WO2021246306A1 - パウダーの製造方法、パウダー及びパウダー分散液 - Google Patents

パウダーの製造方法、パウダー及びパウダー分散液 Download PDF

Info

Publication number
WO2021246306A1
WO2021246306A1 PCT/JP2021/020370 JP2021020370W WO2021246306A1 WO 2021246306 A1 WO2021246306 A1 WO 2021246306A1 JP 2021020370 W JP2021020370 W JP 2021020370W WO 2021246306 A1 WO2021246306 A1 WO 2021246306A1
Authority
WO
WIPO (PCT)
Prior art keywords
powder
polymer
tetrafluoroethylene
agglomerates
dispersion
Prior art date
Application number
PCT/JP2021/020370
Other languages
English (en)
French (fr)
Inventor
達也 寺田
舞 栗原
渉 笠井
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to JP2022528791A priority Critical patent/JPWO2021246306A1/ja
Priority to CN202180039139.5A priority patent/CN115698142A/zh
Publication of WO2021246306A1 publication Critical patent/WO2021246306A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating

Definitions

  • the present invention relates to a tetrafluoroethylene polymer powder having a predetermined particle size distribution and specific surface area, a method for producing the same, and a powder dispersion containing such powder.
  • the heat-meltable tetrafluoroethylene polymer is excellent in various physical properties (electrical insulation, water repellency, oil repellency, chemical resistance, etc.) and melt processability. Therefore, the tetrafluoroethylene polymer powder itself is used as a powder coating material (see Patent Document 1) or as a powder dispersion liquid containing it (see Patent Document 2).
  • Patent Document 1 describes a specific surface area of 8 to 25 m 2 / g and an average particle size of 1 to 1 to obtained by heat-treating agglomerates recovered from a polymerization solution of a tetrafluoroethylene polymer and then pulverizing them. A powder having a size of 100 ⁇ m is disclosed. However, in Patent Document 1, since the agglomerates are heat-treated in a stationary state, the degree of heat treatment tends to be uneven. Therefore, the powder obtained by the subsequent pulverization is unlikely to have a small specific surface area and tends to have a multimodal particle size distribution.
  • Patent Document 2 describes as a tetrafluoroethylene polymer powder to be dispersed in a powder dispersion, a powder having a specific surface area of 15 m 2 / g or less and an average particle size of 1 ⁇ m or less. .. Patent Document 2 describes that when the average particle size of the powder exceeds 1 ⁇ m, the dispersion stability of the powder in the powder dispersion liquid decreases.
  • An object of the present invention is to provide a powder having excellent dispersion stability in a powder dispersion, a method for producing the same, and a powder dispersion having excellent dispersion stability.
  • the present invention has the following aspects.
  • a method for producing a powder which comprises obtaining a powder of the tetrafluoroethylene polymer having a specific surface area of 1 m 2 / g or more and less than 8 m 2 / g and having a monomodal particle size distribution.
  • [2] The method for producing [1], wherein the tetrafluoroethylene-based polymer is a tetrafluoroethylene-based polymer containing a unit based on perfluoro (alkyl vinyl ether) or a unit based on hexafluoropropylene.
  • [3] The method for producing [1] or [2], wherein the tetrafluoroethylene-based polymer is a tetrafluoroethylene-based polymer having a polar functional group.
  • [4] The production method according to any one of [1] to [3], wherein the average particle size of the agglomerates is 100 ⁇ m to 5 mm.
  • a heat-meltable tetrafluoroethylene polymer powder having an average particle size of more than 1 ⁇ m and 10 ⁇ m or less and a specific surface area of 1 m 2 / g or more and less than 8 m 2 / g.
  • the powder dispersion liquid of [14] wherein the powder dispersion liquid has a viscosity of 1000 mPa ⁇ s or less.
  • a tetrafluoroethylene polymer powder having a predetermined average particle size, particle size distribution and specific surface area can be easily produced. Further, such a powder and a powder dispersion liquid having excellent dispersion stability can be obtained.
  • the "average particle size (D50)" is a volume-based cumulative 50% diameter of an object (powder or agglomerate) determined by a laser diffraction / scattering method. That is, the particle size distribution of the object is measured by the laser diffraction / scattering method, the cumulative curve is obtained with the total volume of the group of particles of the object as 100%, and the particles at the point where the cumulative volume is 50% on the cumulative curve.
  • the diameter. “D90” is the volume-based cumulative 90% diameter of the object, which is similarly measured.
  • the “full width at half maximum” is the width of the peak at half the height of the peak (maximum value) in the particle size distribution curve of the object.
  • the “polymer melting temperature (melting point)” is the temperature corresponding to the maximum value of the melting peak measured by the differential scanning calorimetry (DSC) method.
  • the “glass transition point (Tg) of the polymer” is a value measured by analyzing the polymer by the dynamic viscoelasticity measurement (DMA) method.
  • the "viscosity of the dispersion liquid” is the viscosity of the liquid material measured at room temperature (25 ° C.) under the condition of a rotation speed of 60 rpm using a B-type viscometer.
  • the "thixotropy of the dispersion” is a value calculated by dividing the viscosity of the dispersion measured under the condition of a rotation speed of 30 rpm by the viscosity of the dispersion measured under the condition of a rotation speed of 60 rpm.
  • the "unit” in the polymer may be an atomic group formed directly from the monomer, or may be an atomic group in which a part of the structure is converted by treating the obtained polymer by a predetermined method.
  • the unit based on the monomer A contained in the polymer is also simply referred to as "monomer A unit".
  • an aggregate of a heat-meltable tetrafluoroethylene polymer (hereinafter, also referred to as “F polymer”) is allowed to flow while flowing an F polymer.
  • D50 is at 1 ⁇ m super 10 ⁇ m or less and a specific surface area of less than 1 m 2 / g or more 8m 2 / g, a method of obtaining a powder of F polymer.
  • the F polymer powder obtained by this method has a monomodal particle size distribution.
  • the agglomerates of the F polymer are heat-treated in a fluid state rather than in a stationary state, heat is easily transferred uniformly to the agglomerates during heating, and the surface of the agglomerates is highly heat-treated.
  • the inside of the agglomerate tends to be in a softened state.
  • an appropriate impact (vibration) due to the flow is applied to the agglomerates in such a state, so that the agglomerates which are dense as a whole, have a small specific surface area, and have a high hardness (particularly surface hardness) are formed.
  • the obtained powder has a small D50 and is unlikely to generate irregularly shaped particles. That is, it is considered that the obtained powder has a sufficiently small D50, has a monomodal particle size distribution, and has a small specific surface area. Then, it is considered that if such a powder is used, a powder dispersion liquid having excellent dispersion stability can be easily obtained.
  • the F polymer in the present invention is a heat-meltable polymer containing a unit (TFE unit) based on tetrafluoroethylene (TFE).
  • the melting temperature of the F polymer is preferably 260 to 320 ° C, more preferably 285 to 320 ° C.
  • the glass transition point of the F polymer is preferably 75 to 125 ° C, more preferably 80 to 100 ° C.
  • the F polymer is preferably a polymer containing a TFE unit and a unit based on perfluoro (alkyl vinyl ether) (PAVE) (PAVE unit) or a unit based on hexafluoropropylene (HFP) (HFP unit).
  • PAVE perfluoro (alkyl vinyl ether)
  • HFP hexafluoropropylene
  • the F polymer may contain both PAVE units and HFP units, or may contain only one of them.
  • the F polymer preferably has a polar functional group.
  • the polar functional group may be contained in a unit in the F polymer, or may be contained in the terminal group of the main chain of the polymer. Examples of the latter embodiment include an F polymer having a polar functional group as a terminal group derived from a polymerization initiator, a chain transfer agent, etc., and an F polymer having a polar functional group obtained by subjecting the F polymer to plasma treatment or ionization line treatment. Be done.
  • the polar functional group is preferably a hydroxyl group-containing group or a carbonyl group-containing group, and more preferably a carbonyl group-containing group from the viewpoint of dispersion stability of the powder.
  • the hydroxyl group-containing group is preferably a group containing an alcoholic hydroxyl group, and preferably -CF 2 CH 2 OH or -C (CF 3 ) 2 OH.
  • the carbonyl group-containing group is a group containing a carbonyl group (> C (O)), and is a carbonyl group, a carboxyl group, an alkoxycarbonyl group, an amide group, an isocyanate group, a carbamate group (-OC (O) NH 2 ), an acid.
  • anhydride residue (-C (O) OC (O)-), an imide residue (-C (O) NHC (O)-etc.) or a carbonate group (-OC (O) O-) is preferable.
  • the number of carbonyl group-containing groups in the F polymer is preferably 10 to 5000, more preferably 100 to 3000, and more preferably 800 per 1 ⁇ 10 6 carbon atoms in the main chain. ⁇ 1500 pieces are more preferable.
  • the number of carbonyl group-containing groups in the F polymer can be quantified by the composition of the polymer or the method described in International Publication No. 2020/145133.
  • the F polymer comprises a polymer (1) having a polar functional group including a TFE unit, a PAVE unit and a unit based on a monomer having a polar functional group, or a TFE unit and a PAVE unit, and 2 PAVE units for all units.
  • a polymer (2) having no polar functional group containing 0.0 to 5.0 mol% is preferable.
  • the powder has excellent dispersion stability, handleability and blendability, but also microspherulites are formed in the molded product (F layer, etc. described later) formed from the powder, and the powder thereof is formed. Easy to improve adhesion.
  • the polymer (1) has 90 to 99 mol% of TFE units, 0.5 to 9.97 mol% of PAVE units and 0.01 to 3 mol of units based on a monomer having a polar functional group with respect to all units. %, It is preferable to contain each. Further, the monomer having a polar functional group is maleic anhydride, itaconic anhydride, citraconic anhydride or 5-norbornen-2,3-dicarboxylic acid anhydride (also known as hymic anhydride; hereinafter, also referred to as “NAH”). Is preferable. Specific examples of the polymer (1) include the polymers described in International Publication No. 2018/16644.
  • the polymer (2) consists of only TFE units and PAVE units, and contains 95.0 to 98.0 mol% of TFE units and 2.0 to 5.0 mol% of PAVE units with respect to all the units. preferable.
  • the content of PAVE units in the polymer (2) is preferably 2.1 mol% or more, more preferably 2.2 mol% or more, based on all the units.
  • the fact that the polymer (2) does not have polar functional groups means that the number of polar functional groups possessed by the polymer is less than 500 per 1 ⁇ 10 6 carbon atoms constituting the polymer main chain. Means.
  • the number of the polar functional groups is preferably 100 or less, more preferably less than 50.
  • the lower limit of the number of polar functional groups is usually 0.
  • the polymer (2) may be produced by using a polymerization initiator, a chain transfer agent, or the like that does not generate a polar functional group as the terminal group of the polymer chain, and is derived from an F polymer having a polar functional group (derived from the polymerization initiator).
  • An F polymer or the like having a polar functional group at the terminal group of the main chain of the polymer may be fluorinated to produce the polymer.
  • Examples of the fluorination treatment method include a method using fluorine gas (see JP-A-2019-194314, etc.).
  • the aggregate of the F polymer is preferably an aggregate of the particles of the F polymer formed by the polymerization of the raw material monomer of the F polymer, and is an aggregate of the primary particles of the F polymer formed by the polymerization of the raw material monomer of the F polymer. Is more preferable.
  • the average particle size of the F polymer particles is preferably less than 1 ⁇ m.
  • the average particle size of the F polymer particles is preferably 0.01 ⁇ m or more.
  • the powder obtained by heat-treating the agglomerates and then pulverizing the agglomerates tends to have a smaller D50. In addition, the particle size distribution of the powder tends to be sharp and unimodal.
  • the liquid composition is preferably a liquid composition containing primary particles of F polymer and a polymerization solvent, which is formed by polymerizing a raw material monomer of F polymer in a polymerization solvent.
  • the D50 of the agglomerate is preferably 100 ⁇ m to 5 mm, more preferably 1 to 3 mm. In this case, the D50 of the obtained powder can be sufficiently reduced while ensuring the handleability of the agglomerates.
  • the agglomerates are heat-treated while flowing.
  • a heat treatment method include a method I using a rotary kiln and a method II using a heat treatment device (hot air flow device) that generates swirling hot air.
  • heat treatment is performed by passing the agglomerates through the rotary furnace while rolling them in a cylindrical rotary furnace that rotates about the central axis.
  • heat is particularly likely to be uniformly transferred to the agglomerates.
  • the temperature during the heat treatment is preferably not more than the melting temperature of the F polymer, preferably more than the melting temperature of the F polymer to be more than -100 ° C. and not more than the melting temperature of the F polymer, and more preferably more than 200 ° C. and not more than 300 ° C. If the agglomerates are heat-treated at such a temperature, the agglomerates become more dense and their hardness increases. As a result, the powder obtained by pulverization tends to have a smaller D50 and a sharper unimodal particle size distribution.
  • the specific value of the hardness of the agglomerates before pulverization is preferably 0.2 N / mm or more, and more preferably 0.3 N / mm or more. The hardness value is preferably 0.8 N / mm or less. In this case, the impact force applied to the agglomerates during pulverization increases, so that the particles are more likely to be uniformly atomized.
  • the tilt angle of the rotary furnace with respect to the horizontal direction is preferably 0.01 to 5 °, more preferably 0.1 to 3 °. If the rotary furnace is tilted at such an inclination angle, the passage time of the agglomerates in the rotary furnace (residence time of the agglomerates in the rotary furnace) can be sufficiently long. As a result, the agglomerates can be heated more uniformly and sufficiently.
