WO2023286236A1 - 光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法 - Google Patents

光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法 Download PDF

Info

Publication number
WO2023286236A1
WO2023286236A1 PCT/JP2021/026593 JP2021026593W WO2023286236A1 WO 2023286236 A1 WO2023286236 A1 WO 2023286236A1 JP 2021026593 W JP2021026593 W JP 2021026593W WO 2023286236 A1 WO2023286236 A1 WO 2023286236A1
Authority
WO
WIPO (PCT)
Prior art keywords
faraday
optical isolator
polarizer
case
faraday material
Prior art date
Application number
PCT/JP2021/026593
Other languages
English (en)
French (fr)
Inventor
篤 淵向
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to JP2023534539A priority Critical patent/JPWO2023286236A1/ja
Priority to PCT/JP2021/026593 priority patent/WO2023286236A1/ja
Priority to CN202180098985.4A priority patent/CN117441124A/zh
Publication of WO2023286236A1 publication Critical patent/WO2023286236A1/ja
Priority to US18/531,775 priority patent/US20240103305A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0064Anti-reflection devices, e.g. optical isolaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10061Polarization control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10084Frequency control by seeding
    • H01S3/10092Coherent seed, e.g. injection locking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0071Beam steering, e.g. whereby a mirror outside the cavity is present to change the beam direction
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • H01S3/08009Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex

