WO2021248819A1 - 阻燃尼龙组合物及其制备方法 - Google Patents

阻燃尼龙组合物及其制备方法 Download PDF

Info

Publication number
WO2021248819A1
WO2021248819A1 PCT/CN2020/129002 CN2020129002W WO2021248819A1 WO 2021248819 A1 WO2021248819 A1 WO 2021248819A1 CN 2020129002 W CN2020129002 W CN 2020129002W WO 2021248819 A1 WO2021248819 A1 WO 2021248819A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
flame
nylon
retardant
zone
Prior art date
Application number
PCT/CN2020/129002
Other languages
English (en)
French (fr)
Inventor
陈海兴
Original Assignee
绍兴思安阻燃科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 绍兴思安阻燃科技有限公司 filed Critical 绍兴思安阻燃科技有限公司
Publication of WO2021248819A1 publication Critical patent/WO2021248819A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/48Polymers modified by chemical after-treatment
    • C08G69/50Polymers modified by chemical after-treatment with aldehydes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant

Definitions

  • the invention belongs to the technical field of textile materials and relates to a flame-retardant nylon composition and a preparation method thereof.
  • Nylon also known as polyamide, is a thermoplastic polymer containing repeating units of amide groups in the main chain of the molecule.
  • the repeating unit of the amide group can be obtained by condensation of a dicarboxylic acid and a diamine, or can be obtained by ring opening of a lactam.
  • Nylon resin has better abrasion resistance, flexibility, dyeability and durability, and is widely used in clothing, stockings, apparel and industrial ropes and nets.
  • nylon resins include PA6, PA56, PA66, PA11, PA12, PA610, PA612, PA1010, PA1212.
  • nylon resin in addition to the amide group repeating unit in the molecular backbone, it often contains a large number of methylene structural units. This makes nylon resins easy to burn, especially resin-reinforced nylon resins. Due to the "candle wick" effect, the limiting oxygen index is only 23%, and the vertical combustion level is no level. However, in many specific fields, there is an urgent need to provide nylon resins with better flame-retardant properties.
  • nylon resins In order to change the flame-retardant properties of nylon resins, people mainly use physical blending and finishing methods to give nylon resins additional flame-retardant properties. The latter can be further divided into reactive methods and non-reactive methods.
  • Tang Jinjiao discloses a method for preparing a halogen-free and high-temperature flame-retardant resin.
  • a certain proportion of silicate nanoparticles are added to the spinning melt to fully mix, and then produced by ordinary chip spinning or melt spinning. It is produced by the process; or after mixing silicate nanoparticles and ordinary polymer chips, they are mutually fused at a certain temperature to form a flame-retardant masterbatch, and then the masterbatch is a high polymer with the same composition as the masterbatch carrier.
  • the material is made by twin-screw spinning.
  • the flame-retardant resin will not generate toxic gas when burned.
  • the special chemical composition of silicate due to the special chemical composition of silicate, it can bind a large amount of water to make the resin in the process of releasing them. The burning speed slows down, which in turn plays a role in preventing high temperatures.
  • the purpose of the present invention is to provide a flame-retardant nylon composition and a preparation method thereof.
  • the flame-retardant nylon composition not only has better flame-retardant properties, but also has better mechanical properties than conventional nylon resins; the preparation method has simple process and low cost, and is suitable for large-scale production.
