WO2021249316A1 - 可折弯显示装置及其散热装置 - Google Patents

可折弯显示装置及其散热装置 Download PDF

Info

Publication number
WO2021249316A1
WO2021249316A1 PCT/CN2021/098495 CN2021098495W WO2021249316A1 WO 2021249316 A1 WO2021249316 A1 WO 2021249316A1 CN 2021098495 W CN2021098495 W CN 2021098495W WO 2021249316 A1 WO2021249316 A1 WO 2021249316A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat dissipation
conducting part
bendable
bent
Prior art date
Application number
PCT/CN2021/098495
Other languages
English (en)
French (fr)
Inventor
吴会鹏
刘华
施健
靳林芳
周阿龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021249316A1 publication Critical patent/WO2021249316A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20954Modifications to facilitate cooling, ventilating, or heating for display panels
    • H05K7/20963Heat transfer by conduction from internal heat source to heat radiating structure
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present application relates to a heat dissipation device, in particular to a bendable heat dissipation device and a bendable display device using the heat dissipation device.
  • folding terminals have become one of the important trends in terminal equipment.
  • Folding terminal products such as foldable mobile phones, are portable large-screen terminals realized through flexible bending technology. When unfolded, they can be used as a tablet to bring a large-screen experience, and when they are bent, they can be used as a mobile phone. Better portability.
  • the bendable terminal is connected to the two supporting members through the bending member, and the supporting members respectively or jointly support one display area.
  • the main heating components of the bendable terminal (such as system chip and camera module, etc.) are often concentrated on one motherboard As a result, the heat of the bendable terminal is concentrated on this side. Therefore, a heat dissipating member that can be repeatedly bent is needed to realize the heat transfer across the bending member, so that the heat of the two main boards is even.
  • the devices of each layer are on different sections and are repeatedly stretched or compressed. It should be understood that during the bending process, some devices are located on the inner side of the bend, and some devices Located on the outside of the bend. Please refer to Figs. 1a and 1b, which schematically show the three-layer devices 10, 11, and 12, which have a length L in the unfolded state as shown in Fig. 1a.
  • the bendable regions 13 of the devices 10, 11, 12 are bent in the bending direction as shown in FIG. 1b, the device 11 is located inside the bending of the device 10, and the device 12 is located outside the bending of the device 10.
  • the two ends of the bent devices 10, 11, and 12 are still aligned at A1-B1 and A2-B2, as shown in Fig. 1b. Therefore, the device 11 located on the inner side of the bend is compressed relative to the device 10, and the device 12 located on the outer side of the bend is stretched relative to the device 10. Compared with the device on the outside of the bend, the device is more compressed than the device on the outside of the bend, and the device on the outside of the bend is stretched more than the device on the inner side of the bend. In, the opposite of the above process.
  • the heat-conducting material in the existing heat-dissipating component itself does not have elasticity, that is, it does not have the properties of stretching or compression, etc.
  • the heat-dissipating component when the heat-dissipating component is repeatedly bent and unfolded with the bending equipment, it may be repeatedly compressed and unfolded. Stretching affects its performance.
  • a thermally conductive material that can be repeatedly bent and has elasticity has poor thermal conductivity, cannot realize heat transfer across the bending member, and thus cannot realize the temperature equalization on both sides of the folding mobile phone.
  • the foldable terminal requires a bendable heat dissipation member, which can transfer heat across the bending area so that the temperature on both sides of the foldable terminal can be equalized, and can adapt to the stretching and compression in the folded state and the unfolded state.
  • the embodiment of the present invention provides a bendable display device, a heat dissipation device thereof, and a terminal device.
  • the heat dissipation device is used for a bendable electronic device, and can adapt to different bending and unfolding processes of the bendable electronic device. With the change of the length of the tangent surface, the heat dissipation device has the ability to repeatedly bend, and can realize the heat transfer across the bending member, and realize the temperature equalization on both sides of the bendable electronic device.
  • an embodiment of the present invention provides a heat dissipation device for use in a bendable electronic device.
  • the heat dissipating device includes a heat dissipating device including: a bent heat conduction part, which is used to bend with the bending of the electronic device and expand along with the unfolding of the electronic device; a first heat conduction part, from the bent The first side of the heat-conducting part extends to dissipate heat for the electronic device; and a first fixing mechanism is used to movably fix the first heat-conducting part to the electronic device; wherein, the first heat-conducting part It includes a first moving mechanism for cooperating with the first fixing mechanism to move the first heat conducting part relative to the first fixing mechanism.
  • the heat dissipation device can be adapted to the change of the cut surface length of different cut surfaces when the electronic device is bent and unfolded, and the heat dissipation device can achieve the effect of stretching and shrinking on the cut surface of the heat dissipation device.
  • the first moving mechanism is a through hole on the first heat conducting part
  • the first fixing mechanism is disposed in the through hole
  • the through hole has a gap, and the gap is used to provide a relative movement stroke of the through hole and the first fixing mechanism.
  • the through hole can move a certain stroke relative to the first fixing mechanism, so as to realize the movement of the first heat conducting part relative to the first fixing mechanism.
  • the first fixing mechanism is a protrusion fixed in the electronic device.
  • the first fixing mechanism has a threaded hole and is fixed in the electronic device by screws.
  • the first moving mechanism is one of the protruding portion and the groove that cooperate with each other
  • the first fixing mechanism is the protruding portion and the groove that cooperate with each other.
  • the other of the grooves, wherein the groove is used to provide a movement track of the protrusion.
  • the bent heat conducting part when the bent heat conducting part is bent with the electronic device, The first heat-conducting part moves in a first direction relative to the first fixing mechanism; when the bent heat-conducting part is unfolded with the electronic device, the first heat-conducting part faces toward the first fixing mechanism The movement in the opposite direction of the first direction.
  • the first heat conduction portion and the bent heat conduction portion are formed integrally or separately.
  • the heat dissipation device further includes: a second heat conduction part extending from a second side of the bent heat conduction part, and the second side is connected to the first heat conduction part. One side opposite; and a second fixing mechanism for movably fixing the second heat-conducting part to the electronic device, and the second heat-conducting part includes a second moving mechanism for fixing with the second The mechanism cooperates to move the second heat-conducting part relative to the second fixing mechanism.
  • the heat dissipation device is a temperature equalizing plate, or a heat pipe, or a heat dissipation plate.
  • an embodiment of the present invention provides a heat dissipation device for a bendable electronic device.
  • the electronic device includes a first support member, a second support member, and a bending member located between the two support members.
  • the heat dissipation device is characterized in that the heat dissipation device includes: a first heat-conducting part at least partially covering the first supporting member; a second heat-conducting part at least partially covering the second supporting member; A heat-conducting part extends between the second heat-conducting part, and a wrinkled part appears as the bending member is bent or unfolded; and a first limiting structure, which is arranged at the first heat-conducting part of the bent part On the side, when the wrinkled part appears in the bent heat conducting part, the first limiting structure is used to limit the first moving range of the wrinkled part on the first side of the bent heat conducting part.
  • the heat of the first and second supporting members can be transferred between the first and second heat-conducting parts through the bent heat-conducting part, and the bent heat-conducting part may wrinkle as the bent member is bent or unfolded In part, while realizing the uniform temperature of the supporting members on both sides, it adapts to the change of the length of the different sections during bending and unfolding.
  • the heat dissipation device further includes: a second limiting structure, which is disposed on a second side of the bent heat conducting part, and the second side is connected to the The first side is opposite, and when the wrinkled part appears in the bent heat conducting part, the second limiting structure is used to limit the second side of the wrinkled part on the second side of the bent heat conducting part Moving range. Limiting the wrinkled part to a certain range of movement can ensure that the wrinkled part does not affect other components during bending or unfolding, such as not jamming the bending member to affect its bending and/or unfolding.
  • the first limiting structure and the second limiting structure form a limiting frame, and the bent heat conducting part passes through the limiting frame.
  • the bit frame extends.
  • the first limiting structure includes a plurality of limiting blocks spaced apart on the first side of the bent heat conducting portion.
  • the interval setting of multiple limit blocks can limit the range of movement of the wrinkled part at different positions, so as to ensure that the wrinkled part will not affect other components.
  • the first limiting structure includes a magnetic component, and the magnetic component generates a magnetic force on the bent and heat-conducting portion.
  • the first limiting structure is used as a magnetic component, and the movement range of the bending and heat conducting part is limited by magnetic force, and the wrinkled part can be limited by a simpler structure.
  • the first limiting structure includes a magnetic component
  • the heat dissipation device further includes: a structural member, the structural member is disposed on the bending heat conduction part The second side is opposite to the first side, and the magnetic member generates a magnetic force on the structural member.
  • the wrinkle part of the bending heat conduction part is restricted by the magnetic force between the structural member and the magnetic component, so that the position of the wrinkle part can be limited by a simple structure without using a metal or magnetic bending heat conduction part.
  • the first limiting structure includes a first magnetic component
  • the second limiting structure includes a second magnetic component
  • the first magnetic component is connected to the first magnetic component.
  • the second magnetic component is correspondingly arranged on the first side and the second side of the bent heat-conducting part to generate magnetic force with each other.
  • an embodiment of the present invention provides a bendable display device, wherein the bendable display device includes a display panel, including a display area, and the display area includes a first display area, a second display area, and a limiter. A bending area between the first display area and the second display area; a bendable device; and a heat dissipation device, located between the display panel and the bendable device, the heat dissipation device The surface is attached to the surface of the bendable device.
  • the bendable device includes a first supporting member for supporting a first area of the display panel corresponding to the first display area; and a second supporting member for supporting the second display area Corresponding to the second area of the display panel; and a bending member connected between the first support member and the second support member to overlap the bending area, and guide the display panel to make the The display panel is bent or unfolded relative to the bending area.
  • the heat dissipating device is the heat dissipating device in the above-mentioned first aspect and any implementation manner thereof.
  • the heat of one supporting member in the bendable display device can be transferred across the bending member to the supporting member on the other side through the heat dissipating device, which enlarges the heat dissipation area, and can realize the temperature uniformity of the supporting members on both sides, thereby improving the whole machine of the terminal equipment. Heat dissipation capacity.
  • an embodiment of the present invention provides a bendable display device, wherein the bendable display device includes a display panel, including a display area, and the display area includes a first display area, a second display area, and a limiter. A bending area between the first display area and the second display area; a bendable device; and a heat dissipation device, located between the display panel and the bendable device, the heat dissipation device The surface is attached to the surface of the bendable device.
  • the bendable device includes a first supporting member for supporting a first area of the display panel corresponding to the first display area; and a second supporting member for supporting the second display area Corresponding to the second area of the display panel; and a bending member connected between the first support member and the second support member to overlap the bending area, and guide the display panel to start The display panel is bent or unfolded relative to the bending area.
  • the heat dissipating device is the heat dissipating device in the above-mentioned second aspect and any implementation manner thereof.
  • the heat of one supporting member in the bendable display device can be transferred across the bending member to the supporting member on the other side through the heat dissipating device, which enlarges the heat dissipation area, and can realize the temperature uniformity of the supporting members on both sides, thereby improving the whole machine of the terminal equipment. Heat dissipation capacity.
  • an embodiment of the present invention provides a terminal device including a bendable display device, and the bendable display device is the bendable display device described in the foregoing third or fourth aspect.
  • the heat on one side of the supporting member can be transferred to the supporting member on the other side through the thermally conductive material in the film-shaped heat dissipating member across the bending member, which expands the heat dissipation area and achieves the uniform temperature of the supporting members on both sides, thereby improving the overall terminal equipment Heat dissipation capacity.
  • the heat of one supporting member in the bendable display device can be transferred across the bending member to the supporting member on the other side through the heat dissipating device, which enlarges the heat dissipation area, and can realize the temperature uniformity of the supporting members on both sides, thereby improving the whole machine of the terminal equipment. Heat dissipation capacity.
  • Fig. 1 is a schematic diagram of a folded inner and outer layer of a bendable terminal being compressed or stretched;
  • Figure 2 is a schematic diagram of a bendable electronic device
  • Figure 3 is a schematic cross-sectional view of a flexible temperature equalizing plate and a film-shaped heat sink
  • FIG. 4 is a schematic diagram of a heat dissipation device provided by an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a heat dissipation device provided by another embodiment of the present invention.
  • FIG. 6 is a schematic diagram of a heat dissipation device provided by another embodiment of the present invention.
  • Figure 7 is a schematic plan view of a fixing mechanism provided by an embodiment of the present invention.
  • Fig. 8 is a schematic diagram of a fixing mechanism provided by another embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional view of a heat dissipation device provided by another embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional view of a heat dissipation device provided by another embodiment of the present invention.
