WO2020170350A1 - ガスレーザ装置、ガスレーザ装置のレーザ光の出射方法、及び電子デバイスの製造方法 - Google Patents

ガスレーザ装置、ガスレーザ装置のレーザ光の出射方法、及び電子デバイスの製造方法 Download PDF

Info

Publication number
WO2020170350A1
WO2020170350A1 PCT/JP2019/006241 JP2019006241W WO2020170350A1 WO 2020170350 A1 WO2020170350 A1 WO 2020170350A1 JP 2019006241 W JP2019006241 W JP 2019006241W WO 2020170350 A1 WO2020170350 A1 WO 2020170350A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
exhaust port
optical path
path tube
window
Prior art date
Application number
PCT/JP2019/006241
Other languages
English (en)
French (fr)
Inventor
大輔 手井
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to JP2021501193A priority Critical patent/JP7203944B2/ja
Priority to PCT/JP2019/006241 priority patent/WO2020170350A1/ja
Priority to CN201980088640.3A priority patent/CN113287234B/zh
Publication of WO2020170350A1 publication Critical patent/WO2020170350A1/ja
Priority to US17/371,930 priority patent/US20210336403A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70025Production of exposure light, i.e. light sources by lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/034Optical devices within, or forming part of, the tube, e.g. windows, mirrors
    • H01S3/0346Protection of windows or mirrors against deleterious effects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/034Optical devices within, or forming part of, the tube, e.g. windows, mirrors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • H01S3/08009Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2366Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media comprising a gas as the active medium

