CN108524955A - 一种验证纳米造影剂生物效应的大鼠模型的构建方法 - Google Patents

一种验证纳米造影剂生物效应的大鼠模型的构建方法 Download PDF

Info

Publication number
CN108524955A
CN108524955A CN201810250811.5A CN201810250811A CN108524955A CN 108524955 A CN108524955 A CN 108524955A CN 201810250811 A CN201810250811 A CN 201810250811A CN 108524955 A CN108524955 A CN 108524955A
Authority
CN
China
Prior art keywords
nano
nano particle
rat
contrast agent
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810250811.5A
Other languages
English (en)
Inventor
何国斌
郭晋纲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201810250811.5A priority Critical patent/CN108524955A/zh
Publication of CN108524955A publication Critical patent/CN108524955A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K49/00Preparations for testing in vivo
    • A61K49/04X-ray contrast preparations
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01KANIMAL HUSBANDRY; AVICULTURE; APICULTURE; PISCICULTURE; FISHING; REARING OR BREEDING ANIMALS, NOT OTHERWISE PROVIDED FOR; NEW BREEDS OF ANIMALS
    • A01K67/00Rearing or breeding animals, not otherwise provided for; New or modified breeds of animals
    • A01K67/027New or modified breeds of vertebrates
    • A01K67/0271Chimeric vertebrates, e.g. comprising exogenous cells
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/12Materials from mammals; Compositions comprising non-specified tissues or cells; Compositions comprising non-embryonic stem cells; Genetically modified cells
    • A61K35/37Digestive system
    • A61K35/407Liver; Hepatocytes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/644Transferrin, e.g. a lactoferrin or ovotransferrin

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Medicinal Chemistry (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Environmental Sciences (AREA)
  • Zoology (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Developmental Biology & Embryology (AREA)
  • Immunology (AREA)
  • Virology (AREA)
  • Physiology (AREA)
  • Animal Husbandry (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Nutrition Science (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

本发明属于成像方法技术领域,公开了一种验证纳米造影剂生物效应的大鼠模型的构建方法,以制备的纳米氧化钨‑聚乙二醇‑转铁蛋白(WO3‑X@PEG‑Tf)纳米颗粒为材料,开展靶向转运机制的分析,并验证共价偶联转铁蛋白的优势;选择纳米颗粒氧化钨吸附白蛋白的纳米颗粒和单独WO3‑X为相关对照,开展对细胞作用效应的分析;将纳米颗粒和单独WO3‑X为相关对照,分别尾静脉注入大鼠体内,开展大鼠体内纳米探针的CT成像及生物相容性分析;将HepG2细胞注入大鼠体内建立荷瘤大鼠的模型,将纳米颗粒和单独WO3‑X为相关对照;阐明WO3‑X@PEG‑Tf能被癌细胞(表面具有丰富的Tf受体)高度专一识别,并论证转铁蛋白共价修饰的优势。

