WO2021245918A1 - アライメント調整装置、及び電子デバイスの製造方法 - Google Patents

アライメント調整装置、及び電子デバイスの製造方法 Download PDF

Info

Publication number
WO2021245918A1
WO2021245918A1 PCT/JP2020/022347 JP2020022347W WO2021245918A1 WO 2021245918 A1 WO2021245918 A1 WO 2021245918A1 JP 2020022347 W JP2020022347 W JP 2020022347W WO 2021245918 A1 WO2021245918 A1 WO 2021245918A1
Authority
WO
WIPO (PCT)
Prior art keywords
holder
adjusting device
support member
expansion
alignment
Prior art date
Application number
PCT/JP2020/022347
Other languages
English (en)
French (fr)
Inventor
仁 大賀
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to CN202080100985.9A priority Critical patent/CN115606060A/zh
Priority to PCT/JP2020/022347 priority patent/WO2021245918A1/ja
Priority to JP2022528378A priority patent/JPWO2021245918A1/ja
Publication of WO2021245918A1 publication Critical patent/WO2021245918A1/ja
Priority to US18/053,452 priority patent/US20230066377A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/1821Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors for rotating or oscillating mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0643Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising mirrors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/10Devices involving relative movement between laser beam and workpiece using a fixed support, i.e. involving moving the laser beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • B23K26/043Automatically aligning the laser beam along the beam path, i.e. alignment of laser beam axis relative to laser beam apparatus