Definitions

  • the present disclosure relates to a gas laser device, a method of emitting laser light from the gas laser device, and a method of manufacturing an electronic device.
  • exposure apparatuses semiconductor exposure apparatuses
  • exposure apparatuses semiconductor exposure apparatuses
  • a gas laser device is used as an exposure light source instead of a conventional mercury lamp.
  • a KrF excimer laser device that outputs a laser beam of ultraviolet light having a wavelength of 248 nm and an ArF excimer laser device that outputs a laser beam of ultraviolet light of a wavelength of 193 nm are used.
  • immersion exposure in which the space between the exposure lens on the exposure device side and the wafer is filled with liquid, has been put into practical use.
  • this immersion exposure since the refractive index between the exposure lens and the wafer changes, the apparent wavelength of the exposure light source becomes shorter.
  • immersion exposure is performed using an ArF excimer laser device as a light source for exposure, the wafer is irradiated with ultraviolet light having a wavelength of 134 nm in water. This technique is called ArF immersion exposure or ArF immersion lithography.
  • the spontaneous amplitude of the KrF excimer laser device and the ArF excimer laser device is wide, about 350 to 400 pm. Therefore, if the projection lens is made of a material that transmits ultraviolet light such as KrF and ArF laser light, chromatic aberration may occur. As a result, the resolution may be reduced. Therefore, it is necessary to narrow the spectral line width of the laser light output from the gas laser device until the chromatic aberration is negligible. Therefore, in order to narrow the spectral line width in the laser resonator of the gas laser device, a narrow band module (Line Narrow Module: LNM) having narrow band elements such as an etalon and a grating may be provided. is there.
  • LNM Line Narrow Module
  • One aspect of the present disclosure is a gas laser device, including a chamber in which a laser gas is sealed, a window provided in the chamber for transmitting laser light, and an optical path tube surrounding a position in the chamber where the window is provided and connected to the chamber.
  • the control unit includes a main exhaust port and a sub exhaust port provided in the optical path tube on the upstream side of the gas flow in the optical path tube with respect to the position where the window is provided and the position where the main exhaust port is provided.
  • the gas may be exhausted from the main exhaust port before the light is emitted, and the gas may be exhausted from the sub exhaust port during at least a part of the period when the laser light is emitted from the chamber.
  • Another aspect of the present disclosure is a gas laser device, in which a master oscillator chamber that emits light that is filled with laser gas and that oscillates, and that that emits light that is emitted from the chamber for master oscillator that is filled with laser gas is amplified and emitted.
  • An optical path tube for a master oscillator connected to the chamber for the master oscillator surrounding the position provided, and an optical path tube for the amplifier connected to the chamber for the amplifier surrounding the position where the window for the amplifier in the chamber for the amplifier is installed Master oscillator gas supply port for supplying the purge gas into the oscillator optical path tube, and the amplifier gas supply port for supplying the purge gas into the amplifier optical path tube, the master oscillator exhaust port for exhausting the gas in the master oscillator optical path tube, And an amplifier exhaust port for exhausting gas in the optical path tube for amplifier, and a control unit, and the exhaust port for the master oscillator is such that the gas in the optical path tube for the master oscillator is a master so as to flow on the surface of the master oscillator window.
  • the control unit exhausts gas from the master oscillator main exhaust port and the amplifier main exhaust port before the laser beam is emitted from the master oscillator chamber, and at least one laser beam is emitted from the master oscillator chamber.
  • the gas may be exhausted from the master oscillator auxiliary exhaust port and the amplifier auxiliary exhaust port during a certain period.
  • Still another aspect of the present disclosure includes a chamber in which a laser gas is sealed, a window provided in the chamber for transmitting laser light, an optical path tube surrounding a position in the chamber where the window is provided, and connected to the chamber, and an optical path.
  • a gas supply port for supplying a purge gas into the tube, an exhaust port for exhausting the gas in the optical path tube, and a control unit are provided, and the exhaust port is a main exhaust port provided in the optical path tube so that the gas flows on the surface of the window.
  • a sub-exhaust port provided in the optical path tube on the upstream side of the gas flow in the optical path tube relative to the position where the window is provided and the position where the main exhaust port is provided.
  • the control unit may exhaust the gas from the main exhaust port before the laser light is emitted from the chamber, and may exhaust the gas from the auxiliary exhaust port during at least a part of the period when the laser light is emitted from the chamber. ..
  • Yet another aspect of the present disclosure is a method of manufacturing an electronic device, which encloses a chamber in which a laser gas is sealed, a window provided in the chamber for transmitting laser light, and a position in the chamber where the window is provided. And a gas supply port for supplying a purge gas into the optical path tube, an exhaust port for exhausting the gas in the optical path tube, and a control unit.
  • the control unit causes the gas to be exhausted from the main exhaust port before the laser light is emitted from the chamber, and exhausts the gas from the sub exhaust port during at least a part of the period when the laser light is emitted from the chamber.
  • the exposure apparatus may be exposed to the laser light on the photosensitive substrate.
  • FIG. 1 is a schematic view showing an example of the overall schematic configuration of a manufacturing apparatus used in an exposure step of manufacturing an electronic device.
  • FIG. 2 is a schematic diagram showing a schematic configuration example of the entire gas laser device.
  • FIG. 3 is a flowchart showing the operation of the control unit until the gas laser device in the comparative example emits laser light.
  • FIG. 4 is a schematic diagram illustrating a schematic configuration example of the entire gas laser device according to the first embodiment.
  • FIG. 5 is a flowchart showing a first example of the operation of the control unit until the gas laser device according to the first embodiment emits laser light.
  • FIG. 1 is a schematic view showing an example of the overall schematic configuration of a manufacturing apparatus used in an exposure step of manufacturing an electronic device.
  • FIG. 2 is a schematic diagram showing a schematic configuration example of the entire gas laser device.
  • FIG. 3 is a flowchart showing the operation of the control unit until the gas laser device in the comparative example emits laser light.
  • FIG. 4 is a schematic
  • FIG. 6 is a flowchart showing a second example of the operation of the control unit until the gas laser device according to the first embodiment emits laser light.
  • FIG. 7 is a schematic diagram showing a schematic configuration example of the entire gas laser device according to the second embodiment.
  • FIG. 8 is a schematic diagram showing a schematic configuration example of the entire gas laser device according to the third embodiment.
  • FIG. 9 is a flowchart showing a first example of the operation of the control unit until the gas laser device according to the third embodiment emits laser light.
  • FIG. 10 is a flowchart showing a second example of the operation of the control unit until the gas laser device according to the third embodiment emits laser light.
  • FIG. 11 is a schematic diagram showing a schematic configuration example of the entire gas laser device according to the fourth embodiment.
  • FIG. 1 is a schematic diagram showing a schematic configuration example of the entire manufacturing apparatus used in the exposure step of manufacturing an electronic device.
  • the manufacturing apparatus used in the exposure process includes a gas laser apparatus 100 and an exposure apparatus 200.
  • the exposure apparatus 200 includes an illumination optical system 210 including a plurality of mirrors 211, 212 and 213, and a projection optical system 220.
  • the illumination optical system 210 illuminates the reticle pattern on the reticle stage RT with the laser light incident from the gas laser device 100.
  • the projection optical system 220 reduces and projects the laser light transmitted through the reticle to form an image on a workpiece (not shown) arranged on the workpiece table WT.
  • the workpiece is a photosensitive substrate such as a semiconductor wafer coated with photoresist.
  • the exposure apparatus 200 exposes a laser beam reflecting the reticle pattern onto the workpiece by synchronously moving the reticle stage RT and the workpiece table WT in parallel.
  • a semiconductor device which is an electronic device, can be manufactured by transferring the device pattern onto the semiconductor wafer through the exposure process described above.
  • FIG. 2 is a schematic diagram showing a schematic configuration example of the entire gas laser device of this example.
  • the gas laser device 100 of this example includes a housing 10, a laser oscillator LO, an energy monitor module 20, and a control unit CO as main components.
  • the gas laser device 100 of this example is, for example, an ArF excimer laser device that uses a mixed gas containing argon (Ar), fluorine (F 2 ) and neon (Ne). In this case, the gas laser device 100 emits pulsed laser light having a center wavelength of about 193 nm.
  • the gas laser device 100 may be a gas laser device other than the ArF excimer laser device, and for example, a KrF excimer laser device using a mixed gas containing krypton (Kr), fluorine (F 2 ) and neon (Ne). May be In this case, the gas laser device 100 emits pulsed laser light having a center wavelength of about 248 nm.
  • a mixed gas containing Ar, F 2 , and Ne, which is a laser medium, or a mixed gas containing Kr, F 2 , and Ne may be called a laser gas.
  • control unit CO for example, an integrated circuit such as a microcontroller, an IC (Integrated Circuit), an LSI (Large-scale Integrated Circuit), an ASIC (Application Specific Integrated Circuit), or an NC (Numerical Control) device can be used. Further, when the NC unit is used, the control unit CO may be one using a machine learning device, or may not be one using a machine learning device. As described below, some components of the gas laser device are controlled by the control unit CO.
  • the laser oscillator LO includes a chamber 30, a window including a first window 33 and a second window 34, a pair of electrodes 31, 32, a charger 35, a pulse power module 36, a cross flow fan 38, and a motor. 39, a narrowing module 40, and an output coupling mirror OC1 as main components.
  • the chamber 30 is filled with laser gas.
  • the pair of electrodes 31 and 32 are electrodes for exciting the laser medium by electric discharge, and are arranged to face each other in the chamber 30.
  • An opening is formed in the chamber 30, and the opening is closed by an insulating portion 37 including an insulator.
  • the electrode 31 is supported by the insulating portion 37.
  • a feedthrough made of a conductive member is embedded in the insulating portion 37. The feedthrough applies the voltage supplied from the pulse power module 36 to the electrode 31.
  • the electrode 32 is supported by the electrode holder 32h.
  • the electrode holder 32h is fixed to the inner surface of the chamber 30 and is electrically connected to the chamber 30.
  • the charger 35 is a DC power supply device that charges a capacitor (not shown) provided in the pulse power module 36 with a predetermined voltage.
  • the pulse power module 36 includes a switch controlled by the control unit CO. When the switch is turned on, the pulse power module 36 boosts the voltage applied from the charger 35 to generate a pulsed high voltage, and applies this high voltage between the pair of electrodes 31 and 32.
  • the cross flow fan 38 is arranged in the chamber 30.
  • a motor 39 arranged outside the chamber 30 is connected to the cross flow fan 38. As the motor 39 rotates, the cross flow fan 38 rotates.
  • the motor 39 is turned on/off and its rotation speed is adjusted under the control of the control unit CO. Therefore, the control unit CO can control the motor 39 to adjust the circulation speed of the laser gas circulating in the chamber 30.
  • the first window 33 and the second window 34 are provided at positions facing each other with a space between the electrode 31 and the electrode 32 in the chamber 30 interposed therebetween.
  • the first window 33 is provided at one end of the chamber 30 in the traveling direction of the laser light
  • the second window 34 is provided at the other end of the chamber 30 in the traveling direction of the laser light.
  • the first window 33 and the second window 34 are made of, for example, calcium fluoride.
  • the first window 33 and the second window 34 may be coated with a film of fluoride or oxide.
  • a first optical path tube 51 is connected to the one end of the chamber 30 where the first window 33 is provided.
  • the position where the first window 33 is provided in the chamber 30 protrudes so as to enter the first optical path tube 51 with a gap from the inner wall of the first optical path tube 51. Therefore, the first window 33 is located inside the first optical path tube 51.
  • the output coupling mirror OC1 is provided on the one end side with respect to the chamber 30 and is arranged in the first optical path tube 51.
  • the output coupling mirror OC1 is an optical element on which the laser light emitted from the first window 33 is incident, and transmits a part of the light emitted from the first window 33 and reflects the other part of the light to emit a first light. 1 Return to the inside of the chamber 30 through the window 33.
  • the output coupling mirror OC1 is composed of, for example, an element in which a dielectric multilayer film is formed on a substrate of calcium fluoride.
  • a second optical path tube 52 is connected to the other end of the chamber 30 where the second window 34 is provided. That is, the optical path tube connected to the chamber 30 includes the first optical path tube 51 and the second optical path tube 52. The position where the second window 34 is provided in the chamber 30 projects so as to enter the second optical path tube 52 with a gap from the inner wall of the second optical path tube 52. Therefore, the second window 34 is located inside the second optical path tube 52.
  • the band narrowing module 40 is connected to the second optical path tube 52. Therefore, the band narrowing module 40 is provided on the other end side with respect to the chamber 30.
  • the band narrowing module 40 includes a housing 41, a grating 42, and prisms 43 and 44. An opening is formed in the housing 41, and the space inside the housing 41 and the space inside the second optical path tube 52 communicate with each other through this opening. Further, the housing 41, the second optical path tube 52, and the chamber 30 form a closed space.
  • the grating 42 and the prisms 43 and 44 are arranged inside the housing 41.
  • the grating 42 and the prisms 43 and 44 are optical elements on which the laser light emitted from the second window 34 enters.
  • the grating 42 is arranged in a Littrow arrangement such that the wavelength dispersion surface thereof substantially coincides with the plane perpendicular to the propagation direction of the laser light, and the incident angle of the laser light substantially coincides with the diffraction angle.
  • the grating 42 may be an Escher grating that is blazed for a wavelength of about 193 nm.
  • At least one of the prisms 43 and 44 is fixed on the rotary stage.
  • the prism fixed on the rotary stage is slightly rotated to adjust the incident angle of the light incident on the grating 42. To be done.
  • the wavelength of the light reflected by the grating 42 is adjusted. Therefore, the light emitted from the second window 34 of the chamber 30 is reflected by the grating 42 via the prisms 43 and 44, so that the wavelength of the light returning to the chamber 30 is adjusted to a desired wavelength.
  • the number of prisms arranged in the band-narrowing module 40 is two in this example, but may be one or may be three or more.
  • An optical resonator is configured by the output coupling mirror OC1 and the grating 42 provided with the chamber 30 sandwiched between them, and the chamber 30 is arranged on the optical path of this optical resonator. Therefore, the light emitted from the chamber 30 reciprocates between the grating 42 of the band-narrowing module 40 and the output coupling mirror OC1, and is amplified every time it passes through the laser gain space between the electrode 31 and the electrode 32. .. A part of the amplified light passes through the output coupling mirror OC1 and is emitted as pulsed laser light.
  • the energy monitor module 20 is arranged on the optical path of the pulsed laser light emitted from the output coupling mirror OC1 of the laser oscillator LO.
  • the energy monitor module 20 includes a housing 21, a beam splitter 22, and a pulse energy sensor 23.
  • the housing 21 is connected to the first optical path tube 51.
  • the beam splitter 22 and the pulse energy sensor 23 are optical elements on which the laser light emitted from the first window 33 enters.
  • An opening is formed in the housing 21, and the space inside the housing 21 communicates with the space inside the first optical path tube 51 through this opening.
  • a beam splitter 22 and a pulse energy sensor 23 are arranged in the housing 21.
  • the beam splitter 22 transmits the pulsed laser light emitted from the laser oscillator LO with a high transmittance, and reflects a part of the pulsed laser light toward the light receiving surface of the pulse energy sensor 23.
  • the pulse energy sensor 23 detects the pulse energy of the pulsed laser light incident on the light receiving surface and outputs the detected pulse energy data to the control unit CO.
  • An opening is formed on the side of the housing 21 of the energy monitor module 20 opposite to the side to which the first optical path tube 51 is connected, and an optical path tube 53 is connected so as to surround this opening. Therefore, the space inside the first optical path tube 51, the space inside the housing 21, and the space inside the optical path tube 53 communicate with each other.
  • the optical path tube 53 is connected to the housing 10.
  • a laser light emission window OW is provided at a position surrounded by the optical path tube 53 in the housing 10. Therefore, the light passing through the beam splitter 22 of the energy monitor module 20 is emitted from the laser light emission window OW to the outside of the housing 10 through the optical path tube 53.
  • a purge gas supply source 61 in which purge gas is stored is arranged outside the housing 10.
  • the purge gas contains an inert gas such as high-purity nitrogen containing few impurities such as oxygen.
  • a pipe is connected to the purge gas supply source 61, and the pipe enters the housing 10.
  • a main gas supply valve SV0 is provided in the middle of this pipe. The opening degree of the main gas supply valve SV0 is adjusted by a control signal from the control unit CO.
  • the pipe provided with the main gas supply valve SV0 is connected to the purge gas manifold PM.
  • a plurality of pipes are connected to the purge gas manifold PM, and a first gas supply valve SV1 is provided in the middle of one of the pipes.
  • the opening degree of the first gas supply valve SV1 is adjusted by a control signal from the control unit CO.
  • the pipe provided with the first gas supply valve SV1 is connected to the housing 21 of the energy monitor module 20. This connecting portion is the first gas supply port SP1 that supplies the purge gas into the housing 21. Therefore, the first gas supply port SP1 supplies the purge gas into the first optical path tube 51 and the optical path tube 53 via the housing 21.
  • a second gas supply valve SV2 is provided in the middle of another pipe connected to the purge gas manifold PM.
  • the opening degree of the second gas supply valve SV2 is adjusted by a control signal from the control unit CO.
  • the pipe provided with the second gas supply valve SV2 is connected to the housing 41 of the band narrowing module 40. This connecting portion is the second gas supply port SP2 that supplies the purge gas into the housing 41. Therefore, the second gas supply port SP2 supplies the purge gas into the second optical path tube 52 via the housing 41.
  • the gas supply port of the gas laser device 100 of this example includes the first gas supply port SP1 and the second gas supply port SP2.
  • a pipe provided with a first exhaust valve EV1 is connected to the first optical path pipe 51.
  • the opening degree of the first exhaust valve EV1 is adjusted by a control signal from the control unit CO.
  • the gas in the first optical path tube 51 is exhausted by opening the first exhaust valve EV1.
  • the connecting portion where the pipe provided with the first exhaust valve EV1 is connected to the first optical path pipe 51 is the first exhaust port EP1 for exhausting the gas in the first optical path pipe 51.
  • the first exhaust port EP1 is provided beside the first window 33 in the first optical path tube 51.
  • the first exhaust port EP1 is provided at a position including a surface of the first optical path tube 51 that passes through the first window 33 and is perpendicular to the traveling direction of the laser light.
  • the first exhaust port EP1 may be provided at a position closer to the chamber 30 than this surface of the first optical path tube 51. That is, the first exhaust port EP1 may be provided near the first window 33 in the first optical path tube 51.
  • the purge gas supplied from the first gas supply port SP1 mixes with the gas inside the housing 21, the first optical path tube 51, and the optical path tube 53, and flows into the first exhaust port EP1. Therefore, the oxygen concentration in the housing 21, the first optical path tube 51, and the optical path tube 53 can be reduced by the purge gas, and the reduced oxygen concentration can be maintained.
  • the first exhaust port EP1 is provided in the first optical path tube 51 so that the gas flows on the surfaces of the beam splitter 22, the output coupling mirror OC1, and the first window 33.
  • a pipe provided with a second exhaust valve EV2 is connected to the second optical path pipe 52.
  • the opening degree of the second exhaust valve EV2 is adjusted by a control signal from the control unit CO.
  • the gas in the second optical path tube 52 is exhausted by opening the second exhaust valve EV2.
  • the connecting portion where the pipe provided with the second exhaust valve EV2 is connected to the second optical path pipe 52 is the second exhaust port EP2 for exhausting the gas in the second optical path pipe 52.
  • the second exhaust port EP2 is provided beside the second window 34 in the second optical path tube 52.
  • the second exhaust port EP2 is provided at a position including a surface of the second optical path tube 52 that passes through the second window 34 and is perpendicular to the traveling direction of the laser light.
  • the second exhaust port EP2 may be provided at a position closer to the chamber 30 than this surface of the second optical path tube 52. That is, the second exhaust port EP2 may be provided in the vicinity of the second window 34 in the second optical path tube 52.
  • the purge gas supplied from the second gas supply port SP2 mixes with the gas in the housing 41 and the second optical path tube 52 and flows into the second exhaust port EP2. Therefore, the oxygen concentration in the housing 41 and the second optical path tube 52 can be reduced and maintained by the purge gas. Further, it is possible to suppress the adhesion of impurities and the like due to outgas generated from components and the like to the surfaces of the grating 42, the prisms 43 and 44, and the second window 34 located on the gas flow path. That is, the second exhaust port EP2 is provided in the second optical path tube 52 so that the gas flows on the surfaces of the grating 42, the prisms 43 and 44, and the second window 34.
  • the exhaust port provided in the optical path tube of the gas laser device 100 of the present example includes the first exhaust port EP1 and the second exhaust port EP2.
  • the pipe provided with the first exhaust valve EV1 and the pipe provided with the second exhaust valve EV2 are connected to another pipe, and the first optical path pipe 51 is connected via this other pipe.
  • the gas inside and the gas inside the second optical path tube 52 are exhausted into the housing 10.
  • a laser gas supply source 62 in which laser gas is stored is further arranged outside the housing 10.
  • the laser gas supply source 62 supplies a plurality of gases serving as laser gas.
  • a mixed gas containing F 2 , Ar, and Ne is supplied.
  • the laser gas supply source 62 supplies a mixed gas containing F 2 , Kr, and Ne, for example.
  • a pipe is connected to the laser gas supply source 62, and the pipe enters the housing 10. This pipe is connected to the laser gas supply device 63.
  • the laser gas supply device 63 is provided with a valve and a flow rate control valve, which are not shown, and other pipes connected to the chamber 30 are connected.
  • the laser gas supply device 63 uses a plurality of gases as laser gas according to a control signal from the control unit CO, and supplies the laser gas into the chamber 30 via another pipe.
  • a connecting portion where the other pipe is connected to the chamber 30 is a laser gas supply port LSP1 for supplying the laser gas into the chamber 30.
  • An exhaust device 64 is arranged in the housing 10.
  • the exhaust device 64 is connected to the chamber 30 by a pipe.
  • the exhaust device 64 exhausts the gas in the chamber 30 into the housing 10 through this pipe.
  • the exhaust device 64 adjusts the exhaust amount and the like according to a control signal from the control unit CO, and performs a process of removing the F 2 gas from the gas exhausted from the chamber 30 by a halogen filter (not shown).
  • a connecting portion where this pipe is connected to the chamber 30 is a laser gas exhaust port LEP1 that exhausts gas from the chamber 30.
  • the housing 10 is provided with an exhaust duct 11.
  • the gas in the housing 10 is exhausted from the exhaust duct 11 to the outside of the housing 10. Therefore, the gas in the chamber 30 that is exhausted from the exhaust device 64 into the housing 10, the inside of the first optical path tube 51 that is exhausted into the housing 10 through the first exhaust port EP1 and the second exhaust port EP2, and The gas in the second optical path tube 52 or the like is exhausted from the exhaust duct 11 to the outside of the housing 10.
  • FIG. 3 is a flowchart showing the operation of the control unit CO until the gas laser device 100 in the comparative example emits laser light. As shown in FIG. 3, in this example, the operation of the control unit CO until the laser light is emitted includes steps S01 to S05.
  • Step S01 In the gas laser device 100, for example, at the time of new introduction or maintenance, the atmosphere enters the first optical path tube 51 and the second optical path tube 52. In FIG. 3, this state is the start state.
  • the control unit CO closes the first exhaust valve EV1 and the second exhaust valve EV2. Further, the control unit CO closes the main gas supply valve SV0, the first gas supply valve SV1, and the second gas supply valve SV2. Therefore, the purge gas is not supplied into the first optical path tube 51 and the second optical path tube 52, and the gas is not exhausted from the first optical path tube 51 and the second optical path tube 52.
  • any of the first exhaust valve EV1, the second exhaust valve EV2, the main gas supply valve SV0, the first gas supply valve SV1, and the second gas supply valve SV2 may be open. In this case, the control unit CO closes the open valves in this step, and if all of these valves are closed at the time of start, the control unit CO keeps these valves closed. To do.
  • Step S02 the control unit CO opens the first exhaust valve EV1 and the second exhaust valve EV2. At this time, since the purge gas is not supplied, the gas in the first optical path tube 51, the housing 21, and the optical path tube 53 and the gas in the second optical path tube 52 and the housing 41 are not exhausted.
  • Step S03 In this step, the control unit CO opens the main gas supply valve SV0, the first gas supply valve SV1 and the second gas supply valve SV2. Therefore, the purge gas is supplied from the first gas supply port SP1 into the housing 21, and the purge gas is supplied from the second gas supply port SP2 into the housing 41.
  • step S02 since the first exhaust valve EV1 and the second exhaust valve EV2 are open, the gas in the first optical path tube 51, the housing 21, and the optical path tube 53 is pushed out by the purge gas to the first exhaust port. The gas is exhausted into the housing 10 via EP1. Therefore, the oxygen concentration in the housing 21, the first optical path tube 51, and the optical path tube 53 is reduced by the purge gas, and the reduced oxygen concentration is maintained.
  • the gas flows on the surfaces of the beam splitter 22, the output coupling mirror OC1, and the first window 33, so that the adhesion of oxygen to these surfaces can be suppressed.
  • the gas in the second optical path tube 52 and the housing 41 is pushed out by the purge gas and is exhausted into the housing 10 through the second exhaust port EP2. Therefore, the oxygen concentration in the housing 41 and the second optical path tube 52 is reduced by the purge gas, and the state in which the oxygen concentration is reduced is maintained.
  • the gas flows on the surfaces of the grating 42, the prisms 43 and 44, and the second window 34, so that the adhesion of oxygen to these surfaces can be suppressed.
  • the gas exhausted into the housing 10 is exhausted to the outside of the housing 10 through the exhaust duct 11.
  • Step S04 the control unit CO maintains the state of step S03 for a predetermined first period T1.
  • the first period T1 is, for example, 5 minutes to 10 minutes.
  • the oxygen concentration in the first optical path tube 51, the housing 21, and the optical path tube 53 becomes equal to or lower than the predetermined concentration
  • the oxygen concentration in the second optical path tube 52 and the housing 41 becomes equal to or lower than the predetermined concentration.
  • the control unit CO supplies the laser gas into the chamber 30 and circulates the supplied laser gas until the completion of step S04. Specifically, the control unit CO controls the exhaust device 64 to exhaust the gas in the chamber 30 from the laser gas exhaust port LEP1 into the housing 10. Then, a predetermined amount of laser gas is supplied from the laser gas supply port LSP1. As a result, the laser gas is sealed in the chamber 30. Further, the control unit CO controls the motor 39 to rotate the cross flow fan 38. The laser gas is circulated by the rotation of the cross flow fan 38.
  • Step S05 the control unit CO emits laser light. Specifically, in this step, the control unit CO controls the motor 39 and maintains the state where the laser gas in the chamber 30 is circulating. Further, the control unit CO controls the switches in the charger 35 and the pulse power module 36 to apply a high voltage between the electrodes 31 and 32. When a high voltage is applied between the electrodes 31 and 32, the insulation between the electrodes 31 and 32 is broken and discharge occurs. The energy of this discharge causes the laser medium contained in the laser gas between the electrodes 31 and 32 to be in an excited state and emits spontaneous emission light when returning to the ground state. Part of this light is emitted from the second window 34 and reflected by the grating 42 via the prisms 43 and 44.
  • the light reflected by the grating 42 and propagating through the second window 34 into the chamber 30 again has a narrow band.
  • the narrowed band light causes stimulated emission in the excited laser medium, and the light is amplified.
  • the light of the predetermined wavelength resonates between the grating 42 and the output coupling mirror OC1, and laser oscillation occurs.
  • a part of the laser light passes through the output coupling mirror OC1 and is emitted from the laser light emission window OW.
  • the laser light reflected by the beam splitter 22 is received by the pulse energy sensor 23, and the pulse energy sensor 23 outputs a signal based on the energy intensity of the received laser light to the control unit CO. Based on this signal, the control unit CO controls the charger 35 and the pulse power module 36 to adjust the power of the emitted laser light.
  • step S04 the state of step S04 is maintained during this step. Therefore, the gas flowing through the first optical path tube 51, the housing 21, and the optical path tube 53 maintains the oxygen concentration in the first optical path tube 51, the housing 21, and the optical path tube 53 at a predetermined concentration or less. It Further, the oxygen concentration in the second optical path tube 52 and the housing 41 is maintained at a predetermined concentration or less by the gas flowing in the second optical path tube 52 and the housing 41.
  • step S01 may be omitted. That is, at the time of start, if either the first exhaust valve EV1 or the second exhaust valve EV2 is open, the process may directly proceed to step S02. Moreover, step S02 and step S03 may be performed simultaneously.
  • the gas in the first optical path tube 51 and the second optical path tube 52 is supplied to the surface of the first window 33 by the supply of the purge gas.
  • the temperature of this gas is approximately the same as the temperature of the purge gas.
  • the temperature inside the chamber 30 becomes higher than the temperature of the purge gas due to the frictional heat and the like due to the circulation of the laser gas. Therefore, the surfaces of the first window 33 and the second window 34 on the side opposite to the chamber 30 side are cooled by the gas flowing through the surfaces thereof, and thus have a temperature higher than that of the surfaces of the first window 33 and the second window 34 on the chamber 30 side.
  • the first window 33 and the second window 34 are heated due to the energy of the laser light. Therefore, a sharp temperature change occurs on the surface of the first window 33 and the second window 34 on the side opposite to the chamber 30 side between the start of the laser oscillation and the stop of the laser oscillation. There is a concern that the window 34 will be damaged by thermal shock, and the durability of the gas laser device 100 will deteriorate.
  • FIG. 4 is a schematic diagram showing an example of the overall configuration of the gas laser device according to the present embodiment.
  • the gas laser device 100 of the present embodiment includes an oxygen concentration meter 12, a first auxiliary exhaust valve EV3 and a second auxiliary exhaust valve EV4, a first auxiliary exhaust port EP3 and a second auxiliary exhaust port EP4.
  • the main difference from the gas laser device 100 of Comparative Example 1 is that it includes and.
  • the first exhaust valve EV1 will be the first main exhaust valve EV1
  • the second exhaust valve EV2 will be the second main exhaust valve EV2
  • the first exhaust port EP1 will be the first exhaust port EP1 described in the comparative example.
  • the main exhaust port EP1 is used, and the second exhaust port EP2 is used as the second main exhaust port EP2.
  • the first auxiliary exhaust valve EV3 is provided in a pipe connected to the first optical path tube 51, and the opening degree of the first auxiliary exhaust valve EV3 is adjusted by a control signal from the control unit CO.
  • the connecting portion where the pipe provided with the first auxiliary exhaust valve EV3 is connected to the first optical path pipe 51 is the first auxiliary exhaust port EP3 for exhausting the gas in the first optical path pipe 51. That is, the first exhaust port provided in the first optical path tube 51 of the present embodiment includes the first main exhaust port EP1 as the main exhaust port and the first sub exhaust port EP3 as the sub exhaust port. When the first sub exhaust valve EV3 is opened, the gas in the first optical path tube 51 is exhausted through the first sub exhaust port EP3.
  • the first auxiliary exhaust port EP3 is provided on the upstream side of the gas flow in the first optical path tube 51 with respect to the position where the first window 33 is provided and the position where the first main exhaust port EP1 is provided. .. Therefore, when the first main exhaust port EP1 is provided at a position including the plane that passes through the first window 33 in the first optical path tube 51 and is perpendicular to the traveling direction of the laser light, the first sub exhaust port EP3 is It is provided on the upstream side of the gas flow in the first optical path tube 51 with respect to the main exhaust port EP1.
  • the first auxiliary exhaust port EP3 is located inside the first optical path tube 51 rather than at the position where the first window 33 is provided. It is provided upstream of the gas flow.
  • the pipe provided with the first auxiliary exhaust valve EV3 is connected to another pipe to which the pipe provided with the first main exhaust valve EV1 and the pipe provided with the second main exhaust valve EV2 are connected. Therefore, the gas in the first optical path tube 51 exhausted through the first auxiliary exhaust port EP3 is exhausted into the housing 10 through this other pipe.