Description

一种验证纳米造影剂生物效应的大鼠模型的构建方法
技术领域
本发明属于成像方法技术领域,尤其涉及一种验证纳米造影剂生物效应的大鼠模型的构建方法。
背景技术
攻克癌症是全球的一大难题,成功的治疗癌症主要面临4个问题,即确诊较晚、易于转移、严重的多药耐药性和易复发等。癌症的早期诊断发现是成功治疗的关键,选择最佳的、最灵敏的诊断手段;可为医生对病情的判断提供有力的依据。目前常用的成像诊断技术分析主要包括:磁共振成像,荧光成像,超声成像和放射性核素成像等。根据需求可选择不同成像技术对活体不同部位进行在位实时检测,力求达到最清晰、精准的图像,为病理诊断提供可靠的依据。融合成像技术(Fusion)可将CT解剖结构映像与核医学SPECT功能代谢影响叠加在一起。有利于病变定位和定性诊断;在实际检测中为了获得更清晰的、精准的病理变化图像,核医学分子成像是分子影像技术的一种,它可以将分子医学基础分析取得的成果利用分子影像技术的临床前期分析直接应用到临床中去。
随着分子影像技术的发展,将多种模式医学影像成像技术结合的SPECT/CT技术有了一定程度的发展。SPECT/CT是由高端SPECT和多排螺旋CT结合成一体化的设备,不仅提供SPECT的功能影像,而且提供CT的解剖显像,提高了传统定位、定性的准确性。但由于SPECT/CT中CT采集参数多为低毫安,在降低CT辐射剂量的同时,CT图像的质量也有不同程度的下降。减少辐射剂量的常用方法是降低X线管的管电流、管电压。当管电流不变时,管电压从120kV降至80kV可降低70%的辐射剂量,尽可能以最小的辐射剂量来获得最大的诊断信息,把辐射剂量最小化的原则提高到职业道德,对患者、对自己负责的高度来认识,确保各项技术操作的高质量;如何平衡低剂量扫描与图像质量之间的关系,最大限度地降低辐射剂量和尽可能保持良好的图像质量以满足诊断需求是核医学影像最需要关注和完成的任务。辅助使用一些造影剂来对检测部位进行增强显示。对于肝癌的诊断一般首选超声成像检测,但是在肥胖病人中产生不稳定的组织衰减,对相对小尺寸的范围难以观察,故对早期的肝癌诊断容易造成误诊;核磁共振成像也可用于肝癌的诊断,但是由于其较高的检测费用而在早期的肝癌筛查中使用较少。对于普通CT成像常使用的造影剂多为有机碘小分子(如:泛影酸、碘海醇等),这些小分子化合物具有体内循环时间短、全身分布、不具备靶向性、迅速被肾脏清除而使造影时间短等缺点,另外碘对肾脏具有毒性,且X射线会诱导碘物质电离出的碘粒子造成更强的毒性;对碘剂过敏的患者(如甲状腺患者)不能使用碘剂作为CT的造影剂。而对于SPECT/CT中常使用放射性元素(如99mTc、131I)作为造影剂,γ射线进行检测,对人体造成的损伤比CT更大,产生的费用也高。
综上所述,现有技术存在的问题是:肿瘤的早期诊断是成功治疗肿瘤的重要因素之一,在临床上,CT成像诊断是常用的检测手段,肿瘤的临床诊断所用CT造影剂多为有机碘小分子,存在体内循环时间短、强的肾毒性以及对碘过敏者禁用等局限性。
发明内容
针对现有技术存在的问题,本发明提供了一种造影剂的制备方法及其构建动物模型的方法。
本发明是这样实现的,该验证纳米造影剂生物效应的大鼠模型的构建方法包括以下步骤:
以制备的纳米氧化钨-聚乙二醇-转铁蛋白(WO3-X@PEG-Tf)纳米颗粒为材料,开展靶向转运机制的分析,并验证共价偶联转铁蛋白的优势;
选择纳米颗粒WO3-X@PEG-Tf、WO3-X@-Tf、WO3-X@BSA,氧化钨吸附白蛋白的纳米颗粒和单独WO3-X为相关对照,开展对细胞作用效应的分析;
将纳米颗粒WO3-X@PEG-Tf、WO3-X@-Tf、WO3-X@BSA和单独WO3-X为相关对照,分别尾静脉注入大鼠体内,开展大鼠体内纳米探针的CT成像及生物相容性分析;
将HepG2细胞注入大鼠体内建立荷瘤大鼠的模型,将纳米颗粒WO3-X@PEG-Tf和单独WO3-X为相关对照,通过尾静脉注射和肿瘤部位定位注射两种方式注入模型大鼠体内,通过CT成像分析氧化钨纳米颗粒的靶向定位肿瘤,并为肿瘤的早期诊断提供实验依据。
在步骤二中,包括对细胞的靶向识别,细胞转运机理及定位,纳米颗粒共价偶联与物理吸附转铁蛋白在细胞内吞的差异性。
在步骤四中,包括纳米颗粒与常用有机碘的CT成像比较,纳米颗粒在荷瘤大鼠体内的分布及代谢以及体内CT成像,纳米颗粒对大鼠血液系统和组织的影响。
本发明的优点及积极效果为:
癌症的早期诊断发现是成功治疗的关键,纳米造影剂代替分子造影剂可提高癌症靶向检测中成像诊断的灵敏度和图像的清晰度,使癌症的早期确诊成为可能,钨与碘相比具有更大的原子半径和更强的对X射线吸收系数。本发明以水热法合成的纳米氧化钨,以聚乙二醇做桥联,共价连接转铁蛋白制备得到的氧化钨基纳米颗粒为SPECT/CT造影剂,以人正常肝细胞L-02和肝癌细胞HepG2为对比模型,运用激光共聚焦显微镜、流式细胞仪等技术分别从细胞对纳米靶向系统的转运机制和对细胞的生物效应分析,揭示纳米造影剂的靶向性;以大鼠为模型,通过静脉注射氧化钨基纳米颗粒,分析其体内的CT成像、组织分布以及血生化指标来测定其生物相容性;以荷瘤大鼠为模型,通过CT成像跟踪氧化钨基纳米颗粒的体内靶向性,为肿瘤的早期诊断提供实验依据,为靶向纳米造影剂的临床应用及开发奠定理论及实验基础,为肿瘤靶向诊断的深入分析提供新思路、新途径。将为氧化钨纳米颗粒CT成像的临床应用及开发奠定理论及试验基础,为纳米造影剂成像的深入分析提供新思路和新途径。
(一)揭示WO3-X@PEG-Tf的靶向性
