WO2022195893A1 - 紫外線レーザ装置及び電子デバイスの製造方法 - Google Patents
紫外線レーザ装置及び電子デバイスの製造方法 Download PDFInfo
- Publication number
- WO2022195893A1 WO2022195893A1 PCT/JP2021/011548 JP2021011548W WO2022195893A1 WO 2022195893 A1 WO2022195893 A1 WO 2022195893A1 JP 2021011548 W JP2021011548 W JP 2021011548W WO 2022195893 A1 WO2022195893 A1 WO 2022195893A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser device
- laser
- faraday rotator
- ultraviolet
- laser light
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 230000003287 optical effect Effects 0.000 claims abstract description 78
- 230000010287 polarization Effects 0.000 claims abstract description 62
- 230000010355 oscillation Effects 0.000 claims abstract description 36
- 238000002834 transmittance Methods 0.000 claims abstract description 18
- 239000000463 material Substances 0.000 claims description 41
- 230000005540 biological transmission Effects 0.000 claims description 13
- 239000000758 substrate Substances 0.000 claims description 13
- 230000007246 mechanism Effects 0.000 claims description 7
- WUKWITHWXAAZEY-UHFFFAOYSA-L calcium difluoride Chemical group [F-].[F-].[Ca+2] WUKWITHWXAAZEY-UHFFFAOYSA-L 0.000 claims description 6
- 229910001634 calcium fluoride Inorganic materials 0.000 claims description 5
- 238000000034 method Methods 0.000 claims description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 5
- 239000010453 quartz Substances 0.000 claims description 4
- 230000004907 flux Effects 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 12
- 238000010168 coupling process Methods 0.000 description 11
- 238000005859 coupling reaction Methods 0.000 description 11
- 239000004065 semiconductor Substances 0.000 description 10
- 230000008878 coupling Effects 0.000 description 9
- 230000000694 effects Effects 0.000 description 9
- 239000013078 crystal Substances 0.000 description 7
- 230000009471 action Effects 0.000 description 5
- 230000008033 biological extinction Effects 0.000 description 5
- 230000003595 spectral effect Effects 0.000 description 5
- 230000003321 amplification Effects 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 230000001902 propagating effect Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 238000002310 reflectometry Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910004261 CaF 2 Inorganic materials 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 238000005286 illumination Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 229910052743 krypton Inorganic materials 0.000 description 1
- DNNSSWSSYDEUBZ-UHFFFAOYSA-N krypton atom Chemical compound [Kr] DNNSSWSSYDEUBZ-UHFFFAOYSA-N 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 229910052754 neon Inorganic materials 0.000 description 1
- GKAOGPIIYCISHV-UHFFFAOYSA-N neon atom Chemical compound [Ne] GKAOGPIIYCISHV-UHFFFAOYSA-N 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/10061—Polarization control
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B27/00—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
- G02B27/28—Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/09—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect
- G02F1/093—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70008—Production of exposure light, i.e. light sources
- G03F7/70025—Production of exposure light, i.e. light sources by lasers
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70058—Mask illumination systems
- G03F7/70191—Optical correction elements, filters or phase plates for controlling intensity, wavelength, polarisation, phase or the like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/0014—Monitoring arrangements not otherwise provided for
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/005—Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
- H01S3/0064—Anti-reflection devices, e.g. optical isolaters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/005—Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
- H01S3/0071—Beam steering, e.g. whereby a mirror outside the cavity is present to change the beam direction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/22—Gases
- H01S3/223—Gases the active gas being polyatomic, i.e. containing two or more atoms
- H01S3/225—Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
- H01S3/2251—ArF, i.e. argon fluoride is comprised for lasing around 193 nm
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/14—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
- H01S3/22—Gases
- H01S3/223—Gases the active gas being polyatomic, i.e. containing two or more atoms
- H01S3/225—Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
- H01S3/2256—KrF, i.e. krypton fluoride is comprised for lasing around 248 nm
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/23—Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
- H01S3/2308—Amplifier arrangements, e.g. MOPA
- H01S3/2325—Multi-pass amplifiers, e.g. regenerative amplifiers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/05—Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
- H01S3/08—Construction or shape of optical resonators or components thereof
- H01S3/08004—Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
- H01S3/08009—Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/10—Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
- H01S3/10084—Frequency control by seeding
- H01S3/10092—Coherent seed, e.g. injection locking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S3/00—Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
- H01S3/23—Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
- H01S3/2366—Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media comprising a gas as the active medium
Definitions
- the present disclosure relates to an ultraviolet laser device and an electronic device manufacturing method.
- a KrF excimer laser device that outputs laser light with a wavelength of about 248 nm and an ArF excimer laser device that outputs laser light with a wavelength of about 193 nm are used.
- the spectral line width of the spontaneous oscillation light of the KrF excimer laser device and the ArF excimer laser device is as wide as 350-400 pm. Therefore, if the projection lens is made of a material that transmits ultraviolet light, such as KrF and ArF laser light, chromatic aberration may occur. As a result, resolution can be reduced. Therefore, it is necessary to narrow the spectral line width of the laser light output from the gas laser device to such an extent that the chromatic aberration can be ignored. Therefore, in the laser resonator of the gas laser device, a line narrow module (LNM) including a band narrowing element (etalon, grating, etc.) is provided in order to narrow the spectral line width.