  • the second auxiliary exhaust valve EV4 is provided in a pipe connected to the second optical path tube 52, and the opening degree of the second auxiliary exhaust valve EV4 is adjusted by a control signal from the control unit CO.
  • the connecting portion where the pipe provided with the second auxiliary exhaust valve EV4 is connected to the second optical path pipe 52 is the second auxiliary exhaust port EP4 for exhausting the gas in the second optical path pipe 52. That is, the second exhaust port provided in the second optical path tube 52 of the present embodiment includes the second main exhaust port EP2 as the main exhaust port and the second sub exhaust port EP4 as the sub exhaust port.
  • the second auxiliary exhaust port EP4 is provided on the upstream side of the gas flow in the second optical path tube 52 with respect to the position where the second window 34 is provided and the position where the second main exhaust port EP2 is provided. .. Therefore, when the second main exhaust port EP2 is provided at a position including the surface of the second optical path tube 52 that passes through the second window 34 and is perpendicular to the traveling direction of the laser light, the second sub exhaust port EP4 is It is provided on the upstream side of the gas flow in the second optical path tube 52 with respect to the main exhaust port EP2.
  • the second auxiliary exhaust port EP4 is located inside the second optical path tube 52 than at the position where the second window 34 is provided. It is provided upstream of the gas flow.
  • the pipe provided with the second auxiliary exhaust valve EV4 is connected to another pipe to which the pipe provided with the first main exhaust valve EV1 and the pipe provided with the second main exhaust valve EV2 are connected. Therefore, the gas in the second optical path tube 52 exhausted through the second auxiliary exhaust port EP4 is exhausted into the housing 10 through this other pipe.
  • the oxygen concentration meter 12 is provided near the output port of another pipe to which the pipe provided with the first main exhaust valve EV1 and the pipe provided with the second main exhaust valve EV2 are connected.
  • the oxygen concentration meter 12 measures the concentration of oxygen contained in the gas in the first optical path tube 51 exhausted through the first main exhaust port EP1 and the second optical path exhausted through the second main exhaust port EP2.
  • the concentration of oxygen contained in the gas inside the tube 52 is measured.
  • Examples of the oxygen concentration meter 12 include zirconia type, magnetic type, laser spectroscopic type, and electrode type oxygen concentration meters.
  • a zirconia concentration cell type oxygen concentration meter is preferable because it is excellent in reactivity, and a laser spectroscopy wavelength tunable semiconductor laser spectroscopy oxygen concentration meter is almost affected by interference of gases other than oxygen. It is preferable because measurement can be performed without the need.
  • a pipe provided with the first auxiliary exhaust valve EV3 and a pipe provided with the second auxiliary exhaust valve EV4 are also connected to the other pipes. Therefore, the oxygen concentration meter 12 measures the concentration of oxygen contained in the gas in the first optical path tube 51 exhausted through the first auxiliary exhaust port EP3 and the second exhaust port EP4 through which the oxygen is exhausted. The concentration of oxygen contained in the gas in the two-path tube 52 can also be measured.
  • FIG. 5 is a flowchart showing a first example of the operation of the control unit CO until the gas laser device 100 according to the present embodiment emits laser light.
  • the operation of the control unit CO until the laser light is emitted includes steps S11 to S18.
  • Step S11 The start state of this embodiment is similar to the start state of the comparative example described with reference to FIG.
  • the control unit CO similarly to step S01 of the comparative example, the first main exhaust valve EV1, the second main exhaust valve EV2, the main gas supply valve SV0, the first gas supply valve SV1, and the second gas supply. Close the valve SV2. Further, in the present embodiment, the control unit CO closes the first sub exhaust valve EV3 and the second sub exhaust valve EV4. Therefore, in this step, as in step S01 of the comparative example, the purge gas is not supplied into the first optical path tube 51 and the second optical path tube 52, and the gas is exhausted from the first optical path tube 51 and the second optical path tube 52. Not done.
  • the first main exhaust valve EV1, the second main exhaust valve EV2, the first auxiliary exhaust valve EV3, the second auxiliary exhaust valve EV4, the main gas supply valve SV0, the first gas supply valve SV1, and the Either of the two gas supply valves SV2 may be open.
  • the control unit CO closes the open valves in this step, and if all of these valves are closed at the time of start, the control unit CO keeps these valves closed. To do.
  • Step S12, S13, S14 In steps S12, S13, S14 of the present embodiment, the control unit CO performs the same operation as steps S02, S03, and S04 of the comparative example. Therefore, in step S13, the control unit CO exhausts the gas from the first main exhaust port EP1 and the second main exhaust port EP2 as the main exhaust ports before the laser light is emitted from the chamber 30. Therefore, at the time when step S14 ends, the oxygen concentration in the first optical path tube 51, the housing 21, and the optical path tube 53 becomes equal to or lower than a predetermined concentration, and the oxygen concentration in the second optical path tube 52 and the housing 41 reaches a predetermined value. Is less than or equal to the concentration.
  • Step S15 the control unit CO opens the first auxiliary exhaust valve EV3 and the second auxiliary exhaust valve EV4.
  • step S12 the first main exhaust valve EV1 and the second main exhaust valve EV2 are opened. Therefore, the gas in the first optical path tube 51 is exhausted into the housing 10 via the first main exhaust port EP1 and the first auxiliary exhaust port EP3, and the gas in the second optical path tube 52 is the second main exhaust port. The gas is exhausted into the housing 10 through the port EP2 and the second auxiliary exhaust port EP4. That is, in this step, the gas is exhausted from the first auxiliary exhaust port EP3 and the second auxiliary exhaust port EP4 as the auxiliary exhaust ports.
  • the amount of gas exhausted from the first main exhaust port EP1 and the second main exhaust port EP2 is lower than in the state before this step. Therefore, the gas flow in the first optical path tube 51 and the second optical path tube 52 changes, and the amount of gas flowing on the surfaces of the first window 33 and the second window 34 decreases.
  • Step S16 the control unit CO closes the first main exhaust valve EV1 and the second main exhaust valve EV2. Therefore, no gas is exhausted from the first main exhaust port EP1 and the second main exhaust port EP2, and the amount of gas exhausted from the first auxiliary exhaust port EP3 and the second auxiliary exhaust port EP4 increases. Therefore, the gas flow in the first optical path tube 51 and the second optical path tube 52 further changes, and the amount of gas flowing on the surfaces of the first window 33 and the second window 34 further decreases.
  • control unit CO supplies the laser gas into the chamber 30 and circulates the supplied laser gas until the completion of step S17.
  • the procedure of supplying the laser gas into the chamber 30 and circulating the laser gas is the same as the procedure of supplying the laser gas into the chamber 30 and circulating the laser gas in the comparative example.
  • Step S17 the control unit CO maintains the state of step S16 until the predetermined second period T2 elapses after the first auxiliary exhaust valve EV3 and the second auxiliary exhaust valve EV4 are opened in step S15.
  • the second period T2 is, for example, 5 minutes to 10 minutes. Therefore, step S16 is performed until the second period T2 elapses after step S15 is performed. For example, step S15 and step S16 may be performed simultaneously. In this step, the amount of gas flowing on the surfaces of the first window 33 and the second window 34 has decreased as described above.
  • the first optical path tube 51 side of the first window 33 is suppressed from being cooled by the gas in the first optical path tube 51, and the second optical path tube 52 side of the second window 34 is suppressed. Is suppressed from being cooled by the gas in the second optical path tube 52. Therefore, at the completion of this step, the difference between the temperature on the chamber 30 side in the first window 33 and the temperature on the first optical path tube 51 side, and the temperature on the chamber 30 side in the second window 34 and the second optical path tube 52. The difference from the temperature on the side is smaller than that of the comparative example.
  • Step S18 the control unit CO emits a laser beam in the same manner as in step S05 of the comparative example.
  • the control unit CO may reduce the opening of the main gas supply valve SV0 in step S18 to reduce the amount of purge gas supplied into the housings 21, 41. In this case, when the laser light is emitted, the amount of gas flowing on the surfaces of the first window 33 and the second window 34 can be further reduced. Therefore, the difference between the temperature on the chamber 30 side and the temperature on the first optical path tube 51 side in the first window 33 and the difference between the temperature on the chamber 30 side and the temperature on the second optical path tube 52 side in the second window 34 are , Can be smaller.
  • the control unit CO may reduce the opening degrees of the first gas supply valve SV1 and the second gas supply valve SV2 instead of reducing the opening degree of the main gas supply valve SV0 in step S18.
  • FIG. 6 is a flowchart showing a second example of the operation of the control unit CO until the gas laser device 100 according to this embodiment emits laser light.
  • the operation of the control unit CO until the laser light is emitted is different in step S14 from the first example, and the other steps are the same as the steps in the first example. is there.
  • Step S14 In this step of this example, the control unit CO maintains the state of step S13 until the oxygen concentrations in the first optical path tube 51 and the second optical path tube 52 reach a predetermined first concentration. Therefore, in the step S14 of the present example, the control unit CO receives a signal indicating the oxygen concentration from the oximeter 12, and the oxygen concentration received by the control unit CO is below a predetermined oxygen concentration. And step S14b for determining whether or not.
  • Step S14a The oxygen concentration meter 12 measures the oxygen concentration of the gas passing through the pipe provided with the first main exhaust valve EV1 and the pipe provided with the second main exhaust valve EV2. In this step, the oximeter 12 outputs a signal indicating the measured oxygen concentration, and the control unit CO receives this signal.
  • Step S14b the control unit CO determines whether or not the oxygen concentration measured by the oxygen concentration meter 12 is equal to or lower than a predetermined first concentration based on the signal received from the oxygen concentration meter 12.
  • the predetermined first concentration is, for example, 10 ppm.
  • the process returns to step S14a to return to the oxygen concentration meter. Based on the signal newly received from 12, it is determined whether or not the oxygen concentration measured by the oximeter 12 is below a predetermined first concentration.
  • the oximeter 12 is provided in the other pipe to which the pipe provided with the first main exhaust valve EV1 and the pipe provided with the second main exhaust valve EV2 are connected, as described above. ..
  • the oxygen concentration meter 12 is arranged in each of the first optical path tube 51 and the second optical path tube 52, and the oxygen concentrations in the first optical path tube 51 and the second optical path tube 52 are measured. May be.
  • the oximeter 12 may be provided in the exhaust duct 11.
  • the control unit CO determines whether the oxygen concentration in the first optical path tube 51 and the second optical path tube 52 has become equal to or lower than a predetermined first concentration.
  • the atmosphere enters the first optical path tube 51 and the second optical path tube 52. That is, in the housing 10, the oxygen concentration inside the first optical path tube 51 and the second optical path tube 52 is substantially the same as the oxygen concentration outside the first optical path tube 51 and the second optical path tube 52. Then, after step S13, the purge gas is supplied into the first optical path tube 51 and the second optical path tube 52, and the gas in the first optical path tube 51 and the second optical path tube 52 is exhausted into the housing 10. Therefore, the oxygen concentration outside the first optical path tube 51 and the second optical path tube 52 inside the housing 10 tends to be higher than the oxygen concentration inside the first optical path tube 51 and the second optical path tube 52.
  • the oxygen concentration in the housing 10 becomes equal to or lower than a predetermined second concentration higher than the first concentration
  • the oxygen concentrations in the first optical path tube 51 and the second optical path tube 52 are equal to a predetermined second concentration. It is considered that the concentration has dropped below 1 concentration. That is, the second concentration is the oxygen concentration in the housing 10 when the oxygen concentration in the first optical path tube 51 and the second optical path tube 52 is the predetermined first concentration or less. This second concentration is, for example, 100 ppm.
  • the control unit CO proceeds to step S15 when the oxygen concentration is the second concentration or less based on the signal received from the oxygen concentration meter 12.
  • the control unit CO returns to step S14a, and the oxygen concentration measured by the oxygen concentration meter 12 is predetermined based on the signal newly received from the oxygen concentration meter 12. It is determined whether or not the second density is less than or equal to the second density.
  • the control unit CO does not need to determine that the oxygen concentrations in the first optical path tube 51 and the second optical path tube 52 are equal to or lower than the predetermined first concentration.
  • the control unit CO performs the operation of the first example, the gas laser device 100 does not have to include the oxygen concentration meter 12.
  • gas is exhausted from the first main exhaust port EP1 and the second main exhaust port EP2 before the laser light is emitted. Therefore, the gas flows on the surfaces of the first window 33 and the second window 34, and the oxygen concentration in the housing 21, the first optical path tube 51 and the optical path tube 53, and the housing 41 and the second optical path tube 52. The oxygen concentration can be reduced.
  • the gas is exhausted from the first auxiliary exhaust port EP3 and the second auxiliary exhaust port EP4. Therefore, the amount of gas exhausted from the first main exhaust port EP1 and the second main exhaust port EP2 decreases, and the amount of gas flowing on the surfaces of the first window 33 and the second window 34 decreases.
  • the difference between the temperature of the first window 33 on the chamber 30 side and the temperature of the first optical path tube 51 side becomes small, and the temperature of the second window 34 on the chamber 30 side and the second optical path tube 52 side.
  • the gas laser device 100 of the present embodiment even when the first window 33 and the second window 34 are heated when the laser light is emitted, compared with the gas laser device 100 of the comparative example, The thermal shock received by the first window 33 and the second window 34 can be reduced. Further, even when the temperatures of the first window 33 and the second window 34 decrease at the time of stopping the emission of the laser light, the first window 33 and the second window 34 are different from those of the gas laser device 100 of the comparative example. The thermal shock received can be small. Therefore, the gas laser device of this embodiment can be excellent in durability.
  • the control unit CO exhausts the gas from the first main exhaust port EP1 and the second main exhaust port EP2 when the gas is exhausted from the first auxiliary exhaust port EP3 and the second auxiliary exhaust port EP4.
  • the temperature of the second window 34 on the chamber 30 side and the second optical path as compared with the case where the gas exhaust from the second main exhaust port EP2 is not stopped when the gas is exhausted from the second auxiliary exhaust port EP4, the temperature of the second window 34 on the chamber 30 side and the second optical path.
  • the difference from the temperature on the tube 52 side can be smaller. Therefore, when the gas is exhausted from the first auxiliary exhaust port EP3 and the second auxiliary exhaust port EP4, compared with the case where the exhaust of the gas from the first main exhaust port EP1 and the second main exhaust port EP2 is not stopped, The thermal shock applied to the first window 33 and the second window 34 can be further reduced. When the gas is exhausted from the first auxiliary exhaust port EP3 and the second auxiliary exhaust port EP4, the gas may be exhausted from the first main exhaust port EP1 and the second main exhaust port EP2.
  • the gas when the gas is exhausted from the first auxiliary exhaust port EP3 and the second auxiliary exhaust port EP4, compared to before the gas is exhausted from the first auxiliary exhaust port EP3 and the second auxiliary exhaust port EP4, The amount of gas exhausted from the first main exhaust port EP1 and the second main exhaust port EP2 may be reduced.
  • control unit CO performs the first operation after the elapse of a predetermined first period T1 from the start of the exhaust of the gas from the first main exhaust port EP1 and the second main exhaust port EP2.
  • the gas is exhausted from the sub exhaust port EP3 and the second sub exhaust port EP4. Therefore, by appropriately setting the first period T1, the oxygen concentration in the first optical path tube 51 and the oxygen concentration in the second optical path tube 52 can be appropriately reduced by the purge gas.
  • the oxygen concentration of the gas exhausted into the housing 10 from the first main exhaust port EP1 and the second main exhaust port EP2 is directly measured, and the control unit CO determines the first
  • the oxygen concentration in the optical path tube 51 and the second optical path tube 52 becomes equal to or lower than the predetermined first concentration
  • the gas is exhausted from the first auxiliary exhaust port EP3 and the second auxiliary exhaust port EP4. Therefore, according to the second example, after the oxygen concentration in the first optical path tube 51 and the second optical path tube 52 is reduced, the gas flow paths in the first optical path tube 51 and the second optical path tube 52 are changed. obtain.
  • the oxygen concentration meter 12 is provided in the exhaust duct 11 as in the above modification, and when the oxygen concentration in the housing 10 becomes equal to or lower than the second concentration, the first auxiliary exhaust port EP3 and the second auxiliary exhaust port EP4.
  • the gas may be exhausted from.
  • the control unit CO starts the exhaust of the gas from the first main exhaust port EP1 and the second main exhaust port EP2, and the oxygen concentration in the first optical path tube 51 and the second optical path tube 52 is predetermined.
  • the concentration becomes equal to or less than the first concentration the gas is exhausted from the first auxiliary exhaust port EP3 and the second auxiliary exhaust port EP4.
  • the oxygen concentration meter 12 may be provided in the housing 10 instead of being provided in the exhaust duct 11.
  • the control unit CO causes the chamber 30 to emit laser light after starting the exhaust of the gas from the first auxiliary exhaust port EP3 and the second auxiliary exhaust port EP4. Therefore, the thermal shock that the first window 33 and the second window 34 receive from the beginning of the emission of the laser light can be reduced.
  • the control unit CO may start exhausting the gas from the first auxiliary exhaust port EP3 and the second auxiliary exhaust port EP4 after the laser light is emitted.
  • the control unit CO causes the laser light to be emitted from the chamber 30 after a predetermined second period T2 has elapsed from the start of the gas exhaust from the first auxiliary exhaust port EP3 and the second auxiliary exhaust port EP4. To be emitted. Therefore, by setting the second period T2 to an appropriate period, it is possible to further reduce the thermal shock received by the first window 33 and the second window 34 from the beginning of emitting the laser light.
  • the control unit CO causes the chamber 30 to emit laser light before a predetermined second period T2 elapses after the gas is exhausted from the first auxiliary exhaust port EP3 and the second auxiliary exhaust port EP4. Good.
  • the position where the first window 33 of the chamber 30 is provided protrudes so as to enter the first optical path tube 51 with a gap from the inner wall of the first optical path tube 51.
  • the first main exhaust port EP1 is located at a position including a surface of the first optical path tube 51 that passes through the first window 33 and is perpendicular to the traveling direction of the laser light, or on the chamber 30 side of this surface of the first optical path tube 51 with respect to this surface. It is provided in the position.
  • the first main exhaust port EP1 is provided on the side opposite to the chamber side with respect to the above surface.
  • the first window 33 does not have to enter the inside of the first optical path tube 51.
  • the position where the second window 34 of the chamber 30 is provided is projected so as to enter the second optical path tube 52 with a gap from the inner wall of the second optical path tube 52.
  • the second main exhaust port EP2 is located at a position including a surface of the second optical path tube 52 that passes through the second window 34 and is perpendicular to the traveling direction of the laser light, or on the chamber 30 side of this surface of the second optical path tube 52. It is provided in the position.
  • the second main exhaust port EP2 is provided on the opposite side to the chamber side with respect to the above surface.
  • the second window 34 does not have to enter the second optical path tube 52.
  • an optical element that the laser light enters is arranged on the upstream side of the gas flow with respect to the first auxiliary exhaust port EP3.
  • at least the output coupling mirror OC1 and the beam splitter 22 are arranged as the optical element.
  • an optical element that the laser light enters is arranged on the upstream side of the gas flow with respect to the second auxiliary exhaust port EP4.
  • the grating 42 and the prisms 43 and 44 are arranged as the optical element. Therefore, even when the exhaust of the gas from the first main exhaust port EP1 and the second main exhaust port EP2 is stopped, the gas is exhausted from the first auxiliary exhaust port EP3 and the second auxiliary exhaust port EP4. Thus, the oxygen concentration in the space where these optical elements are arranged can be reduced.
  • the gas laser device 100 of the present embodiment includes the first auxiliary exhaust valve EV3 and the first auxiliary exhaust port EP3, the second auxiliary exhaust valve EV4 and the second auxiliary exhaust port EP4.
  • the gas laser device 100 may not include one of the first auxiliary exhaust valve EV3 and the first auxiliary exhaust port EP3, and the second auxiliary exhaust valve EV4 and the second auxiliary exhaust port EP4.
  • the gas laser device 100 may include the first auxiliary exhaust valve EV3 and the first auxiliary exhaust port EP3. preferable.
  • FIG. 7 is a schematic diagram showing a schematic configuration example of the entire gas laser device according to the present embodiment.
  • the gas laser device 100 of the present embodiment differs from the gas laser device of the first embodiment in that it includes a first wall portion 51W and a second wall portion 52W.
  • the first wall portion 51W is provided between the first main exhaust port EP1 and the first sub exhaust port EP3 in the first optical path tube 51, and closes the first optical path tube 51.
  • the 1st slit 51S is formed in the 1st wall part 51W.
  • the first slit 51S is formed so that the laser light propagating between the first window 33 and the output coupling mirror OC1 can pass through.
  • the first slit 51S is substantially similar to the cross-sectional shape of the laser light that passes through the first slit 51S from the viewpoint of not creating an unnecessary region in the first slit 51S.
  • the second wall portion 52W is provided between the second main exhaust port EP2 and the second auxiliary exhaust port EP4 in the second optical path tube 52 and closes the second optical path tube 52.
  • the 2nd slit 52S is formed in the 2nd wall part 52W.
  • the second slit 52S is formed so that the laser light propagating between the second window 34 and the band narrowing module 40 can pass through.
  • the second slit 52S is substantially similar to the cross-sectional shape of the laser light that passes through the second slit 52S, from the viewpoint of not creating an unnecessary region in the second slit 52S.
  • the first wall portion 51W and the second wall portion 52W are preferably formed of, for example, a metal from the viewpoint of not generating outgas and the like, and examples of the metal include aluminum and stainless steel.
  • the operation of the gas laser device 100 in the present embodiment is the same as the operation of the gas laser device 100 in the first embodiment.
  • the gas in the first optical path tube 51 passes through the first slit 51S, flows on the surface of the first window 33, and is discharged from the first main exhaust port EP1.
  • the gas in the second optical path tube 52 passes through the second slit 52S and flows on the surface of the second window 34, and then from the second main exhaust port EP2. Exhausted.
  • the first wall portion 51W serves as a barrier, and when the gas is exhausted from the first auxiliary exhaust port EP3, the gas is suppressed from flowing to the first window 33 side. Can be done.
  • the second wall portion 52W serves as a barrier, and when the gas is exhausted from the second auxiliary exhaust port EP4, the gas can be suppressed from flowing to the second window 34 side. Therefore, the thermal shock applied to the first window 33 and the second window 34 can be further reduced.
  • the gas laser device 100 may not include one of the first wall portion 51W and the second wall portion 52W.
  • the power of the laser beam that is transmitted through the first window 33 is larger than that of the second window 34, so that the gas laser device 100 includes the first wall portion 51W. Is preferably provided.
  • FIG. 8 is a schematic diagram showing a schematic configuration example of the entire gas laser device according to the present embodiment.
  • the gas laser device 100 of the present embodiment includes a master oscillator MO having the same configuration as the laser oscillator LO of the first embodiment, and further includes an amplifier PA and optical transmission units 80 and 90. It is mainly different from the gas laser device 100 of the first embodiment.
  • the amplifier PA includes a chamber 70, a window including a first window 73 and a second window 74, a pair of electrodes 71 and 72, an electrode holder 72h, a charger 75, a pulse power module 76, and an insulating portion 77.
  • the main components include a cross flow fan 78, a motor 79, a rear mirror RM, and an output coupling mirror OC2.
  • the configuration of the chamber 70 of the amplifier PA, the pair of electrodes 71 and 72, the electrode holder 72h, and the insulating portion 77 is the same as that of the chamber 30, the pair of electrodes 31 and 32, the electrode holder 32h, and the insulating portion 37 of the master oscillator MO. It is the same.
  • the pair of electrodes 71, 72 are arranged to face each other in the chamber 70.
  • the insulating portion 77 closes the opening formed in the chamber 70, and the electrode 71 is supported by the insulating portion 77.
  • the electrode 72 is supported by the electrode holder 72h, which is fixed to the inner surface of the chamber 70 and is electrically connected to the chamber 70.
  • the configurations of the charger 75 of the amplifier PA and the pulse power module 76 are the same as the configurations of the charger 35 and the pulse power module 36 of the master oscillator MO. Therefore, the feedthrough of the insulating portion 77 applies the voltage supplied from the pulse power module 76 to the electrode 71.
  • the pulse power module 76 boosts the voltage applied from the charger 75 to generate a pulsed high voltage, and applies this high voltage between the pair of electrodes 71, 72.
  • the configurations of the crossflow fan 78 and the motor 79 of the amplifier PA are the same as the configurations of the crossflow fan 38 and the motor 39 of the master oscillator MO. Therefore, the crossflow fan 78 is arranged in the chamber 70, and the space in which the crossflow fan 78 is arranged in the chamber 70 and the space between the pair of electrodes 71, 72 are in communication with each other.
  • the crossflow fan 78 rotates, the laser gas sealed in the chamber 70 circulates in a predetermined direction.
  • a motor 79 is connected to the crossflow fan 78, and the rotation of the motor 79 causes the crossflow fan 78 to rotate.
  • the control unit CO can adjust the circulation speed of the laser gas circulating in the chamber 70.
  • the configurations of the first window 73 and the second window 74 are the same as the configurations of the first window 33 and the second window 34 of the master oscillator MO. Therefore, the first window 73 and the second window 74 are provided at positions facing each other with the space between the electrode 71 and the electrode 72 in the chamber 70 interposed therebetween.
  • the first window 73 is provided at one end of the chamber 70 in the traveling direction of the laser light
  • the second window 74 is provided at the other end of the chamber 70 in the traveling direction of the laser light.
  • a first optical path tube 55 is connected to the one end of the chamber 70 where the first window 73 is provided.
  • the position where the first window 73 is provided in the chamber 70 protrudes so as to enter the first optical path tube 55 with a gap from the inner wall of the first optical path tube 55. Therefore, the first window 73 is located inside the first optical path tube 55.
  • the configuration of the output coupling mirror OC2 is similar to the configuration of the output coupling mirror OC1 of the master oscillator MO.
  • the output coupling mirror OC2 is provided on the one end side with respect to the chamber 70, and is arranged in the first optical path tube 55.
  • the output coupling mirror OC2 is an optical element on which the laser light emitted from the first window 73 is incident, and transmits a part of the light emitted from the first window 73 and reflects the other part of the light to emit a first light. 1 Return to the inside of the chamber 70 through the window 73.
  • a second optical path tube 56 is connected to the other end of the chamber 70 where the second window 74 is provided. That is, the optical path tube connected to the chamber 70 includes the first optical path tube 55 and the second optical path tube 56. The position where the second window 74 is provided in the chamber 70 is projected so as to enter the second optical path tube 56 with a gap from the inner wall of the second optical path tube 56. Therefore, the second window 74 is located inside the second optical path tube 56.
  • the rear mirror RM is provided on the other end side with respect to the chamber 70, and is arranged inside the second optical path tube 56.
  • the rear mirror RM is an optical element on which the laser light emitted from the second window 74 is incident, reflects at least a part of the light emitted from the second window 74, and the inside of the chamber 70 via the second window 74.
  • the rear mirror RM transmits the light that is incident from the side opposite to the chamber 70 side and makes the light incident into the chamber 70 through the second window 74.
  • the rear mirror RM is composed of, for example, an element in which a dielectric multilayer film is formed on a substrate of calcium fluoride.
  • An optical resonator is formed by the output coupling mirror OC2 and the rear mirror RM provided with the chamber 70 interposed therebetween, and the chamber 70 is arranged on the optical path of this optical resonator. Therefore, the light that passes through the rear mirror RM and enters the chamber 70 reciprocates between the output coupling mirror OC2 and the rear mirror RM, and is amplified every time it passes through the laser gain space between the electrode 71 and the electrode 72. .. A part of the amplified light passes through the output coupling mirror OC2, and the amplified laser light is emitted.
  • An example of such an amplifier PA is an injection lock type amplifier.
  • the first optical path tube 51 of the master oscillator MO and the second optical path tube 56 of the amplifier PA are connected to each other via an optical transmission unit 80.
  • the optical transmission unit 80 includes a housing 81 and a pair of mirrors 82 and 83.
  • the connection portion of the housing 81 with the first optical path tube 51 is open, and the space inside the housing 81 and the space inside the first optical path tube 51 communicate with each other through this opening.
  • the connection portion of the housing 81 with the second optical path tube 56 is open, and the space inside the housing 81 and the space inside the second optical path tube 56 communicate with each other through this opening.
  • the mirrors 82 and 83 are arranged in the housing 81 with their angles appropriately adjusted.
  • the laser light emitted through the output coupling mirror OC1 of the master oscillator MO is reflected by the mirrors 82 and 83 and enters the rear mirror RM of the amplifier PA. At least a part of this laser light passes through the rear mirror RM.
  • the first optical path tube 55 of the amplifier PA and the housing 21 of the energy monitor module 20 are connected to each other via an optical transmission unit 90 and an optical path tube 57.
  • the optical transmission unit 90 includes a housing 91 and a pair of mirrors 92 and 93.
  • the connection portion of the housing 91 with the first optical path tube 55 is open, and the space inside the housing 91 and the space inside the first optical path tube 55 communicate with each other through this opening.
  • the connection portion of the housing 91 with the optical path tube 57 is open, and the space inside the housing 91 and the space inside the optical path tube 57 communicate with each other through this opening.
  • the housing 21 of the energy monitor module 20 is connected to the optical path tube 57.
  • the mirrors 92 and 93 are arranged in the housing 91 with their angles appropriately adjusted.
  • the laser light transmitted through the output coupling mirror OC2 of the amplifier PA and emitted is reflected by the mirrors 92 and 93 and enters the energy monitor module via the optical path tube 57. Therefore, in this embodiment, the beam splitter 22 and the pulse energy sensor 23 of the energy monitor module 20 are optical elements on which the laser light emitted from the first window 73 of the amplifier PA is incident.
  • an optical path tube 53 is connected to the housing 21 of the energy monitor module 20, and the optical path tube 53 is connected to the housing 10, as in the first embodiment. Further, a laser light emission window OW is provided in a position surrounded by the optical path tube 53 in the housing 10.
  • the pipe provided with the first gas supply valve SV1 for the master oscillator MO is connected to the first optical path pipe 51. Therefore, the first gas supply port SP1 for the master oscillator MO is provided in the first optical path tube 51. As described above, since the space inside the housing 81 and the space inside the first optical path tube 51 are in communication with each other, the first gas supply port SP1 is connected to the optical transmission unit 80 via the first optical path tube 51. Purge gas is supplied into the housing 81 of the.
  • a plurality of pipes are connected to the purge gas manifold PM in addition to the pipes connected to the purge gas manifold PM described in the first embodiment, and one of the pipes is connected to the first gas supply for the amplifier PA.
  • a valve SV3 is provided. The opening degree of the first gas supply valve SV3 is adjusted by a control signal from the control unit CO.
  • the pipe provided with the first gas supply valve SV3 is connected to the housing 91 of the optical transmission unit 90. This connecting portion is the first gas supply port SP3 for the amplifier PA that supplies the purge gas into the housing 91. Therefore, the first gas supply port SP3 supplies the purge gas into the first optical path tube 55, the optical path tube 57, the housing 21, and the optical path tube 53 via the housing 91.
  • a second gas supply valve SV4 for the amplifier PA is provided in the middle of the other pipe connected to the purge gas manifold PM.
  • the opening degree of the second gas supply valve SV4 is adjusted by a control signal from the control unit CO.
  • the pipe provided with the second gas supply valve SV4 is connected to the second optical path pipe 56. This connecting portion is the second gas supply port SP4 for supplying the purge gas into the second optical path tube 56. Therefore, the second gas supply port SP4 supplies the purge gas into the housing 81 of the optical transmission unit 80 via the second optical path tube 56.
  • the gas supply port of the amplifier PA in the gas laser device 100 of this example includes the first gas supply port SP3 and the second gas supply port SP4.
