WO2021249025A1 - 一种大流量贵金属通道 - Google Patents

一种大流量贵金属通道 Download PDF

Info

Publication number
WO2021249025A1
WO2021249025A1 PCT/CN2021/088203 CN2021088203W WO2021249025A1 WO 2021249025 A1 WO2021249025 A1 WO 2021249025A1 CN 2021088203 W CN2021088203 W CN 2021088203W WO 2021249025 A1 WO2021249025 A1 WO 2021249025A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
glass
liquid
flow
tank
Prior art date
Application number
PCT/CN2021/088203
Other languages
English (en)
French (fr)
Inventor
彭寿
张冲
蒋洋
金良茂
曹志强
江龙跃
官敏
朱明柳
沈玉国
Original Assignee
凯盛科技集团有限公司
蚌埠中光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 凯盛科技集团有限公司, 蚌埠中光电科技有限公司 filed Critical 凯盛科技集团有限公司
Priority to KR1020227015043A priority Critical patent/KR20220078648A/ko
Priority to JP2022506758A priority patent/JP7336022B2/ja
Priority to US17/771,634 priority patent/US20220402798A1/en
Publication of WO2021249025A1 publication Critical patent/WO2021249025A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/04Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in tank furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/167Means for preventing damage to equipment, e.g. by molten glass, hot gases, batches
    • C03B5/1672Use of materials therefor
    • C03B5/1675Platinum group metals
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/182Stirring devices; Homogenisation by moving the molten glass along fixed elements, e.g. deflectors, weirs, baffle plates
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/187Stirring devices; Homogenisation with moving elements
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/225Refining
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/23Cooling the molten glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/02Forehearths, i.e. feeder channels
    • C03B7/06Means for thermal conditioning or controlling the temperature of the glass
    • C03B7/07Electric means
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the invention relates to the technical field of electronic glass manufacturing equipment, in particular to a large-flow noble metal channel mainly used in the production process of 8.5-generation and higher-generation TFT glass substrates.
  • the technology of processing molten glass using precious metal channels is currently the most commonly used method for producing TFT glass.
  • This method takes advantage of the good temperature resistance of precious metals, direct heating with electricity, and good ductility. It can be directly heated to 1650°C with electricity, which can realize the effective defoaming of TFT substrate glass at high temperature and achieve high-quality clarification and homogenization.
  • the function is the key technical equipment for the production of TFT glass, which is easy to realize mass production. Many patents and documents at home and abroad involve this process.
  • the Chinese invention patent CN101935146B describes a method for processing molten glass in the platinum channel, through a five-stage processing step of a clarification tank, a cooling tank, a stirring tank, a homogenizing tank and a feeding tank to achieve 5-20 tons
  • the large flow rate of molten glass higher than 20 tons/day will not guarantee the high temperature mechanical strength due to the large platinum tube required, and high quality cannot be achieved.
  • Stable and clarified; Chinese invention patent CN105948462A relates to a platinum channel heating device, method, and platinum channel and glass production system.
  • the device generates an alternating magnetic field to form an induced eddy current on the platinum channel, and the eddy current flows through the platinum channel to generate heat , To achieve uniform heating of the platinum channel, but the invention does not involve a specific processing method of large flow glass liquid.
  • the present invention is to overcome the deficiencies in the prior art and provide a large flow noble metal channel.
  • the present application provides a large-flow precious metal channel, including a glass-liquid mixed-flow stirring section, characterized in that at least two glass-liquid heating, clarification and cooling sections are connected in parallel at one end of the glass-liquid mixed flow stirring section, and connected at the other end of the glass-liquid mixed flow stirring section.
  • the glass liquid heating, clarification and cooling section includes a heating channel connected at one end with the melting furnace, and a clarification tank and a cooling channel are sequentially connected at the other end of the heating channel;
  • the glass liquid mixed flow stirring section includes a confluence channel, One end of the confluence channel is connected to the cooling channel, a set of spoilers are arranged in the confluence channel, and a stirring channel is connected to the other end of the confluence channel.
  • the stirring channel includes at least one glass liquid stirring tank, The liquid outlet is connected with the liquid supply tank.
  • each spoiler in the set of spoilers is distributed in a staggered manner, and a section of serpentine flow passage is divided in the confluence channel by the division of a set of spoilers.
  • At least one molten glass stirring tank is sequentially connected to the other end of the confluence channel, and the stirring directions of two adjacent molten glass stirring tanks are different.
  • the diameter of the heating channel is 150mm-300mm and the length is 500mm-1500mm; the diameter of the clarification tank is 250mm-400mm and the length is 3000mm-8000mm; the diameter of the cooling channel is 220mm- The length of 360mm is 2000mm-6000mm; the diameter of the confluence channel is 300mm-500mm and the length is 2000mm-5000mm; the diameter of the glass liquid stirring tank is 350mm-550mm, and the stirring speed is 2 to 20 revolutions per minute; The diameter of the liquid tank is 300mm-500mm and the length is 1000mm-2000mm.
  • the maximum temperature during operation of the heating channel is 1650°C
  • the maximum temperature during operation of the clarification tank is 1670°C
  • the temperature during operation of the cooling channel is 1500°C-1550°C