Definitions

  • This disclosure relates to an alignment adjusting device and a method for manufacturing an electronic device.
  • a KrF excimer laser apparatus that outputs a laser beam having a wavelength of about 248 nm and an ArF excimer laser apparatus that outputs a laser beam having a wavelength of about 193 nm are used.
  • the spectral line width of the naturally oscillated light of the KrF excimer laser device and the ArF excimer laser device is as wide as 350 to 400 pm. Therefore, if the projection lens is made of a material that transmits ultraviolet rays such as KrF and ArF laser light, chromatic aberration may occur. As a result, the resolving power may decrease. Therefore, it is necessary to narrow the spectral line width of the laser beam output from the gas laser apparatus to a extent that chromatic aberration can be ignored.
  • the laser resonator of the gas laser apparatus is provided with a narrow band module (Line Narrow Module: LNM) including a narrow band element (etalon, grating, etc.) in order to narrow the spectral line width.
  • LNM Line Narrow Module
  • the gas laser device in which the spectral line width is narrowed is referred to as a narrow band gas laser device.
  • the alignment adjusting device includes a first holder of a first material for supporting an optical element and a first expansion / contraction part of a second material different from the first material.
  • a first adjusting device that rotates the first holder and the optical element around the first axis by bringing the telescopic portion of the first holder into contact with the first holder and adjusting the length of the first telescopic portion.
  • a first support member of a second material that supports the first adjustment device, and the first adjustment device includes a first end portion of the first support member and a first shaft. The position where the first telescopic portion and the first holder come into contact with each other can be adjusted on the plane of 1.
  • An alignment adjusting device includes a first holder of a first material that supports an optical element and a first stretchable portion of a second material that is different from the first material.
  • a first adjusting device that rotates the first holder and the optical element around the first axis by bringing the first telescopic portion into contact with the first holder and adjusting the length of the first telescopic portion.
  • the first support member of the second material that supports the first adjusting device, the first holder is supported by the first shaft, and the first support member is the first of the first support member.
  • the length of the second stretchable portion includes a second holder of the first material supported at the end and a second stretchable portion of the second material, and the second stretchable portion is brought into contact with the second holder.
  • the length By adjusting the length, it supports a second adjusting device that rotates the second holder, the first holder, and the optical element around the second axis that intersects the first axis, and the second adjusting device.
  • the first end is located on a fifth plane comprising a second support member of the second material and including the first shaft and the second shaft.
  • a method of manufacturing an electronic device includes a first holder of a first material that supports an optical element and a first stretchable portion of a second material that is different from the first material.
  • a first adjusting device that rotates the first holder and the optical element around the first axis by bringing the first telescopic portion into contact with the first holder and adjusting the length of the first telescopic portion.
  • a first support member of a second material that supports the first adjustment device, and the first adjustment device has a first end portion and a first shaft of the first support member.
  • a pulsed laser beam is generated by a laser device including an alignment adjusting device configured to be able to adjust the position where the first telescopic portion and the first holder come into contact with each other on the first plane including the pulsed laser beam, and the pulsed laser beam is exposed.
  • a laser device including an alignment adjusting device configured to be able to adjust the position where the first telescopic portion and the first holder come into contact with each other on the first plane including the pulsed laser beam, and the pulsed laser beam is exposed.
  • FIG. 1 schematically shows the configuration of a laser device according to a comparative example.
  • FIG. 2A schematically shows an alignment adjusting device according to a comparative example.
  • FIG. 2B is a cross-sectional view taken along the line IIB-IIB of FIG. 2A.
  • FIG. 2C is a cross-sectional view taken along the line IIC-IIC of FIG. 2A.
  • FIG. 2D is a cross-sectional view taken along the IID-IID line of FIG. 2A.
  • FIG. 2E is a cross-sectional view showing a portion corresponding to FIG. 2B when the second holder is rotated in the comparative example.
  • FIG. 1 schematically shows the configuration of a laser device according to a comparative example.
  • FIG. 2A schematically shows an alignment adjusting device according to a comparative example.
  • FIG. 2B is a cross-sectional view taken along the line IIB-IIB of FIG. 2A.
  • FIG. 2C is a
  • FIG. 2F is a cross-sectional view showing a portion corresponding to FIG. 2D when the first holder is rotated in the comparative example.
  • FIG. 3A schematically shows an alignment adjusting device according to the first embodiment.
  • FIG. 3B is a cross-sectional view taken along the line IIIB-IIIB of FIG. 3A.
  • FIG. 3C is a cross-sectional view taken along the line IIIC-IIIC of FIG. 3A.
  • FIG. 3D is a cross-sectional view taken along the line IIID-IIID of FIG. 3A.
  • FIG. 4A schematically shows an alignment adjusting device according to a second embodiment.
  • FIG. 4B is a cross-sectional view taken along the line IVB-IVB of FIG. 4A.
  • FIG. 4C is a cross-sectional view taken along the line IVC-IVC of FIG. 4A.
  • FIG. 4D is a cross-sectional view taken along the line IVD-IVD of FIG. 4A.
  • FIG. 4E is a diagram showing the positional relationship between the second telescopic portion and the second axis in the adjusted state in the first embodiment.
  • FIG. 4F is a diagram showing the positional relationship between the second telescopic portion and the second axis in the adjusted state in the second embodiment.
  • FIG. 5 schematically shows the configuration of an exposure apparatus connected to a laser apparatus.
  • Alignment adjustment device including a support member made of the same material as the telescopic part 2.1 Configuration and operation 2.1.1 Second holder 22a and first support member 21a 2.1.2 Third holder 33a and second support member 32a 2.2 Other configuration examples 2.3 Action 3. Alignment adjustment device in which the second plane P2 is perpendicular to the first plane P1 3.1 Configuration and operation 3.1.1 Second holder 22b and first support member 21b 3.1.2 Third holder 33b and second support member 32b 3.2 Other configuration examples 3.3 Action 4. others
  • FIG. 1 schematically shows the configuration of the laser device 1 according to the comparative example.
  • the laser device 1 according to the comparative example includes a master oscillator MO, a first beam steering unit 76, an amplifier PO, a second beam steering unit 86, and an optical pulse stretcher 89.
  • the master oscillator MO includes a laser chamber 70, a narrow band module 74, and an output coupling mirror 75.
  • the laser chamber 70 is arranged in the optical path of the laser resonator composed of the narrow band module 74 and the output coupling mirror 75.
  • the laser chamber 70 is provided with two windows 701 and 702.
  • the laser chamber 70 houses the discharge electrodes 711 and 712.
  • the discharge electrodes 711 and 712 are connected to a pulse power supply (not shown).
  • the laser chamber 70 accommodates a laser gas as a laser medium.
  • the laser gas includes, for example, argon gas, fluorine gas, and neon gas.
  • the laser gas includes, for example, krypton gas, fluorine gas, and neon gas.
  • the narrow band module 74 includes a wavelength selection element such as a prism 741 and a grating 742.
  • the output coupling mirror 75 is composed of a partial reflection mirror.
  • the first beam steering unit 76 includes high reflection mirrors 761 and 762.
  • the high reflection mirrors 761 and 762 are supported by the alignment adjusters 766 and 767, respectively.
  • the amplifier PO includes a laser chamber 80, a rear mirror 84, and an output coupling mirror 85.
  • the laser chamber 80, the output coupling mirror 85, and the windows 801 and 802 associated with the laser chamber 80, the discharge electrodes 811 and 812, are the same as the corresponding components in the master oscillator MO.
  • the rear mirror 84 is arranged in the optical path of the pulsed laser beam that has passed through the first beam steering unit 76.
  • the rear mirror 84 is composed of a partially reflective mirror.
  • a laser cavity is configured by the rear mirror 84 and the output coupling mirror 85.
  • the second beam steering unit 86 includes high reflection mirrors 861 and 862.
  • the high reflection mirrors 861 and 862 are supported by the alignment adjusters 866 and 867, respectively.
  • the optical pulse stretcher 89 is arranged in the optical path of the pulsed laser beam that has passed through the second beam steering unit 86.
  • the optical pulse stretcher 89 includes a beam splitter 895 and first to fourth concave mirrors 891 to 894.
  • the first to fourth concave mirrors 891 to 894 are supported by the alignment adjusting devices 896 to 899, respectively.
  • a pulse power supply (not shown) generates a pulsed high voltage, and this high voltage is applied between the discharge electrodes 711 and 712. do.
  • a discharge occurs between the discharge electrodes 711 and 712. The energy of this discharge excites the laser gas in the laser chamber 70 and shifts to a high energy level.
  • the excited laser gas subsequently shifts to a low energy level, it emits light having a wavelength corresponding to the energy level difference.
  • the light generated in the laser chamber 70 is emitted to the outside of the laser chamber 70 through the windows 701 and 702.
  • the light emitted from the window 701 has a beam width expanded by the prism 741 and is incident on the grating 742.
  • the light incident on the grating 742 from the prism 741 is reflected by the plurality of grooves of the grating 742 and diffracted in a direction corresponding to the wavelength of the light.
  • the grating 742 is arranged in a retrow so that the incident angle of the light incident on the grating 742 from the prism 741 and the diffraction angle of the diffracted light having a desired wavelength match. As a result, light near the desired wavelength is returned to the laser chamber 70 via the prism 741.
  • the output coupling mirror 75 transmits a part of the light emitted from the window 702 and outputs the light, reflects the other part, and returns the light to the laser chamber 70.
  • the light emitted from the laser chamber 70 reciprocates between the narrow band module 74 and the output coupling mirror 75.
  • This light is amplified each time it passes through the discharge space between the discharge electrodes 711 and 712. Further, the light is narrowed each time it is folded back by the narrow band module 74.
  • the light oscillated by the laser in this way and the band is narrowed is output as pulse laser light from the output coupling mirror 75.
  • the pulsed laser light output from the output coupling mirror 75 is incident on the laser chamber 80 via the first beam steering unit 76 and the rear mirror 84.
  • a pulsed power supply (not shown) produces a pulsed high voltage, which is applied between the discharge electrodes 811 and 812.
  • a discharge occurs between the discharge electrodes 811 and 812. The energy of this discharge amplifies the pulsed laser light incident on the laser chamber 80.
  • the light amplified in the laser chamber 80 reciprocates between the rear mirror 84 and the output coupling mirror 85. This light is amplified each time it passes through the discharge space between the discharge electrodes 811 and 812. The light amplified in this way is output as pulsed laser light from the output coupling mirror 85.
  • the pulsed laser beam output from the output coupling mirror 85 is directed to the right in FIG. 1 to the beam splitter 895 of the optical pulse stretcher 89 via the second beam steering unit 86.
  • the beam splitter 895 transmits a part of the pulsed laser light incident on the right side in FIG. 1 and emits it as the pulsed laser light B1, and reflects the other part downward in FIG. 1.
  • the reflected pulse laser light is sequentially reflected by the first to fourth concave mirrors 891 to 894, and is incident on the beam splitter 895 downward in FIG. 1.
  • the beam cross section of the pulse laser beam incident from the second beam steering unit 86 in the beam splitter 895 is imaged on the beam splitter 895 with a size of 1: 1 by the first to fourth concave mirrors 891 to 894.
  • the beam splitter 895 reflects a part of the pulse laser light incident downward in FIG. 1 from the fourth concave mirror 894 to the right in FIG. 1 and emits it as the pulse laser light B2.
  • the pulse laser beam B1 and the pulse laser beam B2 are substantially coaxial with each other.
  • FIG. 2A schematically shows an alignment adjusting device according to a comparative example.
  • the horizontal axis is the H axis
  • the vertical axis is the V axis
  • the axis perpendicular to the paper surface is the Z axis.
  • the H-axis, V-axis, and Z-axis are orthogonal to each other.
  • 2B is a sectional view taken along line IIB-IIB of FIG. 2A
  • FIG. 2C is a sectional view taken along line IIC-IIC of FIG. 2A
  • FIG. 2D is a sectional view taken along line IID-IID of FIG. 2A. ..
  • the alignment adjusting device is a device that supports the optical element and adjusts the posture of the optical element.
  • the mirror 10 is used as an example of the optical element.
  • Examples of the mirror 10 include high reflection mirrors 761, 762, 861, 862, and first to fourth concave mirrors 891 to 894 described with reference to FIG. 1.
  • the alignment adjusting device includes a first holder 11, a second holder 22, a third holder 33, a first adjusting device 41, and a second adjusting device 52.
  • the first holder 11 surrounds the mirror 10 and contacts the mirror 10 to support the mirror 10. However, the first holder 11 does not cover the reflective surface 101, which is the surface on the + Z side of the mirror 10.
  • the second holder 22 surrounds the first holder 11 and supports the first holder 11 at a distance from the first holder 11.
  • the second holder 22 supports the first holder 11 by pins 16 and 17, and the first holder 11 is rotatable around the first axis AX1 defined by pins 16 and 17. ing.
  • the first axis AX1 is a straight line connecting the centers of pins 16 and 17, respectively.
  • the second holder 22 does not cover the reflective surface 101 of the mirror 10. Further, the second holder 22 has an opening 25.
  • the reason why the second holder 22 has the opening 25 is as follows. Most of the light incident on the reflection surface 101 of the mirror 10 is reflected by the mirror 10, but some of the light is transmitted through the mirror 10. When the light transmitted through the mirror 10 is incident on the second holder 22, the temperature of the second holder 22 rises, and the second holder 22 thermally expands, so that the posture of the mirror 10 may change unintentionally. be. By providing the opening 25 so that the light transmitted through the mirror 10 can pass through, the thermal expansion of the second holder 22 can be suppressed.
  • the heat of the mirror 10 can be dissipated to the back surface side opposite to the reflection surface 101 of the mirror 10 through the opening 25.
  • the second holder 22 but also the first holder 11 may be provided with an opening (not shown) smaller than the diameter of the mirror 10 at a position on the back surface side of the mirror 10.
  • the third holder 33 surrounds the second holder 22 and supports the second holder 22 at a distance from the second holder 22.
  • the third holder 33 supports the second holder 22 by pins 26 and 27, and the second holder 22 is rotatable around the second axis AX2 defined by pins 26 and 27. ing.
  • the second axis AX2 is a straight line connecting the centers of pins 26 and 27, and the second axis AX2 is parallel to the H axis.