  • the residence time of the agglomerates in the rotary furnace is preferably 1 to 60 minutes, more preferably 5 to 40 minutes. In this case, a sufficient heating time for the agglomerates can be secured.
  • the rotation speed of the rotary furnace is preferably 1 to 20 rpm, more preferably 3 to 10 rpm. In this case, since it is difficult to apply an excessive impact force to the agglomerates, it is possible to prevent unintentional crushing of the agglomerates during rolling (flow).
  • the rate of charging the agglomerates into the rotary furnace is preferably such that the filling rate of the agglomerates in the rotary furnace is 0.1 to 40%, and more preferably 1 to 20%.
  • the heat treatment of the agglomerates can be sufficiently performed with high efficiency.
  • a rotary kiln for example, an apparatus manufactured by Noritake Co., Ltd. and an apparatus manufactured by Sun Eye Chemicals Co., Ltd. can be used.
  • the transport gas containing agglomerates is configured to be supplied into the treatment space along the circumferential direction of the treatment space and from a plurality of agglomerate supply ports arranged on the same plane.
  • the amount of agglomerates supplied from each agglomerate supply port can be reduced. Therefore, the temperature of the hot air required for the heat treatment of the agglomerates can be lowered according to the number of agglomerate supply ports. In addition, the generation of coalesced particles can be suppressed.
  • the agglomerates are transported while flowing in the swirling flow of hot air in the processing space. At this time, in particular, heat is likely to be uniformly transferred to the agglomerates, and densification and spheroidization are likely to proceed.
  • the heat-treated agglomerates are cooled by the cold air supplied from the cold air supply port installed downstream of the agglomerate supply port (lower side in the vertical direction).
  • the cold air supply port also supplies cold air from the tangential direction of the treatment space, similarly to the agglutinating supply port. Further, it is preferable that the cold air is also supplied into the processing space along the circumferential direction of the processing space and from a plurality of cold air supply ports arranged on the same plane. In this case, since turbulence at the moment when cold air is introduced into the processing space can be prevented, the generation of coalesced particles (coarse particles) can be suppressed.
  • the agglomerates that have passed through the treatment space are sucked by a suction device and discharged (recovered) from the agglomerate discharge port installed downstream of the cold air supply port (lower side in the vertical direction).
  • the total flow rate (total supply amount) Q IN of the compressed air, hot air and cold air supplied into the processing space and the flow rate (total discharge amount) Q OUT discharged from the processing space by the suction device are The relationship is preferably adjusted so that the relationship is Q IN ⁇ Q OUT. In this case, since the pressure in the treatment space becomes a negative pressure, the agglomerates in the treatment space are easily discharged, and as a result, it is possible to suppress excessive heat from being applied to the agglomerates.
  • the hardness of the agglomerates discharged from the treatment space tends to be in the range as described above. Further, the temperature of the hot air (temperature at the time of heat treatment) is the same as described above.
  • a flash jet dryer manufactured by Seishin Enterprise Co., Ltd.
  • the agglomerates after the heat treatment are pulverized (broken) to obtain an F polymer powder.
  • This pulverization is preferably carried out by a mechanical pulverization treatment.
  • the mechanical crushing process is carried out using a device capable of exerting sufficient shear and / or crushing forces to crush the agglomerates into smaller particles (powder).
  • Such devices include hammer mills including disintegrators, pin mills, disc mills, rotary mills, jet mills, fluidized bed air jet mills, jaw crushers, gyratery crushers, cage mills, pan crushers, ball mills, pebble mills, rod mills, and tube mills. , Disc attribution mill, attritor, disc refiner.
  • the mechanical pulverization treatment is preferably performed using a hammer mill, a pin mill, a disc mill, a rotary mill or a jet mill.
  • the temperature at the time of pulverization is preferably ⁇ 40 ° C. or lower, more preferably ⁇ 100 ° C. or lower, and even more preferably ⁇ 160 ° C. or lower. In this case, due to the low temperature brittleness of the F polymer, it is easier to make the D50 of the powder smaller than in the case where the agglomerates are not cooled.
  • solidified carbon dioxide or liquid nitrogen for cooling.
  • Specific examples of the above-mentioned apparatus include a jet mill (manufactured by Hosokawa Micron, "counter jet mill”) and a planetary ball mill (manufactured by Lecce, "planetary ball mill PM100").
  • the powder of the F polymer in the present invention is a powder containing the F polymer, and is preferably a powder made of the F polymer.
  • Other components that may be contained in the F polymer powder include aromatic polyesters, polyamideimides, thermoplastic polyimides, polyphenylene ethers, and polyphenylene oxides.
  • the D50 of the F polymer powder is more than 1 ⁇ m and 10 ⁇ m or less, preferably more than 1 ⁇ m and 8 ⁇ m or less, and more preferably more than 1 ⁇ m and 6 ⁇ m or less. In this case, the fluidity of the powder of the F polymer is high, the handling property of the powder dispersion liquid containing the powder dispersion liquid is improved, and the dispersion stability is also excellent.
  • the powder has a monomodal particle size distribution, and the full width at half maximum thereof is preferably 0.5 to 3.5 ⁇ m, more preferably 1 to 2.5 ⁇ m. In this case, it means that the powder does not contain irregularly shaped particles (coarse particles), and when preparing a powder dispersion, aggregation of the powder originating from the irregularly shaped particles is unlikely to occur.
  • the specific surface area of the powder is less than 1 m 2 / g or more 8m 2 / g, is preferably from 1 ⁇ 5m 2 / g, and more preferably 1 ⁇ 3m 2 / g. In this case, the specific surface area is smaller, and therefore the dispersion stability of the powder dispersion is further improved.
  • the powder of the present invention (hereinafter, also referred to as “the present powder”) is an F polymer powder, has a monomodal particle size distribution in which D50 is more than 1 ⁇ m and is 10 ⁇ m or less, and has a specific surface area of 1 m 2 /. G or more and less than 8 m 2 / g.
  • the definition and scope of this powder is similar to those in this method, including preferred embodiments. Also, the definition and scope of F-polymers in this powder are similar to those in this method, including preferred embodiments.
  • the powder is preferably a powder produced by this method.
  • the powder dispersion liquid of the present invention (hereinafter, also referred to as “the present dispersion liquid”) contains the present powder and a liquid dispersion medium. Since this powder has the above-mentioned characteristics, this dispersion is excellent in dispersion stability. As described above, this powder does not contain irregularly shaped particles, or even if it contains irregularly shaped particles, its content is extremely small. Therefore, when the present powder and the liquid dispersion medium are mixed by stirring or the like to prepare the present dispersion, the denaturation of the present powder is highly suppressed, so that the present dispersion is difficult to thicken. The degree of difficulty in thickening the present dispersion can be evaluated based on the thickening rate before and after stirring the present dispersion.
  • the thickening rate calculated according to the following equation based on the measured values of the viscosities before and after stirring when the present dispersion is stirred at 8000 rpm for 30 minutes is preferably less than 60%. More preferably less than%.
  • the lower limit of the thickening rate of this dispersion is 0%.
  • Viscosity thickening rate ⁇ (viscosity after stirring / viscosity before stirring) -1 ⁇ ⁇ 100
  • the liquid dispersion medium is preferably a liquid compound that functions as a dispersion medium for the powder and is inert at 25 ° C.
  • the liquid dispersion medium one kind may be used alone, or two or more kinds may be mixed.
  • the boiling point of the liquid dispersion medium is preferably 125 to 250 ° C.
  • the flow of the powder effectively proceeds with the volatilization of the liquid dispersion medium, and the powder is easily packed finely.
  • liquid dispersion medium examples include water, N, N-dimethylformamide, N, N-dimethylacetamide, 3-methoxy-N, N-dimethylpropaneamide, 3-butoxy-N, N-dimethylpropaneamide, N. -Methyl-2-pyrrolidone, ⁇ -butyrolactone, cyclohexanone, cyclopentanone, butyl acetate, methylisopropylketone, cyclopentanone, cyclohexanone can be mentioned.
  • the liquid dispersion medium is preferably an amide, a ketone or an ester, preferably N, N-dimethylacetamide, 3-methoxy-N, N-dimethylpropanamide, 3-butoxy-N, N-dimethylpropanamide, N-methyl-2-. Pyrrolidone or ⁇ -butyrolactone is more preferred.
  • the content of the F polymer in the present dispersion is preferably 5 to 70% by mass, more preferably 10 to 60% by mass.
  • the content of the liquid dispersion medium in the present dispersion is preferably 30 to 95% by mass, more preferably 40 to 90% by mass.
  • This dispersion may contain components other than the F polymer and the liquid dispersion medium.
  • the dispersion liquid preferably further contains a surfactant.
  • the content of the surfactant in the present dispersion is preferably 1 to 15% by mass.
  • the surfactant is preferably nonionic.
  • the hydrophilic moiety of the surfactant preferably has an oxyalkylene group or an alcoholic hydroxyl group.
  • the oxyalkylene group may be composed of one kind or two or more kinds. In the latter case, different types of oxyalkylene groups may be randomly arranged or may be arranged in blocks.
  • the oxyalkylene group is preferably an oxyethylene group or an oxypropylene group, more preferably an oxyethylene group.
  • the hydrophobic moiety of the surfactant preferably has an acetylene group, a polysiloxane group, a perfluoroalkyl group or a perfluoroalkenyl group.
  • a glycol-based surfactant a glycol-based surfactant, an acetylene-based surfactant, a silicone-based surfactant or a fluorine-based surfactant is preferable, and a silicone-based surfactant is more preferable.
  • the nonionic surfactant one kind may be used, or two or more kinds may be used. When two kinds of nonionic surfactants are used, the nonionic surfactants are preferably a silicone-based surfactant and a glycol-based surfactant.
  • the fluorine-based surfactant is preferably a fluorine-based surfactant having a hydroxyl group (particularly an alcoholic hydroxyl group) or an oxyalkylene group and a perfluoroalkyl group or a perfluoroalkenyl group.
  • An ethereal oxygen atom may be inserted between the carbon atoms in the perfluoroalkyl group.
  • the weight average molecular weight of the surfactant is preferably 5000 to 300,000.
  • the fluorine content of the surfactant is more preferably 15 to 90% by mass.
  • the content of the oxyalkylene group of the surfactant is preferably 10 to 60% by mass.
  • the hydroxyl value of the surfactant is preferably 10 to 100 mgKOH / g.
  • the fluorosurfactant is preferably a copolymer of fluoro (meth) acrylate and hydrophilic (meth) acrylate.
  • surfactants include "Futergent” series (manufactured by Neos), “Surflon” series (manufactured by AGC Seimi Chemical), “Megafuck” series (manufactured by DIC), and "Unidyne” series (Daikin).
  • the present dispersion contains a nonionic surfactant
  • the content of the nonionic surfactant in the present dispersion is preferably 1 to 15% by mass.
  • the dispersion may further contain a polymer different from the F polymer.
  • the different polymers include aromatic polyesters, polyamideimides, polyimides, polyphenylene ethers, polyphenylene oxides and maleimides, with thermoplastic aromatic polyimides being preferred.
  • This dispersion further contains an inorganic filler, a viscosity-imparting agent, a defoaming agent, a silane coupling agent, a dehydrating agent, a plasticizer, a weathering agent, an antioxidant, a heat stabilizer, a lubricant, an antistatic agent, and a whitening agent. , Coloring agent, conductive agent, mold release agent, surface treatment agent, viscosity modifier, flame retardant.
  • the viscosity of this dispersion is preferably 1000 mPa ⁇ s or less, more preferably 50 to 750 mPa ⁇ s. Since this powder has the above-mentioned characteristics, the viscosity of this dispersion tends to be low.
  • the thixotropy of the dispersion is preferably 1.0 to 3.0, more preferably 1.0 to 2.0. When the viscosity and thixotropy of the present dispersion are within the above ranges, it is easy to obtain the present dispersion in which the powder is highly dispersed and has a high content. In addition, this dispersion is excellent in handleability such as coatability and blendability with other components.
  • This dispersion is useful as a coating material for imparting insulation, heat resistance, corrosion resistance, chemical resistance, water resistance, impact resistance, and thermal conductivity.
  • this dispersion is a printed wiring board, a thermal interface material, a board for a power module, a coil used in a power device such as a motor, an in-vehicle engine, a heat exchanger, a vial, a syringe, and a syringe.
  • secondary batteries such as lithium ion batteries, primary batteries such as lithium batteries, radical batteries, solar cells, fuel cells, lithium ion capacitors, hybrid capacitors, capacitors, capacitors (aluminum electrolytic capacitors, tantalum electrolytic capacitors, etc.) ), Electrochromic elements, electrochemical switching elements, electrode binders, electrode separators, and electrodes (positive electrode, negative electrode).
  • the dispersion is also useful as an adhesive for adhering parts.
  • this dispersion liquid is used for bonding ceramic parts, metal parts, IC chips and resistors on semiconductor element and module parts, electronic parts such as capacitors, circuit board and heat dissipation plate, and LED. It can be used to bond chips to the substrate.
  • the present dispersion liquid further containing a conductive filler can be suitably used in applications requiring conductivity, for example, in the field of printed electronics. Specifically, it can be used for manufacturing an energizing element in a printed circuit board, a sensor electrode, or the like.
  • This dispersion is applied to the surface of the base material layer to form a liquid film, heated to volatilize the liquid dispersion medium to obtain a dry film, and further heated to bake the F polymer to form a base material layer.