  • the temperature of the liquid supply tank during operation is 1200°C to 1400°C.
  • the heating channel, clarification tank, cooling channel, confluence channel, glass liquid stirring tank, spoiler and liquid supply tank are made of platinum rhodium alloy or platinum iridium alloy or platinum.
  • the heating channel, clarification tank, cooling channel, confluence channel, glass liquid stirring tank, spoiler and liquid supply tank are each independently made of platinum rhodium alloy or platinum iridium alloy or platinum, which may be the same or different;
  • the heating channel, clarification tank, cooling channel, confluence channel, glass liquid stirring tank, spoiler and liquid supply tank are made of the same platinum rhodium alloy or platinum iridium alloy or platinum.
  • the large flow precious metal channel provided by the embodiment of the present invention has simple technical equipment, strong operability, and excellent clarification and homogenization effect.
  • high-temperature heating and clarification of large flow glass liquid can be realized.
  • it can also fully guarantee the service life and high-temperature mechanical strength of platinum in the high-temperature section.
  • Under the premise of ensuring high output it avoids the creation of a single large-diameter glass channel in the high-temperature section due to the pressure of the large flow and high-level glass. The problem of the risk of collapse occurs.
  • Fig. 1 is a process flow diagram of Examples 1-4 provided by the present invention; the reference signs are: 1-glass liquid mixed flow stirring section; 1a-confluence channel; 1b-glass liquid stirring tank; 1c-spoiler; 2-glass Liquid heating clarification cooling section; 2a- heating channel; 2b- clarification tank; 2c- cooling channel; 3- liquid supply tank; 4- serpentine flow channel; 5- melting furnace.
  • a large-flow precious metal channel includes a glass-liquid mixed flow stirring section 1.
  • the glass-liquid mixed flow stirring section 1 includes a confluence channel 1a with a diameter of 400mm and a length of 3000mm.
  • the two cooling channels 2c with a diameter of 280mm and a length of 3000mm are connected, and a set of spoilers 1c are welded in the confluence channel 1a, and the set of spoilers 1c includes eight spoilers 1c that are mutually offset.
  • a section of serpentine flow passage 4 is divided in the confluence passage 1a by the eight spoilers 1c.
  • a liquid supply tank 3 with a diameter of 360 mm and a length of 1600 mm is communicated with the liquid outlet of the last molten glass stirring tank 1b.
  • the molten glass heating, clarifying and cooling section 2 includes a heating channel with a diameter of 200 mm and a length of 1000 mm connected to the melting furnace 5 at one end. 2a.
  • a clarification tank 2b with a diameter of 300mm and a length of 5000mm and a cooling channel 2c are connected in sequence at the other end of the heating channel 2a.
  • the liquid outlet ends of the cooling channels 2c of the two glass liquid heating, clarifying and cooling sections 2 are all connected to the confluence channel 1a.
  • the heating channel 2a, clarification tank 2b, cooling channel 2c, confluence channel 1a, glass liquid stirring tank 1b, spoiler 1c and liquid supply tank 3 are all made of precious metal platinum rhodium alloy.
  • the heating channel 2a, the clarification tank 2b, the cooling channel 2c, the confluence channel 1a and the liquid supply tank 3 are all connected with wires and thermocouples, and the wires and thermocouples are connected and matched with a console not shown in the figure.
  • thermocouple Through the signal from the thermocouple, check the detected temperature through the console and control the power of the current input, and then control the working temperature of the heating channel 2a to 1630°C, the working temperature of the clarification tank 2b to 1650°C, and the working temperature of the cooling channel 2c It is 1520°C, the working temperature of the confluence channel 1a is 1470°C, and the working temperature of the liquid supply tank 3 is 1300°C.
  • the molten glass enters the float tin bath through the liquid supply tank 3 for precise forming, and the 8.5 generation float TFT-LCD glass substrate is produced. After follow-up quality inspection, the produced 8.5-generation float TFT-LCD glass substrate has no bubbles and streaks.
  • the daily melting of the glass furnace of this embodiment is 35 tons per day.
  • a large-flow precious metal channel includes a glass-liquid mixed flow stirring section 1.
  • the glass-liquid mixed flow stirring section 1 includes a confluence channel 1a with a diameter of 300mm and a length of 5000mm.
  • the two cooling channels 2c with a diameter of 220mm and a length of 2000mm are connected, and a set of spoilers 1c are welded in the confluence channel 1a, and the set of spoilers 1c includes five spoilers 1c that are mutually offset.
  • a section of serpentine flow passage 4 is divided into the confluence passage 1a by these five spoilers 1c.
  • a liquid supply tank 3 with a diameter of 300 mm and a length of 2000 mm is communicated with the liquid outlet of the last molten glass stirring tank 1b.
  • the glass liquid heating, clarifying and cooling section 2 includes a heating channel with a diameter of 150 mm and a length of 500 mm connected to the melting furnace 5 at one end. 2a, at the other end of the heating channel 2a, a clarification tank 2b with a diameter of 250mm and a length of 3000mm and a cooling channel 2c are connected in sequence. The liquid outlet ends of the cooling channels 2c of the two glass liquid heating, clarifying and cooling sections 2 are all connected to the confluence channel 1a.
  • the heating channel 2a, clarification tank 2b, cooling channel 2c, confluence channel 1a, glass liquid stirring tank 1b, spoiler 1c and liquid supply tank 3 are all made of precious metal platinum.
  • the heating channel 2a, the clarification tank 2b, the cooling channel 2c, the confluence channel 1a and the liquid supply tank 3 are all connected with wires and thermocouples, and the wires and thermocouples are connected and matched with a console not shown in the figure.