  • a pipe provided with a first main exhaust valve EV5 is connected to the first optical path tube 55 of the amplifier PA.
  • the opening degree of the first main exhaust valve EV5 is adjusted by a control signal from the control unit CO.
  • the gas in the first optical path tube 55 is exhausted by opening the first main exhaust valve EV5.
  • the connecting portion where the pipe provided with the first main exhaust valve EV5 is connected to the first optical path pipe 55 is the first main exhaust port EP5 for exhausting the gas in the first optical path pipe 55.
  • the first main exhaust port EP5 is provided beside the first window 73 in the first optical path tube 55.
  • the first main exhaust port EP5 is provided at a position including a surface that passes through the first window 73 in the first optical path tube 55 and is perpendicular to the traveling direction of the laser light.
  • the first main exhaust port EP5 may be provided at a position closer to the chamber 70 than this surface of the first optical path tube 55. That is, the first main exhaust port EP5 may be provided near the first window 73 in the first optical path tube 55.
  • the purge gas supplied from the first gas supply port SP3 is mixed with the gas in the housing 91 and the first optical path tube 55 and flows into the first main exhaust port EP5. Therefore, the oxygen concentration in the housing 91 and the first optical path tube 55 can be reduced by the purge gas. That is, the first main exhaust port EP5 is provided in the first optical path tube 55 so that the purge gas flows on the surfaces of the mirror 92, the output coupling mirror OC2, and the first window 73.
  • a pipe provided with a first auxiliary exhaust valve EV7 is connected to the first optical path tube 55 of the amplifier PA.
  • the opening degree of the first auxiliary exhaust valve EV7 is adjusted by a control signal from the control unit CO.
  • the connecting portion where the pipe provided with the first auxiliary exhaust valve EV7 is connected to the first optical path pipe 55 is the first auxiliary exhaust port EP7 for exhausting the gas in the first optical path pipe 55. That is, the first exhaust port provided in the first optical path tube 55 of the present embodiment includes the first main exhaust port EP5 as the main exhaust port and the first sub exhaust port EP7 as the sub exhaust port.
  • the first auxiliary exhaust port EP7 is provided on the upstream side of the gas flow in the first optical path tube 55 with respect to the position where the first window 73 is provided and the position where the first main exhaust port EP5 is provided. Therefore, when the first main exhaust port EP5 is provided at a position including the surface of the first optical path tube 55 that passes through the first window 73 and is perpendicular to the traveling direction of the laser light, the first auxiliary exhaust port EP7 is It is provided on the upstream side of the gas flow in the first optical path tube 55 with respect to the main exhaust port EP5.
  • the first sub exhaust port EP7 is inside the first optical path tube 55 than at the position where the first window 73 is provided. It is provided upstream of the gas flow.
  • the pipe provided with the first main exhaust valve EV5 and the pipe provided with the first auxiliary exhaust valve EV7 are the pipe provided with the first main exhaust valve EV1 of the master oscillator MO and the second main exhaust valve EV2. It is connected to another pipe to which the provided pipe is connected. Therefore, the gas in the first optical path tube 55 exhausted through the first main exhaust port EP5 or the first auxiliary exhaust port EP7 is exhausted into the housing 10 through the other pipes.
  • a pipe provided with a second main exhaust valve EV6 is connected to the second optical path tube 56 of the amplifier PA.
  • the opening degree of the second main exhaust valve EV6 is adjusted by a control signal from the control unit CO.
  • the gas in the second optical path tube 56 is exhausted by opening the second main exhaust valve EV6.
  • the connecting portion where the pipe provided with the second main exhaust valve EV6 is connected to the second optical path pipe 56 is the second main exhaust port EP6 for exhausting the gas in the second optical path pipe 56.
  • the second main exhaust port EP6 is provided on the side of the second window 74 in the second optical path tube 56.
  • the second main exhaust port EP6 is provided at a position including a surface that passes through the second window 74 in the second optical path tube 56 and is perpendicular to the traveling direction of the laser light.
  • the second main exhaust port EP6 may be provided at a position closer to the chamber 30 than this surface of the second optical path tube 56. That is, the second exhaust port EP6 may be provided in the vicinity of the second window 74 in the second optical path tube 56.
  • the purge gas supplied from the second gas supply port SP4 is mixed with the gas in the housing 41 and the second optical path tube 56 and flows into the second main exhaust port EP6. Therefore, the oxygen concentration in the housing 41 and the second optical path tube 56 can be reduced by the purge gas. That is, the second main exhaust port EP6 is provided in the second optical path tube 56 so that the purge gas flows on the surfaces of the rear mirror RM and the second window 74.
  • a pipe provided with a second auxiliary exhaust valve EV8 is connected to the second optical path tube 56 of the amplifier PA.
  • the opening degree of the second auxiliary exhaust valve EV8 is adjusted by a control signal from the control unit CO.
  • the connecting portion where the pipe provided with the second auxiliary exhaust valve EV8 is connected to the second optical path pipe 56 is the second auxiliary exhaust port EP8 for exhausting the gas in the second optical path pipe 56.
  • the second exhaust port provided in the second optical path tube 56 of the present embodiment includes the second main exhaust port EP6 as the main exhaust port and the second sub exhaust port EP8 as the sub exhaust port. Therefore, when the second auxiliary exhaust valve EV8 is opened, the gas in the second optical path tube 56 is exhausted through the second auxiliary exhaust port EP8.
  • the second auxiliary exhaust port EP8 is provided on the upstream side of the gas flow in the second optical path tube 56 with respect to the position where the second window 74 is provided and the position where the second main exhaust port EP6 is provided. Therefore, when the second main exhaust port EP6 is provided at a position including the plane perpendicular to the traveling direction of the laser light passing through the second window 74 in the second optical path tube 56, the second sub exhaust port EP8 is It is provided on the upstream side of the gas flow in the second optical path tube 56 with respect to the main exhaust port EP6.
  • the second auxiliary exhaust port EP8 is inside the second optical path tube 56 than at the position where the second window 74 is provided. It is provided upstream of the gas flow.
  • the pipe provided with the second main exhaust valve EV6 and the pipe provided with the second auxiliary exhaust valve EV8 are the pipe provided with the first main exhaust valve EV1 of the master oscillator MO and the second main exhaust valve EV2. It is connected to another pipe to which the provided pipe is connected. Therefore, the gas in the second optical path pipe 56 exhausted via the second main exhaust port EP6 or the second auxiliary exhaust port EP8 is exhausted into the housing 10 via this other pipe.
  • a pipe provided with an exhaust valve EV9 is further connected to the optical path tube 53 of the amplifier PA.
  • the opening degree of the exhaust valve EV9 is adjusted by a control signal from the control unit CO.
  • a connecting portion where a pipe provided with the exhaust valve EV9 is connected to the optical path tube 53 is an exhaust port EP9 for exhausting gas in the optical path tube 53. Therefore, when the exhaust valve EV9 is opened, the gas in the optical path tube 53 is exhausted through the exhaust port EP9. Therefore, a part of the purge gas supplied from the first gas supply port SP3 is mixed with the gas in the housing 91, the optical path tube 57, the housing 21, and the optical path tube 53 and flows into the exhaust port EP9.
  • the pipe provided with the exhaust valve EV9 is connected to another pipe to which the pipe provided with the first main exhaust valve EV1 of the master oscillator MO and the pipe provided with the second main exhaust valve EV2 are connected. ing. Therefore, the gas in the optical path tube 53 exhausted through the exhaust port EP9 is exhausted into the housing 10 through the other pipes.
  • a pipe provided with an exhaust valve EV10 is connected approximately in the middle of the connection part of the first optical path tube 51 and the connection part of the second optical path tube 56 in the housing 81 of the optical transmission unit 80.
  • the opening degree of the exhaust valve EV10 is adjusted by a control signal from the control unit CO.
  • the connecting portion where the pipe provided with the exhaust valve EV10 is connected to the housing 81 is the exhaust port EP10 for exhausting the gas in the housing 81. Therefore, when the exhaust valve EV10 is opened, the gas in the housing 81 is exhausted through the exhaust port EP10.
  • a part of the purge gas supplied from the first gas supply port SP1 into the first optical path tube 51 and a part of the purge gas supplied from the second gas supply port SP4 into the second optical path tube 56 are included in the casing. It is mixed with the gas in the body 81 and is exhausted from the exhaust port EP10.
  • the pipe provided with the exhaust valve EV10 is connected to another pipe to which the pipe provided with the first main exhaust valve EV1 of the master oscillator MO and the pipe provided with the second main exhaust valve EV2 are connected. ing. Therefore, the gas in the housing 81 exhausted through the exhaust port EP10 is exhausted into the housing 10 through the other pipes.
  • the laser gas supply device 63 is connected to a pipe connected to the chamber 70 as well as a pipe connected to the chamber 30. Therefore, the laser gas supply device 63 supplies the laser gas into the chamber 70 through this pipe.
  • a connecting portion where this pipe is connected to the chamber 70 is a laser gas supply port LSP2 for supplying a laser gas into the chamber 70.
  • the exhaust device 64 of this embodiment is connected to a pipe connected to the chamber 70 in addition to the pipe connected to the chamber 30. Therefore, the exhaust device 64 exhausts the gas in the chamber 70 in addition to the gas in the chamber 30 into the housing 10 through the pipe. At this time, the exhaust device 64 adjusts the exhaust amount and the like according to a control signal from the control unit CO, and removes F 2 gas from the gas exhausted from the chamber 30 and the chamber 70 by a halogen filter (not shown). To do.
  • a connecting portion in which a pipe connected to the exhaust device 64 is connected to the chamber 70 is a laser gas exhaust port LEP2 that exhausts gas from the chamber 70.
  • FIG. 9 is a flowchart showing a first example of the operation of the control unit CO until the gas laser device 100 according to this embodiment emits laser light.
  • the operation of the control unit CO until the laser light is emitted includes steps S31 to S38.
  • Step S31 In the gas laser device 100, for example, at the time of new installation or maintenance, the first optical path tube 51 and the second optical path tube 52 in the master oscillator MO, and the first optical path tube 55 and the second optical path tube in the amplifier PA.
  • the atmosphere enters 56.
  • this state is the start state.
  • the control unit CO similarly to step S11 of the first embodiment, supplies the first main exhaust valve EV1, the second main exhaust valve EV2, the first auxiliary exhaust valve EV3, the second auxiliary exhaust valve EV4, and the main gas supply.
  • the valve SV0, the first gas supply valve SV1, and the second gas supply valve SV2 are closed.
  • the control unit CO includes the first main exhaust valve EV5, the second main exhaust valve EV6, the first auxiliary exhaust valve EV7, the second auxiliary exhaust valve EV8, the first gas supply valve SV3, and the second gas.
  • the supply valve SV4 is closed.
  • the control unit CO closes the exhaust valve EV9 and the exhaust valve EV10.
  • the purge gas is not supplied into the first optical path tube 51 and the second optical path tube 52 of the master oscillator MO, and the gas is not exhausted from the inside of the first optical path tube 51 and the second optical path tube 52. Further, in this step, the purge gas is not supplied into the first optical path tube 55 and the second optical path tube 56 of the amplifier PA, and the gas is not exhausted from the first optical path tube 55 and the second optical path tube 56. If any of the above valves are opened at the time of start, the control unit CO closes the opened valves at this step, and if all of these valves are closed at the time of start. The control unit CO keeps these valves closed.
  • Step S32 the control unit CO opens the first main exhaust valve EV1 and the second main exhaust valve EV2 for the master oscillator MO, as in step S12 of the first embodiment. Further, in the present embodiment, the control unit CO opens the first main exhaust valve EV5 and the second main exhaust valve EV6 for the amplifier PA, and opens the exhaust valve EV9 and the exhaust valve EV10. At this point in time, since each gas supply valve is closed, the purge gas is not supplied, and the gas in the first optical path tube 51, the second optical path tube 52, the first optical path tube 55, and the second optical path tube 56 is not exhausted. ..
  • Step S33 the control unit CO opens the main gas supply valve SV0 and the first gas supply valve SV1 and the second gas supply valve SV2 for the master oscillator MO, as in step S13 of the first embodiment. Therefore, the purge gas is supplied from the first gas supply port SP1 into the first optical path tube 51, and the purge gas is supplied from the second gas supply port SP2 into the housing 41.
  • the control unit CO also opens the first gas supply valve SV3 and the second gas supply valve SV4 for the amplifier PA. Therefore, the purge gas is supplied from the first gas supply port SP3 into the housing 91, and the purge gas is supplied from the second gas supply port SP4 into the second optical path tube 56.
  • step S13 of the first embodiment the gas flows over the surfaces of the output coupling mirror OC1 and the first window 33, and the oxygen concentration in the first optical path tube 51 is reduced by the purge gas. Further, the gas flows on the surfaces of the grating 42, the prisms 43 and 44, and the second window 34, and the oxygen concentration in the housing 41 and the second optical path tube 52 is reduced by the purge gas.
  • step S32 the first main exhaust valve EV5 and the second main exhaust valve EV6 for the amplifier PA are opened. Therefore, the gas in the housing 91 and the first optical path tube 55 is pushed out by the purge gas and exhausted into the housing 10 via the first main exhaust port EP5. At this time, the gas flows on the surfaces of the mirror 92, the output coupling mirror OC2, and the first window 73, and the oxygen concentration in the housing 91 and the first optical path tube 55 is reduced by the purge gas. Further, the gas in the second optical path tube 56 is pushed out by the purge gas and exhausted into the housing 10 via the second main exhaust port EP6.
  • the control unit CO exhausts the gas from the first main exhaust port EP5 and the second main exhaust port EP6 as the main exhaust port before the laser light is emitted from the chamber 70.
  • step S32 the exhaust valve EV9 is opened. Therefore, the gas in the housing 91 of the optical transmission unit 90, the optical path tube 57, the housing 21 of the energy monitor module 20, and the optical path tube 53 is pushed out by the purge gas supplied from the first gas supply port SP3 and exhausted. The gas is exhausted into the housing 10 through the opening EP9. At this time, the gas flows on the surfaces of the mirrors 92 and 93 and the beam splitter 22, and the oxygen concentration in the housing 91 of the optical transmission unit 90, the optical path tube 57, the housing 21 of the energy monitor module 20, and the optical path tube 53 is reduced. Reduced by purge gas.
  • step S32 the exhaust valve EV10 is opened. Therefore, a part of the gas in the first optical path tube 51 of the master oscillator MO and a part of the gas in the housing 81 are pushed out by the purge gas supplied from the first gas supply port SP1 and passed through the exhaust port EP10. Is exhausted into the housing 10. Further, a part of the gas in the second optical path tube 56 of the amplifier PA and a part of the gas in the housing 81 are pushed out by the purge gas supplied from the second gas supply port SP4 and passed through the exhaust port EP10. The air is exhausted into the housing 10. At this time, gas flows on the surfaces of the mirrors 82 and 83, and the oxygen concentration in the housing 81 is reduced by the purge gas.
  • Step S34 In this step, similarly to step S14 of the first embodiment, the control unit CO maintains the state of step S33 for the predetermined first period T1.
  • the oxygen concentration in the first optical path tube 51, the second optical path tube 52, and the housing 41 of the master oscillator MO becomes equal to or lower than a predetermined concentration.
  • the oxygen concentration in the first optical path tube 55 and the second optical path tube 56 of the amplifier PA becomes a predetermined concentration or less.
  • the oxygen concentration in the housing 81 of the light transmission unit 80, the housing 91 of the light transmission unit 90, the optical path tube 57, the housing 21 of the energy monitor module 20, and the optical path tube 53 becomes a predetermined concentration or less.
  • Step S35 In this step, the control unit CO opens the first auxiliary exhaust valve EV3 and the second auxiliary exhaust valve EV4 for the master oscillator MO. Therefore, as in step S15 of the first embodiment, the amount of gas exhausted from the first main exhaust port EP1 and the second main exhaust port EP2 is lower than in the state before this step. Therefore, the gas flow in the first optical path tube 51 and the second optical path tube 52 changes, and the amount of gas flowing on the surfaces of the first window 33 and the second window 34 decreases.
  • the control unit CO opens the first auxiliary exhaust valve EV7 and the second auxiliary exhaust valve EV8 for the amplifier PA.
  • step S32 the first main exhaust valve EV5 and the second main exhaust valve EV6 are opened. Therefore, the gas in the first optical path tube 55 is exhausted into the housing 10 via the first main exhaust port EP5 and the first auxiliary exhaust port EP7, and the gas in the second optical path tube 56 is the second main exhaust port. The gas is exhausted into the housing 10 through the port EP6 and the second auxiliary exhaust port EP8. That is, in this step, the gas is exhausted from the first auxiliary exhaust port EP7 and the second auxiliary exhaust port EP8 as the auxiliary exhaust ports.
  • the amount of gas exhausted from the first main exhaust port EP5 and the second main exhaust port EP6 is lower than in the state before this step. Therefore, the flow of gas in the first optical path tube 55 and the second optical path tube 56 changes, and the amount of gas flowing on the surfaces of the first window 73 and the second window 74 decreases.
  • Step S36 the control unit CO closes the first main exhaust valve EV1 and the second main exhaust valve EV2 for the master oscillator MO. Therefore, the amount of gas exhausted from the first auxiliary exhaust port EP3 and the second auxiliary exhaust port EP4 increases as in step S16 of the first embodiment. Therefore, the gas flow in the first optical path tube 51 and the second optical path tube 52 further changes, and the amount of gas flowing on the surfaces of the first window 33 and the second window 34 further decreases.
  • the control unit CO closes the first main exhaust valve EV5 and the second main exhaust valve EV6 for the amplifier PA. Therefore, no gas is exhausted from the first main exhaust port EP5 and the second main exhaust port EP6, and the amount of gas exhausted from the first auxiliary exhaust port EP7 and the second auxiliary exhaust port EP8 increases. Therefore, the flow of gas in the first optical path tube 55 and the second optical path tube 56 is further changed, and the amount of gas flowing on the surfaces of the first window 73 and the second window 74 is further reduced.
  • the control unit CO causes the laser gas to be supplied into the chamber 30 and the chamber 70 by the completion of step S37, and circulates the supplied laser gas.
  • the procedure of supplying the laser gas into the chamber 30 and circulating the laser gas is the same as the procedure of supplying the laser gas into the chamber 30 and circulating the laser gas in the comparative example.
  • the procedure for supplying the laser gas into the chamber 70 and circulating the laser gas is as follows.
  • the control unit CO controls the exhaust device 64 to exhaust the gas in the chamber 70 from the laser gas exhaust port LEP2 into the housing 10.
  • the control unit CO controls the laser gas supply device 63 to supply a predetermined amount of laser gas from the laser gas supply port LSP2.
  • the laser gas is sealed in the chamber 70.
  • the control unit CO also controls the motor 79 to rotate the cross flow fan 78.
  • the laser gas is circulated by the rotation of the cross flow fan 78.
  • Step S37 the control unit CO opens the first auxiliary exhaust valve EV3 and the second auxiliary exhaust valve EV4 for the master oscillator MO in step S35, and further opens the first auxiliary exhaust valve EV7 and the second auxiliary exhaust valve EV7 for the amplifier PA.
  • the state of step S36 is maintained until the predetermined second period T2 elapses after the exhaust valve EV8 is opened.
  • the second period T2 is, for example, 5 minutes to 10 minutes. Therefore, step S36 is performed until the second period T2 elapses after step S35 is performed.
  • step S35 and step S36 may be performed simultaneously.
  • step S17 of the first embodiment when this step is completed, the difference between the temperature on the chamber 30 side in the first window 33 and the temperature on the first optical path tube 51 side is that the gas flowing on the surface of the first window 33 is Is smaller than when the amount is not reduced. Further, at the completion of this step, the difference between the temperature on the chamber 30 side and the temperature on the second optical path tube 52 side in the second window 34 is larger than that in the case where the amount of gas flowing on the surface of the second window 34 does not decrease. Get smaller.
  • the amount of gas flowing on the surfaces of the first window 73 and the second window 74 of the amplifier PA is reduced as described above. Therefore, at the end of this step, the first optical path tube 55 side of the first window 73 is suppressed from being cooled by the gas in the first optical path tube 55, and the second window 74 side of the second window 74 side. Is suppressed from being cooled by the gas in the second optical path tube 56. Therefore, at the completion of this step, the difference between the temperature on the chamber 70 side in the first window 73 and the temperature on the first optical path tube 55 side is different from that in the case where the amount of gas flowing on the surface of the first window 73 does not decrease. Becomes smaller.
  • the difference between the temperature on the chamber 70 side and the temperature on the second optical path tube 56 side in the second window 74 is larger than that in the case where the amount of gas flowing on the surface of the second window 74 does not decrease. Get smaller.
  • Step S38 the control unit CO causes the output coupling mirror OC1 of the master oscillator MO to emit a laser beam in the same manner as in step S18 of the first embodiment.
  • the control unit CO also controls the switches in the charger 75 and the pulse power module 76 to apply a high voltage between the electrodes 71 and 72. When a high voltage is applied between the electrodes 71 and 72, the insulation between the electrodes 71 and 72 is broken and discharge occurs. The energy of this discharge causes the laser medium contained in the laser gas between the electrodes 71 and 72 to be in an excited state.
  • the control unit CO controls the amplifier PA so that the laser medium between the electrodes 71 and 72 is in an excited state by the time the laser light is emitted from the master oscillator MO.
  • the laser light emitted from the output coupling mirror OC1 is reflected by the mirrors 82 and 83 of the optical transmission unit 80 and propagates into the chamber 70 via the rear mirror RM of the amplifier PA and the second window 74.
  • This laser light causes stimulated emission of the laser medium in the excited state between the electrodes 71 and 72, and the light is amplified.
  • the laser light of a predetermined wavelength resonates between the output coupling mirror OC2 and the rear mirror RM, and the laser light is further amplified.
  • a part of the laser light passes through the output coupling mirror OC2 and is emitted from the amplifier PA.
  • the laser light emitted from the amplifier PA is reflected by the mirrors 92 and 93 of the optical transmission unit 90, and emitted from the laser light emission window OW via the optical path tube 57, the energy monitor module 20, and the optical path tube 53.
  • the energy monitor module 20 a part of the laser light emitted from the amplifier PA is reflected by the beam splitter 22, and the pulse energy sensor 23 outputs a signal based on the intensity of this light energy to the control unit CO. Output to.
  • the control unit CO controls the chargers 35 and 75 and the pulse power modules 36 and 76 based on this signal to adjust the power of the emitted laser light.
  • FIG. 10 is a flowchart showing a second example of the operation of the control unit CO until the gas laser device 100 according to this embodiment emits laser light.
  • the operation of the control unit CO until the laser light is emitted is different from the first example of the present embodiment in step S34, and the other steps are the same as those of the first example of the present embodiment. The same as each step of the example of.
  • Step S34 In this step of this example, the control unit CO controls the oxygen concentration in the first optical path tube 51 and the second optical path tube 52 of the master oscillator MO and the first optical path tube 55 and the second optical path tube 56 of the amplifier PA.
  • the state of step S33 is maintained until the oxygen concentration reaches the predetermined first concentration. Therefore, in the step S34 of the present example, the step S34a in which the control unit CO receives a signal indicating the oxygen concentration from the oximeter 12, and whether the oxygen concentration received by the control unit CO is equal to or lower than a predetermined oxygen concentration is determined. It includes step S34b for determining whether or not.
  • Step S34a, Step S34b the control unit CO performs the same operations as steps S14a and S14b of the first embodiment in steps S34a and S34b.
  • step S34b if the oxygen concentration is not lower than the predetermined first concentration, the process returns to step S34a, and if the oxygen concentration is lower than the predetermined first concentration, the process proceeds to step S35. .. Then, in step S35, the first auxiliary exhaust valve EV3 and the second auxiliary exhaust valve EV4 are opened.
  • the oxygen concentrations in the first optical path tube 51 and the second optical path tube 52, and in the first optical path tube 55 and the second optical path tube 56 are equal to or lower than a predetermined first concentration. It is not necessary for the department CO to judge.
  • the oximeter 12 may be provided in the exhaust duct 11.
  • the control unit CO operates in the same manner as the modified example in which the oxygen concentration meter 12 in the second example of the first embodiment is provided in the exhaust duct 11.
  • the process returns to step S34a, and the oxygen concentration is equal to or lower than the predetermined second concentration. If so, the process proceeds to step S35.
  • the oxygen concentration meter 12 may be provided in the housing 10 instead of being provided in the exhaust duct 11.
  • the control unit CO performs the operation of the first example, the gas laser device 100 does not have to include the oxygen concentration meter 12.
  • the light emitted from the master oscillator MO is amplified by the amplifier PA, so that a laser beam with higher power can be emitted.
  • the first window 33 of the master oscillator MO is heated when the laser light is emitted, the case where the amount of gas flowing on the surface of the first window 33 does not decrease In comparison, the thermal shock that the first window 33 receives can be reduced.
  • the second window 34 is heated when the laser light is emitted, compared with the case where the amount of gas flowing on the surface of the second window 34 does not decrease, the thermal shock that the second window 34 receives. Can be small.
  • the gas laser device of this embodiment can be excellent in durability.
  • Valve EV1, second main exhaust valve EV2, first main exhaust port EP1, second main exhaust port EP2, first auxiliary exhaust port EP3, second auxiliary exhaust port EP4, first auxiliary exhaust valve EV3, second auxiliary exhaust valve EV4 can be understood to be for each master oscillator.
  • Valve EV5, second main exhaust valve EV6, first main exhaust port EP5, second main exhaust port EP6, first main exhaust valve EV5, second main exhaust valve EV6, first auxiliary exhaust port EP7, second auxiliary exhaust port EP8 can be understood for each amplifier.
  • the master oscillator MO may be composed of another laser device such as a fiber laser device.
  • the amplifier PA may not include the rear mirror and the output coupling mirror OC2. In this case, light resonance does not occur in the amplifier PA, but the laser light is amplified by passing through the chamber 70.
  • the gas when the gas is exhausted from the first auxiliary exhaust port EP3 and the second auxiliary exhaust port EP4, the gas is discharged from the first main exhaust port EP1 and the second main exhaust port EP2. May be exhausted.
  • the gas when the gas is exhausted from the first auxiliary exhaust port EP3 and the second auxiliary exhaust port EP4, compared to before the gas is exhausted from the first auxiliary exhaust port EP3 and the second auxiliary exhaust port EP4, The amount of gas exhausted from the first main exhaust port EP1 and the second main exhaust port EP2 may be reduced.
  • the gas when the gas is exhausted from the first auxiliary exhaust port EP7 and the second auxiliary exhaust port EP8, the gas may be exhausted from the first main exhaust port EP5 and the second main exhaust port EP6.
  • the gas when the gas is exhausted from the first auxiliary exhaust port EP7 and the second auxiliary exhaust port EP8, compared to before the gas is exhausted from the first auxiliary exhaust port EP7 and the second auxiliary exhaust port EP8, The amount of gas exhausted from the first main exhaust port EP5 and the second main exhaust port EP6 may be reduced.
  • gas is exhausted from the first auxiliary exhaust port EP3 and the second auxiliary exhaust port EP4 during at least a part of the period in which the emission and the stop of the laser light are repeated.
  • the control unit CO may start exhausting the gas from the first auxiliary exhaust port EP3 and the second auxiliary exhaust port EP4 after the laser light is emitted.
  • the control unit CO may start exhausting gas from the first auxiliary exhaust port EP7 and the second auxiliary exhaust port EP8 of the amplifier PA after the laser light is emitted.
  • control unit CO starts exhausting gas from the first auxiliary exhaust port EP3, the second auxiliary exhaust port EP4, the first auxiliary exhaust port EP7, and the second auxiliary exhaust port EP8.
  • the laser light may be emitted from the chamber 30 before the predetermined second period T2 has elapsed.
  • the first main exhaust port EP5 is provided at a position where the gas flows on the surface of the first window 73 when the gas is exhausted from the first main exhaust port EP5. If the first main exhaust port EP5 is provided at such a position, the first main exhaust port EP5 includes a surface that passes through the first window 73 in the first optical path tube 51 and is perpendicular to the traveling direction of the laser light. It may be provided on the side opposite to the chamber 70 side with respect to the position. Further, the first window 73 does not have to enter the inside of the first optical path tube 55.
  • the second main exhaust port EP6 is provided at a position where the gas flows on the surface of the second window 74 when the gas is exhausted from the second main exhaust port EP6.
  • the second main exhaust port EP6 includes a surface that passes through the second window 74 in the second optical path tube 56 and is perpendicular to the traveling direction of the laser light. It may be provided on the side opposite to the chamber 70 side with respect to the position. Further, the second window 74 does not have to enter the second optical path tube 56.
  • FIG. 11 is a schematic diagram showing a schematic configuration example of the entire gas laser device according to the present embodiment.
  • the master oscillator MO includes the first wall portion 51W and the second wall portion 52W
  • the amplifier PA includes the first wall portion 55W and the second wall portion 56W. It is different from the gas laser device of the third embodiment in points.
  • the configurations of the first wall portion 51W and the second wall portion 52W of the master oscillator MO are the same as the configurations of the first wall portion 51W and the second wall portion 52W of the second embodiment.
  • the first wall portion 55W of the amplifier PA is provided between the first main exhaust port EP5 and the first auxiliary exhaust port EP7 in the first optical path tube 55, and closes the first optical path tube 55.
  • the first slit 55S is formed in the first wall portion 55W.
  • the first slit 55S is formed so that the laser light propagating between the first window 73 and the output coupling mirror OC2 can pass therethrough.
  • the first slit 55S has a similar shape to the cross-sectional shape of the laser light that passes through the first slit 55S, from the viewpoint of not creating an unnecessary region in the first slit 55S.
  • the second wall portion 56W of the amplifier PA is provided between the second main exhaust port EP6 and the second auxiliary exhaust port EP8 in the second optical path tube 56 and closes the second optical path tube 56.
  • a second slit 56S is formed in the second wall portion 56W.
  • the second slit 56S is formed so that the laser light propagating between the second window 74 and the rear mirror RM can pass therethrough.
  • the second slit 56S has a similar shape to the cross-sectional shape of the laser light that passes through the second slit 56S, from the viewpoint of not creating an unnecessary region in the second slit 56S.
  • the first wall portion 55W and the second wall portion 56W are made of, for example, the same material as that of the first wall portion 51W and the second wall portion 52W.
  • the operation of the gas laser device 100 in the present embodiment is the same as the operation of the gas laser device 100 in the third embodiment.
  • the gas in the first optical path tube 51 passes through the first slit 51S and flows on the surface of the first window 33, and The gas is exhausted from the exhaust port EP1.
  • the gas in the second optical path tube 52 passes through the second slit 52S and flows on the surface of the second window 34, and then from the second main exhaust port EP2. Exhausted.
  • the gas in the first optical path tube 55 passes through the first slit 55S and flows on the surface of the first window 73, so that the first main The gas is exhausted from the exhaust port EP5.
  • the gas in the second optical path tube 56 passes through the second slit 56S and flows on the surface of the second window 74, and then from the second main exhaust port EP6. Exhausted.
  • the first Gas can be suppressed from flowing to the window 33 side and the second window 34 side.
  • the first wall portion 55W of the amplifier PA serves as a barrier, and when the gas is exhausted from the first auxiliary exhaust port EP7, the gas can be suppressed from flowing to the first window 73 side.
  • the second wall portion 56W serves as a barrier, and when the gas is exhausted from the second auxiliary exhaust port EP8, it is possible to suppress the gas from flowing to the second window 74 side. Therefore, the thermal shock applied to the first window 33, the second window 34, the first window 73, and the second window 74 can be further reduced.
  • the gas laser device 100 of the present embodiment may include at least one of the first wall portion 51W, the second wall portion 52W, the first wall portion 55W, and the second wall portion 56W. Since the power of the laser light that passes through the first window 73 of the amplifier PA is larger than the power of the laser light that passes through the other windows, the gas laser device 100 preferably includes the first wall portion 55W.
  • the terms “comprising” or “including” should be construed as “not limited to what is described as being included.”
  • the term “comprising” should be interpreted as “not limited to what has been described as having.”
  • the indefinite article “one” should be interpreted to mean “at least one” or “one or more.”
  • the term “at least one of A, B and C” should be construed as "A""B""C""A+B”""A+C""B+C” or “A+B+C”. Further, it should be construed to include combinations of those with other than “A”, “B”, and “C”.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)