Definitions

  • the present disclosure relates to an optical isolator, an ultraviolet laser device, and a method of manufacturing an electronic device.
  • a KrF excimer laser device that outputs laser light with a wavelength of about 248 nm and an ArF excimer laser device that outputs laser light with a wavelength of about 193 nm are used.
  • the spectral line width of the spontaneous oscillation light of the KrF excimer laser device and the ArF excimer laser device is as wide as 350-400 pm. Therefore, if the projection lens is made of a material that transmits ultraviolet light, such as KrF and ArF laser light, chromatic aberration may occur. As a result, resolution can be reduced. Therefore, it is necessary to narrow the spectral line width of the laser light output from the gas laser device to such an extent that the chromatic aberration can be ignored. Therefore, in the laser resonator of the gas laser device, a line narrowing module (LNM) including a band narrowing element (etalon, grating, etc.) is provided in order to narrow the spectral line width.
  • LNM line narrowing module
  • a gas laser device whose spectral line width is narrowed will be referred to as a band-narrowed gas laser device.
  • An optical isolator includes a case, a first polarizer arranged in the case so that linearly polarized incident light having an ultraviolet wavelength is transmitted, and light transmitted through the first polarizer.
  • a first Faraday material for rotating a polarization direction in a first rotation direction and a first magnet for generating a first magnetic field in a first magnetic field generating region where the first Faraday material is arranged;
  • a first Faraday rotator arranged and a first position adjustment mechanism for moving the first Faraday material relative to the case, and the optical axis of the light passing through the first Faraday material.
  • the cross-sectional shape of the first Faraday material in the vertical cross section and the cross-sectional shape of the first magnetic field generation region are shapes having long axes in the same direction. Move in the direction of the short axis perpendicular to the long axis.
  • An ultraviolet laser device includes an oscillation stage laser that outputs linearly polarized pulsed laser light having an ultraviolet wavelength, an amplifier that amplifies and outputs the pulsed laser light, and an oscillation stage laser and the amplifier.
  • an optical isolator disposed on the optical path between the case, a first polarizer disposed within the case to transmit linearly polarized incident light of ultraviolet wavelengths;
  • a first Faraday rotator including a first magnet and disposed in the case; and a first position adjustment mechanism for moving the first Faraday material relative to the case.
  • the cross-sectional shape of the first Faraday material and the cross-sectional shape of the first magnetic field generation region in the cross section perpendicular to the optical axis of the light transmitted through the Faraday material have long axes in the same direction, and the first position An adjustment mechanism moves the first Faraday material in a minor axis direction perpendicular to the major axis.
  • a method for manufacturing an electronic device includes an oscillation stage laser that outputs linearly polarized pulsed laser light having an ultraviolet wavelength, an amplifier that amplifies and outputs the pulsed laser light, and an oscillation stage laser and the amplifier.
  • an optical isolator disposed on the optical path between the case and a first polarizer disposed within the case to transmit linearly polarized incident light at ultraviolet wavelengths; a first Faraday material that rotates the polarization direction of the pulsed laser beam that has passed through the first polarizer in a first rotation direction; a first Faraday rotator arranged in a case including a first magnet to be generated; and a first position adjustment mechanism for moving the first Faraday material relative to the case;
  • the cross-sectional shape of the first Faraday material and the cross-sectional shape of the first magnetic field generation region in a cross section perpendicular to the optical axis of the light transmitted through the one Faraday material have long axes in the same direction.
  • the position adjustment mechanism moves the first Faraday material in the short axis direction perpendicular to the long axis, generates laser light amplified by an amplifier using an ultraviolet laser device, and sends the amplified laser light to the exposure device It involves exposing laser light onto a photosensitive substrate in an exposure apparatus for outputting and manufacturing electronic devices.
  • FIG. 1 is a side view schematically showing the configuration of an ultraviolet laser device according to a comparative example.
  • FIG. 2 is a diagram showing a problem of the ultraviolet laser device according to the comparative example.
  • FIG. 3 schematically shows the configuration of an optical isolator according to a comparative example for suppressing return light.
  • FIG. 4 schematically shows the configuration of an ultraviolet laser device including an optical isolator.
  • FIG. 5 schematically shows the configuration of an optical isolator according to the first embodiment.
  • FIG. 6 is a cross-sectional view along line 6-6 in FIG.
  • FIG. 7 is an explanatory diagram showing an example of a shape having a long axis.
  • FIG. 1 is a side view schematically showing the configuration of an ultraviolet laser device according to a comparative example.
  • FIG. 2 is a diagram showing a problem of the ultraviolet laser device according to the comparative example.
  • FIG. 3 schematically shows the configuration of an optical isolator according to a comparative example for suppressing return
  • FIG. 8 schematically shows the cross-sectional shape of a cross section perpendicular to the optical axis of the Faraday rotator.
  • FIG. 9 shows a specific configuration example of the optical isolator according to the first embodiment.
  • 10 is a cross-sectional view taken along line 10-10 in FIG. 9.
  • FIG. 11 schematically shows the configuration of an optical isolator according to Modification 1.
  • FIG. 12 schematically shows the configuration of an optical isolator according to Modification 2.
  • FIG. 13 schematically shows the configuration of an optical isolator according to Modification 3.
  • FIG. 14 schematically shows the configuration of an optical isolator according to the second embodiment.
  • 15 is a cross-sectional view taken along line 15-15 in FIG. 14.
  • FIG. FIG. 16 schematically shows a configuration example of an exposure apparatus.
  • a “polarizer” is an optical element that separates light in a specific polarization direction (transmission axis direction) from light whose polarization direction is orthogonal to that.
  • parallel refers to a practically acceptable angle difference that does not lose its technical significance, unless otherwise specified, unless otherwise specified from the context. includes the notion of approximately parallelism, including the range of In addition, the terms “perpendicular” or “perpendicular” in this specification also lose their technical significance, unless explicitly stated otherwise, unless otherwise clear from the context. It includes the concept of substantially perpendicular or substantially perpendicular, including the range of practically acceptable angular differences without .
  • FIG. 1 is a side view schematically showing the configuration of an ultraviolet laser device 20 according to a comparative example.
  • the comparative examples of the present disclosure are forms known by the applicant to be known only by the applicant, and not known examples to which the applicant admits.
  • the ultraviolet laser device 20 is an excimer laser device including a master oscillator (MO) 22 that is an oscillation stage laser, an MO beam steering unit 24, and a power oscillator (PO) 26 that is an amplification stage laser.
  • MO 22 includes a band narrowing module (LNM) 30, a chamber 32, and an output coupling mirror 34.
  • LNM band narrowing module
  • the LNM 30 includes a prism expander 36 for narrowing the spectral linewidth and a grating 38.
  • the prism expander 36 and the grating 38 are arranged in a Littrow arrangement in which the incident angle and the diffraction angle match.
  • Out-coupling mirror 34 is a partially reflective mirror with a reflectivity of 40% to 60%.
  • Output coupling mirror 34 is arranged to form an optical cavity with LNM 30 .
  • a chamber 32 is placed on the optical path of the optical resonator.
  • the chamber 32 includes a pair of discharge electrodes 40a, 40b and two windows 42, 44 through which the laser light is transmitted.
  • the chamber 32 is filled with laser gas.
  • the laser gas includes rare gas, halogen gas, and buffer gas.
  • the rare gas may be argon (Ar) or krypton (Kr) gas, for example.
  • Halogen gas may be, for example, fluorine (F 2 ) gas.
  • the buffer gas may be neon (Ne) gas, for example.
  • a voltage is applied between the discharge electrodes 40a and 40b by a power source (not shown).
  • the power supply may be a pulse power module (PPM) that includes a switch and charging capacitor.
  • PPM pulse power module
  • the MO beam steering unit 24 includes a high reflection mirror 50 and a high reflection mirror 52, and is arranged so that the laser light output from the MO 22 is incident on the PO 26.
  • MO pulse energy monitor 54 is arranged between the high reflection mirror 50 and the high reflection mirror 52 .
  • MO pulse energy monitor 54 includes beam splitter (BS) 55 and optical sensor 56 .
  • the BS 55 is arranged on the optical path of the pulsed laser beam output from the MO 22 and arranged so that the reflected light from the BS 55 is incident on the optical sensor 56 .
  • PO 26 is an amplification stage laser that includes a rear mirror 60 , a chamber 62 and an output coupling mirror 64 .
  • the rear mirror 60 and the output coupling mirror 64 constitute an optical resonator, and a chamber 62 is arranged on the optical path of this optical resonator.
  • the configuration of the chamber 62 may be similar to that of the chamber 32.
  • the chamber 62 includes a pair of discharge electrodes 70a, 70b and two windows 72,74.
  • the chamber 62 is filled with laser gas.
  • Rear mirror 60 may be, for example, a partially reflective mirror with a reflectivity of 50% to 90%.
  • Out-coupling mirror 64 may be a partially reflective mirror with a reflectivity of 10% to 30%.
  • a high voltage pulse is applied between the discharge electrodes 40a and 40b in the chamber 32 from a power source (not shown).
  • a discharge is generated between the discharge electrodes 40a and 40b in the chamber 32, the laser gas is excited, and the ultraviolet wavelength of 150 nm to 380 nm narrowed by the optical resonator composed of the output coupling mirror 34 and the LNM 30. of pulsed laser light is output from the output coupling mirror 34 .
  • the energy of the pulsed laser light output from the output coupling mirror 34 is measured by the MO pulse energy monitor 54 . Also, this pulsed laser light is incident on the rear mirror 60 of the PO 26 as seed light by the MO beam steering unit 24 .
  • a high voltage pulse is applied between the discharge electrodes 70 a and 70 b inside the chamber 62 from a power source (not shown).
  • a discharge is generated between the discharge electrodes 70a and 70b in the chamber 62, the laser gas is excited, and the seed light is amplified by the Fabry-Perot optical resonator composed of the output coupling mirror 64 and the rear mirror 60.
  • a pulsed laser beam is output from the output coupling mirror 64 .
  • FIG. 2 is a diagram showing a problem of the ultraviolet laser device 20 according to the comparative example.
  • the "returned light” referred to here includes two types of MO returned light and PO exit light.
  • the light emitted from the MO 22 is incident on the PO 26, but since the rear mirror 60 inside the PO 26 is a partially reflecting mirror (reflectance 50% to 90%), part of the light incident on the rear mirror 60 is inside the PO 26. Instead of going to , it returns to the MO22 side as it is.
  • the light that is reflected by the rear mirror 60 and returns to the MO 22 side without proceeding into the chamber 62 of the PO 26 is called "MO return light".
  • the light incident on the PO 26 from the MO 22 and transmitted through the rear mirror 60 is resonated and amplified within the PO 26 and output.
  • rear mirror 60 in PO 26 is a partially reflective mirror, so some of the light that enters chamber 62 of PO 26 and is amplified returns to MO 22 .
  • the light that passes through the rear mirror 60 and returns to the MO 22 is called "PO light".
  • the return light from the PO 26 becomes a heat load on the LNM 30, etc., and can cause deterioration in line width stability, pulse energy stability, and the like.
  • FIG. 3 schematically shows a configuration example of an optical isolator 80 according to a comparative example that suppresses return light.
  • An optical isolator 80 is placed between MO 22 and PO 26 .
  • the upper part of FIG. 3 shows the operation of the optical isolator 80 with respect to the pulsed laser light (MO injection light: outgoing light) traveling from the MO 22 to the PO 26 .
  • the lower part of FIG. 3 shows the operation of the optical isolator 80 with respect to laser light (return light) traveling from the PO 26 toward the MO 22 .
  • the optical isolator 80 has a half-wave plate 81, a first polarizer 83, a Faraday rotator 84, and a second polarizer 88 arranged in this order from the MO 22 side.
  • Faraday rotator 84 includes Faraday material 85 and magnets 86 .
  • the magnet 86 has a hollow structure, and the Faraday material 85 is arranged inside through a holder.
  • the internal space (hollow portion) of the magnet 86 in which the Faraday material 85 is arranged is a magnetic field generation region where the magnetic field applied to the Faraday material 85 is generated.
  • Magnet 86 may be a permanent magnet. In FIG.
  • the rightward arrow shown in the Faraday rotator 84 indicates the direction of the magnetic field applied to the Faraday material 85 by the magnet 86.
  • a double-headed arrow shown in a dashed circle in the figure represents the direction of the plane of polarization of the pulsed laser beam when the line of sight is aligned with the direction in which the pulsed laser beam travels, that is, the polarization direction.
  • a linearly polarized pulsed laser beam polarized in a specific direction (here, the horizontal direction is exemplified) is output from the MO 22 .