  • Figure 11 is a schematic diagram of a limiting structure provided by an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a limiting structure provided by another embodiment of the present invention.
  • the thermally conductive material is a metal or non-metallic material with high thermal conductivity (the thermal conductivity can be greater than 10W/(m ⁇ K), but this value is not limited), and is used to achieve rapid heat conduction.
  • the thermally conductive material can be graphite, aluminum foil or copper foil.
  • Flexible materials have strong flexibility, can be deformed and foldable.
  • Flexible materials include, but are not limited to: foam, rubber, polyimide (PI) or polyamide (PA, or nylon), or composite materials formed with other organic materials.
  • PI polyimide
  • PA polyamide
  • a flexible material can be understood as a material that is flexible and can withstand proper deformation. Flexibility (or flexibility) can be understood as flexibility. As opposed to rigidity, it is a physical property of materials. The flexible material deforms after being stressed, and the material itself cannot return to its original shape after the force is lost, or it can still return to its original shape, such as a flexible material with elasticity.
  • Flexible material is a material that can be deformed (for example, stretch, bend, twist, squeeze, deform, etc.) without substantially compromising performance.
  • flexible material can be said to be a material with high tensile strength and large elongation.
  • the deformed flexible material did not appear to be damaged in the deformed area, nor did it expose the internal structure.
  • the deformed area still presents a smooth and seamless surface.
  • the flexible material can be restored to its original shape through external force after being bent several times, and has a certain service life.
  • the glue layer is a layer of material that plays a role of adhesion, and can also have a certain degree of elasticity, can be compressed or stretched, and can be one layer or multiple layers.
  • FIG. 2 is a schematic diagram of a bendable electronic device 100.
  • the bendable electronic device 100 may include a display panel 1, a bendable device 2, and a heat dissipation device 3.
  • the display panel 1 may include a display area including a first display area 101, a second display area 102 and a bending area 103 defined between the first display area 101 and the second display area 102.
  • the heat dissipation device 3 is located inside or outside the bendable device 2, that is, the heat dissipation device 3 can be located on the side of the bendable device 2 close to the display panel 1, or can be located on the side of the bendable device 2 far away from the display panel 1. side.
  • the bendable device 2 includes two supporting members 201 and 202 and a bending member 203.
  • the supporting member 201 supports the first area of the display panel 1 corresponding to the first display area 101; the supporting member 202 supports the second area of the display panel corresponding to the second display area 102; the bending member 203 is connected to the two supports
  • the members 201 and 202 are at least partially overlapped with the bending area 103 and guide the display panel 1 to facilitate the folding or unfolding of the display panel 1 relative to the bending area 103, for example, folding in the direction A as shown in the figure. In other embodiments of the present invention, it can also be folded in a direction opposite to the direction A.
  • the heat dissipation device 3 in FIG. 2 includes but is not limited to: a flexible heat pipe, a flexible temperature equalizing plate, or a film-shaped heat dissipation plate.
  • a flexible heat pipe a flexible temperature equalizing plate
  • a film-shaped heat dissipation plate a film-shaped heat dissipation plate.
  • the examples of the heat sink 3 in Table 1 have good thermal conductivity and reliable bending performance. After tens of thousands of times of bending, the thermal conductivity loss is small.
  • the flexible part of the flexible heat pipe and the flexible temperature equalizing plate may include flexible materials, such as flexible polymer materials such as PI or rubber, or a metal material cover plate with bending freedom and less stress at the bending point, such as dense Metal material cover plate with mesh openings.
  • Flexible heat pipes and flexible temperature equalizing plates can be made of flexible materials as a whole to complete the overall bending, or partial flexible materials can be used to overlap non-bending areas to complete partial bending.
  • the heat pipe is a component that transfers the heat source to the far end.
  • a typical heat pipe is composed of a tube shell, a wick and an end cap.
  • the inside of the tube is pumped to a certain negative pressure and filled with an appropriate amount of working substance (working fluid) to make it close to the inner wall of the tube.
  • working fluid working substance
  • the pores of the absorbent core are filled with liquid and then sealed.
  • the uniform temperature plate can also be called the uniform heat plate, or super thermal conductivity plate, thermal conduction plate, etc. usually.
  • the temperature equalizing plate is mainly composed of an outer shell, a capillary structure, a working fluid, a supporting structure, etc., and a vacuum cavity is formed on the inner wall, as shown in Figure 3a.
  • the film-shaped heat sink may include flexible, bending-resistant thermally conductive materials such as graphite, and may also include a heat sink that is a composite of other metal or non-metal thermally conductive materials and flexible materials, as shown in FIGS. 3a and 3b.
  • FIG. 3a is a schematic cross-sectional view of a flexible temperature equalizing plate 200.
  • the flexible temperature equalizing plate 200 includes a first heat-conducting part 210, a second heat-conducting part 220, and a flexible heat-conducting part 230 located between the two.
  • the first heat-conducting part and the second heat-conducting part 210, 220 are connected to the cavities on both sides through the capillary structure e to realize the overall heat equalization of the flexible temperature equalizing plate 200;
  • the flexible heat-conducting part 230 is composed of flexible materials to meet the requirements Bend demand.
  • the first and second heat conducting parts 210 and 220 include a condensation side shell a, an evaporation side shell b, and a side wall c.
  • the condensation side shell a is connected to the evaporation side shell b through the side wall c and is sealed to define a temperature equalization plate
  • a capillary structure e is arranged in the internal cavity d, and the internal cavity d is vacuumed and filled with a certain amount of working fluid, and the working fluid can be absorbed in the capillary structure e.
  • a support structure f can also be provided in the internal cavity d. The two ends of the support structure f are connected to the condensation side respectively.
  • the shell a and the capillary structure e are connected.
  • the working liquid in the capillary structure e absorbs heat, and the phase change of evaporative boiling begins to occur in a low vacuum environment, from a liquid phase to a gas phase (capillary structure e in Figure 3a
  • the arrow in indicates the possible flow direction of the working liquid in the liquid phase
  • the arrow outside the capillary structure e indicates the possible flow direction of the working liquid in the gas phase).
  • the working liquid in the gas phase will quickly fill the entire internal cavity d. When the working liquid in the gas phase comes into contact with a relatively cold area, it will condense, thereby releasing the heat accumulated during evaporation.
  • 3b and 3c are schematic cross-sectional views of a film-shaped heat sink 300b and 300c.
  • the heat dissipation plate 300b is made up of a layer of thermally conductive material 301 and two upper and lower layers of flexible material 302 stacked in the horizontal direction as shown in the figure.
  • the thermally conductive material and the flexible material can be bonded by an adhesive layer 303.
  • the adhesive layer 303 can be glue such as double-sided tape.
  • Fig. 3b also schematically shows the support members 305, 306 of the bendable device 304 and the bending member 307 located between the two.
  • One surface of the heat sink 300b is directly attached to or directly attached to the surface of the bendable device 304 Indirect bonding through other flexible material layers or adhesive layers.
  • the heat dissipation plate 300b spans the two support members 305, 306 to cover the bending member 307, thereby spanning the bending member 307 between the two support members 305, 306 Transfer heat.
  • the heat dissipation plate may also be formed by stacking multiple layers of flexible heat-conducting materials, such as the heat dissipation plate 300c with two layers of flexible heat-conducting materials stacked as shown in FIG. 3c.
  • the heat dissipation plate 300c includes two layers of flexible thermally conductive materials 311 and 312, and each layer of flexible thermally conductive material is a composite structure of at least one thermally conductive layer and at least one flexible layer.
  • a flexible layer 314 of the flexible thermally conductive material 312 is close to or in contact with the heating component 320 on the left side of the heat dissipation plate 300b, absorbs the heat released by the heating component 320, and then conducts to the thermally conductive layer, which spans the bending area (rotation axis). Place) conduction to an area away from the heat generating component 320, such as the right side of the heat dissipation plate 300c.
  • Fig. 3b and Fig. 3c show schematic cross-sectional views of the heat dissipation plates 300b and 300c.
  • the actual heat dissipation plate is in the form of a two-dimensional film, and its thickness is on the order of micrometers.
  • This application provides a heat dissipation device, which can be applied to bendable terminal equipment, and provides a heat dissipation solution for bendable terminal equipment.
  • the bendable terminal equipment can be mobile phones, tablets, laptops, and multimedia players. Electronic equipment with flexible or bendable form such as equipment.
  • the heat dissipation device provided by the present application can adapt to the length change of the cut surface when the terminal is folded or unfolded.
  • the heat dissipation device of the present application can be applied to include but not limited to the above-mentioned flexible heat pipes, flexible temperature equalizing plates or film-like In heat-dissipating components such as heat-dissipating plates.
  • FIG. 4 is a schematic diagram of a heat dissipation device 400 provided by an embodiment of the present invention.
  • 4a shows a schematic plan view of the heat sink 400 in an unfolded state
  • FIG. 4b shows a three-dimensional schematic view of the heat sink 400 in a bent state
  • FIG. 4c shows a plan schematic view of the first heat conducting portion 401 when the heat sink 400 is in a bent state .
  • the heat dissipation device 400 is rectangular, but in the embodiment of the present application, it is not limited to a rectangle, and the heat dissipation device 400 may have other irregular shapes.
  • the heat dissipation device 400 may be used in a bendable electronic device, such as the electronic device 100 shown in FIG. 2, that is, the heat dissipation device 400 is used as one of the embodiments of the heat dissipation device 3.
  • the heat dissipating device 400 includes a first heat-conducting part 401, a second heat-conducting part 402, and a bent heat-conducting part 403.
  • the first heat-conducting part 401 and the second heat-conducting part 402 are used to absorb the heat generated by the heat-generating components on the electronic device 100 and to diffuse/release the heat to the surrounding environment.
  • the bent heat-conducting part 403 extends between the first heat-conducting part 401 and the second heat-conducting part 402, and is used to transfer heat between the heat-conducting parts 401 and 402 so that the two spread or release heat relatively evenly, thereby realizing the electronic device 100 Soak the heat on both sides.
  • the bent heat-conducting part 403 is also folded, unfolded and unfolded with the folding of the electronic device 100. Therefore, the bent heat-conducting part 403 is placed relative to the bending member 203 shown in FIG.
  • the bending member 203 is at least partially overlapped.
  • the bending part 203 of the heat sink 400 is partially overlapped and arranged on the outside of the bending member 203, such as the inner side of the bending, the outer side of the bending, or the bending part 203 may be provided Inside the bending member 203.
  • the first heat-conducting part 401, the second heat-conducting part 402, and the bending heat-conducting part 403 may be integrally formed (for example, a flexible integrated material as a whole), as shown in Table 1.
  • a flexible heat sink made of metal or non-metal materials, or their composite materials.
  • the first heat-conducting part 401, the second heat-conducting part 402, and the bent heat-conducting part 403 may be formed in separate, segmented or layered forms (for example, the two sides are made of inflexible heat-conducting material).
  • the bend is a flexible thermally conductive material), and is fixed by splicing and sticking, including but not limited to fixing by bonding or embedding, each of which can be a combination of one or more layers of materials .
  • the heat dissipating device 400 formed separately may be a metal or non-metal material, or a composite material, or a two-phase component as shown in Table 1, such as a uniform temperature plate, a heat pipe, and the like.
  • the first heat-conducting part 401 and the second heat-conducting part 402 can be made of high thermal conductivity material, and the bent heat-conducting part 403 can be a flexible heat-conducting material with both flexibility and thermal conductivity, and the splicing surface of the two can be glued.
  • the main heat-generating component when the main heat-generating component is close to the first heat-conducting part 401, the heat absorbed by the first heat-conducting part 401 from the heat-generating part can be transferred to the second heat-conducting part 402 by bending the heat-conducting part 403, thereby realizing the bendable electronic device 100 The heat spreading in the area on both sides of the bend.
  • the heat dissipation device 400 is located between the display panel 1 and the bendable device 2 shown in FIG. 2.
  • the first heat-conducting portion 401 is located between the support member 201 and the first area of the display panel 1 corresponding to the first display area 101
  • the second heat-conducting portion 402 is located between the support member 202 and the display panel corresponding to the second display area 102.
  • the bending heat conduction portion 403 is located between the bending member 203 and the bending area 103 of the display panel 1, and the heat dissipation device 400 can be folded or unfolded with the bendable device 2, for example, as shown in FIG. 2 Fold in direction A as shown, or in the opposite direction of direction A.
  • the heat dissipation device 400 further includes a plurality of fixing mechanisms 420, 421, 422, 423 for fixing the heat dissipation device 400 to other parts or components in the electronic device 100, for example, to FIG. 2
  • the middle frame or some hardware components between the display panel 1 and the bendable device 2 are shown, so that the heat sink 400 can be folded and unfolded along with the bendable device 2.
  • the fixing mechanisms 420, 421, 422, and 423 respectively fix the heat dissipating device 400 movably through the corresponding through holes 410, 411, 412, and 413 of the heat dissipating device 400, wherein, after installing the corresponding fixing mechanism on each through hole,
  • the through holes also have reserved gaps (the gaps 40, 41, 42, 43 as shown in the figure), so that at least a part of the heat dissipation device 400 can move or slide relative to one or more fixing mechanisms.
  • the heat dissipation device 400 is substantially flat in the unfolded state.
  • the first heat conducting part 401 is provided with fixing mechanisms 420 and 421, which abut against or close to the left edges of the through holes 410 and 411, respectively, and the second heat conducting part Fixing mechanisms 422 and 423 are provided on the 402 to abut against or close to the right side edges of the through holes 412 and 413, respectively.
  • the first heat conducting portion 401 slides relative to the fixing mechanisms 420, 421 within the range allowed by the reserved gaps of the through holes 410, 411, for example, facing the X direction. Sliding in the direction, and/or the second heat conducting portion 402 slides relative to the fixing mechanism 422, 423 within the range allowed by the reserved gap of the through holes 412, 413, for example, slides in the X direction.