  • a laminate having a polymer layer containing an F polymer (hereinafter, also referred to as “F layer”) can be obtained.
  • the dispersion liquid is difficult to thicken because the denaturation of the powder is highly suppressed at the time of its adjustment. Therefore, this dispersion is excellent in leveling property. In addition, this powder is easy to pack finely. Therefore, the F layer formed from the present dispersion has high surface smoothness and denseness.
  • the arithmetic mean roughness (Ra) of the surface of the F layer is preferably less than 0.6 ⁇ m, more preferably less than 0.4 ⁇ m.
  • the arithmetic mean roughness (Ra) is usually 0.05 ⁇ m or more.
  • the temperature in the former heating is preferably 120 to 200 ° C.
  • the temperature in the latter heating is preferably a temperature equal to or higher than the melting temperature of the F polymer, and more preferably 300 to 380 ° C.
  • the F layer tends to be excellent in surface smoothness, flexibility, and electrical characteristics.
  • Examples of each heating method include a method using an oven, a method using a ventilation drying furnace, and a method of irradiating heat rays such as infrared rays.
  • the base material constituting the base material layer includes a metal substrate (a substrate such as copper, nickel, aluminum, titanium, or an alloy thereof), a resin film (polyimide, polyarylate, polysulfone, polyarylsulfone, polyamide, polyetheramide, etc.). Examples thereof include films such as polyphenylene sulfide, polyaryl ether ketone, polyamideimide, liquid crystal polyester, and liquid crystal polyester amide), and prepreg (precursor of fiber-reinforced resin substrate).
  • the application method of this dispersion is spray method, roll coat method, spin coat method, gravure coat method, micro gravure coat method, gravure offset method, knife coat method, kiss coat method, bar coat method, die coat method, fountain Mayer bar. Examples include the method and the slot die coat method.
  • the thickness of the F layer is preferably 0.1 to 100 ⁇ m, more preferably 0.5 to 50 ⁇ m. Since this dispersion is excellent in handleability, it is possible to easily form an F layer having an arbitrary thickness, which is also excellent in physical properties such as surface smoothness.
  • the present dispersion may be applied only to one surface of the base material layer, or may be applied to both sides of the base material layer. In the former, a laminate having a base material layer and an F layer on one surface of the base material layer is obtained, and in the latter, the base material layer and the F layer are provided on both surfaces of the base material layer. A laminate is obtained. Since the latter laminated body is less likely to warp, it is excellent in handleability during its processing.
  • Such a laminate include a metal foil, a metal-clad laminate having an F layer on at least one surface of the metal foil, a polyimide film, and a multilayer film having an F layer on both surfaces of the polyimide film.
  • These laminates are excellent in various physical properties such as electrical characteristics, heat resistance such as solder reflow resistance, chemical resistance, and surface smoothness, and are suitable as printed circuit board materials and the like.
  • such a laminate can be used for manufacturing a flexible printed circuit board or a rigid printed circuit board.
  • a metal foil with a carrier containing two or more layers of metal foil may be used.
  • the metal foil with a carrier includes a carrier copper foil (thickness: 10 to 35 ⁇ m) and an ultrathin copper foil (thickness: 2 to 5 ⁇ m) laminated on the carrier copper foil via a release layer. Copper foil can be mentioned. By using such a copper foil with a carrier, it is possible to form a fine pattern by an MSAP (modified semi-additive) process.
  • As the release layer a metal layer containing nickel or chromium or a multilayer metal layer in which the metal layers are laminated is preferable.
  • the metal leaf with a carrier examples include the trade name "FUTF-5DAF-2" manufactured by Fukuda Metal Leaf Powder Industry Co., Ltd.
  • the ten-point average roughness of the surface of the base material is preferably 0.01 to 0.05 ⁇ m. Since this powder is easy to pack finely, it is possible to form a laminate having excellent peel strength even if the base material has a smooth surface.
  • the outermost surface of the laminate may be further surface-treated in order to further improve its low linear expansion property and adhesiveness.
  • the surface treatment method include annealing treatment, corona treatment, plasma treatment, ozone treatment, excimer treatment, and silane coupling treatment.
  • the conditions for the annealing treatment are preferably 120 to 180 ° C., a pressure of 0.005 to 0.015 MPa, and a time of 30 to 120 minutes.
  • the gas used for the plasma treatment include oxygen gas, nitrogen gas, noble gas (argon and the like), hydrogen gas, ammonia gas, and vinyl acetate. These gases may be used alone or in combination of two or more.
  • Another substrate may be further laminated on the outermost surface of the laminated body.
  • substrates include a heat-resistant resin film, a prepreg which is a precursor of a fiber-reinforced resin plate, a laminate having a heat-resistant resin film layer, and a laminate having a prepreg layer.
  • the prepreg is a sheet-like substrate in which a base material (tow, woven fabric, etc.) of reinforcing fibers (glass fibers, carbon fibers, etc.) is impregnated with a thermosetting resin or a thermoplastic resin.
  • the heat-resistant resin film is a film containing one or more heat-resistant resins.
  • heat-resistant resin examples include polyimide, polyarylate, polysulfone, polyarylsulfone, aromatic polyamide, aromatic polyetheramide, polyphenylene sulfide, polyaryletherketone, polyamideimide, liquid crystal polyester, and liquid crystal polyester amide.
  • Polyimide particularly aromatic polyimide is preferred.
  • the laminating method examples include a method of heat-pressing the laminated body and another substrate.
  • the hot press conditions are preferably such that the temperature is 120 to 400 ° C., the atmospheric pressure is a vacuum of 20 kPa or less, and the press pressure is 0.2 to 10 MPa.
  • the laminate has a polymer layer having excellent electrical properties, and is therefore suitable as a printed circuit board material.
  • the laminate in this method can be used for manufacturing a printed circuit board as a flexible metal-clad laminate or a rigid metal-clad laminate, and can be particularly suitably used for manufacturing a flexible printed circuit board as a flexible metal-clad laminate. ..
  • a printed circuit board is obtained by etching a metal foil of a laminate (metal foil with a polymer layer) in which the base material layer is a metal foil to form a transmission circuit. Specifically, a method of etching a metal foil to process it into a predetermined transmission circuit, or a method of processing a metal foil into a predetermined transmission circuit by an electrolytic plating method (semi-additive method (SAP method), MSAP method, etc.). Can manufacture a printed circuit board.
  • a printed circuit board manufactured from a metal foil with a polymer layer has a transmission circuit formed from the metal foil and a polymer layer in this order.
  • the configuration of the printed circuit board includes a transmission circuit / polymer layer / prepreg layer, and a transmission circuit / polymer layer / prepreg layer / polymer layer / transmission circuit.
  • an interlayer insulating film may be formed on the transmission circuit, a solder resist may be laminated on the transmission circuit, or a coverlay film may be laminated on the transmission circuit.
  • These interlayer insulating films, solder resists and coverlay films may be formed with the present dispersion.
  • the present invention is not limited to the configuration of the above-described embodiment.
  • the powder and the powder dispersion of the present invention may be added to any other composition or may be replaced with any composition having the same function in the configuration of the above embodiment, respectively.
  • the method for producing a powder of the present invention may additionally have any other step in the configuration of the above embodiment, or may be replaced with any step that produces the same action.
  • the initiator solution was intermittently press-fitted into the polymerization tank so that the consumption rate of the TFE gas was 0.5 g / min. At the same time, every time 5 g of TFE gas is consumed, 1 mL of 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether solution containing 1% by mass of NAH is added to the polymerization tank. Press-fitted. After 290 minutes from the start of the polymerization, the polymerization tank was cooled to complete the polymerization. Then, the residual monomer gas was purged from the polymerization tank to atmospheric pressure to obtain a crude polymerization solution 1.
  • the polymer crude liquid 1 contains 98.0 mol%, 1.9 mol% and 0.1 mol% of TFE units, PPVE units and NAH units in this order, and polymer 1 having a polar functional group (melting temperature: 300 ° C.). ) was contained in 13% by mass. Further, in the rough polymerization solution 1, the primary particles (D50: 0.5 ⁇ m) of the polymer 1 were dispersed in 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether. .. Water was added to the crude polymerization solution 1 and stirred to aggregate the particles, and then the aggregates were recovered by solid-liquid separation. The recovered agglomerates were dried at 150 ° C. for 15 hours to obtain agglomerates 1 (D50: 1.5 mm) of primary particles of polymer 1.
  • the polymerization crude liquid 2 was obtained in the same manner as the polymerization crude liquid 1 except that the use of NAH was omitted.
  • the polymerization crude liquid 2 contains 98.7 mol% and 1.3 mol% of TFE units and PPVE units in this order, and contains 13% by mass of polymer 2 having no polar functional group (melting temperature: 305 ° C.). It was.
  • the primary particles (D50: 0.4 ⁇ m) of the polymer 2 were dispersed in 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether. ..
  • the agglomerate 2 (D50: 2.4 mm) was recovered from the polymerization crude liquid 2 in the same manner as the agglomerate 1.
  • the agglomerate 1 was supplied and passed through a rotary furnace of a rotary kiln (manufactured by San-Ai Chemical Co., Ltd.) for heat treatment.
  • the rotary furnace was heated so that the heating temperature of the agglomerates 1 was 250 ° C. Further, the rotary furnace was rotated at a rotation speed of 7 rpm so that the residence time (heating time) of the agglomerates in the rotary furnace was 30 minutes.
  • the loading speed of the agglomerates was set so that the filling rate of the agglomerates in the rotary furnace was 10%, and the inclination angle of the rotary furnace with respect to the horizontal direction was set to 0.2 °.
  • the hardness of the agglomerates after passing through the rotary furnace was 0.41 N / mm.
  • the obtained agglomerates were pulverized with a counter jet mill (manufactured by Hosokawa Micron Co., Ltd.) at a grind pressure and a push pressure of 0.65 MPa to obtain powder 1.
  • the D50 of the obtained powder 1 was 2 ⁇ m, and the specific surface area was 3 m 2 / g.
  • the particle size distribution of powder 1 was monomodal, and the full width at half maximum was 2.1 ⁇ m.
  • Example 2 Powder 2 was obtained in the same manner as in Example 1 except that the agglomerate 2 was used.
  • the D50 of the obtained powder 2 was 4 ⁇ m, and the specific surface area was 5 m 2 / g.
  • the particle size distribution of the powder 2 was monomodal, and the full width at half maximum was 2.5 ⁇ m.
  • Example 3 Powder 3 was obtained in the same manner as in Example 1 except that the rotary furnace was heated so that the heating temperature of the agglomerates 1 was 200 ° C.
  • the D50 of the obtained powder 3 was 2 ⁇ m, and the specific surface area was 6 m 2 / g.
  • the particle size distribution of the powder 3 was monomodal, and the full width at half maximum was 2.8 ⁇ m.
  • Example 4 Powder 4 was obtained in the same manner as in Example 1 except that the rotary furnace was not heated.
  • the D50 of the obtained powder 4 was 2 ⁇ m, and the specific surface area was 12 m 2 / g.
  • the particle size distribution of powder 4 was broad.
  • Example 5 (Comparative example)]
  • the powder 5 was obtained in the same manner as in Example 1 except that the rotary furnace was driven so that the heating temperature of the agglomerate 1 was 330 ° C. and the residence time was 1 minute.
  • the D50 of the obtained powder 5 was 5 ⁇ m, and the specific surface area was 6 m 2 / g.
  • the particle size distribution of the powder 5 was bimodal.
  • Example 6 (Comparative example) Powder 6 was obtained in the same manner as in Example 1 except that the agglomerates 1 were heated using an oven so that the heating temperature was 250 ° C.
  • the D50 of the obtained powder 6 was 24 ⁇ m, and the specific surface area was 6 m 2 / g.
  • the particle size distribution of the powder 6 was bimodal.
  • each powder 1 to 6 was measured by the gas adsorption (constant volume method) BET multipoint method. As a measuring device, NOVA4200e (manufactured by Quantachrome Instruments) was used. Further, as a pretreatment, each powder 1 to 6 was vacuum degassed at 200 ° C. for 30 minutes. Then, while keeping the temperature constant with liquid nitrogen, nitrogen gas was introduced to create an adsorption isotherm. The specific surface area of each powder 1 to 6 was determined in terms of the relative pressure with good linearity.
  • Viscosity measurement of powder dispersion liquid For each powder dispersion liquid 1 to 6, the viscosity of each powder dispersion liquid 1 to 6 under the condition that the RV-2 spindle is rotated at a rotation speed of 60 rpm using a B-type viscometer (“DV2T” manufactured by Eiko Seiki Co., Ltd.). Was measured.
  • Viscosity thickening rate ⁇ (viscosity after stirring / viscosity before stirring) -1 ⁇ ⁇ 100 [Evaluation criteria] ⁇ : Thickening rate is less than 40% ⁇ : Thickening rate is 40% or more and less than 60% ⁇ : Thickening rate is 60% or more
  • the powder and powder dispersion of the present invention can be used for manufacturing molded products such as films, impregnated materials (prepregs, etc.), laminated plates (metal laminated plates such as copper-clad laminates, etc.), and have mold releasability, electrical characteristics, etc. It can be used for manufacturing molded products for applications that require water repellency, chemical resistance, weather resistance, heat resistance, slipperiness, abrasion resistance, and the like.
  • the molded product formed from the dispersion liquid of the present invention is useful as an antenna component, a printed substrate, an aircraft component, an automobile component, a sports tool, a food industry article, a paint, a cosmetic, and the like, and specifically, a wire coating.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