  • the polarization direction of the linearly polarized pulsed laser light output from the MO 22 is rotated counterclockwise by 45 degrees by the half-wave plate 81 .
  • the first polarizer 83 has its transmission axis parallel to the polarization direction of the pulsed laser beam output from the half-wave plate 81, and the pulsed laser beam output from the half-wave plate 81 is , is transmitted through the first polarizer 83 .
  • the pulsed laser beam transmitted through the first polarizer 83 has its polarization direction rotated 45 degrees clockwise by the Faraday material 85 to which the magnetic field is applied. As a result, the pulsed laser light output from the Faraday rotator 84 is horizontally polarized.
  • the second polarizer 88 has its transmission axis parallel to the polarization direction of the pulsed laser light output from the Faraday rotator 84, and the pulsed laser light output from the Faraday rotator 84 is directed to the second After passing through polarizer 88 , it enters PO 26 .
  • the half-wave plate 81 adjusts the polarization direction of the pulsed laser beam from the MO 22 so that the polarization direction of the pulsed laser beam output from the MO 22 and the polarization direction of the pulsed laser beam incident on the PO 26 are the same. . Thereby, even if the optical isolator 80 is arranged, the polarization direction of the pulsed laser light does not change before and after the optical isolator 80 .
  • the polarized component in the same polarization direction as the pulsed laser light incident on the PO 26 is transmitted through the second polarizer 88, and the polarization direction is rotated 45 degrees clockwise by the Faraday material 85 to which the magnetic field is applied. Then, the return light is reflected by the first polarizer 83 and does not enter the MO 22 .
  • the polarization component with a polarization direction different from that of the pulsed laser light incident on the PO 26 is reflected by the second polarizer 88 and does not return to the MO 22 .
  • the second polarizer 88 is arranged to remove the disturbed polarization component when the polarization of the return light from the PO 26 is disturbed to obtain a higher effect of the optical isolator 80 . Therefore, the second polarizer 88 may not be used when there is no polarization disturbance of the returned light or when a sufficient extinction ratio can be obtained even with the disturbed returned light.
  • the ratio of return light passing through the first polarizer 83 to return light incident on the second polarizer 88 is called an extinction ratio.
  • FIG. 4 schematically shows the configuration of the ultraviolet laser device 21 including the optical isolator 90.
  • FIG. With regard to the configuration shown in FIG. 4, differences from FIGS. 1 to 3 will be described.
  • the ultraviolet laser device 21 shown in FIG. 4 has a configuration in which an optical isolator 90 is arranged between the MO beam steering unit 24A and the MO beam steering unit 24B in order to suppress return light.
  • a Faraday rotator 91 is arranged instead of the half-wave plate 81 in FIG. This is because the Faraday material forming the Faraday rotator 91 has a higher resistance to the laser light of the ultraviolet wavelength than the half-wave plate 81 does. Note that the function of the Faraday rotator 91 is the same as that of the half-wave plate 81 .
  • the Faraday rotator 91 has a structure similar to that of the Faraday rotator 84 and includes a Faraday material FM and a magnet MG (not shown).
  • the downward arrow shown in the Faraday rotator 91 in FIG. 4 represents the direction of the magnetic field applied to the Faraday material FM.
  • the direction of the magnetic field applied to the Faraday material FM by the magnet MG of the Faraday rotator 91 is opposite to the direction of the magnetic field applied to the Faraday material 85 of the Faraday rotator 84 .
  • the optical isolator 90 includes an isolator case 96 in which a Faraday rotator 91, a first polarizer 83, a Faraday rotator 84 and a second polarizer 88 are arranged.
  • the MO beam steering unit 24A includes a high reflection mirror 50 and a beam splitter 55.
  • MO beam steering unit 24B includes a highly reflective mirror 52 .
  • the isolator case 96 is connected to the case of the MO beam steering unit 24A via the bellows 25A and to the case of the MO beam steering unit 24B via the bellows 25B.
  • the optical isolator 90 must be arranged so that the pulsed laser light passes through the Faraday material FM, the first polarizer 83, the Faraday material 85, and the second polarizer 88.
  • the optical axis of the pulsed laser light directed from the MO 22 to the PO 26 differs depending on the device. Therefore, in the optical isolator 90, the Faraday material FM having a sufficient size with respect to the cross section (beam cross section) of the pulsed laser light, the first polarizer 83, the Faraday material 85, and the second polarized light A child 88 is arranged.
  • Such a problem is not limited to the optical isolator 90 illustrated in FIG. It becomes large and maintenance becomes bad.
  • FIG. 5 schematically shows the configuration of the optical isolator 110 according to the first embodiment.
  • FIG. 6 is a cross-sectional view along line 6-6 in FIG.
  • the configurations shown in FIGS. 5 and 6 will be described with respect to the differences from the optical isolator 90 shown in FIG.
  • the term "section” or "sectional shape” refers to a section perpendicular to the optical axis of the pulsed laser beam PL as shown in FIG. 6 or the shape of the section, unless otherwise specified.
  • the traveling direction of the pulsed laser beam PL is parallel to the V-axis direction (V direction), and the cross section shown in FIG. 6 is the HZ plane parallel to the H-axis and Z-axis.
  • the optical isolator 110 includes a Faraday rotator 120 and a Faraday rotator 122 instead of the Faraday rotator 91 and the Faraday rotator 84 of FIG.
  • Faraday rotator 120 is arranged on the side closer to MO22 than first polarizer 83, that is, on the incident side of first polarizer 83 on the optical path of pulsed laser light PL output from MO22 toward PO26. be.
  • Faraday rotator 120 includes Faraday material 130 and magnets 140 .
  • the size of the magnet 140 of the Faraday rotator 120 can be reduced as the cross-sectional shape of the magnetic field generation region 142 in which the Faraday material 130 is arranged is smaller. Since the cross-sectional shape of the pulsed laser beam PL output from the MO 22 is a shape having a long axis (for example, a rectangle), regarding the cross-sectional shape of the magnetic field generation region 142, the length of the short axis orthogonal to the long axis is longer than that of the long axis. Making it shorter is more effective in miniaturizing the magnet 140 .
  • the cross-sectional shape of the Faraday material 130 is made to have a long axis in the same direction as the cross-sectional shape of the pulse laser beam PL, and the short axis is made as short as possible. Further, in accordance with the Faraday material 130 , the cross-sectional shape of the magnetic field generating region 142 of the magnet 140 is made to have a long axis in the same direction as the Faraday material 130 .
  • the position of the optical isolator 110 is adjusted by moving the Faraday material 130 in a direction parallel to the short axis (short axis direction).
  • a position adjustment mechanism is arranged. A configuration example of the position adjustment mechanism will be described later with reference to FIGS. 8 and 9.
  • FIG. The position adjustment mechanism is a mechanism that moves the Faraday rotator 120 relative to the isolator case 96 .
  • a double-headed arrow parallel to the Z direction in FIGS. 5 and 6 represents the direction in which the Faraday rotator 120 is moved by the position adjustment mechanism.
  • the position adjustment mechanism may be configured to move the first polarizer 83 together with the movement of the Faraday rotator 120 . That is, the Faraday material 130 and the first polarizer 83 may be integrally structured, and the position adjustment mechanism may move the Faraday material 130 and the first polarizer 83 integrally.
  • the optical isolator 110 may include a rotating mechanism that rotates the Faraday material 130 about an axis perpendicular to the optical axis of the pulsed laser beam PL and the minor axis direction of the Faraday material 130 .
  • a configuration example of the rotation mechanism will be described later with reference to FIGS. 8 and 9. FIG.
  • Fig. 7 shows an example of a shape with a long axis.
  • a shape having a major axis means a longitudinal shape having a major axis and a minor axis, and the length in the first direction, which is the major axis direction, is the second direction, which is the minor axis direction perpendicular to the first direction.
  • a shape that is longer than the length in the direction of Shapes with long axes include, for example, ellipses and rectangles. As shown in the left diagram of FIG. 7, the ellipse has a major axis and a minor axis. As shown in the right diagram of FIG. 7, in the case of a rectangle, the long side is defined as the long axis and the short side is defined as the short axis.
  • Shapes having major axes include a shape in which two circles having the same radius are connected by a common outer tangent line (ellipse) and a shape in which the four corners of a rectangle are rounded (rounded rectangle).
  • FIG. 8 schematically shows the cross-sectional shape of the Faraday rotator 120.
  • the Faraday material 130 is held in a Faraday material holder 132 and placed in the magnetic field generating region 142 of the magnet 140 .
  • the direction of the magnetic field through Faraday material 130 is parallel to the direction of light propagation.
  • the direction of rotation of the plane of polarization (direction of polarization) by the Faraday rotator 120 depends on the sign of the Verdet constant and the direction of the applied magnetic field.
  • the cross-sectional shape of the Faraday material 130 is a shape having a long axis in the same direction as the cross-sectional shape of the pulsed laser beam PL, and is larger than the cross-sectional shape of the pulsed laser beam PL.
  • the cross-sectional shape of the Faraday material 130 illustrated in FIG. 8 is a rectangle with the major axis oriented in the H direction, and the length LFMz of the minor axis of the Faraday material 130 is the length of the minor axis of the cross-sectional shape of the pulse laser beam PL. Longer than LPLz, the major axis length LFMh of the Faraday material 130 is longer than the major axis length LPLh of the cross-sectional shape of the pulsed laser beam PL.
  • the difference (LFMz ⁇ LPLz) between the minor axis length LFMz of the Faraday material 130 and the minor axis length LPLz of the pulsed laser beam PL may be, for example, about 2 mm to 4 mm. Also, the difference (LFMh ⁇ LPLh) between the major axis length LFMh of the Faraday material 130 and the major axis length LPLh of the pulsed laser beam PL may be, for example, about 3 mm to 5 mm. Since the Faraday material 130 is movable in the minor axis direction, the minor axis length difference (LFMz ⁇ LPLz) may be smaller than the major axis length difference (LFMz ⁇ LPLz).
  • the cross-sectional shape of the magnetic field generating region 142 in which the Faraday material 130 is arranged is a shape having the long axis in the same direction as the cross-sectional shape of the Faraday material 130 .
  • the cross-sectional shape of the magnetic field generation region 142 illustrated in FIG. 8 is a rectangle with the long axis directed in the H direction.
  • the minor axis length LMGz of the magnetic field generation region 142 is longer than the minor axis length LFMz of the Faraday material 130 and is as short as possible.
  • the difference between LMGz and LFMz (LMGz-LFMz) is preferably 2 mm or less, more preferably 1 mm or less.
  • the length LMGh of the major axis of the magnetic field generation region 142 is equal to or longer than the length LFMh of the major axis of the Faraday material 130, and is actually equal to or longer than the length of the Faraday material holder 132 in the H direction.
  • the difference (LMGh-LFMh) between the major axis length LMGh of the magnetic field generating region 142 and the major axis length LFMh of the Faraday material 130 is greater than the difference (LMGz-LFMz) between LMGz and LFMz in the minor axis direction.
  • the short axis length LPLz of the cross section of the pulsed laser beam PL is 2 mm and the long axis length LPLh is 12 mm
  • the length of the short axis of the Faraday material 130 is A preferred value for LFMz is between 4 mm and 6 mm
  • a preferred value for the major axis length LFMh is between 15 mm and 17 mm.
  • the short axis length LMGz of the magnetic field generation region 142 preferably has a value of 4 mm to 7 mm
  • the long axis length LMGh preferably has a value of 17 mm or more.
  • the Faraday rotator 122 may also have the same configuration as the Faraday rotator 120.
  • FIG. 10 is a cross-sectional view taken along line 10-10 in FIG. 9.
  • FIG. 10 is a cross-sectional view taken along line 10-10 in FIG. 9.
  • the Faraday material 130 of the Faraday rotator 120, the Faraday material holder 132, the magnet 140, the polarizer holder 146, and the first polarizer 83 form a magnet block MGB1 with an integrated structure.
  • the members other than the magnet 140 are non-magnetic materials.
  • the non-magnetic material may be, for example, copper-based, aluminum-based, austenitic stainless steel, or the like.
  • the first polarizer 83 is configured integrally with the Faraday rotator 120 while being held by the polarizer holder 146 .
  • Faraday material 130 is placed in magnetic field generating region 142 of magnet 140 while being held in Faraday material holder 132 .
  • the Faraday material 150 of the Faraday rotator 122, the Faraday material holder 152, the magnet 160, the polarizer holder 166, and the second polarizer 88 form a magnet block MGB2 with an integrated structure.
  • the members other than the magnet 160 are non-magnetic materials.
  • the second polarizer 88 is configured integrally with the Faraday rotator 122 while being held by the polarizer holder 166 .
  • Faraday material 150 is placed in magnetic field generating region 162 of magnet 160 while being held in Faraday material holder 152 .
  • the magnet block MGB1 and the magnet block MGB2 are arranged in an isolator case 96 that can be sealed.
  • the H-direction opening of the isolator case 96 is covered with an isolator lid 98 .
  • the isolator case 96 and isolator lid 98 are sealed with an O-ring 97 .
  • the isolator lid 98 has through holes 99a and 99b, the slide plate 170 is inserted into the through hole 99a, and the slide plate 180 is inserted into the through hole 99b.