  • the first heat-conducting part 401 and/or the second heat-conducting part 402 slide in a direction away from the bent heat-conducting part 403.
  • the maximum sliding stroke of the heat-conducting part is related to the gap reserved by the through hole.
  • the first heat-conducting part 401 and/or the second heat-conducting part 402 can also slide in a direction close to the bent heat-conducting part 403, as shown in FIG. 5b. This embodiment will be described in detail later in conjunction with FIG. 5.
  • the X direction can be regarded as the direction that always adheres to the surface of the heat sink 400.
  • the X direction defined in the full text is the direction from the first heat conducting part 401 to the second heat conducting part 402, and follows The folding and unfolding of the heat sink 400 may be a bending direction.
  • the X direction is the direction of the second heat conducting part 402 away from the bent heat conducting part 403, and the opposite direction of X may be the first heat conducting part. 401 is away from the direction in which the heat conducting part 403 is bent.
  • the Y direction can be regarded as being in the surface of the heat sink 400 and perpendicular to the X direction, while the Z direction is perpendicular to both the X and Y directions, or the Z direction is perpendicular to the surface of the heat sink 400.
  • the Y direction is still in the surface of the heat dissipation device 400 and is perpendicular to the X direction, so the Y direction It is still a straight direction, and the Z direction perpendicular to X and Y changes with the bending of the X direction.
  • the Z direction is perpendicular to the surface of the heat sink 400 at any point on the surface of the heat sink 400.
  • the maximum inner diameter of the through hole 410 in the X direction is LX0 IN
  • the maximum outer diameter of the fixing mechanism 420 in the X direction is LX0 OUT
  • the stroke that is, the maximum movement stroke, should be basically equal to the total length LX0 GAP of the gap 40 in the X direction.
  • the through holes 411, 412, and 413 allow the fixing mechanisms 421, 422, and 423 to slide in the X direction.
  • the maximum stroke is the total length of the gaps 41, 42, and 43 in the X direction.
  • LX1 GAP , LX2 GAP , LX3 GAP LX0 GAP , LX1 GAP , LX2 GAP , and LX3 GAP can be set to the same or different lengths.
  • the heat dissipation device 400 is movably installed in the electronic device 100 through the fixing mechanism and the through hole.
  • the heat dissipation device can pass through the through hole.
  • the reserved gap slides relative to the fixing mechanism, so as to adapt to the change of the cut surface in the folding or unfolding process.
  • the heat dissipating device 400 provided in the present application does not need to have the ability to expand and contract, and when it slides relative to the fixing mechanism, the thickness of the heat dissipating device in the direction perpendicular to the cut surface does not change, and it will not cause damage to other components in the electronic device 100. Any interference. Therefore, the heat dissipation device 400 provided in the present application can better realize the heat transfer of the bendable electronic device in the folded state, the unfolded state, or the folding and unfolding process, thereby meeting the requirement of uniform temperature on both sides of the electronic device.
  • the reserved gap of the through hole can also provide an activity space in the Y direction.
  • the maximum inner diameter of the through hole 410 in the Y direction is LY0 IN
  • the maximum outer diameter of the fixing mechanism 420 in the Y direction is LY0 OUT , where LY0 IN ⁇ LY0 OUT , when the fixing mechanism 420 is installed or installed in the through hole 410
  • the through holes 411, 412, and 413 can also allow the fixing mechanisms 421, 422, and 423 to slide in the Y direction.
  • the maximum stroke is the total length of the gaps 41, 42, and 43 in the Y direction, LY1 GAP , LY2 GAP , LY3 GAP .
  • the maximum stroke that the heat sink 400 slides in the Y direction relative to the fixing mechanism is the third length SY.
  • the heat dissipation device 400 provided in the present application may also be fixed relative to the fixing mechanism in the Y direction, and whether it is movable and slidable in the Y direction is not a limitation of the present application.
  • Fig. 4c shows that in a bent state, the first heat conducting part 401 of the heat sink 400 moves or slides in the opposite direction of X and abuts against the right edge of the hole 40. From Fig. 4a to Fig. 4c, the first heat conducting part 401 The maximum movement stroke is the aforementioned first length SX1.
  • the bendable electronic device is completely folded.
  • FIG. 4a As shown, after moving the first length SX1 in the X direction, the bendable electronic device is fully unfolded.
  • the displacement of the first heat conducting portion 401 of the heat sink 400 in the opposite direction of X is less than the first length SX, that is, The clearance reserved by the through hole on the first heat conducting part 401 is greater than the actual movement stroke.
  • the gap reserved by the through hole on the second heat conducting portion 401 can also be equal to or greater than its actual movement stroke.
  • the fixing mechanisms 420, 421, 422, and 423 of the heat sink 400 are fixed on the first part 45 of the bendable electronic device, and the heat sink 400 is located at the bend of the first part 45
  • the inner side therefore, when the bendable electronic device is folded, the first heat-conducting part 401 and the second heat-conducting part 402 of the heat sink 400 are stretched in the opposite direction of the X direction and the X direction with respect to the fixing mechanism and the first member 45, respectively ;
  • the heat dissipating device 400 can adapt to the change of the length of the section where the bendable electronic device is expanded and bent.
  • a third component is also provided on the inner side of the bending of the heat dissipation device 400 to be attached to the heat dissipation device 400, so as to dissipate heat.
  • the device 400 will not be detached from the first member 45 due to the through holes 410, 411, 412, and 413.
  • the fixing mechanism 420, 421, 422, and 423 may also include a portion extending in the X direction, such as an umbrella portion that straddles the through holes 410, 411, 412, and 413, thereby The heat dissipation device 400 is prevented from being separated from the first component 45.
  • the first component 45 may be, for example, a middle frame of a bendable electronic device, a bending mechanism, etc., for example, the heat sink 400 may be fixed to The middle frame enables the heat dissipation device 400 to be attached to the display screen, power supply, or other electronic components for heat dissipation.
  • the first component 45 may be a combination of multiple components.
  • the heat sink 400 may be fixed to the middle frame by fixing mechanisms 420 and 422, and fixed to the bending mechanism by fixing mechanisms 421 and 423. The mechanism enables the heat dissipation device 400 to be attached to the display screen, the power supply, or other electronic components for heat dissipation.
  • the cut surface of the heat sink 400 on the inner side of the bend relative to the first part is compressed relative to the first part, and therefore, the heat sink
  • the slidable part of 400 stretches in the direction of its tangent plane, and the direction of extension is the opposite direction of compression of the tangent plane.
  • the heat dissipating device 400 slides relative to the fixing mechanisms 420, 421, 422, and 423, wherein the first heat conducting part 401, as shown in FIG. , And/or the second heat conducting part 402, as shown in FIG. 4b, slides a second stroke in the X direction (the second stroke can be up to SX2).
  • the first heat conducting portion 401 and/or the second heat conducting portion 402 respectively slide in directions opposite to the above.
  • FIG. 5 is a schematic diagram of a heat dissipation device 500 provided by another embodiment of the present invention.
  • the fixing mechanisms 520, 521, 522, and 523 of the heat dissipation device 500 are fixed on the second part 55 of the bendable electronic device, and the heat dissipation device 500 is located outside the bending of the second part 55 .
  • the heat sink 500 is contracted in its length direction relative to the fixing mechanism and the second component 55, while the bendable electronic device is in the unfolding process, contrary to the above situation. Therefore, the heat dissipating device 500 can adapt to the change of the length of the section where the bendable electronic device is expanded and bent.
  • the second component 55 may be, for example, a middle frame of a bendable electronic device, a bending mechanism and other components. Frame, so that the heat dissipation device 500 can be attached to the display screen, the power supply, or other electronic components for heat dissipation.
  • the second component 55 may be a combination of multiple components.
  • the heat sink 500 may be fixed to the middle frame by fixing mechanisms 520 and 522, and fixed to the bending mechanism by fixing mechanisms 521 and 523. The mechanism enables the heat dissipation device 500 to be attached to the display screen, the power supply, or other electronic components for heat dissipation.
  • the heat dissipation device 500 slides relative to the fixing mechanisms 520, 521, 522, and 523, wherein the first heat-conducting part 501, as shown in FIG. 5b, slides in the X direction for the first stroke, and/or the second heat-conducting part 502 as shown in As shown in 5b, slide the second stroke in the opposite direction of X.
  • the first heat conducting portion 501 and/or the second heat conducting portion 502 respectively slide in directions opposite to those described above.
  • FIG. 6 is a schematic diagram of a heat dissipation device 600 provided by another embodiment of the present invention.
  • the heat dissipating device 600 has a similar structure to the heat dissipating devices 400 and 500, so similar reference numerals are used.
  • the first heat conducting portion 601 of the heat dissipation device 600 can move or slide, which is the same as or similar to the foregoing embodiment, and will not be repeated here.
  • the second heat-conducting part 602 of the heat dissipation device 600 is fixed to the heat source or structural member of the bendable electronic device through an adhesive layer, for example, is fixed to the heating component 630 by back glue or dispensing.
  • the fixing of the second heat conducting part 602 and the heating component 630 can better absorb the heat of the heating component 630 to quickly dissipate heat.
  • the heat dissipating device 600 is stretched on the outer side of the bend relative to the first member or the second member, or compressed on the inner side of the bend relative to the first member or the second member, and the first heat conducting portion 601 is opposed to
  • the fixing mechanisms 620 and 621 slide in the X direction or the opposite direction.
  • the heat dissipating device 600 provided by the present application does not need to have stretchable performance, and can adapt to the change of the cut surface of the whole machine during bending or unfolding at the inner side or the outer side of the bending, and at the same time, it can cross the bending area.
  • the heat transfer makes both sides of the whole machine heat up.
  • the first heat-conducting part 601 and the heat source or structural member can also be fixed together by adhesive or dispensing, so that the second heat-conducting part 602 can move or slide.
  • the second heat-conducting part 602 telescopes and slides relative to the fixing mechanism, so as to adapt to the change when the cut surface where it is compressed or stretched.
  • the bending heat conduction portion 403/503/603 can be set to be fixed relative to the bending member 203, for example, glue to the bending member 203, or
  • the bending heat conduction part is set to move or slide relative to the bending member 203, for example, the bending heat conduction part is set to suspend or fit the bending member 203 or fit other parts, so as to be bent or unfolded in the electronic device 100 In the process, the bending heat conduction part moves or slides relative to the bending member 203.
  • the sliding direction and maximum stroke of the bent heat-conducting part 403 depend on the reserved gaps of the through holes provided on the first heat-conducting part 401 and the second heat-conducting part 402, that is, depend on the aforementioned maximum movement strokes SX1 and SX2.
  • Setting the bending heat conduction portion 403 to be fixed or movable is not a limitation of the present application, so this article does not make any limitation on its fixing method.
  • Fig. 7 is a schematic plan view of a fixing mechanism 70-73 provided by an embodiment of the present invention.
  • the fixing mechanisms 70, 71, 72, and 73 respectively include structural members 702, 712, 722, and 732.
  • the structure is roughly rectangular, square, round, etc., and the corners of the structure can be designed with rounded corners to avoid stress concentration. It should be understood that the structure on the heat sink can also have other shapes, not just the shape illustrated in FIG. 7.
  • the structural members 702, 712, 722, and 732 may be protruding parts on other structures of the bendable electronic device, or may be parts separated from other structures, and installed by screws or bonded by an adhesive layer.
  • the structural members 702 and 712 further include screw holes 703 and 713, respectively, for fixing the heat sink to other structures of the bendable electronic device, such as the middle frame, with screws (not shown in the figure).
  • the structural member may include a plurality of screw holes.
  • FIG. 7 also shows the through holes 701, 711, 721, and 731 on the heat sink.
  • the outline of the through hole is roughly rectangular, square, round, oval, etc., and the corners of the through hole can be designed with rounded corners to avoid stress concentration.
  • the through hole on the heat sink may also have other shapes, not just the shape illustrated in FIG. 7.
  • the fixing mechanisms 70, 71, 72, and 73 shown in FIG. 7 are respectively arranged in the through holes 701, 711, 721, and 731. Since these through holes have reserved gaps 700, 710, 720, and 730, the fixing mechanism can be arranged in The middle of the corresponding through hole is either close to the left and right edges, or close to the upper and lower edges.
  • the fixing mechanism is arranged to abut the edge of the through hole in the X direction, so as to provide the largest movement stroke for the heat sink during the folding or unfolding process to deal with Compression or tension on the cut surface where the heat sink is located.
  • the fixing mechanism can also be arranged to abut against the edge of the through hole in the Y direction, or arranged at the middle of the through hole in the Y direction, and the heat sink can move or slide relative to the fixing mechanism in the Y direction. This article does not make any restrictions on the movement of the heat sink in the Y direction.
  • FIG. 7 shows various forms of through holes and fixing mechanisms
  • the through holes and fixing mechanisms provided on the heat sink may have different forms, wherein, as long as There are two structures with a gap on the heat sink. These two structures can move relative to each other in the reserved gap to meet the compression or tension movement of the heat sink during the bending or flattening process.
  • the stroke is one of the implementation methods of the heat dissipation device provided in this application.
  • FIG. 8 shows a schematic diagram of heat dissipation devices 800 and 810 provided by another embodiment of the present invention.
  • the first heat conducting parts and/or the first heat conducting parts of the heat dissipating devices 800, 810 are not provided with through holes, but are provided with protrusions on the surface.
  • the first heat-conducting part 801 and the second heat-conducting part 802 of the heat sink 800 are provided with protrusions 804, 805, and 806, 807, respectively, and the second heat-conducting part 812 of the heat sink 800 is provided with protrusions 814, 815.
  • Each protrusion moves or slides in cooperation with a chute, a slide, or a slide rail installed on the bendable electronic device.
  • the protrusions move along the sliding groove, the sliding track, or the sliding rail, that is, the first heat-conducting part 801, and the first heat-conducting parts 802, 812 are opposite to The chute, the chute, or the sliding rail move, so that the heat sink 800, 810 can be bent or unfolded in the bendable electronic device, and can adapt to the length change of different sections.