【課題】パウダー分散液中での分散安定性に優れるパウダー及びその製造方法、並びに、分散安定性に優れたパウダー分散液の提供。 【解決手段】本発明のパウダーの製造方法は、熱溶融性のテトラフルオロエチレン系ポリマーの凝集物を流動させつつ、前記テトラフルオロエチレン系ポリマーの溶融温度以下で熱処理した後、粉砕して、平均粒子径が1μm超10μm以下であり、かつ、比表面積が1m/g以上8m/g未満である、単峰性の粒度分布を有する、前記テトラフルオロエチレン系ポリマーのパウダーを得る。

Description

パウダーの製造方法、パウダー及びパウダー分散液
 本発明は、所定の粒度分布及び比表面積を有するテトラフルオロエチレン系ポリマーのパウダー及びその製造方法、並びに、かかるパウダーを含むパウダー分散液に関する。
 熱溶融性のテトラフルオロエチレン系ポリマーは、各種物性(電気絶縁性、撥水撥油性、耐薬品性等)と溶融加工性とに優れている。このため、テトラフルオロエチレン系ポリマーのパウダーは、それ自体が粉体塗料(特許文献1参照)として、又は、それを含むパウダー分散液(特許文献2参照)として使用されている。
 特許文献1には、テトラフルオロエチレン系ポリマーの重合溶液から回収した凝集物を熱処理した後、粉砕して得られる、比表面積が8~25m/gであり、かつ、平均粒子径が1~100μmであるパウダーが開示されている。しかし、特許文献1では、凝集物を静止状態で熱処理するため、熱処理の程度にムラが生じやすい。よって、その後の粉砕により得られるパウダーは、比表面積が小さくなりにくく、かつ、粒度分布が多峰性となりやすい。
 一方、特許文献2には、パウダー分散液に分散させるテトラフルオロエチレン系ポリマーのパウダーとして、比表面積が15m/g以下であり、かつ、平均粒子径が1μm以下であるパウダーが記載されている。特許文献2には、パウダーの平均粒子径が1μmを超えると、パウダー分散液中でのパウダーの分散安定性が低下すると記載されている。
特開2016-169339号公報 特開2017-088861号公報
 本発明者らは、上記パウダーのパウダー分散液中における分散安定性を高める方法を鋭意検討した。その結果、平均粒子径を所定の範囲に調整し、単峰性の粒度分布とし、かつ、比表面積を小さくすれば、パウダー分散液中におけるパウダーの分散安定性が向上する点を知見した。
 本発明の目的は、パウダー分散液中での分散安定性に優れるパウダー及びその製造方法、並びに、分散安定性に優れたパウダー分散液の提供である。
 本発明は、下記の態様を有する。 
 [1] 熱溶融性のテトラフルオロエチレン系ポリマーの凝集物を流動させつつ、前記テトラフルオロエチレン系ポリマーの溶融温度以下で熱処理した後、粉砕して、平均粒子径が1μm超10μm以下であり、かつ、比表面積が1m/g以上8m/g未満である、単峰性の粒度分布を有する、前記テトラフルオロエチレン系ポリマーのパウダーを得る、パウダーの製造方法。
 [2] 前記テトラフルオロエチレン系ポリマーが、ペルフルオロ(アルキルビニルエーテル)に基づく単位又はヘキサフルオロプロピレンに基づく単位を含むテトラフルオロエチレン系ポリマーである、[1]の製造方法。
 [3] 前記テトラフルオロエチレン系ポリマーが、極性官能基を有するテトラフルオロエチレン系ポリマーである、[1]又は[2]の製造方法。
 [4] 前記凝集物の平均粒子径が、100μm~5mmである、[1]~[3]のいずれかの製造方法。
 [5] 前記凝集物を熱処理する際の温度が、前記テトラフルオロエチレン系ポリマーの溶融温度-100℃超である、[1]~[4]のいずれかの製造方法。
 [6] 前記凝集物を、中心軸を中心として回転する回転炉内で転動させつつ、熱処理する、[1]~[5]のいずれかの製造方法。
 [7] 前記回転炉の水平方向に対する傾斜角度が、0.01~5°である、[6]の製造方法。
 [8] 前記回転炉の回転数が、1~20rpmである、[6]又は[7]の製造方法。
 [9] 前記凝集物の前記回転炉内での滞留時間が、1~60分間である、[6]~[8]のいずれかの製造方法。
 [10] 前記凝集物の前記粉砕前の硬度が、0.2N/mm以上である、[1]~[9]のいずれかの製造方法。
 [11] 前記凝集物が、前記テトラフルオロエチレン系ポリマーの原料モノマーの重合により形成された、前記テトラフルオロエチレン系ポリマーの粒子の凝集物である、[1]~[10]のいずれかの製造方法。
 [12] 熱溶融性のテトラフルオロエチレン系ポリマーのパウダーであって、平均粒子径が1μm超10μm以下であり、かつ、比表面積が1m/g以上8m/g未満である、単峰性の粒度分布を有する、パウダー。
 [13] 前記粒度分布の半値全幅が、0.5~3.5μmである、[12]のパウダー。
 [14] [12]又は[13]のパウダーと、液状分散媒とを含む、パウダー分散液。
 [15] 前記パウダー分散液の粘度が、1000mPa・s以下である、[14]のパウダー分散液。
 本発明によれば、所定の、平均粒子径、粒度分布及び比表面積を有するテトラフルオロエチレン系ポリマーのパウダーを簡便に製造できる。また、かかるパウダー及び分散安定性に優れたパウダー分散液が得られる。
 以下の用語は、以下の意味を有する。
 「平均粒子径(D50)」は、レーザー回折・散乱法によって求められる対象物(パウダー又は凝集物)の体積基準累積50%径である。すなわち、レーザー回折・散乱法によって対象物の粒度分布を測定し、対象物の粒子の集団の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。
 「D90」は、同様にして測定される、対象物の体積基準累積90%径である。
 「半値全幅」とは、対象物の粒度分布曲線において、ピークの高さ(最大値)の半分の高さにおけるピークの幅である。
 「ポリマーの溶融温度(融点)」は、示差走査熱量測定(DSC)法で測定した融解ピークの最大値に対応する温度である。
 「ポリマーのガラス転移点(Tg)」は、動的粘弾性測定(DMA)法でポリマーを分析して測定される値である。
 「分散液の粘度」は、B型粘度計を用いて、室温下(25℃)で回転数が60rpmの条件下で測定される液状物の粘度である。
 「分散液のチキソ比」は、回転数が30rpmの条件で測定される分散液の粘度を、回転数が60rpmの条件で測定される分散液の粘度で除して算出される値である。
 ポリマーにおける「単位」は、モノマーから直接形成された原子団であってもよく、得られたポリマーを所定の方法で処理して、構造の一部が変換された原子団であってもよい。ポリマーに含まれる、モノマーAに基づく単位を、単に「モノマーA単位」とも記す。
 本発明のパウダーの製造方法(以下、「本法」とも記す。)は、熱溶融性のテトラフルオロエチレン系ポリマー(以下、「Fポリマー」とも記す。)の凝集物を流動させつつ、Fポリマーの溶融温度以下で熱処理した後、粉砕して、D50が1μm超10μm以下であり、かつ、比表面積が1m/g以上8m/g未満である、Fポリマーのパウダーを得る方法である。本法により得られるFポリマーのパウダーは、単峰性の粒度分布を有する。
 本法によれば、Fポリマーの凝集物を静止状態ではなく、流動させた状態で熱処理するので、加熱において、熱が凝集物に均一に伝わりやすくなり、凝集物の表面は高度に熱処理され、凝集物の内部は軟化した状態になりやすい。さらに、かかる状態にある凝集物に、流動による適度な衝撃(振動)が加わるため、全体として緻密であり比表面積が小さく、硬度(特に表面硬度)の高い凝集物が形成されたと考えられる。かかる熱処理された凝集物を粉砕するため、得られるパウダーは、そのD50が小さくなるとともに、異形状粒子が生成しにくいと考えられる。すなわち、得られるパウダーは、D50が充分に小さく、単峰性の粒度分布を有し、かつ、比表面積も小さくなると考えられる。
 そして、かかるパウダーを使用すれば、分散安定性に優れたパウダー分散液が容易に得られると考えられる。
 本発明におけるFポリマーは、テトラフルオロエチレン(TFE)に基づく単位(TFE単位)を含む、熱溶融性のポリマーである。
 Fポリマーの溶融温度は、260~320℃が好ましく、285~320℃がより好ましい。
 Fポリマーのガラス転移点は、75~125℃が好ましく、80~100℃がより好ましい。
 Fポリマーは、TFE単位と、ペルフルオロ(アルキルビニルエーテル)(PAVE)に基づく単位(PAVE単位)又はヘキサフルオロプロピレン(HFP)に基づく単位(HFP単位)とを含むポリマーであるのが好ましい。この場合、Fポリマーがサイズの小さい球晶を形成するため、凝集物の表面平滑性が高まり、得られるパウダーの比表面積が小さくなりやすい。また、熱処理におけるFポリマーの変性をより高度に抑制しやすい。
 なお、Fポリマーは、PAVE単位とHFP単位との両方を含んでいてもよく、いずれか一方のみを含んでいてもよい。
 PAVEは、CF=CFOCF、CF=CFOCFCF、CF=CFOCFCFCF(PPVE)又はCF=CFOCF(CF)CFOCFCFCFが好ましく、PPVEがより好ましい。
 Fポリマーは、極性官能基を有するのが好ましい。この場合、熱処理におけるFポリマーの変性をより高度に抑制しつつ、分散安定性により優れたパウダーを製造しやすい。
 極性官能基は、Fポリマー中の単位に含まれていてもよく、ポリマーの主鎖の末端基に含まれていてもよい。後者の態様としては、重合開始剤、連鎖移動剤等に由来する末端基として極性官能基を有するFポリマー、Fポリマーをプラズマ処理や電離線処理して得られる極性官能基を有するFポリマーが挙げられる。
 極性官能基は、水酸基含有基又はカルボニル基含有基が好ましく、パウダーの分散安定性の観点から、カルボニル基含有基がより好ましい。
 水酸基含有基は、アルコール性水酸基を含有する基が好ましく、-CFCHOH又は-C(CFOHが好ましい。
 カルボニル基含有基は、カルボニル基(>C(O))を含む基であり、カルボニル基、カルボキシル基、アルコキシカルボニル基、アミド基、イソシアネート基、カルバメート基(-OC(O)NH)、酸無水物残基(-C(O)OC(O)-)、イミド残基(-C(O)NHC(O)-等)又はカーボネート基(-OC(O)O-)が好ましい。
 Fポリマーがカルボニル基含有基を有する場合、Fポリマーにおけるカルボニル基含有基の数は、主鎖の炭素数1×10個あたり、10~5000個が好ましく、100~3000個がより好ましく、800~1500個がさらに好ましい。なお、Fポリマーにおけるカルボニル基含有基の数は、ポリマーの組成又は国際公開第2020/145133号に記載の方法によって定量できる。
 Fポリマーは、TFE単位、PAVE単位及び極性官能基を有するモノマーに基づく単位を含む極性官能基を有するポリマー(1)、又は、TFE単位及びPAVE単位を含み、全単位に対してPAVE単位を2.0~5.0モル%含む極性官能基を有さないポリマー(2)が好ましい。
 これらのFポリマーは、そのパウダーが分散安定性に優れ、ハンドリング性及びブレンド性にも優れるだけでなく、それから形成される成形品(後述するF層等)において微小球晶を形成して、その密着性を高めやすい。
 ポリマー(1)は、全単位に対して、TFE単位を90~99モル%、PAVE単位を0.5~9.97モル%及び極性官能基を有するモノマーに基づく単位を0.01~3モル%、それぞれ含有するのが好ましい。
 また、極性官能基を有するモノマーは、無水マレイン酸、無水イタコン酸、無水シトラコン酸又は5-ノルボルネン-2,3-ジカルボン酸無水物(別称:無水ハイミック酸;以下、「NAH」とも記す。)が好ましい。
 ポリマー(1)の具体例としては、国際公開第2018/16644号に記載されるポリマーが挙げられる。
 ポリマー(2)は、TFE単位及びPAVE単位のみからなり、全単位に対して、TFE単位を95.0~98.0モル%、PAVE単位を2.0~5.0モル%含有するのが好ましい。