- LNM line narrow module
- a gas laser device whose spectral line width is narrowed will be referred to as a band-narrowed gas laser device.
- An ultraviolet laser device includes an oscillation stage laser that outputs linearly polarized pulsed laser light of an ultraviolet wavelength, an amplifier that amplifies and outputs the pulsed laser light, and a space between the oscillation stage laser and the amplifier. an optical isolator arranged on the optical path, wherein the optical isolator rotates the polarization direction of the pulsed laser light output from the oscillation stage laser by a first angle in a first rotation direction by a magnetic field in a first direction.
- a first Faraday rotator a first polarizer arranged such that the normalized transmittance for the pulsed laser beam output from the first Faraday rotator is 0.9 or more, and the first polarizer
- the polarization direction of the pulsed laser beam transmitted through the is rotated by a second angle in a second rotation direction opposite to the first rotation direction by a magnetic field in a second direction opposite to the first direction.
- 2 Faraday rotators, and a second polarizer arranged so that the normalized transmittance for the pulsed laser light output from the second Faraday rotators is 0.9 or more.
- a method for manufacturing an electronic device includes an oscillation stage laser that outputs linearly polarized pulsed laser light having an ultraviolet wavelength, an amplifier that amplifies and outputs the pulsed laser light, and an oscillation stage laser and the amplifier. and an optical isolator arranged on an optical path between the optical isolator, the optical isolator rotating the polarization direction of the pulsed laser light output from the oscillation stage laser in a first rotational direction by a magnetic field in the first direction.
- a first Faraday rotator that rotates by an angle of , a first polarizer arranged so that the normalized transmittance for the pulsed laser light output from the first Faraday rotator is 0.9 or more, and a first The polarization direction of the pulsed laser light transmitted through the first polarizer is rotated in a second direction opposite to the first direction by a magnetic field in a second direction opposite to the first direction.
- An ultraviolet laser device is used to generate laser light amplified by an amplifier, the amplified laser light is output to an exposure device, and a photosensitive substrate is exposed to the laser light within the exposure device in order to manufacture an electronic device. Including.
- FIG. 1 is a side view schematically showing the configuration of an ultraviolet laser device according to a comparative example.
- FIG. 2 is a diagram showing a problem of the ultraviolet laser device according to the comparative example.
- FIG. 3 schematically shows the configuration of an optical isolator according to a comparative example for suppressing return light.
- FIG. 4 schematically shows the configuration of an ultraviolet laser device according to Embodiment 1.
- FIG. 5 is a cross-sectional view schematically showing the configuration of the Faraday rotator.
- FIG. 6 is a chart showing preferable ranges of the magnetic field and the thickness of the Faraday material when the wavelength of the pulsed laser light is the oscillation wavelength of the ArF excimer laser.
- FIG. 7 is a chart showing preferable ranges of the magnetic field and the thickness of the Faraday material when the wavelength of the pulsed laser light is the oscillation wavelength of the KrF excimer laser.
- FIG. 8 is a graph showing the relationship between the angle difference between the transmission axis of the polarizer and the polarization direction of the pulsed laser beam and the extinction ratio, and a graph obtained by converting the extinction ratio into normalized transmittance.
- FIG. 9 schematically shows the configuration of an ultraviolet laser device according to Embodiment 2.
- FIG. 10 schematically shows the configuration of an ultraviolet laser device according to Embodiment 3.
- FIG. 11 schematically shows the configuration of an ultraviolet laser device according to Embodiment 4.
- FIG. 12 is a top view schematically showing the configuration of an amplification-stage laser applied to Embodiment 4.
- FIG. 13 schematically shows a configuration example of an exposure apparatus.
- a “polarizer” is an optical element that separates light in a specific polarization direction (transmission axis direction) from light whose polarization direction is orthogonal to that.
- parallel refers to a practically acceptable angle difference that does not lose its technical significance, unless otherwise specified, unless otherwise specified from the context. includes the notion of approximately parallelism, including the range of In addition, the terms “perpendicular” or “perpendicular” in this specification also lose their technical significance, unless explicitly stated otherwise, unless otherwise clear from the context. It includes the concept of substantially perpendicular or substantially perpendicular, including the range of practically acceptable angular differences without .
- FIG. 1 is a side view schematically showing the configuration of an ultraviolet laser device 20 according to a comparative example.
- the comparative examples of the present disclosure are forms known by the applicant to be known only by the applicant, and not known examples to which the applicant admits.
- the ultraviolet laser device 20 is an excimer laser device including a master oscillator (MO) 22 , an MO beam steering unit 24 and a power oscillator (PO) 26 .
- MO 22 includes a band narrowing module (LNM) 30, a chamber 32, and an output coupling mirror 34.
- LNM band narrowing module
- the LNM 30 includes a prism expander 36 for narrowing the spectral width and a grating 38.