  • the through holes 99a and 99b are elongated in the Z direction, and the slide plate 170 is fixed to the isolator lid 98 so as to be slidable in the Z direction along the through holes 99a.
  • the slide plate 170 For example, at the four corners of the slide plate 170 are formed through holes 171 through which fixing screws (not shown) are passed for fixing the slide plate 170 to the isolator lid 98 .
  • the through hole 171 may also be an oval elongated in the Z direction.
  • the isolator lid 98 is provided with a Z-direction adjusting screw 172 for sliding the slide plate 170 in the Z-direction.
  • the magnet block MGB1 is supported by the slide plate 170 via a shaft 174, as shown in FIG. That is, magnet block MGB1 is fixed to one end of shaft 174 , and shaft 174 is inserted into through-hole 175 of slide plate 170 .
  • the shaft 174 has a cylindrical shape and is rotatable about a rotation axis parallel to the H direction.
  • a handle 176 is fixed to the other end of the shaft 174 , the handle 176 rotates around the rotation axis of the shaft 174 and is fixed to the slide plate 170 .
  • the shaft 174 and the slide plate 170 are sealed with an O-ring 178, and the slide plate 170 and the isolator lid 98 are sealed with an O-ring 179.
  • the configurations of the magnet block MGB2, the slide plate 180, the shaft 184, the through hole 185, and the handle 186 are also similar to those of the magnet block MGB1 and the like.
  • the slide plate 180 is fixed to the isolator lid 98 so as to be slidable in the Z direction along the through hole 99b.
  • the through hole 181 of the slide plate 180 may be an elongated hole elongated in the Z direction, and the isolator lid 98 is provided with a Z direction adjusting screw 182 for sliding the slide plate 180 in the Z direction.
  • the shaft 184 and the slide plate 180 are sealed with an O-ring 188, and the slide plate 180 and the isolator lid 98 are sealed with an O-ring 189.
  • Faraday material 130 and Faraday material 150 may be, for example, calcium fluoride (CaF 2 ) crystals.
  • the isolator case 96 is provided with an introduction port 190 and an introduction port 191 for introducing the purge gas, and an exhaust port 194 and an exhaust port 195 for exhausting the purge gas.
  • the optical isolator 110 is positioned on the frame (not shown) of the ultraviolet laser device 21 with positioning pins (not shown).
  • Step 1 Attach an optical sensor PS (not shown) such as a power meter to the location of the bellows 25B.
  • an optical sensor PS such as a power meter
  • the handle 176 may be rotated on an axis parallel to the H axis and fixed at a position where the power of the optical sensor PS is maximized.
  • the purge gas may be introduced into the isolator case 96 from the introduction port 191 through the introduction port 190 and exhausted from the exhaust port 195 through the exhaust port 194 .
  • the purge gas may be introduced from the bellows 25A and exhausted from the bellows 25B without arranging the introduction port 190 and the introduction port 191 and the exhaust port 194 and the exhaust port 195.
  • the purge gas may flow in the opposite direction.
  • the purge gas may be nitrogen, for example. Nitrogen is an example of a "gas" in this disclosure.
  • the bellows 25A, 25B can be examples of "inlet” and "exhaust port” in the present disclosure.
  • the function of the Faraday rotator 120 is the same as that of the half-wave plate 81 in FIG.
  • the function of Faraday rotator 122 is the same as that of Faraday rotator 84 in FIG.
  • the isolator case 96 and the isolator lid 98 are examples of "case” in this disclosure.
  • the pulsed laser beam PL that passes through the Faraday rotator 122 and enters the first polarizer 83 is an example of “incident light” in the present disclosure.
  • the Faraday rotator 122 is an example of the "first Faraday rotator" in the present disclosure
  • the Faraday material 150, the magnet 160 and the magnetic field generation region 162 are the “first Faraday material” and the “first magnet” in the present disclosure.
  • the magnetic field generated in the magnetic field generation region 162 by the magnet 160 is an example of the "first magnetic field” in the present disclosure.
  • a position adjustment mechanism including a slide plate 180 and a Z direction adjustment screw 182 for moving the magnet block MGB2 in the Z direction is an example of the "first position adjustment mechanism” in the present disclosure.
  • the slide plate 180 is an example of the "first slide plate” in the present disclosure
  • the Z-direction adjusting screw 182 is an example of the "first adjusting screw” in the present disclosure.
  • a rotation mechanism including a shaft 184 and a handle 186 for rotating the magnet block MGB2 about a rotation axis parallel to the H direction is an example of the "first rotation mechanism” in the present disclosure.
  • Axis 184 is an example of a "first axis” in the present disclosure.
  • the rotation direction (clockwise direction in FIG.
  • the Faraday rotator 120 is an example of the "second Faraday rotator” in the present disclosure
  • the Faraday material 130, the magnet 140 and the magnetic field generation region 142 are the “second Faraday material” and the "second magnet” in the present disclosure.
  • the magnetic field generated in the magnetic field generation region 142 by the magnet 140 is an example of the "second magnetic field” in the present disclosure.
  • a position adjustment mechanism including a slide plate 170 and a Z direction adjustment screw 172 for moving the magnet block MGB1 in the Z direction is an example of the "second position adjustment mechanism” in the present disclosure.
  • the slide plate 170 is an example of a “second slide plate” in this disclosure
  • the Z-direction adjusting screw 172 is an example of a “second adjusting screw” in this disclosure.
  • a rotation mechanism including a shaft 174 and a handle 176 for rotating the magnet block MGB1 about a rotation axis parallel to the H direction is an example of the "second rotation mechanism” in the present disclosure.
  • Axis 174 is an example of a "second axis" in the present disclosure.
  • the rotation direction (counterclockwise direction in FIG. 3) in which the polarization direction of the pulsed laser beam PL rotated by 45 degrees due to the transmission of the pulsed laser beam PL output from the MO 22 through the Faraday rotator 120 is the “second It is an example of "direction of rotation”.
  • the cross-sectional shape of the Faraday materials 130 and 150 has a long axis and the short axis is made as short as possible. Since the magnetic field generating regions 142 and 162 of 140 and 160 have cross-sectional shapes with long axes in the same direction, the magnets 140 and 160 can be efficiently miniaturized.
  • the pulsed laser beam PL traveling from the MO 22 to the PO 26 deviates from the design value
  • the pulsed laser beam is The light PL can be adjusted to pass through the Faraday material 130,150.
  • the weight of the optical isolator 110 is correspondingly reduced, and maintainability is improved.
  • FIG. 11 schematically shows the configuration of an optical isolator 111 according to Modification 1.
  • the optical isolator 111 shown in FIG. 11 may be employed instead of the optical isolator 110 described in FIGS. Regarding the configuration shown in FIG. 11, points different from FIG. 9 will be described.
  • the Faraday rotator 120 may not be arranged.
  • an optical isolator 111 as shown in FIG. 11 can be used.
  • the optical isolator 111 does not have the Faraday rotator 120 arranged thereon, nor does it have position adjusting mechanisms such as the slide plate 170 and the Z-direction adjusting screw 172 for moving the Faraday rotator 120 .
  • first polarizer 83 In optical isolator 111 , first polarizer 83 , polarizer holder 147 , Faraday material 150 of Faraday rotator 122 , Faraday material holder 152 , magnet 160 , polarizer holder 166 , and second polarizer 88 . is an integral structure and constitutes the magnet block MGB2.
  • the first polarizer 83 is configured integrally with the Faraday rotator 122 while being held by the polarizer holder 147 .
  • Other configurations may be the same as those of the optical isolator 110 according to the first embodiment.
  • FIG. 12 schematically shows the configuration of an optical isolator 112 according to Modification 2. As shown in FIG. If there is no polarization disturbance of the return light or if a sufficient extinction ratio can be obtained even with the return light whose polarization is disturbed, the second polarizer 88 does not have to be arranged, and the optical isolator 111 in FIG. , an optical isolator 112 as shown in FIG. 12 may be employed. Regarding the configuration shown in FIG. 12, points different from FIG. 11 will be described.
  • the second polarizer 88 and the polarizer holder 166 are not arranged in the optical isolator 112 .
  • Other configurations are the same as those of the optical isolator 111 shown in FIG.
  • FIG. 13 schematically shows the configuration of an optical isolator 113 according to Modification 3. As shown in FIG. The optical isolator 113 shown in FIG. 13 may be employed instead of the optical isolator 110 described in FIGS. Regarding the configuration shown in FIG. 13, points different from FIG. 5 will be described.
  • the optical isolator 113 has the optical axis shift canceling element 201 arranged on the optical path between the first polarizer 83 and the Faraday rotator 122, and the optical axis shift cancellation element 201 on the optical path between the second polarizer 88 and the bellows 25B.
  • An axis shift canceling element 202 is arranged.
  • the optical axis shift canceling element 202 is located closer to the PO 26 than the second polarizer 88 is, that is, on the optical path of the pulsed laser beam PL output from the Faraday rotator 122 and traveling toward the second polarizer 88 . 2 on the output side of the polarizer 88 .
  • the optical axis shift canceling elements 201 and 202 may be parallel flat plates of calcium fluoride, for example.
  • the optical axis shift canceling element 201 is an example of the "first optical axis shift canceling element" in the present disclosure.
  • the optical axis shift canceling element 202 is an example of the "second optical axis shift canceling element" in the present disclosure.
  • the optical axis shift canceling element 201 may be placed in the polarizer holder 146 of the magnet block MGB1.
  • the optical axis shift canceling element 202 may be arranged in the polarizer holder 166 of the magnet block MGB2.
  • the optical axis of the pulsed laser beam PL output from the MO 22 is offset before and after passing through the first polarizer 83 . This offset is canceled by arranging the optical axis shift canceling element 201 .
  • the optical axis of the pulsed laser beam PL output from the MO 22 is offset before and after transmission through the second polarizer 88 . This offset is canceled by arranging the optical axis shift canceling element 202 .
  • the optical axis shift canceling element 202 is also unnecessary.
  • the optical axis shift canceling element 202 by arranging the optical axis shift canceling element 202, the optical axis of the pulsed laser beam PL passing through the Faraday material 130 and the optical axis of the pulsed laser beam PL output from the optical isolator 113 toward the PO 26 are aligned. Become. Other functions and effects are the same as those of the first embodiment.
  • FIG. 14 schematically shows the configuration of the optical isolator 114 according to the second embodiment.
  • 15 is a cross-sectional view taken along line 15-15 in FIG. 14.
  • the optical isolator 114 shown in FIG. 14 may be employed instead of the optical isolator 110 described in FIGS. Regarding the configuration shown in FIGS. 14 and 15, differences from FIGS. 9 and 10 will be described.
  • a slide plate 210 having the functions of the slide plates 170 and 180 is arranged.
  • the slide plate 210 has through holes 211 instead of the through holes 171 and 181 .
  • Other configurations may be the same as those of the first embodiment.
  • Z-direction adjustment of the slide plate 210 is performed using the Z-direction adjustment screw 172 and the Z-direction adjustment screw 182 . Note that the Z-direction adjustment of the slide plate 210 may be performed with only one of the Z-direction adjusting screw 172 and the Z-direction adjusting screw 182 . Other operations are the same as in the first embodiment.
  • the slide plate 210 is an example of the "third slide plate" in the present disclosure.
  • the oscillation stage laser is not limited to a band-narrowed gas laser such as MO22 shown in FIG.
  • the oscillation stage laser may be a solid-state laser that oscillates at a wavelength of approximately 193.4 nm, or an ultraviolet solid-state laser that outputs fourth harmonic light of a titanium sapphire laser (wavelength of approximately 774 nm).
  • the amplification stage laser is not limited to a configuration having a Fabry-Perot type resonator such as the PO26 shown in FIG. 4, and may have a configuration having a ring resonator.
  • the amplification-stage laser is not limited to a configuration having an optical resonator, and may be a simple amplifier.
  • the amplification stage laser may be a multi-pass amplifier such as a 3-pass amplifier that amplifies the seed light by reflecting it off a cylindrical mirror and passing it through the discharge space three times.
  • FIG. 16 schematically shows a configuration example of an exposure apparatus 300 .
  • Exposure apparatus 300 includes illumination optical system 304 and projection optical system 306 .
  • the ultraviolet laser device 21 generates laser light and outputs it to the exposure device 300 .
  • the illumination optical system 304 illuminates a reticle pattern of a reticle (not shown) arranged on the reticle stage RT with laser light incident from the ultraviolet laser device 21 .
  • the projection optical system 306 reduces and projects the laser beam transmitted through the reticle to form an image on a workpiece (not shown) placed on the workpiece table WT.
  • the workpiece is a photosensitive substrate, such as a semiconductor wafer, coated with photoresist.
  • the exposure apparatus 300 synchronously translates the reticle stage RT and the workpiece table WT, thereby exposing the workpiece to laser light reflecting the reticle pattern.
  • a semiconductor device can be manufactured through a plurality of processes.
  • a semiconductor device is an example of an "electronic device" in this disclosure.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Power Engineering (AREA)

