transmembrane proteins, such as. B. bind galectin-3 or CD47.
  • uPAR urokinase receptor
  • CD47 transmembrane proteins
  • Preferred target molecules for malignant cells from PanNETs are somatostatin or its analogues and derivatives (e.g. octreotide), since malignant cells from PanNETs in many cases develop somatostatin receptors to a particularly high degree.
  • the target molecules can also contain structural units such as DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid), DTPA (diethylenetriaminepentaacetic acid) and their derivatives, which cause the complexation of metallic ions, preferably of radionuclides.
  • DOTA 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid
  • DTPA diethylenetriaminepentaacetic acid
  • the use of such structural units opens up the possibility of combining chemotherapy and radiotherapy by adding radionuclides, such as. B.
  • DOTA-TATE (DOTA- (Tyr 3 ) -octreotate)
  • DOTA-TOC (DOTA (O) -Phe (l) - Tyr (3)) - octreotide
  • DOTA-LAN (DOTA- (D) betaNall-lanreotide).
  • the functionalized nanoparticles can be dispersed in a pharmaceutically acceptable carrier substance, for example phosphate-buffered saline solution.
  • a pharmaceutically acceptable carrier substance for example phosphate-buffered saline solution.
  • the administration can take place by injection or infusion, whereby the injection or infusion can take place either intravenously or intraarterially.
  • the administration can be in combination with active ingredients such.
  • B. the cyclic peptide iRGD which promote the penetration of nanoparticles into the tumor tissue.
  • the main advantage of the invention over the prior art be in the combination of the targeted active ingredient transport with the favorable bioresorbable and radiopaque properties of the tungsten-based carrier particles. This allows a passive release of active ingredients in the target tissue with subsequent faster and complete removal of the carrier material tungsten from the body.
  • Figure 1 shows in schematic form an example of an inventive
  • FIG. 2 shows, in schematic form, an example of one according to the invention
  • Nanoparticles with a coating are nanoparticles with a coating.
  • a suspension of tungsten nanoparticles is created by laser ablation from a solid target made of high-purity tungsten.
  • the ablation is carried out in the organic medium acetone.
  • the process parameters are chosen so that the mean value of the particle size distribution in the suspension, determined by dynamic light scattering, is around 10 nm.
  • Those tungsten nanoparticles which have a particle size of 10 ⁇ 1.5 nm are isolated from this suspension by ultracentrifugation. In a further centrifugation step, these separated nanoparticles 1 are separated from the organic medium.
  • nanoparticles 1 are used with the cytostatic 5-fluorouracil as an active Substance W and the somatostatin analog DOTA-TATE functionalized as target molecule T.
  • This is done by means of a first linker molecule L 1 from the group of aliphatic dicarboxylic acids, which has two carboxy groups as functional groups.
  • a COOH group By reacting a COOH group with the OH group on the outer surface of a tungsten particle, a cova lent bond between the nanoparticle and the linker molecule LI is achieved.
  • a covalent bond to one of the bioactive substances is produced by means of the second COOH group.
  • Both DOTA-TATE and 5-fluorouracil have the functional group required for this.
  • the biofunctionalized nanoparticles 1 are concentrated and isolated by high-performance liquid chromatography and nanofiltration. To increase the biocompatibility, the nanoparticles 1 are coated with human serum albumin in order to form a coating 2. This is done by incubation in a solution of albumin in ultrapure water. This step is in turn followed by a nanofiltration which, in addition to isolating the nanoparticles 1, also serves for sterilization. In order to enable storage, the biofunctionalized nanoparticles 1 are freeze-dried.
  • the functionalized nanoparticles 1 are redispersed in phosphate-buffered saline solution (137 mM / l NaCl, 2.7 mM / l KCl, 10 mM / l Na2HPC> 4, 1.8 mM / l KH2PO4). It is administered by intravenous infusion.
  • phosphate-buffered saline solution 137 mM / l NaCl, 2.7 mM / l KCl, 10 mM / l Na2HPC> 4, 1.8 mM / l KH2PO4
  • FIG. 1 shows a schematic representation of a biofunctionalized nanoparticle 1 according to the invention which is connected to active ingredient molecules W by means of the first linker molecules LI and to target molecules T by means of the second linker molecules L2.
  • the lines running between the nanoparticle 1 and the linker molecules LI or L2 and between the linker molecules LI or L2 and the molecules of the bioactive substances represent covalent bonds another execution.
  • a coating 2 is made of one on the nanoparticle 1 Bioresorbable and biocompatible substance formed.
  • the linker molecules LI and L2 are covalently linked to molecules of the coating 2 in this embodiment.