  • thermocouple Through the signal from the thermocouple, check the detected temperature through the console and control the power of the current input, and then control the working temperature of the heating channel 2a to 1620°C, the working temperature of the clarification tank 2b to 1640°C, and the working temperature of the cooling channel 2c It is 1500°C, the working temperature of the confluence channel 1a is 1450°C, and the working temperature of the liquid supply tank 3 is 1200°C.
  • the molten glass enters the overflow tank through the liquid supply tank 3 for precise shaping, and the overflow produces the 8.5-generation TFT-LCD glass substrate. After follow-up quality inspection, there are no bubbles and streaks in the 8.5-generation TFT-LCD glass substrate produced by Overflow.
  • the daily melting of the glass furnace of this embodiment is 20 tons per day.
  • a large-flow precious metal channel includes a glass-liquid mixed flow stirring section 1.
  • the glass-liquid mixed flow stirring section 1 includes a confluence channel 1a with a diameter of 500mm and a length of 2000mm.
  • the two cooling channels 2c with a diameter of 360mm and a length of 6000mm are connected, and a set of spoilers 1c are welded in the confluence channel 1a, and the set of spoilers 1c includes twelve spoilers 1c that are mutually offset.
  • a section of serpentine flow channel 4 is divided in the confluence channel 1a.
  • a liquid supply tank 3 with a diameter of 500 mm and a length of 1000 mm is connected to the liquid outlet of the last molten glass stirring tank 1b.
  • the molten glass heating, clarifying and cooling section 2 includes a heating channel with a diameter of 300mm and a length of 1500mm connected to the melting furnace 5 at one end. 2a, at the other end of the heating channel 2a, a clarification tank 2b with a diameter of 400mm and a length of 8000mm and a cooling channel 2c are connected in sequence.
  • the liquid outlet ends of the cooling channels 2c of the two glass liquid heating, clarifying and cooling sections 2 are all connected to the confluence channel 1a.
  • the heating channel 2a, clarification tank 2b, cooling channel 2c, confluence channel 1a, glass liquid stirring tank 1b, spoiler 1c and liquid supply tank 3 are all made of precious metal platinum-iridium alloy.
  • the heating channel 2a, the clarification tank 2b, the cooling channel 2c, the confluence channel 1a and the liquid supply tank 3 are all connected with wires and thermocouples, and the wires and thermocouples are connected and matched with a console not shown in the figure.
  • thermocouple Through the signal from the thermocouple, check the detected temperature through the console and control the current input power, and then control the working temperature of the heating channel 2a to 1650°C, the working temperature of the clarification tank 2b to 1670°C, and the working temperature of the cooling channel 2c It is 1550°C, the working temperature of the confluence channel 1a is 1500°C, and the working temperature of the liquid supply tank 3 is 1400°C.
  • the molten glass enters the float tin bath through the liquid supply tank 3 for precise forming, and the 11th generation float TFT-LCD glass substrate is produced. After follow-up quality inspection, the produced 11th generation float TFT-LCD glass substrate has no bubbles and streaks.
  • the daily melting of the glass furnace of this embodiment is 100 tons per day.
  • a large-flow precious metal channel includes a glass-liquid mixed flow stirring section 1.
  • the glass-liquid mixed flow stirring section 1 includes a confluence channel 1a with a diameter of 450mm and a length of 2600mm.
  • the two cooling channels 2c with a diameter of 330mm and a length of 5500mm are connected.
  • a set of spoilers 1c are welded in the confluence channel 1a.
  • a section of serpentine flow passage 4 is divided into the confluence passage 1a by these ten spoilers 1c.
  • a liquid supply tank 3 with a diameter of 450 mm and a length of 1200 mm is connected to the liquid outlet of the last molten glass stirring tank 1b.
  • the molten glass heating, clarifying and cooling section 2 includes a heating channel with a diameter of 280mm and a length of 1300mm connected to the melting furnace 5 at one end. 2a, at the other end of the heating channel 2a, a clarification tank 2b with a diameter of 380mm and a length of 7000mm and a cooling channel 2c are connected in sequence.
  • the liquid outlet ends of the cooling channels 2c of the two glass liquid heating, clarifying and cooling sections 2 are all connected to the confluence channel 1a.
  • the heating channel 2a, clarification tank 2b, cooling channel 2c, confluence channel 1a, glass liquid stirring tank 1b, spoiler 1c and liquid supply tank 3 are all made of precious metal platinum-iridium alloy.
  • the heating channel 2a, the clarification tank 2b, the cooling channel 2c, the confluence channel 1a and the liquid supply tank 3 are all connected with wires and thermocouples, and the wires and thermocouples are connected and matched with a console not shown in the figure.
  • thermocouple Through the signal transmitted by the thermocouple, check the detected temperature through the console and control the power of the current input, and then control the working temperature of the heating channel 2a to 1650°C, the working temperature of the clarification tank 2b to 1650°C, and the working temperature of the cooling channel 2c It is 1510°C, the working temperature of the confluence channel 1a is 1470°C, and the working temperature of the liquid supply tank 3 is 1350°C.
  • the molten glass enters the overflow tank through the liquid supply tank 3 for precise shaping, and the overflow produces a 10.5 generation TFT-LCD glass substrate. After the follow-up quality inspection, there are no bubbles and streaks in the 10.5-generation TFT-LCD glass substrate produced by overflow.
  • the daily melting of the glass furnace of this embodiment is 70 tons per day.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)