  • the protrusions can be arranged on one side of the bending direction (such as the heat sink 810), or can be arranged on the other side of the bending direction (such as the heat sink 800). It should be understood Neither the location of the protrusion nor the shape of the protrusion can be used as a limitation to the application. In other embodiments of the application, the protrusion may have a shape different from that shown in FIG. /Or the second heat conducting part is different from the area shown in FIG. 8.
  • the protrusion may be provided on a bendable electronic device, and the heat dissipation devices 800 and 810 have sliding grooves, slides, or sliding rails matching the protrusions. Therefore, the heat dissipation device 800 , 810 can move relative to the protrusion.
  • heat dissipating devices 800 and 810 only move or slide in a different manner from the foregoing embodiment, and other aspects are the same as or similar to the foregoing embodiment, they will not be repeated here.
  • the heat dissipating devices in the above embodiments can be combined with each other.
  • the heat dissipating device may be provided with protrusions and through holes at the same time, so as to cooperate with the sliding groove or the fixing mechanism in different areas to realize movement or sliding.
  • the heat dissipation device in the foregoing embodiment of the present application realizes the sliding of at least a part of the heat dissipation device during the bending or unfolding process through the cooperation of the fixing mechanism and the reserved gap, or the cooperation of the sliding groove and the protrusion.
  • the foregoing embodiments provide through holes/protrusions arranged at different positions on the first heat conducting part and/or the second heat conducting part. It should be understood that only one through hole/protrusion may be provided on the first heat conducting part. In order to cooperate with the fixing mechanism/sliding groove on the electronic device, or, only one through hole/protrusion can be provided on the second heat conducting part to cooperate with the fixing mechanism/sliding groove on the electronic device.
  • the first The heat-conducting part and/or the second heat-conducting part can also move relative to the fixing mechanism/chute, so that the heat dissipation device can adapt to the change in the length of the cut surface during the unfolding or bending process of the electronic device. Therefore, the technical solution provided in this application can It is applied to the heat dissipation device of various bendable or foldable electronic equipment, which not only ensures the reliability, but also has a better heat dissipation effect.
  • FIG. 9 shows a schematic cross-sectional view of a heat dissipation device 900 provided by another embodiment of the present invention.
  • the heat dissipation device 900 includes a first heat-conducting part 901, a second heat-conducting part 902, and a bent heat-conducting part 903.
  • the first heat-conducting part 901 is fixed to the first support structure 921 of the bendable electronic device
  • the second heat-conducting part 902 is fixed
  • the bent heat conducting portion 903 is disposed above the bendable mechanism 923 between the first support structure 921 and the second support structure 922, such as a hinge mechanism.
  • the two ends of the bent heat-conducting part 903 can be embedded or glued to the corresponding ends of the first heat-conducting part 901 and the second heat-conducting part 902 as described above in conjunction with FIG. 4, or can be fixed to the first support by other fixing mechanisms.
  • the structure 921, the second supporting structure 922, or the bendable mechanism 923 On the structure 921, the second supporting structure 922, or the bendable mechanism 923.
  • the heat dissipation device 900 further includes a first fixing structure 911 and a second fixing structure 912, which are respectively used to fix both sides of the bent heat conducting part 903.
  • the fixing structures 911, 912 are folded
  • the two sides of the bent heat conducting part 903 are respectively fixed to the first supporting structure 921 and the second supporting structure 922, or fixed to the two ends of the hinge structure 923, respectively.
  • the bent heat-conducting part 903 is suspended above the bending mechanism 923, or in other words, the bent heat-conducting part 903 does not fit other structures or mechanisms.
  • the heat dissipation device 900 shown in FIG. 9 is disposed on the inner side of the bending of the first support structure 921, the second support structure 922, and the hinge structure 923.
  • the heat dissipating device 900 When the heat dissipating device 900 is in the unfolded state, as shown in FIG. 9a, it has a substantially planar bent heat-conducting part 903, while in the folded state, as shown in FIG. .
  • the bent heat-conducting part 903 is a heat-conducting material that can be bent, and the bent heat-conducting material does not need to have elasticity.
  • the bending heat conduction part 903 can meet the length change of the section where it is located, that is, the redundant part produces wrinkles when compressed, and the redundant part when stretched The wrinkles are reduced and even flattened.
  • FIG. 10 shows a schematic cross-sectional view of a heat dissipation device 1000 provided by another embodiment of the present invention.
  • the heat dissipation device 1000 in FIG. 10 is similar to the heat dissipation device 900 in FIG. 9, and the same or similar reference numerals are used to indicate the same or similar structures of the two.
  • the heat dissipation device 1000 includes a first heat-conducting part 1001, a second heat-conducting part 1002, and a bending heat-conducting part 1003, wherein the first heat-conducting part 1001 is fixed to the first support structure 1021 of the bendable electronic device, and the second heat-conducting part 1002 is fixed In the second support structure 1022 of the electronic device, the bent heat conducting portion 1003 is disposed above the bendable mechanism 1023 between the first support structure 1021 and the second support structure 1022, such as a hinge mechanism.
  • the two ends of the bent heat-conducting part 1003 can be embedded or glued on the corresponding ends of the first heat-conducting part 1001 and the second heat-conducting part 1002 as described above in conjunction with FIG. 4, or can be fixed to the first support by other fixing mechanisms.
  • the structure 1021, the second supporting structure 1022, or the bendable mechanism 1023 are attached.
  • the heat dissipating device 1000 further includes a first fixing structure 1011 and a second fixing structure 1012, which are respectively used to fix both sides of the bent heat conducting part 1003.
  • the fixing structures 1011, 1012 are folded
  • the two sides of the bent heat conduction part 1003 are respectively fixed to the first support structure 1021 and the second support structure 1022, or to the two ends of the hinge structure 1023, respectively.
  • the bending heat conduction portion 1003 is suspended above the bending mechanism 1023, or in other words, the bending heat conduction portion 1003 does not fit other structures or mechanisms.
  • the heat dissipation device 1000 shown in FIG. 10 is disposed on the bent outer side of the first support structure 1021, the second support structure 1022, and the hinge structure 1023.
  • the heat dissipating device 1000 When the heat dissipating device 1000 is in the unfolded state, as shown in FIG. 10a, it has a bent heat-conducting part 1003 extruded out of the redundant part, and in the folded state, as shown in FIG. 10b, it has a substantially flat bent heat-conducting part 1003 .
  • the bending heat conduction part can also be arranged inside the hinge mechanism 923, 1023 and fixed relative to the third part inside the hinge mechanism.
  • the bending heat conduction part arranged inside the hinge mechanism 923 The part can also be located inside or outside the third part of the third part. Therefore, when it is arranged inside the hinge mechanism 923, the bending heat conduction part can be compressed in the unfolded state or folded state, so that the redundant part can produce wrinkles. , And stretched in the folded state or unfolded state, so that the wrinkles are reduced, or even flattened.
  • the redundant part that is extruded can be in any shape within the allowed space without being processed into a special and/or regular fold shape in advance. Therefore, this application does not impose any limitation on the shape of the redundant part that is extruded.
  • the heat dissipation devices 900 and 1000 in the present application also include a limiting structure to limit the moving range or movement of the redundant part. space.
  • the limiting structure will be described in detail below in conjunction with FIG. 11 and FIG. 12.
  • FIG. 11 shows a schematic diagram of the limiting structures 110 and 120 in an embodiment of the present invention.
  • the limiting structures 110 and 111 are installed relative to the above-mentioned bent heat conducting part 903/1003, as shown in FIG. 11a.
  • the limit structures 110, 111 can be limit frames extending in the Y direction, such as buckles.
  • the bent heat conducting part 903/1003 passes through the limit frames 110, 111 in the X direction, so the redundant part is in the Z direction
  • the upper is restricted by the limit frame.
  • the height of the limiting structure 110 in the Z direction is L1
  • the height of the limiting structure 111 in the Z direction is L2, where L1 and L2 can be set to the same or different heights.
  • the movement range of the wrinkle part generated by bending the redundant part of the heat-conducting part 903/1003 in the Z direction is basically within L1 and L2, respectively.
  • two limiting structures 110, 111 are shown to limit the movement range of the redundant part in the bending heat conduction part 903/1003 at different positions in the X direction.
  • fewer or more limiting structures may be provided on the heat dissipation devices 900 and 1000, and the limiting structures may also have a shape different from that shown in FIG. 11a.
  • the bending heat conduction portion 903/1003 is bent or unfolded in the X direction.
  • the limiting structures 110 and 111 are arranged along the Y direction, and the width in the X direction is relatively narrow, Therefore, when the limit structure moves with the bending or unfolding of the bending mechanism, it is hardly affected by the tension or compression of the cut surface.
  • Figure 11b shows a cross-sectional view of the limiting structure in Figure 11a. It should be understood that the embodiment of the present application shows a rectangular limiting frame with rounded corners. This is not a limitation of the present application. In other embodiments, the limiting The structure can also have other regular or irregular shapes.
  • FIG. 12 shows a schematic diagram of the limiting structure 120-123 in another embodiment of the present invention.
  • the limiting structure 120-123 is installed relative to the above-mentioned bending and thermal conduction part 903/1003, and specifically, the limiting structure 120-123 is a magnetic component installed toward the bending thermal conduction part 903/1003, and the magnetic component is magnetic Further restrict the movement of the redundant part of the bending heat conduction part 903/1003, so as to avoid the wrinkle generated by the redundant part from affecting other components in the bendable electronic device.
  • the structural member 124 two magnetic components 120, 121 are provided along the X direction, which are arranged on the first side of the bending heat conduction part 903/1003, and respectively oppose the different bending heat conduction parts 903/1003.
  • Regional limit that is, limit the wrinkles generated in the bending heat conduction portion 903/1003 to a certain range on the first side.
  • the bent thermally conductive portion 903/1003 is a thermally conductive material with magnetism or a thermally conductive material containing a magnetic metal, so as to be attracted by the magnetic components 120 and 121 to limit the redundant portion in the Z direction. move.
  • the structural member 125 is magnetic or contains a magnetic metal, so as to attract each other with the magnetic components 120 and 121 to limit the redundant portion of the bending heat conduction portion 903/1003 in the Z direction. Mobile.
  • a plurality of magnetic components 120, 121, 122, 123 may be provided in the Z direction.
  • two magnetic components 120, 121 are arranged along the X direction, that is, the magnetic components 120, 121 are arranged on the first side of the bent heat conducting part 903/1003.
  • two magnetic components 122, 123 are arranged along the X direction, that is, the magnetic components 122, 123 are arranged on the second side of the bent heat conducting part 903/1003.
  • the magnetic components 120 and 122 are basically arranged in alignment in the Z direction to limit the movement of a part of the wrinkles of the bent heat conducting part 903/1003 in the Z direction
  • the magnetic components 121 and 123 are basically arranged in alignment in the Z direction to limit the movement. The movement of the other part of the wrinkles of the bending heat conduction part 903/1003 in the Z direction.
  • the magnetic components 120, 121 mainly limit the wrinkles generated in the bending heat conduction portion 903/1003 on the first side within the first range, and the magnetic components 122, 123 mainly fold on the second side.
  • the wrinkles generated in the bent heat conduction portion 903/1003 are limited to the second range.
  • the structural members 124 and 125 may be parts of a bendable electronic device, such as a middle frame or a bending member.
  • the structural members 124 and 125 may also be additionally added to fix the above-mentioned magnetic component on the electronic device, so as to limit the redundant part of the bending heat conduction part 903/1003 to be restricted. The wrinkles that appear during the bending or unfolding process of the redundant part of the electronic device will not affect other components on the electronic device.
  • the magnetic components 120, 121, 122, and 123 may be a single component that extends in the Y direction, or may be a plurality of components that are sectioned in the Y direction.
  • the heat dissipation device relies on the redundant part of the bending heat-conducting part to realize the change of the cut surface length without the need for elasticity.
  • the redundant part also provides an enlarged heat dissipation area. The heat dissipation efficiency is improved, and the bending heat conduction part with redundant parts transfers heat across the bending area, which can realize the temperature equalization on both sides of the electronic device, thereby improving the heat dissipation capacity of the whole bendable electronic device.
  • the heat dissipating device limits the range of movement or space of the redundant part through the limiting structure, so as to prevent it from affecting other components when wrinkles are generated, and in particular, it does not cause the bending member to bend or bend.
  • the redundant part was stuck in the process of unfolding.
  • the heat dissipation device provided in the present application can be applied to various bendable or foldable electronic devices.
  • the heat-conducting material in the heat-dissipating device does not have to have the performance of expansion and contraction, that is, the heat-conducting material can be used in the bendable electronic equipment.
  • the whole machine is bent or unfolded, and the cut surface on the inner side of the bend is compressed or the cut surface on the outer side of the bend is stretched, so while ensuring the heat dissipation effect, it also provides the reliability of the bending.
  • the first heat-conducting part, the second heat-conducting part, and the bending heat-conducting part of the heat sink in the above-mentioned embodiments which may be made of flexible materials and/or heat-conducting materials.
  • the heat dissipation plate formed of composite material may also be a heat dissipation device corresponding to a two-phase structure such as a uniform temperature plate or a heat pipe.
  • the heat-conducting material in the heat dissipation device may be a liquid or granular material with high thermal conductivity, which has a high thermal conductivity, so that it can conduct heat quickly to achieve the function of heat dissipation.
  • the heat-conducting material needs to be enclosed in a confined space by other materials to avoid leakage, causing pollution and damage to electronic devices.
  • the material used to seal the thermally conductive material can be the flexible material proposed in this application, or it can be other materials with a certain degree of flexibility, which is not particularly limited in this application.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