Abstract

Erfindungsgemäße Nanopartikel als bioresorbierbare und röntgenopake Wirkstoffträger für die Therapie von Krebserkrankungen der Bauchspeicheldrüse sind dadurch gekennzeichnet, dass sie aus Wolfram oder einer Legierung von mindestens 38 Masse‐% Wolfram und mindestens einem weiteren der Elemente Molybdän, Rhenium, Tantal, Niob und Hafnium bestehen. An der äußeren Oberfläche oder einer auf der äußeren Oberfläche ausgebildeten Beschichtung mit einer biodegradierbaren Substanz sind Moleküle eines Wirkstoffs mit nachgewiesener Effektivität gegen maligne Tumorzellen von duktalen Adenokarzinomen und/oder PanNETs gebunden, so dass die Bindung besagter Wirkstoffmoleküle (W) mittels ersten Linker‐Molekülen (L1) erfolgt, die sowohl mit den Wirkstoffmolekülen (W) als auch mit der Partikeloberfläche oder Beschichtung (2) kovalent verbunden sind.

Description

Nanopartikel als bioresorbierbare und röntgenopake Wirkstoffträger für die
Therapie von Krebserkrankungen der Bauchspeicheldrüse
Die Fortschritte in der Krebsforschung in den letzten Jahrzehnten haben zu wesentlichen Verbesserungen der Therapiemöglichkeiten und Überlebensra ten für viele Krebsarten geführt. Die Prognose für Bauchspeicheldrüsenkrebs (2016 etwa 18.400 Neuerkrankungen in Deutschland) ist hingegen noch im mer äußerst ungünstig. Die relative 5-Jahres-Überlebensrate liegt in Deutsch land bei etwa 9 %. Dies hat sowohl diagnostische als auch therapeutische Ur- Sachen. Bauchspeicheldrüsenkrebs wird oft erst in späteren Stadien erkannt, da im Frühstadium in vielen Fällen keine oder unspezifische Symptome auftre- ten. Aufgrund des schnellen Wachstums und aggressiver Metastasierung (v. a. in die Leber, die Lymphknoten und die Lunge) sind die Tumoren bei einer Di agnose in späteren Stadien i. A. inoperabel und auch mit Chemo- oder Radio- therapie schwer zu behandeln. Aus therapeutischer Sicht ist die eingeschränk te Effektivität systemisch verabreichter Medikamente (z. B. Gemcitabin, Erlo- tinib oder Fluorouracil) problematisch. Aufgrund der kurzen Zirkulationsdauer
der Wirkstoffe im Blutkreislauf werden therapeutisch wirksame Konzentratio nen im Tumorgewebe nicht zuverlässig erreicht. Im Fall der duktalen Adeno karzinome (90-95 % der Krebserkrankungen der Bauchspeicheldrüse) wird der Zutritt der Wirkstoffe zudem dadurch beeinträchtigt, dass die malignen Epithelzellen von desmoplastischem Stroma umgeben sind und dass die Tu moren abnormal verengte Blutgefäße aufweisen. Die Prognose für die selte neren neuroendokrinen Tumoren der Bauchspeicheldrüse (PanNETs; 1-2 % der Fälle) ist allgemein besser. Die Therapie ist dennoch aufgrund der gerin gen Ansprechrate auf systemisch verabreichte Medikamente herausfordernd.
Der Einsatz nanopartikulärer Wirkstoffträger ermöglicht es, im Tumorgewebe eine höhere Wirkstoffkonzentration zu erreichen. An Nanoträger gebundene oder in ihnen verkapselte Wirkstoffe weisen eine längere Zirkulationsdauer und/oder ein günstigeres Freisetzungsprofil als ungebundene Wirkstoffe auf. Partikel als Nanoträger mit einem Durchmesser von weniger als BO nm kön nen außerdem das in duktalen Adenokarzinomen auftretende desmoplasti- sche Stroma durchdringen. Zudem lassen sich Nanoträger mit Target- Molekülen funktionalisieren. Diese ermöglichen einen gezielten Wirk stofftransport ins Tumorgewebe, indem sie beispielsweise an Rezeptoren bin den, die an der Zelloberfläche von Tumorzellen in höherem Maße gebildet werden. Ein spezifisch auf abnormale Zellen abzielender Wirkstofftransport verringert auch Nebenwirkungen durch toxische Effekte auf gesunde Zellen.