  • the present invention adopts the following technical solutions: a method for preparing a flame-retardant nylon composition, the method includes batching and melting granulation steps; wherein, the batching step obtains A premixed nylon composition; characterized in that the raw materials of the nylon composition include:
  • the composite flame retardant comprises poly-N,N'-diphenyl-phenylphosphine oxide and guanidine sulfamate; the weight ratio of the two is 1:(0.8-0.9 ).
  • the nylon resin is subjected to methylolation treatment in advance.
  • the hydroxymethylation treatment step is as follows: the ordinary nylon resin is placed in a mixed solution of 85% phosphoric acid and formaldehyde and reacted at 50-70° C. for 12-24 h.
  • the volume ratio of 85% phosphoric acid to formaldehyde is (1-5):100.
  • the common nylon resin is selected from PA6, PA56, PA66, PA11, PA12, PA610, PA612, PA1010, PA1212.
  • the average particle size of the nano ⁇ -AlOOH is 10-100 nm.
  • the raw material of the nylon composition further includes an antioxidant and a lubricant.
  • the antioxidant is selected from N,N'-bis-[3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionyl]hexamethylene diamine;
  • the lubricant is selected from ethylene bis-stearamide.
  • the content of the antioxidant is 0.2-0.6 wt%; the content of the lubricant is 0.1-0.5 wt%.
  • the melt granulation is performed in a twin-screw extruder.
  • the process parameters are as follows: the temperature in the first zone is 265-275°C; the temperature in the second zone is 270-280°C; the temperature in the third zone is 275-285°C; the temperature in the fourth zone is 280-290°C ;
  • the screw speed is 400-500rpm.
  • the present invention also provides the flame-retardant nylon composition obtained by the above preparation method.
  • the preparation method of the present invention has simple process and low cost, and is suitable for large-scale production.
  • the hydroxymethylated PA66 nylon resin is obtained according to the following method: ordinary PA66 nylon resin is placed in a mixed solution of 85% phosphoric acid and formaldehyde, and reacted at 60° C. for 18 hours; wherein, the 85% phosphoric acid and formaldehyde The volume ratio is 3:100.
  • Melt granulation feed the pre-mixed nylon composition into a twin-screw extruder, melt and blend and then extrude and granulate to obtain the product; the process parameters are as follows: the temperature in the first zone is 270°C; the temperature in the second zone is 275°C; The temperature in the third zone is 280°C; the temperature in the fourth zone is 285°C; the screw speed is 450rpm.
  • the limiting oxygen index (LOI) of the corresponding products of Example 1 and Comparative Example 1-3 were measured in accordance with the national standards GB/T 5454-1997 and GB/T 2408-2008 respectively (molded into 120mm ⁇ 10mm ⁇ 4mm Measurement sample) and vertical combustion performance (UL-94 level) (molded into a measurement sample of 130mm ⁇ 13mm ⁇ 3mm).
  • the tensile strength (MPa) and elongation at break (%) of the corresponding products are measured in accordance with the national standard GB/T 1040-2018 series of standards (molded into a test sample of 150mm ⁇ 10mm ⁇ 4mm; dumbbell-shaped; Gauge length 50mm; stretching rate 50mm/min).
  • Example 1 of the present invention not only has better flame retardant properties, but also has better mechanical properties than conventional nylon resins.
  • the specific composite flame retardant and nano ⁇ -AlOOH both have a certain degree of contribution to the flame retardant performance; while the nano ⁇ -AlOOH and hydroxymethylated nylon resin also Together they contribute to the improvement of the mechanical properties of nylon resins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种阻燃尼龙组合物的制备方法,包括配料和熔融造粒步骤;其中,配料步骤得到预混的尼龙组合物;原料包括尼龙树脂、复合阻燃剂、纳米γ-AlOOH。此外,上述制备方法工艺简单,成本低,适于规模化生产。