本申请提供一种散热装置、可折弯显示装置以及终端设备,散热装置用于可折弯电子设备,该散热装置包括折弯导热部分,用于随着电子设备的折弯而折弯,且随着电子设备的展开而展开;第一导热部分,从折弯导热部分的第一侧延伸,用于为电子设备散热;以及第一固定机构,用于将第一导热部分可移动的固定于电子设备;其中,第一导热部分包括第一移动机构,用于与第一固定机构配合以使第一导热部分相对于第一固定机构移动。通过第一导热部分相对于第一固定机构移动,可以实现第一导热部分在电子设备折弯和展开的过程中适应其切面长度的变化,从而可以满足电子设备的反复折弯,并提升电子设备的散热能力。

Description

可折弯显示装置及其散热装置
本申请要求在2020年6月13日提交中国国家知识产权局、申请号为202010538543.4的中国专利申请的优先权,发明名称为“可折弯显示装置及其散热装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及一种散热装置,尤其涉及一种可弯折的散热装置、以及应用该散热装置的可折弯显示装置。
背景技术
为了同时满足消费者对大屏体验以及便携性终端的需求,折叠终端已成为终端设备的重要趋势之一。折叠类终端产品,例如折叠手机,是通过柔性折弯技术实现的具有便携性的大屏终端,其在展开状态时可以作为平板电脑带来大屏体验,而其在折弯状态时作为手机具有更好的便携性。可折弯终端通过折弯构件连接两个支撑构件,支撑构件分别或者共同支撑一个显示区域。为了配合低时延、高流畅的体验,以及减少可折弯终端的两个主板之间的走线,可折弯终端主要的发热器件(例如系统芯片和摄像头模块等)往往集中在一个主板上,导致可折弯终端的热量集中在这一侧,因此需要一种可以反复折弯的散热构件实现热量可以跨折弯构件传递,使得两个主板热量均匀。
另外,在可折弯终端的折弯过程中,各层器件处于不同切面上,而被反复地拉伸或者压缩,应可理解,在折弯过程中,一些器件位于折弯的内侧,一些器件位于折弯的外侧。请参见图1a、1b,示意性的示出三层器件10、11、12,其在如图1a所示的展开状态时具有长度L。当器件10、11、12的可折弯区域13在如图1b所示的折弯方向折弯时,器件11位于器件10的折弯内侧,器件12位于器件10的折弯外侧。当器件10、11、12依次贴合,例如胶合时,折弯后的器件10、11、12的两端仍然在A1-B1以及A2-B2处对齐,如图1b所示。因此,位于折弯内侧的器件11相对于器件10被压缩,而位于折弯外侧的器件12相对于器件10被拉伸,即,当折弯设备由展开到折叠的过程中,位于折弯内侧的器件相对于折弯外侧的器件所受压缩的程度更大,而位于折弯外侧的器件相对于折弯内侧的器件所受拉伸的程度更大,当折弯设备由折叠到展开的过程中,与上述过程相反。由于现有的散热构件中的导热材料本身不具有弹性,即不具有拉伸或压缩等可延展的性能,当散热构件随着折弯设备反复折弯和展开时,可能因其反复被压缩和拉伸而使其性能受到影响。同时,可以反复折弯并且具有弹性的导热材料的导热效果差,无法实现热量跨折弯构件传递,也就无法实现折叠手机两侧均温。
可折叠终端需要一种可折弯散热构件,在实现跨弯折区域传热以使折叠终端两面均温的同时,可以适应折叠状态和展开状态时的拉伸和压缩。
发明内容
本发明实施例提供一种可折弯显示装置及其散热装置、以及终端设备,其中,散热装置用于可折弯电子设备,并可以适应可折弯电子设备在折弯和展开的过程中不同切面的切面长 度的变化,该散热装置具备反复折弯的能力,并且可以实现热量跨折弯构件传递,实现可折弯电子设备的两侧均温。
第一方面,本发明实施例提供一种散热装置,用于可折弯电子设备。该散热装置包括散热装置包括:折弯导热部分,用于随着所述电子设备的折弯而折弯,且随着所述电子设备的展开而展开;第一导热部分,从所述折弯导热部分的第一侧延伸,用于为所述电子设备散热;以及第一固定机构,用于将所述第一导热部分可移动的固定于所述电子设备;其中,所述第一导热部分包括第一移动机构,用于与所述第一固定机构配合以使第一导热部分相对于所述第一固定机构移动。通过相对于第一固定机构移动的第一导热部分,可以使散热装置适应电子设备在折弯和展开时不同切面的切面长度变化,并使得散热装置在其切面上实现拉伸和收缩的效果。
基于第一方面,在第一方面的第一实现方式中,所述第一移动机构是所述第一导热部分上的通孔,所述第一固定机构设置于所述通孔中,且所述通孔具有间隙,所述间隙用于提供所述通孔与所述第一固定机构相对移动的行程。通过通孔中预留的间隙,通孔可以相对于第一固定机构移动一定的行程,从而实现第一导热部分相对于第一固定机构的移动。
基于第一方面,在第一方面的第二实现方式中,所述第一固定机构是固定于所述电子设备内的突出部。
基于第一方面和第一方面的第二实现方式,在第一方面的第三实现方式中,所述第一固定机构具有螺纹孔,并通过螺钉固定于所述电子设备中。
基于第一方面,在第一方面的第四实现方式中,所述第一移动机构是相互配合的突出部和凹槽中的一个,所述第一固定机构是所述相互配合的突出部和凹槽中的另一个,其中,所述凹槽用于提供所述突出部的移动轨迹。通过突出部和凹槽,可以以简单的结构为第一移动机构和第一固定机构之间提供可靠的移动配合。
基于第一方面和第一方面的第一至第四实现方式中的任一个实现方式,在第一方面的第五实现方式中,当所述折弯导热部分随所述电子设备折弯时,所述第一导热部分相对于所述第一固定机构朝第一方向移动;当所述折弯导热部分随所述电子设备展开时,所述第一导热部分相对于所述第一固定机构朝所述第一方向的反方向移动。
基于第一方面,在第一方面的第六实现方式中,所述第一导热部分与所述折弯导热部分是一体形成的、或分体形成的。
基于第一方面,在第一方面的第七实现方式中,所述散热装置还包括:第二导热部分,从所述折弯导热部分的第二侧延伸,所述第二侧与所述第一侧相对;以及第二固定机构,用于将所述第二导热部分可移动的固定于所述电子设备,且所述第二导热部分包括第二移动机构,用于与所述第二固定机构配合以使第二导热部分相对于所述第二固定机构移动。通过将第二导热部分与第一导热部分,分别设置于电子设备折弯的两侧,可以实现电子设备的折弯两侧均温,通过设置分别相对于第一和第二固定机构移动的该第一和第二导热部分,使得散热装置可以适应电子设备在折弯和展开过程中不同切面的切面长度变化。
基于第一方面,在第一方面的第八实现方式中,所述散热装置是均温板、或热管、或散热板。
第二方面,本发明实施例提供一种散热装置,用于可折弯电子设备,所述电子设备包括第一支撑构件、第二支撑构件和位于两个支撑构件之间的折弯构件,其特征在于,所述散热装置包括:第一导热部分,至少部分地覆盖所述第一支撑构件;第二导热部分,至少部分地 覆盖所述第二支撑构件;折弯导热部分,在所述第一导热部分和所述第二导热部分之间延伸,并且随着所述折弯构件的弯折或展开而出现褶皱部分;以及第一限位结构,设置于所述折弯导热部分的第一侧,当所述折弯导热部分出现所述褶皱部分时,所述第一限位结构用于限定所述褶皱部分在所述折弯导热部分的所述第一侧的第一移动范围。第一和第二支撑构件的热量可以通过折弯导热部分在第一导热部分和第二导热部分之间传递,该折弯导热部分可以随着所述折弯构件的弯折或展开而出现褶皱部分,从而在实现两侧支撑构件均温的同时,适应弯折和展开时不同切面的切面长度变化。
基于第二方面,在第二方面的第一实现方式中,所述散热装置进一步包括:第二限位结构,设置于所述折弯导热部分的第二侧,所述第二侧与所述第一侧相对,且当所述折弯导热部分出现所述褶皱部分时,所述第二限位结构用于限定所述褶皱部分在所述折弯导热部分的所述第二侧的第二移动范围。将褶皱部分限定在一定的移动范围内,可以在折弯或展开时保证褶皱部分不影响其他元器件,例如不卡住折弯构件以影响其折弯和/或展开。
基于第二方面的第一实现方式,在第二方面的第二实现方式中,所述第一限位结构和第二限位结构组成限位框,所述折弯导热部分穿过所述限位框延伸。
基于第二方面,在第二方面的第三实现方式中,所述第一限位结构包括间隔的设置于所述折弯导热部分的所述第一侧的多个限位块。通过多个限位块的间隔设置,可以限制褶皱部分在不同位置的移动范围,从而保证褶皱部分不会影响其他元器件。
基于第二方面,在第二方面的第四实现方式中,所述第一限位结构包括磁性部件,所述磁性部件对所述折弯导热部分产生磁力。第一限位结构作为磁性部件,通过磁力限制折弯导热部分的移动范围,可以通过更简单的结构对褶皱部分进行限位。
基于第二方面,在第二方面的第五实现方式中,所述第一限位结构包括磁性部件,且所述散热装置进一步包括:结构件,所述结构件设置于所述折弯导热部分的第二侧,所述第二侧与所述第一侧相对,所述磁性部件对所述结构件产生磁力。通过结构件与磁性部件之间的磁力来限制折弯导热部分的褶皱部分,这样无需使用金属的或带磁性的折弯导热部分,即可通过简单的结构实现对褶皱部分的限位。
基于第二方面,在第二方面的第六实现方式中,所述第一限位结构包括第一磁性部件,所述第二限位结构包括第二磁性部件,所述第一磁性部件与所述第二磁性部件对应地布置于所述折弯导热部分的所述第一侧和所述第二侧,以相互产生磁力。
第三方面,本发明实施例提供一种可折弯显示装置,其特征在于,可折弯显示装置包括显示面板,包括显示区域,所述显示区域包括第一显示区域、第二显示区域和限定在所述第一显示区域与所述第二显示区域之间的折弯区域;可折弯装置;以及散热装置,位于所述显示面板和所述可折弯装置之间,所述散热装置的表面与所述可折弯装置的表面贴合。所述可折弯装置包括,第一支撑构件,用于支撑与所述第一显示区域相对应的所述显示面板的第一区域;第二支撑构件,用于支撑与所述第二显示区域相对应的所述显示面板的第二区域;以及折弯构件,连接于所述第一支撑构件和第二支撑构件之间以与所述折弯区域重叠,并且引导所述显示面板以使所述显示面板相对于所述折弯区域弯折或展开。其中,所述散热装置为上述第一方面及其任一实现方式中的散热装置。可折弯显示装置中的一个支撑构件的热量可以散热装置而跨折弯构件传递到另一侧的支撑构件,扩大了散热面积,可以实现两侧支撑构件均温,从而提升终端设备的整机散热能力。
第四方面,本发明实施例提供一种可折弯显示装置,其特征在于,可折弯显示装置包括 显示面板,包括显示区域,所述显示区域包括第一显示区域、第二显示区域和限定在所述第一显示区域与所述第二显示区域之间的折弯区域;可折弯装置;以及散热装置,位于所述显示面板和所述可折弯装置之间,所述散热装置的表面与所述可折弯装置的表面贴合。所述可折弯装置包括,第一支撑构件,用于支撑与所述第一显示区域相对应的所述显示面板的第一区域;第二支撑构件,用于支撑与所述第二显示区域相对应的所述显示面板的第二区域;以及折弯构件,连接于所述第一支撑构件和第二支撑构件之间以与所述折弯区域重叠,并且引导所述显示面板以始所述显示面板相对于所述折弯区域弯折或展开。其中,所述散热装置为上述第二方面及其任一实现方式中的散热装置。可折弯显示装置中的一个支撑构件的热量可以散热装置而跨折弯构件传递到另一侧的支撑构件,扩大了散热面积,可以实现两侧支撑构件均温,从而提升终端设备的整机散热能力。
第五方面,本发明实施例提供一种终端设备,包括可折弯显示装置,所述可折弯显示装置为前述第三方面或第四方面所述的可折弯显示装置。支撑构件一侧的热量可以通过膜状散热构件中的导热材料跨折弯构件传递到另一侧的支撑构件,扩大了散热面积,可以实现两侧支撑构件均温,从而提升终端设备的整机散热能力。可折弯显示装置中的一个支撑构件的热量可以散热装置而跨折弯构件传递到另一侧的支撑构件,扩大了散热面积,可以实现两侧支撑构件均温,从而提升终端设备的整机散热能力。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需的附图作简要说明。显然,这些附图只是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为可折弯终端中折叠内外层受到压缩或拉伸的示意图;
图2为可折弯电子设备的示意图;
图3是一种柔性均温板和一种膜状散热板的截面示意图;
图4为本发明实施例提供的散热装置的示意图;
图5为本发明另一实施例提供的散热装置的示意图;
图6为本发明另一实施例提供的散热装置的示意图;
图7为本发明实施例提供的固定机构的平面示意图;
图8为本发明另一实施例提供的固定机构的示意图;
图9为本发明另一实施例提供的散热装置的截面示意图;
图10为本发明另一实施例提供的散热装置的截面示意图;
图11为本发明实施例提供的限位结构的示意图;
图12为本发明另一实施例提供的限位结构的示意图。
具体实施方式
首先介绍一下在本申请中引入的几个概念。
导热材料是一种具有高导热性能(导热系数可以大于10W/(m·K),但并不以此数值为限制)的金属或者非金属材料,用于实现热量的快速传导。在本申请中,导热材料可以为石墨、铝箔或者铜箔。
柔性材料具有较强的柔韧性,可变形、可折叠。柔性材料包括但不限于:泡棉、橡胶、 聚酰亚胺(Polyimide,PI)或者聚酰胺(Polyamide,PA,或者称,尼龙),或与其他有机材料形成的复合材料。需要说明的是,柔性材料可以理解为具有柔韧性、可以承受适当变形的材料。柔性(或者说,柔韧性),可以理解为挠性,与刚性相对,是材料的一种物理性质。柔性材料在受力后变形,在失去作用力后材料自身不能恢复原来的形状,或者仍可以恢复原来的形状如有弹力的柔性材料。柔性材料是一种可变形(例如,伸缩、弯曲、扭转、挤压、变形等)而基本不损害性能的材料,因此,柔性材料可以说是一种拉伸强度高、延伸率大的材料。变形后的柔性材料在发生变形的区域并未出现破损,也未暴露出内部结构。具有光滑表面的柔性材料在变形后,变形区域仍然呈现出光滑无接缝的表面。并且,柔性材料能够在承受若干次弯折后通过外力作用恢复原样,具有一定的使用寿命。
胶层是起粘合作用的材料层,也可以具有一定的弹性,可以压缩或拉伸,可以是一层或者多层。
参照图2,图2为可折弯电子设备100的示意图,可折弯电子设备100可以包括显示面板1、可折弯装置2以及散热装置3。显示面板1可以包括显示区域,显示区域包括第一显示区域101、第二显示区域102和限定在第一显示区域101与第二显示区域102之间的折弯区域103。散热装置3位于可折弯装置2的内侧或外侧,即,散热装置3可以位于可折弯装置2在靠近显示面板1的一侧,也可以位于可折弯装置2在远离显示面板1的一侧。
如图2所示,可折弯装置2包括两个支撑构件201、202以及折弯构件203。支撑构件201支撑与第一显示区域101相对应的显示面板1的第一区域;支撑构件202支撑与第二显示区域102相对应的显示面板的第二区域;折弯构件203连接在两个支撑构件201、202之间以与折弯区域103至少部分重叠,并且引导显示面板1以便于显示面板1相对于折弯区域103折叠或展开,例如如图所示方向A折叠。在本发明其他实施例中,还可以以方向A的反方向折叠。
图2中的散热装置3包含但不限于:柔性热管、柔性均温板或膜状散热板。在下面的表格1中,部分列举了散热装置3的多种形式:
Figure PCTCN2021098495-appb-000001
表格1
表格1中对散热装置3的示例都具有良好的导热性能,同时也有可靠的弯折性能,在弯折上万次之后,导热系数损失较小。
其中,柔性热管和柔性均温板的柔性部分可以包括柔性材料,例如PI或橡胶等柔性高分子材料,或是具有弯折自由度且弯折处应力较小的金属材料盖板,例如具有密集网状开孔的金属材料盖板。柔性热管和柔性均温板,可以整体采用柔性材料以完成整体折弯,或者局部 采用柔性材料搭接非折弯区以完成局部折弯。
热管是将热源转移到远端的构件,典型的热管由管壳、吸液芯和端盖组成,将管内抽成一定负压后充以适量的工作物质(工质),使紧贴管内壁的吸液芯毛细孔中充满液体后加以密封。当热管一端受热时毛细芯中的工质蒸发汽化,蒸汽在微小压差下流向另一端放出热量后凝结成液体,液体再沿多孔材料借助毛细力和重力流回蒸发端,如此循环不断传递热量。
均温板,通常也可以叫均热板、或超导热板、热导板等。均温板主要由外壳、毛细结构以及工作液体、支撑结构等组成,在内壁形成真空腔体,如图3a所示。
膜状散热板可以包括石墨等柔性、耐弯折的导热材料,也可以包括其他金属或非金属导热材料和柔性材料复合而成的散热板,如图3a和3b所示。
图3a是一种柔性均温板200的截面示意图。
如图3a所示,该柔性均温板200包括第一导热部分210、第二导热部分220以及位于二者之间的柔性导热部分230。如图所示,第一导热部分和第二导热部分210、220通过毛细结构e连通两侧腔体以实现柔性均温板200的整体均热;柔性导热部分230由柔性材料组成,以满足折弯需求。第一和第二导热部分210、220包括冷凝侧外壳a、蒸发侧外壳b、侧壁c,冷凝侧外壳a通过侧壁c与蒸发侧外壳b相连接并且实现密封,从而限定出均温板200的内部腔体d,在内部腔体d内设置毛细结构e,对内部腔体d进行抽真空处理并且充入一定量的工作液体,工作液体能够被吸附在毛细结构e内。此外,由于内部腔体d被抽真空处理,为了防止均温板200的外壳被外部气压压扁,还可以在内部腔体d内设置支撑结构f,该支撑结构f的两端分别与冷凝侧外壳a和毛细结构e相连接。