Es ist daher Aufgabe der Erfindung, Möglichkeiten für eine Verbesserung der therapeutischen Wirkung bei der Behandlung von Bauchspeicheldrüsenkarzi nomen anzugeben.
Erfindungsgemäß wird diese Aufgabe mit bioresorbierbaren, aus Refraktärme tall gebildeten Nanopartikeln gelöst. Die Nanopartikel sind gemäß Anspruch 1 ausgebildet. Vorteilhafte Ausgestaltungen und Weiterbildungen der Erfindung können mit in abhängigen Ansprüchen bezeichneten Merkmalen realisiert werden.
Die erfindungsgemäßen Nanopartikel sind als bioresorbierbare und röntgen opake Wirkstoffträger für die Therapie von Krebserkrankungen der Bauch speicheldrüse vorgesehen. Im Sinne der Erfindung wird ein Material als bioresorbierbar bezeichnet, wenn es im Körper abbaubar ist und die Abbauprodukte entweder direkt aus dem Körper ausgeschieden werden oder im Zuge regulärer Stoffwechselprozesse verwendet bzw. in vom Körper verwendbare Formen umgewandelt werden. Ein Implantat oder ein Teil eines Implantats, das aus einem bioresorbierbaren Material gebildet ist, verliert nach der Implantation mit der Zeit seine ur sprüngliche Form. Während des Abbaus können die Konzentrationen der im Material enthaltenen Elemente im Körper über die Normalwerte hinausge hen. Nach dem vollständigen Abbau des Materials am Ort der Implantation gehen diese Konzentrationen wieder auf die Normalwerte zurück.
Die Nanopartikel bestehen entweder aus reinem Wolfram oder aus einer Le gierung, in der neben mindestens 38 Masse-% Wolfram mindestens ein weite res chemisches Element, das ausgewählt ist aus Molybdän (Mo), Rhenium (Re), Tantal (Ta), Niob (Nb) und Hafnium (Hf), enthalten ist.
Die Nanopartikel sollten eine maximale Partikelgröße von 200 nm, die mittels dynamischer Lichtstreuung bestimmt werden kann, aufweisen. Vorteilhaft sollte die maximale Partikelgröße auf 30 nm begrenzt sein und die mittlere Partikelgröße 10 nm, die mittels dynamischer Lichtstreuung bestimmt werden kann, betragen.
Auf der äußeren Oberfläche der Nanopartikel kann eine Beschichtung mit ei ner biokompatiblen und bioresorbierbaren Substanz ausgebildet sein.
An der äußeren Oberfläche der Partikel oder einer auf der äußeren Oberflä che ausgebildeten Beschichtung sind bioaktive Substanzen mittels Linker- Molekülen, bevorzugt kovalent, gebunden. Die bioaktiven Substanzen umfas sen Wirkstoffe mit nachgewiesener Effektivität gegen maligne Tumorzellen von duktalen Adenokarzinomen und/oder PanNETs. Es können auch auf der artige maligne Tumorzellen ausgerichtete Target-Moleküle vorhanden sein.
Nanopartikel aus Wolfram sind aufgrund der Bioresorbierbarkeit und der star ken Röntgenstrahlungsabsorption dieses Materials besonders geeignet für den Wirkstofftransport und dessen verbesserte gezielte Freisetzung für eine therapeutische Wirkung. Wirkstoffträger dieser Art zersetzen sich nach Erfül- lung ihrer Funktion im Organismus. Die Ausscheidung erfolgt renal, da das Endprodukt der Korrosion von Wolfram unter physiologischen Bedingungen das gelöste Ion WO42 (Wolframat) ist. Wolfram ist aufgrund seiner hohen Ordnungszahl (Z = 74) und Dichte (p = 19,3 g/cm3) röntgenopak, wodurch sich die Möglichkeit einer Überwachung der Biodistribution durch röntgenbasierte bildgebende Verfahren (z.B. Computertomographie (CT)) bietet. Neben rei nem Wolfram umfasst die Erfindung dabei auch Partikel aus Legierungen (mindestens 38 Masse-% Wolfram und mindestens ein weiteres Element aus gewählt aus Mo, Ta, Nb, Re, Hf), die die gleiche besondere Kombination von Bioresorbierbarkeit und starker Röntgenstrahlungsabsorption aufweisen.