- the prism expander 36 and the grating 38 are arranged in a Littrow arrangement in which the incident angle and the diffraction angle match.
- Out-coupling mirror 34 is a partially reflective mirror with a reflectivity of 40% to 60%.
- Output coupling mirror 34 is arranged to form an optical cavity with LNM 30 .
- a chamber 32 is placed on the optical path of the optical resonator.
- the chamber 32 includes a pair of discharge electrodes 40a, 40b and two windows 42, 44 through which the laser light is transmitted.
- the chamber 32 is filled with laser gas.
- the laser gas includes rare gas, halogen gas, and buffer gas.
- the rare gas may be argon (Ar) or krypton (Kr) gas, for example.
- Halogen gas may be, for example, fluorine (F 2 ) gas.
- the buffer gas may be neon (Ne) gas, for example.
- a voltage is applied between the discharge electrodes 40a and 40b by a power source (not shown).
- the power supply may be a pulse power module (PPM) that includes a switch and charging capacitor.
- PPM pulse power module
- the MO beam steering unit 24 includes a high reflection mirror 50 and a high reflection mirror 52, and is arranged so that the laser light output from the MO 22 is incident on the PO 26.
- MO pulse energy monitor 54 is arranged between the high reflection mirror 50 and the high reflection mirror 52 .
- MO pulse energy monitor 54 includes beam splitter (BS) 55 and optical sensor 56 .
- the BS 55 is arranged on the optical path of the pulsed laser beam output from the MO 22 and arranged so that the reflected light from the BS 55 is incident on the optical sensor 56 .
- PO 26 is an amplification stage laser that includes a rear mirror 60 , a chamber 62 and an output coupling mirror 64 .
- the rear mirror 60 and the output coupling mirror 64 constitute an optical resonator, and a chamber 62 is arranged on the optical path of this optical resonator.
- the configuration of the chamber 62 may be similar to that of the chamber 32.
- the chamber 62 includes a pair of discharge electrodes 70a, 70b and two windows 72,74.
- the chamber 62 is filled with laser gas.
- Rear mirror 60 may be, for example, a partially reflective mirror with a reflectivity of 50% to 90%.
- Out-coupling mirror 64 may be a partially reflective mirror with a reflectivity of 10% to 30%.
- a high voltage pulse is applied between the discharge electrodes 40a and 40b in the chamber 32 from a power source (not shown).
- a discharge is generated between the discharge electrodes 40a and 40b in the chamber 32, the laser gas is excited, and the ultraviolet wavelength of 150 nm to 380 nm narrowed by the optical resonator composed of the output coupling mirror 34 and the LNM 30. of pulsed laser light is output from the output coupling mirror 34 .
- the energy of the pulsed laser light output from the output coupling mirror 34 is measured by the MO pulse energy monitor 54 . Also, this pulsed laser light is incident on the rear mirror 60 of the PO 26 as seed light by the MO beam steering unit 24 .
- a high voltage pulse is applied between the discharge electrodes 70a and 70b in the chamber 62 from a power source (not shown).
- a discharge is generated between the discharge electrodes 70a and 70b in the chamber 62, the laser gas is excited, and the seed light is amplified by the Fabry-Perot optical resonator composed of the output coupling mirror 64 and the rear mirror 60.
- the pulsed laser beam is output from the output coupling mirror 64 as an output laser beam.
- FIG. 2 is a diagram showing a problem of the ultraviolet laser device 20 according to the comparative example. If the return light from PO26 returns to MO22, laser performance will deteriorate.
- the term "returned light” as used herein refers to the sum of two types of light, that is, the MO returned light and the PO exit light.
- the light emitted from the MO 22 is incident on the PO 26, but since the rear mirror 60 inside the PO 26 is a partially reflecting mirror (reflectance 50% to 90%), part of the light incident on the rear mirror 60 is inside the PO 26. Instead of going to , it returns to the MO22 side as it is.
- the light that is reflected by the rear mirror 60 and returns to the MO 22 side without proceeding into the chamber 62 of the PO 26 is called "MO return light".
- the light incident on the PO 26 from the MO 22 and transmitted through the rear mirror 60 is resonated and amplified within the PO 26 and output.
- rear mirror 60 in PO 26 is a partially reflective mirror, so some of the light that enters chamber 62 of PO 26 and is amplified returns to MO 22 .
- the light that passes through the rear mirror 60 and returns to the MO 22 is called "PO light".
- the returned light becomes a heat load on the LNM 30, etc., and can cause deterioration in line width stability, pulse energy stability, and the like.
- FIG. 3 shows a configuration example of an optical isolator 80 according to a comparative example that suppresses return light.
- the upper part of FIG. 3 shows the operation of the optical isolator 80 with respect to the pulsed laser light (MO injection light: outgoing light) traveling from the MO 22 to the PO 26 .
- the lower part of FIG. 3 shows the operation of the optical isolator 80 with respect to laser light (return light) traveling from the PO 26 toward the MO 22 .
- the optical isolator 80 has a half-wave plate 81, a first polarizer 83, a Faraday rotator 84, and a second polarizer 88 arranged in this order from the MO 22 side.