当热量由热源g传导至蒸发侧外壳b时,毛细结构e里面的工作液体吸收热量,在低真空度的环境中开始发生蒸发沸腾相变,由液相变成气相(图3a中毛细结构e中的箭头表示液相的工作液体的可能流向,毛细结构e外部的箭头表示气相的工作液体的可能流向)。气相的工作液体会很快充满整个内部腔体d,当气相工作液体接触到一个比较冷的区域时便会产生凝结的现象,从而释放出在蒸发时累积的热,凝结后的液相工作液体由于毛细结构e的毛细吸附作用再次回到蒸发热源处,此过程将在腔体内周而复始进行,如此循环便能将热源g产生的热量带到远离热源g的均温板200的区域,进而带出到外部环境。
图3b和图3c是一种膜状散热板300b和300c的截面示意图。
如图3b所示,散热板300b由一层导热材料301与上下两层柔性材料302沿图中所示水平方向堆叠而成,导热材料与柔性材料之间可以通过胶层303粘合,胶层303可以是双面胶等黏胶。图3b中还示意性的示出可折弯装置304的支撑构件305、306以及位于二者之间的折弯构件307,散热板300b的一个表面与可折弯装置304的表面直接贴合或通过其它的柔性材料层或胶层间接贴合,具体地,散热板300b跨越两个支撑构件305、306以覆盖折弯构件307,从而跨越折弯构件307在两个支撑构件305、306之间传递热量。
散热板还可以由多层柔性导热材料堆叠而成,例如图3c所示的两层柔性导热材料堆叠的散热板300c。散热板300c包括两层柔性导热材料311、312,每一层柔性导热材料由至少一个导热层和至少一个柔性层复合而成的结构。其中,柔性导热材料312中的一个柔性层314与靠近散热板300b左侧的发热部件320接近或接触,吸收发热部件320释放的热量,然后传导至导热层,由导热层跨越弯折区域(转轴处)传导至远离发热部件320的区域,例如散热板300c的右侧。
可以理解的是,图3b和图3c示出散热板300b和300c的截面示意图,实际的散热板呈 二维薄膜状,其厚度在微米级。
本申请提供了一种散热装置,可以应用在可折弯的终端设备中,为可折弯的终端设备提供散热解决方案,可折弯的终端设备可以为手机、平板电脑、笔记本电脑、多媒体播放设备等具有柔性或可折弯形态的电子设备。本申请提供的散热装置可以在终端折叠或展开时适应切面上的长度变化,有利的是,本申请的散热装置可以应用在包含但不限于以上所述的柔性热管、柔性均温板或膜状散热板等散热构件中。
实施例一
图4为本发明实施例提供的散热装置400的示意图。图4a示出散热装置400处于展开状态的平面示意图,图4b示出散热装置400处于折弯状态的立体示意图,图4c示出散热装置400处于折弯状态时的第一导热部分401的平面示意图。在图4的示例中,散热装置400呈现为矩形,但在本申请的实施例中并不限定其为矩形,散热装置400可以是其他不规则的形状。散热装置400可以用于可折弯电子设备,如图2所示的电子设备100,即散热装置400作为散热装置3的实施方式之一。
如图4a所示,散热装置400包括第一导热部分401、第二导热部分402、以及折弯导热部分403。第一导热部分401和第二导热部分402用于吸收电子设备100上的发热部件产生的热量、并将热量扩散/释放到周围环境。折弯导热部分403在第一导热部分401和第二导热部分402之间延伸,用于在导热部分401和402之间传递热量以使得二者相对平均地扩散或释放热量,从而实现电子设备100两侧的均热。折弯导热部分403还伴随着电子设备100的折叠而折叠,展开而展开,因此,折弯导热部分403相对于如图2所示的折弯构件203放置,具体地,折弯导热部分403与折弯构件203至少部分地重叠,例如,散热装置400的折弯部分203部分重叠的设置于折弯构件203的外部,如折弯的内侧、折弯的外侧,或者折弯部分203部分可以设置在折弯构件203的内部。
在本申请的一个实施例中,第一导热部分401、第二导热部分402、以及折弯导热部分403可以是一体形成的(例如,整体具有柔性的一体化材料),如表格1所示的由金属或非金属材料,或其复合材料组成的柔性散热板。在本申请的另一实施例中,第一导热部分401、第二导热部分402、以及折弯导热部分403可以是分体、分段或分层形成的(例如,两侧是非柔性的导热材料,而折弯处是柔性的导热材料),并且通过拼接、黏粘而固定,包括但不限于通过粘合或嵌入的方式固定,其中每一个部分都可以是一层或多层材料组合而成。分体形成的散热装置400可以是表格1所示的金属或非金属材料、或复合材料、或者两相部件,如均温板、热管等。举例说明,第一导热部分401和第二导热部分402可以是高导热材料,而折弯导热部分403可以是兼具柔性和导热性的柔性导热材料,二者的拼接面可以通过黏胶粘合在一起,当主要发热部件靠近第一导热部分401时,第一导热部分401从发热部件吸收的热量,可以通过折弯导热部分403传递至第二导热部分402,从而实现可折弯电子设备100中延伸在折弯两侧区域的均热。
在一个具体地实施例中,散热装置400位于图2所示的显示面板1和可折弯装置2之间。其中,第一导热部分401位于支撑构件201和第一显示区域101相对应的显示面板1的第一区域之间,第二导热部分402位于支撑构件202和第二显示区域102相对应的显示面板1的第二区域之间,折弯导热部分403位于折弯构件203与显示面板1的折弯区域103之间,散热装置400可以随可折弯装置2而折叠或展开,例如,如图2所示方向A折叠,或方向A的 反方向折叠。
请再次参考图4a-4c,散热装置400还包括多个固定机构420、421、422、423,用于将散热装置400固定到电子设备100中的其他部件或构件上,例如,固定于图2所示的显示面板1和可折弯装置2之间的中框或一些硬件部件上,以使散热装置400随可折弯装置2而折叠和展开。固定机构420、421、422、423分别通过散热装置400上对应的通孔410、411、412、413来可移动的固定散热装置400,其中,在每一个通孔上安装对应的固定机构后,通孔还具有预留间隙(如图所示的间隙40、41、42、43),使得散热装置400的至少一部分可以相对于一个或多个固定机构移动或滑动。如图4a所示,散热装置400在展开状态时基本为平面,第一导热部分401上设置有固定机构420、421,分别抵接或靠近通孔410、411的左侧边缘,第二导热部分402上设置有固定机构422、423,分别抵接或靠近通孔412、413的右侧边缘。
如图4b所示,散热装置400从展开到折叠的过程中,第一导热部分401在通孔410、411的预留间隙所允许的范围内相对于固定机构420、421滑动,例如朝X反方向滑动,和/或第二导热部分402在通孔412、413的预留间隙所允许的范围内相对于固定机构422、423滑动,例如朝X方向滑动。也就是说,第一导热部分401和/或第二导热部分402向远离折弯导热部分403的方向滑动。应可理解,导热部分最大的滑动行程与通孔预留的间隙有关,例如,当第一导热部分401上设置的一个固定机构抵接到对应通孔另一侧时,第一导热部分401不再滑动。在本申请的另一实施例中,第一导热部分401和/或第二导热部分402还可以向靠近折弯导热部分403的方向滑动,如图5b所示。后文将结合图5对此实施例进行详细描述。
在本申请的说明书中,为了方便描述,X方向可以看做是始终贴合散热装置400表面的方向,全文定义的X方向是从第一导热部分401朝向第二导热部分402的方向,并随着散热装置400的折叠和展开可能是一个折弯的方向,如图4b所示,X方向为第二导热部分402远离折弯导热部分403的方向,而X的反方向可以是第一导热部分401远离折弯导热部分403的方向。另外,Y方向可以看做是在散热装置400的表面中且垂直于X方向,而Z方向同时垂直于X、Y方向,或者说Z方向垂直于散热装置400的表面。结合附图应可理解,当散热装置400折叠和展开的过程中,当X方向看做是一个折弯的方向时,Y方向仍在散热装置400的表面中且垂直于X方向,因此Y方向仍是一个直线方向,而垂直于X和Y的Z方向则随着X方向的折弯而一直变化,或者说Z方向在散热装置400表面的任一点上都垂直于该散热装置400的表面。
请再次参考图4a,通孔410在X方向上的最大内径为LX0 IN,固定机构420在X方向上的最大外径为LX0 OUT,其中,LX0 IN>LX0 OUT,当固定机构420设置或安装于通孔410中,通孔410具有间隙40,该间隙40在X方向上的长度总和应为LX0 GAP=LX0 IN-LX0 OUT,因此散热装置400相对于固定机构420在X方向上滑动的最大行程,即最大的运动行程,应基本等于该间隙40在X方向上的总长度LX0 GAP
类似地,通孔411、412、413分别允许固定机构421、422、423在X方向上滑动的最大行程是间隙41、42、43分别在X方向上的总长度LX1 GAP、LX2 GAP、LX3 GAP。应可理解,LX0 GAP、LX1 GAP、LX2 GAP、LX3 GAP可以设置为相同的或者不同的长度。优选地,设置于第一导热部分401上的通孔的预留间隙在X方向上具有相同的第一长度SX1,其中,SX1=LX0 GAP=LX1 GAP,设置于第二导热部分402上的通孔的预留间隙在X方向上具有相同的第二长度SX2,其中,SX2=LX2 GAP=LX3 GAP。此时,当散热装置400跟随可折弯装置2而折叠和展开时, 第一导热部分401相应的具有最大滑动行程SX1,而第二导热部分402相应的具有最大滑动行程SX2。
有利的是,本申请的实施例通过固定机构与通孔配合,将散热装置400可移动的安装于电子设备100中,当电子设备100在折叠或展开的过程中,散热装置可以通过通孔的预留间隙相对于固定机构滑动,从而适应其所在切面在折叠或展开过程中的变化。本申请提供的散热装置400本身不必具备伸缩的性能,且当其相对于固定机构滑动时,散热装置在垂直于切面的方向上的厚度没有变化,不会对电子设备100中的其他元器件造成任何干扰。因此,本申请提供的散热装置400可以更好的实现可折弯电子设备在折叠状态、展开状态、或折叠和展开过程中的热量传递,从而满足电子设备上两侧均温的需求。
在本申请的一个实施例中,通孔的预留间隙还可以在Y方向上提供活动空间。例如,通孔410在Y方向上的最大内径为LY0 IN,固定机构420在Y方向上的最大外径为LY0 OUT,其中,LY0 IN≥LY0 OUT,当固定机构420设置或安装于通孔410中,间隙40在Y方向上的长度总和应为LY0 GAP=LY0 IN-LY0 OUT,因此散热装置400可以相对于固定机构420在Y方向上移动或滑动,且其最大运动行程应基本等于该间隙40在Y方向上的总长度LY0 GAP
类似地,通孔411、412、413也可以分别允许固定机构421、422、423在Y方向上滑动的最大行程是间隙41、42、43分别在Y方向上的总长度LY1 GAP、LY2 GAP、LY3 GAP。应可理解LY0 GAP、LY1 GAP、LY2 GAP、LY3 GAP可以设置为相同的或者不同的长度,且优选地设置为相同的第三长度SY,即LY0 GAP=LY1 GAP=LY2 GAP=LY3 GAP=SY,此时,散热装置400相对于固定机构在Y方向上滑动的最大行程为第三长度SY。在一个优选的实施例中,SY<SX1,且SY<SX2。应可理解,本申请提供的散热装置400还可以在Y方向上相对于固定机构是固定的,在Y方向上是否为可移动可滑动并不能作为对本申请的限制。
图4c示出了折弯状态下,散热装置400的第一导热部分401在X的反方向上移动或滑动后抵接通孔40的右边缘,从图4a到图4c,第一导热部分401的最大运动行程为上述第一长度SX1。优选地,当散热装置400的第一导热部分401如图4c所示在X反方向上移动第一长度SX1后,可折弯电子设备完全折叠,当散热装置400的第一导热部分401如图4a所示在X方向上移动第一长度SX1后,可折弯电子设备完全展开。然而,这并不能作为对本申请的限制,在其它实施例中,可折弯电子设备在完全折叠时,散热装置400的第一导热部分401在X反方向上的位移小于该第一长度SX,即第一导热部分401上的通孔所预留的间隙大于实际运动行程。同理,第二导热部分401上的通孔所预留的间隙也可以等于或大于其实际的运动行程。
请再次参见图4b,如图所示,散热装置400的固定机构420、421、422、423固定于可折弯电子设备的第一部件45上,且散热装置400位于第一部件45的折弯内侧,因此,当可折弯电子设备折叠时,散热装置400的第一导热部分401和第二导热部分402相对于固定机构和第一部件45分别在X方向的反方向及X方向上拉伸;当可折弯电子设备展开时,则与上述过程相反。因此,散热装置400随着可折弯电子设备的展开和折弯可以适应其所在切面的长度变化。
应可理解,为了防止散热装置400从第一部件45上脱离,在本申请的一个实施例中,在散热装置400的折弯内侧,还设置有第三部件与散热装置400贴合,因此散热装置400不会由于设置了通孔410、411、412、413而从第一部件45上脱离。在本申请的另一个实施例中,固定机构420、421、422、423还可以包括在X方向上延伸的部分,例如伞部,该伞部跨过 通孔410、411、412、413,从而防止散热装置400从第一部件45上脱离。
在本申请的一个实施例中,该第一部件45可以例如是可折弯电子设备的中框、折弯机构等部件,例如,散热装置400可以通过固定机构420、421、422、423固定于中框,使得散热装置400与显示屏、电源、或其他电子元器件贴合以进行散热。在本申请的一个实施例中,该第一部件45可以是多个部件的组合,例如,散热装置400可以通过固定机构420、422固定于中框,并通过固定机构421、423固定于折弯机构,使得散热装置400与显示屏、电源、或其他电子元器件贴合以进行散热。
具体地,从图4a所示的展开状态到图4b所示的折弯状态时,相对于第一部件处于折弯内侧的散热装置400所在的切面相对于第一部件被压缩,因此,散热装置400上可滑动的部分在其切面方向上伸展,伸展的方向为该切面被压缩的反方向。具体地,散热装置400相对于固定机构420、421、422、423滑动,其中,第一导热部分401如图4b所示,向X反方向滑动第一行程(该第一行程最大可为SX1),和/或第二导热部分402如图4b所示,向X方向滑动第二行程(该第二行程最大可为SX2)。散热装置400从图4b所示的折弯状态回到图4a所示的展开状态时,第一导热部分401和/或第二导热部分402分别向与上述相反的方向滑动。
图5为本发明另一实施例提供的散热装置500的示意图。在图5所示的实施例中,散热装置500的固定机构520、521、522、523固定于可折弯电子设备的第二部件55上,且散热装置500位于第二部件55的折弯外侧。可折弯电子设备被折弯的过程中,散热装置500相对于固定机构和第二部件55在其长度方向上收缩,而可折弯电子设备在展开的过程中,与上述情况相反。因此,散热装置500随着可折弯电子设备的展开和折弯可以适应其所在切面的长度变化。虽然散热装置500与散热装置400相对于第一部件45和第二部件55的位置不同(折弯外侧或折弯内侧),其结构基本相同或相似,在图5中,相同或相似的结构使用了相同或相似的附图标记,此处不再赘述。
在本申请的一个实施例中,该第二部件55可以例如是可折弯电子设备的中框、折弯机构等部件,例如,散热装置500通过固定机构520、521、522、523固定于中框,使得散热装置500可以与显示屏、电源、或其他电子元器件贴合以进行散热。在本申请的一个实施例中,该第二部件55可以是多个部件的组合,例如,散热装置500可以通过固定机构520、522固定于中框,并通过固定机构521、523固定于折弯机构,使得散热装置500与显示屏、电源、或其他电子元器件贴合以进行散热。
具体地,从图5a所示的展开状态到图5b所示的折弯状态时,相对于第二部件位于折弯外侧的散热装置500所在的切面相对于该第二部件被拉伸,因此,散热装置500上可滑动的部分在其其切面方向上回缩,回缩的方向为该切面被拉伸的反方向。具体地,散热装置500相对于固定机构520、521、522、523滑动,其中,第一导热部分501如图5b所示,向X方向滑动第一行程,和/或第二导热部分502如图5b所示,向X反方向滑动第二行程。散热装置500从图5b所示的折弯状态回到图5a所示的展开状态时,第一导热部分501和/或第二导热部分502分别向与上述相反的方向滑动。