Abstract

提供一种大流量贵金属通道,该通道包括玻璃液混流搅拌段,在玻璃液混流搅拌段一端并联有至少两个玻璃液加热澄清冷却段,在玻璃液混流搅拌段另一端还连通有供液槽。该通道主要用于8.5代及以上高世代TFT玻璃生产过程中大流量高温玻璃液的澄清、均化,为后面的浮法成形或溢流成形工艺提供无气泡、无条纹的高质量玻璃液。

Description

一种大流量贵金属通道
本申请要求于2020年6月8日提交中国专利局、申请号为202010510893.X发明名称为“一种大流量贵金属通道”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电子玻璃制造设备技术领域,特别是涉及一种主要用于8.5代及以上高世代TFT玻璃基板生产过程中的大流量贵金属通道。
背景技术
利用贵金属通道处理玻璃液的技术是目前生产TFT玻璃最常用的方法。这种方法利用了贵金属的耐温性好、可直接通电加热及延展性好等优点,可通电直接加热至1650℃,可实现TFT基板玻璃液高温下有效排泡,达到高质量澄清均化的作用,是生产TFT玻璃的关键技术装备,易于实现大批量生产,国内外很多专利和文献涉及了这方面的工艺。如中国发明专利CN101935146B阐述了一种铂金通道中玻璃液的处理方法,通过一个澄清仓、一个冷却仓、一个搅拌仓、一个均质仓和一个供料仓的五段处理步骤实现5~20吨/天的玻璃液流量的澄清均化,但该方法的处理能力还很有限,高于20吨/天的大流量玻璃液会由于需要的铂金管太大无法保证高温机械强度,无法实现高质量稳定澄清;中国发明专利CN105948462A涉及一种铂金通道加热装置、方法及铂金通道和玻璃生产系统,利用该装置产生交变磁场,在铂金通道上形成感生电涡流,电涡流流经铂金通道产生热量,实现对铂金通道的均匀加热,但该发明没有涉及大流量玻璃液的具体处理方法。
发明内容
本发明就是为了克服现有技术中的不足,提供一种大流量贵金属通道。
本申请提供以下技术方案:
本申请提供一种大流量贵金属通道,包括玻璃液混流搅拌段,其特征在于:在玻璃液混流搅拌段一端并联有至少两个玻璃液加热澄清冷却段,在玻璃液混流搅拌段另一端还连通有供液槽,所述的玻璃液加热澄清冷却段包括一端与熔窑连通的加热通道,在加热通道另一端依次连通有澄清槽和冷却通道;所述的玻璃液混流搅拌段包括汇流通道,汇流通道的一端与所述冷却通道连通,在汇流通道内设有一组扰流板,在汇流通道另一端连通有搅拌通道,所述搅拌通道包括至少一个玻璃液搅拌槽,在玻璃液搅拌槽的出液口与供液槽连 通。
在本发明的一些实施方式中,所述的一组扰流板中的各扰流板为错位分布,通过一组扰流板的分割在汇流通道内分割出一段蛇形流道。
在本发明的一些实施方式中,在汇流通道另一端依次连通有至少一个玻璃液搅拌槽,且相邻的两个玻璃液搅拌槽的搅拌方向不同。
在本发明的一些实施方式中,所述加热通道的直径为150mm-300mm长度为500mm-1500mm;所述澄清槽的直径为250mm-400mm长度为3000mm-8000mm;所述冷却通道的直径为220mm-360mm长度为2000mm-6000mm;所述汇流通道的直径为300mm-500mm长度为2000mm-5000mm;所述玻璃液搅拌槽的直径为350mm-550mm,搅拌转速为2圈-20圈每分钟;所述供液槽的直径为300mm-500mm长度为1000mm-2000mm。
在本发明的一些实施方式中,所述加热通道工作时的最高温度为1650℃,所述澄清槽工作时的最高温度为1670℃,所述冷却通道的工作时的温度为1500℃~1550℃,所述供液槽工作时的温度为1200℃~1400℃。
在本发明的一些实施方式中,所述的加热通道、澄清槽、冷却通道、汇流通道、玻璃液搅拌槽、扰流板以及供液槽由铂铑合金或铂铱合金或铂制成。所述加热通道、澄清槽、冷却通道、汇流通道、玻璃液搅拌槽、扰流板以及供液槽,各自独立地由铂铑合金或铂铱合金或铂制成,可以相同,也可以不同;优选地,所述加热通道、澄清槽、冷却通道、汇流通道、玻璃液搅拌槽、扰流板以及供液槽,由同一种铂铑合金或铂铱合金或铂制成。
本发明实施例有益效果:
本发明实施例提供的大流量贵金属通道,技术装备简单、可操作性强、澄清均化效果优、通过设置至少两条并行的玻璃液加热澄清冷却段,可实现大流量玻璃液高温加热澄清的同时,也可充分保证高温段铂金的使用寿命和高温机械强度,在确保高产量的前提下,避免了制造单根大直径玻璃液通道在高温段因大流量高液位玻璃液的压力作用而发生坍塌的风险的问题。
附图说明