- Faraday rotator 84 includes Faraday material 85 and magnets 86 .
- the rightward arrow shown in the Faraday rotator 84 indicates the direction of the magnetic field generated by the magnet 86.
- a double-headed arrow shown in a dashed circle in the figure represents the direction of the plane of polarization of the pulsed laser beam when the line of sight is aligned with the direction in which the pulsed laser beam travels, that is, the polarization direction.
- FIG. 4 as well.
- horizontally polarized, linearly polarized pulsed laser light is output from the MO 22 .
- the direction of polarization of the horizontally polarized pulsed laser light output from the MO 22 is rotated counterclockwise by 45 degrees by the half-wave plate 81 .
- the first polarizer 83 has its transmission axis parallel to the polarization direction of the pulsed laser beam output from the half-wave plate 81, and the pulsed laser beam output from the half-wave plate 81 is , is transmitted through the first polarizer 83 .
- the pulsed laser light transmitted through the first polarizer 83 has its polarization direction rotated 45 degrees clockwise by the Faraday rotator 84 to which the magnetic field is applied. As a result, the pulsed laser light output from the Faraday rotator 84 is horizontally polarized.
- the second polarizer 88 has its transmission axis parallel to the polarization direction of the pulsed laser light output from the Faraday rotator 84, and the pulsed laser light output from the Faraday rotator 84 is directed to the second After passing through polarizer 88 , it enters PO 26 .
- the half-wave plate 81 adjusts the polarization direction of the pulsed laser beam from the MO 22 so that the polarization direction of the pulsed laser beam output from the MO 22 and the polarization direction of the pulsed laser beam incident on the PO 26 are the same. . This avoids changing other modules that depend on the polarization direction.
- the return light from the PO 26 is transmitted through the second polarizer 88 in the same polarization direction as the incident light to the PO 26, and is polarized by the Faraday rotator 84 to which the magnetic field is applied. rotates 45 degrees clockwise.
- the polarization direction of the return light that has passed through the Faraday rotator 84 is orthogonal to the transmission axis of the first polarizer 83 , and the return light is reflected by the first polarizer 83 and does not enter the MO 22 .
- the half-wave plate 81 in the optical isolator 80 according to the comparative example has low durability at short wavelengths such as excimer lasers, and is difficult to use stably for a long period of time.
- FIG. 4 schematically shows a configuration example of the ultraviolet laser device 100 according to the first embodiment.
- an optical isolator 120 including a first Faraday rotator 110 and a second Faraday rotator 112 is arranged between MO22 and PO26.
- the optical isolator 120 divides the first Faraday rotator 110, the first polarizer 83, the second Faraday rotator 112, and the second polarizer 88 in the direction in which the laser light travels from the MO 22 to the PO 26. They are arranged in this order on the optical path.
- the first Faraday rotator 110 and the second Faraday rotator 112 each have a magnet, and by reversing the direction of the applied magnetic field, the direction of rotation of the polarization direction is reversed.
- the direction of the magnetic field applied to the first Faraday rotator 110 shown in FIG. 4 (the direction indicated by the downward arrow in FIG. 4) is an example of the "first direction" in the present disclosure.
- the direction of the magnetic field applied to the second Faraday rotator 112 shown in FIG. 4 (the direction indicated by the upward arrow in FIG. 4) is an example of the "second direction" in the present disclosure.
- the Faraday material, size, and magnetic field are selected so that the rotation angle of the respective polarization directions is 45 degrees. Details of preferable selection conditions will be described later (FIGS. 5 to 7).
- the optical isolator 120 further includes a damper 116 for termination of return light.
- the damper 116 is arranged such that the return light reflected by the first polarizer 83 is incident on the damper 116 .
- Other configurations may be the same as in FIG.
- FIG. 4 also shows the polarization direction of the pulsed laser light at points a, b, c and d on the optical path between the MO 22 and PO 26 .
- FIG. 4 shows the polarization directions at points a to d for the pulsed laser beam propagating in the direction from MO22 to PO26, and points d and c for the return light traveling in the direction from PO26 to MO22. indicates the polarization direction at the point.
- a pulsed laser beam (point a) output from the MO 22 and polarized in a specific direction has its polarization direction rotated 45 degrees counterclockwise by the first Faraday rotator 110 (point b).
- the counterclockwise direction is an example of the "first rotation direction” in the present disclosure
- 45 degrees is an example of the "first angle” in the present disclosure.
- the first polarizer 83 is arranged such that its transmission axis is parallel to the polarization direction of the pulsed laser light output from the first Faraday rotator 110 .
- the direction-rotated pulsed laser beam passes through the first polarizer 83 (point c).
- the pulsed laser beam transmitted through the first polarizer 83 enters the second Faraday rotator 112, and the second Faraday rotator 112 rotates the polarization direction clockwise by 45 degrees (point d).
- the clockwise direction is an example of the "second rotation direction” in the present disclosure
- 45 degrees is an example of the "second angle” in the present disclosure.
- the pulse laser light whose polarization direction has been rotated by the second Faraday rotator 112 passes through the second polarizer 88 .