Abstract

本開示の一観点に係る光アイソレータは、ケースと、紫外線波長の直線偏光の入射光が透過するようにケース内に配置される第1の偏光子と、第1の偏光子を透過した光の偏光方向を第1の回転方向に回転させる第1のファラデー材料と第1のファラデー材料が配置される第1の磁場発生領域に第1の磁場を発生する第1の磁石とを含みケース内に配置される第1のファラデー回転子と、第1のファラデー材料をケースに対して相対的に移動させる第1の位置調整機構とを備える。第1のファラデー材料を透過する光の光軸に垂直な断面における第1のファラデー材料の断面形状と、第1の磁場発生領域の断面形状とは同じ向きの長軸を持つ形状である。第1の位置調整機構は、第1のファラデー材料を長軸に垂直な短軸方向に移動させる。

Description

光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法
 本開示は、光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法に関する。
 近年、半導体露光装置においては、半導体集積回路の微細化及び高集積化につれて、解像力の向上が要請されている。このため、露光用光源から放出される光の短波長化が進められている。例えば、露光用のガスレーザ装置としては、波長約248nmのレーザ光を出力するKrFエキシマレーザ装置、ならびに波長約193nmのレーザ光を出力するArFエキシマレーザ装置が用いられる。
 KrFエキシマレーザ装置及びArFエキシマレーザ装置の自然発振光のスペクトル線幅は、350~400pmと広い。そのため、KrF及びArFレーザ光のような紫外線を透過する材料で投影レンズを構成すると、色収差が発生してしまう場合がある。その結果、解像力が低下し得る。そこで、ガスレーザ装置から出力されるレーザ光のスペクトル線幅を、色収差が無視できる程度となるまで狭帯域化する必要がある。そのため、ガスレーザ装置のレーザ共振器内には、スペクトル線幅を狭帯域化するために、狭帯域化素子(エタロンやグレーティング等)を含む狭帯域化モジュール(Line Narrowing Module:LNM)が備えられる場合がある。以下では、スペクトル線幅が狭帯域化されるガスレーザ装置を狭帯域化ガスレーザ装置という。
欧州特許出願公開第1072938号 特開2007-183419号公報
概要
 本開示の一観点に係る光アイソレータは、ケースと、紫外線波長の直線偏光の入射光が透過するようにケース内に配置される第1の偏光子と、第1の偏光子を透過した光の偏光方向を第1の回転方向に回転させる第1のファラデー材料と第1のファラデー材料が配置される第1の磁場発生領域に第1の磁場を発生する第1の磁石とを含みケース内に配置される第1のファラデー回転子と、第1のファラデー材料をケースに対して相対的に移動させる第1の位置調整機構と、を備え、第1のファラデー材料を透過する光の光軸に垂直な断面における第1のファラデー材料の断面形状と、第1の磁場発生領域の断面形状とは同じ向きの長軸を持つ形状であり、第1の位置調整機構は、第1のファラデー材料を長軸に垂直な短軸方向に移動させる。
 本開示の他の一観点に係る紫外線レーザ装置は、紫外線波長の直線偏光のパルスレーザ光を出力する発振段レーザと、パルスレーザ光を増幅して出力する増幅器と、発振段レーザと増幅器との間の光路上に配置される光アイソレータと、を備え、光アイソレータは、ケースと、紫外線波長の直線偏光の入射光が透過するようにケース内に配置される第1の偏光子と、第1の偏光子を透過したパルスレーザ光の偏光方向を第1の回転方向に回転させる第1のファラデー材料と第1のファラデー材料が配置される第1の磁場発生領域に第1の磁場を発生する第1の磁石とを含みケース内に配置される第1のファラデー回転子と、第1のファラデー材料をケースに対して相対的に移動させる第1の位置調整機構と、を備え、第1のファラデー材料を透過する光の光軸に垂直な断面における第1のファラデー材料の断面形状と、第1の磁場発生領域の断面形状とは同じ向きの長軸を持つ形状であり、第1の位置調整機構は、第1のファラデー材料を長軸に垂直な短軸方向に移動させる。
 本開示の他の一観点に係る電子デバイスの製造方法は、紫外線波長の直線偏光のパルスレーザ光を出力する発振段レーザと、パルスレーザ光を増幅して出力する増幅器と、発振段レーザと増幅器との間の光路上に配置される光アイソレータと、を備え、光アイソレータは、ケースと、紫外線波長の直線偏光の入射光が透過するようにケース内に配置される第1の偏光子と、第1の偏光子を透過したパルスレーザ光の偏光方向を第1の回転方向に回転させる第1のファラデー材料と第1のファラデー材料が配置される第1の磁場発生領域に第1の磁場を発生する第1の磁石とを含みケース内に配置される第1のファラデー回転子と、第1のファラデー材料をケースに対して相対的に移動させる第1の位置調整機構と、を備え、第1のファラデー材料を透過する光の光軸に垂直な断面における第1のファラデー材料の断面形状と、第1の磁場発生領域の断面形状とは同じ向きの長軸を持つ形状であり、第1の位置調整機構は、第1のファラデー材料を長軸に垂直な短軸方向に移動させる、紫外線レーザ装置を用いて増幅器により増幅されたレーザ光を生成し、増幅されたレーザ光を露光装置に出力し、電子デバイスを製造するために、露光装置内で感光基板上にレーザ光を露光することを含む。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、比較例に係る紫外線レーザ装置の構成を概略的に示す側面図である。 図2は、比較例に係る紫外線レーザ装置の課題を示す図である。 図3は、戻り光を抑制する比較例に係る光アイソレータの構成を概略的に示す。 図4は、光アイソレータを含む紫外線レーザ装置の構成を概略的に示す。 図5は、実施形態1に係る光アイソレータの構成を概略的に示す。 図6は、図5中の6-6線における断面図である。 図7は、長軸を持つ形状の例を示す説明図である。 図8は、ファラデー回転子の光軸に垂直な断面の断面形状を概略的に示す。 図9は、実施形態1に係る光アイソレータの具体的な構成例を示す。 図10は、図9中の10-10線における断面図である。 図11は、変形例1に係る光アイソレータの構成を概略的に示す。 図12は、変形例2に係る光アイソレータの構成を概略的に示す。 図13は、変形例3に係る光アイソレータの構成を概略的に示す。 図14は、実施形態2に係る光アイソレータの構成を概略的に示す。 図15は、図14中の15-15線における断面図である。 図16は、露光装置の構成例を概略的に示す。
実施形態
 -目次-
1.用語の説明
2.比較例に係る紫外線レーザ装置の概要
 2.1 構成
 2.2 動作
3.課題
4.実施形態1
 4.1 構成
 4.2 動作
 4.3 作用・効果
 4.4 変形例1
 4.5 変形例2
 4.6 変形例3
  4.6.1 構成
  4.6.2 動作
  4.6.3 作用・効果
5.実施形態2
 5.1 構成
 5.2 動作
 5.3 作用・効果
6.紫外線レーザ装置の他の構成例
7.電子デバイスの製造方法について
8.その他
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
 1.用語の説明
 「偏光子」とは、特定の偏光方向(透過軸方向)の光とそれと偏光方向が直交する光を分離する光学素子をいう。
 本明細書において「平行」という用語は、文脈から明らかな場合を除き、明記がない限り、厳密に平行である場合に限らず、技術的意義が失われることのない実用上許容される角度差の範囲を含む略平行の概念が含まれる。また、本明細書における「直交」又は「垂直」という用語についても、文脈から明らかな場合を除き、明記がない限り、厳密に直交又は垂直である場合に限らず、技術的意義が失われることのない実用上許容される角度差の範囲を含む略直交又は略垂直の概念が含まれる。
 2.比較例に係る紫外線レーザ装置の概要
 2.1 構成
 図1は、比較例に係る紫外線レーザ装置20の構成を概略的に示す側面図である。本開示の比較例とは、出願人のみによって知られていると出願人が認識している形態であって、出願人が自認している公知例ではない。
 紫外線レーザ装置20は、発振段レーザであるマスターオシレータ(MO)22と、MOビームステアリングユニット24と、増幅段レーザであるパワーオシレータ(PO)26とを含むエキシマレーザ装置である。MO22は、狭帯域化モジュール(LNM)30と、チャンバ32と、出力結合ミラー34とを含む。
 LNM30は、スペクトル線幅を狭帯域化するためのプリズムエキスパンダ36と、グレーティング38とを含む。プリズムエキスパンダ36とグレーティング38とは入射角度と回折角度とが一致するリトロー配置とされる。出力結合ミラー34は、反射率が40%~60%の部分反射ミラーである。出力結合ミラー34は、LNM30と共に光共振器を構成するように配置される。
 チャンバ32は、光共振器の光路上に配置される。チャンバ32は、一対の放電電極40a,40bと、レーザ光が透過する2枚のウインドウ42,44とを含む。チャンバ32内には、レーザガスが充填される。レーザガスは、レアガスと、ハロゲンガスと、バッファガスとを含む。レアガスは、例えばアルゴン(Ar)又はクリプトン(Kr)ガスであってよい。ハロゲンガスは、例えばフッ素(F)ガスであってよい。バッファガスは、例えばネオン(Ne)ガスであってよい。放電電極40a,40b間には不図示の電源によって電圧が印加される。電源は、スイッチと充電コンデンサとを含むパルスパワーモジュール(PPM)であってよい。
 MOビームステアリングユニット24は、高反射ミラー50と高反射ミラー52とを含み、MO22から出力されたレーザ光がPO26に入射するように配置される。
 高反射ミラー50と高反射ミラー52との間に、MOパルスエネルギモニタ54が配置される。MOパルスエネルギモニタ54は、ビームスプリッタ(BS)55と、光センサ56とを含む。BS55は、MO22から出力されるパルスレーザ光の光路上に配置され、BS55の反射光は光センサ56に入射するように配置される。
 PO26は、リアミラー60と、チャンバ62と、出力結合ミラー64とを含む増幅段レーザである。リアミラー60と出力結合ミラー64とは光共振器を構成し、この光共振器の光路上にチャンバ62が配置される。
 チャンバ62の構成は、チャンバ32と同様であってもよい。チャンバ62は、一対の放電電極70a,70bと、2枚のウインドウ72,74とを含む。チャンバ62内には、レーザガスが充填される。リアミラー60は、例えば、反射率50%~90%の部分反射ミラーであってよい。出力結合ミラー64は、反射率10%~30%の部分反射ミラーであってよい。
 2.2 動作
 不図示の電源より高電圧パルスがチャンバ32内の放電電極40a,40b間に印加される。チャンバ32内の放電電極40a,40b間で放電が発生すると、レーザガスが励起され、出力結合ミラー34とLNM30とで構成される光共振器によって狭帯域化された、波長が150nmから380nmの紫外線波長のパルスレーザ光が出力結合ミラー34から出力される。
 出力結合ミラー34から出力されたパルスレーザ光のエネルギは、MOパルスエネルギモニタ54で計測される。また、このパルスレーザ光はMOビームステアリングユニット24によってPO26のリアミラー60にシード光として入射する。
 リアミラー60を透過したシード光がチャンバ62に入射するタイミングで、不図示の電源より高電圧パルスがチャンバ62内の放電電極70a,70b間に印加される。チャンバ62内の放電電極70a,70b間で放電が発生すると、レーザガスが励起され、出力結合ミラー64とリアミラー60とで構成されるファブリーペロー型の光共振器によって、シード光が増幅され、増幅されたパルスレーザ光が出力結合ミラー64から出力される。
 3.課題
 図2は、比較例に係る紫外線レーザ装置20の課題を示す図である。MO22から出力されたパルスレーザ光のうち、PO26から戻る光(戻り光)があり、PO26からの戻り光がMO22まで戻るとレーザ性能が悪化する。ここでいう「戻り光」には、MO戻り光と、PO抜け光との2種類がある。MO22より出射された光は、PO26へと入射されるが、PO26内のリアミラー60は部分反射ミラー(反射率50%~90%)であるため、リアミラー60に入射する光の一部はPO26内部へ向かわずにそのままMO22側へ戻ってしまう。PO26のチャンバ62内に進むことなく、リアミラー60によって反射されてMO22側へと戻る光を「MO戻り光」という。
 一方、MO22よりPO26へ入射され、リアミラー60を透過した光は、PO26内で共振・増幅されて出力される。前述のとおり、PO26内のリアミラー60は部分反射ミラーであるため、PO26のチャンバ62に入射して増幅された光の一部はMO22へ戻ってしまう。PO26で増幅された光のうちリアミラー60を透過してMO22へと戻る光を「PO抜け光」という。
 PO26からの戻り光は、LNM30などの熱負荷となり、線幅の安定性や、パルスエネルギの安定性等が悪化する原因となり得る。MO22に進入する戻り光を抑制するために、MO22とPO26との間に光アイソレータを配置する方法がある。
 図3は、戻り光を抑制する比較例に係る光アイソレータ80の構成例を概略的に示す。光アイソレータ80は、MO22とPO26との間に配置される。図3の上段には、MO22からPO26へと向かって進むパルスレーザ光(MO注入光:行きの光)に対する光アイソレータ80の動作を示す。図3の下段には、PO26からMO22へと向かって進むレーザ光(戻りの光)に対する光アイソレータ80の動作を示す。
 光アイソレータ80は、MO22の側から、1/2波長板81と、第1の偏光子83と、ファラデー回転子84と、第2の偏光子88とがこの順に配置される。ファラデー回転子84は、ファラデー材料85と磁石86とを含む。磁石86は、中空構造となっており、内部にホルダを介してファラデー材料85が配置される。ファラデー材料85が配置される磁石86の内部空間(中空部分)は、ファラデー材料85に印加する磁場が発生する磁場発生領域である。磁石86は永久磁石であってよい。なお、図3において、ファラデー回転子84中に示す右向きの矢印は、磁石86によりファラデー材料85に印加される磁場の方向を表している。図中の破線円内に示す両向き矢印は、パルスレーザ光が進む方向に視線を合わせたときのパルスレーザ光の偏光面の方向、すなわち偏光方向を表している。