Abstract

ガスレーザ装置は、レーザガスが封入されるチャンバと、チャンバに設けられレーザ光が透過するウィンドウと、チャンバにおけるウィンドウが設けられる位置を囲んでチャンバに接続される光路管と、光路管内にパージガスを供給するガス供給口と、光路管内のガスを排気する排気口と、制御部と、を備え、排気口は、ガスがウィンドウの表面を流れるように光路管に設けられる主排気口と、ウィンドウが設けられる位置及び主排気口が設けられる位置よりも光路管内におけるガスの流れの上流側において光路管に設けられる副排気口と、を含み、制御部は、チャンバからレーザ光が出射される前において主排気口からガスを排気させ、チャンバからレーザ光が出射される少なくとも一部の期間において副排気口からガスを排気させてもよい。

Description

ガスレーザ装置、ガスレーザ装置のレーザ光の出射方法、及び電子デバイスの製造方法
 本開示は、ガスレーザ装置、ガスレーザ装置のレーザ光の出射方法、及び電子デバイスの製造方法に関する。
 近年、半導体露光装置(以下、「露光装置」という)においては、半導体集積回路の微細化および高集積化につれて、解像力の向上が要請されている。このため、露光用光源から放出される光の短波長化が進められている。一般的に、露光用光源には、従来の水銀ランプに代わってガスレーザ装置が用いられる。たとえば、露光用のガスレーザ装置としては、波長248nmの紫外光のレーザ光を出力するKrFエキシマレーザ装置、ならびに波長193nmの紫外光のレーザ光を出力するArFエキシマレーザ装置が用いられる。
 次世代の露光技術としては、露光装置側の露光用レンズとウエハとの間が液体で満たされる液浸露光が実用化されている。この液浸露光では、露光用レンズとウエハとの間の屈折率が変化するため、露光用光源の見かけの波長が短波長化する。ArFエキシマレーザ装置を露光用光源として液浸露光が行われた場合、ウエハには水中における波長134nmの紫外光が照射される。この技術をArF液浸露光又はArF液浸リソグラフィーという。
 KrFエキシマレーザ装置およびArFエキシマレーザ装置の自然発振幅は、約350~400pmと広い。そのため、KrF及びArFレーザ光のような紫外光を透過する材料で投影レンズを構成すると、色収差が発生してしまう場合がある。その結果、解像力が低下し得る。そこで、ガスレーザ装置から出力されるレーザ光のスペクトル線幅を、色収差が無視できる程度となるまで狭帯域化する必要がある。そのため、ガスレーザ装置のレーザ共振器内には、スペクトル線幅を狭帯域化するために、エタロン、グレーティング等の狭帯域化素子を有する狭帯域化モジュール(Line Narrow Module:LNM)が備えられる場合がある。以下では、スペクトル線幅が狭帯域化されるレーザ装置を狭帯域化レーザ装置という。
特開2000-286482号公報 特開2003-133622号公報 特開2003-283007号公報
概要
 本開示の一態様は、ガスレーザ装置であって、レーザガスが封入されるチャンバと、チャンバに設けられレーザ光が透過するウィンドウと、チャンバにおけるウィンドウが設けられる位置を囲んでチャンバに接続される光路管と、光路管内にパージガスを供給するガス供給口と、光路管内のガスを排気する排気口と、制御部と、を備え、排気口は、ガスがウィンドウの表面を流れるように光路管に設けられる主排気口と、ウィンドウが設けられる位置及び主排気口が設けられる位置よりも光路管内におけるガスの流れの上流側において光路管に設けられる副排気口と、を含み、制御部は、チャンバからレーザ光が出射される前において主排気口からガスを排気させ、チャンバからレーザ光が出射される少なくとも一部の期間において副排気口からガスを排気させてもよい。
 本開示の他の一態様は、ガスレーザ装置であって、レーザガスが封入され発振する光を出射するマスターオシレータ用チャンバ、及び、レーザガスが封入されマスターオシレータ用チャンバから出射する光を増幅して出射する増幅器用チャンバと、マスターオシレータ用チャンバに設けられレーザ光が透過するマスターオシレータ用ウィンドウ、及び、増幅器用チャンバに設けられレーザ光が透過する増幅器用ウィンドウと、マスターオシレータ用チャンバにおけるマスターオシレータ用ウィンドウが設けられる位置を囲んでマスターオシレータ用チャンバに接続されるマスターオシレータ用光路管、及び、増幅器用チャンバにおける増幅器用ウィンドウが設けられる位置を囲んで増幅器用チャンバに接続される増幅器用光路管と、マスターオシレータ用光路管内にパージガスを供給するマスターオシレータ用ガス供給口、及び、増幅器用光路管内にパージガスを供給する増幅器用ガス供給口と、マスターオシレータ用光路管内のガスを排気するマスターオシレータ用排気口、及び、増幅器用光路管内のガスを排気する増幅器用排気口と、制御部と、を備え、マスターオシレータ用排気口は、マスターオシレータ用光路管内におけるガスがマスターオシレータ用ウィンドウの表面を流れるようにマスターオシレータ用光路管に設けられるマスターオシレータ用主排気口と、マスターオシレータ用ウィンドウが設けられる位置及びマスターオシレータ用主排気口が設けられる位置よりもマスターオシレータ用光路管内におけるガスの流れの上流側においてマスターオシレータ用光路管に設けられるマスターオシレータ用副排気口と、を含み、増幅器用排気口は、増幅器用光路管内におけるガスが増幅器用ウィンドウの表面を流れるように増幅器用光路管に設けられる増幅器用主排気口と、増幅器用ウィンドウが設けられる位置及び増幅器用主排気口が設けられる位置よりも増幅器用光路管内におけるガスの流れの上流側において増幅器用光路管に設けられる増幅器用副排気口と、を含み、制御部は、マスターオシレータ用チャンバからレーザ光が出射される前においてマスターオシレータ用主排気口及び増幅器用主排気口からガスを排気させ、マスターオシレータ用チャンバからレーザ光が出射される少なくとも一部の期間においてマスターオシレータ用副排気口及び増幅器用副排気口からガスを排気させてもよい。
 本開示の更に他の一態様は、レーザガスが封入されるチャンバと、チャンバに設けられレーザ光が透過するウィンドウと、チャンバにおけるウィンドウが設けられる位置を囲んでチャンバに接続される光路管と、光路管内にパージガスを供給するガス供給口と、光路管内のガスを排気する排気口と、制御部と、を備え、排気口は、ガスがウィンドウの表面を流れるように光路管に設けられる主排気口と、ウィンドウが設けられる位置及び主排気口が設けられる位置よりも光路管内におけるガスの流れの上流側において光路管に設けられる副排気口と、を含む、ガスレーザ装置によるレーザ光の出射方法であって、制御部は、チャンバからレーザ光が出射される前において主排気口からガスを排気させ、チャンバからレーザ光が出射される少なくとも一部の期間において副排気口からガスを排気させてもよい。
 また、本開示の更に他の一態様は、電子デバイスの製造方法であって、レーザガスが封入されるチャンバと、チャンバに設けられレーザ光が透過するウィンドウと、チャンバにおけるウィンドウが設けられる位置を囲んでチャンバに接続される光路管と、光路管内にパージガスを供給するガス供給口と、光路管内のガスを排気する排気口と、制御部と、を備え、排気口は、ガスがウィンドウの表面を流れるように光路管に設けられる主排気口と、ウィンドウが設けられる位置及び主排気口が設けられる位置よりも光路管内におけるガスの流れの上流側において光路管に設けられる副排気口と、を含み、制御部は、チャンバからレーザ光が出射される前において主排気口からガスを排気させ、チャンバからレーザ光が出射される少なくとも一部の期間において副排気口からガスを排気させる、ガスレーザ装置から出射されるレーザ光を露光装置に入射させ、電子デバイスを製造するために、露光装置内で感光基板上にレーザ光を露光すること、を含んでもよい。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、電子デバイスの製造の露光工程で使用される製造装置の全体の概略構成例を示す模式図である。 図2は、ガスレーザ装置の全体の概略構成例を示す模式図である。 図3は、比較例におけるガスレーザ装置がレーザ光を出射するまでの制御部の動作を示すフローチャートである。 図4は、実施形態1におけるガスレーザ装置の全体の概略構成例を示す模式図である。 図5は、実施形態1におけるガスレーザ装置がレーザ光を出射するまでの制御部の動作の第1の例を示すフローチャートである。 図6は、実施形態1におけるガスレーザ装置がレーザ光を出射するまでの制御部の動作の第2の例を示すフローチャートである。 図7は、実施形態2におけるガスレーザ装置の全体の概略構成例を示す模式図である。 図8は、実施形態3におけるガスレーザ装置の全体の概略構成例を示す模式図である。 図9は、実施形態3におけるガスレーザ装置がレーザ光を出射するまでの制御部の動作の第1の例を示すフローチャートである。 図10は、実施形態3におけるガスレーザ装置がレーザ光を出射するまでの制御部の動作の第2の例を示すフローチャートである。 図11は、実施形態4におけるガスレーザ装置の全体の概略構成例を示す模式図である。
実施形態
1.電子デバイスの製造の露光工程で使用される製造装置の説明
2.比較例のガスレーザ装置の説明
 2.1 構成
 2.2 動作
 2.3 課題
3.実施形態1のガスレーザ装置の説明
 3.1 構成
 3.2 動作
 3.3 作用・効果
4.実施形態2のガスレーザ装置の説明
 4.1 構成
 4.2 動作
 4.3 作用・効果
5.実施形態3のガスレーザ装置の説明
 5.1 構成
 5.2 動作
 5.3 作用・効果
6.実施形態4のガスレーザ装置の説明
 6.1 構成
 6.2 動作
 6.3 作用・効果
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。
 以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
1.電子デバイスの製造の露光工程で使用される製造装置の説明
 図1は、電子デバイスの製造の露光工程で使用される製造装置の全体の概略構成例を示す模式図である。図1に示すように、露光工程で使用される製造装置は、ガスレーザ装置100及び露光装置200を含む。露光装置200は、複数のミラー211,212,213を含む照明光学系210と、投影光学系220とを含む。照明光学系210は、ガスレーザ装置100から入射したレーザ光によって、レチクルステージRTのレチクルパターンを照明する。投影光学系220は、レチクルを透過したレーザ光を、縮小投影してワークピーステーブルWT上に配置された図示しないワークピースに結像させる。ワークピースはフォトレジストが塗布された半導体ウエハ等の感光基板である。露光装置200は、レチクルステージRTとワークピーステーブルWTとを同期して平行移動させることにより、レチクルパターンを反映したレーザ光をワークピースに露光する。以上のような露光工程によって半導体ウエハにデバイスパターンを転写することで電子デバイスである半導体デバイスを製造することができる。
2.比較例のガスレーザ装置の説明
 2.1 構成
 比較例のガスレーザ装置について説明する。図2は、本例のガスレーザ装置の全体の概略構成例を示す模式図である。図2に示すように、本例のガスレーザ装置100は、筐体10と、レーザ発振器LOと、エネルギーモニタモジュール20と、制御部COとを主な構成として含む。本例のガスレーザ装置100は、例えば、アルゴン(Ar)、フッ素(F)、及びネオン(Ne)を含む混合ガスを使用するArFエキシマレーザ装置である。この場合、ガスレーザ装置100は、中心波長が約193nmのパルスレーザ光を出射する。なお、ガスレーザ装置100は、ArFエキシマレーザ装置以外のガスレーザ装置であってもよく、例えば、クリプトン(Kr)、フッ素(F)、及びネオン(Ne)を含む混合ガスを使用するKrFエキシマレーザ装置であってもよい。この場合、ガスレーザ装置100は、中心波長が約248nmのパルスレーザ光を出射する。レーザ媒質であるAr、F、及びNeを含む混合ガスやKr、F、及びNeを含む混合ガスはレーザガスと呼ばれる場合がある。
 制御部COは、例えば、マイクロコントローラ、IC(Integrated Circuit)、LSI(Large-scale Integrated Circuit)、ASIC(Application Specific Integrated Circuit)などの集積回路やNC(Numerical Control)装置を用いることができる。また、制御部COは、NC装置を用いた場合、機械学習器を用いたものであってもよく、機械学習器を用いないものであってもよい。以下に説明するように、ガスレーザ装置の幾つかの構成が制御部COにより制御される。
 レーザ発振器LOは、チャンバ30と、第1ウィンドウ33と第2ウィンドウ34とを含むウィンドウと、一対の電極31,32と、充電器35と、パルスパワーモジュール36と、クロスフローファン38と、モータ39と、狭帯域化モジュール40と、出力結合ミラーOC1と、を主な構成として含む。
 チャンバ30にはレーザガスが封入されている。一対の電極31,32は、レーザ媒質を放電により励起するための電極であり、チャンバ30内において互いに対向して配置されている。
 チャンバ30には開口が形成され、この開口は絶縁体を含んで形成される絶縁部37により塞がれている。電極31は絶縁部37に支持されている。絶縁部37には、導電部材からなるフィードスルーが埋め込まれている。フィードスルーは、パルスパワーモジュール36から供給される電圧を電極31に印加する。電極32は電極ホルダ32hに支持されている。この電極ホルダ32hはチャンバ30の内面に固定され、チャンバ30と電気的に接続されている。
 充電器35は、パルスパワーモジュール36の中に設けられる図示しないコンデンサを所定の電圧で充電する直流電源装置である。パルスパワーモジュール36は、制御部COによって制御されるスイッチを含んでいる。スイッチがオフからオンになると、パルスパワーモジュール36は、充電器35から印加される電圧を昇圧してパルス状の高電圧を生成し、この高電圧を一対の電極31,32間に印加する。
 クロスフローファン38は、チャンバ30内に配置されている。チャンバ30内におけるクロスフローファン38が配置される空間と一対の電極31,32間の空間とは互いに連通している。このため、クロスフローファン38が回転することで、チャンバ30内に封入されたレーザガスは所定の方向に循環する。クロスフローファン38には、チャンバ30の外に配置されたモータ39が接続されている。このモータ39が回転することで、クロスフローファン38は回転する。モータ39は、制御部COによる制御によりオン、オフや回転数の調節がなされる。従って、制御部COは、モータ39を制御することで、チャンバ30内を循環するレーザガスの循環速度を調節することができる。
 第1ウィンドウ33及び第2ウィンドウ34は、チャンバ30における電極31と電極32との間の空間を挟んで互いに対向する位置に設けられている。第1ウィンドウ33は、チャンバ30におけるレーザ光の進行方向における一端に設けられ、第2ウィンドウ34は、チャンバ30におけるレーザ光の進行方向における他端に設けられている。後述のようにガスレーザ装置100では、チャンバ30を含む光路上で光が発振してレーザ光が出射するため、チャンバ30内で発生したレーザ光は、第1ウィンドウ33及び第2ウィンドウ34を介してチャンバ30の外部に出射する。第1ウィンドウ33及び第2ウィンドウ34は、例えば、フッ化カルシウムで構成されている。なお、第1ウィンドウ33及び第2ウィンドウ34はフッ化物や酸化物等の膜でコーティングされてもよい。
 チャンバ30における第1ウィンドウ33が設けられる上記一端側には、第1光路管51が接続されている。チャンバ30における第1ウィンドウ33が設けられる位置は、第1光路管51の内壁と隙間をあけて第1光路管51内に入り込むよう突出している。このため、第1ウィンドウ33は第1光路管51内に位置する。
 出力結合ミラーOC1は、チャンバ30を基準とした上記一端側に設けられ、第1光路管51内に配置されている。出力結合ミラーOC1は、第1ウィンドウ33から出射するレーザ光が入射する光学素子であり、第1ウィンドウ33から出射される光のうちの一部を透過させ、他の一部を反射させて第1ウィンドウ33を介してチャンバ30内に戻す。出力結合ミラーOC1は、例えば、フッ化カルシウムの基板に誘電体多層膜を成膜した素子で構成される。
 チャンバ30における第2ウィンドウ34が設けられる上記他端側には、第2光路管52が接続されている。つまり、チャンバ30に接続される光路管は、第1光路管51及び第2光路管52を含む。チャンバ30における第2ウィンドウ34が設けられる位置は、第2光路管52の内壁と隙間をあけて第2光路管52内に入り込むよう突出している。このため、第2ウィンドウ34は第2光路管52内に位置する。
 狭帯域化モジュール40は、第2光路管52に接続されている。従って、狭帯域化モジュール40は、チャンバ30を基準とした上記他端側に設けられている。狭帯域化モジュール40は、筐体41と、グレーティング42と、プリズム43,44とを含む。筐体41には開口が形成されており、この開口を通じて筐体41内の空間と第2光路管52内の空間とが連通している。また、筐体41と第2光路管52とチャンバ30とで、閉空間が形成されている。
 グレーティング42及びプリズム43,44は、筐体41内に配置されている。グレーティング42及びプリズム43,44は、第2ウィンドウ34から出射するレーザ光が入射する光学素子である。グレーティング42は、波長分散面がレーザ光の伝搬方向に垂直な平面と概ね一致し、レーザ光の入射角度と回折角度とが概ね一致するようにリトロー配置されている。本例では、グレーティング42は、約193nmの波長に対してブレーズドされたエシェールグレーティングであってもよい。
 プリズム43,44の少なくとも一方は回転ステージ上に固定されており、プリズム43,44のうち回転ステージ上に固定されたプリズムが僅かに回転することで、グレーティング42へ入射する光の入射角度が調整される。グレーティング42への光の入射角度が調整されることで、グレーティング42で反射する光の波長が調整される。従って、チャンバ30の第2ウィンドウ34から出射される光がプリズム43,44を介してグレーティング42で反射することで、チャンバ30に戻る光の波長は、所望の波長に調整される。なお、狭帯域化モジュール40に配置されるプリズムの数は、本例では2つであるが、1つであっても3つ以上であってもよい。
 チャンバ30を挟んで設けられる出力結合ミラーOC1とグレーティング42とで光共振器が構成され、チャンバ30は、この光共振器の光路上に配置される。従って、チャンバ30から出射する光は、狭帯域化モジュール40のグレーティング42と出力結合ミラーOC1との間で往復し、電極31と電極32との間のレーザゲイン空間を通過する度に増幅される。増幅された光の一部が、出力結合ミラーOC1を透過して、パルスレーザ光として出射される。
 エネルギーモニタモジュール20は、レーザ発振器LOの出力結合ミラーOC1から出射するパルスレーザ光の光路上に配置されている。エネルギーモニタモジュール20は、筐体21と、ビームスプリッタ22と、パルスエネルギーセンサ23とを含む。筐体21は、第1光路管51に接続されている。ビームスプリッタ22及びパルスエネルギーセンサ23は、第1ウィンドウ33から出射するレーザ光が入射する光学素子である。筐体21には開口が形成されており、この開口を通じて筐体21内の空間と第1光路管51内の空間とが連通している。筐体21内には、ビームスプリッタ22及びパルスエネルギーセンサ23が配置されている。
 ビームスプリッタ22は、レーザ発振器LOから出射したパルスレーザ光を高い透過率で透過させるとともに、パルスレーザ光の一部を、パルスエネルギーセンサ23の受光面に向けて反射する。パルスエネルギーセンサ23は、受光面に入射したパルスレーザ光のパルスエネルギを検出し、検出されたパルスエネルギのデータを制御部COに出力する。
 エネルギーモニタモジュール20の筐体21における第1光路管51が接続される側と反対側には、開口が形成されており、この開口を囲むように光路管53が接続されている。このため、第1光路管51内の空間と、筐体21内の空間と、光路管53内の空間とが連通している。光路管53は筐体10に接続されている。筐体10における光路管53に囲まれる位置には、レーザ光出射ウィンドウOWが設けられている。従って、エネルギーモニタモジュール20のビームスプリッタ22を透過する光は、光路管53を介して、レーザ光出射ウィンドウOWから筐体10の外部に出射される。
 筐体10の外には、パージガスが蓄えられているパージガス供給源61が配置されている。パージガスには、酸素等の不純物の少ない高純度窒素等の不活性ガスが含まれる。パージガス供給源61には、配管が接続されており、当該配管が筐体10内に入り込んでいる。この配管の途中には、メインガス供給バルブSV0が設けられている。メインガス供給バルブSV0の開度は、制御部COからの制御信号により調節される。メインガス供給バルブSV0が設けられる配管は、パージガスマニホールドPMに接続されている。
 パージガスマニホールドPMには、複数の配管が接続されており、そのうちの一つの配管の途中には第1ガス供給バルブSV1が設けられている。第1ガス供給バルブSV1の開度は、制御部COからの制御信号により調節される。第1ガス供給バルブSV1が設けられた配管は、エネルギーモニタモジュール20の筐体21に接続されている。この接続部は、筐体21内にパージガスを供給する第1ガス供給口SP1である。従って、第1ガス供給口SP1は、筐体21を介して、第1光路管51内、及び、光路管53内にパージガスを供給する。
 パージガスマニホールドPMに接続される他の一つの配管の途中には第2ガス供給バルブSV2が設けられている。第2ガス供給バルブSV2の開度は、制御部COからの制御信号により調節される。第2ガス供給バルブSV2が設けられた配管は、狭帯域化モジュール40の筐体41に接続されている。この接続部は、筐体41内にパージガスを供給する第2ガス供給口SP2である。従って、第2ガス供給口SP2は、筐体41を介して、第2光路管52内にパージガスを供給する。
 つまり、本例のガスレーザ装置100のガス供給口は、第1ガス供給口SP1及び第2ガス供給口SP2を含む。
 第1光路管51には、第1排気バルブEV1が設けられた配管が接続されている。第1排気バルブEV1の開度は、制御部COからの制御信号により調節される。第1排気バルブEV1が開くことで、第1光路管51内のガスは排気される。この第1排気バルブEV1が設けられた配管が第1光路管51に接続される接続部が、第1光路管51内のガスを排気する第1排気口EP1である。本例では、第1排気口EP1は、第1光路管51における第1ウィンドウ33の脇に設けられている。具体的には、第1排気口EP1は、第1光路管51における第1ウィンドウ33を通りレーザ光の進行方向に垂直な面を含む位置に設けられている。なお、第1排気口EP1は、第1光路管51におけるこの面よりもチャンバ30側の位置に設けられてもよい。すなわち、第1排気口EP1は、第1光路管51における第1ウィンドウ33の近傍に設けられてもよい。上記第1ガス供給口SP1から供給されるパージガスは、筐体21や第1光路管51及び光路管53内のガスと混ざり、第1排気口EP1に流れる。従って、筐体21や第1光路管51及び光路管53内の酸素濃度をパージガスにより低減することができ、また、酸素濃度を低減した状態を維持することができる。また、ガスの流路上に位置するビームスプリッタ22、出力結合ミラーOC1、及び第1ウィンドウ33の表面に部品等から発生するアウトガスに起因する不純物等が付着することも抑制し得る。つまり、第1排気口EP1は、ビームスプリッタ22、出力結合ミラーOC1、及び第1ウィンドウ33の表面上をガスが流れるように第1光路管51に設けられている。
 第2光路管52には、第2排気バルブEV2が設けられた配管が接続されている。第2排気バルブEV2の開度は、制御部COからの制御信号により調節される。第2排気バルブEV2が開くことで、第2光路管52内のガスは排気される。この第2排気バルブEV2が設けられた配管が第2光路管52に接続される接続部が、第2光路管52内のガスを排気する第2排気口EP2である。本例では、第2排気口EP2は、第2光路管52における第2ウィンドウ34の脇に設けられている。具体的には、第2排気口EP2は、第2光路管52における第2ウィンドウ34を通りレーザ光の進行方向に垂直な面を含む位置に設けられている。なお、第2排気口EP2は、第2光路管52におけるこの面よりもチャンバ30側の位置に設けられてもよい。すなわち、第2排気口EP2は、第2光路管52における第2ウィンドウ34の近傍に設けられてもよい。上記第2ガス供給口SP2から供給されるパージガスは、筐体41や第2光路管52内のガスと混ざり、第2排気口EP2に流れる。従って、筐体41や第2光路管52内の酸素濃度をパージガスにより低減及び維持することができる。また、ガスの流路上に位置するグレーティング42、プリズム43,44、及び第2ウィンドウ34の表面に部品等から発生するアウトガスに起因する不純物等が付着することも抑制し得る。つまり、第2排気口EP2は、グレーティング42、プリズム43,44、及び第2ウィンドウ34の表面上をガスが流れるように第2光路管52に設けられている。
 このように、本例のガスレーザ装置100の光路管に設けられる排気口は、第1排気口EP1及び第2排気口EP2を含む。
 なお、本例では、第1排気バルブEV1が設けられた配管と第2排気バルブEV2が設けられた配管とが他の配管に接続されて、この他の配管を介して、第1光路管51内のガス及び第2光路管52内のガスは、筐体10内に排気される。
 筐体10の外には、レーザガスが蓄えられているレーザガス供給源62が更に配置されている。レーザガス供給源62は、レーザガスとなる複数のガスを供給する。本例では、例えば、F、Ar、及びNeを含む混合ガスを供給する。なお、KrFエキシマレーザであれば、レーザガス供給源62は、例えば、F、Kr、及びNeを含む混合ガスを供給する。レーザガス供給源62には、配管が接続されており、当該配管が筐体10内に入り込んでいる。この配管は、レーザガス供給装置63に接続されている。レーザガス供給装置63には、図示しないバルブや流量調節弁が設けられており、チャンバ30に接続される他の配管が接続されている。レーザガス供給装置63は、制御部COからの制御信号により、複数のガスをレーザガスとし、他の配管を介して、チャンバ30内に供給する。この他の配管がチャンバ30に接続される接続部が、チャンバ30内にレーザガスを供給するレーザガス供給口LSP1である。
 筐体10内には、排気装置64が配置されている。排気装置64は、チャンバ30と配管により接続されている。排気装置64は、チャンバ30内のガスをこの配管を介して筐体10内に排気する。この際、排気装置64は、制御部COからの制御信号により排気量等を調節し、チャンバ30内から排気されるガスに対して図示しないハロゲンフィルタによってFガスを除去する処理をする。この配管がチャンバ30に接続される接続部が、チャンバ30内からガスを排気するレーザガス排気口LEP1である。
 筐体10には、排気ダクト11が設けられている。この排気ダクト11から筐体10内のガスが筐体10外に排気される。従って、排気装置64から筐体10内に排気されるチャンバ30内のガスや、第1排気口EP1及び第2排気口EP2を介して筐体10内に排気される第1光路管51内及び第2光路管52内等のガスは、排気ダクト11から筐体10外に排気される。
 2.2 動作
 次に、比較例のガスレーザ装置100の動作について説明する。図3は、比較例におけるガスレーザ装置100がレーザ光を出射するまでの制御部COの動作を示すフローチャートである。図3に示すように、本例では、レーザ光が出射されるまでの制御部COの動作はステップS01からステップS05を含む。
(ステップS01)
 ガスレーザ装置100では、例えば、新規導入時やメンテナンス時等において、第1光路管51内及び第2光路管52内に大気が入り込む。図3では、この状態がスタートの状態である。
 本ステップでは、制御部COは、第1排気バルブEV1及び第2排気バルブEV2を閉める。更に、制御部COは、メインガス供給バルブSV0、第1ガス供給バルブSV1、及び第2ガス供給バルブSV2を閉める。従って、第1光路管51及び第2光路管52内にパージガスは供給されず、第1光路管51及び第2光路管52内からガスは排気されない。なお、スタートの時点で、第1排気バルブEV1、第2排気バルブEV2、メインガス供給バルブSV0、第1ガス供給バルブSV1、及び第2ガス供給バルブSV2のいずれかが開いている場合がある。この場合には、制御部COは本ステップで開いているバルブを閉め、スタートの時点でこれらのバルブの全てが閉じている場合には、制御部COはこれらのバルブが閉まっている状態を維持する。
(ステップS02)
 本ステップでは、制御部COは、第1排気バルブEV1及び第2排気バルブEV2を開く。この時点では、パージガスが供給されていないため、第1光路管51、筐体21、及び光路管53内のガス及び、第2光路管52及び筐体41内のガスは排気されない。
(ステップS03)
 本ステップでは、制御部COは、メインガス供給バルブSV0、第1ガス供給バルブSV1及び第2ガス供給バルブSV2を開く。このため、第1ガス供給口SP1から筐体21内にパージガスが供給され、第2ガス供給口SP2から筐体41内にパージガスが供給される。ステップS02において、第1排気バルブEV1及び第2排気バルブEV2が開いているため、第1光路管51、筐体21、及び光路管53内のガスは、パージガスにより押し出されて、第1排気口EP1を介して筐体10内に排気される。このため、筐体21や第1光路管51及び光路管53内の酸素濃度はパージガスにより低減され、酸素濃度が低減された状態が維持される。また、ビームスプリッタ22、出力結合ミラーOC1、及び第1ウィンドウ33の表面上をガスが流れ、これらの表面への酸素の付着等が抑制され得る。また、第2光路管52及び筐体41内のガスは、パージガスにより押し出されて、第2排気口EP2を介して筐体10内に排気される。このため、筐体41や第2光路管52内の酸素濃度はパージガスにより低減され、酸素濃度が低減された状態が維持される。また、グレーティング42、プリズム43,44、及び第2ウィンドウ34の表面上をガスが流れ、これらの表面への酸素の付着等が抑制され得る。筐体10内に排気されたガスは、排気ダクト11から筐体10の外に排気される。
(ステップS04)
 本ステップでは、制御部COは、ステップS03の状態を所定の第1期間T1維持する。この第1期間T1は、例えば5分から10分である。本ステップで、第1光路管51、筐体21、及び光路管53内の酸素濃度は所定の濃度以下となり、第2光路管52及び筐体41内の酸素濃度は所定の濃度以下となる。
 なお、制御部COは、ステップS04の完了までに、チャンバ30内にレーザガスを供給させ、供給されたレーザガスを循環させる。具体的には、制御部COは、排気装置64を制御して、チャンバ30内のガスをレーザガス排気口LEP1から筐体10内に排気させる。そして、レーザガス供給口LSP1から所定の量のレーザガスが供給される。この結果、レーザガスはチャンバ30内に封入される。また、制御部COはモータ39を制御して、クロスフローファン38を回転させる。クロスフローファン38の回転によりレーザガスは循環される。
(ステップS05)
 本ステップでは、制御部COは、レーザ光を出射させる。具体的には、制御部COは、本ステップで、モータ39を制御し、チャンバ30内のレーザガスが循環している状態を維持する。また、制御部COは、充電器35及びパルスパワーモジュール36内のスイッチを制御して、電極31,32間に高電圧を印加する。電極31,32間に高電圧が印加されると、電極31,32間の絶縁が破壊され放電が起こる。この放電のエネルギーにより、電極31,32間のレーザガスに含まれるレーザ媒質は励起状態とされて、基底状態に戻る時に自然放出光を放出する。この光の一部が第2ウィンドウ34から出射して、プリズム43,44を介してグレーティング42で反射される。グレーティング42で反射され再び第2ウィンドウ34を介してチャンバ30内に伝搬する光は狭帯域化されている。この狭帯域化された光により、励起状態のレーザ媒質は誘導放出を起こし光が増幅される。こうして、所定の波長の光がグレーティング42と出力結合ミラーOC1との間を共振し、レーザ発振が起こる。そして、一部のレーザ光が、出力結合ミラーOC1を透過して、レーザ光出射ウィンドウOWから出射する。
 なお、このとき、ビームスプリッタ22で反射されるレーザ光は、パルスエネルギーセンサ23で受光され、パルスエネルギーセンサ23は受光するレーザ光のエネルギーの強度に基づく信号を制御部COに出力する。制御部COは、この信号に基づいて、充電器35やパルスパワーモジュール36を制御して、出射されるレーザ光のパワーが調節される。
 また、本ステップの最中にも、ステップS04の状態は維持される。従って、第1光路管51、筐体21、及び光路管53を流れるガスにより、第1光路管51、筐体21、及び光路管53内では、酸素濃度が所定の濃度以下の状態に維持される。また、第2光路管52及び筐体41内を流れるガスにより、第2光路管52及び筐体41内では、酸素濃度が所定の濃度以下の状態に維持される。
 なお、ステップS01の一部が省略されてもよい。すなわち、スタートの時点で、第1排気バルブEV1、第2排気バルブEV2のいずれかが開いている場合にそのままステップS02に進んでもよい。また、ステップS02とステップS03とが同時に行われてもよい。
 2.3 課題
 上記のように、レーザ光の発振時やレーザ光の停止時において、パージガスの供給により、第1光路管51内、第2光路管52内のガスが、第1ウィンドウ33の表面、第2ウィンドウ34の表面を流れる。このガスの温度は、パージガスの温度と概ね同じである。ところで、チャンバ30内は、レーザガスの循環による摩擦熱等に起因しパージガスの温度よりも高くなる。従って、第1ウィンドウ33及び第2ウィンドウ34のチャンバ30側と反対側の表面は、表面を流れるガスにより冷却されて、第1ウィンドウ33及び第2ウィンドウ34のチャンバ30側の表面よりも、温度が低くなる。そして、レーザ光が出射すると第1ウィンドウ33及び第2ウィンドウ34は、レーザ光のエネルギーに起因して加熱される。このため、レーザ発振の開始時とレーザ発振の停止時とで、第1ウィンドウ33及び第2ウィンドウ34のチャンバ30側と反対側の表面に急激な温度変化が生じ、第1ウィンドウ33及び第2ウィンドウ34に熱衝撃による損傷が生じ、ガスレーザ装置100の耐久性が落ちるという懸念がある。
 そこで、以下の実施形態では、耐久性に優れるガスレーザ装置が例示される。
3.実施形態1のガスレーザ装置の説明
 次に、実施形態1のガスレーザ装置の構成を説明する。なお、上記において説明した構成と同様の構成については同一の符号を付し、特に説明する場合を除き、重複する説明は省略する。
 3.1 構成
 図4は、本実施形態におけるガスレーザ装置の全体の概略構成例を示す模式図である。図4に示すように、本実施形態のガスレーザ装置100は、酸素濃度計12と、第1副排気バルブEV3及び第2副排気バルブEV4と、第1副排気口EP3及び第2副排気口EP4とを含む点において、比較例1のガスレーザ装置100と主に異なる。なお、以降の実施形態では、比較例で説明した、第1排気バルブEV1を第1主排気バルブEV1とし、第2排気バルブEV2を第2主排気バルブEV2とし、第1排気口EP1を第1主排気口EP1とし、第2排気口EP2を第2主排気口EP2とする。