 ポリマー(2)におけるPAVE単位の含有量は、全単位に対して、2.1モル%以上が好ましく、2.2モル%以上がより好ましい。
 なお、ポリマー(2)が極性官能基を有さないとは、ポリマー主鎖を構成する炭素原子数の1×10個あたり、ポリマーが有する極性官能基の数が、500個未満であることを意味する。上記極性官能基の数は、100個以下が好ましく、50個未満がより好ましい。上記極性官能基の数の下限は、通常、0個である。
 ポリマー(2)は、ポリマー鎖の末端基として極性官能基を生じない、重合開始剤や連鎖移動剤等を使用して製造してもよく、極性官能基を有するFポリマー(重合開始剤に由来する極性官能基をポリマーの主鎖の末端基に有するFポリマー等)をフッ素化処理して製造してもよい。フッ素化処理の方法としては、フッ素ガスを使用する方法(特開2019-194314号公報等参照)が挙げられる。
 Fポリマーの凝集物は、Fポリマーの原料モノマーの重合により形成されたFポリマーの粒子の凝集物であるのが好ましく、Fポリマーの原料モノマーの重合により形成されたFポリマーの一次粒子の凝集物であるのがより好ましい。Fポリマーの粒子の平均粒子径は、1μm未満であるのが好ましい。また、Fポリマーの粒子の平均粒子径は、0.01μm以上であるのが好ましい。かかる凝集物を熱処理した後、粉砕して得られたパウダーは、そのD50がより小さくなりやすい。また、パウダーの粒度分布は、シャープな単峰性となりやすい。
 なお、Fポリマーの粒子を凝集させる方法としては、Fポリマーの粒子を含む液状組成物と凝集剤とを混合してFポリマーの粒子を凝集させる方法、上記液状組成物を剪断撹拌してFポリマーの粒子を凝集させる方法等が挙げられる。なお、上記液状組成物は、重合溶媒中にてFポリマーの原料モノマーを重合させて形成される、Fポリマーの一次粒子と重合溶媒を含む液状組成物であるのが好ましい。
 これらの方法で形成されるFポリマーの凝集物を含む液状組成物から、固液分離により凝集物を回収して乾燥すれば、乾燥された凝集物が得られる。
 凝集物のD50は、100μm~5mmであるのが好ましく、1~3mmであるのがより好ましい。この場合、凝集物のハンドリング性を確保しつつ、得られるパウダーのD50を充分に小さくできる。
 本発明では、凝集物を流動させつつ熱処理する。かかる熱処理の方法としては、ロータリーキルンを使用する方法I、旋回する熱風を発生する熱処理装置(熱風流動装置)を使用する方法IIが挙げられる。
 前者の方法Iでは、中心軸を中心として回転する円筒状の回転炉内で、凝集物を転動させつつ、回転炉内を通過させて熱処理する。かかる方法Iによれば、加熱された回転炉の内面に凝集物が接触しつつ転動するため、特に、凝集物に熱が均一に伝わりやすい。
 熱処理の際の温度は、Fポリマーの溶融温度以下であり、Fポリマーの溶融温度-100℃超Fポリマーの溶融温度以下であるのが好ましく、200℃超300℃以下であるのがより好ましい。かかる温度で凝集物を熱処理すれば、凝集物の緻密性がより高まり、その硬度が上昇する。その結果、粉砕により得られるパウダーは、D50がより小さく、よりシャープな単峰性の粒度分布となりやすい。
 粉砕前の凝集物の硬度の具体的な値は、0.2N/mm以上であるのが好ましく、0.3N/mm以上であるのがより好ましい。硬度の値は、0.8N/mm以下であるのが好ましい。この場合、粉砕時に凝集物にかかる衝撃力が増大するので、より均一に微粒子化されやすい。
 回転炉の水平方向(ロータリーキルンの接地面)に対する傾斜角度は、0.01~5°であるのが好ましく、0.1~3°であるのがより好ましい。かかる傾斜角度で回転炉を傾斜させれば、凝集物の回転炉内の通過時間(凝集物の回転炉内での滞留時間)を充分に長く確保できる。その結果、凝集物をより均一かつ充分に加熱できる。
 凝集物の回転炉内での滞留時間は、1~60分間であるのが好ましく、5~40分間であるのがより好ましい。この場合、凝集物の加熱時間を充分に確保できる。
 また、回転炉の回転数は、1~20rpmであるのが好ましく、3~10rpmであるのがより好ましい。この場合、凝集物に過剰な衝撃力がかかりにくいので、転動(流動)の際における凝集物の不本意な破砕を防止できる。
 凝集物の回転炉内への投入速度は、回転炉内の凝集物の充填率が0.1~40%になる速度が好ましく、1~20%になる速度がより好ましい。この場合、凝集物の熱処理を充分に、かつ、高効率で実施できる。
 かかるロータリーキルンには、例えば、ノリタケカンパニーリミテッド社製の装置、サンアイ化熱社製の装置が使用可能である。
 後者の方法IIでは、円筒状の処理空間内に熱風を旋回させつつ供給し、処理空間の接線方向から凝集物を搬送ガスとともに処理空間内に供給し、凝集物を熱風により熱処理する。かかる方法IIによれば、凝集物を含む搬送ガスが処理空間内に導入された瞬間の乱流を防止し得るため、合一粒子(粗大粒子)の発生を抑制できる。
 また、凝集物を含む搬送ガスは、処理空間の周方向に沿って、かつ、同一平面上に配置された複数の凝集物供給口から、処理空間内に供給するように構成するのが好ましい。凝集物供給口の数が多いほど、各凝集物供給口から供給する凝集物の量を低減できる。そのため、凝集物供給口の数に応じて、凝集物の熱処理に必要な熱風の温度を低下させ得る。また、合一粒子の発生も抑制できる。
 凝集物は、処理空間内で熱風の旋回流中において流動しつつ搬送される。この際、特に、凝集物に熱が均一に伝わりやすく、緻密化及び球形化が進行しやすい。
 熱処理された凝集物は、凝集物供給口の下流(鉛直方向の下側)に設置された冷風供給口から供給される冷風によって冷却される。
 冷風供給口も、凝集物供給口と同様に、処理空間の接線方向から冷風を供給する。また、冷風も処理空間の周方向に沿って、かつ、同一平面上に配置された複数の冷風供給口から、処理空間内に供給するように構成するのが好ましい。この場合、冷風が処理空間内に導入された瞬間の乱流を防止し得るため、合一粒子(粗大粒子)の発生を抑制できる。
 冷風供給口は、その配置数が多いほど、熱処理された凝集物を冷却する効率が高まる。よって、凝集物の冷却ムラが抑制され、円形度の揃った凝集物が得られやすい。
 冷風供給口の配置により、処理空間内の旋回流を維持できるため、処理空間を画成する熱処理装置の底部への凝集物の滞留による付着も抑制できる。
 処理空間を通過した凝集物は、冷風供給口の下流(鉛直方向の下側)に設置された凝集物排出口から、吸引装置により吸引されて排出(回収)される。
 かかる熱処理装置では、処理空間内に供給される圧縮エア、熱風及び冷風の合計での流量(総供給量)QINと吸引装置により処理空間から排出される流量(総排出量)QOUTとの関係は、好ましくはQIN≦QOUTの関係となるように調整される。この場合、処理空間内の圧力が負圧となるため、処理空間内の凝集物が排出されやすくなる結果、凝集物に過剰に熱がかかるのを抑制できる。このため、合一粒子の発生や熱処理装置内への凝集物の付着量も低減できる。
 処理空間内から排出された凝集物は、その硬度が上述したような範囲となりやすい。また、熱風の温度(熱処理の際の温度)も上記と同様である。
 かかる熱処理装置には、例えば、フラッシュジェットドライヤー(セイシン企業社製)が使用可能である。
 熱処理後の凝集物を粉砕(破壊)して、Fポリマーのパウダーを得る。この粉砕は、機械的粉砕処理により行うのが好ましい。
 機械的粉砕処理は、凝集物を破砕して、より小さい粒子(パウダー)とするのに充分な剪断力及び/又は破砕力を作用させ得る装置を用いて行われる。
 かかる装置としては、ディスインテグレーターを含むハンマーミル、ピンミル、ディスクミル、ロータリーミル、ジェットミル、流動床エアジェットミル、ジョークラッシャー、ジャイレートリークラッシャー、ケージミル、パンクラッシャー、ボールミル、ペブルミル、ロッドミル、チューブミル、ディスクアトリションミル、アトライター、ディスクリファイナーが挙げられる。
 中でも、機械的粉砕処理は、ハンマーミル、ピンミル、ディスクミル、ロータリーミル又はジェットミルを用いて行うのが好ましい。これらの装置を用いれば、得られるパウダーのD50を小さくしやすく、よりシャープな単峰性の粒度分布となりやすい。また、パウダーの比表面積も小さくなりやすい。
 粉砕する際の温度は、-40℃以下が好ましく、-100℃以下がより好ましく、-160℃以下がさらに好ましい。この場合、Fポリマーの低温脆性により、凝集物を冷却しない場合に比べて、パウダーのD50をより小さくしやすい。
 なお、冷却には、固体化した二酸化炭素又は液体窒素を用いて行うのが好ましい。
 上記装置の具体例としては、ジェットミル(ホソカワミクロン社製、「カウンタジェットミル」)、遊星ボールミル(レッチェ社製、「遊星ボールミルPM100」)が挙げられる。
 本発明におけるFポリマーのパウダーは、Fポリマーを含むパウダーであり、Fポリマーからなるパウダーであるのが好ましい。Fポリマーのパウダーに含まれ得る他の成分としては、芳香族ポリエステル、ポリアミドイミド、熱可塑性ポリイミド、ポリフェニレンエーテル、ポリフェニレンオキシドが挙げられる。
 FポリマーのパウダーのD50は、1μm超10μm以下であり、1μm超8μm以下が好ましく、1μm超6μm以下がより好ましい。この場合、Fポリマーのパウダーの流動性が高く、これを含むパウダー分散液のハンドリング性が向上するとともに、分散安定性にも優れる。
 かかるパウダーは、単峰性の粒度分布を有し、その半値全幅が、0.5~3.5μmであるのが好ましく、1~2.5μmであるのがより好ましい。この場合、パウダーが異形状粒子(粗大粒子)を含まないことを意味し、パウダー分散液を調製する際に、異形状粒子を起点とするパウダーの凝集が生じにくい。
 また、パウダーの比表面積は、1m/g以上8m/g未満であり、1~5m/gであるのが好ましく、1~3m/gであるのがより好ましい。この場合、比表面積がより小さく、よって、パウダー分散液の分散安定性がより向上する。
 本発明のパウダー(以下、「本パウダー」とも記す。)は、Fポリマーのパウダーであり、D50が1μm超10μm以下である単峰性の粒度分布を有し、かつ、比表面積が1m/g以上8m/g未満である。
 本パウダーの定義及び範囲は、好適な態様も含めて、本法におけるそれらと同様である。また、本パウダーにおけるFポリマーの定義及び範囲も、好適な態様も含めて、本法におけるそれらと同様である。
 なお、本パウダーは、本法により製造されたパウダーであるのが好ましい。
 本発明のパウダー分散液(以下、「本分散液」とも記す。)は、本パウダーと、液状分散媒とを含む。本パウダーが上記特徴を有するため、本分散液は、分散安定性に優れる。
 上述したように、本パウダーは、異形状粒子を含まないか、異形状粒子を含む場合でも、その含有量が極めて少ない。このため、本パウダーと液状分散媒とを攪拌等により混合して、本分散液を調製する際に、本パウダーの変性が高度に抑制されることにより、本分散液が増粘しにくい。
 本分散液の増粘のしにくさの程度は、本分散液の攪拌前後での増粘率に基づいて評価できる。
 具体的には、本分散液を8000rpmで30分間撹拌した際の、撹拌前後の粘度の測定値に基づいて、次式に従って計算される増粘率は、60%未満であるのが好ましく、40%未満であるのがより好ましい。本分散液の増粘率の下限は、0%である。
 式:増粘率={(撹拌後の粘度/撹拌前の粘度)-1}×100
 液状分散媒は、本パウダーの分散媒として機能する、25℃で不活性な液体化合物であるのが好ましい。液状分散媒は、1種を単独で使用してもよく、2種以上を混合してもよい。
 液状分散媒の沸点は、125~250℃が好ましい。この場合、本分散液による液状被膜を乾燥して乾燥被膜を形成する際、液状分散媒の揮発に伴う、本パウダーの流動が効果的に進行して、本パウダーが緻密にパッキングしやすい。
 液状分散媒の具体例としては、水、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N-メチル-2-ピロリドン、γ-ブチロラクトン、シクロヘキサノン、シクロペンタノン、酢酸ブチル、メチルイソプロピルケトン、シクロペンタノン、シクロヘキサノンが挙げられる。