 図3の上段に示すように、MO22から特定方向(ここでは水平方向を例示)に偏光した直線偏光のパルスレーザ光が出力される。MO22から出力された直線偏光のパルスレーザ光は、1/2波長板81によって偏光方向が反時計回り方向に45度回転する。第1の偏光子83は、その透過軸が1/2波長板81から出力されたパルスレーザ光の偏光方向と平行に配置されており、1/2波長板81から出力されたパルスレーザ光は、第1の偏光子83を透過する。
 第1の偏光子83を透過したパルスレーザ光は、磁場が印加されたファラデー材料85により偏光方向が時計回り方向に45度回転する。これにより、ファラデー回転子84から出力されたパルスレーザ光は水平偏光となる。第2の偏光子88は、その透過軸がファラデー回転子84から出力されたパルスレーザ光の偏光方向と平行に配置されており、ファラデー回転子84から出力されたパルスレーザ光は、第2の偏光子88を透過した後、PO26に入射する。
 1/2波長板81は、MO22から出力されたパルスレーザ光の偏光方向とPO26に入射するパルスレーザ光の偏光方向とが同じになるように、MO22からのパルスレーザ光の偏光方向を調整する。これにより、光アイソレータ80を配置しても、光アイソレータ80の前後でパルスレーザ光の偏光方向は変化しない。
 戻り光のうち、PO26に入射するパルスレーザ光と同じ偏光方向の偏光成分は第2の偏光子88を透過し、磁場が印加されたファラデー材料85により偏光方向が時計回りに45度回転する。そして、第1の偏光子83で反射され、戻り光はMO22に入射しない。
 戻り光のうち、PO26に入射するパルスレーザ光と違う偏光方向の偏光成分は第2の偏光子88で反射され、MO22には戻らない。第2の偏光子88は、PO26からの戻り光の偏光が乱れていた際に乱れた偏光成分を除去してより高い光アイソレータ80の効果を得るために配置されている。したがって、戻り光の偏光の乱れがない場合や乱れた戻り光でも十分な消光比が得られる場合は第2の偏光子88を使用しないこともある。
 ここで、第2の偏光子88に入射する戻り光に対する第1の偏光子83を透過する戻り光の割合を消光比という。
 図4は、光アイソレータ90を含む紫外線レーザ装置21の構成を概略的に示す。図4に示す構成について、図1~図3と異なる点を説明する。図4に示す紫外線レーザ装置21は、戻り光を抑制するために、光アイソレータ90を、MOビームステアリングユニット24AとMOビームステアリングユニット24Bとの間に配置した構成となっている。
 光アイソレータ90においては、図3の1/2波長板81の代わりに、ファラデー回転子91が配置されている。これは1/2波長板81に比べて、ファラデー回転子91を構成するファラデー材料の方が紫外線波長のレーザ光に対して耐性が高いからである。なお、ファラデー回転子91の機能は1/2波長板81の機能と同じである。
 ファラデー回転子91は、ファラデー回転子84と同様の構造を有し、不図示のファラデー材料FMと磁石MGとを含む。図4においてファラデー回転子91の中に示した下向きの矢印はファラデー材料FMに印加される磁場の方向を表している。ファラデー回転子91の磁石MGによってファラデー材料FMに印加される磁場の方向は、ファラデー回転子84のファラデー材料85に印加される磁場の方向とは逆向きになっている。
 光アイソレータ90は、アイソレータケース96を含み、アイソレータケース96内にファラデー回転子91、第1の偏光子83、ファラデー回転子84及び第2の偏光子88が配置される。
 MOビームステアリングユニット24Aは、高反射ミラー50とビームスプリッタ55とを含む。MOビームステアリングユニット24Bは、高反射ミラー52を含む。アイソレータケース96は、ベローズ25Aを介してMOビームステアリングユニット24Aのケースと接続され、ベローズ25Bを介してMOビームステアリングユニット24Bのケースと接続される。
 光アイソレータ90は、パルスレーザ光がファラデー材料FMと、第1の偏光子83と、ファラデー材料85と、第2の偏光子88とを透過するように配置する必要がある。その一方で、MO22からPO26に向かうパルスレーザ光の光軸は、装置により異なる。このため、光アイソレータ90においては、パルスレーザ光の断面(ビーム断面)に対して十分な大きさを持ったファラデー材料FMと、第1の偏光子83と、ファラデー材料85と、第2の偏光子88とが配置される。
 しかし、ファラデー材料FM及びファラデー材料85が大きくなると、均一な磁場を印加する磁石MG及び磁石86が大きくなる。磁石MG及び磁石86は重いため、2個の磁石MG,86を配置した光アイソレータ90は重くなり、メンテナンス性が悪くなる。
 このような課題は、図4に例示した光アイソレータ90に限らず、図3のように1/2波長板81を用いた光アイソレータ80についても同様であり、ファラデー材料85が大きくなると磁石86が大きくなり、メンテナンス性が悪くなる。
 4.実施形態1
 4.1 構成
 図5は、実施形態1に係る光アイソレータ110の構成を概略的に示す。図6は、図5中の6-6線における断面図である。図5及び図6に示す構成について、図4に示す光アイソレータ90と異なる点を説明する。なお、以下の説明において「断面」あるいは「断面形状」というときは、明記がない限り、図6のようにパルスレーザ光PLの光軸に垂直な断面あるいはその断面の形状を指す。図5及び図6では、パルスレーザ光PLの進行方向がV軸の方向(V方向)と平行であり、図6に示す断面はH軸及びZ軸と平行なHZ平面である。
 光アイソレータ110は、図4のファラデー回転子91とファラデー回転子84との代わりに、ファラデー回転子120とファラデー回転子122とを含む。ファラデー回転子120は、第1の偏光子83よりもMO22に近い側、すなわち、MO22からPO26に向かって出力されたパルスレーザ光PLの光路上における第1の偏光子83の入射側に配置される。ファラデー回転子120は、ファラデー材料130と磁石140とを含む。
 ファラデー回転子120の磁石140は、ファラデー材料130が配置される磁場発生領域142の断面形状が小さい方が小型化できる。MO22から出力されるパルスレーザ光PLの断面形状は長軸を持つ形状(例えば長方形)であるため、磁場発生領域142の断面形状に関して、長軸よりも長軸に直交する短軸の長さを短くする方が磁石140の小型化に効果がある。
 よって、光アイソレータ110では、ファラデー材料130の断面形状を、パルスレーザ光PLの断面形状と同じ向きの長軸を持つ形状にし、短軸を極力短くする。また、このファラデー材料130に合わせて、磁石140の磁場発生領域142の断面形状をファラデー材料130と同じ向きの長軸を持つ形状にする。
 そして、パルスレーザ光PLの光軸が設計値からずれた場合に対応するため、光アイソレータ110には、ファラデー材料130を短軸に平行な方向(短軸方向)に移動して位置を調整する位置調整機構が配置される。位置調整機構の構成例は図8及び図9を用いて後述する。位置調整機構は、ファラデー回転子120をアイソレータケース96に対して相対的に移動させる機構である。図5及び図6におけるZ方向と平行な両向き矢印は、位置調整機構によってファラデー回転子120が移動する方向を表している。
 位置調整機構は、ファラデー回転子120の移動と共に第1の偏光子83を移動させる構成であってもよい。すなわち、ファラデー材料130と第1の偏光子83とを一体構造とし、位置調整機構によりファラデー材料130及び第1の偏光子83を一体で移動させる構成であってもよい。
 さらに、光アイソレータ110は、パルスレーザ光PLの光軸とファラデー材料130の短軸方向とに垂直な軸でファラデー材料130を回転させる回転機構を備えてもよい。回転機構の構成例は図8及び図9を用いて後述する。
 図7は、長軸を持つ形状の例を示す。長軸を持つ形状とは、長軸と短軸とを持つ長手形状を意味し、長軸方向である第1の方向における長さが、第1の方向に垂直な短軸方向である第2の方向における長さよりも長い形状をいう。長軸を持つ形状には、例えば、楕円と長方形とがある。図7の左図に示すように、楕円は長軸と短軸とを持つ。図7の右図に示すように、長方形の場合、長辺を長軸、短辺を短軸と定義する。実施形態1では、パルスレーザ光PLの断面形状(ビーム断面)が長方形であり、長軸がH方向、短軸がZ方向に向く構成を例に説明する。なお、半径が等しい2つの円を共通外接線でつないだ形(長円)や長方形の四隅を丸めた形(角丸長方形)なども長軸を持つ形状に含まれる。
 図8は、ファラデー回転子120の断面形状を概略的に示す。ファラデー材料130はファラデー材料ホルダ132に保持された状態で、磁石140の磁場発生領域142に配置される。ファラデー材料130を貫く磁場の方向は、光の伝搬方向と平行である。ファラデー回転子120による偏光面(偏光方向)の回転方向は、ヴェルデ定数の符号と、印加される磁場の方向とに依存する。
 ファラデー材料130の断面形状は、パルスレーザ光PLの断面形状と同じ向きの長軸を持つ形状であり、パルスレーザ光PLの断面形状よりも大きい。図8に例示するファラデー材料130の断面形状は、H方向に長軸が向いた長方形であり、ファラデー材料130の短軸の長さLFMzは、パルスレーザ光PLの断面形状の短軸の長さLPLzよりも長く、ファラデー材料130の長軸の長さLFMhは、パルスレーザ光PLの断面形状の長軸の長さLPLhよりも長い。
 ファラデー材料130の短軸の長さLFMzとパルスレーザ光PLの短軸の長さLPLzとの差(LFMz-LPLz)は、例えば、2mm~4mm程度であってもよい。また、ファラデー材料130の長軸の長さLFMhとパルスレーザ光PLの長軸の長さLPLhとの差(LFMh-LPLh)は、例えば、3mm~5mm程度であってもよい。ファラデー材料130は短軸方向に移動可能であるため、短軸の長さの差(LFMz-LPLz)は、長軸の長さの差(LFMz-LPLz)よりも小さくてもよい。
 ファラデー材料130が配置される磁場発生領域142の断面形状は、ファラデー材料130の断面形状と同じ向きの長軸を持つ形状である。図8に例示する磁場発生領域142の断面形状は、H方向に長軸が向いた長方形である。磁石140の小型化の観点から、磁場発生領域142の短軸の長さLMGzは、ファラデー材料130の短軸の長さLFMz以上であって、極力短いことが望ましい。例えば、LMGzとLFMzとの差(LMGz-LFMz)は2mm以下であることが望ましく、1mm以下であることがさらに好ましい。
 磁場発生領域142の長軸の長さLMGhは、ファラデー材料130の長軸の長さLFMh以上であり、実際には、ファラデー材料ホルダ132のH方向の長さ以上である。磁場発生領域142の長軸の長さLMGhとファラデー材料130の長軸の長さLFMhとの差(LMGh-LFMh)は、短軸方向のLMGzとLFMzとの差(LMGz-LFMz)よりも大きくてもよい。
 具体的な寸法例を示すと、例えば、パルスレーザ光PLの断面の短軸の長さLPLzが2mmであり、長軸の長さLPLhが12mmである場合、ファラデー材料130における短軸の長さLFMzの好ましい値は4mm~6mmであり、長軸の長さLFMhの好ましい値は15mm~17mmである。また、この場合、磁場発生領域142の短軸の長さLMGzの好ましい値は4mm~7mmであり、長軸の長さLMGhの好ましい値は17mm以上である。
 ファラデー回転子122についてもファラデー回転子120と同様の構成であってよい。図8に示すファラデー材料130、ファラデー材料ホルダ132及び磁石140は、ファラデー回転子122のファラデー材料、ファラデー材料ホルダ、磁石及び磁場発生領域に置き換えて理解してよい。
 図9及び図10は、光アイソレータ110の具体的な構成例を示す。図10は、図9中の10-10線における断面図である。
 ファラデー回転子120のファラデー材料130と、ファラデー材料ホルダ132と、磁石140と、偏光子ホルダ146と、第1の偏光子83とは一体構造により磁石ブロックMGB1を構成している。磁石ブロックMGB1を構成している部材のうち、磁石140以外は非磁性材料である。非磁性材料は、例えば、銅系、アルミ系、オーステナイト系ステンレスなどであってもよい。第1の偏光子83は偏光子ホルダ146に保持された状態でファラデー回転子120と一体に構成される。ファラデー材料130は、ファラデー材料ホルダ132に保持された状態で磁石140の磁場発生領域142に配置される。
 同様に、ファラデー回転子122のファラデー材料150と、ファラデー材料ホルダ152と、磁石160と、偏光子ホルダ166と、第2の偏光子88とは一体構造により磁石ブロックMGB2を構成している。磁石ブロックMGB2を構成している部材のうち、磁石160以外は非磁性材料である。第2の偏光子88は偏光子ホルダ166に保持された状態でファラデー回転子122と一体に構成される。ファラデー材料150は、ファラデー材料ホルダ152に保持された状態で磁石160の磁場発生領域162に配置される。
 磁石ブロックMGB1と磁石ブロックMGB2とは密封可能なアイソレータケース96内に配置される。アイソレータケース96のH方向の開口面は、アイソレータ蓋98によって覆われる。アイソレータケース96とアイソレータ蓋98とはOリング97でシールされる。アイソレータ蓋98は、貫通口99a,99bを有し、貫通口99aにはスライドプレート170が挿入され、貫通口99bにはスライドプレート180が挿入される。貫通口99a,99bはZ方向に長い形状であり、スライドプレート170は貫通口99aに沿ってZ方向にスライド可能な態様でアイソレータ蓋98に固定される。例えば、スライドプレート170の四隅には、スライドプレート170をアイソレータ蓋98に固定するための不図示の固定ねじを通す通し穴171が形成されている。通し穴171もZ方向に長い長円であってよい。また、アイソレータ蓋98には、スライドプレート170をZ方向にスライドさせる、Z方向調整ねじ172が配置される。
 また、磁石ブロックMGB1は、図10に示すように、軸174を介してスライドプレート170に支持されている。すなわち、磁石ブロックMGB1は、軸174の一端に固定されており、軸174はスライドプレート170の貫通口175に挿入される。軸174は円筒形状であり、H方向に平行な回転軸で回転可能である。軸174の他端にはハンドル176が固定され、ハンドル176は、軸174の回転軸を中心に回転し、スライドプレート170に固定される。
 軸174とスライドプレート170とはOリング178でシールされ、スライドプレート170とアイソレータ蓋98とはOリング179でシールされる。