 第1副排気バルブEV3は、第1光路管51に接続される配管に設けられており、第1副排気バルブEV3の開度は、制御部COからの制御信号により調節される。第1副排気バルブEV3が設けられる配管が第1光路管51に接続される接続部が、第1光路管51内のガスを排気する第1副排気口EP3である。つまり本実施形態の第1光路管51に設けられる第1排気口は、主排気口としての第1主排気口EP1と副排気口としての第1副排気口EP3とを含む。第1副排気バルブEV3が開くことで、第1光路管51内のガスは第1副排気口EP3を介して排気される。本実施形態では、第1副排気口EP3は、第1ウィンドウ33が設けられる位置及び第1主排気口EP1が設けられる位置よりも第1光路管51内におけるガスの流れの上流側に設けられる。従って、第1主排気口EP1が第1光路管51における第1ウィンドウ33を通りレーザ光の進行方向に垂直な面を含む位置に設けられている場合、第1副排気口EP3は、第1主排気口EP1よりも第1光路管51内におけるガスの流れの上流側に設けられる。あるいは、第1主排気口EP1がこの面よりもチャンバ30側の位置に設けられている場合、第1副排気口EP3は、第1ウィンドウ33が設けられる位置よりも第1光路管51内におけるガスの流れの上流側に設けられる。第1副排気バルブEV3が設けられた配管は、第1主排気バルブEV1が設けられた配管と第2主排気バルブEV2が設けられた配管とが接続される他の配管に接続されている。従って、第1副排気口EP3を介して排気される第1光路管51内のガスは、この他の配管を介して筐体10内に排気される。
 第2副排気バルブEV4は、第2光路管52に接続される配管に設けられており、第2副排気バルブEV4の開度は、制御部COからの制御信号により調節される。第2副排気バルブEV4が設けられる配管が第2光路管52に接続される接続部が、第2光路管52内のガスを排気する第2副排気口EP4である。つまり本実施形態の第2光路管52に設けられる第2排気口は、主排気口としての第2主排気口EP2と副排気口としての第2副排気口EP4とを含む。第2副排気バルブEV4が開くことで、第2光路管52内のガスは第2副排気口EP4を介して排気される。本実施形態では、第2副排気口EP4は、第2ウィンドウ34が設けられる位置及び第2主排気口EP2が設けられる位置よりも第2光路管52内におけるガスの流れの上流側に設けられる。従って、第2主排気口EP2が第2光路管52における第2ウィンドウ34を通りレーザ光の進行方向に垂直な面を含む位置に設けられている場合、第2副排気口EP4は、第2主排気口EP2よりも第2光路管52内におけるガスの流れの上流側に設けられる。あるいは、第2主排気口EP2がこの面よりもチャンバ30側の位置に設けられている場合、第2副排気口EP4は、第2ウィンドウ34が設けられる位置よりも第2光路管52内におけるガスの流れの上流側に設けられる。第2副排気バルブEV4が設けられた配管は、第1主排気バルブEV1が設けられた配管と第2主排気バルブEV2が設けられた配管とが接続される他の配管に接続されている。従って、第2副排気口EP4を介して排気される第2光路管52内のガスは、この他の配管を介して筐体10内に排気される。
 酸素濃度計12は、第1主排気バルブEV1が設けられた配管及び第2主排気バルブEV2が設けられた配管が接続される他の配管の出力口近傍に設けられている。酸素濃度計12は、第1主排気口EP1を介して排気される第1光路管51内のガスに含まれる酸素の濃度、及び、第2主排気口EP2を介して排気される第2光路管52内のガスに含まれる酸素の濃度を計測する。酸素濃度計12としては、例えば、ジルコニア式、磁気式、レーザ分光式、電極式の酸素濃度計を挙げることができる。例えば、ジルコニア式の濃淡電池式酸素濃度計であれば反応性に優れるため好ましく、レーザ分光式の波長可変半導体レーザ分光式酸素濃度計であれば、酸素以外のガスの干渉の影響を殆ど受けることなく計測が可能であるため好ましい。なお、上記他の配管には、第1副排気バルブEV3が設けられた配管及び第2副排気バルブEV4が設けられた配管も接続されている。従って、酸素濃度計12は、第1副排気口EP3を介して排気される第1光路管51内のガスに含まれる酸素の濃度、及び、第2副排気口EP4を介して排気される第2光路管52内のガスに含まれる酸素の濃度も計測し得る。
 3.2 動作
<第1の例>
 まず、本実施形態のガスレーザ装置100の動作の第1の例について説明する。図5は、本実施形態におけるガスレーザ装置100がレーザ光を出射するまでの制御部COの動作の第1の例を示すフローチャートである。図5に示すように、本例では、レーザ光が出射されるまでの制御部COの動作はステップS11からステップS18を含む。
(ステップS11)
 本実施形態のスタートの状態は、図3を用いて説明した比較例のスタートの状態と同様である。
 本ステップでは、制御部COは、比較例のステップS01と同様に、第1主排気バルブEV1、第2主排気バルブEV2、メインガス供給バルブSV0、第1ガス供給バルブSV1、及び第2ガス供給バルブSV2を閉める。更に、本実施形態では、制御部COは、第1副排気バルブEV3及び第2副排気バルブEV4を閉める。従って、本ステップでは、比較例のステップS01と同様に、第1光路管51及び第2光路管52内にパージガスは供給されず、第1光路管51及び第2光路管52内からガスは排気されない。なお、スタートの時点で、第1主排気バルブEV1、第2主排気バルブEV2、第1副排気バルブEV3、第2副排気バルブEV4、メインガス供給バルブSV0、第1ガス供給バルブSV1、及び第2ガス供給バルブSV2のいずれかが開いている場合がある。この場合には、制御部COは本ステップで開いているバルブを閉め、スタートの時点でこれらのバルブの全てが閉じている場合には、制御部COはこれらのバルブが閉まっている状態を維持する。
(ステップS12,S13,S14)
 制御部COは、本実施形態のステップS12,S13,S14において、比較例のステップS02,S03,S04と同様の動作をする。従って、ステップS13において、制御部COは、チャンバ30からレーザ光が出射される前において主排気口としての第1主排気口EP1,第2主排気口EP2からガスを排気させる。このため、ステップS14が終わる時点で、第1光路管51、筐体21、及び光路管53内の酸素濃度は所定の濃度以下となり、第2光路管52及び筐体41内の酸素濃度は所定の濃度以下となる。
(ステップS15)
 本ステップでは、制御部COは、第1副排気バルブEV3及び第2副排気バルブEV4を開く。ステップS12で第1主排気バルブEV1及び第2主排気バルブEV2が開かれている。従って、第1光路管51内のガスは、第1主排気口EP1及び第1副排気口EP3を介して筐体10内に排気され、第2光路管52内のガスは、第2主排気口EP2及び第2副排気口EP4を介して筐体10内に排気される。つまり、本ステップでは、副排気口としての第1副排気口EP3及び第2副排気口EP4からガスが排気される。このため、本ステップより前の状態と比べて、第1主排気口EP1及び第2主排気口EP2から排気されるガスの量は低下する。従って、第1光路管51内及び第2光路管52内のガスの流れが変化し、第1ウィンドウ33及び第2ウィンドウ34の表面を流れるガスの量は低下する。
(ステップS16)
 本ステップでは、制御部COは、第1主排気バルブEV1及び第2主排気バルブEV2を閉じる。従って、第1主排気口EP1及び第2主排気口EP2からはガスが排気されなくなり、第1副排気口EP3及び第2副排気口EP4から排気されるガスの量は増加する。このため、第1光路管51及び第2光路管52内のガスの流れがさらに変化し、第1ウィンドウ33及び第2ウィンドウ34の表面を流れるガスの量はさらに低下する。
 なお、本実施形態では、制御部COは、ステップS17の完了までに、チャンバ30内にレーザガスを供給し、供給されたレーザガスを循環させる。本実施形態において、チャンバ30内にレーザガスが供給され、レーザガスが循環される手順は、比較例において、チャンバ30内にレーザガスが供給され、レーザガスが循環される手順と同様である。
(ステップS17)
 本ステップでは、制御部COは、ステップS15において第1副排気バルブEV3及び第2副排気バルブEV4が開かれてから所定の第2期間T2が経過するまでステップS16の状態を維持する。この第2期間T2は、例えば5分から10分である。従って、ステップS15が行われてから第2期間T2が経過するまでにステップS16が行われる。例えば、ステップS15とステップS16とが同時に行われてもよい。本ステップでは、上記のように第1ウィンドウ33及び第2ウィンドウ34の表面を流れるガスの量は低下している。このため、本ステップの終了時点で、第1ウィンドウ33の第1光路管51側は第1光路管51内のガスにより冷却されることが抑制され、第2ウィンドウ34の第2光路管52側は第2光路管52内のガスにより冷却されることが抑制される。このため、本ステップの完了時に、第1ウィンドウ33におけるチャンバ30側の温度と第1光路管51側の温度との差、及び、第2ウィンドウ34におけるチャンバ30側の温度と第2光路管52側の温度との差は、比較例と比べて小さくなる。
(ステップS18)
 本ステップでは、制御部COは、比較例のステップS05と同様にして、レーザ光を出射させる。
 なお、制御部COは、ステップS18においてメインガス供給バルブSV0の開度を小さくし、筐体21,41内に供給されるパージガスの量を減らしてもよい。この場合、レーザ光の出射時において、第1ウィンドウ33及び第2ウィンドウ34の表面を流れるガスの量をより低減し得る。従って、第1ウィンドウ33におけるチャンバ30側の温度と第1光路管51側の温度との差、及び、第2ウィンドウ34におけるチャンバ30側の温度と第2光路管52側の温度との差は、より小さくなり得る。なお、制御部COは、ステップS18においてメインガス供給バルブSV0の開度を小さくする代わりに、第1ガス供給バルブSV1及び第2ガス供給バルブSV2の開度を小さくしてもよい。
<第2の例>
 次に、本実施形態のガスレーザ装置100の動作の第2の例について説明する。図6は、本実施形態におけるガスレーザ装置100がレーザ光を出射するまでの制御部COの動作の第2の例を示すフローチャートである。図5に示すように、本例では、レーザ光が出射されるまでの制御部COの動作は、ステップS14が第1の例と異なり、他のステップは第1の例の各ステップと同様である。
(ステップS14)
 本例の本ステップでは、制御部COは、第1光路管51内及び第2光路管52内の酸素濃度が所定の第1濃度になるまでステップS13の状態を維持する。このため、本例のステップS14は、制御部COが酸素濃度計12から酸素濃度を示す信号を受信するステップS14aと、制御部COが受信した酸素濃度が所定の酸素濃度以下になっているか否かを判断するステップS14bとを含む。
(ステップS14a)
 酸素濃度計12は、第1主排気バルブEV1が設けられた配管内及び第2主排気バルブEV2が設けられた配管内を通過するガスの酸素濃度を計測する。本ステップでは、酸素濃度計12は計測した酸素濃度を示す信号を出力し、制御部COはこの信号を受信する。
(ステップS14b)
 本ステップでは、制御部COは、酸素濃度計12から受信した信号に基づき、酸素濃度計12が計測した酸素濃度が所定の第1濃度以下になっているか否かを判断する。この所定の第1濃度は、例えば10ppmである。第1排気バルブEV1を設けた配管内及び第2排気バルブEV2を設けた配管内を通過するガスの酸素濃度が所定の第1濃度以下になっていない場合は、ステップS14aに戻り、酸素濃度計12から新たに受信した信号に基づき、酸素濃度計12が計測した酸素濃度が所定の第1濃度以下になっているか否かを判断する。
 本例では、酸素濃度計12は、上記のように、第1主排気バルブEV1が設けられた配管及び第2主排気バルブEV2が設けられた配管が接続される他の配管に設けられている。しかし、上記例と異なり、酸素濃度計12が第1光路管51内及び第2光路管52内のそれぞれに配置され、第1光路管51内及び第2光路管52内の酸素濃度が計測されてもよい。或いは、酸素濃度計12は、排気ダクト11に設けられてもよい。酸素濃度計12が排気ダクト11に設けられる変形例において、第1光路管51内及び第2光路管52内の酸素濃度が所定の第1濃度以下になったかを制御部COが判断する手順は、例えば、以下のとおりである。上記のようにスタートの時点で、第1光路管51及び第2光路管52内には大気が入り込む。つまり、筐体10内では、第1光路管51及び第2光路管52内における酸素濃度と第1光路管51及び第2光路管52外における酸素濃度とは概ね同じである。そして、ステップS13以降に第1光路管51及び第2光路管52内にパージガスが供給され、第1光路管51及び第2光路管52内のガスが筐体10内に排気される。従って、筐体10内における第1光路管51及び第2光路管52外における酸素濃度は、第1光路管51及び第2光路管52内における酸素濃度よりも高い傾向にある。そこで、本例では、筐体10内の酸素濃度が上記第1濃度よりも高い所定の第2濃度以下になれば、第1光路管51及び第2光路管52内の酸素濃度が所定の第1濃度以下になったとみなす。つまり、第2濃度は、第1光路管51及び第2光路管52内における酸素濃度が所定の第1濃度以下である場合における筐体10内の酸素濃度である。この第2濃度は、例えば100ppmである。
 そこで、酸素濃度計12が排気ダクト11に設けられる場合、制御部COは、酸素濃度計12から受信する信号に基づいて、酸素濃度が第2濃度以下になっている場合にステップS15に進む。また、制御部COは、酸素濃度が第2濃度以下になっていない場合は、ステップS14aに戻り、酸素濃度計12から新たに受信した信号に基づき、酸素濃度計12が計測した酸素濃度が所定の第2濃度以下になっているか否かを判断する。筐体10内の酸素濃度が所定の第2濃度以下の場合に、第1光路管51内及び第2光路管52内の酸素濃度が所定の第1濃度以下であるとみなされる。この場合に、第1光路管51内及び第2光路管52内の酸素濃度が所定の第1濃度以下になっていることを制御部COが判断する必要はない。
 なお、第1の例では、酸素濃度の計測は不要である。従って、制御部COが第1の例の動作をする場合には、ガスレーザ装置100は、酸素濃度計12を備えなくてもよい。
 3.3 作用・効果
 本実施形態では、レーザ光の出射時より前に第1主排気口EP1及び第2主排気口EP2からガスが排気される。このため、ガスが第1ウィンドウ33及び第2ウィンドウ34の表面を流れ、筐体21、第1光路管51や光路管53内の酸素濃度、及び、筐体41や第2光路管52内の酸素濃度を低減することができる。次に、第1副排気口EP3及び第2副排気口EP4からガスが排気される。このため、第1主排気口EP1及び第2主排気口EP2からのガスの排気量は低下し、第1ウィンドウ33及び第2ウィンドウ34の表面を流れるガスの量は低下する。従って、レーザ出射時において、第1ウィンドウ33のチャンバ30側の温度と第1光路管51側の温度との差が小さくなり、第2ウィンドウ34のチャンバ30側の温度と第2光路管52側の温度との差が小さくなる。従って、本実施形態における第1ウィンドウ33及び第2ウィンドウ34のチャンバ30側と反対側の表面の温度は、比較例における第1ウィンドウ33及び第2ウィンドウ34のチャンバ30側と反対側の表面の温度と比べて高くなる。このため、本実施形態のガスレーザ装置100によれば、レーザ光が出射する際に第1ウィンドウ33及び第2ウィンドウ34が加熱される場合であっても、比較例のガスレーザ装置100と比べて、第1ウィンドウ33及び第2ウィンドウ34が受ける熱衝撃が小さくなり得る。また、レーザ光の出射の停止時に、第1ウィンドウ33及び第2ウィンドウ34の温度が低下する場合であっても、比較例のガスレーザ装置100と比べて、第1ウィンドウ33及び第2ウィンドウ34が受ける熱衝撃が小さくなり得る。従って、本実施形態のガスレーザ装置は、耐久性に優れ得る。
 また、本実施形態では、制御部COは、第1副排気口EP3及び第2副排気口EP4からガスが排気されるとき第1主排気口EP1及び第2主排気口EP2からのガスの排気を停止させている。従って、第1副排気口EP3からガスが排気されるときに第1主排気口EP1からのガスの排気が停止されない場合と比べて、第1ウィンドウ33のチャンバ30側の温度と第1光路管51側の温度との差がより小さくなり得る。同様に、第2副排気口EP4からガスが排気されるときに第2主排気口EP2からのガスの排気が停止されない場合と比べて、第2ウィンドウ34のチャンバ30側の温度と第2光路管52側の温度との差がより小さくなり得る。従って、第1副排気口EP3及び第2副排気口EP4からガスが排気されるとき、第1主排気口EP1及び第2主排気口EP2からのガスの排気が停止されない場合と比べて、第1ウィンドウ33及び第2ウィンドウ34にかかる熱衝撃をより軽減し得る。なお、第1副排気口EP3及び第2副排気口EP4からガスが排気されるとき、第1主排気口EP1及び第2主排気口EP2からガスが排気されてもよい。この場合、例えば、第1副排気口EP3及び第2副排気口EP4からガスが排気されるとき、第1副排気口EP3及び第2副排気口EP4からガスが排気される前と比べて、第1主排気口EP1及び第2主排気口EP2からのガス排気量が小さくされてもよい。
 また、本実施形態の第1の例では、制御部COは、第1主排気口EP1及び第2主排気口EP2からのガスの排気が開始されてから所定の第1期間T1経過後に第1副排気口EP3及び第2副排気口EP4からガスを排気させる。従って、第1期間T1を適切に設定することで、第1光路管51内の酸素濃度、及び、第2光路管52内の酸素濃度はパージガスにより適切に低減され得る。
 また、本実施形態の第2の例では、第1主排気口EP1及び第2主排気口EP2から筐体10内に排気されるガスの酸素濃度が直接計測され、制御部COは、第1光路管51及び第2光路管52内の酸素濃度が所定の第1濃度以下となった場合に第1副排気口EP3及び第2副排気口EP4からガスを排気させる。従って、第2の例によれば、第1光路管51及び第2光路管52内の酸素濃度が低減された後に、第1光路管51及び第2光路管52におけるガスの流路を変更し得る。なお、上記変形例のように排気ダクト11に酸素濃度計12が設けられ、筐体10内の酸素濃度が第2濃度以下になった場合に第1副排気口EP3及び第2副排気口EP4からガスを排気させてもよい。この場合であっても、制御部COは、第1主排気口EP1及び第2主排気口EP2からのガスの排気が開始され第1光路管51及び第2光路管52内における酸素濃度が所定の第1濃度以下となった場合に第1副排気口EP3及び第2副排気口EP4からガスを排気させることになる。なお、筐体10内の酸素濃度が計測される場合、酸素濃度計12が排気ダクト11に設けられず、筐体10内に設けられてもよい。
 また、本実施形態では、制御部COは、第1副排気口EP3及び第2副排気口EP4からのガスの排気を開始した後にチャンバ30からレーザ光を出射させる。従って、レーザ光の出射当初から第1ウィンドウ33及び第2ウィンドウ34が受ける熱衝撃を軽減し得る。なお、レーザ光の出射と停止とが繰り返される少なくとも一部の期間において、第1副排気口EP3及び第2副排気口EP4からガスが排気されれば、少なくとも当該期間において、レーザ光の出射時と停止時に第1ウィンドウ33及び第2ウィンドウ34が受ける熱衝撃をより軽減し得る。従って、制御部COは、レーザ光が出射されてから、第1副排気口EP3及び第2副排気口EP4からのガスの排気を開始してもよい。
 また、本実施形態では、制御部COは、第1副排気口EP3及び第2副排気口EP4からのガスの排気を開始してから所定の第2期間T2が経過した後にチャンバ30からレーザ光を出射させる。従って、第2期間T2を適切な期間とすることで、レーザ光の出射当初から第1ウィンドウ33及び第2ウィンドウ34が受ける熱衝撃をより軽減し得る。なお、制御部COは、第1副排気口EP3及び第2副排気口EP4からのガスの排気を開始してから所定の第2期間T2が経過する前にチャンバ30からレーザ光を出射させてもよい。
 また、本実施形態では、チャンバ30の第1ウィンドウ33が設けられる位置は、第1光路管51の内壁と隙間をあけて第1光路管51内に入り込むよう突出している。さらに第1主排気口EP1は、第1光路管51における第1ウィンドウ33を通りレーザ光の進行方向に垂直な面を含む位置、または、第1光路管51におけるこの面よりもチャンバ30側の位置に設けられる。このような位置に第1主排気口EP1が設けられることで、第1主排気口EP1からガスが排気される際に、第1ウィンドウ33の表面を適切にガスが流れ得る。なお、第1主排気口EP1からガスが排気される際に第1ウィンドウ33の表面をガスが流れるのであれば、第1主排気口EP1は、上記面よりもチャンバ側と反対側に設けられてもよく、第1ウィンドウ33が第1光路管51内に入り込んでいなくてもよい。
 また、本実施形態では、チャンバ30の第2ウィンドウ34が設けられる位置は、第2光路管52の内壁と隙間をあけて第2光路管52内に入り込むよう突出している。さらに第2主排気口EP2は、第2光路管52における第2ウィンドウ34を通りレーザ光の進行方向に垂直な面を含む位置、または、第2光路管52におけるこの面よりもチャンバ30側の位置に設けられる。このような位置に第2主排気口EP2が設けられることで、第2主排気口EP2からガスが排気される際に、第2ウィンドウ34の表面を適切にガスが流れ得る。なお、第2主排気口EP2からガスが排気される際に第2ウィンドウ34の表面をガスが流れるのであれば、第2主排気口EP2は、上記面よりもチャンバ側と反対側に設けられてもよく、第2ウィンドウ34が第2光路管52内に入り込んでいなくてもよい。
 また、本実施形態では、第1副排気口EP3よりもガスの流れの上流側にレーザ光が入射する光学素子が配置されている。本実施形態では、当該光学素子として、少なくとも出力結合ミラーOC1及びビームスプリッタ22が配置されている。また、本実施形態では、第2副排気口EP4よりもガスの流れの上流側にレーザ光が入射する光学素子が配置されている。本実施形態では、当該光学素子として、グレーティング42及びプリズム43,44が配置されている。従って、第1主排気口EP1及び第2主排気口EP2からのガスの排気が停止される場合であっても、第1副排気口EP3及び第2副排気口EP4からガスが排気されることで、これら光学素子が配置されている空間の酸素濃度を低減し得る。
 なお、本実施形態のガスレーザ装置100は、第1副排気バルブEV3及び第1副排気口EP3と、第2副排気バルブEV4及び第2副排気口EP4とを含んでいる。しかし、ガスレーザ装置100は、第1副排気バルブEV3及び第1副排気口EP3と、第2副排気バルブEV4及び第2副排気口EP4との一方を含まなくてもよい。ただし、第1ウィンドウ33の方が第2ウィンドウ34よりも透過するレーザ光のパワーが大きいため、この場合、ガスレーザ装置100は、第1副排気バルブEV3及び第1副排気口EP3を備えることが好ましい。
4.実施形態2のガスレーザ装置の説明
 次に、実施形態2のガスレーザ装置について説明する。なお、上記において説明した構成と同様の構成については同一の符号を付し、特に説明する場合を除き、重複する説明は省略する。
 4.1 構成
 図7は、本実施形態におけるガスレーザ装置の全体の概略構成例を示す模式図である。図7に示すように、本実施形態のガスレーザ装置100は、第1壁部51W及び第2壁部52Wを含む点において実施形態1のガスレーザ装置と異なる。
 第1壁部51Wは、第1光路管51内における第1主排気口EP1と第1副排気口EP3との間に設けられ、第1光路管51を塞いでいる。ただし、第1壁部51Wには、第1スリット51Sが形成されている。この第1スリット51Sは、第1ウィンドウ33と出力結合ミラーOC1との間を伝搬するレーザ光が通過可能に形成されている。また、第1スリット51Sは、第1スリット51Sを透過するレーザ光の断面形状と概ね相似形であることが、第1スリット51Sに不要な領域を作り出さない観点から好ましい。
 第2壁部52Wは、第2光路管52内における第2主排気口EP2と第2副排気口EP4との間に設けられ、第2光路管52を塞いでいる。ただし、第2壁部52Wには、第2スリット52Sが形成されている。この第2スリット52Sは、第2ウィンドウ34と狭帯域化モジュール40との間を伝搬するレーザ光が通過可能に形成されている。また、第2スリット52Sは、第2スリット52Sを透過するレーザ光の断面形状と概ね相似形であることが、第2スリット52Sに不要な領域を作り出さない観点から好ましい。
 第1壁部51W及び第2壁部52Wは、アウトガス等を発生させない観点から例えば金属で形成されることが好ましく、金属としては、例えば、アルミニウムやステンレス鋼を挙げることができる。
 4.2 動作
 本実施形態におけるガスレーザ装置100の動作は、実施形態1におけるガスレーザ装置100の動作と同様である。ただし、第1主排気口EP1からガスが排気される際、第1光路管51でのガスは、第1スリット51Sを通過して第1ウィンドウ33の表面を流れ、第1主排気口EP1から排気される。また、第2主排気口EP2からガスが排気される際、第2光路管52でのガスは、第2スリット52Sを通過して第2ウィンドウ34の表面を流れ、第2主排気口EP2から排気される。
 4.3 作用・効果
 本実施形態のガスレーザ装置100では、第1壁部51Wが障壁となり、第1副排気口EP3からガスが排気される際、第1ウィンドウ33側にガスが流れることが抑制され得る。また、第2壁部52Wが障壁となり、第2副排気口EP4からガスが排気される際、第2ウィンドウ34側にガスが流れることが抑制され得る。このため、第1ウィンドウ33及び第2ウィンドウ34にかかる熱衝撃がより軽減され得る。
 なお、ガスレーザ装置100は、第1壁部51W及び第2壁部52Wの一方を備えなくてもよい。第1壁部51W及び第2壁部52Wの一方を備えない場合、第1ウィンドウ33の方が第2ウィンドウ34よりも透過するレーザ光のパワーが大きいため、ガスレーザ装置100は第1壁部51Wを備えることが好ましい。
5.実施形態3のガスレーザ装置の説明
 次に、実施形態3のガスレーザ装置について説明する。なお、上記において説明した構成と同様の構成については同一の符号を付し、特に説明する場合を除き、重複する説明は省略する。
 5.1 構成
 図8は、本実施形態におけるガスレーザ装置の全体の概略構成例を示す模式図である。図8に示すように本実施形態のガスレーザ装置100は、実施形態1のレーザ発振器LOと同様の構成のマスターオシレータMOを含み、増幅器PAと、光伝送ユニット80,90とをさらに含む点において、実施形態1のガスレーザ装置100と主に異なる。
 増幅器PAは、チャンバ70と、第1ウィンドウ73と第2ウィンドウ74とを含むウィンドウと、一対の電極71,72と、電極ホルダ72hと、充電器75と、パルスパワーモジュール76と、絶縁部77と、クロスフローファン78と、モータ79と、リアミラーRMと、出力結合ミラーOC2と、を主な構成として含む。
 増幅器PAのチャンバ70、一対の電極71,72、電極ホルダ72h、及び絶縁部77の構成は、マスターオシレータMOのチャンバ30、一対の電極31,32、電極ホルダ32h、及び絶縁部37の構成と同様である。一対の電極71,72は、チャンバ70内において互いに対向して配置されている。絶縁部77は、チャンバ70に形成された開口を塞ぎ、電極71は絶縁部77に支持されている。電極72は電極ホルダ72hに支持され、電極ホルダ72hはチャンバ70の内面に固定され、チャンバ70と電気的に接続されている。
 増幅器PAの充電器75、パルスパワーモジュール76の構成は、マスターオシレータMOの充電器35、パルスパワーモジュール36の構成と同様である。従って、絶縁部77のフィードスルーは、パルスパワーモジュール76から供給される電圧を電極71に印加する。パルスパワーモジュール76は、充電器75から印加される電圧を昇圧してパルス状の高電圧を生成し、この高電圧を一対の電極71,72間に印加する。
 増幅器PAのクロスフローファン78、モータ79の構成は、マスターオシレータMOのクロスフローファン38、モータ39の構成と同様である。従って、クロスフローファン78は、チャンバ70内に配置され、チャンバ70内におけるクロスフローファン78が配置される空間と一対の電極71,72間の空間とは互いに連通している。クロスフローファン78が回転することで、チャンバ70内に封入されたレーザガスは所定の方向に循環する。クロスフローファン78には、モータ79が接続されており、モータ79が回転することで、クロスフローファン78は回転する。制御部COは、モータ79を制御することで、チャンバ70内を循環するレーザガスの循環速度を調節することができる。
 第1ウィンドウ73及び第2ウィンドウ74の構成は、マスターオシレータMOの第1ウィンドウ33及び第2ウィンドウ34の構成と同様である。従って、第1ウィンドウ73及び第2ウィンドウ74は、チャンバ70における電極71と電極72との間の空間を挟んで互いに対向する位置に設けられている。第1ウィンドウ73は、チャンバ70におけるレーザ光の進行方向における一端に設けられ、第2ウィンドウ74は、チャンバ70におけるレーザ光の進行方向における他端に設けられている。後述のようにガスレーザ装置100では、チャンバ70を含む光路上で光が発振してレーザ光が出射するため、チャンバ30内で発生したレーザ光は、第1ウィンドウ73及び第2ウィンドウ74を介してチャンバ70の外部に出射する。
 チャンバ70における第1ウィンドウ73が設けられる上記一端側には、第1光路管55が接続されている。チャンバ70における第1ウィンドウ73が設けられる位置は、第1光路管55の内壁と隙間をあけて第1光路管55内に入り込むよう突出している。このため、第1ウィンドウ73は第1光路管55内に位置する。
 出力結合ミラーOC2の構成は、マスターオシレータMOの出力結合ミラーOC1の構成と同様である。出力結合ミラーOC2は、チャンバ70を基準とした上記一端側に設けられ、第1光路管55内に配置されている。出力結合ミラーOC2は、第1ウィンドウ73から出射するレーザ光が入射する光学素子であり、第1ウィンドウ73から出射される光のうちの一部を透過させ、他の一部を反射させて第1ウィンドウ73を介してチャンバ70内に戻す。
 チャンバ70における第2ウィンドウ74が設けられる上記他端側には、第2光路管56が接続されている。つまり、チャンバ70に接続される光路管は、第1光路管55及び第2光路管56を含む。チャンバ70における第2ウィンドウ74が設けられる位置は、第2光路管56の内壁と隙間をあけて第2光路管56内に入り込むよう突出している。このため、第2ウィンドウ74は第2光路管56内に位置する。
 リアミラーRMは、チャンバ70を基準とした上記他端側に設けられ、第2光路管56内に配置されている。リアミラーRMは、第2ウィンドウ74から出射するレーザ光が入射する光学素子であり、第2ウィンドウ74から出射される光のうちの少なくとも一部を反射させて第2ウィンドウ74を介してチャンバ70内に戻す。また、リアミラーRMは、チャンバ70側と反対側から入射する光を透過して、第2ウィンドウ74を介してチャンバ70内に入射させる。リアミラーRMは、例えば、フッ化カルシウムの基板に誘電体多層膜を成膜した素子で構成される。
 チャンバ70を挟んで設けられる出力結合ミラーOC2とリアミラーRMとで光共振器が構成され、チャンバ70は、この光共振器の光路上に配置される。従って、リアミラーRMを透過してチャンバ70に入射する光は、出力結合ミラーOC2とリアミラーRMとの間で往復し、電極71と電極72との間のレーザゲイン空間を通過する度に増幅される。増幅された光の一部が、出力結合ミラーOC2を透過して、増幅されたレーザ光が出射される。このような増幅器PAとして、例えばインジェクションロック方式の増幅器が挙げられる。
 マスターオシレータMOの第1光路管51と増幅器PAの第2光路管56は、光伝送ユニット80を介して互いに接続されている。光伝送ユニット80は、筐体81と一対のミラー82,83を含む。筐体81の第1光路管51との接続部は開口しており、この開口を通じて筐体81内の空間と第1光路管51内の空間とが互いに連通している。また、筐体81の第2光路管56との接続部は開口しており、この開口を通じて筐体81内の空間と第2光路管56内の空間とが互いに連通している。ミラー82,83は適宜角度が調整されて筐体81内に配置されている。マスターオシレータMOの出力結合ミラーOC1を透過して出射するレーザ光は、ミラー82,83で反射して、増幅器PAのリアミラーRMに入射する。このレーザ光の少なくとも一部は、リアミラーRMを透過する。
 増幅器PAの第1光路管55とエネルギーモニタモジュール20の筐体21とは、光伝送ユニット90及び光路管57を介して互いに接続されている。光伝送ユニット90は、筐体91と一対のミラー92,93を含む。筐体91の第1光路管55との接続部は開口しており、この開口を通じて筐体91内の空間と第1光路管55内の空間とが互いに連通している。また、筐体91の光路管57との接続部は開口しており、この開口を通じて筐体91内の空間と光路管57内の空間とが互いに連通している。エネルギーモニタモジュール20の筐体21は、光路管57に接続されている。筐体41に形成された開口を通じて筐体21内の空間と光路管57内の空間とが連通している。ミラー92,93は適宜角度が調整されて筐体91内に配置されている。増幅器PAの出力結合ミラーOC2を透過して出射するレーザ光は、ミラー92,93で反射して、光路管57を介して、エネルギーモニタモジュールに入射する。このため、本実施形態では、エネルギーモニタモジュール20のビームスプリッタ22及びパルスエネルギーセンサ23は、増幅器PAの第1ウィンドウ73から出射するレーザ光が入射する光学素子である。
 なお、実施形態1と同様に、エネルギーモニタモジュール20の筐体21には光路管53が接続されており、光路管53は筐体10に接続されている。さらに、筐体10における光路管53に囲まれる位置には、レーザ光出射ウィンドウOWが設けられている。
 本実施形態では、マスターオシレータMO用の第1ガス供給バルブSV1が設けられた配管は、第1光路管51に接続されている。従って、マスターオシレータMO用の第1ガス供給口SP1は、第1光路管51に設けられている。上記のように、筐体81内の空間と第1光路管51内の空間とが互いに連通しているため、第1ガス供給口SP1は、第1光路管51を介して、光伝送ユニット80の筐体81内にパージガスを供給する。
 パージガスマニホールドPMには、実施形態1で説明したパージガスマニホールドPMに接続される配管の他に複数の配管が接続されており、そのうちの一つの配管の途中には、増幅器PA用の第1ガス供給バルブSV3が設けられている。第1ガス供給バルブSV3の開度は、制御部COからの制御信号により調節される。第1ガス供給バルブSV3が設けられた配管は、光伝送ユニット90の筐体91に接続されている。この接続部は、筐体91内にパージガスを供給する増幅器PA用の第1ガス供給口SP3である。従って、第1ガス供給口SP3は、筐体91を介して、第1光路管55内、光路管57、筐体21、及び光路管53内にパージガスを供給する。