- the polarization direction at point a and the polarization direction at point e of the pulsed laser light traveling from MO 22 to PO 26 are the same.
- the pulsed laser light returning from PO26 to MO22 will be described.
- the polarization direction of the pulsed laser light propagating in the direction from MO22 to PO26 is the same as the polarization direction of the pulsed laser light (return light) returning in the direction from PO26 to MO22. Therefore, return light traveling in the direction from PO 26 to MO 22 is transmitted through the second polarizer 88 .
- the returning light that has passed through the second polarizer 88 has its polarization direction rotated clockwise by 45 degrees by the second Faraday rotator 112 (point c).
- point c the polarization direction of the pulsed laser light propagating in the direction from MO22 to PO26 is orthogonal to the polarization direction of the pulsed laser light returning in the direction from PO26 to MO22. Therefore, the pulsed laser light returning from PO 26 toward MO 22 is reflected by the first polarizer 83 and enters the damper 116 . Damper 116 absorbs and blocks the light reflected by first polarizer 83 .
- FIG. 5 is a cross-sectional view schematically showing a configuration example of the Faraday rotator 130 .
- Faraday rotator 130 can be applied as first Faraday rotator 110 and second Faraday rotator 112, respectively.
- Faraday rotator 130 has Faraday material 135 and magnets 136 .
- Faraday material 135 is a material that is transparent at ultraviolet wavelengths and has a large Verdet constant. The description "transparent" means having light transmittance.
- the Verdet constant depends on the type of material and the wavelength.
- Faraday material 135 for example, calcium fluoride (CaF 2 ), synthetic quartz (SiO 2 ), magnesium fluoride (MgF 2 ), etc. are suitable.
- Faraday material 135 is held in holder 137 .
- the magnet 136 has a hollow structure, and a Faraday material 135 is placed inside via a holder 137 .
- the direction of the magnetic field through Faraday material 135 is parallel to the direction of light propagation.
- the direction of rotation of the plane of polarization (polarization direction) by the Faraday rotator 130 depends on the sign of the Verdet constant and the direction of the applied magnetic field.
- FIG. 6 shows preferable ranges of the magnetic field and the thickness of the Faraday material 135 when the wavelength of the pulsed laser light is the oscillation wavelength of the ArF excimer laser.
- the oscillation wavelength of the ArF excimer laser includes a wavelength of approximately 193 nm.
- FIG. 6 shows the cases where the Faraday material 135 is CaF 2 and SiO 2 respectively. Note that the thickness of the Faraday material 135 is evaluated by the thickness in the optical axis direction.
- FIG. 7 shows preferable ranges of the magnetic field and the thickness of the Faraday material 135 when the wavelength of the pulsed laser light is the oscillation wavelength of the KrF excimer laser.
- the oscillation wavelength of the KrF excimer laser includes a wavelength of about 248 nm.
- FIG. 7 shows the cases where the Faraday material 135 is CaF 2 and SiO 2 respectively.
- the preferred ranges shown in FIGS. 6 and 7 were selected based on the ease of realization of the magnetic field.
- the magnetic field in the most preferable range is the magnetic flux density when a neodymium magnet or the like having strong magnetic force is used.
- the thickness of the Faraday material 135 is a value obtained by calculating the thickness at which the plane of polarization rotates 45 degrees based on the selected material, the magnetic flux density of the magnetic field, and the Verdet constant.
- the Faraday material 135 is calcium fluoride and the wavelength of the pulsed laser light is the oscillation wavelength of the ArF excimer laser, the magnetic field applied to the Faraday rotator 130 and the optical axis direction of the Faraday material 135
- the respective preferred ranges for the thickness are 0.5T to 3.0T and 6mm to 40mm. More preferably 0.75T to 2.9T and 10mm to 30mm, most preferably 0.8T to 1.5T and 15mm to 25mm.
- the notation indicating a numerical range such as "0.5T to 3.0T” indicates a range including the numerical value shown before and after " ⁇ ", for example, the notation "0.5T to 3.0T" is " 0.5T or more and 3.0T or less".
- the preferable range of the magnetic field applied to the Faraday rotator 130 and the thickness of the Faraday material 135 in the optical axis direction is 0.5T to 3T and 3mm to 25mm. More preferably 0.75T to 2.9T and 6mm to 20mm, most preferably 0.8T to 1.5T and 8mm to 15mm.
- the magnetic field applied to the Faraday rotator 130 and the optical axis direction of the Faraday material 135 Preferred ranges for the thickness are 0.5T to 3.0T and 13mm to 83mm. More preferably 0.75T to 2.9T and 20mm to 55mm, most preferably 0.8T to 1.5T and 30mm to 50mm.
- the preferable range of the magnetic field applied to the Faraday rotator 130 and the thickness of the Faraday material 135 in the optical axis direction is , 0.5T to 3.0T and 8 mm to 53 mm. More preferably 0.75T to 2.9T and 10mm to 40mm, most preferably 0.8T to 1.5T and 15mm to 30mm.
- the Faraday material 135 may be divided into a plurality of pieces, and the sum of these pieces may satisfy the above thickness.