  • the first axis AX1 and the second axis AX2 are orthogonal to each other at a position substantially at the center of the reflection surface 101 of the mirror 10.
  • the plane including the first axis AX1 and the second axis AX2 is referred to as a fifth plane P5.
  • the third holder 33 does not cover the reflective surface 101 of the mirror 10. Further, the third holder 33 has an opening 35. The reason why the third holder 33 has the opening 35 is the same as described with respect to the opening 25.
  • the first, second, and third holders 11, 22, and 33 are made of, for example, aluminum. Aluminum corresponds to the first material in the present disclosure.
  • the first adjusting device 41 is supported by the second holder 22.
  • the first adjusting device 41 includes a driving unit 410 and a first expanding / contracting unit 411.
  • the drive unit 410 is fixed to the surface 228 on the ⁇ Z side of the second holder 22.
  • the first telescopic portion 411 is a rod-shaped member and penetrates the second holder 22.
  • the end 419 of the first telescopic portion 411 is located outside the drive unit 410, and the opposite end of the first telescopic portion 411 (not shown) is housed in the drive unit 410.
  • the length of the portion of the first telescopic portion 411 located outside the drive portion 410 is expanded and contracted.
  • the expansion / contraction of the length of the portion of the first expansion / contraction portion 411 located outside the drive portion 410 may be referred to as “the first expansion / contraction portion 411 expands / contracts”.
  • Expansion and contraction includes expansion and contraction.
  • the X direction in which the first expansion / contraction portion 411 extends is perpendicular to the fifth plane P5.
  • the end portion 419 of the first expansion / contraction portion 411 is in contact with the first holder 11 at a position on the + H side of the first shaft AX1.
  • the spring 45 is arranged in an extended state in the vicinity of the first expansion / contraction portion 411.
  • a spring (not shown) may be arranged in a compressed state between the first holder 11 and the second holder 22 at a position on the ⁇ H side of the first shaft AX1.
  • a spring (not shown) may be arranged on the + Z side surface of the first holder 11.
  • the second adjusting device 52 is supported by the third holder 33.
  • the second adjusting device 52 includes a driving unit 520 and a second telescopic unit 522.
  • the drive unit 520 is fixed to the surface 338 on the ⁇ Z side of the third holder 33.
  • the second telescopic portion 522 is a rod-shaped member and penetrates the third holder 33.
  • the end portion 529 of the second telescopic portion 522 is located outside the drive portion 520, and the opposite end portion of the second telescopic portion 522 (not shown) is housed in the drive portion 520.
  • the length of the portion of the second expansion / contraction portion 522 located outside the drive unit 520 expands and contracts.
  • the expansion / contraction of the length of the portion of the second expansion / contraction portion 522 located outside the drive portion 520 may be referred to as “the second expansion / contraction portion 522 expands / contracts”.
  • the direction in which the second expansion / contraction portion 522 extends is the + Z direction.
  • the end portion 529 of the second telescopic portion 522 is in contact with the second holder 22 at a position on the + V side of the second shaft AX2.
  • the end portion 529 of the second telescopic portion 522 is located on the fifth plane P5.
  • the spring 55 is arranged in an extended state in the vicinity of the second expansion / contraction portion 522.
  • a spring (not shown) may be arranged in a compressed state between the second holder 22 and the third holder 33 at a position on the ⁇ V side of the second shaft AX2.
  • a spring (not shown) may be arranged on the + Z side surface of the second holder 22.
  • Each of the first adjusting device 41 and the second adjusting device 52 is composed of, for example, a micrometer.
  • the first telescopic portion 411 and the second telescopic portion 522 are made of, for example, stainless steel (SUS).
  • Stainless steel corresponds to the second material in the present disclosure.
  • the second material, such as stainless steel has a smaller coefficient of thermal expansion than the first material, such as aluminum.
  • the first material, such as aluminum has a lower specific density than the second material, such as stainless steel.
  • FIG. 2E is a cross-sectional view showing a portion corresponding to FIG. 2B when the second holder 22 is rotated in the comparative example.
  • FIG. 2F is a cross-sectional view showing a portion corresponding to FIG. 2D when the first holder 11 is rotated in the comparative example.
  • 1.4.1 Rotation of the first holder 11 When the first expansion / contraction portion 411 is extended by the driving unit 410, a part of the first holder 11 is pushed by the first expansion / contraction portion 411, so that the first expansion / contraction portion 411 is first. The holder 11 rotates about the first axis AX1 with respect to the second holder 22.
  • the first holder 11 and the mirror 10 are attached to the first axis AX1. Rotate around.
  • the state in which the end portion 419 of the first expansion / contraction portion 411 is located on the fifth plane P5 may be referred to as an “unadjusted state” in the following description.
  • the state in which the end portion 419 of the first expansion / contraction portion 411 is located other than the fifth plane P5 due to the expansion / contraction of the first expansion / contraction portion 411 is described as “adjustment state” in the following description. ".
  • the state in which the fifth plane P5 is perpendicular to the + Z direction in which the second expansion / contraction portion 522 extends is referred to as an “unadjusted state” in the following description.
  • the first axis AX1 when the second expansion / contraction portion 522 is in the unadjusted state is parallel to the V axis.
  • the state in which the fifth plane P5 is tilted with respect to the + Z direction in which the second expansion / contraction portion 522 extends due to the expansion / contraction of the second expansion / contraction portion 522 is "adjusted" in the following description. Sometimes called "state".
  • the first holder 11 rotates around the first axis AX1 with respect to the second holder 22, and the second holder 22 is second with respect to the third holder 33. It can rotate around the axis AX2 of.
  • the mirror 10 can be rotated around two axes orthogonal to each other to adjust its posture, and the rotation angle around those axes can be adjusted independently.
  • the first telescopic portion 411 and the second telescopic portion 522 not only come into contact with the first holder 11 and the second holder 22, respectively, but are also hooked on the first holder 11 and the second holder 22, respectively. It may be configured in. In that case, when the first expansion / contraction portion 411 and the second expansion / contraction portion 522 contract, the first holder 11 and the second holder 22 may rotate by being pulled by each of the springs 45 and 55. May not be provided.
  • the distance in the Z direction from the ⁇ Z side surface 228 of the second holder 22 to which the drive unit 410 is fixed to the fifth plane P5 depends on the coefficient of thermal expansion and the temperature of the second holder 22.
  • the Z-direction distance from the surface 228 to the end 419 of the first stretch 411 depends on the coefficient of thermal expansion and temperature of the first stretch 411.
  • the second holder 22 and the third holder 33 are made of the same second material as the first expansion / contraction portion 411 and the second expansion / contraction portion 522, among these members. Since the coefficient of thermal expansion, thermal conductivity, and specific heat are the same, the above problem is alleviated. However, when the specific gravity of the second material is large, the second holder 22 or the like becomes heavy, which may make high-speed attitude control difficult.
  • the first support member 21a or 21b that supports the first adjuster 41 is placed in the second holder 22a or 22b and with the first support member 21a or 21b.
  • the first expansion / contraction portion 411 is made of the same material.
  • a second support member 32a or 32b that supports the second adjusting device 52 is arranged in the third holder 33a or 33b, and the second support member 32a or 32b and the second telescopic portion 522 are made of the same material. It is composed of.
  • FIG. 3A schematically shows an alignment adjusting device according to the first embodiment.
  • 3B is a sectional view taken along line IIIB-IIIB of FIG. 3A
  • FIG. 3C is a sectional view taken along line IIIC-IIIC of FIG. 3A
  • FIG. 3D is a sectional view taken along line IIID-IIID of FIG. 3A. ..
  • the alignment adjusting device according to the first embodiment includes a second holder 22a and a first support member 21a instead of the second holder 22 in the comparative example.
  • the shape of the combination of the second holder 22a and the first support member 21a substantially corresponds to the shape of the second holder 22 in the comparative example.
  • the second holder 22a supports the first holder 11 on the first shaft AX1 and also supports the first support member 21a on the + Z side first end portion 211 of the first support member 21a. ing.
  • the second holder 22a is made of a first material such as aluminum.
  • the first support member 21a is fixed to the second holder 22a by a bolt (not shown) penetrating the first end 211.
  • the first support member 21a supports the first adjusting device 41.
  • the drive unit 410 included in the first adjusting device 41 is fixed to the surface 218 on the ⁇ Z side of the first support member 21a.
  • the first end 211 of the first support member 21a is located on the fifth plane P5.
  • the first plane P1 including the first end portion 211 and the first axis AX1 coincides with the fifth plane P5.
  • the first plane P1 is perpendicular to the X direction in which the first expansion / contraction portion 411 extends.
  • the end portion 419 of the first expansion / contraction portion 411 in the unadjusted state is located not only on the fifth plane P5 but also on the first plane P1. Therefore, the distance in the Z direction from the ⁇ Z side surface 218 of the first support member 21a to which the drive unit 410 is fixed to the end 419 of the first expansion / contraction portion 411 in the unadjusted state, and the distance from the surface 218 to the first surface 218.
  • the distance in the Z direction to the first end portion 211 of the support member 21a of the above is substantially equal.
  • the first support member 21a is made of the same second material as the first expansion / contraction portion 411, and is made of, for example, stainless steel. According to this, even if the temperature of the first support member 21a and the first expansion / contraction portion 411 changes, the length of the first support member 21a in the Z direction and the length of the first expansion / contraction portion 411 in the Z direction Changes by about the same amount. Therefore, the positional relationship between the end portion 419 of the first expansion / contraction portion 411 and the fifth plane P5 in the unadjusted state can be stabilized.
  • the position of the end portion 419 where the first expansion / contraction portion 411 and the first holder 11 come into contact with each other in the unadjusted state coincides with the first plane P1 has been described, but the present disclosure is limited to this. Not done. It suffices if the position of the end portion 419 where the first expansion / contraction portion 411 and the first holder 11 come into contact can be adjusted to the first plane P1. Adjustable means that a part of the first plane P1 is included in the movable range of the position of the end portion 419 where the first telescopic portion 411 and the first holder 11 come into contact with each other. ..
  • the alignment adjusting device according to the first embodiment includes a third holder 33a and a second support member 32a instead of the third holder 33 in the comparative example.
  • the shape of the combination of the third holder 33a and the second support member 32a substantially corresponds to the shape of the third holder 33 in the comparative example.
  • the third holder 33a supports the second holder 22a on the second shaft AX2, and also supports the second support member 32a on the + Z side third end portion 323 of the second support member 32a (FIG. 3C). See).
  • the third holder 33a is made of a first material such as aluminum.
  • the second support member 32a is fixed to the third holder 33a by a bolt 326 penetrating the third end 323.
  • the second support member 32a supports the second adjusting device 52.
  • the drive unit 520 included in the second adjusting device 52 is fixed to the surface 328 on the ⁇ Z side of the second support member 32a.
  • the third plane P3 including the third end portion 323 of the second support member 32a and the second axis AX2 is perpendicular to the + Z direction in which the second telescopic portion 522 extends.
  • the third end 323 is located on the fifth plane P5 in the unadjusted state. That is, the third plane P3 coincides with the fifth plane P5 in the unadjusted state.
  • the end portion 529 of the second telescopic portion 522 is located on the fifth plane P5. That is, the second expansion / contraction portion 522 comes into contact with the second holder 22a on the fifth plane P5. Further, the position where the end portion 529 of the second expansion / contraction portion 522 and the second holder 22a come into contact with each other in the unadjusted state coincides with the third plane P3. Therefore, the distance in the Z direction from the ⁇ Z side surface 328 of the second support member 32a to which the drive unit 520 is fixed to the end portion 529 of the second expansion / contraction portion 522 in the unadjusted state, and the distance from the surface 328 to the second surface 328. The distance in the Z direction to the third end 323 of the support member 32a is almost equal.
  • the second support member 32a is made of the same second material as the second expansion / contraction portion 522, and is made of, for example, stainless steel. According to this, even if the temperature of the second expansion / contraction portion 522 and the second support member 32a changes, the length of the second expansion / contraction portion 522 in the Z direction and the length of the second support member 32a in the Z direction Changes by about the same amount. Therefore, the inclination of the fifth plane P5 with respect to the + Z direction in which the second expansion / contraction portion 522 extends can be stabilized.
  • the posture of the mirror 10 is adjusted by two axes orthogonal to each other, but the present disclosure is not limited to this.
  • the rotating shaft may be only the first shaft AX1, and the third holder 33a, the second support member 32a, and the second adjusting device 52 may not be provided.
  • the alignment adjusting device includes a first holder 11, a first adjusting device 41, and a first support member 21a.
  • the first holder 11 is made of a first material such as aluminum and supports the mirror 10.
  • the first adjusting device 41 includes a first telescopic portion 411 made of a second material such as stainless steel different from the first material.
  • the first adjusting device 41 brings the first holder 11 and the mirror 10 into the first position by bringing the first telescopic portion 411 into contact with the first holder 11 and adjusting the length of the first telescopic portion 411. Rotate around the axis AX1 of.
  • the first support member 21a is made of a second material and supports the first adjusting device 41.
  • the first adjusting device 41 has a first telescopic portion 411 and a first holder 11 on a first plane P1 including a first end portion 211 and a first shaft AX1 of the first support member 21a. Is configured to be adjustable in the contact position.
  • the distance in the Z direction from the surface 218 on the ⁇ Z side of the first support member 21a to the first end portion 211, and the distance from the surface 218 to the first expansion / contraction portion 411 and the first holder 11 can be adjusted to be equal. Since the first support member 21a and the first expansion / contraction portion 411 are both made of the second material and have the same coefficient of thermal expansion, the temperature of the first support member 21a and the first expansion / contraction portion 411 is high. Even if it changes, the length of the first support member 21a in the Z direction and the length of the first expansion / contraction portion 411 in the Z direction change by almost the same amount.