 磁石ブロックMGB2と、スライドプレート180と、軸184と、貫通口185と、ハンドル186との構成についても、磁石ブロックMGB1等と同様の構成である。スライドプレート180は貫通口99bに沿ってZ方向にスライド可能な態様でアイソレータ蓋98に固定される。スライドプレート180の通し穴181はZ方向に長い長穴であってよく、アイソレータ蓋98には、スライドプレート180をZ方向にスライドさせる、Z方向調整ねじ182が配置される。
 軸184とスライドプレート180とはOリング188でシールされ、スライドプレート180とアイソレータ蓋98とはOリング189でシールされる。
 ファラデー材料130とファラデー材料150とは、例えばフッ化カルシウム(CaF)結晶でもよい。
 アイソレータケース96には、パージガスを導入する導入口190及び導入ポート191と、パージガスを排気する排気口194及び排気ポート195とが設けられる。
 4.2 動作
 ファラデー材料130と、第1の偏光子83と、ファラデー材料150と、第2の偏光子88とは、光アイソレータ110のアイソレータケース96内で設計位置に配置する。
 紫外線レーザ装置21の不図示のフレームに、不図示の位置決めピンで位置決めして光アイソレータ110を配置する。
 紫外線レーザ装置21に光アイソレータ110を配置した後の調整手順の例を以下に示す。
 [手順1]ベローズ25Bの場所にパワーメータなどの不図示の光センサPSを取り付ける。
 [手順2]MO22をレーザ発振し、Z方向調整ねじ172を回すことで磁石ブロックMGB1と、軸174と、スライドプレート170と、ハンドル176とをZ方向に移動させ、光センサPSでのパワーが最大になる位置で固定する。
 [手順3]手順2におけるZ方向の位置の調整に限らず、さらに、ハンドル176をH軸に平行な軸で回転し、光センサPSでのパワーが最大になる位置で固定してもよい。
 [手順4]磁石ブロックMGB2についても同様の調整を行う。
 [手順5]その後、光センサPSを取り除き、ベローズ25Bを設置する。
 [手順6]導入ポート191から導入口190を通してアイソレータケース96内にパージガスを導入し、排気口194を通して排気ポート195からパージガスを排気してもよい。あるいは、導入口190及び導入ポート191と排気口194及び排気ポート195を配置せずに、ベローズ25Aからパージガスを導入して、ベローズ25Bからパージガスを排気してもよい。また、その逆方向にパージガスを流してもよい。パージガスは例えば、窒素でもよい。窒素は本開示における「ガス」の一例である。ベローズ25A,25Bは本開示における「導入口」及び「排気口」の一例となり得る。
 ファラデー回転子120の機能は、図3における1/2波長板81の機能と同じである。ファラデー回転子122の機能は、図3におけるファラデー回転子84の機能と同じである。アイソレータケース96とアイソレータ蓋98とは本開示における「ケース」の一例である。ファラデー回転子122を透過して第1の偏光子83に入射するパルスレーザ光PLは本開示における「入射光」の一例である。ファラデー回転子122は本開示における「第1のファラデー回転子」の一例であり、ファラデー材料150、磁石160及び磁場発生領域162は本開示における「第1のファラデー材料」、「第1の磁石」及び「第1の磁場発生領域」の一例である。磁石160によって磁場発生領域162に発生する磁場は本開示における「第1の磁場」の一例である。
 磁石ブロックMGB2をZ方向に移動させるためのスライドプレート180及びZ方向調整ねじ182を含む位置調整機構は本開示における「第1の位置調整機構」の一例である。スライドプレート180は本開示における「第1のスライドプレート」の一例であり、Z方向調整ねじ182は本開示における「第1の調整ねじ」の一例である。磁石ブロックMGB2をH方向と平行な回転軸で回転させるための軸184及びハンドル186を含む回転機構は本開示における「第1の回転機構」の一例である。軸184は本開示における「第1の軸」の一例である。第1の偏光子83を透過したパルスレーザ光PLがファラデー回転子122を透過することによりパルスレーザ光PLの偏光方向が45度回転する回転方向(図3において時計回り方向)は本開示における「第1の回転方向」の一例である。
 ファラデー回転子120は本開示における「第2のファラデー回転子」の一例であり、ファラデー材料130、磁石140及び磁場発生領域142は本開示における「第2のファラデー材料」、「第2の磁石」及び「第2の磁場発生領域」の一例である。磁石140によって磁場発生領域142に発生する磁場は本開示における「第2の磁場」の一例である。
 磁石ブロックMGB1をZ方向に移動させるためのスライドプレート170及びZ方向調整ねじ172を含む位置調整機構は本開示における「第2の位置調整機構」の一例である。スライドプレート170は本開示における「第2のスライドプレート」の一例であり、Z方向調整ねじ172は本開示における「第2の調整ねじ」の一例である。磁石ブロックMGB1をH方向と平行な回転軸で回転させるための軸174及びハンドル176を含む回転機構は本開示における「第2の回転機構」の一例である。軸174は本開示における「第2の軸」の一例である。MO22から出力されたパルスレーザ光PLがファラデー回転子120を透過することによりパルスレーザ光PLの偏光方向が45度回転する回転方向(図3において反時計回り方向)は本開示における「第2の回転方向」の一例である。
 4.3 作用・効果
 実施形態1に係る光アイソレータ110によれば、ファラデー材料130,150の断面形状を、長軸を持つ形状にし、短軸を極力短くする構成を採用し、それに合わせて磁石140,160の磁場発生領域142,162の断面形状を同じ向きの長軸を持つ形状にしているので、磁石140,160を効率的に小型化することができる。
 また、実施形態1に係る光アイソレータ110によれば、MO22からPO26に向かうパルスレーザ光PLの光軸が設計値からずれた場合は、Z方向調整ねじ172,182を含む位置調整機構によりパルスレーザ光PLがファラデー材料130,150中を透過するように調整できる。
 磁石140,160を小型化することにより、光アイソレータ110の重量がその分軽くなりメンテナンス性が向上する。
 4.4 変形例1
 図11は、変形例1に係る光アイソレータ111の構成を概略的に示す。図5~図10で説明した光アイソレータ110の代わりに、図11の光アイソレータ111を採用してもよい。図11に示す構成について、図9と異なる点を説明する。
 MO22から出力されたパルスレーザ光PLの偏光方向とPO26に入射するパルスレーザ光PLの偏光方向とが同じになるように調整する必要がない場合は、ファラデー回転子120を配置しなくてもよく、図11に示すような光アイソレータ111を用いることができる。光アイソレータ111は、ファラデー回転子120が配置されておらず、ファラデー回転子120を移動させるためのスライドプレート170及びZ方向調整ねじ172などの位置調整機構も配置されていない。
 光アイソレータ111では、第1の偏光子83と偏光子ホルダ147と、ファラデー回転子122のファラデー材料150と、ファラデー材料ホルダ152と、磁石160と、偏光子ホルダ166と、第2の偏光子88とが一体構造であって磁石ブロックMGB2を構成している。
 第1の偏光子83は偏光子ホルダ147に保持された状態でファラデー回転子122と一体に構成される。その他の構成は、実施形態1に係る光アイソレータ110と同様であってよい。
 4.5 変形例2
 図12は、変形例2に係る光アイソレータ112の構成を概略的に示す。戻り光の偏光の乱れがない場合や偏光が乱れた戻り光でも十分な消光比が得られる場合は、第2の偏光子88を配置しなくてもよく、図11の光アイソレータ111の代わりに、図12に示すような光アイソレータ112を採用してもよい。図12に示す構成について、図11と異なる点を説明する。
 光アイソレータ112は、第2の偏光子88と偏光子ホルダ166とが配置されていない。その他の構成は図11に示す光アイソレータ111と同様である。
 4.6 変形例3
 4.6.1 構成
 図13は、変形例3に係る光アイソレータ113の構成を概略的に示す。図5~図10で説明した光アイソレータ110の代わりに、図13の光アイソレータ113を採用してもよい。図13に示す構成について、図5と異なる点を説明する。
 光アイソレータ113は、第1の偏光子83とファラデー回転子122との間の光路上に光軸シフトキャンセル素子201が配置され、第2の偏光子88とベローズ25Bとの間の光路上に光軸シフトキャンセル素子202が配置される。光軸シフトキャンセル素子202は、第2の偏光子88よりもPO26に近い側、すなわち、ファラデー回転子122から出力されて第2の偏光子88に向かって進むパルスレーザ光PLの光路上における第2の偏光子88の出射側に配置される。
 光軸シフトキャンセル素子201,202は、例えば、フッ化カルシウムの平行平板であってもよい。光軸シフトキャンセル素子201は本開示における「第1の光軸シフトキャンセル素子」の一例である。光軸シフトキャンセル素子202は本開示における「第2の光軸シフトキャンセル素子」の一例である。
 光軸シフトキャンセル素子201は、磁石ブロックMGB1の偏光子ホルダ146に配置されてもよい。光軸シフトキャンセル素子202は、磁石ブロックMGB2の偏光子ホルダ166に配置されてもよい。
 4.6.2 動作
 MO22から出力されたパルスレーザ光PLの光軸は、第1の偏光子83の透過前後で、オフセットする。光軸シフトキャンセル素子201を配置することにより、このオフセットをキャンセルする。
 同様に、MO22から出力されたパルスレーザ光PLの光軸は、第2の偏光子88の透過前後で、オフセットする。光軸シフトキャンセル素子202を配置することにより、このオフセットをキャンセルする。なお、第2の偏光子88が配置されない構成の場合、光軸シフトキャンセル素子202も不要である。
 4.6.3 作用・効果
 変形例3に係る光アイソレータ113によれば、光軸シフトキャンセル素子201を配置することにより、ファラデー材料130を透過するパルスレーザ光PLの光軸とファラデー材料150を透過するパルスレーザ光PLの光軸とが同一になる。
 また、光軸シフトキャンセル素子202を配置することにより、ファラデー材料130を透過するパルスレーザ光PLの光軸と光アイソレータ113からPO26に向けて出力されるパルスレーザ光PLの光軸とが同一になる。その他の作用・効果は、実施形態1と同様である。
 5.実施形態2
 5.1 構成
 図14は、実施形態2に係る光アイソレータ114の構成を概略的に示す。図15は、図14中の15-15線における断面図である。図5~図10で説明した光アイソレータ110の代わりに、図14の光アイソレータ114を採用してもよい。図14及び図15に示す構成について、図9及び図10と異なる点を説明する。
 光アイソレータ114は、光アイソレータ110におけるスライドプレート170とスライドプレート180との代わりに、スライドプレート170とスライドプレート180との機能を兼ねたスライドプレート210が配置されている。スライドプレート210は、通し穴171、181に代わる通し穴211を有する。その他の構成は実施形態1と同様であってよい。
 5.2 動作
 スライドプレート210のZ方向の調整は、Z方向調整ねじ172とZ方向調整ねじ182とを用いて行われる。なお、スライドプレート210のZ方向の調整は、Z方向調整ねじ172又はZ方向調整ねじ182の一方のみで行ってもよい。その他の動作は実施形態1と同様である。
 スライドプレート210は本開示における「第3のスライドプレート」の一例である。
 5.3 作用・効果
 実施形態2に係る光アイソレータ114によれば、実施形態1の作用・効果に加え、2つの磁石ブロックMGB1,MGB2の相対位置関係を崩すことなく調整ができるので調整時間の短縮ができる。
 6.紫外線レーザ装置の他の構成例
 発振段レーザは、図4に示すMO22のような狭帯域化ガスレーザに限らず、紫外線波長のパルスレーザ光を出力する紫外線固体レーザであってもよい。例えば、発振段レーザは、波長約193.4nmを発振する固体レーザ、あるいは、チタンサファイヤレーザ(波長約774nm)の第4高調波光を出力する紫外線固体レーザでもよい。
 増幅段レーザは、図4に示すPO26のようなファブリーペロー型の共振器を有する構成に限らず、リング共振器を有する構成であってもよい。または、増幅段レーザは、光共振器を有する構成に限らず、単なる増幅器でもよい。例えば、増幅段レーザは、シード光をシリンドリカルミラーで反射して放電空間を3回通過させることにより増幅を行う3パス増幅器などのマルチパス増幅器であってもよい。
 7.電子デバイスの製造方法について
 図16は、露光装置300の構成例を概略的に示す。露光装置300は、照明光学系304と投影光学系306とを含む。紫外線レーザ装置21はレーザ光を生成して露光装置300に出力する。照明光学系304は、紫外線レーザ装置21から入射したレーザ光によって、レチクルステージRT上に配置された不図示のレチクルのレチクルパターンを照明する。投影光学系306は、レチクルを透過したレーザ光を、縮小投影してワークピーステーブルWT上に配置された不図示のワークピースに結像させる。ワークピースはフォトレジストが塗布された半導体ウエハ等の感光基板である。
 露光装置300は、レチクルステージRTとワークピーステーブルWTとを同期して平行移動させることにより、レチクルパターンを反映したレーザ光をワークピースに露光する。以上のような露光工程によって半導体ウエハにレチクルパターンを転写後、複数の工程を経ることで半導体デバイスを製造できる。半導体デバイスは本開示における「電子デバイス」の一例である。
 8.その他
 上記の説明は、制限ではなく単なる例示を意図している。従って、特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかである。また、本開示の実施形態を組み合わせて使用することも当業者には明らかである。
 本明細書及び特許請求の範囲全体で使用される用語は、明記が無い限り「限定的でない」用語と解釈されるべきである。例えば、「含む」、「有する」、「備える」、「具備する」などの用語は、「記載されたもの以外の構成要素の存在を除外しない」と解釈されるべきである。また、修飾語「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。また、「A、B及びCの少なくとも1つ」という用語は、「A」「B」「C」「A+B」「A+C」「B+C」又は「A+B+C」と解釈されるべきである。さらに、それらと「A」「B」「C」以外のものとの組み合わせも含むと解釈されるべきである。