Eine auf der äußeren Oberfläche der Partikel ausgebildete Beschichtung kann beispielsweise mit einem Beschichtungsstoff ausgewählt aus der Gruppe be stehend aus Protein, Kohlenhydrat und Kombinationen hiervon gebildet sein, besonders bevorzugt mit einem Beschichtungsstoff ausgewählt aus der Grup pe bestehend aus humanes Serumalbumin, Dextran, Alginat und Kombinatio nen hiervon, gebildet sein. Die Beschichtung kann eine Verlängerung der Zir kulationsdauer der Nanopartikel im Blutkreislauf herbeiführen, so dass das Zeitintervall bis zur vollständigen Umwandlung des Nanopartikels zu dessen unter physiologischen Bedingungen löslichen Oxiden gegenüber dem unbe schichteten Zustand verlängert ist. Es kann insbesondere eine Zirkulations dauer von mindestens 2 Stunden erreicht werden. Darüber hinaus kann die Beschichtung die Biokompatibilität der Nanopartikel verbessern. Darüber hin aus kann die Beschichtung die Dispersionsstabilität der Nanopartikel verbes sern. Darüber hinaus kann die Beschichtung den Abbau der Nanopartikel im Organismus verzögern. Der vollständige Abbau eines beschichteten Nanopar tikels sollte dabei innerhalb eines Zeitintervalls von maximal 21 Tagen nach der Verabreichung erreicht sein. Zudem können funktionelle Gruppen der Moleküle, aus denen die Beschichtung aufgebaut ist, dazu dienen, kovalente Bindungen zu Linker-Molekülen herzustellen, die wiederum kovalent mit einer bioaktiven Substanz verbunden sind.
Die Linker-Moleküle sollten mindestens zwei funktionelle Gruppen aufweisen. Bei jeder dieser Gruppen kann es sich bevorzugt um eine Carboxygruppe, eine Aminogruppe, eine Sulphatgruppe oder eine Phosphatgruppe handeln. Durch chemische Reaktionen mit funktionellen Gruppen der bioaktiven Substanzen sowie mit funktionellen Gruppen an der äußeren Oberfläche der Partikel oder einer auf der äußeren Oberfläche ausgebildeten Beschichtung wird mittels der Linker-Moleküle eine Verbindung zwischen Nanopartikel und bioaktiver Sub stanz (Wirkstoff bzw. Target-Molekül) hergestellt.
5
Die Auswahl der Linker-Moleküle sollte abgestimmt auf die verfügbaren funk tioneilen Gruppen der bioaktiven Substanzen und des jeweiligen Nanoparti- kels oder der auf der äußeren Oberfläche des Nanopartikels ausgebildeten Beschichtung, insbesondere Hydroxygruppen, Carboxygruppen und Amino
10 gruppen, erfolgen. Für die Anbindung der Wirkstoffe und der Target-Moleküle können Linker-Moleküle unterschiedlicher chemischer Zusammensetzung eingesetzt werden.
In einer Ausführung werden Linker-Moleküle verwendet, die mindestens zwei
15 Carboxygruppen aufweisen, insbesondere aliphatische Dicarbonsäuren wie Butandisäure (C4H6O4) oder Pentandisäure (C5H8O4). Stehen an der Oberfläche des Nanopartikels oder in der bioaktiven Substanz Hydroxygruppen zur Verfü gung, wird im Zuge einer Kondensationsreaktion einer Carboxygruppe mit einer Hydroxygruppe eine kovalente Bindung (Esterbindung) erreicht.
20
In einer weiteren Ausführung können Linker-Moleküle eingesetzt werden, die mindestens eine Carboxygruppe und mindestens eine Aminogruppe aufwei sen, insbesondere Monoamide der aliphatischen Dicarbonsäuren wie 4- Amino-4-Oxobutansäure (C4H7NO3) oder Aminosäuren wie b-Alanin (C3H7NO2)