  • the positional relationship between the end portion 419 of the first expansion / contraction portion 411 and the fifth plane P5 changes separately from the adjustment by the drive portion 410. Further, since the first support member 21a and the first expansion / contraction portion 411 have the same thermal conductivity and specific heat, the temperature difference between the first support member 21a and the first expansion / contraction portion 411 is suppressed. Therefore, the change in the positional relationship between the end portion 419 of the first expansion / contraction portion 411 and the fifth plane P5 is suppressed.
  • the alignment adjusting device is made of a first material that supports the first holder 11 on the first shaft AX1 and the first support member 21a on the first end portion 211.
  • a second holder 22a is further included. According to this, the first holder 11 is supported by the first shaft AX1, and the first support member 21a that supports the first adjusting device 41 is supported by the first end portion 211. , Made by a common second holder 22a. Therefore, the posture of the mirror 10 can be more stabilized.
  • the second material has a smaller coefficient of thermal expansion than the first material.
  • the first expansion / contraction portion 411 and the first support member 21a are made of a material having a small coefficient of thermal expansion, and the posture of the first holder 11 can be more stabilized.
  • the first material has a lower specific density than the second material.
  • the first holder 11 or both the first holder 11 and the second holder 22a are made of a material having a small specific gravity, which may enable high-speed attitude control.
  • the alignment adjusting device further includes a second adjusting device 52 and a second support member 32a.
  • the second adjusting device 52 includes a second expansion / contraction portion 522 made of a second material, and brings the second expansion / contraction portion 522 into contact with the second holder 22a to adjust the length of the second expansion / contraction portion 522.
  • This causes the second holder 22a, the first holder 11 and the mirror 10 to rotate around a second axis AX2 that is different from the first axis AX1.
  • the second support member 32a is made of a second material and supports the second adjusting device 52. According to this, the posture of the mirror 10 can be adjusted not only on the first axis AX1 but also on the second axis AX2.
  • the second adjusting device 52 has a second expansion and contraction on a third plane P3 including a third end portion 323 of the second support member 32a and a second axis AX2.
  • the position where the portion 522 and the second holder 22a come into contact with each other can be adjusted.
  • the distance in the Z direction from the surface 328 on the ⁇ Z side of the second support member 32a to the third end 323, and the distance from the surface 328 to the second telescopic portion 522 and the second holder 22a The distance in the Z direction to the contacting end 529 can be adjusted to be equal.
  • the second support member 32a and the second expansion / contraction portion 522 are both made of the second material and have the same coefficient of thermal expansion, the temperature of the second support member 32a and the second expansion / contraction portion 522 is high. Even if it changes, the length of the second support member 32a in the Z direction and the length of the second telescopic portion 522 in the Z direction change by almost the same amount. Therefore, it is suppressed that the inclination of the fifth plane P5 with respect to the + Z direction in which the second expansion / contraction portion 522 extends is changed separately from the adjustment by the drive portion 520.
  • the second support member 32a and the second expansion / contraction portion 522 have the same thermal conductivity and specific heat, the temperature difference between the second support member 32a and the second expansion / contraction portion 522 is suppressed. Therefore, the change in the inclination of the fifth plane P5 with respect to the + Z direction in which the second expansion / contraction portion 522 extends is suppressed.
  • the alignment adjusting device is made of a first material that supports the second holder 22a on the second shaft AX2 and the second support member 32a on the third end portion 323.
  • a third holder 33a is further included.
  • the second holder 22a is supported by the second shaft AX2, and the second support member 32a that supports the second adjusting device 52 is supported by the third end portion 323.
  • the first axis AX1 and the second axis AX2 intersect with each other, and the first is formed on a fifth plane P5 including the first axis AX1 and the second axis AX2.
  • the first end 211 of the support member 21a of the above is located. According to this, since the first support member 21a is arranged with reference to the fifth plane P5 defined by the first and second axes AX1 and AX2, the posture of the mirror 10 can be stabilized.
  • the first plane P1 including the first end portion 211 and the first axis AX1 is perpendicular to the X direction in which the first telescopic portion 411 extends. According to this, when the end portion 419 in which the first expansion / contraction portion 411 and the first holder 11 come into contact with each other is located on the first plane P1, the force for rotating the first holder 11 is efficiently applied. Can be made to.
  • the second telescopic portion 522 comes into contact with the second holder 22a on the fifth plane P5. According to this, since the posture of the second holder 22a is adjusted with reference to the fifth plane P5 defined by the first and second axes AX1 and AX2, the posture of the mirror 10 can be stabilized.
  • the third plane P3 including the third end portion 323 of the second support member 32a and the second axis AX2 is in the + Z direction in which the second expansion / contraction portion 522 extends. It is vertical. According to this, when the end portion 529 where the second telescopic portion 522 and the second holder 22a come into contact with each other is located on the third plane P3, the force for rotating the second holder 22a is efficiently applied. Can be made to. In other respects, the first embodiment is the same as the comparative example.
  • FIG. 4A schematically shows the alignment adjusting device according to the second embodiment.
  • 4B is a cross-sectional view taken along the IVB-IVB line of FIG. 4A
  • FIG. 4C is a cross-sectional view taken along the IVC-IVC line of FIG. 4A
  • FIG. 4D is a cross-sectional view taken along the IVD-IVD line of FIG. 4A. ..
  • the alignment adjusting device includes a second holder 22b and a first support member 21b in place of the second holder 22a and the first support member 21a in the first embodiment.
  • the shape in which the second holder 22b and the first support member 21b are combined substantially corresponds to the shape in which the second holder 22a and the first support member 21a are combined in the first embodiment.
  • the second holder 22b supports the first holder 11 on the first shaft AX1, and also supports the first support member 21b with the first end portion 211 and the first end portion 211 on the + Z side of the first support member 21b. It is supported by the second end portion 212 on the ⁇ H side of the support member 21b of the above.
  • the first support member 21b is fixed to the second holder 22b by a bolt (not shown) penetrating the first end 211 and a bolt (not shown) penetrating the second end 212.
  • the second plane P2 including the second end 212 and the first axis AX1 becomes a first plane P1 containing the first end 211 and the first axis AX1 of the first support member 21b. It is vertical.
  • the second plane P2 is also perpendicular to the fifth plane P5 including the first axis AX1 and the second axis AX2.
  • the alignment adjusting device according to the second embodiment includes a third holder 33b and a second support member 32b instead of the third holder 33a and the second support member 32a in the first embodiment.
  • the shape in which the third holder 33b and the second support member 32b are combined substantially corresponds to the shape in which the third holder 33a and the second support member 32a are combined in the first embodiment.
  • the third holder 33b supports the second holder 22b on the second shaft AX2, and also supports the second support member 32b with the third end portion 323 and the second end portion 323 on the + Z side of the second support member 32b. It is supported by the fourth end portion 324 on the ⁇ V side of the support member 32b of the above.
  • the second support member 32b is fixed to the third holder 33b by a bolt 326 penetrating the third end 323 and a bolt 327 penetrating the fourth end 324.
  • the fourth plane P4 including the fourth end 324 and the second axis AX2 becomes a third plane P3 containing the third end 323 and the second axis AX2 of the second support member 32b. It is vertical.
  • the posture of the mirror 10 is adjusted by two axes orthogonal to each other, but the present disclosure is not limited to this.
  • the rotating shaft may be only the first shaft AX1, and the third holder 33b, the second support member 32b, and the second adjusting device 52 may not be provided.
  • FIG. 4E is a diagram showing the positional relationship between the second telescopic portion 522 and the second axis AX2 in the adjusted state in the first embodiment.
  • the inclination of the mirror 10 in the adjusted state in which the end portion 529 deviates from the third plane P3 by a distance Z1 is set to ⁇ 1 with respect to the unadjusted state in which the end portion 529 of the second telescopic portion 522 is located in the third plane P3.
  • L1 be the distance in the V direction from the second axis AX2 to the second expansion / contraction portion 522.
  • the temperature of the alignment adjusting device including the third holder 33a, the second support member 32a, and the second telescopic portion 522 has risen while the adjusted state of the second telescopic portion 522 by the driving unit 520 remains unchanged.
  • the distance L2 in the V direction from the second axis AX2 to the second expansion / contraction portion 522 is a value that increases with respect to the distance L1 according to the coefficient of thermal expansion ⁇ h of the first material constituting the third holder 33a.
  • the distance Z2 between the end portion 529 and the third plane P3 increases with respect to the distance Z1 according to the coefficient of thermal expansion ⁇ m of the second material constituting the second support member 32a and the second expansion / contraction portion 522. It becomes the value.
  • the inclination of the mirror 10 is ⁇ 2, which is slightly smaller than ⁇ 1.
  • the end portion 529 is located on the third plane P3, and both ⁇ 1 and ⁇ 2 are 0, so that the temperature of the alignment adjusting device changes in the first embodiment.
  • the inclination of the mirror 10 hardly changes.
  • the inclination of the mirror 10 may change.
  • FIG. 4F is a diagram showing the positional relationship between the second telescopic portion 522 and the second axis AX2 in the adjusted state in the second embodiment.
  • the distance L3 in the V direction from the second axis AX2 to the second telescopic portion 522 is the coefficient of thermal expansion of the second material constituting the second support member 32b with respect to the distance L1. The value increases according to ⁇ m.
  • the distance Z2 between the end portion 529 and the third plane P3 increases with respect to the distance Z1 according to the coefficient of thermal expansion ⁇ m of the second material constituting the second support member 32b and the second expansion / contraction portion 522. It becomes the value. In this case, even if the temperature of the alignment adjusting device rises, the inclination of the mirror 10 remains substantially ⁇ 1.
  • the second plane P2 including the second end 212 of the first support member 21b and the first axis AX1 is the first end of the first support member 21b. It is perpendicular to the first plane P1 including the 211 and the first axis AX1. According to this, in the adjustment state where the end portion 419 of the first expansion / contraction portion 411 is located other than the fifth plane P5, the temperature of the alignment adjusting device including the first support member 21b and the first expansion / contraction portion 411. The change in the posture of the mirror 10 can be suppressed even if the temperature changes.
  • the alignment adjusting device supports the first holder 11 on the first axis AX1 and supports the first support member 21b on the first end portion 211 and the second end portion 212. It further includes a second holder 22b of the first material that supports both. According to this, the first holder 11 is supported by the first shaft AX1, and the first support member 21b that supports the first adjusting device 41 is supported by the first end portion 211 and the second end portion. Supporting in both of the 212 is done by a common second holder 22b. Therefore, the posture of the mirror 10 can be more stabilized.
  • the fourth plane P4 including the fourth end 324 of the second support member 32b and the second axis AX2 is the third end of the second support member 32b. It is perpendicular to the third plane P3 including the 323 and the second axis AX2. According to this, the temperature of the alignment adjusting device including the second support member 32b and the second expanding / contracting portion 522 in the adjusting state in which the end portion 529 of the second expanding / contracting portion 522 is located other than the third plane P3. The change in the posture of the mirror 10 can be suppressed even if the temperature changes.
  • the alignment adjusting device supports the second holder 22b on the second axis AX2 and supports the second support member 32b on the third end portion 323 and the fourth end portion 324. It further includes a third holder 33b of the first material that supports both. According to this, the second holder 22b is supported by the second shaft AX2, and the second support member 32b that supports the second adjusting device 52 is supported by the third end portion 323 and the fourth end portion. Supporting in both of the 324s is done by a common third holder 33b. Therefore, the posture of the mirror 10 can be more stabilized.
  • the second plane P2 including the second end 212 of the first support member 21b and the first axis AX1 is the first axis AX1 and the second axis AX2. Is perpendicular to the fifth plane P5 including. According to this, in the adjustment state where the end portion 419 of the first expansion / contraction portion 411 is located other than the fifth plane P5, the temperature of the alignment adjusting device including the first support member 21b and the first expansion / contraction portion 411. The change in the posture of the mirror 10 can be suppressed even if the temperature changes. In other respects, the second embodiment is the same as the first embodiment.
  • FIG. 5 schematically shows the configuration of the exposure apparatus 600 connected to the laser apparatus 1.
  • the laser device 1 generates a pulsed laser beam and outputs it to the exposure device 600.
  • the exposure apparatus 600 includes an illumination optical system 601 and a projection optical system 602.
  • the illumination optical system 601 illuminates a reticle pattern of a reticle (not shown) arranged on the reticle stage RT by a pulsed laser beam incident from the laser device 1.
  • the projection optical system 602 reduces-projects the pulsed laser beam transmitted through the reticle and forms an image on a workpiece (not shown) arranged on the workpiece table WT.
  • the workpiece is a photosensitive substrate such as a semiconductor wafer coated with a photoresist.
  • the exposure apparatus 600 exposes the workpiece to pulsed laser light reflecting the reticle pattern by moving the reticle stage RT and the workpiece table WT in parallel in synchronization with each other. After transferring the reticle pattern to the semiconductor wafer by the exposure process as described above, the electronic device can be manufactured by going through a plurality of steps.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