为了更清楚地说明本发明实施例和现有技术的技术方案,下面对实施例和现有技术中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,本领域普通技术人员来讲还可以根据这些附图获得其他的附图。
图1是本发明提供实施例1-4的工艺流程图;附图标记为:1-玻璃液混流搅拌段;1a- 汇流通道;1b-玻璃液搅拌槽;1c-扰流板;2-玻璃液加热澄清冷却段;2a-加热通道;2b-澄清槽;2c-冷却通道;3-供液槽;4-蛇形流道;5-熔窑。
具体实施方式
为使本发明的目的、技术方案、及优点更加清楚明白,以下参照附图并举实施例,对本发明进一步详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。本领域普通技术人员基于本发明中的实施例所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
如图1所示,一种大流量贵金属通道,它包括玻璃液混流搅拌段1,所述的玻璃液混流搅拌段1包括直径为400mm长度为3000mm的汇流通道1a,汇流通道1a的一端与所述的两条直径为280mm长度为3000mm的冷却通道2c连通,在汇流通道1a内焊接有一组扰流板1c,所述的一组扰流板1c包括八片相互错位分布的扰流板1c,通过这八片扰流板1c在汇流通道1a内分割出一段蛇形流道4。
在蛇形流道4一端的汇流通道1a上还依次连通有三个直径为400mm、转速为3圈每分钟,搅拌方向分别是逆时针、顺时针、逆时针旋转搅拌的玻璃液搅拌槽1b。在最后一个玻璃液搅拌槽1b的出液口连通有直径为360mm长度为1600mm的供液槽3。
在汇流通道1a的另一端接入两个尺寸结构相同的玻璃液加热澄清冷却段2,所述的玻璃液加热澄清冷却段2包括一端与熔窑5连通的直径为200mm长度为1000mm的加热通道2a,在加热通道2a另一端依次连通有直径为300mm长度为5000mm的澄清槽2b和冷却通道2c。所述的两个玻璃液加热澄清冷却段2的冷却通道2c的出液端均与汇流通道1a连通。
所述的加热通道2a、澄清槽2b、冷却通道2c、汇流通道1a、玻璃液搅拌槽1b、扰流板1c以及供液槽3均为贵金属铂铑合金制成。在加热通道2a、澄清槽2b、冷却通道2c、汇流通道1a以及供液槽3上均连通有电线以及热电偶,所述的电线以及热电偶均与图中未显示的控制台连接配合。通过热电偶传出的信号,通过控制台查看检测的温度并控制电流输入的功率,进而控制加热通道2a的工作温度为1630℃、澄清槽2b的工作温度为1650℃、冷却通道2c的工作温度为1520℃、汇流通道1a的工作温度为1470℃、供液槽3的工作温度为1300℃。
最终玻璃液通过供液槽3进入浮法锡槽中进行精确成形,生产出8.5代浮法TFT-LCD 玻璃基板。经后续品质检测,生产的8.5代浮法TFT-LCD玻璃基板中无气泡和条纹。本实施例的玻璃窑炉的日熔化为35吨每天。
实施例2:
如图1所示,一种大流量贵金属通道,它包括玻璃液混流搅拌段1,所述的玻璃液混流搅拌段1包括直径为300mm长度为5000mm的汇流通道1a,汇流通道1a的一端与所述的两条直径为220mm长度为2000mm的冷却通道2c连通,在汇流通道1a内焊接有一组扰流板1c,所述的一组扰流板1c包括五片相互错位分布的扰流板1c,通过这五片扰流板1c在汇流通道1a内分割出一段蛇形流道4。
在蛇形流道4一端的汇流通道1a上还依次连通有三个直径为350mm、转速为8圈每分钟,搅拌方向分别是顺时针、逆时针、顺时针旋转搅拌的玻璃液搅拌槽1b。在最后一个玻璃液搅拌槽1b的出液口连通有直径为300mm长度为2000mm的供液槽3。
在汇流通道1a的另一端接入两个尺寸结构相同的玻璃液加热澄清冷却段2,所述的玻璃液加热澄清冷却段2包括一端与熔窑5连通的直径为150mm长度为500mm的加热通道2a,在加热通道2a另一端依次连通有直径为250mm长度为3000mm的澄清槽2b和冷却通道2c。所述的两个玻璃液加热澄清冷却段2的冷却通道2c的出液端均与汇流通道1a连通。
所述的加热通道2a、澄清槽2b、冷却通道2c、汇流通道1a、玻璃液搅拌槽1b、扰流板1c以及供液槽3均为贵金属铂制成。在加热通道2a、澄清槽2b、冷却通道2c、汇流通道1a以及供液槽3上均连通有电线以及热电偶,所述的电线以及热电偶均与图中未显示的控制台连接配合。通过热电偶传出的信号,通过控制台查看检测的温度并控制电流输入的功率,进而控制加热通道2a的工作温度为1620℃、澄清槽2b的工作温度为1640℃、冷却通道2c的工作温度为1500℃、汇流通道1a的工作温度为1450℃、供液槽3的工作温度为1200℃。