- the number of divisions may be, for example, two, three, or four.
- the first Faraday rotator 110 and the second Faraday rotator 112 use the same Faraday material, the same thickness in the direction of the optical axis, and the same magnitude of the magnetic field, the same amount of rotation can be achieved. Since the plane of polarization rotates in the opposite direction at (angle), it is easy to handle and is a preferred form.
- FIG. 8 shows a graph showing the relationship between the angle difference between the transmission axis of the polarizer and the polarization direction of the pulsed laser beam and the extinction ratio (dB), and a graph obtained by converting the extinction ratio into normalized transmittance.
- the vertical axis on the left side of FIG. 8 represents the extinction ratio
- the vertical axis on the right side represents the normalized transmittance.
- the normalized transmittance is a value normalized so that the transmittance is 1.0 when the angle difference is 0 degree.
- the preferable allowable range of the angle difference between the transmission axis of the first polarizer 83 or the second polarizer 88 and the polarization direction of the pulsed laser light is 0.9 or more when the normalized transmittance is 0.9 or more. is a range of ⁇ 17.5 degrees.
- the pulsed laser light is polarized before and after passing through the optical isolator 120 without using the half-wave plate 81 having low durability in short wavelengths. direction can be the same. Therefore, return light can be suppressed without changing modules that depend on other polarization directions.
- the pulsed laser light returning from the PO 26 toward the MO 22 is reflected by the first polarizer 83 and absorbed by the damper 116, and is incident on the MO 22. is suppressed.
- the heat load on the MO 22 is reduced, and the energy stability and line width stability are improved as compared with the configuration of the comparative example.
- MO pulse energy monitor 54 is arranged either upstream or downstream of the optical isolator 120 in which the first Faraday rotator 110 and the second Faraday rotator 112 are arranged in tandem. However, it is preferable to arrange it on the upstream side of the optical isolator 120 as shown in FIG.
- MO pulse energy monitor 54 is an example of an "energy monitor" in this disclosure.
- the directions of the magnetic fields applied to the first Faraday rotator 110 and the second Faraday rotator 112 may be opposite to each other, and are not limited to the example shown in FIG. For example, a configuration is also possible in which the direction of the magnetic field applied to the first Faraday rotator 110 is upward in FIG. 4, and the direction of the magnetic field applied to the second Faraday rotator 112 is downward in FIG.
- the first Faraday rotator 110 and the second Faraday rotator 112 rotate the plane of polarization at the same rotation angle (45 degrees) in opposite directions.
- the angle of rotation of the polarization direction by 110 and the angle of rotation of the polarization direction by the second Faraday rotator 112 are not limited to the same angle in the opposite direction, but both can be used as long as the intended function can be achieved in practice. angle difference is allowed.
- the rotation angle in the first rotation direction by the first Faraday rotator 110 and the rotation angle in the second rotation direction (opposite to the first rotation direction) by the second Faraday rotator 112 is allowed within 17.5 degrees.
- the rotation angle in the first rotation direction by the first Faraday rotator 110 may be within 45 degrees ⁇ 17.5 degrees, and similarly, the rotation angle in the second rotation direction by the second Faraday rotator 112 may be It may be within 45 degrees ⁇ 17.5 degrees.
- the polarization direction of the pulsed laser light transmitted through the first Faraday rotator 110 and incident on the first polarizer 83 and the pulsed laser light returning from the PO 26 are transmitted through the second Faraday rotator 112 and converted into the first polarized light.
- the return light is reflected by the first polarizer 83 and is suppressed from entering the MO 22 due to the structure in which the polarization direction of the light entering the element 83 intersects with it at an angle of 90° ⁇ 17.5° or less.
- FIG. 9 schematically shows the configuration of an ultraviolet laser device 102 according to the second embodiment.
- the ultraviolet laser device 102 shown in FIG. 9 has a biaxially adjustable parallel plane substrate 202 and a biaxially adjustable high reflection mirror 52 arranged on the optical path between the second polarizer 88 and the PO 26 . It differs from the configuration shown in FIG.
- the plane-parallel substrate 202 is held by a two-axis angle adjustment holder 204 whose angle can be adjusted using each of two orthogonal axes as a rotation axis.
- a plane-parallel substrate 202 is placed on the optical path between the second polarizer 88 and the highly reflective mirror 52 .
- the plane-parallel substrate 202 may be a calcium fluoride substrate.
- the two-axis angle adjustment holder 204 is a holder whose angle can be adjusted using, for example, an axis perpendicular to the plane of FIG. 9 and an axis parallel to the plane of the plane-parallel substrate 202 and the plane of FIG. It's okay.
- the high-reflection mirror 52 is held by a two-axis angle adjustment holder 208 whose angle can be adjusted using each of two orthogonal axes as a rotation axis.
- the two-axis angle adjustment holder 208 is a holder whose angle can be adjusted using, for example, an axis perpendicular to the paper surface of FIG. 9 and an axis parallel to the reflecting surface of the high reflection mirror 52 and the paper surface of FIG. It's okay.