アライメント調整装置は、光学素子(10)を支持する第1の材質の第1のホルダ(11)と、第1の材質と異なる第2の材質の第1の伸縮部(411)を含み、第1の伸縮部(411)を第1のホルダ(11)に接触させて第1の伸縮部(411)の長さを調整することで、第1のホルダ(11)及び光学素子(10)を第1の軸(AX1)の周りに回転させる第1の調整装置(41)と、第1の調整装置(41)を支持する第2の材質の第1の支持部材(21a)と、を備え、第1の調整装置(41)は、第1の支持部材(21a)の第1の端部(411)と第1の軸(AX1)とを含む第1の平面(P1)に、第1の伸縮部(411)と第1のホルダ(11)とが接触する位置を調整可能に構成される。

Description

アライメント調整装置、及び電子デバイスの製造方法
 本開示は、アライメント調整装置、及び電子デバイスの製造方法に関する。
 近年、半導体露光装置においては、半導体集積回路の微細化及び高集積化につれて、解像力の向上が要請されている。このため、露光用光源から放出される光の短波長化が進められている。たとえば、露光用のガスレーザ装置としては、波長約248nmのレーザ光を出力するKrFエキシマレーザ装置、ならびに波長約193nmのレーザ光を出力するArFエキシマレーザ装置が用いられる。
 KrFエキシマレーザ装置及びArFエキシマレーザ装置の自然発振光のスペクトル線幅は、350~400pmと広い。そのため、KrF及びArFレーザ光のような紫外線を透過する材料で投影レンズを構成すると、色収差が発生してしまう場合がある。その結果、解像力が低下し得る。そこで、ガスレーザ装置から出力されるレーザ光のスペクトル線幅を、色収差が無視できる程度となるまで狭帯域化する必要がある。そのため、ガスレーザ装置のレーザ共振器内には、スペクトル線幅を狭帯域化するために、狭帯域化素子(エタロンやグレーティング等)を含む狭帯域化モジュール(Line Narrow Module:LNM)が備えられる場合がある。以下では、スペクトル線幅が狭帯域化されるガスレーザ装置を狭帯域化ガスレーザ装置という。
米国特許第6973111号明細書 米国特許出願公開第2005/015790号明細書
概要
 本開示の1つの観点に係るアライメント調整装置は、光学素子を支持する第1の材質の第1のホルダと、第1の材質と異なる第2の材質の第1の伸縮部を含み、第1の伸縮部を第1のホルダに接触させて第1の伸縮部の長さを調整することで、第1のホルダ及び光学素子を第1の軸の周りに回転させる第1の調整装置と、第1の調整装置を支持する第2の材質の第1の支持部材と、を備え、第1の調整装置は、第1の支持部材の第1の端部と第1の軸とを含む第1の平面に、第1の伸縮部と第1のホルダとが接触する位置を調整可能に構成される。
 本開示の他の1つの観点に係るアライメント調整装置は、光学素子を支持する第1の材質の第1のホルダと、第1の材質と異なる第2の材質の第1の伸縮部を含み、第1の伸縮部を第1のホルダに接触させて第1の伸縮部の長さを調整することで、第1のホルダ及び光学素子を第1の軸の周りに回転させる第1の調整装置と、第1の調整装置を支持する第2の材質の第1の支持部材と、第1のホルダを第1の軸において支持するとともに第1の支持部材を第1の支持部材の第1の端部において支持する第1の材質の第2のホルダと、第2の材質の第2の伸縮部を含み、第2の伸縮部を第2のホルダに接触させて第2の伸縮部の長さを調整することで、第2のホルダ、第1のホルダ及び光学素子を第1の軸と交差する第2の軸の周りに回転させる第2の調整装置と、第2の調整装置を支持する第2の材質の第2の支持部材と、を備え、第1の軸と第2の軸とを含む第5の平面に、第1の端部が位置する。
 本開示の1つの観点に係る電子デバイスの製造方法は、光学素子を支持する第1の材質の第1のホルダと、第1の材質と異なる第2の材質の第1の伸縮部を含み、第1の伸縮部を第1のホルダに接触させて第1の伸縮部の長さを調整することで、第1のホルダ及び光学素子を第1の軸の周りに回転させる第1の調整装置と、第1の調整装置を支持する第2の材質の第1の支持部材と、を備え、第1の調整装置は、第1の支持部材の第1の端部と第1の軸とを含む第1の平面に、第1の伸縮部と第1のホルダとが接触する位置を調整可能に構成されたアライメント調整装置を備えるレーザ装置によってパルスレーザ光を生成し、パルスレーザ光を露光装置に出力し、電子デバイスを製造するために、露光装置内で感光基板上にパルスレーザ光を露光することを含む。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、比較例に係るレーザ装置の構成を模式的に示す。 図2Aは、比較例に係るアライメント調整装置を模式的に示す。 図2Bは、図2AのIIB-IIB線における断面図である。 図2Cは、図2AのIIC-IIC線における断面図である。 図2Dは、図2AのIID-IID線における断面図である。 図2Eは、比較例において第2のホルダを回転させた場合の図2Bに相当する部分を示す断面図である。 図2Fは、比較例において第1のホルダを回転させた場合の図2Dに相当する部分を示す断面図である。 図3Aは、第1の実施形態に係るアライメント調整装置を模式的に示す。 図3Bは、図3AのIIIB-IIIB線における断面図である。 図3Cは、図3AのIIIC-IIIC線における断面図である。 図3Dは、図3AのIIID-IIID線における断面図である。 図4Aは、第2の実施形態に係るアライメント調整装置を模式的に示す。 図4Bは、図4AのIVB-IVB線における断面図である。 図4Cは、図4AのIVC-IVC線における断面図である。 図4Dは、図4AのIVD-IVD線における断面図である。 図4Eは、第1の実施形態において調整状態であるときの第2の伸縮部と第2の軸との位置関係を示す図である。 図4Fは、第2の実施形態において調整状態であるときの第2の伸縮部と第2の軸との位置関係を示す図である。 図5は、レーザ装置に接続された露光装置の構成を概略的に示す。
実施形態
<内容>
1.比較例
 1.1 レーザ装置1の構成
  1.1.1 マスターオシレータMO
  1.1.2 第1のビームステアリングユニット76
  1.1.3 増幅器PO
  1.1.4 第2のビームステアリングユニット86
  1.1.5 光学パルスストレッチャー89
 1.2 レーザ装置1の動作
  1.2.1 マスターオシレータMOの動作
  1.2.2 増幅器POの動作
  1.2.3 光学パルスストレッチャー89の動作
 1.3 アライメント調整装置の構成
  1.3.1 第1のホルダ11
  1.3.2 第2のホルダ22
  1.3.3 第3のホルダ33
  1.3.4 第1の調整装置41及び第2の調整装置52
 1.4 アライメント調整装置の動作
  1.4.1 第1のホルダ11の回転
  1.4.2 第2のホルダ22の回転
 1.5 作用
 1.6 比較例の課題
  1.6.1 第1の伸縮部411と第2のホルダ22との関係
  1.6.2 第2の伸縮部522と第3のホルダ33との関係
  1.6.3 解決方法の検討
2.伸縮部と同じ材質の支持部材を含むアライメント調整装置
 2.1 構成及び動作
  2.1.1 第2のホルダ22a及び第1の支持部材21a
  2.1.2 第3のホルダ33a及び第2の支持部材32a
 2.2 他の構成例
 2.3 作用
3.第2の平面P2が第1の平面P1に垂直であるアライメント調整装置
 3.1 構成及び動作
  3.1.1 第2のホルダ22b及び第1の支持部材21b
  3.1.2 第3のホルダ33b及び第2の支持部材32b
 3.2 他の構成例
 3.3 作用
4.その他
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
1.比較例
 1.1 レーザ装置1の構成
 図1は、比較例に係るレーザ装置1の構成を模式的に示す。比較例に係るレーザ装置1は、マスターオシレータMOと、第1のビームステアリングユニット76と、増幅器POと、第2のビームステアリングユニット86と、光学パルスストレッチャー89と、を含む。
  1.1.1 マスターオシレータMO
 マスターオシレータMOは、レーザチャンバ70と、狭帯域化モジュール74と、出力結合ミラー75と、を含む。
 レーザチャンバ70は、狭帯域化モジュール74と出力結合ミラー75とで構成されたレーザ共振器の光路に配置されている。レーザチャンバ70には、2つのウインドウ701及び702が設けられている。レーザチャンバ70は、放電電極711及び712を収容している。放電電極711及び712は図示しないパルス電源に接続されている。レーザチャンバ70は、レーザ媒質としてのレーザガスを収容する。レーザガスは、例えば、アルゴンガスと、フッ素ガスと、ネオンガスとを含む。あるいは、レーザガスは、例えば、クリプトンガスと、フッ素ガスと、ネオンガスとを含む。
 狭帯域化モジュール74は、プリズム741及びグレーティング742などの波長選択素子を含む。出力結合ミラー75は、部分反射ミラーで構成されている。
  1.1.2 第1のビームステアリングユニット76
 第1のビームステアリングユニット76は、高反射ミラー761及び762を含む。高反射ミラー761及び762はそれぞれアライメント調整装置766及び767に支持されている。
  1.1.3 増幅器PO
 増幅器POは、レーザチャンバ80と、リアミラー84と、出力結合ミラー85と、を含む。レーザチャンバ80、出力結合ミラー85、及びレーザチャンバ80に付随するウインドウ801及び802、放電電極811及び812については、マスターオシレータMOにおいて対応する構成要素と同様である。
 リアミラー84は、第1のビームステアリングユニット76を通過したパルスレーザ光の光路に配置されている。リアミラー84は、部分反射ミラーで構成されている。リアミラー84と出力結合ミラー85とでレーザ共振器が構成される。
  1.1.4 第2のビームステアリングユニット86
 第2のビームステアリングユニット86は、高反射ミラー861及び862を含む。高反射ミラー861及び862はそれぞれアライメント調整装置866及び867に支持されている。
  1.1.5 光学パルスストレッチャー89
 光学パルスストレッチャー89は、第2のビームステアリングユニット86を通過したパルスレーザ光の光路に配置されている。光学パルスストレッチャー89は、ビームスプリッタ895及び第1~第4の凹面ミラー891~894を含む。第1~第4の凹面ミラー891~894はそれぞれアライメント調整装置896~899に支持されている。
 1.2 レーザ装置1の動作
  1.2.1 マスターオシレータMOの動作
 マスターオシレータMOにおいて、図示しないパルス電源がパルス状の高電圧を生成し、この高電圧を放電電極711及び712の間に印加する。
 放電電極711及び712の間に高電圧が印加されると、放電電極711及び712の間に放電が起こる。この放電のエネルギーにより、レーザチャンバ70内のレーザガスが励起されて高エネルギー準位に移行する。励起されたレーザガスが、その後、低エネルギー準位に移行するとき、そのエネルギー準位差に応じた波長の光を放出する。
 レーザチャンバ70内で発生した光は、ウインドウ701及び702を介してレーザチャンバ70の外部に出射する。ウインドウ701から出射した光は、プリズム741によってビーム幅を拡大させられて、グレーティング742に入射する。プリズム741からグレーティング742に入射した光は、グレーティング742の複数の溝によって反射されるとともに、光の波長に応じた方向に回折させられる。グレーティング742は、プリズム741からグレーティング742に入射する光の入射角と、所望波長の回折光の回折角とが一致するようにリトロー配置とされている。これにより、所望波長付近の光がプリズム741を介してレーザチャンバ70に戻される。
 出力結合ミラー75は、ウインドウ702から出射した光のうちの一部を透過させて出力し、他の一部を反射してレーザチャンバ70に戻す。
 このようにして、レーザチャンバ70から出射した光は、狭帯域化モジュール74と出力結合ミラー75との間で往復する。この光は、放電電極711及び712の間の放電空間を通過する度に増幅される。また、この光は、狭帯域化モジュール74で折り返される度に狭帯域化される。こうしてレーザ発振し狭帯域化された光が、出力結合ミラー75からパルスレーザ光として出力される。
  1.2.2 増幅器POの動作
 出力結合ミラー75から出力されたパルスレーザ光は、第1のビームステアリングユニット76及びリアミラー84を介してレーザチャンバ80に入射する。
 パルスレーザ光がレーザチャンバ80に入射するのと同期して、増幅器POにおいて、図示しないパルス電源がパルス状の高電圧を生成し、この高電圧が放電電極811及び812の間に印加される。
 放電電極811及び812の間に高電圧が印加されると、放電電極811及び812の間に放電が起こる。この放電のエネルギーにより、レーザチャンバ80に入射したパルスレーザ光が増幅される。
 レーザチャンバ80内で増幅された光は、リアミラー84と出力結合ミラー85との間で往復する。この光は、放電電極811及び812の間の放電空間を通過する度に増幅される。こうして増幅された光が、出力結合ミラー85からパルスレーザ光として出力される。
  1.2.3 光学パルスストレッチャー89の動作
 出力結合ミラー85から出力されたパルスレーザ光は、第2のビームステアリングユニット86を介して光学パルスストレッチャー89のビームスプリッタ895に図1における右方向に入射する。ビームスプリッタ895は、図1における右方向に入射したパルスレーザ光の一部を透過させてパルスレーザ光B1として出射し、他の一部を図1における下方向に反射する。反射されたパルスレーザ光は、第1~第4の凹面ミラー891~894によって順次反射され、ビームスプリッタ895に図1における下方向に入射する。
 第2のビームステアリングユニット86から入射したパルスレーザ光のビームスプリッタ895におけるビーム断面は、第1~第4の凹面ミラー891~894により、1:1の大きさでビームスプリッタ895に結像する。ビームスプリッタ895は、第4の凹面ミラー894から図1における下方向に入射したパルスレーザ光の一部を図1における右方向に反射してパルスレーザ光B2として出射する。パルスレーザ光B1とパルスレーザ光B2とはほぼ同軸である。
 パルスレーザ光B1とパルスレーザ光B2との間には、第1~第4の凹面ミラー891~894によって構成される遅延光路の光路長に応じた時間差が存在する。パルスレーザ光B1とパルスレーザ光B2とを空間的に重ねることにより、パルス幅が伸長されたパルスレーザ光を出射することができる。
 1.3 アライメント調整装置の構成
 図2Aは、比較例に係るアライメント調整装置を模式的に示す。図2Aにおいて、横方向の軸をH軸とし、縦方向の軸をV軸とし、紙面に垂直な軸をZ軸とする。H軸、V軸、及びZ軸は互いに直交している。
 図2Bは、図2AのIIB-IIB線における断面図であり、図2Cは、図2AのIIC-IIC線における断面図であり、図2Dは、図2AのIID-IID線における断面図である。
 アライメント調整装置は、光学素子を支持し、光学素子の姿勢を調整する装置である。以下の説明においては、光学素子の例としてミラー10を用いる。ミラー10の例として、図1を参照しながら説明した高反射ミラー761、762、861、及び862、第1~第4の凹面ミラー891~894などが挙げられる。
 アライメント調整装置は、第1のホルダ11と、第2のホルダ22と、第3のホルダ33と、第1の調整装置41と、第2の調整装置52と、を含む。
  1.3.1 第1のホルダ11
 第1のホルダ11は、ミラー10を取り囲んで、ミラー10に接触してミラー10を支持している。但し、第1のホルダ11は、ミラー10の+Z側の面である反射表面101を覆わないようになっている。
  1.3.2 第2のホルダ22
 第2のホルダ22は、第1のホルダ11を取り囲んで、第1のホルダ11と間隔をあけて第1のホルダ11を支持している。第2のホルダ22は、ピン16及び17によって第1のホルダ11を支持しており、第1のホルダ11は、ピン16及び17によって規定される第1の軸AX1の周りに回転可能となっている。第1の軸AX1は、ピン16及び17のそれぞれの中心を結ぶ直線である。
 第2のホルダ22は、ミラー10の反射表面101を覆わないようになっている。また、第2のホルダ22は開口25を有している。第2のホルダ22が開口25を有する理由は以下の通りである。ミラー10の反射表面101に入射する光のうちのほとんどの光はミラー10によって反射されるが、一部の光はミラー10を透過する。ミラー10を透過した光が第2のホルダ22に入射すると第2のホルダ22の温度が上昇し、第2のホルダ22が熱膨張することによりミラー10の姿勢が意図せずに変動することがある。ミラー10を透過した光を通過させるように開口25を設けることにより、第2のホルダ22の熱膨張を抑制し得る。また開口25を介して、ミラー10の反射表面101と反対側である裏面側にミラー10の熱を放熱させることもできる。第2のホルダ22だけでなく第1のホルダ11においても、ミラー10の裏面側の位置に、ミラー10の直径より小さい図示しない開口が設けられてもよい。