 液状分散媒は、アミド、ケトン又はエステルが好ましく、N,N-ジメチルアセトアミド、3-メトキシ-N,N-ジメチルプロパンアミド、3-ブトキシ-N,N-ジメチルプロパンアミド、N-メチル-2-ピロリドン又はγ-ブチロラクトンがより好ましい。
 本分散液中のFポリマーの含有量は、5~70質量%が好ましく、10~60質量%がより好ましい。
 本分散液中の液状分散媒の含有量は、30~95質量%が好ましく、40~90質量%がより好ましい。
 本分散液は、Fポリマー及び液状分散媒以外の成分を含んでいてもよい。
 本分散液は、さらに界面活性剤を含むのが好ましい。かかる場合、Fポリマーのパウダーの分散が促されやすく、本分散液は分散安定性がより向上しやすい。
 この場合、本分散液中の界面活性剤の含有量は、1~15質量%が好ましい。
 界面活性剤は、ノニオン性であるのが好ましい。
 界面活性剤の親水部位は、オキシアルキレン基又はアルコール性水酸基を有するのが好ましい。
 オキシアルキレン基は、1種から構成されていてもよく、2種以上から構成されていてもよい。後者の場合、種類の違うオキシアルキレン基は、ランダム状に配置されていてもよく、ブロック状に配置されていてもよい。
 オキシアルキレン基は、オキシエチレン基又はオキシプロピレン基が好ましく、オキシエチレン基がより好ましい。
 界面活性剤の疎水部位は、アセチレン基、ポリシロキサン基、ペルフルオロアルキル基又はペルフルオロアルケニル基を有するのが好ましい。
 界面活性剤は、グリコール系界面活性剤、アセチレン系界面活性剤、シリコーン系界面活性剤またはフッ素系界面活性剤が好ましく、シリコーン系界面活性剤がより好ましい。ノニオン性界面活性剤は、1種を用いてもよく、2種以上を用いてもよい。2種のノニオン性界面活性剤を用いる場合のノニオン性界面活性剤は、シリコーン系界面活性剤とグリコール系界面活性剤とであるのが好ましい。
 フッ素系界面活性剤は、水酸基(特に、アルコール性水酸基)又はオキシアルキレン基と、ペルフルオロアルキル基又はペルフルオロアルケニル基とを有するフッ素系界面活性剤が好ましい。ペルフルオロアルキル基中の炭素原子-炭素原子間には、エーテル性酸素原子が挿入されていてもよい。
 上記界面活性剤の重量平均分子量は、5000~300000が好ましい。
 上記界面活性剤のフッ素含有量は、15~90質量%がより好ましい。
 上記界面活性剤のオキシアルキレン基の含有量は、10~60質量%が好ましい。
 上記界面活性剤の水酸基価は、10~100mgKOH/gが好ましい。
 フッ素系界面活性剤は、フルオロ(メタ)アクリレートと親水性(メタ)アクリレートとのコポリマーが好ましい。
 フルオロ(メタ)アクリレートの具体例としては、CH=C(CH)C(O)OCHCH(CFF、CH=C(CH)C(O)OCHCH(CFF、CH=C(CH)C(O)OCHCHCHCHOCF(CF)C(=C(CF)(CF(CF)、CH=C(CH)C(O)OCH(CH)OCH(CFFが挙げられる。
 親水性(メタ)アクリレートの具体例としては、CH=C(CH)C(O)(OCHCHOH、CH=C(CH)C(O)(OCHCHOH、CH=C(CH)C(O)(OCHCH23OHが挙げられる。
 かかる界面活性剤の具体例としては、「フタージェント」シリーズ(ネオス社製)、「サーフロン」シリーズ(AGCセイミケミカル社製)、「メガファック」シリーズ(DIC社製)、「ユニダイン」シリーズ(ダイキン工業社製)、「BYK-347」、「BYK-349」、「BYK-378」、「BYK-3450」、「BYK-3451」、「BYK-3455」、「BYK-3456」(ビックケミー・ジャパン社製)、「KF-6011」、「KF-6043」(信越化学工業社製)、「Tergitol」シリーズ(ダウケミカル社製、「Tergitol TMN-100X」等。)が挙げられる。
 本分散液がノニオン性界面活性剤を含有する場合、本分散液中のノニオン性界面活性剤の含有量は、1~15質量%が好ましい。
 本分散液は、さらに、Fポリマーとは異なるポリマーを含んでもよい。異なるポリマーとしては、芳香族ポリエステル、ポリアミドイミド、ポリイミド、ポリフェニレンエーテル、ポリフェニレンオキシド、マレイミドが挙げられ、熱可塑性の芳香族ポリイミドが好ましい。
 本分散液は、さらに、無機フィラー、チキソ性付与剤、消泡剤、シランカップリング剤、脱水剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤、粘度調節剤、難燃剤を含んでいてもよい。
 本分散液の粘度は、1000mPa・s以下が好ましく、50~750mPa・sがより好ましい。本パウダーが上記特徴を有するため、本分散液は、粘度が低くなりやすい。
 本分散液のチキソ比は、1.0~3.0が好ましく、1.0~2.0がより好ましい。
 本分散液の粘度及びチキソ比が、上記範囲にあれば、本パウダーが高度かつ高含有量で分散した本分散液を得やすい。また、本分散液は、塗工性等のハンドリング性と、他の成分とのブレンド性とに優れる。
 本分散液は、絶縁性、耐熱性、対腐食性、耐薬品性、耐水性、耐衝撃性、熱伝導性を付与するためのコーティング材料として有用である。
 本分散液は、具体的には、プリント配線板、熱インターフェース材、パワーモジュール用基板、モーター等の動力装置で使用されるコイル、車載エンジン、熱交換器、バイアル瓶、注射筒(シリンジ)、アンプル、医療用ワイヤー、リチウムイオン電池等の二次電池、リチウム電池等の一次電池、ラジカル電池、太陽電池、燃料電池、リチウムイオンキャパシタ、ハイブリッドキャパシタ、キャパシタ、コンデンサ(アルミニウム電解コンデンサ、タンタル電解コンデンサ等)、エレクトロクロミック素子、電気化学スイッチング素子、電極のバインダー、電極のセパレーター、電極(正極、負極)に使用できる。
 また、本分散液は、部品を接着する接着剤としても有用である。具体的には、本分散液は、セラミックス部品の接着、金属部品の接着、半導体素子やモジュール部品の基板におけるICチップや抵抗、コンデンサ等の電子部品の接着、回路基板と放熱板の接着、LEDチップの基板への接着に使用できる。
 また、さらに導電性フィラーを含む本分散液は、導電性が要求される用途、例えば、プリンテッド・エレクトロニクスの分野においても好適に使用できる。具体的には、プリント基板、センサー電極等における通電素子の製造に使用できる。
 本分散液を、基材層の表面に塗布して液状被膜を形成し、加熱して液状分散媒を揮発させて乾燥被膜を得、さらに加熱してFポリマーを焼成すると、基材層と、Fポリマーを含むポリマー層(以下、「F層」とも記す。)とを有する積層体が得られる。
 上述したように、本分散液は、その調整時に、本パウダーの変性が高度に抑制されることにより増粘しにくい。このため、本分散液は、レベリング性に優れる。また、本パウダーは、緻密にパッキングしやすい。したがって、本分散液から形成されるF層は、表面平滑性及び緻密性が高い。
 F層の表面(基材層と反対側の面)の算術平均粗さ(Ra)は、0.6μm未満であるのが好ましく、0.4μm未満であるのがより好ましい。算術平均粗さ(Ra)は、通常、0.05μm以上である。
 前者の加熱における温度は、120~200℃が好ましい。後者の加熱における温度はFポリマーの溶融温度以上の温度が好ましく、具体的には300~380℃がより好ましい。この場合、F層が表面平滑性及び柔軟性と電気特性とに優れやすい。
 それぞれの加熱の方法としては、オーブンを用いる方法、通風乾燥炉を用いる方法、赤外線等の熱線を照射する方法が挙げられる。
 基材層を構成する基材としては、金属基板(銅、ニッケル、アルミニウム、チタン、それらの合金等の基板)、樹脂フィルム(ポリイミド、ポリアリレート、ポリスルホン、ポリアリールスルホン、ポリアミド、ポリエーテルアミド、ポリフェニレンスルフィド、ポリアリールエーテルケトン、ポリアミドイミド、液晶性ポリエステル、液晶性ポリエステルアミド等のフィルム)、プリプレグ(繊維強化樹脂基板の前駆体)が挙げられる。
 本分散液の塗布方法としては、スプレー法、ロールコート法、スピンコート法、グラビアコート法、マイクログラビアコート法、グラビアオフセット法、ナイフコート法、キスコート法、バーコート法、ダイコート法、ファウンテンメイヤーバー法、スロットダイコート法が挙げられる。
 F層の厚さは、0.1~100μmが好ましく、0.5~50μmがより好ましい。本分散液は、ハンドリング性に優れるため、表面平滑性等の物理的物性にも優れた、任意の厚さのF層を容易に形成できる。
 本分散液は、基材層の一方の表面にのみ塗布してもよく、基材層の両面に塗布してもよい。前者においては、基材層と、基材層の片方の表面にF層とを有する積層体が得られ、後者においては、基材層と、基材層の両方の表面にF層とを有する積層体が得られる。後者の積層体は、より反りが発生しにくいため、その加工に際するハンドリング性に優れる。
 かかる積層体の具体例としては、金属箔と、その金属箔の少なくとも一方の表面にF層を有する金属張積層体、ポリイミドフィルムと、そのポリイミドフィルムの両方の表面にF層を有する多層フィルムが挙げられる。
 これらの積層体は、電気特性、はんだリフロー耐性等の耐熱性、耐薬品性、表面平滑性等の諸物性に優れており、プリント基板材料等として好適である。具体的には、かかる積層体は、フレキシブルプリント基板やリジッドプリント基板の製造に使用できる。
 なお、金属箔には、2層以上の金属箔を含むキャリア付金属箔を使用してもよい。キャリア付金属箔としては、キャリア銅箔(厚さ:10~35μm)と、剥離層を介してキャリア銅箔上に積層された極薄銅箔(厚さ:2~5μm)とからなるキャリア付銅箔が挙げられる。かかるキャリア付銅箔を使用すれば、MSAP(モディファイドセミアディティブ)プロセスによるファインパターンの形成が可能である。上記剥離層としては、ニッケル又はクロムを含む金属層、又はこの金属層を積層した多層金属層が好ましい。
 キャリア付金属箔の具体例としては、福田金属箔粉工業株式会社製の商品名「FUTF-5DAF-2」が挙げられる。
 基材の表面の十点平均粗さは、0.01~0.05μmが好ましい。本パウダーは緻密にパッキングしやすいため、表面が平滑な基材であっても、剥離強度に優れた積層体を形成できる。
 積層体の最表面(ポリマー層の基材層と反対側の表面)は、その低線膨張性や接着性を一層向上させるために、さらに表面処理されてもよい。
 表面処理の方法としては、アニール処理、コロナ処理、プラズマ処理、オゾン処理、エキシマ処理、シランカップリング処理が挙げられる。
 アニール処理における条件は、温度を120~180℃とし、圧力を0.005~0.015MPaとし、時間を30~120分間とするのが好ましい。
 プラズマ処理に用いるガスとしては、酸素ガス、窒素ガス、希ガス(アルゴン等)、水素ガス、アンモニアガス、酢酸ビニルが挙げられる。これらのガスは、1種を単独で使用してもよく、2種以上を併用してもよい。
 積層体の最表面には、さらに他の基板を積層してもよい。
 他の基板としては、耐熱性樹脂フィルム、繊維強化樹脂板の前駆体であるプリプレグ、耐熱性樹脂フィルム層を有する積層体、プリプレグ層を有する積層体が挙げられる。
 なお、プリプレグは、強化繊維(ガラス繊維、炭素繊維等)の基材(トウ、織布等)に熱硬化性樹脂又は熱可塑性樹脂を含浸させたシート状の基板である。
 耐熱性樹脂フィルムは、1種以上の耐熱性樹脂を含むフィルムである。耐熱性樹脂としては、ポリイミド、ポリアリレート、ポリスルホン、ポリアリールスルホン、芳香族ポリアミド、芳香族ポリエーテルアミド、ポリフェニレンスルフィド、ポリアリールエーテルケトン、ポリアミドイミド、液晶性ポリエステル、液晶性ポリエステルアミドが挙げられ、ポリイミド(特に、芳香族性ポリイミド)が好ましい。