比较正常细胞和癌细胞之间内吞靶向氧化钨纳米颗粒的差异以及荷瘤大鼠和大鼠体内的分布,阐明WO3-X@PEG-Tf能被癌细胞(表面具有丰富的Tf受体)高度专一识别,并论证转铁蛋白共价修饰的优势。
(二)揭示WO3-X@PEG-Tf的SPECT/CT成像及生物相容性
MTT法测定纳米颗粒的细胞毒性以及纳米颗粒对大鼠的血液和组织的影响、体内的代谢等来评价WO3-X@PEG-Tf的生物相容性,使用CT成像比较纳米颗粒与有机碘试剂的成像分别率,并论证纳米颗粒在CT成像方面的优势。
附图说明
图1是本发明实施例提供的氧化钨基纳米颗粒的SPECT/CT成像诊断分析原理图;
图2是本发明实施例提供的碘海醇与氧化钨纳米颗粒的CT成像(管电压80kV,管电流100mA);
图3是本发明实施例提供的碘和钨的浓度与CT值间的关系(管电压80kV,管电流100mA);
图4是本发明实施例提供的不同管电压下氧化钨纳米颗粒的CT值;
图5是本发明实施例提供的氧化钨纳米颗粒在猪肝中的CT成像图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
下面结合附图及具体实施例对本发明的应用原理作进一步描述。
利用水热法制备适合生物应用粒径(10~100nm)的氧化钨纳米颗粒(WO3-X)。选择转铁蛋白(Tf)为靶向分子,通过聚乙二醇(PEG)共价修饰到氧化钨纳米颗粒上。以人正常肝细胞系(L-02)和转铁蛋白受体高表达的人肝癌细胞系(HepG2)为体外对比模型,开展纳米颗粒的细胞转运机理和生物效应分析,并通过比较内吞转铁蛋白修饰的氧化钨纳米颗粒的正常细胞与癌细胞之间的差异,揭示新型纳米氧化钨探针系统的靶向性;同时使用荷瘤大鼠为体内模型,分析新型纳米氧化钨探针的CT成像,揭示转铁蛋白共价修饰的氧化钨纳米探针在CT成像诊断肿瘤中的优越性。
下面结合氧化钨基纳米颗粒的靶向细胞膜转运机制的分析对本发明作进一步描述。
以制备的纳米氧化钨-聚乙二醇-转铁蛋白(WO3-X@PEG-Tf)纳米颗粒为材料,开展靶向转运机制的分析,并验证共价偶联转铁蛋白的优势。
(一)对细胞的靶向识别作用
(二)细胞转运机理及定位分析
(三)纳米颗粒共价偶联与物理吸附转铁蛋白在细胞内吞的差异性分析
纳米颗粒与细胞作用的生物效应分析
选择纳米颗粒WO3-X@PEG-Tf、WO3-X@-Tf、WO3-X@BSA(氧化钨吸附白蛋白的纳米颗粒)和单独WO3-X为相关对照,开展对细胞作用效应的分析。
(一)对细胞活性、形态的影响
(二)对细胞凋亡和周期的影响
(三)对细胞内酶及活性氧水平的影响
纳米颗粒的体内CT成像跟踪及生物相容性的分析
将纳米颗粒WO3-X@PEG-Tf、WO3-X@-Tf、WO3-X@BSA和单独WO3-X为相关对照,分别尾静脉注入大鼠体内,开展大鼠体内纳米探针的CT成像及生物相容性分析。
下面结合纳米颗粒与常用有机碘(如碘海醇)的CT成像比较对本发明作进一步描述。
1)纳米颗粒在荷瘤大鼠体内的分布及代谢,体内CT成像的分析:
纳米颗粒对大鼠血液系统和组织的影响
将HepG2细胞注入大鼠体内建立荷瘤大鼠的模型,将纳米颗粒WO3-X@PEG-Tf和单独WO3-X为相关对照,通过尾静脉注射和肿瘤部位定位注射两种方式注入模型大鼠体内,通过CT成像分析氧化钨纳米颗粒的靶向定位肿瘤,并为肿瘤的早期诊断提供实验依据。
通过选用新型氧化钨基纳米探针作为CT造影剂,利用转铁蛋白受体识别的高度专一性,达到靶向性;进而探讨靶向部位的病理变化,阐明准确诊断的作用。因此使用靶向氧化钨基纳米颗粒作为SPECT/CT造影剂为肿瘤的早期诊断是本发明的创新之处。
通过对纳米造影剂的细胞转运机理和生物效应的分析,阐明纳米造影剂WO3-X@PEG-Tf具有CT成像诊断肿瘤的功能作用。
下面结合具体分析对本发明作进一步描述。
1、氧化钨基纳米颗粒的制备
利用水热法已合成粒径为60nm的蓝色氧化钨纳米颗粒,可均匀的分散在水中。合成的悬浊液如图1所示。
2、氧化钨纳米颗粒的CT成像
使用碘海醇和氧化钨纳米颗粒配置一系列不同浓度的碘和钨的溶液(见表1),使用CT对其检测成像(如图2所示),结果表明和碘海醇相比,氧化钨纳米颗粒同样对X射线具有较强的吸收和衰减能力。同时比较了不同浓度下碘海醇和氧化钨纳米颗粒的CT值,结果如图3所示,表明钨和碘的CT值均与浓度呈线性关系。同时在固定管电流为100mA,改变管电压(80、100、120kV)来测定氧化钨纳米颗粒的CT值,结果如图4所示,随着管电压的减小,氧化钨纳米颗粒的CT值增加,表明氧化钨纳米颗粒在低管电压下更有利于提高其灵敏度,提高图像的分辩率和清晰度。另外降低管电压可减少人体对X射线的吸收,从而减少人体对X射线的辐射暴露。
表1.碘和钨的浓度
3、氧化钨纳米颗粒在组织中的CT成像
选取市售猪肝作为组织模型,将氧化钨纳米颗粒悬浊液经肝门静脉注入肝中,置于SPECT/CT中进行CT成像,结果如图5所示。表明氧化钨纳米颗粒在肝中具有较好的CT成像功能,可作为造影剂对血管进行成像。
以高表达转铁蛋白受体的人肝癌细胞系(HepG2)为体外模型,人正常肝细胞系(L-02)为对照,分析以转铁蛋白修饰的氧化钨纳米颗粒对肿瘤的靶向性;以荷瘤大鼠建立体内模型,将氧化钨基纳米颗粒直接注射到肿瘤部位和尾静脉注射两种方式进行CT成像诊断分析,同时对氧化钨基纳米颗粒的体内生物代谢以及毒性进行生物评价。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (4)