- the adjustment of the optical axis is performed by adjusting the biaxially adjustable parallel plane substrate 202 and the biaxially adjustable high reflection mirror 52 so that the pulsed laser beam from the MO 22 reaches the PO 26 most efficiently. It is made to be incident.
- the biaxially adjustable parallel plane substrate 202 is adjusted so that the pulsed laser light from the MO 22 is shifted parallel to the traveling direction so that the pulsed laser light is most efficiently incident on the PO 26 .
- the biaxially adjustable high reflection mirror 52 is adjusted so that the pulsed laser light is most efficiently incident on the PO 26 .
- Each of the biaxial angle adjustment holder 204 and the biaxial angle adjustment holder 208 is an example of the "optical axis adjustment mechanism" in the present disclosure.
- a configuration that includes both the biaxially adjustable parallel plane substrate 202 and the biaxially adjustable high-reflection mirror 52 is a preferred form, but a configuration that includes only one of these is also possible.
- FIG. 10 schematically shows the configuration of an ultraviolet laser device 103 according to the third embodiment. Regarding the configuration shown in FIG. 10, points different from FIG. 4 will be described.
- the ultraviolet laser device 103 shown in FIG. 10 includes an ultraviolet solid-state laser device 232 as an oscillation stage laser instead of the MO 22 in FIG. 4, and an excimer amplifier 236 instead of the PO 26 .
- Other configurations may be similar to the configuration shown in FIG.
- the ultraviolet solid-state laser device 232 emits, for example, the 4th, 5th or 6th harmonic of a solid-state laser whose fundamental wave is in the near-infrared band (wavelength of 780 nm to 2500 nm) (wavelength range of 150 nm to 380 nm). ).
- the ultraviolet solid-state laser device 232 is arranged to output seed light with a wavelength of about 193 nm and the seed light is incident on the excimer amplifier 236 .
- the ultraviolet solid-state laser device 232 may have a configuration including a semiconductor laser system, a titanium-sapphire amplifier, and a wavelength conversion system.
- the semiconductor laser system includes a distributed feedback (DFB) semiconductor laser that outputs a CW laser beam with a wavelength of about 773.6 nm, and a semiconductor optical amplifier (SOA) that pulses the CW laser beam. It may be a configuration including.
- the wavelength conversion system includes a plurality of nonlinear optical crystals, wavelength-converts an incident pulsed laser beam, and outputs a quadruple harmonic pulsed laser beam.
- a wavelength conversion system includes, for example, an LBO crystal and a KBBF crystal.
- LBO crystal is a nonlinear optical crystal represented by the chemical formula LiB 3 O 5 .
- a KBBF crystal is a nonlinear optical crystal represented by the chemical formula KBe 2 BO 3 F 2 .
- the excimer amplifier 236 includes a chamber 242 , a convex cylindrical mirror 244 and a concave cylindrical mirror 246 .
- the chamber 242 includes a pair of discharge electrodes 250a, 250b and two windows 252, 254 through which laser light is transmitted.
- the discharge electrodes 250a and 250b are arranged facing each other with a discharge space 256 interposed therebetween. A space between the discharge electrodes 250 a and 250 b becomes a discharge space 256 .
- the direction in which the discharge electrodes 250a and 250b face each other across the discharge space 256 corresponds to the discharge direction.
- the chamber 242 is filled with a laser gas similar to the laser gas described in FIG.
- the convex curved surface of the convex cylindrical mirror 244 and the concave curved surface of the concave cylindrical mirror 246 are each coated with a highly reflective film for a wavelength of about 193 nm.
- the convex cylindrical mirror 244 and the concave cylindrical mirror 246 are arranged so that the seed light from the solid-state ultraviolet laser device 232 passes through the discharge space 256 of the excimer amplifier 236 three times, thereby expanding and amplifying the beam in the discharge direction. placed.
- the seed light output from the solid-state ultraviolet laser device 232 passes through the optical isolator 120 and enters the excimer amplifier 236 .
- the seed light with a wavelength of about 193.4 nm incident on the excimer amplifier 236 is reflected by the convex cylindrical mirror 244 and the concave cylindrical mirror 246, thereby passing through the discharge space 256 between the discharge electrodes 250a and 250b three times. This expands and amplifies the beam of seed light.
- Excimer amplifier 236 is an example of a "multipass amplifier" in this disclosure. Various multi-pass amplifiers can be applied without being limited to the 3-pass excimer amplifier 236 .
- the operation of the optical isolator 120 is the same as that of the first embodiment described with reference to FIG.
- the optical isolator 120 prevents amplified spontaneous emission (ASE) or the like generated by the excimer amplifier 236 from entering the ultraviolet solid-state laser device 232 .
- ASE amplified spontaneous emission
- the polarization direction can be made the same before and after passing through the optical isolator 120 without using the half-wave plate 81 having low durability in short wavelengths. can. Therefore, return light can be suppressed without changing modules that depend on other polarization directions.