 積層の方法としては、積層体と他の基板とを熱プレスする方法が挙げられる。
 他の基板がプリプレグである場合の熱プレスの条件は、温度を120~400℃とし、雰囲気の圧力を20kPa以下の真空とし、プレス圧力を0.2~10MPaとするのが好ましい。
 積層体は、電気特性に優れるポリマー層を有するため、プリント基板材料として好適である。具体的には、本法における積層体は、フレキシブル金属張積層板やリジッド金属張積層板としてプリント基板の製造に使用でき、特に、フレキシブル金属張積層板としてフレキシブルプリント基板の製造に好適に使用できる。
 基材層が金属箔である積層体(ポリマー層付金属箔)の金属箔をエッチング加工し、伝送回路を形成してプリント基板が得られる。具体的には、金属箔をエッチング処理して所定の伝送回路に加工する方法や、金属箔を電解めっき法(セミアディティブ法(SAP法)、MSAP法等)によって所定の伝送回路に加工する方法によって、プリント基板を製造できる。
 ポリマー層付金属箔から製造されたプリント基板は、金属箔から形成された伝送回路とポリマー層とをこの順に有する。プリント基板の構成の具体例としては、伝送回路/ポリマー層/プリプレグ層、伝送回路/ポリマー層/プリプレグ層/ポリマー層/伝送回路が挙げられる。
 かかるプリント基板の製造においては、伝送回路上に層間絶縁膜を形成してもよく、伝送回路上にソルダーレジストを積層してもよく、伝送回路上にカバーレイフィルムを積層してもよい。これらの層間絶縁膜、ソルダーレジスト及びカバーレイフィルムを、本分散液で形成してもよい。
 以上、本発明のパウダーの製造方法、パウダー及びパウダー分散液について説明したが、本発明は、上述した実施形態の構成に限定されない。
 例えば、本発明のパウダー及びパウダー分散液は、それぞれ、上記実施形態の構成において、他の任意の構成を追加してもよいし、同様の機能を発揮する任意の構成と置換されていてよい。
 また、本発明のパウダーの製造方法は、上記実施形態の構成において、他の任意の工程を追加で有してもよいし、同様の作用を生じる任意の工程と置換されていてよい。
 以下、実施例を示して本発明を詳細に説明する。ただし、本発明は以下の記載によっては限定されない。
 1.凝集物の準備
 [凝集物1の準備]
 まず、真空引きしたステンレス製の重合槽(内容積:1.3L)に、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル(沸点:56℃;AGC社製、「AE-3000」)と、メタノールと、PPVEとを仕込み、重合槽内部を撹拌しながら、TFEガスを仕込んで、重合槽内温を50℃に保持した。
 次いで、ビス(ペルフルオロブチリル)ペルオキシドを0.05質量%で含む1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル溶液(開始剤溶液)を重合槽に圧入して重合を開始し、重合槽内圧が1.0MPaで一定になるようにTFEガスを圧入して重合を継続した。
 なお、TFEガスの消費速度が0.5g/分となるように、開始剤溶液を重合槽に間欠圧入した。併せて、TFEガスが5g消費される毎に、NAHを1質量%で含む1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテル溶液を1mLずつ、重合槽に圧入した。
 重合開始から290分後、重合槽を冷却し、重合を終了した。その後、重合槽から残モノマーガスを大気圧までパージして、重合粗液1を得た。
 重合粗液1は、TFE単位、PPVE単位及びNAH単位を、この順に98.0モル%、1.9モル%及び0.1モル%含み、極性官能基を有するポリマー1(溶融温度:300℃)を13質量%で含んでいた。また、重合粗液1中においては、ポリマー1の一次粒子(D50:0.5μm)が1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテルに分散していた。
 この重合粗液1に水を加え撹拌し、粒子を凝集させた後、固液分離により凝集物を回収した。この回収した凝集物を150℃にて15時間乾燥させて、ポリマー1の一次粒子の凝集物1(D50:1.5mm)を得た。
 [凝集物2の準備]
 NAHの使用を省略した以外は、重合粗液1と同様にして、重合粗液2を得た。
 重合粗液2は、TFE単位及びPPVE単位を、この順に98.7モル%及び1.3モル%含み、極性官能基を有さないポリマー2(溶融温度:305℃)を13質量%で含んでいた。また、重合粗液2中においては、ポリマー2の一次粒子(D50:0.4μm)が1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテルに分散していた。
 凝集物1と同様にして、この重合粗液2から凝集物2(D50:2.4mm)を回収した。
 2.パウダーの製造
 [例1]
 まず、凝集物1をロータリーキルン(サンアイ化熱社製)の回転炉内に供給及び通過させて熱処理した。なお、凝集物1の加熱温度が250℃となるように回転炉を加熱した。また、凝集物の回転炉内での滞留時間(加熱時間)が30分間となるように、回転炉を回転数7rpmで回転させた。凝集物の投入速度を回転炉内の凝集物の充填率が10%となるようにし、回転炉の水平方向に対する傾斜角度を0.2°とした。回転炉を通過した後の凝集物の硬度は0.41N/mmであった。
 次に、得られた凝集物をカウンタジェットミル(ホソカワミクロン社製)で、グラインド圧力及びプッシュ圧力を0.65MPaとして粉砕して、パウダー1を得た。
 得られたパウダー1のD50は2μm、比表面積は3m/gであった。また、パウダー1の粒度分布は、単峰性であり、その半値全幅が2.1μmであった。
 [例2]
 凝集物2を使用した以外は、例1と同様にして、パウダー2を得た。
 得られたパウダー2のD50は4μm、比表面積は5m/gであった。また、パウダー2の粒度分布は、単峰性であり、その半値全幅が2.5μmであった。
 [例3]
 凝集物1の加熱温度が200℃となるように回転炉を加熱した以外は、例1と同様にして、パウダー3を得た。
 得られたパウダー3のD50は2μm、比表面積は6m/gであった。また、パウダー3の粒度分布は、単峰性であり、その半値全幅が2.8μmであった。
 [例4(比較例)]
 回転炉を加熱しなかった以外は、例1と同様にして、パウダー4を得た。
 得られたパウダー4のD50は2μm、比表面積は12m/gであった。また、パウダー4の粒度分布は、ブロードであった。
 [例5(比較例)]
 凝集物1の加熱温度が330℃、滞留時間が1分間となるように回転炉を駆動させた以外は、例1と同様にして、パウダー5を得た。
 得られたパウダー5のD50は5μm、比表面積は6m/gであった。また、パウダー5の粒度分布は、2峰性であった。
 [例6(比較例)]
 凝集物1の加熱温度が250℃となるようにオーブンを使用して加熱した以外は、例1と同様にして、パウダー6を得た。
 得られたパウダー6のD50は24μm、比表面積は6m/gであった。また、パウダー6の粒度分布は、2峰性であった。
 3.パウダー分散液の調製
 55質量部の各パウダー1~6と、2質量部の界面活性剤(ネオス社製、「フタージェント250」と、43質量部のN-メチル-2-ピロリドン(NMP)とを、ボールミルに収容し、セラミックボールを投入して1時間混合して、パウダー分散液1~6を調製した。
 4.測定及び評価
 4-1.凝集物の硬度測定
 ストログラフ(東洋精機社製)を用い、凝集物を0.5mm/分で圧縮した際の最大荷重を凝集物の硬度とした。
 4-2.パウダーの比表面積測定
 各パウダー1~6の比表面積は、ガス吸着(定容法)BET多点法により測定した。測定装置には、NOVA4200e(Quantachrome Instruments社製)を使用した。
 また、前処理として、各パウダー1~6を、200℃で30分間、真空脱気した。その後、液体窒素で温度を一定に保持しつつ、窒素ガスを導入して吸着等温線を作成した。直線性の良好な相対圧力の点で、各パウダー1~6の比表面積を求めた。
 4-3.パウダーのD50測定
 レーザー干渉計(堀場製作所社製、「LA-960V2」)を使用して、各パウダー1~6の粒度分布を測定し、D50を求めた。
 なお、粒径分布に極大値が1つの場合を単峰性とし、極大値が2つある場合を2峰性とした。
 また、一般的に2峰性は、実際にはそのような粒径分布が存在せず、パウダーが異形状粒子を含む場合に観察される現象である。
 4-4.パウダー分散液の凝集性評価
 各パウダー分散液1~6を目開き50μmの金属メッシュを通過させた。その後、金属メッシュに捕捉された固形分を乾燥させ、その質量を測定した。元のパウダー分散液中に含まれるパウダーの質量から捕捉率を次式に従って計算し、以下の基準に従って凝集性について評価した。
 式:捕捉率=金属メッシュに捕捉された固形分の質量/元のパウダー分散液中に含まれるパウダーの質量
 [評価基準]
 〇:捕捉率が5%未満
 △:捕捉率が5%以上10%未満
 ×:捕捉率が10%以上
 4-5.パウダー分散液の粘度測定
 各パウダー分散液1~6について、B型粘度計(英弘精機社製、「DV2T」)を使用して、RV-2スピンドルを回転数60rpmで回転させる条件で、その粘度を測定した。
 4-6.パウダー分散液の増粘性評価
 各パウダー分散液1~6について、ホモミキサーにて、8000rpmで30分間撹拌し、その粘度を「4-5.」と同様に測定した。撹拌前後での分散液の増粘率を次式に従って計算し、以下の基準に従って評価した。
 式:増粘率={(撹拌後の粘度/撹拌前の粘度)-1}×100
 [評価基準]
 〇:増粘率が40%未満
 △:増粘率が40%以上60%未満
 ×:増粘率が60%以上
 4-7.積層体の表面平滑性評価
 パウダー分散液1を、ステンレス板の表面にアプリケータを用いて塗布し、ウェット膜を形成した。次いで、このウェット膜が形成されたステンレス板を、100℃にて5分間、乾燥炉に通し、加熱により乾燥させてドライ膜を得た。その後、窒素オーブン中で、ドライ膜を350℃で5分間、加熱した。これにより、ステンレス板と、その表面にパウダー1の溶融焼成物を含む、成形物としてのポリマー層とを有する積層体1を得た。
 パウダー分散液1を、パウダー分散液2~6に変更した以外は、積層体1と同様にして、積層体2~6を得た。
 各積層体1~6について、表面粗さ計(サーフコムNEX100、東京精密社製)を用いて、JIS B0601:2013(ISO4287:1997,Amd.1:2009)に基づき、ポリマー層の表面の算術平均粗さ(Ra)を測定した。Raを求める際の、粗さ曲線用の基準長さlr(カットオフ値λc)を0.8mmとした。
 [評価基準]
 〇:Raが0.4μm未満
 △:Raが0.4μm以上0.6μm未満
 ×:Raが0.6μm以上
 これらの結果を、以下の表1に併せて示す。
Figure JPOXMLDOC01-appb-T000001
 本発明のパウダー及びパウダー分散液は、フィルム、含浸物(プリプレグ等)、積層板(銅張積層体等の金属積層板等)等の成形品の製造に使用でき、離型性、電気特性、撥水撥油性、耐薬品性、耐候性、耐熱性、滑り性、耐摩耗性等が要求される用途の成形品の製造に使用できる。本発明の分散液から形成される成形品は、アンテナ部品、プリント基板、航空機用部品、自動車用部品、スポーツ用具、食品工業用品、塗料、化粧品等として有用であり、具体的には、電線被覆材、電気絶縁性テープ、石油掘削用絶縁テープ、プリント基板用材料、分離膜、電池材料(リチウム二次電池用、燃料電池用等の電極バインダー材料)、コピーロール、家具、自動車ダッシュボート、家電製品のカバー、摺動部材(荷重軸受、すべり軸、バルブ、ベアリング、歯車、カム、ベルトコンベア、食品搬送用ベルト等)、工具(シャベル、やすり、きり、のこぎり等)、ボイラー、ホッパー、パイプ、オーブン、焼き型、シュート、ダイス、便器、コンテナ被覆材として有用である。