25 oder e-Aminocapronsäure (C6H13NO2). Stehen an der Oberfläche des Nanopar tikels oder in der bioaktiven Substanz Carboxygruppen oder Aminogruppen zur Verfügung, kann im Zuge einer Kondensationsreaktion einer Carboxy gruppe und einer Aminogruppe eine kovalente Bindung (Amidbindung) erhal ten werden.
BO
In einer weiteren Ausführung können Linker-Moleküle eingesetzt werden, die mindestens eine Phosphatgruppe aufweisen, mittels der ein Partikel und eine bioaktive Substanz in Form einer Phospho-Diester-Bindung kovalent verbun den werden können.
35 Beispielhafte Wirkstoffe mit nachgewiesener Effektivität gegen maligne Tu morzellen von duktalen Adenokarzinomen und PanNETs sind 5-Fluorouracil, Gemcitabin und Erlotinib. Im Sinne der Erfindung sind die Wirkstoffe 5- Fluorouracil und/oder Erlotinib bevorzugt. Besonders bevorzugt enthält der Wirkstoff entweder Erlotinib oder eine Kombination von 5-Fluorouracil und Erlotinib, oder der Wirkstoff besteht daraus.
Ein bevorzugtes Target-Molekül für maligne Zellen von duktalen Adenokarzi nomen ist Erlotinib, das an den an der Oberfläche solcher Zellen verstärkt ausgebildeten Epidermal Growth Factor Receptor binden kann. Es ist bekannt, dass ein Targeting der besagten Zellen ebenfalls durch Moleküle erfolgen kann, die an den Urokinase-Rezeptor (uPAR) oder Transmembranproteine, wie z. B. Galektin-3 oder CD47 binden.
Bevorzugte Target-Moleküle für maligne Zellen von PanNETs sind Somatosta tin oder dessen Analoga und Derivate (z. B. Octreotid), da maligne Zellen von PanNETs in vielen Fällen Somatostatin-Rezeptoren in besonders hohem Maß ausbilden. Die Target-Moleküle können zusätzlich Struktureinheiten wie z.B. DOTA (l,4,7,10-Tetraazacyclododecan-l,4,7,10-tetraessigsäure), DTPA (Diet- hylentriaminpentaessigsäure) sowie deren Derivate enthalten, die die Kom plexierung metallischer Ionen, bevorzugt von Radionukliden, erlauben. Die Verwendung derartiger Struktureinheiten eröffnet die Möglichkeit, Chemo therapie und Radiotherapie zu kombinieren, indem Radionuklide, wie z. B.
90Yb oder 177Lu, komplexiert werden. Insbesondere eignen sich die Verbindun gen DOTA-TATE (DOTA-(Tyr3)-octreotate), DOTA-TOC ((DOTA(O)-Phe(l)- Tyr(3))-octreotid) und DOTA-LAN (DOTA-(D)betaNall-lanreotide).
Zur Verabreichung können die funktionalisierten Nanopartikel in einer phar mazeutisch annehmbaren Trägersubstanz, beispielsweise phosphatgepuffer ter Salzlösung, dispergiert werden. Die Verabreichung kann durch Injektion oder Infusion erfolgen, wobei die Injektion oder Infusion entweder intravenös oder intraarteriell erfolgen kann. Die Verabreichung kann in Kombination mit Wirkstoffen wie z. B. dem zyklischen Peptid iRGD erfolgen, die das Eindringen von Nanopartikeln in das Tumorgewebe fördern. Der wesentliche Vorteil der Erfindung gegenüber dem Stand der Technik be steht in der Kombination des gezielten Wirkstofftransports mit den günstigen bioresorbierbaren und röntgenopaken Eigenschaften der wolframbasierten Trägerpartikel. Dies erlaubt eine passive Freisetzung von Wirkstoffen im Ziel gewebe mit anschließender schneller und vollständiger Entfernung des Trä germaterials Wolfram aus dem Körper. Darüber hinaus ist eine Kontrolle und Regulierung der Therapie durch röntgenbasierte bildgebende Verfahren wie CT möglich. Wirkstoffträger mit einer solchen Kombination von Eigenschaften sind nach dem Stand der Technik bislang nicht bekannt. Nanopartikuläre Wirkstoffträger, über die in der Fach- und Patentliteratur berichtet wird, ba sieren vorwiegend auf Polymeren und sind somit nicht durch übliche bildge bende Verfahren (CT, MRT) erfassbar.