Claims (19)

  1.  ケースと、
     紫外線波長の直線偏光の入射光が透過するように前記ケース内に配置される第1の偏光子と、
     前記第1の偏光子を透過した光の偏光方向を第1の回転方向に回転させる第1のファラデー材料と前記第1のファラデー材料が配置される第1の磁場発生領域に第1の磁場を発生する第1の磁石とを含み前記ケース内に配置される第1のファラデー回転子と、
     前記第1のファラデー材料を前記ケースに対して相対的に移動させる第1の位置調整機構と、を備え、
     前記第1のファラデー材料を透過する光の光軸に垂直な断面における前記第1のファラデー材料の断面形状と、前記第1の磁場発生領域の断面形状とは同じ向きの長軸を持つ形状であり、
     前記第1の位置調整機構は、前記第1のファラデー材料を前記長軸に垂直な短軸方向に移動させる、
     光アイソレータ。
  2.  請求項1に記載の光アイソレータであって、
     前記入射光の光軸と前記第1のファラデー材料の前記短軸方向とに垂直な軸を中心に前記第1のファラデー材料を回転させる第1の回転機構をさらに備える、
     光アイソレータ。
  3.  請求項1に記載の光アイソレータであって、
     前記ケース内の前記第1の偏光子の前記入射光の入射側に配置され、前記第1の偏光子に入射させる前記入射光の偏光方向を前記第1の回転方向とは逆方向の第2の回転方向に回転させる第2のファラデー材料と前記第2のファラデー材料が配置される第2の磁場発生領域に第2の磁場を発生する第2の磁石とを含む第2のファラデー回転子と、
     前記第2のファラデー材料を前記ケースに対して相対的に移動させる第2の位置調整機構と、をさらに備え、
     前記第2のファラデー材料を透過する光の光軸に垂直な断面における前記第2のファラデー材料の断面形状と、前記第2の磁場発生領域の断面形状とは同じ向きの長軸を持つ形状であり、
     前記第2の位置調整機構は、前記第2のファラデー材料の断面形状の長軸に垂直な短軸方向に前記第2のファラデー材料を移動させる、
     光アイソレータ。
  4.  請求項3に記載の光アイソレータであって、
     前記入射光の光軸と前記第2のファラデー材料の断面形状の短軸方向とに垂直な軸を中心に前記第2のファラデー材料を回転させる第2の回転機構をさらに備える、
     光アイソレータ。
  5.  請求項3に記載の光アイソレータであって、
     前記第2のファラデー回転子と前記第1の偏光子とが一体構造である、
     光アイソレータ。
  6.  請求項1に記載の光アイソレータであって、
     前記第1のファラデー回転子から出力された光が透過するように前記ケース内に配置される第2の偏光子をさらに備える、
     光アイソレータ。
  7.  請求項6に記載の光アイソレータであって、
     前記第1のファラデー回転子と前記第2の偏光子とが一体構造である、
     光アイソレータ。
  8.  請求項1に記載の光アイソレータであって、
     前記第1のファラデー回転子と前記第1の偏光子とが一体構造である、
     光アイソレータ。
  9.  請求項1に記載の光アイソレータであって、
     前記ケースは、密封可能であり、
     前記ケースにガスの導入口と排気口とがある、
     光アイソレータ。
  10.  請求項1に記載の光アイソレータであって、
     前記ケース内の前記第1の偏光子と第1のファラデー回転子との間に、前記第1の偏光子による光軸のオフセットをキャンセルする第1の光軸シフトキャンセル素子をさらに備える、
     光アイソレータ。
  11.  請求項6に記載の光アイソレータであって、
     前記ケース内の前記第1のファラデー回転子から前記第2の偏光子に向かって進む光の光路上における前記第2の偏光子の出射側に、前記第2の偏光子による光軸のオフセットをキャンセルする第2の光軸シフトキャンセル素子をさらに備える、
     光アイソレータ。
  12.  請求項1に記載の光アイソレータであって、
     前記第1のファラデー材料はフッ化カルシウムである、
     光アイソレータ。
  13.  請求項3に記載の光アイソレータであって、
     前記第2のファラデー材料はフッ化カルシウムである、
     光アイソレータ。
  14.  請求項1に記載の光アイソレータであって、
     前記第1の位置調整機構は、
     前記ケースに固定された第1の調整ねじと、
     前記第1の調整ねじによって前記短軸方向に移動する第1のスライドプレートと、
     を含み、
     前記第1のファラデー回転子は、前記第1のスライドプレートに支持されている、
     光アイソレータ。
  15.  請求項3に記載の光アイソレータであって、
     前記第2の位置調整機構は、
     前記ケースに固定された第2の調整ねじと、
     前記第2の調整ねじによって前記短軸方向に移動する第2のスライドプレートと、
     を含み、
     前記第2のファラデー回転子は、前記第2のスライドプレートに支持されている、
     光アイソレータ。
  16.  請求項1に記載の光アイソレータであって、
     前記ケース内の前記第1の偏光子の前記入射光の入射側に配置され、前記第1の偏光子に入射させる前記入射光の偏光方向を前記第1の回転方向とは逆方向の第2の回転方向に回転させる第2のファラデー材料と前記第2のファラデー材料が配置される第2の磁場発生領域に第2の磁場を発生する第2の磁石とを含む第2のファラデー回転子をさらに備え、
     前記第2のファラデー材料を透過する光の光軸に垂直な断面における前記第2のファラデー材料の断面形状と、前記第2の磁場発生領域の断面形状とは同じ向きの長軸を持つ形状であり、
     前記第1の位置調整機構は、前記第2のファラデー材料を前記第1のファラデー材料と共に前記第2のファラデー材料の断面形状の長軸に垂直な短軸方向に移動させる、
     光アイソレータ。
  17.  請求項16に記載の光アイソレータであって、
     前記第1の位置調整機構は、
     前記ケースに固定された第1の調整ねじと、
     前記第1の調整ねじによって前記短軸方向に移動する第3のスライドプレートと、
     を含み、
     前記第1のファラデー回転子及び前記第2のファラデー回転子は、前記第3のスライドプレートに支持されており、
     前記第3のスライドプレートが移動することにより、前記第2のファラデー材料は前記第1のファラデー材料と共に前記ケースに対して相対的に移動する、
     光アイソレータ。
  18.  紫外線レーザ装置であって、
     紫外線波長の直線偏光のパルスレーザ光を出力する発振段レーザと、
     前記パルスレーザ光を増幅して出力する増幅器と、
     前記発振段レーザと前記増幅器との間の光路上に配置される光アイソレータと、を備え、
     前記光アイソレータは、
     ケースと、
     紫外線波長の直線偏光の入射光が透過するように前記ケース内に配置される第1の偏光子と、
     前記第1の偏光子を透過したパルスレーザ光の偏光方向を第1の回転方向に回転させる第1のファラデー材料と前記第1のファラデー材料が配置される第1の磁場発生領域に第1の磁場を発生する第1の磁石とを含み前記ケース内に配置される第1のファラデー回転子と、
     前記第1のファラデー材料を前記ケースに対して相対的に移動させる第1の位置調整機構と、を備え、
     前記第1のファラデー材料を透過する光の光軸に垂直な断面における前記第1のファラデー材料の断面形状と、前記第1の磁場発生領域の断面形状とは同じ向きの長軸を持つ形状であり、
     前記第1の位置調整機構は、前記第1のファラデー材料を前記長軸に垂直な短軸方向に移動させる、
     紫外線レーザ装置。
  19.  電子デバイスの製造方法であって、
     紫外線波長の直線偏光のパルスレーザ光を出力する発振段レーザと、
     前記パルスレーザ光を増幅して出力する増幅器と、
     前記発振段レーザと前記増幅器との間の光路上に配置される光アイソレータと、を備え、
     前記光アイソレータは、
     ケースと、
     紫外線波長の直線偏光の入射光が透過するように前記ケース内に配置される第1の偏光子と、
     前記第1の偏光子を透過したパルスレーザ光の偏光方向を第1の回転方向に回転させる第1のファラデー材料と前記第1のファラデー材料が配置される第1の磁場発生領域に第1の磁場を発生する第1の磁石とを含み前記ケース内に配置される第1のファラデー回転子と、
     前記第1のファラデー材料を前記ケースに対して相対的に移動させる第1の位置調整機構と、を備え、
     前記第1のファラデー材料を透過する光の光軸に垂直な断面における前記第1のファラデー材料の断面形状と、前記第1の磁場発生領域の断面形状とは同じ向きの長軸を持つ形状であり、
     前記第1の位置調整機構は、前記第1のファラデー材料を前記長軸に垂直な短軸方向に移動させる、紫外線レーザ装置を用いて前記増幅器により増幅されたレーザ光を生成し、
     前記増幅されたレーザ光を露光装置に出力し、
     電子デバイスを製造するために、前記露光装置内で感光基板上に前記レーザ光を露光すること
     を含む、電子デバイスの製造方法。
PCT/JP2021/026593 2021-07-15 2021-07-15 光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法 WO2023286236A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023534539A JPWO2023286236A1 (ja) 2021-07-15 2021-07-15
PCT/JP2021/026593 WO2023286236A1 (ja) 2021-07-15 2021-07-15 光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法
CN202180098985.4A CN117441124A (zh) 2021-07-15 2021-07-15 光隔离器、紫外线激光装置以及电子器件的制造方法
US18/531,775 US20240103305A1 (en) 2021-07-15 2023-12-07 Optical isolator, ultraviolet laser apparatus, and electronic device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/026593 WO2023286236A1 (ja) 2021-07-15 2021-07-15 光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/531,775 Continuation US20240103305A1 (en) 2021-07-15 2023-12-07 Optical isolator, ultraviolet laser apparatus, and electronic device manufacturing method

Publications (1)

Publication Number Publication Date
WO2023286236A1 true WO2023286236A1 (ja) 2023-01-19

Family

ID=84918947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/026593 WO2023286236A1 (ja) 2021-07-15 2021-07-15 光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法

Country Status (4)

Country Link
US (1) US20240103305A1 (ja)
JP (1) JPWO2023286236A1 (ja)
CN (1) CN117441124A (ja)
WO (1) WO2023286236A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013218286A (ja) * 2012-03-14 2013-10-24 Gigaphoton Inc ファラデーローテータ、光アイソレータ、レーザ装置、および極端紫外光生成装置
JP2016051105A (ja) * 2014-09-01 2016-04-11 株式会社フジクラ ファラデー回転子、及び、それを用いた光アイソレータ

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013218286A (ja) * 2012-03-14 2013-10-24 Gigaphoton Inc ファラデーローテータ、光アイソレータ、レーザ装置、および極端紫外光生成装置
JP2016051105A (ja) * 2014-09-01 2016-04-11 株式会社フジクラ ファラデー回転子、及び、それを用いた光アイソレータ

Also Published As

Publication number Publication date
US20240103305A1 (en) 2024-03-28
CN117441124A (zh) 2024-01-23
JPWO2023286236A1 (ja) 2023-01-19

Similar Documents

Publication Publication Date Title
US6856638B2 (en) Resonator arrangement for bandwidth control
US20030219094A1 (en) Excimer or molecular fluorine laser system with multiple discharge units
US20060171439A1 (en) Master oscillator - power amplifier excimer laser system
US20020075932A1 (en) Line-narrowing module for high power laser
EP1952493A2 (en) Laser system
US7158553B2 (en) Master oscillator/power amplifier excimer laser system with pulse energy and pointing control
WO2023286236A1 (ja) 光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法
JP7475433B2 (ja) レーザ装置及び電子デバイスの製造方法
WO2022195893A1 (ja) 紫外線レーザ装置及び電子デバイスの製造方法
US20020018506A1 (en) Line selection of molecular fluorine laser emission
JP7537690B2 (ja) 光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法
WO2023007545A1 (ja) 紫外線レーザ装置及び電子デバイスの製造方法
US6792023B1 (en) Method and apparatus for reduction of spectral fluctuations
JP2006179600A (ja) 多段増幅型レーザシステム
US20230375847A1 (en) Optical isolator, ultraviolet laser device, and electronic device manufacturing method
US20240235149A1 (en) Laser apparatus and electronic device manufacturing method
WO2020170350A1 (ja) ガスレーザ装置、ガスレーザ装置のレーザ光の出射方法、及び電子デバイスの製造方法
JP2008124321A (ja) レーザ装置、光照射装置及び露光装置、並びに光生成方法、光照射方法、露光方法及びデバイス製造方法
WO2024201755A1 (ja) レーザシステム及び電子デバイスの製造方法
WO2024047867A1 (ja) レーザ装置及び電子デバイスの製造方法
CN113169507B (zh) 激光系统和电子器件的制造方法
US20240170905A1 (en) Laser system
US20240291219A1 (en) Optical pulse stretcher, laser apparatus, and electronic device manufacturing method
US20230066377A1 (en) Alignment adjuster and method for manufacturing electronic devices
WO2024189800A1 (ja) ガスレーザ装置、及び電子デバイスの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21950175

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180098985.4

Country of ref document: CN

Ref document number: 2023534539

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21950175

Country of ref document: EP

Kind code of ref document: A1