最终玻璃液通过供液槽3进入溢流槽中进行精确成形,溢流生产出8.5代TFT-LCD玻璃基板。经后续品质检测,溢流生产的8.5代TFT-LCD玻璃基板中无气泡和条纹。本实施例的玻璃窑炉的日熔化为20吨每天。
实施例3:
如图1所示,一种大流量贵金属通道,它包括玻璃液混流搅拌段1,所述的玻璃液混流搅拌段1包括直径为500mm长度为2000mm的汇流通道1a,汇流通道1a的一端与所述 的两条直径为360mm长度为6000mm的冷却通道2c连通,在汇流通道1a内焊接有一组扰流板1c,所述的一组扰流板1c包括十二片相互错位分布的扰流板1c,通过这十二片扰流板1c在汇流通道1a内分割出一段蛇形流道4。
在蛇形流道4一端的汇流通道1a上还依次连通有三个直径为550mm、转速为18圈每分钟,搅拌方向分别是逆时针、顺时针、逆时针旋转搅拌的玻璃液搅拌槽1b。在最后一个玻璃液搅拌槽1b的出液口连通有直径为500mm长度为1000mm的供液槽3。
在汇流通道1a的另一端接入两个尺寸结构相同的玻璃液加热澄清冷却段2,所述的玻璃液加热澄清冷却段2包括一端与熔窑5连通的直径为300mm长度为1500mm的加热通道2a,在加热通道2a另一端依次连通有直径为400mm长度为8000mm的澄清槽2b和冷却通道2c。所述的两个玻璃液加热澄清冷却段2的冷却通道2c的出液端均与汇流通道1a连通。
所述的加热通道2a、澄清槽2b、冷却通道2c、汇流通道1a、玻璃液搅拌槽1b、扰流板1c以及供液槽3均为贵金属铂铱合金制成。在加热通道2a、澄清槽2b、冷却通道2c、汇流通道1a以及供液槽3上均连通有电线以及热电偶,所述的电线以及热电偶均与图中未显示的控制台连接配合。通过热电偶传出的信号,通过控制台查看检测的温度并控制电流输入的功率,进而控制加热通道2a的工作温度为1650℃、澄清槽2b的工作温度为1670℃、冷却通道2c的工作温度为1550℃、汇流通道1a的工作温度为1500℃、供液槽3的工作温度为1400℃。
最终玻璃液通过供液槽3进入浮法锡槽中进行精确成形,生产出11代浮法TFT-LCD玻璃基板。经后续品质检测,生产的11代浮法TFT-LCD玻璃基板中无气泡和条纹。本实施例的玻璃窑炉的日熔化为100吨每天。
实施例4:
如图1所示,一种大流量贵金属通道,它包括玻璃液混流搅拌段1,所述的玻璃液混流搅拌段1包括直径为450mm长度为2600mm的汇流通道1a,汇流通道1a的一端与所述的两条直径为330mm长度为5500mm的冷却通道2c连通,在汇流通道1a内焊接有一组扰流板1c,所述的一组扰流板1c包括十片相互错位分布的扰流板1c,通过这十片扰流板1c在汇流通道1a内分割出一段蛇形流道4。
在蛇形流道4一端的汇流通道1a上还依次连通有三个直径为500mm、转速为13圈每分钟,搅拌方向分别是顺时针、逆时针、顺时针旋转搅拌的玻璃液搅拌槽1b。在最后一个 玻璃液搅拌槽1b的出液口连通有直径为450mm长度为1200mm的供液槽3。
在汇流通道1a的另一端接入两个尺寸结构相同的玻璃液加热澄清冷却段2,所述的玻璃液加热澄清冷却段2包括一端与熔窑5连通的直径为280mm长度为1300mm的加热通道2a,在加热通道2a另一端依次连通有直径为380mm长度为7000mm的澄清槽2b和冷却通道2c。所述的两个玻璃液加热澄清冷却段2的冷却通道2c的出液端均与汇流通道1a连通。
所述的加热通道2a、澄清槽2b、冷却通道2c、汇流通道1a、玻璃液搅拌槽1b、扰流板1c以及供液槽3均为贵金属铂铱合金制成。在加热通道2a、澄清槽2b、冷却通道2c、汇流通道1a以及供液槽3上均连通有电线以及热电偶,所述的电线以及热电偶均与图中未显示的控制台连接配合。通过热电偶传出的信号,通过控制台查看检测的温度并控制电流输入的功率,进而控制加热通道2a的工作温度为1650℃、澄清槽2b的工作温度为1650℃、冷却通道2c的工作温度为1510℃、汇流通道1a的工作温度为1470℃、供液槽3的工作温度为1350℃。
最终玻璃液通过供液槽3进入溢流槽中进行精确成形,溢流生产出10.5代TFT-LCD玻璃基板。经后续品质检测,溢流生产的10.5代TFT-LCD玻璃基板中无气泡和条纹。本实施例的玻璃窑炉的日熔化为70吨每天。
以上所述仅是本发明的优选实施方式,应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出若干改进和变换,这些都属于本发明的保护范围。