Nachfolgend soll die Erfindung beispielhaft näher erläutert werden.
Dabei zeigen:
Figur 1 in schematischer Form ein Beispiel eines erfindungsgemäßen
Nanopartikels und
Figur 2 in schematischer Form ein Beispiel eines erfindungsgemäßen
Nanopartikels mit einer Beschichtung.
Ausführungsbeispiel:
Eine Suspension von Wolfram-Nanopartikeln wird durch Laser-Ablation von einem festen Target aus hochreinem Wolfram erzeugt. Die Ablation wird im organischen Medium Aceton durchgeführt. Die Verfahrensparameter werden so gewählt, dass der Mittelwert der Partikelgrößenverteilung in der Suspensi on, bestimmt durch dynamische Lichtstreuung, bei etwa 10 nm liegt. Durch Ultrazentrifugierung werden aus dieser Suspension diejenigen Wolfram- Nanopartikel isoliert, die eine Partikelgröße von 10 ± 1,5 nm aufweisen. In einem weiteren Zentrifugierungsschritt werden diese separierten Nanoparti- kel 1 aus dem organischen Medium abgetrennt.
Diese Nanopartikel 1 werden mit dem Zytostatikum 5-Fluorouracil als Wirk- Stoff W und dem Somatostatin-Analog DOTA-TATE als Target-Molekül T funk- tionalisiert. Dies geschieht mittels eines ersten Linker-Moleküls L 1 aus der Gruppe der aliphatischen Dicarbonsäuren, das zwei Carboxygruppen als funk tioneile Gruppen aufweist. Durch Reaktion einer COOH-Gruppe mit der OH- Gruppe an der äußeren Oberfläche eines Wolfram-Partikels wird eine kova lente Bindung zwischen dem Nanopartikel und dem Linker-Molekül LI er reicht. An einer anderen Stelle des ersten Linker-Moleküls LI wird mittels der zweiten COOH-Gruppe eine kovalente Bindung zu einer der bioaktiven Sub stanzen hergestellt. Sowohl DOTA-TATE als auch 5-Fluorouracil weisen die dafür erforderliche funktionelle Gruppe auf.
Die biofunktionalisierten Nanopartikel 1 werden durch Hochleistungs- Flüssigkeitschromatographie und Nanofiltration konzentriert und isoliert. Zur Erhöhung der Biokompatibilität werden die Nanopartikel 1 mit humanem Ser umalbumin beschichtet, um eine Beschichtung 2 auszubilden. Dies erfolgt durch Inkubation in einer Lösung des Albumins in hochreinem Wasser. An diesen Schritt schließt sich wiederum eine Nanofiltration an, die neben der Isolierung der Nanopartikel 1 auch der Sterilisation dient. Um eine Aufbewah rung zu ermöglichen, erfolgt eine Gefriertrocknung der biofunktionalisierten Nanopartikel 1.
Für die Verabreichung werden die funktionalisierten Nanopartikel 1 in phos phatgepufferter Salzlösung (137 mM/l NaCI, 2,7 mM/l KCl, 10 mM/l Na2HPC>4, 1,8 mM/l KH2PO4) redispergiert. Die Verabreichung erfolgt durch intravenöse Infusion.
Eine beispielhafte Ausführung der erfindungsgemäßen Nanopartikel 1 ist in Figur 1 dargestellt. Figur 1 zeigt eine schematische Darstellung eines erfin dungsgemäßen biofunktionalisierten Nanopartikels 1, der mittels der ersten Linker-Moleküle LI mit Wirkstoff-Molekülen W und mittels der zweiten Lin ker-Moleküle L2 mit Target-Molekülen T verbunden ist. Die zwischen dem Nanopartikel 1 und den Linker-Molekülen LI bzw. L2 sowie zwischen den Lin ker-Molekülen LI bzw. L2 und den Molekülen der bioaktiven Substanzen ver laufenden Striche stellen kovalente Bindungen dar. Figur 2 zeigt eine schema tische Darstellung eines erfindungsgemäßen Nanopartikels in einer weiteren Ausführung. Hierbei ist auf dem Nanopartikel 1 eine Beschichtung 2 aus einer bioresorbierbaren und biokompatiblen Substanz ausgebildet. Die Linker- Moleküle LI und L2 sind in dieser Ausführung kovalent mit Molekülen der Beschichtung 2 verbunden.