 パージガスマニホールドPMに接続される他の一つの配管の途中には増幅器PA用の第2ガス供給バルブSV4が設けられている。第2ガス供給バルブSV4の開度は、制御部COからの制御信号により調節される。第2ガス供給バルブSV4が設けられた配管は、第2光路管56に接続されている。この接続部は、第2光路管56内にパージガスを供給する第2ガス供給口SP4である。従って、第2ガス供給口SP4は、第2光路管56を介して、光伝送ユニット80の筐体81内にパージガスを供給する。
 つまり、本例のガスレーザ装置100にける増幅器PAのガス供給口は、第1ガス供給口SP3及び第2ガス供給口SP4を含む。
 増幅器PAの第1光路管55には、第1主排気バルブEV5が設けられた配管が接続されている。第1主排気バルブEV5の開度は、制御部COからの制御信号により調節される。第1主排気バルブEV5が開くことで、第1光路管55内のガスは排気される。この第1主排気バルブEV5が設けられた配管が第1光路管55に接続される接続部が、第1光路管55内のガスを排気する第1主排気口EP5である。本例では、第1主排気口EP5は、第1光路管55における第1ウィンドウ73の脇に設けられている。具体的には、第1主排気口EP5は、第1光路管55における第1ウィンドウ73を通りレーザ光の進行方向に垂直な面を含む位置に設けられている。なお、第1主排気口EP5は、第1光路管55におけるこの面よりもチャンバ70側の位置に設けられてもよい。すなわち、第1主排気口EP5は、第1光路管55における第1ウィンドウ73の近傍に設けられてもよい。上記の第1ガス供給口SP3から供給されるパージガスは、筐体91や第1光路管55内のガスと混ざり、第1主排気口EP5に流れる。従って、筐体91や第1光路管55内の酸素濃度をパージガスにより低減することができる。つまり、第1主排気口EP5は、ミラー92、出力結合ミラーOC2、及び第1ウィンドウ73の表面上をパージガスが流れるように第1光路管55に設けられる。
 増幅器PAの第1光路管55には、更に第1副排気バルブEV7が設けられた配管が接続されている。第1副排気バルブEV7の開度は、制御部COからの制御信号により調節される。第1副排気バルブEV7が設けられる配管が第1光路管55に接続される接続部が、第1光路管55内のガスを排気する第1副排気口EP7である。つまり本実施形態の第1光路管55に設けられる第1排気口は、主排気口としての第1主排気口EP5と副排気口としての第1副排気口EP7とを含む。第1副排気バルブEV7が開くことで、第1光路管55内のガスは第1副排気口EP7を介して排気される。本例では、第1副排気口EP7は、第1ウィンドウ73が設けられる位置及び第1主排気口EP5が設けられる位置よりも第1光路管55内におけるガスの流れの上流側に設けられる。従って、第1主排気口EP5が第1光路管55における第1ウィンドウ73を通りレーザ光の進行方向に垂直な面を含む位置に設けられている場合、第1副排気口EP7は、第1主排気口EP5よりも第1光路管55内におけるガスの流れの上流側に設けられる。あるいは、第1主排気口EP5がこの面よりもチャンバ70側の位置に設けられている場合、第1副排気口EP7は、第1ウィンドウ73が設けられる位置よりも第1光路管55内におけるガスの流れの上流側に設けられる。
 なお、第1主排気バルブEV5が設けられた配管及び第1副排気バルブEV7が設けられた配管は、マスターオシレータMOの第1主排気バルブEV1が設けられた配管と第2主排気バルブEV2が設けられた配管とが接続される他の配管に接続されている。従って、第1主排気口EP5または第1副排気口EP7を介して排気される第1光路管55内のガスは、この他の配管を介して筐体10内に排気される。
 増幅器PAの第2光路管56には、第2主排気バルブEV6が設けられた配管が接続されている。第2主排気バルブEV6の開度は、制御部COからの制御信号により調節される。第2主排気バルブEV6が開くことで、第2光路管56内のガスは排気される。この第2主排気バルブEV6が設けられた配管が第2光路管56に接続される接続部が、第2光路管56内のガスを排気する第2主排気口EP6である。本例では、第2主排気口EP6は、第2光路管56における第2ウィンドウ74の脇に設けられている。具体的には、第2主排気口EP6は、第2光路管56における第2ウィンドウ74を通りレーザ光の進行方向に垂直な面を含む位置に設けられている。なお、第2主排気口EP6は、第2光路管56におけるこの面よりもチャンバ30側の位置に設けられてもよい。すなわち、第2排気口EP6は、第2光路管56における第2ウィンドウ74の近傍に設けられてもよい。上記の第2ガス供給口SP4から供給されるパージガスは、筐体41や第2光路管56内のガスと混ざり、第2主排気口EP6に流れる。従って、筐体41や第2光路管56内の酸素濃度をパージガスにより低減することができる。つまり、第2主排気口EP6は、リアミラーRM及び第2ウィンドウ74の表面上をパージガスが流れるように第2光路管56に設けられる。
 増幅器PAの第2光路管56には、更に第2副排気バルブEV8が設けられた配管が接続されている。第2副排気バルブEV8の開度は、制御部COからの制御信号により調節される。第2副排気バルブEV8が設けられる配管が第2光路管56に接続される接続部が、第2光路管56内のガスを排気する第2副排気口EP8である。つまり本実施形態の第2光路管56に設けられる第2排気口は、主排気口としての第2主排気口EP6と副排気口としての第2副排気口EP8とを含む。従って、第2副排気バルブEV8が開くことで、第2光路管56内のガスは第2副排気口EP8を介して排気される。本例では、第2副排気口EP8は、第2ウィンドウ74が設けられる位置及び第2主排気口EP6が設けられる位置よりも第2光路管56内におけるガスの流れの上流側に設けられる。従って、第2主排気口EP6が第2光路管56における第2ウィンドウ74を通りレーザ光の進行方向に垂直な面を含む位置に設けられている場合、第2副排気口EP8は、第2主排気口EP6よりも第2光路管56内におけるガスの流れの上流側に設けられる。あるいは、第2主排気口EP6がこの面よりもチャンバ30側の位置に設けられている場合、第2副排気口EP8は、第2ウィンドウ74が設けられる位置よりも第2光路管56内におけるガスの流れの上流側に設けられる。
 なお、第2主排気バルブEV6が設けられた配管及び第2副排気バルブEV8が設けられた配管は、マスターオシレータMOの第1主排気バルブEV1が設けられた配管と第2主排気バルブEV2が設けられた配管とが接続される他の配管に接続されている。従って、第2主排気口EP6または第2副排気口EP8を介して排気される第2光路管56内のガスは、この他の配管を介して筐体10内に排気される。
 増幅器PAの光路管53には、更に排気バルブEV9が設けられた配管が接続されている。排気バルブEV9の開度は、制御部COからの制御信号により調節される。排気バルブEV9が設けられる配管が光路管53に接続される接続部が、光路管53内のガスを排気する排気口EP9である。このため、排気バルブEV9が開くことで、光路管53内のガスは排気口EP9を介して排気される。従って、上記の第1ガス供給口SP3から供給されるパージガスの一部は、筐体91、光路管57、筐体21、及び光路管53内のガスと混ざり、排気口EP9に流れる。なお、排気バルブEV9が設けられた配管は、マスターオシレータMOの第1主排気バルブEV1が設けられた配管と第2主排気バルブEV2が設けられた配管とが接続される他の配管に接続されている。従って、排気口EP9を介して排気される光路管53内のガスは、この他の配管を介して筐体10内に排気される。
 光伝送ユニット80の筐体81における第1光路管51の接続部と第2光路管56の接続部との概ね中間には、排気バルブEV10が設けられた配管が接続されている。排気バルブEV10の開度は、制御部COからの制御信号により調節される。排気バルブEV10が設けられる配管が筐体81に接続される接続部が、筐体81内のガスを排気する排気口EP10である。このため、排気バルブEV10が開くことで、筐体81内のガスは排気口EP10を介して排気される。従って、第1ガス供給口SP1から第1光路管51内に供給されるパージガスの一部、及び、第2ガス供給口SP4から第2光路管56内に供給されるパージガスの一部は、筐体81内のガスと混ざり、排気口EP10から排気される。なお、排気バルブEV10が設けられた配管は、マスターオシレータMOの第1主排気バルブEV1が設けられた配管と第2主排気バルブEV2が設けられた配管とが接続される他の配管に接続されている。従って、排気口EP10を介して排気される筐体81内のガスは、この他の配管を介して筐体10内に排気される。
 本実施形態では、レーザガス供給装置63には、チャンバ30に接続される配管の他にチャンバ70に接続される配管が接続されている。従って、レーザガス供給装置63は、この配管を介して、チャンバ70内にレーザガスを供給する。この配管がチャンバ70に接続される接続部が、チャンバ70内にレーザガスを供給するレーザガス供給口LSP2である。
 本実施形態の排気装置64には、チャンバ30に接続される配管の他にチャンバ70に接続される配管が接続されている。従って、排気装置64は、チャンバ30内のガスの他にチャンバ70内のガスを配管を介して筐体10内に排気する。この際、排気装置64は、制御部COからの制御信号により排気量等を調節し、チャンバ30及びチャンバ70内から排気されるガスに対して図示しないハロゲンフィルタによってFガスを除去する処理をする。排気装置64に接続される配管がチャンバ70に接続される接続部が、チャンバ70内からガスを排気するレーザガス排気口LEP2である。
 5.2 動作
<第1の例>
 まず、本実施形態のガスレーザ装置100の動作の第1の例について説明する。図9は、本実施形態におけるガスレーザ装置100がレーザ光を出射するまでの制御部COの動作の第1の例を示すフローチャートである。図9に示すように、本例では、レーザ光が出射されるまでの制御部COの動作はステップS31からステップS38を含む。
(ステップS31)
 ガスレーザ装置100では、例えば、新規導入時やメンテナンス時等において、マスターオシレータMOにおける第1光路管51内及び第2光路管52内、及び、増幅器PAにおける第1光路管55内及び第2光路管56内に大気が入り込む。図9では、この状態がスタートの状態である。
 本ステップでは、制御部COは、実施形態1のステップS11と同様に、第1主排気バルブEV1、第2主排気バルブEV2、第1副排気バルブEV3、第2副排気バルブEV4、メインガス供給バルブSV0、第1ガス供給バルブSV1、及び第2ガス供給バルブSV2を閉める。更に本実施形態では、制御部COは、第1主排気バルブEV5、第2主排気バルブEV6、第1副排気バルブEV7、第2副排気バルブEV8、第1ガス供給バルブSV3、及び第2ガス供給バルブSV4を閉める。更に、制御部COは、排気バルブEV9、排気バルブEV10を閉める。
 従って、本ステップでは、マスターオシレータMOの第1光路管51、第2光路管52内にパージガスは供給されず、第1光路管51、第2光路管52内からガスは排気されない。また、本ステップでは、増幅器PAの第1光路管55及び第2光路管56内にパージガスは供給されず、第1光路管55及び第2光路管56からガスは排気されない。なお、スタートの時点で、上記バルブのいずれかが開いている場合には、制御部COは本ステップで開いているバルブを閉め、スタートの時点でこれらのバルブの全てが閉じている場合には、制御部COはこれらのバルブが閉まっている状態を維持する。
(ステップS32)
 本ステップでは、制御部COは、実施形態1のステップS12と同様に、マスターオシレータMO用の第1主排気バルブEV1、第2主排気バルブEV2を開く。更に本実施形態では、制御部COは、増幅器PA用の第1主排気バルブEV5及び第2主排気バルブEV6を開き、排気バルブEV9及び排気バルブEV10を開く。この時点では、各ガス供給バルブが閉まっているため、パージガスが供給されず、第1光路管51、第2光路管52、第1光路管55、及び第2光路管56内のガスは排気されない。
(ステップS33)
 本ステップでは、制御部COは、実施形態1のステップS13と同様に、メインガス供給バルブSV0と、マスターオシレータMO用の第1ガス供給バルブSV1及び第2ガス供給バルブSV2とを開く。従って、第1ガス供給口SP1から第1光路管51内にパージガスが供給され、第2ガス供給口SP2から筐体41内にパージガスが供給される。また、制御部COは、増幅器PA用の第1ガス供給バルブSV3及び第2ガス供給バルブSV4を開く。従って、第1ガス供給口SP3から筐体91内にパージガスが供給され、第2ガス供給口SP4から第2光路管56内にパージガスが供給される。
 本ステップにおいて、実施形態1のステップS13と同様に、出力結合ミラーOC1及び第1ウィンドウ33の表面上をガスが流れ、第1光路管51内の酸素濃度はパージガスにより低減される。また、グレーティング42、プリズム43,44、及び第2ウィンドウ34の表面上をガスが流れ、筐体41及び第2光路管52内の酸素濃度はパージガスにより低減される。
 また、ステップS32において、増幅器PA用の第1主排気バルブEV5及び第2主排気バルブEV6が開かれている。このため、筐体91及び第1光路管55内のガスは、パージガスにより押し出されて、第1主排気口EP5を介して筐体10内に排気される。このとき、ミラー92、出力結合ミラーOC2及び第1ウィンドウ73の表面上をガスが流れ、筐体91及び第1光路管55内の酸素濃度はパージガスにより低減される。また、第2光路管56内のガスは、パージガスにより押し出されて、第2主排気口EP6を介して筐体10内に排気される。このとき、リアミラーRM及び第2ウィンドウ74の表面上をガスが流れ、第2光路管56内の酸素濃度はパージガスにより低減される。つまり、本ステップにおいて、制御部COは、チャンバ70からレーザ光が出射される前において主排気口としての第1主排気口EP5,第2主排気口EP6からガスを排気させる。
 また、ステップS32において、排気バルブEV9が開かれている。従って、光伝送ユニット90の筐体91、光路管57、エネルギーモニタモジュール20の筐体21、及び光路管53内のガスは、第1ガス供給口SP3から供給されるパージガスにより押し出されて、排気口EP9を介して筐体10内に排気される。このとき、ミラー92,93及びビームスプリッタ22の表面上をガスが流れ、光伝送ユニット90の筐体91、光路管57、エネルギーモニタモジュール20の筐体21、及び光路管53内の酸素濃度はパージガスにより低減される。
 また、ステップS32において、排気バルブEV10が開かれている。従って、マスターオシレータMOの第1光路管51内のガスの一部と筐体81内のガスの一部は、第1ガス供給口SP1から供給されるパージガスにより押し出されて、排気口EP10を介して筐体10内に排気される。また、増幅器PAの第2光路管56内のガスの一部と筐体81内のガスの一部は、第2ガス供給口SP4から供給されるパージガスにより押し出されて、排気口EP10を介して筐体10内に排気される。このとき、ミラー82,83の表面上をガスが流れ、筐体81内の酸素濃度はパージガスにより低減される。
(ステップS34)
 本ステップでは、実施形態1のステップS14と同様に、制御部COは、ステップS33の状態を所定の第1期間T1維持する。本ステップで、マスターオシレータMOの第1光路管51、第2光路管52及び筐体41内の酸素濃度は所定の濃度以下となる。また、増幅器PAの第1光路管55、第2光路管56内の酸素濃度は所定の濃度以下となる。また、光伝送ユニット80の筐体81、光伝送ユニット90の筐体91、光路管57、エネルギーモニタモジュール20の筐体21、及び光路管53内の酸素濃度は所定の濃度以下となる。
(ステップS35)
 本ステップでは、制御部COは、マスターオシレータMO用の第1副排気バルブEV3及び第2副排気バルブEV4を開く。従って、実施形態1のステップS15と同様にして、本ステップより前の状態と比べて、第1主排気口EP1及び第2主排気口EP2から排気されるガスの量は低下する。従って、第1光路管51内及び第2光路管52内のガスの流れが変化し、第1ウィンドウ33及び第2ウィンドウ34の表面を流れるガスの量は低下する。
 また、本ステップでは、制御部COは、増幅器PA用の第1副排気バルブEV7及び第2副排気バルブEV8を開く。ステップS32で第1主排気バルブEV5及び第2主排気バルブEV6が開かれている。従って、第1光路管55内のガスは、第1主排気口EP5及び第1副排気口EP7を介して筐体10内に排気され、第2光路管56内のガスは、第2主排気口EP6及び第2副排気口EP8を介して筐体10内に排気される。つまり、本ステップでは、副排気口としての第1副排気口EP7及び第2副排気口EP8からガスが排気される。このため、本ステップより前の状態と比べて、第1主排気口EP5及び第2主排気口EP6から排気されるガスの量は低下する。従って、第1光路管55内及び第2光路管56内のガスの流れが変化し、第1ウィンドウ73及び第2ウィンドウ74の表面を流れるガスの量は低下する。
(ステップS36)
 本ステップでは、制御部COは、マスターオシレータMO用の第1主排気バルブEV1及び第2主排気バルブEV2を閉じる。従って、実施形態1のステップS16と同様にして、第1副排気口EP3及び第2副排気口EP4から排気されるガスの量は増加する。このため、第1光路管51及び第2光路管52内のガスの流れがさらに変化し、第1ウィンドウ33及び第2ウィンドウ34の表面を流れるガスの量はさらに低下する。
 また、本ステップでは、制御部COは、増幅器PA用の第1主排気バルブEV5及び第2主排気バルブEV6を閉じる。従って、第1主排気口EP5及び第2主排気口EP6からはガスが排気されなくなり、第1副排気口EP7及び第2副排気口EP8から排気されるガスの量は増加する。このため、第1光路管55及び第2光路管56内のガスの流れがさらに変化し、第1ウィンドウ73及び第2ウィンドウ74の表面を流れるガスの量はさらに低下する。
 なお、本実施形態では、制御部COは、ステップS37の完了までに、チャンバ30内及びチャンバ70内にレーザガスを供給させ、供給されたレーザガスを循環する。本実施形態において、チャンバ30内にレーザガスが供給され、レーザガスが循環される手順は、比較例において、チャンバ30内にレーザガスが供給されレーザガスが循環される手順と同様である。チャンバ70内にレーザガスが供給され、レーザガスが循環される手順は、以下のとおりである。制御部COは、排気装置64を制御して、レーザガス排気口LEP2からチャンバ70内のガスを筐体10内に排気させる。そして、制御部COは、レーザガス供給装置63を制御して、レーザガス供給口LSP2から所定の量のレーザガスを供給させる。この結果、レーザガスはチャンバ70内に封入される。また、制御部COはモータ79を制御して、クロスフローファン78を回転させる。クロスフローファン78の回転によりレーザガスは循環される。
(ステップS37)
 本ステップでは、制御部COは、ステップS35において、マスターオシレータMO用の第1副排気バルブEV3、第2副排気バルブEV4が開かれ、更に増幅器PA用の第1副排気バルブEV7、第2副排気バルブEV8が開かれてから所定の第2期間T2が経過するまでステップS36の状態を維持する。この第2期間T2は、例えば5分から10分である。従って、ステップS35が行われてから第2期間T2が経過するまでにステップS36が行われる。例えば、ステップS35とステップS36とが同時に行われてもよい。
 実施形態1のステップS17と同様にして、本ステップの完了時に、第1ウィンドウ33におけるチャンバ30側の温度と第1光路管51側の温度との差は、第1ウィンドウ33の表面を流れるガスの量が低下しない場合と比べて小さくなる。また、本ステップの完了時に、第2ウィンドウ34におけるチャンバ30側の温度と第2光路管52側の温度との差は、第2ウィンドウ34の表面を流れるガスの量が低下しない場合と比べて小さくなる。
 また、本ステップでは、上記のように増幅器PAの第1ウィンドウ73及び第2ウィンドウ74の表面を流れるガスの量は低下している。このため、本ステップの終了時点で、第1ウィンドウ73の第1光路管55側は第1光路管55内のガスにより冷却されることが抑制され、第2ウィンドウ74の第2光路管56側は第2光路管56内のガスにより冷却されることが抑制される。このため、本ステップの完了時に、第1ウィンドウ73におけるチャンバ70側の温度と第1光路管55側の温度との差は、第1ウィンドウ73の表面を流れるガスの量が低下しない場合と比べて小さくなる。また、本ステップの完了時に、第2ウィンドウ74におけるチャンバ70側の温度と第2光路管56側の温度との差は、第2ウィンドウ74の表面を流れるガスの量が低下しない場合と比べて小さくなる。
(ステップS38)
 本ステップでは、制御部COは、実施形態1のステップS18と同様にして、マスターオシレータMOの出力結合ミラーOC1からレーザ光を出射させる。また、制御部COは、充電器75及びパルスパワーモジュール76内のスイッチを制御して、電極71,72間に高電圧を印加する。電極71,72間に高電圧が印加されると、電極71,72間の絶縁が破壊され放電が起こる。この放電のエネルギーにより、電極71,72間のレーザガスに含まれるレーザ媒質は励起状態とされる。なお、制御部COは、マスターオシレータMOからレーザ光を出射されるまでに、電極71,72間のレーザ媒質が励起状態とされるよう、増幅器PAを制御する。出力結合ミラーOC1から出射するレーザ光は、光伝送ユニット80のミラー82,83で反射して、増幅器PAのリアミラーRM及び第2ウィンドウ74を介してチャンバ70内に伝搬する。このレーザ光により、電極71,72間の励起状態のレーザ媒質は誘導放出を起こし、光が増幅される。こうして、所定の波長のレーザ光が出力結合ミラーOC2とリアミラーRMとの間を共振し、レーザ光がさらに増幅される。そして、一部のレーザ光が、出力結合ミラーOC2を透過して、増幅器PAから出射する。増幅器PAから出射したレーザ光は、光伝送ユニット90のミラー92,93で反射して、光路管57、エネルギーモニタモジュール20、及び光路管53を介して、レーザ光出射ウィンドウOWから出射する。
 なお、本実施形態では、エネルギーモニタモジュール20は、増幅器PAから出射するレーザ光の一部をビームスプリッタ22で反射して、パルスエネルギーセンサ23がこの光のエネルギーの強度に基づく信号を制御部COに出力する。制御部COは、この信号に基づいて、充電器35,75やパルスパワーモジュール36,76を制御して、出射されるレーザ光のパワーが調節される。
<第2の例>
 次に、本実施形態のガスレーザ装置100の動作の第2の例について説明する。図10は、本実施形態におけるガスレーザ装置100がレーザ光を出射するまでの制御部COの動作の第2の例を示すフローチャートである。図10に示すように、本例では、レーザ光が出射されるまでの制御部COの動作は、ステップS34が本実施形態の第1の例と異なり、他のステップは本実施形態の第1の例の各ステップと同様である。
(ステップS34)
 本例の本ステップでは、制御部COは、マスターオシレータMOの第1光路管51及び第2光路管52内の酸素濃度、及び、増幅器PAの第1光路管55及び第2光路管56内の酸素濃度が所定の第1濃度になるまでステップS33の状態を維持する。このため、本例のステップS34は、制御部COが酸素濃度計12から酸素濃度を示す信号を受信するステップS34aと、制御部COが受信した酸素濃度が所定の酸素濃度以下になっているか否かを判断するステップS34bを含む。
(ステップS34a、ステップS34b)
 本実施形態では、制御部COは、ステップS34a及びステップS34bにおいて実施形態1のステップS14a及びステップS14bと同様の動作をする。ただし、本実施形態では、ステップS34bにおいて、酸素濃度が所定の第1濃度以下になっていない場合はステップS34aに戻り、酸素濃度が所定の第1濃度以下になっている場合はステップS35に進む。そして、ステップS35において、第1副排気バルブEV3及び第2副排気バルブEV4が開かれる。ただし、この場合に、第1光路管51及び第2光路管52内、及び、第1光路管55及び第2光路管56内の酸素濃度が所定の第1濃度以下になっていることを制御部COが判断する必要はない。
 なお、本実施形態においても、上記例と異なり、酸素濃度計12は排気ダクト11に設けられてもよい。この場合、制御部COは、実施形態1の第2の例における酸素濃度計12が排気ダクト11に設けられる変形例と同様の動作をする。ただし、本実施形態でのこのような変形例では、ステップS34bにおいて、酸素濃度が所定の第2濃度以下になっていない場合はステップS34aに戻り、酸素濃度が所定の第2濃度以下になっている場合はステップS35に進む。なお、本実施形態においても、筐体10内の酸素濃度が計測される場合、酸素濃度計12が排気ダクト11に設けられず、筐体10内に設けられてもよい。
 なお、本実施形態においても、第1の例では、酸素濃度の計測は不要である。従って、制御部COが第1の例の動作をする場合には、ガスレーザ装置100は、酸素濃度計12を備えなくてもよい。
 5.3 作用・効果
 本実施形態のガスレーザ装置100によれば、マスターオシレータMOから出射する光を増幅器PAで増幅するため、パワーのより高いレーザ光を出射し得る。また、実施形態1と同様に、レーザ光が出射する際にマスターオシレータMOの第1ウィンドウ33が加熱される場合であっても、第1ウィンドウ33の表面を流れるガスの量が低下しない場合と比べて、第1ウィンドウ33が受ける熱衝撃が小さくなり得る。また、レーザ光が出射する際に第2ウィンドウ34が加熱される場合であっても、第2ウィンドウ34の表面を流れるガスの量が低下しない場合と比べて、第2ウィンドウ34が受ける熱衝撃が小さくなり得る。また、レーザ光が出射する際に増幅器PAの第1ウィンドウ73が加熱される場合であっても、第1ウィンドウ73の表面を流れるガスの量が低下しない場合と比べて、第1ウィンドウ73が受ける熱衝撃が小さくなり得る。また、レーザ光が出射する際に第2ウィンドウ74が加熱される場合であっても、第2ウィンドウ74の表面を流れるガスの量が低下しない場合と比べて、第2ウィンドウ74が受ける熱衝撃が小さくなり得る。従って、本実施形態のガスレーザ装置は、耐久性に優れ得る。
 なお、本実施形態において、チャンバ30、第1ウィンドウ33、第2ウィンドウ34、第1光路管51、第2光路管52、第1ガス供給バルブSV1、第2ガス供給バルブSV2、第1主排気バルブEV1、第2主排気バルブEV2、第1主排気口EP1、第2主排気口EP2、第1副排気口EP3、第2副排気口EP4、第1副排気バルブEV3、第2副排気バルブEV4は、それぞれマスターオシレータ用と理解され得る。また、本実施形態において、チャンバ70、第1ウィンドウ73、第2ウィンドウ74、第1光路管55、第2光路管56、第1ガス供給バルブSV3、第2ガス供給バルブSV4、第1主排気バルブEV5、第2主排気バルブEV6、第1主排気口EP5、第2主排気口EP6、第1主排気バルブEV5、第2主排気バルブEV6、第1副排気口EP7、第2副排気口EP8は、それぞれ増幅器用と理解され得る。
 なお、本実施形態において、マスターオシレータMOがファイバレーザ装置等の他のレーザ装置から構成されてもよい。また、増幅器PAは、リアミラー及び出力結合ミラーOC2を備えなくてもよい。この場合、増幅器PAにおいて光の共振は生じないが、チャンバ70をレーザ光が通過することで、このレーザ光は増幅される。
 また、本実施形態では実施形態1と同様にして、第1副排気口EP3及び第2副排気口EP4からガスが排気されるとき、第1主排気口EP1及び第2主排気口EP2からガスが排気されてもよい。この場合、例えば、第1副排気口EP3及び第2副排気口EP4からガスが排気されるとき、第1副排気口EP3及び第2副排気口EP4からガスが排気される前と比べて、第1主排気口EP1及び第2主排気口EP2からのガス排気量が小さくされてもよい。また、第1副排気口EP7及び第2副排気口EP8からガスが排気されるとき、第1主排気口EP5及び第2主排気口EP6からガスが排気されてもよい。この場合、例えば、第1副排気口EP7及び第2副排気口EP8からガスが排気されるとき、第1副排気口EP7及び第2副排気口EP8からガスが排気される前と比べて、第1主排気口EP5及び第2主排気口EP6からのガス排気量が小さくされてもよい。
 また、本実施形態では実施形態1と同様にして、レーザ光の出射と停止とが繰り返される少なくとも一部の期間において、第1副排気口EP3及び第2副排気口EP4からガスが排気されれば、少なくとも当該期間において、レーザ光の出射時と停止時に第1ウィンドウ33及び第2ウィンドウ34にかかる熱衝撃をより軽減し得る。従って、制御部COは、レーザ光が出射されてから、第1副排気口EP3及び第2副排気口EP4からのガスの排気を開始してもよい。また、レーザ光の出射と停止とが繰り返される少なくとも一部の期間において、第1副排気口EP7及び第2副排気口EP8からガスが排気されれば、少なくとも当該期間において、レーザ光の出射時と停止時に第1ウィンドウ73及び第2ウィンドウ74にかかる熱衝撃をより軽減し得る。従って、制御部COは、レーザ光が出射されてから、増幅器PAの第1副排気口EP7及び第2副排気口EP8からのガスの排気を開始してもよい。
 また、本実施形態では、制御部COは、第1副排気口EP3、第2副排気口EP4、第1副排気口EP7、及び第2副排気口EP8からのガスの排気を開始してから所定の第2期間T2が経過する前にチャンバ30からレーザ光を出射させてもよい。
 また、第1主排気口EP5は、第1主排気口EP5からガスが排気される際に第1ウィンドウ73の表面をガスが流れるような位置に設けられる。第1主排気口EP5がこのような位置に設けられるのであれば、第1主排気口EP5は、上記第1光路管51における第1ウィンドウ73を通りレーザ光の進行方向に垂直な面を含む位置よりもチャンバ70側と反対側に設けられてもよい。また、第1ウィンドウ73が第1光路管55内に入り込んでいなくてもよい。また、第2主排気口EP6は、第2主排気口EP6からガスが排気される際に第2ウィンドウ74の表面をガスが流れるような位置に設けられる。第2主排気口EP6がこのような位置に設けられるのであれば、第2主排気口EP6は、上記第2光路管56における第2ウィンドウ74を通りレーザ光の進行方向に垂直な面を含む位置よりもチャンバ70側と反対側に設けられてもよい。また、第2ウィンドウ74が第2光路管56内に入り込んでいなくてもよい。
6.実施形態4のガスレーザ装置の説明
 次に、実施形態4のガスレーザ装置について説明する。なお、上記において説明した構成と同様の構成については同一の符号を付し、特に説明する場合を除き、重複する説明は省略する。
 6.1 構成
 図11は、本実施形態におけるガスレーザ装置の全体の概略構成例を示す模式図である。図11に示すように、本実施形態のガスレーザ装置100は、マスターオシレータMOが第1壁部51W及び第2壁部52Wを含み、増幅器PAが第1壁部55W及び第2壁部56Wを含む点において実施形態3のガスレーザ装置と異なる。
 マスターオシレータMOの第1壁部51W及び第2壁部52Wの構成は、実施形態2の第1壁部51W及び第2壁部52Wの構成と同様である。
 また、増幅器PAの第1壁部55Wは、第1光路管55内における第1主排気口EP5と第1副排気口EP7との間に設けられ、第1光路管55を塞いでいる。ただし、第1壁部55Wには、第1スリット55Sが形成されている。この第1スリット55Sは、第1ウィンドウ73と出力結合ミラーOC2との間を伝搬するレーザ光が通過可能に形成されている。また、第1スリット55Sは、第1スリット55Sを透過するレーザ光の断面形状と概ね相似形であることが、第1スリット55Sに不要な領域を作り出さない観点から好ましい。
 増幅器PAの第2壁部56Wは、第2光路管56内における第2主排気口EP6と第2副排気口EP8との間に設けられ、第2光路管56を塞いでいる。ただし、第2壁部56Wには、第2スリット56Sが形成されている。この第2スリット56Sは、第2ウィンドウ74とリアミラーRMとの間を伝搬するレーザ光が通過可能に形成されている。また、第2スリット56Sは、第2スリット56Sを透過するレーザ光の断面形状と概ね相似形であることが、第2スリット56Sに不要な領域を作り出さない観点から好ましい。
 第1壁部55W及び第2壁部56Wは、例えば、第1壁部51W及び第2壁部52Wを構成する材料と同様の材料から構成される。
 6.2 動作
 本実施形態におけるガスレーザ装置100の動作は、実施形態3におけるガスレーザ装置100の動作と同様である。ただし、マスターオシレータ用の第1主排気口EP1からガスが排気される際、第1光路管51でのガスは、第1スリット51Sを通過して第1ウィンドウ33の表面を流れ、第1主排気口EP1から排気される。また、第2主排気口EP2からガスが排気される際、第2光路管52でのガスは、第2スリット52Sを通過して第2ウィンドウ34の表面を流れ、第2主排気口EP2から排気される。また、増幅器PA用の第1主排気口EP5からガスが排気される際、第1光路管55でのガスは、第1スリット55Sを通過して第1ウィンドウ73の表面を流れ、第1主排気口EP5から排気される。また、第2主排気口EP6からガスが排気される際、第2光路管56でのガスは、第2スリット56Sを通過して第2ウィンドウ74の表面を流れ、第2主排気口EP6から排気される。
 6.3 作用・効果
 本実施形態のガスレーザ装置100では、実施形態2と同様に、マスターオシレータMO用の第1副排気口EP3及び第2副排気口EP4からガスが排気される際、第1ウィンドウ33側及び第2ウィンドウ34側にガスが流れることが抑制され得る。また、増幅器PAの第1壁部55Wが障壁となり、第1副排気口EP7からガスが排気される際、第1ウィンドウ73側にガスが流れることが抑制され得る。また、第2壁部56Wが障壁となり、第2副排気口EP8からガスが排気される際、第2ウィンドウ74側にガスが流れることが抑制され得る。このため、第1ウィンドウ33、第2ウィンドウ34、第1ウィンドウ73、及び第2ウィンドウ74にかかる熱衝撃をより軽減し得る。
 なお、本実施形態のガスレーザ装置100は、第1壁部51W、第2壁部52W、第1壁部55W、第2壁部56Wの少なくとも1つを備えていればよい。増幅器PAの第1ウィンドウ73を透過するレーザ光のパワーが他のウィンドウを透過するレーザ光のパワーよりも大きいため、ガスレーザ装置100は第1壁部55Wを備えることが好ましい。
 上記の説明は、制限ではなく単なる例示を意図している。従って、特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかである。また、本開示の実施形態を組み合わせて使用することも当業者には明らかである。
 本明細書及び特許請求の範囲全体で使用される用語は、明記が無い限り「限定的でない」用語と解釈されるべきである。たとえば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、不定冠詞「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。また、「A、B及びCの少なくとも1つ」という用語は、「A」「B」「C」「A+B」「A+C」「B+C」又は「A+B+C」と解釈されるべきである。さらに、それらと「A」「B」「C」以外のものとの組み合わせも含むと解釈されるべきである。