Claims (6)

  1. 一种大流量贵金属通道,包括玻璃液混流搅拌段(1),其特征在于:在玻璃液混流搅拌段(1)一端并联有至少两个玻璃液加热澄清冷却段(2),在玻璃液混流搅拌段(1)另一端还连通有供液槽(3),所述的玻璃液加热澄清冷却段(2)包括一端与熔窑(5)连通的加热通道(2a),在加热通道(2a)另一端依次连通有澄清槽(2b)和冷却通道(2c);所述的玻璃液混流搅拌段(1)包括汇流通道(1a),汇流通道(1a)的一端与所述冷却通道(2c)连通,在汇流通道(1a)内设有一组扰流板(1c),在汇流通道(1a)另一端连通有搅拌通道,所述搅拌通道包括至少一个玻璃液搅拌槽(1b),在玻璃液搅拌槽(1b)的出液口与供液槽(3)连通。
  2. 根据权利要求1中所述的一种大流量贵金属通道,其特征在于:所述的一组扰流板(1c)中的各扰流板(1c)为错位分布,通过一组扰流板(1c)的分割在汇流通道(1a)内分割出一段蛇形流道(4)。
  3. 根据权利要求1中所述的一种大流量贵金属通道,其特征在于:在汇流通道(1a)另一端依次连通有至少一个玻璃液搅拌槽(1b),且相邻的两个玻璃液搅拌槽(1b)的搅拌方向不同。
  4. 根据权利要求1中所述的一种大流量贵金属通道,其特征在于:所述加热通道(2a)的直径为150mm-300mm长度为500mm-1500mm;所述澄清槽(2b)的直径为250mm-400mm长度为3000mm-8000mm;所述冷却通道(2c)的直径为220mm-360mm长度为2000mm-6000mm;所述汇流通道(1a)的直径为300mm-500mm长度为2000mm-5000mm;所述玻璃液搅拌槽(1b)的直径为350mm-550mm,搅拌转速为2圈-20圈每分钟;所述供液槽(3)的直径为300mm-500mm长度为1000mm-2000mm。
  5. 根据权利要求1中所述的一种大流量贵金属通道,其特征在于:所述加热通道(2a)工作时的最高温度为1650℃,所述澄清槽(2b)工作时的最高温度为1670℃,所述冷却通道(2c)的工作时的温度为1500℃~1550℃,所述供液槽(3)工作时的温度为1200℃~1400℃。
  6. 根据权利要求1中所述的一种大流量贵金属通道,其特征在于:所述的加热通道(2a)、澄清槽(2b)、冷却通道(2c)、汇流通道(1a)、玻璃液搅拌槽(1b)、扰流板(1c)以及供液槽(3)由铂铑合金或铂铱合金或铂制成。
PCT/CN2021/088203 2020-06-08 2021-04-19 一种大流量贵金属通道 WO2021249025A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227015043A KR20220078648A (ko) 2020-06-08 2021-04-19 대유량 귀금속 채널
JP2022506758A JP7336022B2 (ja) 2020-06-08 2021-04-19 大流量貴金属通路
US17/771,634 US20220402798A1 (en) 2020-06-08 2021-04-19 Large-Flow Precious Metal Channel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010510893.X 2020-06-08
CN202010510893.XA CN111704347B (zh) 2020-06-08 2020-06-08 一种大流量贵金属通道

Publications (1)

Publication Number Publication Date
WO2021249025A1 true WO2021249025A1 (zh) 2021-12-16

Family

ID=72539910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088203 WO2021249025A1 (zh) 2020-06-08 2021-04-19 一种大流量贵金属通道

Country Status (5)

Country Link
US (1) US20220402798A1 (zh)
JP (1) JP7336022B2 (zh)
KR (1) KR20220078648A (zh)
CN (1) CN111704347B (zh)
WO (1) WO2021249025A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111704347B (zh) * 2020-06-08 2022-03-18 中建材蚌埠玻璃工业设计研究院有限公司 一种大流量贵金属通道
CN111747634B (zh) * 2020-06-08 2022-03-15 中建材蚌埠玻璃工业设计研究院有限公司 一种高世代tft-lcd玻璃基板生产线
CN112142295B (zh) * 2020-10-23 2022-06-21 蚌埠中光电科技有限公司 一种适用于高世代电子显示玻璃的铂金通道
CN112578822B (zh) * 2020-12-14 2023-03-07 成都中光电科技有限公司 Tft-lcd铂金通道无称重反馈的流量控制方法、装置及存储介质

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1033981A (zh) * 1987-01-02 1989-07-19 Ppg工业公司 均化平板玻璃的方法及其装置
CN1524811A (zh) * 2003-02-10 2004-09-01 日本电气硝子株式会社 熔融玻璃供给装置、玻璃成型产品及生产方法
CN1948196A (zh) * 2006-09-30 2007-04-18 河南安彩高科股份有限公司 一种提高玻璃质量的方法和设备
CN101935146A (zh) * 2010-03-24 2011-01-05 河北东旭投资集团有限公司 铂金通道中玻璃液的处理方法
CN103080026A (zh) * 2011-03-31 2013-05-01 安瀚视特控股株式会社 玻璃板的制造方法
CN204779306U (zh) * 2015-08-06 2015-11-18 蚌埠玻璃工业设计研究院 一窑四线玻璃液通路
JP2017065973A (ja) * 2015-09-30 2017-04-06 AvanStrate株式会社 ガラス基板の製造方法およびガラス基板の製造装置
CN109305747A (zh) * 2018-10-09 2019-02-05 成都中光电科技有限公司 一种超薄玻璃基板用双铂金通道结构
CN111704347A (zh) * 2020-06-08 2020-09-25 蚌埠中光电科技有限公司 一种大流量贵金属通道