图6为本发明另一实施例提供的散热装置600的示意图。散热装置600与散热装置400、500的结构相似,因而使用了相似的附图标记。散热装置600的第一导热部分601可以移动或滑动,与前述实施例相同或相似,此处不与赘述。散热装置600的第二导热部分602通过胶层与可折弯电子设备的热源或结构件粘合以固定,例如,通过背胶、点胶与发热部件630固定。有利的是,第二导热部分602与发热部件630固定可以更好的吸收发热部件630的热 量以快速为其散热,在可折弯电子设备在折叠状态、或者展开状态、或者折叠或展开的过程中时,散热装置600在相对于上述第一部件或第二部件的折弯外侧被拉伸,或者在相对于上述第一部件或第二部件的折弯内侧被压缩,第一导热部分601相对于固定机构620和621朝X方向或X反方向滑动。因此,本申请提供的散热装置600本身不必具备可拉伸的性能,就能在无论是折弯内侧还是折弯外侧处适应整机弯折或展开时的切面变化,同时可以实现跨越折弯区域的热量传递,使得整机两侧均热。
在本申请的另一实施例中,也可以通过背胶或点胶将第一导热部分601与热源或结构件固定在一起,而使得第二导热部分602移动或者滑动。当可折弯电子设备在弯折或展开时,第二导热部分602相对于固定机构伸缩滑动,从而适应其所在切面被压缩或拉伸时的变化。
在本申请的上述图4至图6的实施例中,可以将折弯导热部分403/503/603设置为相对于折弯构件203固定,例如通过黏胶与折弯构件203粘合,也可以将折弯导热部分设置为相对于折弯构件203移动或滑动,例如,将折弯导热部分设置为悬浮或贴合折弯构件203或贴合其它部件,从而在电子设备100折弯或展开的过程中,折弯导热部分相对折弯构件203移动或者滑动。应可理解,折弯导热部分403的滑动的方向和最大行程取决于第一导热部分401和第二导热部分402上设置的通孔的预留间隙,即取决于上述最大运动行程SX1、SX2。将折弯导热部分403设置为固定的或可移动的并不作为对本申请的限制,因此本文不对其固定方式做任何限定。
图7为本发明实施例提供的固定机构70-73的平面示意图。固定机构70、71、72、73分别包括结构件702、712、722、732。结构件大致为矩形、方形、圆形等等,且结构件的角部可以是带圆角的设计以避免应力集中。应可理解,散热装置上的结构件还可以具有其他形状,而不仅仅是图7示例的形状。结构件702、712、722、732可以是可折弯电子设备上其他结构上的突出部件,也可以是与其他结构分离的零件,并通过螺钉安装,或者通过胶层黏合。例如,结构件702、712还分别包括螺钉孔703、713,以配合螺钉(图中未示出)将散热装置固定到可折弯电子设备的其他结构上,例如中框上。在本申请另一实施例中,结构件可以包括多个螺钉孔。
图7中还示出了散热装置上的通孔701、711、721、731。通孔轮廓大致为矩形、方形、圆形、椭圆形等等,且通孔的角部可以是带圆角的设计以避免应力集中。应可理解,散热装置上的通孔还可以具有其他形状,而不仅仅是图7示例的形状。图7示出的固定机构70、71、72、73分别设置于通孔701、711、721、731中,由于这些通孔分别具有预留间隙700、710、720、730,固定机构可以设置于其对应的通孔的中间,或者靠左右边缘,或者靠上下边缘的位置。优选地,当可折弯电子设备为展开状态或折叠状态时,固定机构设置为抵靠通孔在X方向上的边缘,从而为散热装置在折叠过程或展开过程提供最大的运动行程,来应对散热装置所在切面受到的压缩或者拉伸。
固定机构还可以设置为抵靠通孔在Y方向上的边缘,或者设置于通孔在Y方向上的中间处,并且散热装置可以在Y方向上相对于固定机构移动或者滑动。本文对散热装置在Y方向上的运动不做任何限制。
虽然图7示出了多种形式的通孔和固定机构,然而应可理解,在本申请的另一实施例中,散热装置上设置的通孔和固定机构可以具有不同的形式,其中,只要散热装置上具有两个留有间隙的结构,这两个结构可以通过配合在预留的间隙中相对运动,以满足散热装置在弯折或展平的过程中受压缩或拉伸所需要的运动行程,即是本申请所提供的散热装置的实现方式 之一。
图8示出本发明另一实施例提供的散热装置800、810的示意图。与前述散热装置400、500和600不同的是,散热装置800、810的第一导热部分,和/或第一导热部分上不设置通孔,而在其表面设置凸起。散热装置800的第一导热部分801和第二导热部分802上分别设有凸起804、805,和806、807,而散热装置800的第二导热部分812上设有凸起814、815。每一个凸起配合安装于可折弯电子设备上的滑槽、滑道、或滑轨移动或者滑动。当散热装置800、810随着可折弯电子设备折弯或展开时,凸起沿着滑槽、滑道、或滑轨移动,即第一导热部分801,第一导热部分802、812相对于滑槽、滑道、或滑轨移动,从而使得散热装置800、810在可折弯电子设备折弯或展开,都能适应不同切面的长度变化。
在图8所示的实施例中,凸起可以设置于折弯方向的那一侧(如散热装置810),也可以设置于折弯方向的另一侧(如散热装置800),应可理解,凸起设置的位置、以及凸起的形状都不能作为对本申请的限制,在本申请的其他实施例中,凸起可以具有不同于图8所示的形状,并且设置于第一导热部分和/或第二导热部分上不同于图8所示的区域。
在本申请的另一实施例中,凸起可以设置于可折弯电子设备上,且散热装置800、810上具有配合该凸起的滑槽、滑道、或滑轨,因此,散热装置800、810可以相对于凸起移动。
由于散热装置800、810仅仅是移动或滑动的方式不同于前述实施例,其他方面都与前述实施例相同或相似,因此此处不再赘述。此外,应可理解,上述实施例中的散热装置可以相互结合,例如,散热装置上可以同时设置有凸起和通孔,以满足在不同区域分别配合滑槽或固定机构来实现移动或滑动。
本申请上述实施例中的散热装置,通过固定机构与预留间隙的配合,或者滑槽与凸起的配合实现了散热装置的至少一部分在折弯或展开的过程中的滑动。上述各实施例给出了设置于第一导热部分和/或第二导热部分上不同位置处的通孔/凸起,应可理解,第一导热部分上可以仅设置一个通孔/凸起,以配合电子设备上的固定机构/滑槽,或者,第二导热部分上可以仅设置一个通孔/凸起,以配合电子设备上的固定机构/滑槽,在这样的实施例中,第一导热部分和/或第二导热部分也可以相对于固定机构/滑槽移动,以在电子设备展开或折弯的过程中,使散热装置可以适应切面长度的变化,因此本申请提供的技术方案能够应用于各种可弯曲或可折叠的电子设备的散热装置中,既保证了可靠性,同时具有较好的散热效果。
实施例二
图9示出本发明另一实施例提供的散热装置900的截面示意图。散热装置900包括第一导热部分901、第二导热部分902、和折弯导热部分903,其中,第一导热部分901固定于可折弯电子设备的第一支撑结构921,第二导热部分902固定于电子设备的第二支撑结构922,而折弯导热部分903设置于第一支撑结构921与第二支撑结构922之间的可折弯机构923的上方,例如铰链机构。折弯导热部分903的两端可以如前文结合图4所述的嵌入或粘合于第一导热部分901和第二导热部分902的对应两端上,也可以通过其他固定机构固定于第一支撑结构921、第二支撑结构922、或可折弯机构923上。
在图9所示的实施例中,散热装置900进一步包括第一固定结构911和第二固定结构912,分别用于固定折弯导热部分903的两侧,具体地,固定结构911、912将折弯导热部分903的两侧分别固定于第一支撑结构921和第二支撑结构922上、或者分别固定于铰链结构923的两端。在固定结构911、912之间,折弯导热部分903在折弯机构923的上方悬空,或者说, 折弯导热部分903与其他结构或机构不贴合。
图9示出的散热装置900设置于第一支撑结构921、第二支撑结构922、以及铰链结构923的折弯内侧。散热装置900在展开状态时,如图9a所示,具有基本呈平面的折弯导热部分903,而在折叠状态时如图9b所示,具有被挤压出冗余部分的折弯导热部分903。其中,折弯导热部分903是可以折弯的导热材料,该折弯的导热材料不必具有弹性。在展开和折叠的过程中,通过预留的冗余部分,折弯导热部分903可以满足其所在切面的长度变化,即在受压缩时冗余部分产生褶皱,而在受拉伸时冗余部分的褶皱减少,甚至被拉平。
图10示出本发明另一实施例提供的散热装置1000的截面示意图。图10中的散热装置1000与图9中的散热装置900相似,且相同或相似的附图标记用来表示二者中相同或相似的结构。散热装置1000包括第一导热部分1001、第二导热部分1002、和折弯导热部分1003,其中,第一导热部分1001固定于可折弯电子设备的第一支撑结构1021,第二导热部分1002固定于电子设备的第二支撑结构1022,而折弯导热部分1003设置于第一支撑结构1021与第二支撑结构1022之间的可折弯机构1023的上方,例如铰链机构。折弯导热部分1003的两端可以如前文结合图4所述的嵌入或粘合于第一导热部分1001和第二导热部分1002的对应两端上,也可以通过其他固定机构固定于第一支撑结构1021、第二支撑结构1022、或可折弯机构1023上。
在图10所示的实施例中,散热装置1000进一步包括第一固定结构1011和第二固定结构1012,分别用于固定折弯导热部分1003的两侧,具体地,固定结构1011、1012将折弯导热部分1003的两侧分别固定于第一支撑结构1021和第二支撑结构1022上、或者分别固定于铰链结构1023的两端。在固定结构1011、1012之间,折弯导热部分1003在折弯机构1023的上方悬空,或者说,折弯导热部分1003与其他结构或机构不贴合。
图10示出的散热装置1000设置于第一支撑结构1021、第二支撑结构1022、以及铰链结构1023的折弯外侧。散热装置1000在展开状态时,如图10a所示,具有被挤压出冗余部分的折弯导热部分1003,而在折叠状态时如图10b所示,具有基本呈平面的折弯导热部分1003。
在图9和图10所示的实施例中,折弯导热部分还可以设置于铰链机构923、1023内部,并相对于铰链机构内部的第三部件固定,设置于铰链机构923内部的折弯导热部分也可以是位于该第三部件的折弯内侧或折弯外侧,因此设置在铰链机构923内部时,折弯导热部分可以在展开状态下或折叠状态下被压缩而使冗余部分产生褶皱部分,且在折叠状态下或展开状态下被拉伸而使褶皱部分减少,甚至被拉平。有利的是,被挤压出来的该冗余部分可以在其允许的空间内呈任意形状,而无需事先加工为特殊的,和/或有规则的褶皱状。因此,本申请不对被挤压的冗余部分的形状做任何限定。
为了避免冗余部分产生的褶皱对其他部件造成影响,例如褶皱部分卡住铰链机构等,本申请中的散热装置900、1000还包括限位结构,用于限定该冗余部分的移动范围或活动空间。以下结合图11和图12来具体描述该限位结构。
图11示出本发明实施例中的限位结构110、120的示意图。限位结构110、111相对于上述折弯导热部分903/1003安装,如图11a所示。限位结构110、111可以是在Y方向上延伸的限位框,例如卡扣,折弯导热部分903/1003在X方向上穿过限位框110、111,因此其冗余部分在Z方向上受到限位框的限制。限位结构110在Z方向上的高度是L1,限位结构111在Z方向上的高度是L2,其中,L1和L2可以设定为相同或者不同的高度。在设有限位结构110、111的区域,折弯导热部分903/1003的冗余部分所产生的褶皱部分在Z方向上的移动范围基 本上分别在L1和L2之内。在图11a所示的实施例中,显示两个限位结构110、111以在X方向上的不同位置限制折弯导热部分903/1003中冗余部分的移动范围。应可理解,散热装置900、1000上还可以设置更少或更多的限位结构,且限位结构还可以具有与图11a所示不同的形状。有利的是,在本申请的实施例中,折弯导热部分903/1003在X方向上折弯或展开,由于限位结构110、111沿Y方向设置,且在X反向上的宽度较窄,因此当限位结构随折弯机构的折弯或展开而移动时,几乎不受切面的拉伸或压缩影响。
图11b示出了图11a中限位结构的截面图,应可理解,本申请实施例示出具有圆角的矩形限位框,此并不作为对本申请的限制,在其它实施例中,限位结构还可以具有其他的规则或不规则的形状。
图12示出本发明另一实施例中的限位结构120-123的示意图。同样地,限位结构120-123相对于上述折弯导热部分903/1003安装,且具体地,限位结构120-123是朝向折弯导热部分903/1003安装的磁性部件,该磁性部件通过磁力进一步的限制折弯导热部分903/1003中冗余部分的移动,以避免冗余部分所产生的褶皱部分对可折弯电子设备中的其他部件造成影响。
如图12a所示,在结构件124上,沿X方向设有两个磁性部件120、121,设置于折弯导热部分903/1003的第一侧,并分别对折弯导热部分903/1003的不同区域限位,即在该第一侧将折弯导热部分903/1003中所产生的褶皱部分限定在一定的范围内。在本申请的一个实施例中,折弯导热部分903/1003是具有磁性的导热材料或者是含有磁性金属的导热材料,从而受到磁性部件120、121的吸引而限制冗余部分在Z方向上的移动。在本申请的另一个实施例中,结构件125是具有磁性的或者是含有磁性金属的,从而和磁性部件120、121相互吸引以限制折弯导热部分903/1003的冗余部分在Z方向上的移动。
如图12b所示,可以在Z方向上设置多个磁性部件120、121、122、123。在结构件124上,沿X方向设有两个磁性部件120、121,即磁性部件120、121设置于折弯导热部分903/1003的第一侧。在结构件125上,沿X方向设有两个磁性部件122、123,即磁性部件122、123设置于折弯导热部分903/1003的第二侧。其中,磁性部件120、122在Z方向上基本设置为对齐以限制折弯导热部分903/1003的褶皱的一部分在Z方向上的移动,磁性部件121、123在Z方向上基本设置为对齐以限制折弯导热部分903/1003的褶皱的另一部分在Z方向上的移动。
其中,磁性部件120、121主要的是在第一侧将折弯导热部分903/1003中所产生的褶皱部分限定在第一范围内,而磁性部件122、123主要的是在第二侧将折弯导热部分903/1003中所产生的褶皱部分限定在第二范围内。
应可理解,在图12所示的实施例中,X方向上设置的磁性部件,或磁性部件对可以是一个或多个,其设置的数量并不作为对本申请的限制。
其中,结构件124和125可以是可折弯电子设备上的部件,例如中框或折弯构件。在本申请的另一实施例中,结构件124和125也可以是额外增设的,以在电子设备上固定上述磁性部件,从而限位折弯导热部分903/1003的冗余部分,被限位的冗余部分在折弯或展开过程中出现的褶皱不会对电子设备上的其他部件产生影响。
在本申请的一个实施例中,磁性部件120、121、122、123可以是在Y方向上延伸设置的单个部件,也可以是在Y方向上分段设置的多个部件。为了最小化磁性部件120、121、122、123对可折弯电子设备的电信号可能产生的影响,优选的是在Y方向上分段设置多个磁性部件,以对设置磁性部件的多个区域中的冗余部分进行限位。
本申请提供的散热装置在折弯或展开的过程中依靠折弯导热部分的冗余部分实现切面长度的变化,而本身无需具有弹性,同时,该冗余部分还提供了增大的散热面积,提高了散热效率,且具有冗余部分的折弯导热部分跨越折弯区域传递热量,可以实现电子设备的两侧均温,从而提升可折弯电子设备的整机散热能力。
与此同时,本申请提供的散热装置通过限位结构来限制上述冗余部分的活动范围或空间,避免其在产生褶皱时对其他部件造成影响,且尤其不会使折弯构件在折弯或展开的过程中被冗余部分卡死。
因此,本申请提供的散热装置能够应用于各种可弯曲或可折叠的电子设备中,散热装置中的导热材料本身不必具有伸缩的性能,即可以使得导热材料在可折弯电子设备中随着整机弯折或展开,并在折弯内侧的切面压缩或在折弯外侧的切面拉伸,因此在保证散热效果的同时,还提供了折弯的可靠性。
应理解,本申请并不对上述实施例中散热装置的第一导热部分、第二导热部分和折弯导热部分的具体材料和/或结构进行任何限定,其可以是由柔性材料和/或导热材料和/或复合材料形成的散热板,也可以是均温板或热管等两相结构对应的散热装置。
例如,散热装置中的导热材料可以为液体或者颗粒状具有高导热系数的材料,其具有较高的导热系数,使其能够快速地传导热量,以达到散热的功能。
需要注意的是,在导热材料采用液体或者颗粒状材料的情况下,需要通过其他材料将该导热材料封闭在密闭空间内,以避免泄露,造成对电子设备的污染和损坏。此情况下,该用于封闭导热材料的材料可以为本申请提出的柔性材料,也可以是其他具有一定柔韧性的材料,本申请对此并未特别限定。
尽管上文说明了关于本发明的示例性实施例,本发明不限于这些实施例,在本发明的技术思想的范围内,这些示例性实施例可以组合使用,或可以修改部分配置。