 

Claims (16)

  1.  レーザガスが封入されるチャンバと、
     前記チャンバに設けられレーザ光が透過するウィンドウと、
     前記チャンバにおける前記ウィンドウが設けられる位置を囲んで前記チャンバに接続される光路管と、
     前記光路管内にパージガスを供給するガス供給口と、
     前記光路管内のガスを排気する排気口と、
     制御部と、
    を備え、
     前記排気口は、前記ガスが前記ウィンドウの表面を流れるように前記光路管に設けられる主排気口と、前記ウィンドウが設けられる位置及び前記主排気口が設けられる位置よりも前記光路管内における前記ガスの流れの上流側において前記光路管に設けられる副排気口と、を含み、
     前記制御部は、前記チャンバから前記レーザ光が出射される前において前記主排気口から前記ガスを排気させ、前記チャンバから前記レーザ光が出射される少なくとも一部の期間において前記副排気口から前記ガスを排気させる
    ガスレーザ装置。
  2.  請求項1に記載のガスレーザ装置であって、
     前記主排気口は、前記ウィンドウの近傍に設けられる。
  3.  請求項1に記載のガスレーザ装置であって、
     前記制御部は、前記副排気口から前記ガスが排気されるとき前記主排気口からの前記ガスの排気を停止させる。
  4.  請求項1に記載のガスレーザ装置であって、
     前記制御部は、前記主排気口からの前記ガスの排気が開始されてから所定の第1期間経過後に前記副排気口から前記ガスを排気させる。
  5.  請求項1に記載のガスレーザ装置であって、
     前記制御部は、前記主排気口からの前記ガスの排気が開始され前記光路管内における酸素濃度が所定の第1濃度以下となった場合に前記副排気口から前記ガスを排気させる。
  6.  請求項5に記載のガスレーザ装置であって、
     前記チャンバ及び前記光路管が収容され、前記排気口からの前記ガスが放出される筐体を更に備え、
     前記制御部は、前記筐体内の酸素濃度が所定の第2濃度以下となった場合に前記副排気口から前記ガスを排気させ、
     前記第2濃度は、前記光路管内における酸素濃度が前記所定の第1濃度以下である場合における前記筐体内の酸素濃度である。
  7.  請求項1に記載のガスレーザ装置であって、
     前記制御部は、前記副排気口からの前記ガスの排気を開始した後に前記チャンバから前記レーザ光を出射させる。
  8.  請求項7に記載のガスレーザ装置であって、
     前記制御部は、前記副排気口からの前記ガスの排気を開始してから所定の第2期間が経過した後に前記チャンバから前記レーザ光を出射させる。
  9.  請求項1に記載のガスレーザ装置であって、
     前記チャンバの前記ウィンドウの設けられる位置は、前記光路管の内壁と隙間をあけて前記光路管内に入り込むよう突出しており、
     前記主排気口は、前記光路管における前記ウィンドウを通り前記レーザ光の進行方向に垂直な面を含む位置、または、前記光路管における前記面よりも前記チャンバ側の位置に設けられる。
  10.  請求項1に記載のガスレーザ装置であって、
     前記副排気口よりも前記ガスの流れの上流側に前記レーザ光が入射する光学素子が配置される。
  11.  請求項1に記載のガスレーザ装置であって、
     前記光路管内における前記主排気口と前記副排気口との間に設けられ、前記レーザ光が透過するスリットが形成された壁部を更に備える。
  12.  請求項1に記載のガスレーザ装置であって、
     前記ウィンドウは、前記チャンバの対向する位置に設けられる第1ウィンドウ及び第2ウィンドウを含み、
     前記光路管は、前記チャンバにおける前記第1ウィンドウが設けられる位置を囲んで前記チャンバに接続される第1光路管、及び、前記チャンバにおける前記第2ウィンドウが設けられる位置を囲んで前記チャンバに接続される第2光路管を含み、
     前記ガス供給口は、前記第1光路管内に前記パージガスを供給する第1ガス供給口、及び、前記第2光路管内に前記パージガスを供給する第2ガス供給口を含み、
     前記排気口は、前記第1光路管内のガスを排気する第1排気口、及び、前記第2光路管内のガスを排気する第2排気口を含み、
     前記第1排気口は、前記ガスが前記第1ウィンドウの表面を流れるように前記第1光路管に設けられる、前記主排気口としての第1主排気口と、前記第1ウィンドウが設けられる位置及び前記第1主排気口が設けられる位置よりも前記第1光路管内における前記ガスの流れの上流側において前記第1光路管に設けられる、前記副排気口としての第1副排気口と、を含み、
     前記第2排気口は、前記ガスが前記第2ウィンドウの表面を流れるように前記第2光路管に設けられる、前記主排気口としての第2主排気口と、前記第2ウィンドウが設けられる位置及び前記第2主排気口が設けられる位置よりも前記第2光路管内における前記ガスの流れの上流側において前記第2光路管に設けられる、前記副排気口としての第2副排気口と、を含む。
  13.  請求項1に記載のガスレーザ装置であって、
     前記チャンバは、発振する光を出射するマスターオシレータ用チャンバ、または、入射する光を増幅して出射する増幅器用チャンバである。
  14.  レーザガスが封入され発振する光を出射するマスターオシレータ用チャンバ、及び、レーザガスが封入され前記マスターオシレータ用チャンバから出射する光を増幅して出射する増幅器用チャンバと、
     前記マスターオシレータ用チャンバに設けられレーザ光が透過するマスターオシレータ用ウィンドウ、及び、前記増幅器用チャンバに設けられ前記レーザ光が透過する増幅器用ウィンドウと、
     前記マスターオシレータ用チャンバにおける前記マスターオシレータ用ウィンドウが設けられる位置を囲んで前記マスターオシレータ用チャンバに接続されるマスターオシレータ用光路管、及び、前記増幅器用チャンバにおける前記増幅器用ウィンドウが設けられる位置を囲んで前記増幅器用チャンバに接続される増幅器用光路管と、
     前記マスターオシレータ用光路管内にパージガスを供給するマスターオシレータ用ガス供給口、及び、前記増幅器用光路管内に前記パージガスを供給する増幅器用ガス供給口と、
     前記マスターオシレータ用光路管内のガスを排気するマスターオシレータ用排気口、及び、前記増幅器用光路管内のガスを排気する増幅器用排気口と、
     制御部と、
    を備え、
     前記マスターオシレータ用排気口は、前記マスターオシレータ用光路管内における前記ガスが前記マスターオシレータ用ウィンドウの表面を流れるように前記マスターオシレータ用光路管に設けられるマスターオシレータ用主排気口と、前記マスターオシレータ用ウィンドウが設けられる位置及び前記マスターオシレータ用主排気口が設けられる位置よりも前記マスターオシレータ用光路管内における前記ガスの流れの上流側において前記マスターオシレータ用光路管に設けられるマスターオシレータ用副排気口と、を含み、
     前記増幅器用排気口は、増幅器用光路管内における前記ガスが前記増幅器用ウィンドウの表面を流れるように前記増幅器用光路管に設けられる増幅器用主排気口と、前記増幅器用ウィンドウが設けられる位置及び前記増幅器用主排気口が設けられる位置よりも前記増幅器用光路管内における前記ガスの流れの上流側において前記増幅器用光路管に設けられる増幅器用副排気口と、を含み、
     前記制御部は、前記マスターオシレータ用チャンバから前記レーザ光が出射される前において前記マスターオシレータ用主排気口及び前記増幅器用主排気口から前記ガスを排気させ、前記マスターオシレータ用チャンバから前記レーザ光が出射される少なくとも一部の期間において前記マスターオシレータ用副排気口及び前記増幅器用副排気口から前記ガスを排気させる
    ガスレーザ装置。
  15.  レーザガスが封入されるチャンバと、
     前記チャンバに設けられレーザ光が透過するウィンドウと、
     前記チャンバにおける前記ウィンドウが設けられる位置を囲んで前記チャンバに接続される光路管と、
     前記光路管内にパージガスを供給するガス供給口と、
     前記光路管内のガスを排気する排気口と、
     制御部と、
    を備え、
     前記排気口は、前記ガスが前記ウィンドウの表面を流れるように前記光路管に設けられる主排気口と、前記ウィンドウが設けられる位置及び前記主排気口が設けられる位置よりも前記光路管内における前記ガスの流れの上流側において前記光路管に設けられる副排気口と、を含む、ガスレーザ装置によるレーザ光の出射方法であって、
     前記制御部は、前記チャンバから前記レーザ光が出射される前において前記主排気口から前記ガスを排気させ、前記チャンバから前記レーザ光が出射される少なくとも一部の期間において前記副排気口から前記ガスを排気させる、
    ガスレーザ装置のレーザ光の出射方法。
  16.  レーザガスが封入されるチャンバと、
     前記チャンバに設けられレーザ光が透過するウィンドウと、
     前記チャンバにおける前記ウィンドウが設けられる位置を囲んで前記チャンバに接続される光路管と、
     前記光路管内にパージガスを供給するガス供給口と、
     前記光路管内のガスを排気する排気口と、
     制御部と、
    を備え、
     前記排気口は、前記ガスが前記ウィンドウの表面を流れるように前記光路管に設けられる主排気口と、前記ウィンドウが設けられる位置及び前記主排気口が設けられる位置よりも前記光路管内における前記ガスの流れの上流側において前記光路管に設けられる副排気口と、を含み、
     前記制御部は、前記チャンバから前記レーザ光が出射される前において前記主排気口から前記ガスを排気させ、前記チャンバから前記レーザ光が出射される少なくとも一部の期間において前記副排気口から前記ガスを排気させる、ガスレーザ装置から出射されるレーザ光を露光装置に入射させ、
     電子デバイスを製造するために、前記露光装置内で感光基板上に前記レーザ光を露光すること、を含む
    電子デバイスの製造方法。

     
PCT/JP2019/006241 2019-02-20 2019-02-20 ガスレーザ装置、ガスレーザ装置のレーザ光の出射方法、及び電子デバイスの製造方法 WO2020170350A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021501193A JP7203944B2 (ja) 2019-02-20 2019-02-20 ガスレーザ装置、ガスレーザ装置のレーザ光の出射方法、及び電子デバイスの製造方法
PCT/JP2019/006241 WO2020170350A1 (ja) 2019-02-20 2019-02-20 ガスレーザ装置、ガスレーザ装置のレーザ光の出射方法、及び電子デバイスの製造方法
CN201980088640.3A CN113287234B (zh) 2019-02-20 2019-02-20 气体激光装置、气体激光装置的激光的出射方法、以及电子器件的制造方法
US17/371,930 US20210336403A1 (en) 2019-02-20 2021-07-09 Gas laser apparatus, laser beam emitting method of gas laser apparatus, and electronic device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/006241 WO2020170350A1 (ja) 2019-02-20 2019-02-20 ガスレーザ装置、ガスレーザ装置のレーザ光の出射方法、及び電子デバイスの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/371,930 Continuation US20210336403A1 (en) 2019-02-20 2021-07-09 Gas laser apparatus, laser beam emitting method of gas laser apparatus, and electronic device manufacturing method

Publications (1)

Publication Number Publication Date
WO2020170350A1 true WO2020170350A1 (ja) 2020-08-27

Family

ID=72143591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006241 WO2020170350A1 (ja) 2019-02-20 2019-02-20 ガスレーザ装置、ガスレーザ装置のレーザ光の出射方法、及び電子デバイスの製造方法

Country Status (4)

Country Link
US (1) US20210336403A1 (ja)
JP (1) JP7203944B2 (ja)
CN (1) CN113287234B (ja)
WO (1) WO2020170350A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020194572A1 (ja) * 2019-03-27 2020-10-01 ギガフォトン株式会社 ガスレーザ装置、及び電子デバイスの製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133622A (ja) * 2001-10-29 2003-05-09 Gigaphoton Inc 紫外線レーザ装置
US20070171952A1 (en) * 2006-01-20 2007-07-26 Jang-Sun Kim Excimer laser and line narrowing module
WO2015068205A1 (ja) * 2013-11-05 2015-05-14 ギガフォトン株式会社 レーザ装置及び非一過性のコンピュータ読み取り可能な記録媒体
JP2018093211A (ja) * 2018-01-10 2018-06-14 ギガフォトン株式会社 レーザ装置及び非一過性のコンピュータ読み取り可能な記録媒体

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169484A (ja) * 1986-01-22 1987-07-25 Toshiba Corp ガスレ−ザ発振装置
JPH01146381A (ja) * 1987-12-03 1989-06-08 Toshiba Corp ガスレーザ装置
JPH03116885A (ja) * 1989-09-29 1991-05-17 Toshiba Corp ガスレーザ装置の排気装置
JPWO2017072863A1 (ja) * 2015-10-27 2018-08-09 ギガフォトン株式会社 レーザガス精製システム
CN107925215B (zh) * 2015-10-28 2020-04-24 极光先进雷射株式会社 窄带化准分子激光装置
WO2017094099A1 (ja) * 2015-12-01 2017-06-08 ギガフォトン株式会社 エキシマレーザ装置
CN207925886U (zh) * 2018-01-22 2018-09-28 极光先进雷射株式会社 气体激光装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003133622A (ja) * 2001-10-29 2003-05-09 Gigaphoton Inc 紫外線レーザ装置
US20070171952A1 (en) * 2006-01-20 2007-07-26 Jang-Sun Kim Excimer laser and line narrowing module
WO2015068205A1 (ja) * 2013-11-05 2015-05-14 ギガフォトン株式会社 レーザ装置及び非一過性のコンピュータ読み取り可能な記録媒体
JP2018093211A (ja) * 2018-01-10 2018-06-14 ギガフォトン株式会社 レーザ装置及び非一過性のコンピュータ読み取り可能な記録媒体

Also Published As

Publication number Publication date
US20210336403A1 (en) 2021-10-28
JP7203944B2 (ja) 2023-01-13
CN113287234B (zh) 2023-08-01
CN113287234A (zh) 2021-08-20
JPWO2020170350A1 (ja) 2021-12-16

Similar Documents

Publication Publication Date Title
US6560254B2 (en) Line-narrowing module for high power laser
US6442182B1 (en) Device for on-line control of output power of vacuum-UV laser
US7075963B2 (en) Tunable laser with stabilized grating
US20030161374A1 (en) High-resolution confocal Fabry-Perot interferometer for absolute spectral parameter detection of excimer laser used in lithography applications
US6738406B2 (en) Precision measurement of wavelengths emitted by a molecular fluorine laser at 157nm
US6735232B2 (en) Laser with versatile output energy
US6717973B2 (en) Wavelength and bandwidth monitor for excimer or molecular fluorine laser
JP7203944B2 (ja) ガスレーザ装置、ガスレーザ装置のレーザ光の出射方法、及び電子デバイスの製造方法
JP2001203416A (ja) レーザシステム
JP7275248B2 (ja) 狭帯域化モジュール、ガスレーザ装置、及び電子デバイスの製造方法
US10971886B2 (en) Laser apparatus
US20230187896A1 (en) Line narrowing module, gas laser apparatus, and method for manufacturing electronic devices
US20210367390A1 (en) Gas laser apparatus, and electronic device manufacturing method
JP7273944B2 (ja) レーザ用チャンバ装置、ガスレーザ装置、及び電子デバイスの製造方法
US6792023B1 (en) Method and apparatus for reduction of spectral fluctuations
JP7537690B2 (ja) 光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法
CN114008873A (zh) 输出光束形成设备
WO2022009289A1 (ja) ガスレーザ装置、及び電子デバイスの製造方法
WO2023286236A1 (ja) 光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法
JP7432612B2 (ja) レーザシステム、及び電子デバイスの製造方法
US7253905B2 (en) Determination and correction for laser induced CCD camera degradation
WO2024189918A1 (ja) ガスレーザ装置、及び電子デバイスの製造方法
JP2002198590A (ja) フッ素分子レーザ装置、及びフッ素露光装置
JP2002118318A (ja) 分子フッ素レーザシステム及びその帯域幅制御方法
JP2001007430A (ja) 超狭帯域化フッ素レーザ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19915949

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021501193

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19915949

Country of ref document: EP

Kind code of ref document: A1