1.一种验证纳米造影剂生物效应的大鼠模型的构建方法,其特征在于,所述验证纳米造影剂生物效应的大鼠模型的构建方法包括以下步骤:
将纳米颗粒WO3-X@PEG-Tf、WO3-X@-Tf、WO3-X@BSA和单独WO3-X为相关对照,分别尾静脉注入大鼠体内,进行大鼠体内纳米探针的CT成像及生物相容性分析;
将HepG2细胞注入大鼠体内建立荷瘤大鼠的模型,将纳米颗粒WO3-X@PEG-Tf和单独WO3-X为相关对照,通过尾静脉注射和肿瘤部位定位注射两种方式注入模型大鼠体内,通过CT成像分析氧化钨纳米颗粒的靶向定位肿瘤。
2.如权利要求1所述的验证纳米造影剂生物效应的大鼠模型的构建方法,其特征在于,所述将纳米颗粒WO3-X@PEG-Tf、WO3-X@-Tf、WO3-X@BSA和单独WO3-X为相关对照前,需进行:
以制备的纳米氧化钨-聚乙二醇-转铁蛋白(WO3-X@PEG-Tf)纳米颗粒为材料,进行靶向转运机制的分析,并验证共价偶联转铁蛋白;
选择纳米颗粒WO3-X@PEG-Tf、WO3-X@-Tf、WO3-X@BSA,氧化钨吸附白蛋白的纳米颗粒和单独WO3-X为相关对照,对细胞作用效应进行分析。
3.如权利要求2所述的验证纳米造影剂生物效应的大鼠模型的构建方法,其特征在于,
进行靶向转运机制的分析中,包括对细胞的靶向识别、细胞转运机理及定位、纳米颗粒共价偶联与物理吸附转铁蛋白在细胞内吞的差异性分析。
4.一种如权利要求1所述的验证纳米造影剂生物效应的大鼠模型的构建方法构建的验证纳米造影剂生物效应的大鼠模型。
CN201810250811.5A 2018-03-15 2018-03-15 一种验证纳米造影剂生物效应的大鼠模型的构建方法 Pending CN108524955A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810250811.5A CN108524955A (zh) 2018-03-15 2018-03-15 一种验证纳米造影剂生物效应的大鼠模型的构建方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810250811.5A CN108524955A (zh) 2018-03-15 2018-03-15 一种验证纳米造影剂生物效应的大鼠模型的构建方法