Description

[根据细则37.2由ISA制定的发明名称] 阻燃尼龙组合物及其制备方法 技术领域
本发明属于纺织材料技术领域;涉及一种阻燃尼龙组合物及其制备方法。
背景技术
尼龙,又称聚酰胺,是由分子主链中含有酰胺基团重复单元的热塑性聚合物。酰胺基团重复单元可以是由二元羧酸和二元胺缩合得到,也可以是内酰胺开环得到。尼龙树脂具有较佳的耐磨性、柔韧性、染色性和耐用性,广泛应用于服装、丝袜、服饰和工业绳网等领域。
较为常用的尼龙树脂包括PA6、PA56、PA66、PA11、PA12、PA610、PA612、PA1010、PA1212。
作为尼龙树脂,分子主链中除了含有酰胺基团重复单元,往往还含有大量亚甲基结构单元。这导致尼龙树脂容易燃烧,尤其是树脂增强的尼龙树脂,由于“烛芯”效应,极限氧指数仅23%,垂直燃烧级别为无级别。然而,在多个特定领域,迫切需要提供阻燃性能更佳的尼龙树脂。
为了改变尼龙树脂的阻燃性能,人们主要使用物理共混法和后整理方法赋予尼龙树脂额外的阻燃性能。后者又可进一步分为反应性方法和非反应性方法。
Mathilde Casetta 等人(Polymer Degradation and Stability,2014,106,P150)在PA6树脂熔融阶段加入氨基磺酸铵作为阻燃剂。结果表明,当氨基磺酸铵的添加量不超过7wt%时,PA6树脂的热释放速率随着氨基磺酸铵添加量增大而降低;但是上述阻燃剂的阻燃性能仍然不能令人满意。
Sophie Duquesne等人(Polymers,2015,7,P316)使用三聚氰胺聚磷酸盐和氨基磺酸胍作为阻燃剂加入PA6树脂中制成阻燃树脂,并发现当两组分添加量均为2.5wt%时,阻燃树脂的热释放速率降低30%;氧指数提高至37vol%。
唐金娇在中国专利申请CN1161875 A公开了一种无卤防高温的阻燃树脂的制备方法,于纺丝熔体内加入一定比例的硅酸盐纳米颗粒充分混合,按普通切片纺或熔体纺生产流程进行生产制得;或者将硅酸盐纳米颗粒与普通高聚物切片进行混合后,于一定温度下互熔制成阻燃母粒,再将该母粒与母粒载体成分相同的高 聚物进行双螺杆纺丝制得。由于采用了无卤化合物作阻燃成分,该阻燃树脂在燃烧的时候不会产生有毒气体,同时由于硅酸盐的特殊化学成分,其可以结合大量化合水,在释放它们的过程中使树脂燃烧速度变缓,进而起到防高温作用。
张旭杰等人(工程塑料应用,2015,43,P6)公开了采用自制聚N,N'-二苯基-苯基氧化膦(PDPPD)、己二酸、PA66盐为原料通过高压聚合制备了含磷共聚本质阻燃PA66树脂。结果显示:阻燃PA66具有良好的阻燃性能;当PDPPD含量达4.5%时,LOI及UL-94分别达28%和V-0级。然而,该阻燃PA66树脂的力学性能不佳。
总而言之,大多数现有技术所得到的阻燃尼龙组合物的阻燃性能和力学性能难以兼顾。
因此,仍然需要针对尼龙树脂,提供一种阻燃性能和力学性能兼顾的阻燃尼龙组合物及其制备方法。
发明内容
本发明的目的在于提供一种阻燃尼龙组合物及其制备方法。所述阻燃尼龙组合物不仅阻燃性能较佳,同时具有比常规尼龙树脂更好的力学性能;所述制备方法工艺简单,成本低,适于规模化生产。
为了解决上述技术问题,根据本发明的第一方面,本发明采用以下技术方案:一种阻燃尼龙组合物的制备方法,所述方法包括配料和熔融造粒步骤;其中,所述配料步骤得到预混的尼龙组合物;其特征在于,所述尼龙组合物的原料包括:
尼龙树脂 85-90wt%;
复合阻燃剂 6-10wt%;
纳米γ-AlOOH 2-8wt%。
根据本发明所述的制备方法,其中,所述复合阻燃剂包括聚N,N'-二苯基-苯基氧化膦和氨基磺酸胍;二者的重量比为1:(0.8-0.9)。
根据本发明所述的制备方法,其中,所述尼龙树脂预先进行羟甲基化处理。
根据本发明所述的制备方法,其中,所述羟甲基化处理步骤如下:将普通尼龙树脂置于85%磷酸和甲醛混合溶液中,在50-70℃下反应12-24h得到。
根据本发明所述的制备方法,其中,85%磷酸与甲醛的体积比为(1-5):100。
根据本发明所述的制备方法,其中,所述普通尼龙树脂选自PA6、PA56、PA66、PA11、PA12、PA610、PA612、PA1010、PA1212。