Claims (15)

  1.  熱溶融性のテトラフルオロエチレン系ポリマーの凝集物を流動させつつ、前記テトラフルオロエチレン系ポリマーの溶融温度以下で熱処理した後、粉砕して、平均粒子径が1μm超10μm以下であり、かつ、比表面積が1m/g以上8m/g未満である、単峰性の粒度分布を有する、前記テトラフルオロエチレン系ポリマーのパウダーを得る、パウダーの製造方法。
  2.  前記テトラフルオロエチレン系ポリマーが、ペルフルオロ(アルキルビニルエーテル)に基づく単位又はヘキサフルオロプロピレンに基づく単位を含むテトラフルオロエチレン系ポリマーである、請求項1に記載の製造方法。
  3.  前記テトラフルオロエチレン系ポリマーが、極性官能基を有するテトラフルオロエチレン系ポリマーである、請求項1又は2に記載の製造方法。
  4.  前記凝集物の平均粒子径が、100μm~5mmである、請求項1~3のいずれか1項に記載の製造方法。
  5.  前記凝集物を熱処理する際の温度が、前記テトラフルオロエチレン系ポリマーの溶融温度-100℃超である、請求項1~4のいずれか1項に記載の製造方法。
  6.  前記凝集物を、中心軸を中心として回転する回転炉内で転動させつつ、熱処理する、請求項1~5のいずれか1項に記載の製造方法。
  7.  前記回転炉の水平方向に対する傾斜角度が、0.01~5°である、請求項6に記載の製造方法。
  8.  前記回転炉の回転数が、1~20rpmである、請求項6又は7に記載の製造方法。
  9.  前記凝集物の前記回転炉内での滞留時間が、1~60分間である、請求項6~8のいずれか1項に記載の製造方法。
  10.  前記凝集物の前記粉砕前の硬度が、0.2N/mm以上である、請求項1~9のいずれか1項に記載の製造方法。
  11.  前記凝集物が、前記テトラフルオロエチレン系ポリマーの原料モノマーの重合により形成された、前記テトラフルオロエチレン系ポリマーの粒子の凝集物である、請求項1~10のいずれか1項に記載の製造方法。
  12.  熱溶融性のテトラフルオロエチレン系ポリマーのパウダーであって、平均粒子径が1μm超10μm以下であり、かつ、比表面積が1m/g以上8m/g未満である、単峰性の粒度分布を有する、パウダー。
  13.  前記粒度分布の半値全幅が、0.5~3.5μmである、請求項12に記載のパウダー。
  14.  請求項12又は13に記載のパウダーと、液状分散媒とを含む、パウダー分散液。
  15.  前記パウダー分散液の粘度が、1000mPa・s以下である、請求項14に記載のパウダー分散液。
PCT/JP2021/020370 2020-06-01 2021-05-28 パウダーの製造方法、パウダー及びパウダー分散液 WO2021246306A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022528791A JPWO2021246306A1 (ja) 2020-06-01 2021-05-28
CN202180039139.5A CN115698142A (zh) 2020-06-01 2021-05-28 粉末的制造方法、粉末及粉末分散液

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020095576 2020-06-01
JP2020-095576 2020-06-01

Publications (1)

Publication Number Publication Date
WO2021246306A1 true WO2021246306A1 (ja) 2021-12-09

Family

ID=78831097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020370 WO2021246306A1 (ja) 2020-06-01 2021-05-28 パウダーの製造方法、パウダー及びパウダー分散液

Country Status (3)

Country Link
JP (1) JPWO2021246306A1 (ja)
CN (1) CN115698142A (ja)
WO (1) WO2021246306A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202920A1 (ja) * 2021-03-24 2022-09-29 Agc株式会社 蓄電デバイス用バインダー、バインダー含有組成物、蓄電デバイス用電極合剤、蓄電デバイス用電極及び二次電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202329A (ja) * 1990-11-30 1992-07-23 Du Pont Mitsui Fluorochem Co Ltd テトラフルオロエチレン共重合体粉末の製造法
JP2010202741A (ja) * 2009-03-02 2010-09-16 Daikin Ind Ltd 低分子量ポリテトラフルオロエチレン粉末及びその製造方法、低分子量ポリテトラフルオロエチレンゲル化粉末、並びに定着部材用塗料
WO2010114033A1 (ja) * 2009-03-31 2010-10-07 ダイキン工業株式会社 低分子量ポリテトラフルオロエチレン粉末及びその製造方法
WO2019098202A1 (ja) * 2017-11-16 2019-05-23 Agc株式会社 樹脂パウダーの製造方法、樹脂パウダーおよび積層体の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202329A (ja) * 1990-11-30 1992-07-23 Du Pont Mitsui Fluorochem Co Ltd テトラフルオロエチレン共重合体粉末の製造法
JP2010202741A (ja) * 2009-03-02 2010-09-16 Daikin Ind Ltd 低分子量ポリテトラフルオロエチレン粉末及びその製造方法、低分子量ポリテトラフルオロエチレンゲル化粉末、並びに定着部材用塗料
WO2010114033A1 (ja) * 2009-03-31 2010-10-07 ダイキン工業株式会社 低分子量ポリテトラフルオロエチレン粉末及びその製造方法
WO2019098202A1 (ja) * 2017-11-16 2019-05-23 Agc株式会社 樹脂パウダーの製造方法、樹脂パウダーおよび積層体の製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022202920A1 (ja) * 2021-03-24 2022-09-29 Agc株式会社 蓄電デバイス用バインダー、バインダー含有組成物、蓄電デバイス用電極合剤、蓄電デバイス用電極及び二次電池

Also Published As

Publication number Publication date
JPWO2021246306A1 (ja) 2021-12-09
CN115698142A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
JP2022011017A (ja) パウダー分散液及び積層体の製造方法
WO2020184437A1 (ja) 液状組成物、パウダー、及び、パウダーの製造方法
WO2022145333A1 (ja) 水性分散液及びその製造方法
WO2021095662A1 (ja) 非水系分散液、積層体の製造方法及び成形物
WO2021241547A1 (ja) 分散液の製造方法
WO2021246306A1 (ja) パウダーの製造方法、パウダー及びパウダー分散液
JP2020037661A (ja) フッ素樹脂膜、分散液の製造方法およびフッ素樹脂膜付基材の製造方法
CN115003749B (zh) 分散液
WO2022019252A1 (ja) 粉体組成物及び複合粒子
WO2020241607A1 (ja) 液状組成物
JP2022061412A (ja) 液状組成物の製造方法及び積層体の製造方法
JP2021059616A (ja) 非水系分散液及び非水系分散液の製造方法
TW202208543A (zh) 分散液、複合粒子及複合粒子之製造方法
WO2021193505A1 (ja) 複合粒子、複合粒子の製造方法、液状組成物、積層体の製造方法及びフィルムの製造方法
WO2022050253A1 (ja) パウダー分散液および複合体の製造方法
WO2024053553A1 (ja) 水性分散液、及び水性分散液を用いた積層体の製造方法
WO2022259992A1 (ja) シート
WO2023224050A1 (ja) 水系分散液の製造方法及び水系分散液
JP2023172879A (ja) 積層体の製造方法
WO2023017811A1 (ja) 水系分散液および積層体の製造方法
WO2024053554A1 (ja) 液状組成物、及び液状組成物を用いた積層体の製造方法
WO2023238505A1 (ja) 分散液
WO2023100739A1 (ja) 液状組成物、積層体及びそれらの製造方法
JP2023182981A (ja) 長尺積層基材の製造方法
WO2023002998A1 (ja) 複合シート及び複合シートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817774

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022528791

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21817774

Country of ref document: EP

Kind code of ref document: A1