Claims (20)

  1. 一种散热装置,用于可折弯电子设备,其特征在于,所述散热装置包括:
    折弯导热部分,用于随着所述电子设备的折弯而折弯,且随着所述电子设备的展开而展开;
    第一导热部分,从所述折弯导热部分的第一侧延伸,用于为所述电子设备散热;以及
    第一固定机构,用于将所述第一导热部分可移动的固定于所述电子设备;
    其中,所述第一导热部分包括第一移动机构,用于与所述第一固定机构配合以使第一导热部分相对于所述第一固定机构移动。
  2. 如权利要求1所述的散热装置,其特征在于,所述第一移动机构是所述第一导热部分上的通孔,所述第一固定机构设置于所述通孔中,且所述通孔具有间隙,所述间隙用于提供所述通孔与所述第一固定机构相对移动的行程。
  3. 如权利要求2所述的散热装置,其特征在于,所述第一固定机构是固定于所述电子设备内的突出部。
  4. 如权利要求3所述的散热装置,其特征在于,所述第一固定机构具有螺纹孔,并通过螺钉固定于所述电子设备中。
  5. 如权利要求1所述的散热装置,其特征在于,所述第一移动机构是相互配合的突出部和凹槽中的一个,所述第一固定机构是所述相互配合的突出部和凹槽中的另一个,其中,所述凹槽用于提供所述突出部的移动轨迹。
  6. 如权利要求1-5任一项所述的散热装置,其特征在于,
    当所述折弯导热部分随所述电子设备折弯时,所述第一导热部分相对于所述第一固定机构朝第一方向移动;
    当所述折弯导热部分随所述电子设备展开时,所述第一导热部分相对于所述第一固定机构朝所述第一方向的反方向移动。
  7. 如权利要求1所述的散热装置,其特征在于,所述第一导热部分与所述折弯导热部分是一体形成的、或分体形成的。
  8. 如权利要求1所述的散热装置,其特征在于,所述散热装置还包括:
    第二导热部分,从所述折弯导热部分的第二侧延伸,所述第二侧与所述第一侧相对;以及
    第二固定机构,用于将所述第二导热部分可移动的固定于所述电子设备,且所述第二导热部分包括第二移动机构,用于与所述第二固定机构配合以使第二导 热部分相对于所述第二固定机构移动。
  9. 如权利要求1所述的散热装置,其特征在于,所述散热装置是均温板、或热管、或散热板。
  10. 一种散热装置,用于可折弯电子设备,所述电子设备包括第一支撑构件、第二支撑构件和位于两个支撑构件之间的折弯构件,其特征在于,所述散热装置包括:
    第一导热部分,至少部分地覆盖所述第一支撑构件;
    第二导热部分,至少部分地覆盖所述第二支撑构件;
    折弯导热部分,在所述第一导热部分和所述第二导热部分之间延伸,并且随着所述折弯构件的弯折或展开而出现褶皱部分;以及
    第一限位结构,设置于所述折弯导热部分的第一侧,当所述折弯导热部分出现所述褶皱部分时,所述第一限位结构用于限定所述褶皱部分在所述折弯导热部分的所述第一侧的第一移动范围。
  11. 如权利要求10所述的散热装置,其特征在于,所述散热装置进一步包括:
    第二限位结构,设置于所述折弯导热部分的第二侧,所述第二侧与所述第一侧相对,且当所述折弯导热部分出现所述褶皱部分时,所述第二限位结构用于限定所述褶皱部分在所述折弯导热部分的所述第二侧的第二移动范围。
  12. 如权利要求11所述的散热装置,其特征在于,所述第一限位结构和第二限位结构组成限位框,所述折弯导热部分穿过所述限位框延伸。
  13. 如权利要求10所述的散热装置,其特征在于,所述第一限位结构包括间隔的设置于所述折弯导热部分的所述第一侧的多个限位块。
  14. 如权利要求10所述的散热装置,其特征在于,所述第一限位结构包括磁性部件,所述磁性部件对所述折弯导热部分产生磁力。
  15. 如权利要求10所述的散热装置,其特征在于,所述第一限位结构包括磁性部件,且所述散热装置进一步包括:
    结构件,所述结构件设置于所述折弯导热部分的第二侧,所述第二侧与所述第一侧相对,所述磁性部件对所述结构件产生磁力。
  16. 如权利要求11所述的散热装置,其特征在于,所述第一限位结构包括第一磁性部件,所述第二限位结构包括第二磁性部件,所述第一磁性部件与所述第二磁性部件对应地布置于所述折弯导热部分的所述第一侧和所述第二侧,以相互 产生磁力。
  17. 一种可折弯显示装置,其特征在于,可折弯显示装置包括:
    显示面板,包括显示区域,所述显示区域包括第一显示区域、第二显示区域和限定在所述第一显示区域与所述第二显示区域之间的折弯区域;
    可折弯装置,所述可折弯装置包括,
    第一支撑构件,用于支撑与所述第一显示区域相对应的所述显示面板的第一区域;
    第二支撑构件,用于支撑与所述第二显示区域相对应的所述显示面板的第二区域;以及
    折弯构件,连接于所述第一支撑构件和第二支撑构件之间以与所述折弯区域重叠,并且引导所述显示面板以使所述显示面板相对于所述折弯区域弯折或展开;以及
    散热装置,位于所述显示面板和所述可折弯装置之间,所述散热装置的表面与所述可折弯装置的表面贴合,且所述散热装置为所述权利要求1-9任意一项所述的散热装置。
  18. 一种可折弯显示装置,其特征在于,可折弯显示装置包括:
    显示面板,包括显示区域,所述显示区域包括第一显示区域、第二显示区域和限定在所述第一显示区域与所述第二显示区域之间的折弯区域;
    可折弯装置,所述可折弯装置包括,
    第一支撑构件,用于支撑与所述第一显示区域相对应的所述显示面板的第一区域;
    第二支撑构件,用于支撑与所述第二显示区域相对应的所述显示面板的第二区域;以及
    折弯构件,连接于所述第一支撑构件和第二支撑构件之间以与所述折弯区域重叠,并且引导所述显示面板以始所述显示面板相对于所述折弯区域弯折或展开;以及
    散热装置,位于所述显示面板和所述可折弯装置之间,所述散热装置的表面与所述可折弯装置的表面贴合,且所述散热装置为所述权利要求10-16任意一项所述的散热装置。
  19. 一种终端设备,包括可折弯显示装置,所述可折弯显示装置为所述权利要求17所述的可折弯显示装置。
  20. 一种终端设备,包括可折弯显示装置,所述可折弯显示装置为所述权利要求18所述的可折弯显示装置。
PCT/CN2021/098495 2020-06-13 2021-06-05 可折弯显示装置及其散热装置 WO2021249316A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010538543.4A CN113811136B (zh) 2020-06-13 2020-06-13 可折弯显示装置及其散热装置
CN202010538543.4 2020-06-13

Publications (1)

Publication Number Publication Date
WO2021249316A1 true WO2021249316A1 (zh) 2021-12-16

Family

ID=78845313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098495 WO2021249316A1 (zh) 2020-06-13 2021-06-05 可折弯显示装置及其散热装置

Country Status (2)

Country Link
CN (2) CN116782591A (zh)
WO (1) WO2021249316A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117082843A (zh) * 2023-10-10 2023-11-17 歌尔股份有限公司 均温板及电子设备
EP4266153A3 (en) * 2022-04-22 2024-02-21 Samsung Display Co., Ltd. Display device
WO2024082600A1 (zh) * 2022-10-18 2024-04-25 广东畅能达科技发展有限公司 一种可折弯均热板

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4180905A4 (en) 2020-11-06 2024-01-17 Samsung Electronics Co Ltd ELECTRONIC DEVICE COMPRISING A FLEXIBLE SCREEN AND ITS OPERATING METHOD
CN219124634U (zh) * 2022-10-31 2023-06-02 华为技术有限公司 传热装置和电子设备
CN115586824B (zh) * 2022-12-02 2023-05-09 荣耀终端有限公司 电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140098489A1 (en) * 2012-10-08 2014-04-10 Qualcomm Incorporated Heat dissipating apparatus for folding electronic devices
TWM535336U (zh) * 2016-07-14 2017-01-11 宏碁股份有限公司 轉軸結構及應用其之可撓式顯示裝置
CN109699151A (zh) * 2017-10-20 2019-04-30 华为技术有限公司 膜状散热构件、可折弯显示装置以及终端设备
CN209767998U (zh) * 2019-01-04 2019-12-10 Oppo广东移动通信有限公司 电子设备及其壳体组件

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3172632U (ja) * 2011-10-14 2012-01-05 黄盈▲宣▼ 最大引張り幅制限機能を有する安全弾力ロープ
CN207115888U (zh) * 2017-08-03 2018-03-16 深圳市柔宇科技有限公司 折叠机构及终端
CN208596323U (zh) * 2018-08-09 2019-03-12 深圳市柔宇科技有限公司 可折叠设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140098489A1 (en) * 2012-10-08 2014-04-10 Qualcomm Incorporated Heat dissipating apparatus for folding electronic devices
TWM535336U (zh) * 2016-07-14 2017-01-11 宏碁股份有限公司 轉軸結構及應用其之可撓式顯示裝置
CN109699151A (zh) * 2017-10-20 2019-04-30 华为技术有限公司 膜状散热构件、可折弯显示装置以及终端设备
CN209767998U (zh) * 2019-01-04 2019-12-10 Oppo广东移动通信有限公司 电子设备及其壳体组件

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4266153A3 (en) * 2022-04-22 2024-02-21 Samsung Display Co., Ltd. Display device
WO2024082600A1 (zh) * 2022-10-18 2024-04-25 广东畅能达科技发展有限公司 一种可折弯均热板
CN117082843A (zh) * 2023-10-10 2023-11-17 歌尔股份有限公司 均温板及电子设备
CN117082843B (zh) * 2023-10-10 2023-12-22 歌尔股份有限公司 均温板及电子设备

Also Published As

Publication number Publication date
CN113811136B (zh) 2023-06-02
CN116782591A (zh) 2023-09-19
CN113811136A (zh) 2021-12-17

Similar Documents

Publication Publication Date Title
WO2021249316A1 (zh) 可折弯显示装置及其散热装置
JP7143408B2 (ja) フィルム状放熱部材、曲げ可能な表示装置及び端末デバイス
US20200326134A1 (en) Flexible vapor chamber
JP5204355B1 (ja) 液体dimm冷却装置
TWI458933B (zh) 散熱結構及應用該散熱結構的電子設備
US10517192B2 (en) Bendable heat plate
US9307678B2 (en) Low thermal resistance cooler module for embedded system
CN110418550B (zh) 均热板和折叠终端
US11060805B2 (en) Thermal interface material system
TWI436023B (zh) 散熱結構及應用該散熱結構的電子設備
TW201248109A (en) Electronic equipment
US10945331B2 (en) Mobile display device
US20140000851A1 (en) Heat-dissipating module for digital light processing projector
TWM548416U (zh) 柔性均溫板
CN111811305A (zh) 可挠动的均温板
KR20210144898A (ko) 증기 챔버 열 스트랩 조립체 및 방법
CN109285820B (zh) 散热结构及其制作方法、显示装置
US20150168078A1 (en) Vapor Chamber Structure
WO2020177078A1 (zh) 一种柔性屏
US20140318744A1 (en) Thermal module
TWM400604U (en) Heat sink apparatus
JP2011192860A (ja) 冷却器
CN201623955U (zh) 薄型化均温板及具有该均温板的散热模块
JP6178981B2 (ja) 冷却システム
US20230019938A1 (en) Flexible graphite structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821133

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21821133

Country of ref document: EP

Kind code of ref document: A1