  1.3.3 第3のホルダ33
 第3のホルダ33は、第2のホルダ22を取り囲んで、第2のホルダ22と間隔をあけて第2のホルダ22を支持している。第3のホルダ33は、ピン26及び27によって第2のホルダ22を支持しており、第2のホルダ22は、ピン26及び27によって規定される第2の軸AX2の周りに回転可能となっている。第2の軸AX2は、ピン26及び27のそれぞれの中心を結ぶ直線であり、第2の軸AX2はH軸と平行である。第1の軸AX1と第2の軸AX2とは、ミラー10の反射表面101のほぼ中心の位置で直交している。以下の説明において、第1の軸AX1と第2の軸AX2とを含む平面を第5の平面P5という。
 第3のホルダ33は、ミラー10の反射表面101を覆わないようになっている。また、第3のホルダ33は開口35を有している。第3のホルダ33が開口35を有する理由は開口25に関して説明したのと同様である。第1、第2、及び第3のホルダ11、22、及び33は、例えば、アルミニウムで構成される。アルミニウムは、本開示における第1の材質に相当する。
  1.3.4 第1の調整装置41及び第2の調整装置52
 第1の調整装置41は、第2のホルダ22に支持されている。第1の調整装置41は、駆動部410と第1の伸縮部411とを含む。駆動部410は第2のホルダ22の-Z側の面228に固定されている。第1の伸縮部411は棒状の部材であり、第2のホルダ22を貫通している。第1の伸縮部411の端部419は駆動部410の外に位置し、第1の伸縮部411の図示しない反対側の端部は駆動部410に収容されている。駆動部410が第1の伸縮部411の一部を出し入れすることにより、第1の伸縮部411のうちの駆動部410の外に位置する部分の長さが伸縮するようになっている。以下の説明において、第1の伸縮部411のうちの駆動部410の外に位置する部分の長さが伸縮することを、「第1の伸縮部411が伸縮する」ということがある。伸縮とは伸長及び収縮を含む。第1の伸縮部411が伸長するX方向は、第5の平面P5に垂直である。
 第1の伸縮部411の端部419は、第1の軸AX1よりも+H側の位置で、第1のホルダ11に接触している。
 第1のホルダ11と第2のホルダ22との間において、第1の伸縮部411の近傍に、バネ45が伸長された状態で配置されている。あるいは、第1のホルダ11と第2のホルダ22との間において、第1の軸AX1よりも-H側の位置に、図示しないバネが圧縮された状態で配置されていてもよい。あるいは、第1のホルダ11の+Z側の面に、図示しないバネが配置されていてもよい。
 第2の調整装置52は、第3のホルダ33に支持されている。第2の調整装置52は、駆動部520と第2の伸縮部522とを含む。駆動部520は第3のホルダ33の-Z側の面338に固定されている。第2の伸縮部522は棒状の部材であり、第3のホルダ33を貫通している。第2の伸縮部522の端部529は駆動部520の外に位置し、第2の伸縮部522の図示しない反対側の端部は駆動部520に収容されている。駆動部520が第2の伸縮部522の一部を出し入れすることにより、第2の伸縮部522のうちの駆動部520の外に位置する部分の長さが伸縮するようになっている。以下の説明において、第2の伸縮部522のうちの駆動部520の外に位置する部分の長さが伸縮することを、「第2の伸縮部522が伸縮する」ということがある。第2の伸縮部522が伸長する方向は+Z方向である。
 第2の伸縮部522の端部529は、第2の軸AX2よりも+V側の位置で、第2のホルダ22に接触している。第2の伸縮部522の端部529は、第5の平面P5に位置している。
 第2のホルダ22と第3のホルダ33との間において、第2の伸縮部522の近傍に、バネ55が伸長された状態で配置されている。あるいは、第2のホルダ22と第3のホルダ33との間において、第2の軸AX2よりも-V側の位置に、図示しないバネが圧縮された状態で配置されていてもよい。あるいは、第2のホルダ22の+Z側の面に、図示しないバネが配置されていてもよい。
 第1の調整装置41及び第2の調整装置52の各々は、例えばマイクロメータで構成される。
 第1の伸縮部411及び第2の伸縮部522は、例えば、ステンレス鋼(SUS)で構成される。ステンレス鋼は、本開示における第2の材質に相当する。ステンレス鋼などの第2の材質は、アルミニウムなどの第1の材質よりも熱膨張係数が小さい。アルミニウムなどの第1の材質は、ステンレス鋼などの第2の材質よりも比重が小さい。
 1.4 アライメント調整装置の動作
 図2Eは、比較例において第2のホルダ22を回転させた場合の図2Bに相当する部分を示す断面図である。図2Fは、比較例において第1のホルダ11を回転させた場合の図2Dに相当する部分を示す断面図である。
  1.4.1 第1のホルダ11の回転
 駆動部410によって第1の伸縮部411が伸長すると、第1のホルダ11の一部が第1の伸縮部411によって押されることにより、第1のホルダ11が第2のホルダ22に対して第1の軸AX1の周りに回転する。
 駆動部410によって第1の伸縮部411が収縮すると、第1のホルダ11の一部がバネ45によって引っ張られることにより、第1のホルダ11が第2のホルダ22に対して第1の軸AX1の周りに回転する(図2F参照)。第1のホルダ11の回転は、第1の伸縮部411が伸長したときと収縮したときとで逆の回転となる。
 このように、第1の伸縮部411を第1のホルダ11に接触させて第1の伸縮部411の長さを調整することで、第1のホルダ11及びミラー10が第1の軸AX1の周りに回転する。
 図2Dに示されるように、第1の伸縮部411の端部419が第5の平面P5に位置している状態を、以下の説明において「未調整状態」ということがある。
 図2Fに示されるように、第1の伸縮部411の伸縮によって、第1の伸縮部411の端部419が第5の平面P5以外に位置している状態を、以下の説明において「調整状態」ということがある。
  1.4.2 第2のホルダ22の回転
 駆動部520によって第2の伸縮部522が伸長すると、第2のホルダ22の一部が第2の伸縮部522によって押されることにより、第2のホルダ22が第3のホルダ33に対して第2の軸AX2の周りに回転する。
 駆動部520によって第2の伸縮部522が収縮すると、第2のホルダ22の一部がバネ55によって引っ張られることにより、第2のホルダ22が第3のホルダ33に対して第2の軸AX2の周りに回転する(図2E参照)。第2のホルダ22の回転は、第2の伸縮部522が伸長したときと収縮したときとで逆の回転となる。第2のホルダ22が第2の軸AX2の周りに回転すると、第1の軸AX1も第2の軸AX2の周りに回転し、第5の平面P5も傾く。
 このように、第2の伸縮部522を第2のホルダ22に接触させて第2の伸縮部522の長さを調整することで、第2のホルダ22、第1の調整装置41、第1のホルダ11、及びミラー10が第2の軸AX2の周りに回転する。
 図2Cに示されるように、第2の伸縮部522が伸長する+Z方向に対して第5の平面P5が垂直である状態を、以下の説明において「未調整状態」ということがある。第2の伸縮部522が未調整状態であるときの第1の軸AX1は、V軸と平行である。
 図2Eに示されるように、第2の伸縮部522の伸縮によって、第2の伸縮部522が伸長する+Z方向に対して第5の平面P5が傾いている状態を、以下の説明において「調整状態」ということがある。
 1.5 作用
 以上のようにして第1のホルダ11が第2のホルダ22に対して第1の軸AX1の周りに回転し、第2のホルダ22が第3のホルダ33に対して第2の軸AX2の周りに回転できるようになっている。これにより、互いに直交する2つの軸の周りにミラー10を回転させてその姿勢を調整することができ、それらの軸の周りの回転角度を独立に調整することができる。
 第1の伸縮部411及び第2の伸縮部522は、それぞれ第1のホルダ11及び第2のホルダ22に接触するだけでなく、それぞれ第1のホルダ11及び第2のホルダ22に引っ掛けられるように構成されてもよい。その場合、第1の伸縮部411及び第2の伸縮部522が収縮するときに、それぞれに引っ張られることによって第1のホルダ11及び第2のホルダ22が回転してもよく、バネ45及び55は設けられなくてもよい。
 1.6 比較例の課題
  1.6.1 第1の伸縮部411と第2のホルダ22との関係
 上述のように、第1の調整装置41の駆動部410は第2のホルダ22に固定され、未調整状態において第1の伸縮部411の端部419と第1のホルダ11とが接触する位置は、第5の平面P5に一致している。
 ここで、第2のホルダ22及び第1の伸縮部411の熱膨張係数が異なる場合、以下の問題がある。駆動部410が固定された第2のホルダ22の-Z側の面228から第5の平面P5までのZ方向の距離は、第2のホルダ22の熱膨張係数及び温度に依存する。面228から第1の伸縮部411の端部419までのZ方向の距離は、第1の伸縮部411の熱膨張係数及び温度に依存する。第2のホルダ22と第1の伸縮部411とを含むアライメント調整装置の温度がパルスレーザ光のエネルギーにより変化すると、第5の平面P5と第1の伸縮部411の端部419との位置関係が、駆動部410による調節とは別に変化してしまう。従って、ミラー10の姿勢が変化してしまう。
 また、第2のホルダ22及び第1の伸縮部411の熱伝導率の違い、又は比熱の違いなどの要因で第2のホルダ22と第1の伸縮部411とに温度差が生じた場合も、第5の平面P5と第1の伸縮部411の端部419との位置関係が変化してしまう。
  1.6.2 第2の伸縮部522と第3のホルダ33との関係
 上述のように、第2の調整装置52の駆動部520は第3のホルダ33に固定され、第2の伸縮部522の端部529は第5の平面P5において第2のホルダ22に接触している。未調整状態における第5の平面P5は、第2の伸縮部522が伸長する+Z方向に対して垂直となっている。
 ここで、第3のホルダ33及び第2の伸縮部522の熱膨張係数が異なる場合、上述と同様の問題がある。すなわち、アライメント調整装置の温度がパルスレーザ光のエネルギーにより変化すると、第2の伸縮部522が伸長する+Z方向に対する第5の平面P5の傾きが、駆動部520による調節とは別に変化してしまう。従って、ミラー10の姿勢が変化してしまう。
 また、第3のホルダ33と第2の伸縮部522の熱伝導率の違い、比熱の違いなどの要因で第3のホルダ33と第2の伸縮部522とに温度差が生じた場合も、第2の伸縮部522が伸長する+Z方向に対する第5の平面P5の傾きが変化してしまう。
  1.6.3 解決方法の検討
 第2のホルダ22及び第3のホルダ33を第1の伸縮部411及び第2の伸縮部522と同じ第2の材質で構成すれば、これらの部材間で熱膨張係数、熱伝導率、及び比熱が同じになるので上記の問題は軽減される。しかし、第2の材質の比重が大きい場合には第2のホルダ22などが重くなり、高速な姿勢制御が困難になり得る。
 以下に説明する幾つかの実施形態においては、第1の調整装置41を支持する第1の支持部材21a又は21bを第2のホルダ22a又は22bに配置し、第1の支持部材21a又は21bと第1の伸縮部411とを同じ材質で構成している。さらに、第2の調整装置52を支持する第2の支持部材32a又は32bを第3のホルダ33a又は33bに配置し、第2の支持部材32a又は32bと第2の伸縮部522とを同じ材質で構成している。
2.伸縮部と同じ材質の支持部材を含むアライメント調整装置
 2.1 構成及び動作
 図3Aは、第1の実施形態に係るアライメント調整装置を模式的に示す。図3Bは、図3AのIIIB-IIIB線における断面図であり、図3Cは、図3AのIIIC-IIIC線における断面図であり、図3Dは、図3AのIIID-IIID線における断面図である。
  2.1.1 第2のホルダ22a及び第1の支持部材21a
 第1の実施形態に係るアライメント調整装置は、比較例における第2のホルダ22の代わりに、第2のホルダ22a及び第1の支持部材21aを含む。第2のホルダ22aと第1の支持部材21aとを組み合わせた形状が、比較例における第2のホルダ22の形状にほぼ相当する。
 第2のホルダ22aは、第1のホルダ11を第1の軸AX1において支持するほかに、第1の支持部材21aを第1の支持部材21aの+Z側の第1の端部211において支持している。第2のホルダ22aは、例えばアルミニウムなどの第1の材質で構成されている。第1の支持部材21aは、第1の端部211を貫通する図示しないボルトによって第2のホルダ22aに固定される。
 第1の支持部材21aは、第1の調整装置41を支持している。第1の調整装置41に含まれる駆動部410は、第1の支持部材21aの-Z側の面218に固定されている。
 第1の支持部材21aの第1の端部211は、第5の平面P5に位置する。これにより、第1の端部211と第1の軸AX1とを含む第1の平面P1は、第5の平面P5と一致する。第1の平面P1は、第1の伸縮部411が伸長するX方向に垂直である。
 未調整状態における第1の伸縮部411の端部419は、第5の平面P5に位置するだけでなく、第1の平面P1にも位置する。従って、駆動部410が固定された第1の支持部材21aの-Z側の面218から未調整状態における第1の伸縮部411の端部419までのZ方向の距離と、面218から第1の支持部材21aの第1の端部211までのZ方向の距離とが、ほぼ等しくなっている。
 第1の支持部材21aは、第1の伸縮部411と同じ第2の材質で構成されており、例えばステンレス鋼で構成されている。これによれば、第1の支持部材21aと第1の伸縮部411とが温度変化しても、第1の支持部材21aのZ方向の長さと第1の伸縮部411のZ方向の長さとがほぼ同じだけ変化する。従って、未調整状態における第1の伸縮部411の端部419と、第5の平面P5との位置関係が安定化し得る。
 ここでは、未調整状態において第1の伸縮部411と第1のホルダ11とが接触する端部419の位置が、第1の平面P1に一致する場合について説明したが、本開示はこれに限定されない。第1の伸縮部411と第1のホルダ11とが接触する端部419の位置が第1の平面P1に調整可能であればよい。調整可能であるとは、第1の伸縮部411と第1のホルダ11とが接触する端部419の位置の可動範囲内に、第1の平面P1の一部が含まれていることをいう。
  2.1.2 第3のホルダ33a及び第2の支持部材32a
 第1の実施形態に係るアライメント調整装置は、比較例における第3のホルダ33の代わりに、第3のホルダ33a及び第2の支持部材32aを含む。第3のホルダ33aと第2の支持部材32aとを組み合わせた形状が、比較例における第3のホルダ33の形状にほぼ相当する。
 第3のホルダ33aは、第2のホルダ22aを第2の軸AX2において支持するほかに、第2の支持部材32aを第2の支持部材32aの+Z側の第3の端部323(図3C参照)において支持している。第3のホルダ33aは、例えばアルミニウムなどの第1の材質で構成されている。第2の支持部材32aは、第3の端部323を貫通するボルト326によって第3のホルダ33aに固定される。
 第2の支持部材32aは、第2の調整装置52を支持している。第2の調整装置52に含まれる駆動部520は、第2の支持部材32aの-Z側の面328に固定されている。第2の支持部材32aの第3の端部323と第2の軸AX2とを含む第3の平面P3は、第2の伸縮部522が伸長する+Z方向に垂直である。
 第3の端部323は、未調整状態における第5の平面P5に位置する。すなわち、第3の平面P3は未調整状態における第5の平面P5と一致する。
 上述のように、第2の伸縮部522の端部529は、第5の平面P5に位置する。すなわち、第2の伸縮部522は、第5の平面P5において第2のホルダ22aに接触する。
 また、未調整状態において第2の伸縮部522の端部529と第2のホルダ22aとが接触する位置は、第3の平面P3に一致している。従って、駆動部520を固定した第2の支持部材32aの-Z側の面328から未調整状態における第2の伸縮部522の端部529までのZ方向の距離と、面328から第2の支持部材32aの第3の端部323までのZ方向の距離とが、ほぼ等しくなっている。
 第2の支持部材32aは、第2の伸縮部522と同じ第2の材質で構成されており、例えばステンレス鋼で構成されている。これによれば、第2の伸縮部522と第2の支持部材32aとが温度変化しても、第2の伸縮部522のZ方向の長さと第2の支持部材32aのZ方向の長さとがほぼ同じだけ変化する。従って、第2の伸縮部522が伸長する+Z方向に対する第5の平面P5の傾きが安定化し得る。
 ここでは、未調整状態において第2の伸縮部522と第2のホルダ22aとが接触する端部529の位置が、第3の平面P3に一致する場合について説明したが、本開示はこれに限定されない。第2の伸縮部522と第2のホルダ22aとが接触する端部529の位置が第3の平面P3に調整可能であればよい。調整可能であるとは、第2の伸縮部522と第2のホルダ22aとが接触する端部529の位置の可動範囲内に、第3の平面P3の一部が含まれていることをいう。