根据本发明所述的制备方法,其中,纳米γ-AlOOH的平均粒径为10-100nm。
根据本发明所述的制备方法,其中,所述尼龙组合物的原料进一步包括抗氧化剂和润滑剂。
根据本发明所述的制备方法,其中,所述抗氧化剂选自N,N’-双-[3-(3,5-二叔丁基-4-羟基苯基)丙酰基]己二胺;所述润滑剂选自乙撑双硬脂酰胺。
根据本发明所述的制备方法,其中,所述抗氧化剂的含量为0.2-0.6wt%;所述润滑剂的含量为0.1-0.5wt%。
根据本发明所述的制备方法,其中,所述熔融造粒在双螺杆挤出机中进行。
根据本发明所述的制备方法,其中,工艺参数如下:第一区温度265-275℃;第二区温度270-280℃;第三区温度275-285℃;第四区温度280-290℃;螺杆转速为400-500rpm。
根据本发明的第二方面,本发明还提供了上述制备方法所得到的阻燃尼龙组合物。
发明人发现,在本发明的制备方法中,通过将特定复合阻燃剂和纳米γ-AlOOH应用于羟甲基化的尼龙树脂时,所述阻燃尼龙组合物不仅阻燃性能较佳,同时具有比常规尼龙树脂更好的力学性能。此外,本发明的制备方法工艺简单,成本低,适于规模化生产。
具体实施方式
下面结合具体实施方式,进一步阐述本发明。
应理解,本发明的具体实施方式仅用于阐释本发明的精神和原则,而不用于限制本发明的范围。此外应理解,在阅读了本发明的内容之后,本领域技术人员可以对本发明的技术方案作出各种改动、替换、删减、修正或调整,这些等价技术方案同样落于本发明权利要求书所限定的范围。
实施例1
配料:称取88wt%羟甲基化的PA66尼龙树脂;4wt%聚N,N'-二苯基-苯基氧化 膦;3.4wt%氨基磺酸胍;4wt%纳米γ-AlOOH;0.4wt%N,N’-双-[3-(3,5-二叔丁基-4-羟基苯基)丙酰基]己二胺;0.2wt%乙撑双硬脂酰胺;先将PA66尼龙树脂干燥至水分含量符合加工要求,然后与其它组分混合均匀,得到预混的尼龙组合物。其中,所述羟甲基化的PA66尼龙树脂按照如下方法得到:将普通PA66尼龙树脂置于85%磷酸和甲醛混合溶液中,在60℃下反应18h得到;其中,所述85%磷酸与甲醛的体积比为3:100。
熔融造粒:将预混的尼龙组合物喂入双螺杆挤出机,熔融共混后挤出造粒,得到产品;工艺参数如下:第一区温度270℃;第二区温度275℃;第三区温度280℃;第四区温度285℃;螺杆转速为450rpm。
比较例1
将3.4wt%氨基磺酸胍替换为3.4wt%聚N,N'-二苯基-苯基氧化膦,其余条件同实施例1。
比较例2
不加入纳米γ-AlOOH,其余条件同实施例1。
比较例3
使用普通PA66尼龙树脂替代羟甲基化的PA66尼龙树脂,其余条件同实施例1。
产品性能
在燃烧性能方面,分别按照国家标准GB/T 5454-1997和GB/T 2408-2008测定实施例1和比较例1-3相应产品的极限氧指数(LOI)(模压成120mm×10mm×4mm的测定试样)和垂直燃烧性能(UL-94级别)(模压成130mm×13mm×3mm的测定试样)。
在力学性能方面,按照国家标准GB/T 1040-2018系列标准测定相应产品的拉伸强度(MPa)和断裂伸长率(%)(模压成150mm×10mm×4mm的测定试样;哑铃型;标距50mm;拉伸速率50mm/min)。
结果如表1所示。
表1
样品 LOI UL-94 拉伸强度 断裂伸长率
实施例1 36.1 V-0 85.2 67.6
比较例1 30.5 V-1 84.6 67.1
比较例2 34.9 V-1 71.3 54.2
比较例3 35.7 V-0 77.4 56.0
由表1可以看出,与比较例1-3相比,本发明实施例1相应产品的不仅阻燃性能较佳,同时具有比常规尼龙树脂更好的力学性能。
不希望局限于任何理论,在本发明的制备方法中,特定复合阻燃剂和纳米γ-AlOOH均对阻燃性能具有一定程度的贡献;而纳米γ-AlOOH和羟甲基化的尼龙树脂又共同对尼龙树脂力学性能的改善作出贡献。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均包含在本发明的保护范围之内。