Claims

Patentansprüche
1. Nanopartikel als bioresorbierbare und röntgenopake Wirkstoffträger für die Therapie von Krebserkrankungen der Bauchspeicheldrüse, dadurch gekennzeichnet, dass sie aus Wolfram oder einer Legierung von mindestens 38 Masse-% Wolfram und mindestens einem weiteren der Elemente Molybdän, Rhenium, Tantal, Niob und Hafnium beste hen, dass an der äußeren Oberfläche oder einer auf der äußeren Ober fläche ausgebildeten Beschichtung mit einer biodegradierbaren Sub stanz Moleküle eines Wirkstoffs mit nachgewiesener Effektivität gegen maligne Tumorzellen von duktalen Adenokarzinomen und/oder Pan- NETs gebunden sind und dass die Bindung besagter Wirkstoffmoleküle (W) mittels ersten Linker-Molekülen (LI) erfolgt, die sowohl mit den Wirkstoffmolekülen (W) als auch mit der Partikeloberfläche oder Be schichtung (2) kovalent verbunden sind.
2. Nanopartikel nach Anspruch 1, dadurch gekennzeichnet, dass die Na nopartikel (1) eine maximale Partikelgröße von 200 nm aufweisen.
3. Nanopartikel nach Anspruch 1, dadurch gekennzeichnet, dass die Na nopartikel eine maximale Partikelgröße von 30 nm und eine mittlere Partikelgröße von 10 nm aufweisen.
4. Nanopartikel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass an der äußeren Oberfläche der Nanopartikel o- der einer auf der äußeren Oberfläche ausgebildeten Beschichtung (2) mit einer bioresorbierbaren Substanz zusätzlich Target-Moleküle (T) mittels zweiten Linker-Molekülen (L2), bevorzugt kovalent, angebun den sind.
5. Nanopartikel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Beschichtung mit einem Beschichtungsstoff ausgewählt aus der Gruppe bestehend aus Protein, Kohlenhydrat und Kombinationen hiervon gebildet ist, besonders bevorzugt mit einem Beschichtungsstoff ausgewählt aus der Gruppe bestehend aus huma nem Serumalbumin, Dextran, Alginat und Kombinationen hiervon ge bildet ist.
6. Nanopartikel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Beschichtung so ausgebildet und zusammen gesetzt ist, dass das Zeitintervall bis zur vollständigen Umwandlung des Nanopartikels zu dessen unter physiologischen Bedingungen löslichen Oxiden gegenüber dem unbeschichteten Zustand verlängert ist.
7. Nanopartikel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass der Wirkstoff gegen maligne Tumorzellen 5- Fluorouracil und/oder Erlotinib, bevorzugt entweder Erlotinib oder ei ne Kombination von 5-Fluorouracil und Erlotinib, enthält oder daraus besteht.
8. Nanopartikel nach einem der Ansprüche 4 bis 7, dadurch gekennzeich net, dass die Target-Moleküle (T) für maligne Zellen von duktalen A- denokarzinomen Erlotinib enthalten oder daraus bestehen.
9. Nanopartikel nach einem der Ansprüche 4 bis 8, dadurch gekennzeich net, dass die Target-Moleküle (T) für maligne Zellen von PanNETs So matostatin, Somatostatin-Analoga oder Somatostatin-Derivate sind.
10. Nanopartikel nach einem der Ansprüche 4 bis 9, dadurch gekennzeich net, dass die Target-Moleküle (T) Struktureinheiten enthalten, die eine Komplexierung metallischer Ionen, bevorzugt eine Komplexierung von Radionukliden, insbesondere von den in der Radiotherapie eingesetz ten Ionen 90Yb oder 177Lu, ermöglichen.
11. Nanopartikel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Linker-Moleküle (LI, L2) mindestens zwei funktionelle Gruppen enthalten, wobei es sich bei jeder der Gruppen um eine Carboxygruppe, eine Aminogruppe, eine Sulphatgruppe oder eine Phosphatgruppe handelt.
12. Nanopartikel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass erste Linker-Moleküle (LI) zur Anbindung eines Wirkstoffs mit nachgewiesener Effektivität gegen maligne Tumorzellen von duktalen Adenokarzinomen und/oder PanNETs und zweite Linker- Moleküle (L2) zur Anbindung von Target-Molekülen (T) an der jeweili gen Oberfläche vorhanden sind.
PCT/EP2021/065133 2020-06-09 2021-06-07 Nanopartikel als bioresorbierbare und röntgenopake wirkstoffträger für die therapie von krebserkrankungen der bauchspeicheldrüse WO2021249921A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102020207195.0A DE102020207195A1 (de) 2020-06-09 2020-06-09 Nanopartikel als bioresorbierbare und röntgenopake Wirkstoffträger für die Therapie von Krebserkrankungen der Bauchspeicheldrüse
DE102020207195.0 2020-06-09

Publications (1)

Publication Number Publication Date
WO2021249921A1 true WO2021249921A1 (de) 2021-12-16

Family

ID=76444376

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2021/065133 WO2021249921A1 (de) 2020-06-09 2021-06-07 Nanopartikel als bioresorbierbare und röntgenopake wirkstoffträger für die therapie von krebserkrankungen der bauchspeicheldrüse

Country Status (2)

Country Link
DE (1) DE102020207195A1 (de)
WO (1) WO2021249921A1 (de)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120197060A1 (en) * 2009-06-18 2012-08-02 University Of Utah Research Foundation Radiation enhanced macromolecular delivery of therapeutic agents for chemotherapy technology
CN108524955A (zh) * 2018-03-15 2018-09-14 何国斌 一种验证纳米造影剂生物效应的大鼠模型的构建方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090104114A1 (en) 2007-09-21 2009-04-23 Cytimmune Sciences, Inc. Nanotherapeutic Colloidal Metal Compositions and Methods
CA2742388C (en) 2007-11-08 2019-02-19 Virginia Tech Intellectual Properties, Inc. Thiolated paclitaxels for reaction with gold nanoparticles as drug delivery agents
US20110104052A1 (en) 2007-12-03 2011-05-05 The Johns Hopkins University Methods of synthesis and use of chemospheres
WO2019161171A1 (en) 2018-02-16 2019-08-22 Sperovie Biosciences, Inc. Nanoparticle formulations of sting agonists