 2.2 他の構成例
 第1の実施形態においては、互いに直交する2軸でミラー10の姿勢を調節しているが、本開示はこれに限定されない。回転軸は第1の軸AX1だけでもよく、第3のホルダ33a、第2の支持部材32a、及び第2の調整装置52は設けられなくてもよい。
 2.3 作用
 第1の実施形態によれば、アライメント調整装置は、第1のホルダ11と、第1の調整装置41と、第1の支持部材21aと、を含む。第1のホルダ11は、アルミニウムなどの第1の材質で構成されており、ミラー10を支持する。第1の調整装置41は、第1の材質と異なるステンレス鋼などの第2の材質で構成された第1の伸縮部411を含む。第1の調整装置41は、第1の伸縮部411を第1のホルダ11に接触させて第1の伸縮部411の長さを調整することで、第1のホルダ11及びミラー10を第1の軸AX1の周りに回転させる。第1の支持部材21aは、第2の材質で構成されており、第1の調整装置41を支持する。
 第1の調整装置41は、第1の支持部材21aの第1の端部211と第1の軸AX1とを含む第1の平面P1に、第1の伸縮部411と第1のホルダ11とが接触する位置を調整可能に構成されている。
 これによれば、第1の支持部材21aの-Z側の面218から第1の端部211までのZ方向の距離と、面218から第1の伸縮部411と第1のホルダ11とが接触する端部419までのZ方向の距離とが、等しくなるように調整することができる。第1の支持部材21aと第1の伸縮部411とはいずれも第2の材質で構成され、熱膨張係数が同じであるため、第1の支持部材21aと第1の伸縮部411とが温度変化しても、第1の支持部材21aのZ方向の長さと第1の伸縮部411のZ方向の長さとがほぼ同じだけ変化する。従って、第1の伸縮部411の端部419と第5の平面P5との位置関係が駆動部410による調節とは別に変化してしまうことが抑制される。また、第1の支持部材21aと第1の伸縮部411とは熱伝導率及び比熱が同じであるため、第1の支持部材21aと第1の伸縮部411との温度差が抑制される。従って、第1の伸縮部411の端部419と第5の平面P5との位置関係の変化が抑制される。
 第1の実施形態によれば、アライメント調整装置は、第1のホルダ11を第1の軸AX1において支持するとともに第1の支持部材21aを第1の端部211において支持する第1の材質の第2のホルダ22aをさらに含む。
 これによれば、第1のホルダ11を第1の軸AX1において支持することと、第1の調整装置41を支持する第1の支持部材21aを第1の端部211において支持することとが、共通の第2のホルダ22aによってなされる。従って、ミラー10の姿勢がより安定化し得る。
 第1の実施形態によれば、第2の材質は、第1の材質よりも熱膨張係数が小さい。
 これによれば、第1の伸縮部411及び第1の支持部材21aは、熱膨張係数が小さい材質で構成され、第1のホルダ11の姿勢がより安定化し得る。
 第1の実施形態によれば、第1の材質は、第2の材質よりも比重が小さい。
 これによれば、第1のホルダ11が、あるいは第1のホルダ11及び第2のホルダ22aの両方が、比重が小さい材質で構成され、高速な姿勢制御が可能になり得る。
 第1の実施形態によれば、アライメント調整装置は、第2の調整装置52と、第2の支持部材32aと、をさらに含む。第2の調整装置52は、第2の材質の第2の伸縮部522を含み、第2の伸縮部522を第2のホルダ22aに接触させて第2の伸縮部522の長さを調整することで、第2のホルダ22a、第1のホルダ11及びミラー10を第1の軸AX1と異なる第2の軸AX2の周りに回転させる。第2の支持部材32aは、第2の材質で構成されており、第2の調整装置52を支持する。
 これによれば、第1の軸AX1に加えて第2の軸AX2においてもミラー10の姿勢を調整可能となる。
 第1の実施形態によれば、第2の調整装置52は、第2の支持部材32aの第3の端部323と第2の軸AX2とを含む第3の平面P3に、第2の伸縮部522と第2のホルダ22aとが接触する位置を調整可能に構成されている。
 これによれば、第2の支持部材32aの-Z側の面328から第3の端部323までのZ方向の距離と、面328から第2の伸縮部522と第2のホルダ22aとが接触する端部529までのZ方向の距離とが、等しくなるように調整することができる。第2の支持部材32aと第2の伸縮部522とはいずれも第2の材質で構成され、熱膨張係数が同じであるため、第2の支持部材32aと第2の伸縮部522とが温度変化しても、第2の支持部材32aのZ方向の長さと第2の伸縮部522のZ方向の長さとがほぼ同じだけ変化する。従って、第2の伸縮部522が伸長する+Z方向に対する第5の平面P5の傾きが駆動部520による調節とは別に変化してしまうことが抑制される。また、第2の支持部材32aと第2の伸縮部522とは熱伝導率及び比熱が同じであるため、第2の支持部材32aと第2の伸縮部522との温度差が抑制される。従って、第2の伸縮部522が伸長する+Z方向に対する第5の平面P5の傾きの変化が抑制される。
 第1の実施形態によれば、アライメント調整装置は、第2のホルダ22aを第2の軸AX2において支持するとともに第2の支持部材32aを第3の端部323において支持する第1の材質の第3のホルダ33aをさらに含む。
 これによれば、第2のホルダ22aを第2の軸AX2において支持することと、第2の調整装置52を支持する第2の支持部材32aを第3の端部323において支持することとが、共通の第3のホルダ33aによってなされる。従って、ミラー10の姿勢がより安定化し得る。
 第1の実施形態によれば、第1の軸AX1と第2の軸AX2とは交差しており、第1の軸AX1と第2の軸AX2とを含む第5の平面P5に、第1の支持部材21aの第1の端部211が位置する。
 これによれば、第1及び第2の軸AX1及びAX2で規定される第5の平面P5を基準として第1の支持部材21aを配置するので、ミラー10の姿勢が安定化し得る。
 第1の実施形態によれば、第1の端部211と第1の軸AX1とを含む第1の平面P1が、第1の伸縮部411が伸長するX方向に垂直である。
 これによれば、第1の伸縮部411と第1のホルダ11とが接触する端部419が第1の平面P1に位置するときに、第1のホルダ11を回転させる力を効率的に作用させることができる。
 第1の実施形態によれば、第2の伸縮部522は、第5の平面P5において第2のホルダ22aに接触する。
 これによれば、第1及び第2の軸AX1及びAX2で規定される第5の平面P5を基準として第2のホルダ22aの姿勢を調整するので、ミラー10の姿勢が安定化し得る。
 第1の実施形態によれば、第2の支持部材32aの第3の端部323と第2の軸AX2とを含む第3の平面P3が、第2の伸縮部522が伸長する+Z方向に垂直である。
 これによれば、第2の伸縮部522と第2のホルダ22aとが接触する端部529が第3の平面P3に位置するときに、第2のホルダ22aを回転させる力を効率的に作用させることができる。
 その他の点については、第1の実施形態は比較例と同様である。
3.第2の平面P2が第1の平面P1に垂直であるアライメント調整装置
 3.1 構成及び動作
 図4Aは、第2の実施形態に係るアライメント調整装置を模式的に示す。図4Bは、図4AのIVB-IVB線における断面図であり、図4Cは、図4AのIVC-IVC線における断面図であり、図4Dは、図4AのIVD-IVD線における断面図である。
  3.1.1 第2のホルダ22b及び第1の支持部材21b
 第2の実施形態に係るアライメント調整装置は、第1の実施形態における第2のホルダ22a及び第1の支持部材21aの代わりに、第2のホルダ22b及び第1の支持部材21bを含む。第2のホルダ22bと第1の支持部材21bとを組み合わせた形状が、第1の実施形態における第2のホルダ22a及び第1の支持部材21aを組み合わせた形状にほぼ相当する。
 第2のホルダ22bは、第1のホルダ11を第1の軸AX1において支持するほかに、第1の支持部材21bを第1の支持部材21bの+Z側の第1の端部211と第1の支持部材21bの-H側の第2の端部212とにおいて支持している。第1の支持部材21bは、第1の端部211を貫通する図示しないボルト及び第2の端部212を貫通する図示しないボルトによって第2のホルダ22bに固定される。
 第2の端部212と第1の軸AX1とを含む第2の平面P2は、第1の支持部材21bの第1の端部211と第1の軸AX1とを含む第1の平面P1に垂直である。第2の平面P2は、第1の軸AX1と第2の軸AX2とを含む第5の平面P5にも垂直である。
  3.1.2 第3のホルダ33b及び第2の支持部材32b
 第2の実施形態に係るアライメント調整装置は、第1の実施形態における第3のホルダ33a及び第2の支持部材32aの代わりに、第3のホルダ33b及び第2の支持部材32bを含む。第3のホルダ33bと第2の支持部材32bとを組み合わせた形状が、第1の実施形態における第3のホルダ33a及び第2の支持部材32aを組み合わせた形状にほぼ相当する。
 第3のホルダ33bは、第2のホルダ22bを第2の軸AX2において支持するほかに、第2の支持部材32bを第2の支持部材32bの+Z側の第3の端部323と第2の支持部材32bの-V側の第4の端部324とにおいて支持している。第2の支持部材32bは、第3の端部323を貫通するボルト326及び第4の端部324を貫通するボルト327によって第3のホルダ33bに固定される。
 第4の端部324と第2の軸AX2とを含む第4の平面P4は、第2の支持部材32bの第3の端部323と第2の軸AX2とを含む第3の平面P3に垂直である。
 3.2 他の構成例
 第2の実施形態においては、互いに直交する2軸でミラー10の姿勢を調節しているが、本開示はこれに限定されない。回転軸は第1の軸AX1だけでもよく、第3のホルダ33b、第2の支持部材32b、及び第2の調整装置52は設けられなくてもよい。
 3.3 作用
 図4Eは、第1の実施形態において調整状態であるときの第2の伸縮部522と第2の軸AX2との位置関係を示す図である。
 第2の伸縮部522の端部529が第3の平面P3に位置する未調整状態に対して、端部529が第3の平面P3から距離Z1ずれた調整状態におけるミラー10の傾斜をθ1とする。第2の軸AX2から第2の伸縮部522までのV方向の距離をL1とする。
 ここで、駆動部520による第2の伸縮部522の調整状態はそのままで、第3のホルダ33aと第2の支持部材32aと第2の伸縮部522とを含むアライメント調整装置の温度が上昇した場合を考える。第2の軸AX2から第2の伸縮部522までのV方向の距離L2は、距離L1に対し、第3のホルダ33aを構成する第1の材質の熱膨張係数αhに従って増加した値となる。一方、端部529と第3の平面P3との距離Z2は、距離Z1に対し、第2の支持部材32aと第2の伸縮部522とを構成する第2の材質の熱膨張係数αmに従って増加した値となる。第2の材質が第1の材質よりも熱膨張係数が小さい場合、ミラー10の傾斜はθ1よりもわずかに小さいθ2となる。
 第2の伸縮部522が未調整状態であれば、端部529が第3の平面P3に位置し、θ1もθ2も0であるので、第1の実施形態においてアライメント調整装置の温度が変化してもミラー10の傾斜はほとんど変化しない。しかし、図4Eに示される調整状態で温度が変化するとミラー10の傾斜が変化し得る。
 図4Fは、第2の実施形態において調整状態であるときの第2の伸縮部522と第2の軸AX2との位置関係を示す図である。
 図4Eの場合と同様に、駆動部520による第2の伸縮部522の調整状態はそのままでアライメント調整装置の温度が上昇した場合を考える。第2の実施形態において、第2の軸AX2から第2の伸縮部522までのV方向の距離L3は、距離L1に対し、第2の支持部材32bを構成する第2の材質の熱膨張係数αmに従って増加した値となる。一方、端部529と第3の平面P3との距離Z2は、距離Z1に対し、第2の支持部材32bと第2の伸縮部522とを構成する第2の材質の熱膨張係数αmに従って増加した値となる。この場合、アライメント調整装置の温度が上昇しても、ミラー10の傾斜はほぼθ1のままとなる。
 ここでは第2の軸AX2及び第2の伸縮部522の位置関係について説明したが、第1の軸AX1及び第1の伸縮部411の位置関係についても同様である。
 第2の実施形態によれば、第1の支持部材21bの第2の端部212と第1の軸AX1とを含む第2の平面P2が、第1の支持部材21bの第1の端部211と第1の軸AX1とを含む第1の平面P1に垂直である。
 これによれば、第1の伸縮部411の端部419が第5の平面P5以外に位置する調整状態において、第1の支持部材21bと第1の伸縮部411とを含むアライメント調整装置の温度が変化してもミラー10の姿勢の変化が抑制され得る。
 第2の実施形態によれば、アライメント調整装置は、第1のホルダ11を第1の軸AX1において支持するとともに第1の支持部材21bを第1の端部211及び第2の端部212の両方において支持する第1の材質の第2のホルダ22bをさらに含む。
 これによれば、第1のホルダ11を第1の軸AX1において支持することと、第1の調整装置41を支持する第1の支持部材21bを第1の端部211及び第2の端部212の両方において支持することとが、共通の第2のホルダ22bによってなされる。従って、ミラー10の姿勢がより安定化し得る。
 第2の実施形態によれば、第2の支持部材32bの第4の端部324と第2の軸AX2とを含む第4の平面P4が、第2の支持部材32bの第3の端部323と第2の軸AX2とを含む第3の平面P3に垂直である。
 これによれば、第2の伸縮部522の端部529が第3の平面P3以外に位置する調整状態において、第2の支持部材32bと第2の伸縮部522とを含むアライメント調整装置の温度が変化してもミラー10の姿勢の変化が抑制され得る。
 第2の実施形態によれば、アライメント調整装置は、第2のホルダ22bを第2の軸AX2において支持するとともに第2の支持部材32bを第3の端部323及び第4の端部324の両方において支持する第1の材質の第3のホルダ33bをさらに含む。
 これによれば、第2のホルダ22bを第2の軸AX2において支持することと、第2の調整装置52を支持する第2の支持部材32bを第3の端部323及び第4の端部324の両方において支持することとが、共通の第3のホルダ33bによってなされる。従って、ミラー10の姿勢がより安定化し得る。
 第2の実施形態によれば、第1の支持部材21bの第2の端部212と第1の軸AX1とを含む第2の平面P2が、第1の軸AX1と第2の軸AX2とを含む第5の平面P5に垂直である。
 これによれば、第1の伸縮部411の端部419が第5の平面P5以外に位置する調整状態において、第1の支持部材21bと第1の伸縮部411とを含むアライメント調整装置の温度が変化してもミラー10の姿勢の変化が抑制され得る。
 その他の点については、第2の実施形態は第1の実施形態と同様である。
4.その他
 図5は、レーザ装置1に接続された露光装置600の構成を概略的に示す。レーザ装置1はパルスレーザ光を生成して露光装置600に出力する。
 図5において、露光装置600は、照明光学系601と投影光学系602とを含む。照明光学系601は、レーザ装置1から入射したパルスレーザ光によって、レチクルステージRT上に配置された図示しないレチクルのレチクルパターンを照明する。投影光学系602は、レチクルを透過したパルスレーザ光を、縮小投影してワークピーステーブルWT上に配置された図示しないワークピースに結像させる。ワークピースはフォトレジストが塗布された半導体ウエハ等の感光基板である。露光装置600は、レチクルステージRTとワークピーステーブルWTとを同期して平行移動させることにより、レチクルパターンを反映したパルスレーザ光をワークピースに露光する。以上のような露光工程によって半導体ウエハにレチクルパターンを転写後、複数の工程を経ることで電子デバイスを製造することができる。
 上記の説明は、制限ではなく単なる例示を意図している。従って、特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかである。また、本開示の実施形態を組み合わせて使用することも当業者には明らかである。
 本明細書及び特許請求の範囲全体で使用される用語は、明記が無い限り「限定的でない」用語と解釈されるべきである。たとえば、「含む」、「有する」、「備える」、「具備する」などの用語は、「記載されたもの以外の構成要素の存在を除外しない」と解釈されるべきである。また、修飾語「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。また、「A、B及びCの少なくとも1つ」という用語は、「A」「B」「C」「A+B」「A+C」「B+C」又は「A+B+C」と解釈されるべきである。さらに、それらと「A」「B」「C」以外のものとの組み合わせも含むと解釈されるべきである。