Claims (10)

  1. 一种阻燃尼龙组合物的制备方法,所述方法包括配料和熔融造粒步骤;其中,所述配料步骤得到预混的尼龙组合物;其特征在于,所述尼龙组合物的原料包括:
    尼龙树脂85-90wt%;
    复合阻燃剂6-10wt%;
    纳米γ-AlOOH 2-8wt%。
  2. 根据权利要求1所述的制备方法,其中,所述复合阻燃剂包括聚N,N'-二苯基-苯基氧化膦和氨基磺酸胍;二者的重量比为1:(0.8-0.9)。
  3. 根据权利要求1所述的制备方法,其中,所述尼龙树脂预先进行羟甲基化处理。
  4. 根据权利要求3所述的制备方法,其中,所述羟甲基化处理步骤如下:将普通尼龙树脂置于85%磷酸和甲醛混合溶液中,在50-70℃下反应12-24h得到。
  5. 根据权利要求4所述的制备方法,其中,85%磷酸与甲醛的体积比为(1-5):100。
  6. 根据权利要求1所述的制备方法,其中,所述普通尼龙树脂选自PA6、PA56、PA66、PA11、PA12、PA610、PA612、PA1010、PA1212。
  7. 根据权利要求1所述的制备方法,其中,纳米γ-AlOOH的平均粒径为10-100nm。
  8. 根据权利要求1所述的制备方法,其中,所述熔融造粒在双螺杆挤出机中进行。
  9. 根据权利要求1所述的制备方法,其中,工艺参数如下:第一区温度265-275℃;第二区温度270-280℃;第三区温度275-285℃;第四区温度280-290℃;螺杆转速为400-500rpm。
  10. 一种阻燃尼龙组合物,其特征在于,由根据权利要求1-9所述的制备方法得到。
PCT/CN2020/129002 2020-06-11 2020-11-16 阻燃尼龙组合物及其制备方法 WO2021248819A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010526648.8 2020-06-11
CN202010526648.8A CN111621150B (zh) 2020-06-11 2020-06-11 一种阻燃尼龙组合物及其制备方法

Publications (1)

Publication Number Publication Date
WO2021248819A1 true WO2021248819A1 (zh) 2021-12-16

Family

ID=72257328

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/129002 WO2021248819A1 (zh) 2020-06-11 2020-11-16 阻燃尼龙组合物及其制备方法

Country Status (2)