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4493557A (en) * 1982-11-01 1985-01-15 Corning Glass Works Mixing apparatus
JP3724156B2 (ja) * 1997-10-27 2005-12-07 旭硝子株式会社 並列式減圧脱泡装置
JP3724153B2 (ja) * 1997-10-24 2005-12-07 旭硝子株式会社 溶融ガラスの減圧脱泡装置
JP2014019629A (ja) * 2012-07-20 2014-02-03 Nippon Electric Glass Co Ltd ガラス板製造装置及びその組立方法
CN104903259B (zh) * 2013-12-26 2017-09-29 安瀚视特控股株式会社 玻璃基板的制造方法以及玻璃基板制造装置
CN210481192U (zh) * 2019-07-19 2020-05-08 东旭(锦州)精密光电科技有限公司 一种玻璃液气泡排出装置
CN110395881A (zh) * 2019-07-19 2019-11-01 东旭(锦州)精密光电科技有限公司 一种玻璃液澄清设备和玻璃液澄清方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1033981A (zh) * 1987-01-02 1989-07-19 Ppg工业公司 均化平板玻璃的方法及其装置
CN1524811A (zh) * 2003-02-10 2004-09-01 日本电气硝子株式会社 熔融玻璃供给装置、玻璃成型产品及生产方法
CN1948196A (zh) * 2006-09-30 2007-04-18 河南安彩高科股份有限公司 一种提高玻璃质量的方法和设备
CN101935146A (zh) * 2010-03-24 2011-01-05 河北东旭投资集团有限公司 铂金通道中玻璃液的处理方法
CN103080026A (zh) * 2011-03-31 2013-05-01 安瀚视特控股株式会社 玻璃板的制造方法
CN204779306U (zh) * 2015-08-06 2015-11-18 蚌埠玻璃工业设计研究院 一窑四线玻璃液通路
JP2017065973A (ja) * 2015-09-30 2017-04-06 AvanStrate株式会社 ガラス基板の製造方法およびガラス基板の製造装置
CN109305747A (zh) * 2018-10-09 2019-02-05 成都中光电科技有限公司 一种超薄玻璃基板用双铂金通道结构
CN111704347A (zh) * 2020-06-08 2020-09-25 蚌埠中光电科技有限公司 一种大流量贵金属通道

Also Published As

Publication number Publication date
KR20220078648A (ko) 2022-06-10
CN111704347A (zh) 2020-09-25
US20220402798A1 (en) 2022-12-22
JP7336022B2 (ja) 2023-08-30
CN111704347B (zh) 2022-03-18
JP2022554047A (ja) 2022-12-28

Similar Documents

Publication Publication Date Title
WO2021249025A1 (zh) 一种大流量贵金属通道
CN112142295B (zh) 一种适用于高世代电子显示玻璃的铂金通道
CN205933599U (zh) 熔融玻璃加热装置和玻璃制造装置
JP5976863B2 (ja) ガラス基板の製造方法およびガラス基板の製造装置
WO2021249042A1 (zh) 一种高世代tft-lcd玻璃基板生产线
CN113480144B (zh) 一种基于溢流下拉法生产柔性玻璃的澄清均化系统及方法
KR20190077245A (ko) 유리 제조 장치, 유리 제조 방법, 유리 공급관 및 용융 유리 반송 방법
EP1206419B1 (de) Verfahren und vorrichtung zum herstellen von farbigen gläsern
JPH06305752A (ja) 溶解ガラスの移送用スロート
CN208362171U (zh) 一种节能窑炉
CN203212448U (zh) 玻璃进料系统
CN214781464U (zh) 一种硼硅玻璃制备用铂金通道系统
JP7138843B2 (ja) ガラス物品の製造方法
CN204454853U (zh) 一种铂金通道微环境控制系统结构
CN111847844B (zh) 一种减小玻璃液温差的铂金通道
JP7497728B2 (ja) ガラス物品の製造方法及びガラス物品の製造装置
JP7136015B2 (ja) ガラス移送装置
CN217103558U (zh) 一种玻璃窑炉炉底水冷式鼓泡装置
JP2018002539A (ja) ガラス基板の製造方法、およびガラス基板製造装置
JP2017065961A (ja) ガラス導管及びガラス基板の製造方法
DK165829B (da) Fremgangsmaade til formning af flydende glas til et plant baand
CN214088259U (zh) 一种用于狭缝法制备柔性玻璃的稳压调温装置
JP2002121030A (ja) ガラス溶融物への酸素気泡形成を抑制する方法、その方法を実施するための装置及びその方法で製造されたガラスの用途
CN101357819B (zh) 贵金属料道加热装置及方法
CN114230149A (zh) 用于tft玻璃的生产线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821182

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022506758

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227015043

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21821182

Country of ref document: EP

Kind code of ref document: A1