Claims (20)

  1.  光学素子を支持する第1の材質の第1のホルダと、
     前記第1の材質と異なる第2の材質の第1の伸縮部を含み、前記第1の伸縮部を前記第1のホルダに接触させて前記第1の伸縮部の長さを調整することで、前記第1のホルダ及び前記光学素子を第1の軸の周りに回転させる第1の調整装置と、
     前記第1の調整装置を支持する前記第2の材質の第1の支持部材と、
    を備え、
     前記第1の調整装置は、前記第1の支持部材の第1の端部と前記第1の軸とを含む第1の平面に、前記第1の伸縮部と前記第1のホルダとが接触する位置を調整可能に構成された
    アライメント調整装置。
  2.  請求項1に記載のアライメント調整装置であって、
     前記第1のホルダを前記第1の軸において支持するとともに前記第1の支持部材を前記第1の端部において支持する前記第1の材質の第2のホルダをさらに含む
    アライメント調整装置。
  3.  請求項1に記載のアライメント調整装置であって、
     前記第1の支持部材の第2の端部と前記第1の軸とを含む第2の平面が、前記第1の平面に垂直である
    アライメント調整装置。
  4.  請求項3に記載のアライメント調整装置であって、
     前記第1のホルダを前記第1の軸において支持するとともに前記第1の支持部材を前記第1の端部及び前記第2の端部の両方において支持する前記第1の材質の第2のホルダをさらに含む
    アライメント調整装置。
  5.  請求項1に記載のアライメント調整装置であって、
     前記第2の材質は、前記第1の材質よりも熱膨張係数が小さい、
    アライメント調整装置。
  6.  請求項1に記載のアライメント調整装置であって、
     前記第1の材質は、前記第2の材質よりも比重が小さい、
    アライメント調整装置。
  7.  請求項1に記載のアライメント調整装置であって、
     前記第1のホルダを前記第1の軸において支持するとともに前記第1の支持部材を前記第1の端部において支持する前記第1の材質の第2のホルダと、
     前記第2の材質の第2の伸縮部を含み、前記第2の伸縮部を前記第2のホルダに接触させて前記第2の伸縮部の長さを調整することで、前記第2のホルダ、前記第1のホルダ及び前記光学素子を前記第1の軸と異なる第2の軸の周りに回転させる第2の調整装置と、
     前記第2の調整装置を支持する前記第2の材質の第2の支持部材と、
    をさらに備える、
    アライメント調整装置。
  8.  請求項7に記載のアライメント調整装置であって、
     前記第2の調整装置は、前記第2の支持部材の第3の端部と前記第2の軸とを含む第3の平面に、前記第2の伸縮部と前記第2のホルダとが接触する位置を調整可能に構成された
    アライメント調整装置。
  9.  請求項8に記載のアライメント調整装置であって、
     前記第2のホルダを前記第2の軸において支持するとともに前記第2の支持部材を前記第3の端部において支持する前記第1の材質の第3のホルダをさらに含む
    アライメント調整装置。
  10.  請求項8に記載のアライメント調整装置であって、
     前記第2の支持部材の第4の端部と前記第2の軸とを含む第4の平面が、前記第3の平面に垂直である
    アライメント調整装置。
  11.  請求項10に記載のアライメント調整装置であって、
     前記第2のホルダを前記第2の軸において支持するとともに前記第2の支持部材を前記第3の端部及び前記第4の端部の両方において支持する前記第1の材質の第3のホルダをさらに含む
    アライメント調整装置。
  12.  請求項7に記載のアライメント調整装置であって、
     前記第2の支持部材の第2の端部と前記第1の軸とを含む第2の平面が、前記第1の軸と前記第2の軸とを含む第5の平面に垂直である
    アライメント調整装置。
  13.  光学素子を支持する第1の材質の第1のホルダと、
     前記第1の材質と異なる第2の材質の第1の伸縮部を含み、前記第1の伸縮部を前記第1のホルダに接触させて前記第1の伸縮部の長さを調整することで、前記第1のホルダ及び前記光学素子を第1の軸の周りに回転させる第1の調整装置と、
     前記第1の調整装置を支持する前記第2の材質の第1の支持部材と、
     前記第1のホルダを前記第1の軸において支持するとともに前記第1の支持部材を前記第1の支持部材の第1の端部において支持する前記第1の材質の第2のホルダと、
     前記第2の材質の第2の伸縮部を含み、前記第2の伸縮部を前記第2のホルダに接触させて前記第2の伸縮部の長さを調整することで、前記第2のホルダ、前記第1のホルダ及び前記光学素子を前記第1の軸と交差する第2の軸の周りに回転させる第2の調整装置と、
     前記第2の調整装置を支持する前記第2の材質の第2の支持部材と、
    を備え、
     前記第1の軸と前記第2の軸とを含む第5の平面に、前記第1の端部が位置する
    アライメント調整装置。
  14.  請求項13に記載のアライメント調整装置であって、
     前記第1の端部と前記第1の軸とを含む第1の平面が、前記第1の伸縮部が伸長する方向に垂直である
    アライメント調整装置。
  15.  請求項13に記載のアライメント調整装置であって、
     前記第2のホルダを前記第2の軸において支持するとともに前記第2の支持部材を前記第2の支持部材の第3の端部において支持する前記第1の材質の第3のホルダをさらに含む
    アライメント調整装置。
  16.  請求項15に記載のアライメント調整装置であって、
     前記第2の伸縮部は、前記第5の平面において前記第2のホルダに接触する
    アライメント調整装置。
  17.  請求項16に記載のアライメント調整装置であって、
     前記第3の端部と前記第2の軸とを含む第3の平面が、前記第2の伸縮部が伸長する方向に垂直である
    アライメント調整装置。
  18.  請求項13に記載のアライメント調整装置であって、
     前記第1の支持部材の第2の端部と前記第1の軸とを含む第2の平面が、前記第1の支持部材の第1の端部と前記第1の軸とを含む第1の平面に垂直である
    アライメント調整装置。
  19.  請求項13に記載のアライメント調整装置であって、
     前記第2の支持部材の第4の端部と前記第2の軸とを含む第4の平面が、前記第2の支持部材の第3の端部と前記第2の軸とを含む第3の平面に垂直である
    アライメント調整装置。
  20.  電子デバイスの製造方法であって、
     光学素子を支持する第1の材質の第1のホルダと、
     前記第1の材質と異なる第2の材質の第1の伸縮部を含み、前記第1の伸縮部を前記第1のホルダに接触させて前記第1の伸縮部の長さを調整することで、前記第1のホルダ及び前記光学素子を第1の軸の周りに回転させる第1の調整装置と、
     前記第1の調整装置を支持する前記第2の材質の第1の支持部材と、
    を備え、
     前記第1の調整装置は、前記第1の支持部材の第1の端部と前記第1の軸とを含む第1の平面に、前記第1の伸縮部と前記第1のホルダとが接触する位置を調整可能に構成された
    アライメント調整装置
    を備えるレーザ装置によってパルスレーザ光を生成し、
     前記パルスレーザ光を露光装置に出力し、
     電子デバイスを製造するために、前記露光装置内で感光基板上に前記パルスレーザ光を露光する
    ことを含む電子デバイスの製造方法。
PCT/JP2020/022347 2020-06-05 2020-06-05 アライメント調整装置、及び電子デバイスの製造方法 WO2021245918A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080100985.9A CN115606060A (zh) 2020-06-05 2020-06-05 校准调整装置和电子器件的制造方法
PCT/JP2020/022347 WO2021245918A1 (ja) 2020-06-05 2020-06-05 アライメント調整装置、及び電子デバイスの製造方法
JP2022528378A JPWO2021245918A1 (ja) 2020-06-05 2020-06-05
US18/053,452 US20230066377A1 (en) 2020-06-05 2022-11-08 Alignment adjuster and method for manufacturing electronic devices

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/022347 WO2021245918A1 (ja) 2020-06-05 2020-06-05 アライメント調整装置、及び電子デバイスの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/053,452 Continuation US20230066377A1 (en) 2020-06-05 2022-11-08 Alignment adjuster and method for manufacturing electronic devices

Publications (1)

Publication Number Publication Date
WO2021245918A1 true WO2021245918A1 (ja) 2021-12-09

Family

ID=78830761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022347 WO2021245918A1 (ja) 2020-06-05 2020-06-05 アライメント調整装置、及び電子デバイスの製造方法

Country Status (4)

Country Link
US (1) US20230066377A1 (ja)
JP (1) JPWO2021245918A1 (ja)
CN (1) CN115606060A (ja)
WO (1) WO2021245918A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164592A (ja) * 2000-11-28 2002-06-07 Honda Motor Co Ltd 非平面鏡の調整方法および装置
WO2004095661A1 (ja) * 2003-04-22 2004-11-04 Komatsu Ltd. 露光用2ステ-ジレ-ザ装置
JP2008016544A (ja) * 2006-07-04 2008-01-24 Komatsu Ltd 狭帯域化レーザのスペクトル幅調整方法
JP2010118518A (ja) * 2008-11-13 2010-05-27 Gigaphoton Inc 2ステージレーザ装置および2ステージレーザ装置に適用される調整方法
JP2012175006A (ja) * 2011-02-23 2012-09-10 Komatsu Ltd 光学装置、レーザ装置および極端紫外光生成装置
JP2012199512A (ja) * 2011-03-10 2012-10-18 Gigaphoton Inc 極端紫外光生成装置及び極端紫外光生成方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002164592A (ja) * 2000-11-28 2002-06-07 Honda Motor Co Ltd 非平面鏡の調整方法および装置
WO2004095661A1 (ja) * 2003-04-22 2004-11-04 Komatsu Ltd. 露光用2ステ-ジレ-ザ装置
JP2008016544A (ja) * 2006-07-04 2008-01-24 Komatsu Ltd 狭帯域化レーザのスペクトル幅調整方法
JP2010118518A (ja) * 2008-11-13 2010-05-27 Gigaphoton Inc 2ステージレーザ装置および2ステージレーザ装置に適用される調整方法
JP2012175006A (ja) * 2011-02-23 2012-09-10 Komatsu Ltd 光学装置、レーザ装置および極端紫外光生成装置
JP2012199512A (ja) * 2011-03-10 2012-10-18 Gigaphoton Inc 極端紫外光生成装置及び極端紫外光生成方法

Also Published As

Publication number Publication date
US20230066377A1 (en) 2023-03-02
CN115606060A (zh) 2023-01-13
JPWO2021245918A1 (ja) 2021-12-09

Similar Documents

Publication Publication Date Title
US5802094A (en) Narrow band excimer laser
JP3514073B2 (ja) 紫外レーザ装置及び半導体露光装置
US6856638B2 (en) Resonator arrangement for bandwidth control
KR20080031660A (ko) 노광 장치, 노광 방법 및 디바이스 제조 방법, 및 시스템
US11467502B2 (en) Wavelength control method of laser apparatus and electronic device manufacturing method
JP6762364B2 (ja) レーザシステム
CN110471261B (zh) 激光装置和窄带化光学系统
WO2021245918A1 (ja) アライメント調整装置、及び電子デバイスの製造方法
WO2021171516A1 (ja) パルス幅伸長装置、及び電子デバイスの製造方法
JP2024038283A (ja) Duvレーザアライメントを改善するためのメトロロジ
US10797465B2 (en) Laser apparatus
US11837839B2 (en) Optical pulse stretcher, laser device, and electronic device manufacturing method
US20230187892A1 (en) Line narrowing gas laser device and electronic device manufacturing method
JPH10112570A (ja) 狭帯域発振エキシマレーザ
US20240136787A1 (en) Gas laser device and electronic device manufacturing method
WO2024047867A1 (ja) レーザ装置及び電子デバイスの製造方法
WO2023067777A1 (ja) 電子デバイスの製造方法及びリソグラフィ制御プロセッサ
US11870209B2 (en) Laser system and electronic device manufacturing method
US20240154381A1 (en) Gas laser apparatus, gas laser apparatus maintenance method, and electronic device manufacturing method
WO2022054119A1 (ja) 狭帯域化モジュール、ガスレーザ装置、及び電子デバイスの製造方法
WO2023021622A1 (ja) バイパス装置、レーザ装置、及び電子デバイスの製造方法
JP7340609B2 (ja) 投影システム及び投影システムを備えるリソグラフィ装置
WO2021186739A1 (ja) 狭帯域化装置、及び電子デバイスの製造方法
WO2023089673A1 (ja) レーザ装置、及び電子デバイスの製造方法
WO2022009289A1 (ja) ガスレーザ装置、及び電子デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938816

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022528378

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938816

Country of ref document: EP

Kind code of ref document: A1