Country Link
CN (1) CN111621150B (zh)
WO (1) WO2021248819A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115612289A (zh) * 2022-10-20 2023-01-17 苏州润佳高分子材料有限公司 一种阻燃尼龙6复合材料的制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111621150B (zh) * 2020-06-11 2023-02-14 绍兴思安阻燃科技有限公司 一种阻燃尼龙组合物及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337031B1 (en) * 1998-04-21 2002-01-08 Kaneka Corporation Flame-retardant resin magnet material
CN1656161A (zh) * 2002-04-19 2005-08-17 圣戈本陶瓷及塑料股份有限公司 新颖勃姆石颗粒及掺入这种颗粒的聚合物材料
CN106543709A (zh) * 2016-11-25 2017-03-29 西华大学 一种抑菌阻燃尼龙复合材料及其制备方法
CN108589284A (zh) * 2018-05-28 2018-09-28 苏州大学 阻燃羧甲基化尼龙织物的制备方法
CN111621150A (zh) * 2020-06-11 2020-09-04 绍兴思安阻燃科技有限公司 一种阻燃尼龙组合物及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138120A (ja) * 2006-12-04 2008-06-19 Songwon Industrial Co Ltd ポリアミド類の難燃化方法
JP2010254760A (ja) * 2009-04-22 2010-11-11 Unitika Ltd 難燃性強化ポリアミド樹脂組成物
CN105755801B (zh) * 2016-04-19 2019-04-09 陕西科技大学 一种聚酰胺纤维表面羟基化改性的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337031B1 (en) * 1998-04-21 2002-01-08 Kaneka Corporation Flame-retardant resin magnet material
CN1656161A (zh) * 2002-04-19 2005-08-17 圣戈本陶瓷及塑料股份有限公司 新颖勃姆石颗粒及掺入这种颗粒的聚合物材料
CN106543709A (zh) * 2016-11-25 2017-03-29 西华大学 一种抑菌阻燃尼龙复合材料及其制备方法
CN108589284A (zh) * 2018-05-28 2018-09-28 苏州大学 阻燃羧甲基化尼龙织物的制备方法
CN111621150A (zh) * 2020-06-11 2020-09-04 绍兴思安阻燃科技有限公司 一种阻燃尼龙组合物及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115612289A (zh) * 2022-10-20 2023-01-17 苏州润佳高分子材料有限公司 一种阻燃尼龙6复合材料的制备方法

Also Published As

Publication number Publication date
CN111621150B (zh) 2023-02-14
CN111621150A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
CN111004501A (zh) 一种改性生物基尼龙56材料及其制备方法和应用
TWI595040B (zh) 烯烴-順丁烯二酐共聚物組成物及其用途
CN109438976B (zh) 共聚尼龙制品及其制备方法
CN114790330B (zh) 一种阻燃性聚酰胺玻纤组合物及其制备方法
WO2021248819A1 (zh) 阻燃尼龙组合物及其制备方法
CN109957240B (zh) 一种热塑性无卤低磷阻燃增强生物基pa56和pa66复合材料及其制备方法
CN111073242A (zh) 一种高熔体强度、无卤阻燃吹塑pc/abs合金及其制备方法
CN110903644A (zh) 一种生物基pa56t和pa56复合材料及其制备方法
CN107778856A (zh) 无卤阻燃高耐温聚己二酰丁二胺复合材料及其制备方法
CN111635629A (zh) 一种低吸水率玻纤增强无卤阻燃聚酰胺材料及其制备方法
CN109504089B (zh) 一种低成本聚砜合金
CN112745675B (zh) 一种无卤阻燃聚酰胺复合材料及其制备方法与应用
CN111961340B (zh) 一种无卤阻燃生物基尼龙56复合材料及其制备方法
CN104559174A (zh) 一种非增强无卤阻燃尼龙66的制备方法
CN108822538B (zh) 一种阻燃复合尼龙及其制备方法
CN108795033B (zh) 一种具有较高流动性的阻燃聚酰胺5x组合物及其制备方法
CN105153416A (zh) 一种双磷阻燃共聚尼龙及其制备方法
CN115572387A (zh) 一种低熔点共聚阻燃聚酰胺的制备方法
CN111484742A (zh) 一种阻燃尼龙组合物
CN111057358B (zh) 一种高耐热抗冲击聚碳酸酯组合物及其制备方法
CN111040445A (zh) 具有高力学性能的阻燃尼龙66/尼龙6复合材料
CN110054890B (zh) 一种具有高阻燃性的生物基pa56复合材料及其制备方法
CN107099135B (zh) 一种增强改性的阻燃pa6组合物
CN112300543A (zh) 一种无卤阻燃pet材料及其制备方法
CN112239537A (zh) 长效耐高温嵌段聚酰胺组合物和纤维及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939655

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939655

Country of ref document: EP

Kind code of ref document: A1