Publications (1)

Publication Number Publication Date
CN108524955A true CN108524955A (zh) 2018-09-14

Family

ID=63484240

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810250811.5A Pending CN108524955A (zh) 2018-03-15 2018-03-15 一种验证纳米造影剂生物效应的大鼠模型的构建方法

Country Status (1)

Country Link
CN (1) CN108524955A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021249921A1 (de) * 2020-06-09 2021-12-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Nanopartikel als bioresorbierbare und röntgenopake wirkstoffträger für die therapie von krebserkrankungen der bauchspeicheldrüse

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103212091A (zh) * 2013-04-28 2013-07-24 东华大学 一种基于Au DENPs-LA的肝癌靶向CT造影剂的制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103212091A (zh) * 2013-04-28 2013-07-24 东华大学 一种基于Au DENPs-LA的肝癌靶向CT造影剂的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
傅明杰等: ""裸鼠HepG2细胞皮下成瘤与肝内成瘤的实验研究"", 《临床普外科电子杂志》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021249921A1 (de) * 2020-06-09 2021-12-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Nanopartikel als bioresorbierbare und röntgenopake wirkstoffträger für die therapie von krebserkrankungen der bauchspeicheldrüse

Similar Documents

Publication Publication Date Title
Cormode et al. Multicolor spectral photon-counting computed tomography: in vivo dual contrast imaging with a high count rate scanner
Gómez-Vallejo et al. PEG-copolymer-coated iron oxide nanoparticles that avoid the reticuloendothelial system and act as kidney MRI contrast agents
Si-Mohamed et al. Evaluation of spectral photon counting computed tomography K-edge imaging for determination of gold nanoparticle biodistribution in vivo
Choi et al. A hybrid nanoparticle probe for dual‐modality positron emission tomography and magnetic resonance imaging
Mukundan Jr et al. A liposomal nanoscale contrast agent for preclinical CT in mice
Xing et al. Computed tomography imaging-guided radiotherapy by targeting upconversion nanocubes with significant imaging and radiosensitization enhancements
De Jong et al. Visualisation of bladder cancer using 11 C-choline PET: first clinical experience
Chen et al. Pd nanosheets with their surface coordinated by radioactive iodide as a high-performance theranostic nanoagent for orthotopic hepatocellular carcinoma imaging and cancer therapy
Guo et al. pH-sensitive radiolabeled and superfluorinated ultra-small palladium nanosheet as a high-performance multimodal platform for tumor theranostics
Bouziotis et al. 68Ga-radiolabeled AGuIX nanoparticles as dual-modality imaging agents for PET/MRI-guided radiation therapy
Garcia Ribeiro et al. Targeting tumor cells and neovascularization using RGD-functionalized magnetoliposomes
Luengo Morato et al. Recent advances in multimodal molecular imaging of cancer mediated by hybrid magnetic nanoparticles
Chen et al. Multifunctional gold nanocomposites designed for targeted CT/MR/optical trimodal imaging of human non-small cell lung cancer cells
Ge et al. Anchoring Group-Mediated Radiolabeling of Inorganic Nanoparticles─ A Universal Method for Constructing Nuclear Medicine Imaging Nanoprobes
Liao et al. Evaluation of 18F-labeled targeted perfluorocarbon-filled albumin microbubbles as a probe for microUS and microPET in tumor-bearing mice
Tarighatnia et al. Tips and tricks in molecular imaging: a practical approach
Jarockyte et al. Biodistribution of multimodal gold nanoclusters designed for photoluminescence-SPECT/CT imaging and diagnostic
CN107899023A (zh) 一种纳米造影剂及其制备方法
Liu et al. 64CuS‐labeled nanoparticles: a new sentinel‐lymph‐node‐mapping agent for PET–CT and photoacoustic tomography
CN108524955A (zh) 一种验证纳米造影剂生物效应的大鼠模型的构建方法
Zhao et al. Positron emission tomography of murine liver metastases and the effects of treatment by combretastatin A-4
Hua et al. Advances and challenges in nanomedicine
JP5142251B2 (ja) 金酸化鉄粒子を利用した複合粒子およびmri造影剤
Xu et al. Utilizing the multiradionuclide resolving power of SPECT and dual radiolabeled single molecules to assess treatment response of tumors
Prasad et al. Imaging Techniques in Veterinary Disease Diagnosis

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180914

WD01 Invention patent application deemed withdrawn after publication