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120197060A1 (en) * 2009-06-18 2012-08-02 University Of Utah Research Foundation Radiation enhanced macromolecular delivery of therapeutic agents for chemotherapy technology
CN108524955A (zh) * 2018-03-15 2018-09-14 何国斌 一种验证纳米造影剂生物效应的大鼠模型的构建方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SENTHIL KUMAR CHINNAIYAN ET AL: "5 Fluorouracil-loaded biosynthesised gold nanoparticles for the in vitro treatment of human pancreatic cancer cell", IET NANOBIOTECHNOLOGY, THE INSTITUTION OF ENGINEERING AND TECHNOLOGY, MICHAEL FARADAY HOUSE, SIX HILLS WAY, STEVENAGE, HERTS. SG1 2AY, UK, vol. 13, no. 8, 29 August 2019 (2019-08-29), pages 824 - 828, XP006109150, ISSN: 1751-8741, DOI: 10.1049/IET-NBT.2019.0007 *

Also Published As

Publication number Publication date
DE102020207195A1 (de) 2021-12-09

Similar Documents

Publication Publication Date Title
DE69828436T2 (de) Radioaktive embolisierende zusammensetzungen
DE69432867T2 (de) Zubereitung mit gesteuerter freisetzung
DE60103453T2 (de) Verwendung von albuminstabilisiertem Paclitaxel zur Herstellung eines Arzneimittels zum Behandeln von festen Tumoren und das so erhaltene Arzneimittel
EP0142641B1 (de) Mittel und Erzeugnis für die Diagnose und Therapie von Tumoren sowie zur Behandlung von Schwächen der zelligen und humoralen Immunabwehr
EP1965769A2 (de) Proteinbasiertes trägersystem zur resistenzüberwindung von tumorzellen
DE102006013531A1 (de) Polylactid-Nanopartikel
DE102004040243A1 (de) Transportsystem auf Chitosanbasis
WO2010106063A2 (de) Mit therapeutika und diagnostika beladene kompositmaterialien umfassend polymernanopartikel und polymerfasern
DE102006011507A1 (de) Wirkstoffbeladene Nanopartikel auf Basis hydrophiler Proteine
EP1565160B1 (de) Darreichungsform für pharmazeutisch aktive peptide mit anhaltender wirkstofffreigabe und verfahren zu deren herstellung
DE60117583T2 (de) Liposomen welche antikanzeröse wirkstoffe verkapseln und deren verwendung zur behandlung von malignen tumoren
DE60212621T2 (de) Verabreichung von bisphosphonaten durch inhalation zur behandlung von knochenresorption und osteoporosis
EP2015743A2 (de) Glutadon
WO2021249921A1 (de) Nanopartikel als bioresorbierbare und röntgenopake wirkstoffträger für die therapie von krebserkrankungen der bauchspeicheldrüse
DE4310935A1 (de) Mikroemulsionen, deren Herstellung sowie Verwendung bei der Behandlung von Krebserkrankungen
WO2002000162A2 (de) Drug-delivery-systeme
DE102007041832A1 (de) Arzneimittel und Verfahren zur Behandlung von Prostatakrebs
WO2007134595A2 (de) Neue, an der tumorphysiologie orientierte formulierung eines zytostatikums, insbesondere von cis-platin
WO2002085325A2 (de) Herstellung und anwendung einer suspensionszusammensetzung mit einem ultraschall-kontrastmittel
EP2687207B1 (de) System zur freisetzung von biologischen wirkstoffen in einem organismus und verfahren zur herstellung des systems
DE19652374A1 (de) Verwendung von Endothelin-Konjugaten in der Therapie, neue Endothelin-Konjugate, diese enthaltende Mittel, sowie Verfahren zu deren Herstellung
DE102004006048B4 (de) Intravenös zu verabreichende Injektions-oder Infusionslösung enthaltend ein Kombinationsarzneimittel zur Verwendung als konstrastverstärkendes Mittel in der MR Angiographie
US20230270681A1 (en) Drug delivery agents for prevention or treatment of pulmonary disease
DE10118312A1 (de) Drug-Delivery-Systeme
EP2114371A1 (de) Transport von arzneistoffen über die blut-hirn-schranke mittels apolipoproteinen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21732213

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21732213

Country of ref document: EP

Kind code of ref document: A1