- the ultraviolet laser device 103 since the light returning from the excimer amplifier 236 toward the ultraviolet solid-state laser device 232 does not enter the ultraviolet solid-state laser device 232, the heat load on the ultraviolet solid-state laser device 232 is reduced. , energy stability, line width stability, etc. are improved as compared with the configuration of the comparative example.
- Embodiment 4 7.1 Configuration FIG. 11 schematically shows the configuration of an ultraviolet laser device 104 according to Embodiment 4. As shown in FIG. Regarding the configuration shown in FIG. 11, points different from FIG. 4 will be described.
- the ultraviolet laser device 104 according to Embodiment 4 differs from the configuration of Embodiment 1 in the configuration of the amplification stage laser and the configuration of the high reflection mirror that introduces the laser light from the MO 22 into the amplification stage laser.
- the stage laser differs in that it is PO 266 with a ring resonator 270 .
- FIG. 12 is a top view schematically showing the configuration of the PO 266 applied to Embodiment 4.
- FIG. The ring resonator 270 includes a highly reflective mirror 284 , a highly reflective mirror 285 , a highly reflective mirror 286 and a partially reflective mirror 290 .
- the ultraviolet laser device 104 is provided with a high reflection mirror 283 in order to introduce the laser light output from the MO 22 and reflected by the high reflection mirrors 50 and 52 into the ring resonator 270 .
- the high reflection mirror 283 is arranged on the optical path between the high reflection mirror 52 and the partial reflection mirror 290 so that the laser beam reflected by the high reflection mirror 52 is incident on the partial reflection mirror 290 .
- the laser light output from the MO 22 is sequentially reflected by the high reflection mirror 50 , the high reflection mirror 52 and the high reflection mirror 283 , and then enters the ring resonator 270 through the partial reflection mirror 290 .
- the laser light transmitted through the partial reflection mirror 290 is reflected by the high reflection mirror 284, enters the chamber 62 and is amplified, is then reflected by the high reflection mirrors 285 and 286, and enters the chamber 62 again. is amplified by A part of the laser light output from the chamber 62 is transmitted by the partially reflecting mirror 290 and the other part is reflected and amplified again by the ring resonator 270 .
- the amplified pulsed laser light that has passed through the partially reflecting mirror 290 is output from the ultraviolet laser device 104 .
- the optical isolator 120 suppresses return light from the PO 266 from entering the MO 22 .
- the operation of the optical isolator 120 is the same as that of the first embodiment described with reference to FIG.
- FIG. 13 schematically shows a configuration example of an exposure apparatus 300 .
- Exposure apparatus 300 includes illumination optical system 304 and projection optical system 306 .
- the illumination optical system 304 illuminates a reticle pattern of a reticle (not shown) placed on the reticle stage RT with laser light incident from the ultraviolet laser device 100 .
- the projection optical system 306 reduces and projects the laser beam transmitted through the reticle to form an image on a workpiece (not shown) placed on the workpiece table WT.
- the workpiece is a photosensitive substrate, such as a semiconductor wafer, coated with photoresist.
- the exposure apparatus 300 synchronously translates the reticle stage RT and the workpiece table WT, thereby exposing the workpiece to laser light reflecting the reticle pattern.
- a semiconductor device can be manufactured through a plurality of processes.
- a semiconductor device is an example of an "electronic device" in this disclosure.
- the ultraviolet laser device 102, 103, or 104 described in the second to fourth embodiments may be used to generate laser light.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Power Engineering (AREA)
- Lasers (AREA)
Abstract
Description
1.用語の説明
2.比較例に係る紫外線レーザ装置の概要
2.1 構成
2.2 動作
3.課題
4.実施形態1
4.1 構成
4.2 動作
4.3 ファラデー回転子の具体例
4.4 偏光子の透過軸とレーザ光の偏光方向との許容角度差
4.5 作用・効果
4.6 変形例
5.実施形態2
5.1 構成
5.2 動作
5.3 作用・効果
6.実施形態3
6.1 構成
6.2 動作
6.3 作用・効果
7.実施形態4
7.1 構成
7.2 動作
7.3 作用・効果
8.電子デバイスの製造方法について
9.その他
以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
「偏光子」とは、特定の偏光方向(透過軸方向)の光とそれと偏光方向が直交する光を分離する光学素子をいう。
2.1 構成
図1は、比較例に係る紫外線レーザ装置20の構成を概略的に示す側面図である。本開示の比較例とは、出願人のみによって知られていると出願人が認識している形態であって、出願人が自認している公知例ではない。
図示しない電源より高電圧パルスがチャンバ32内の放電電極40a,40b間に印加される。チャンバ32内の放電電極40a,40b間で放電が発生すると、レーザガスが励起され、出力結合ミラー34とLNM30とで構成される光共振器によって狭帯域化された、波長が150nmから380nmの紫外線波長のパルスレーザ光が出力結合ミラー34から出力される。
図2は、比較例に係る紫外線レーザ装置20の課題を示す図である。PO26からの戻り光がMO22まで戻るとレーザ性能が悪化する。ここでいう「戻り光」とは、MO戻り光と、PO抜け光との2種類の光の和を指す。MO22より出射された光は、PO26へと入射されるが、PO26内のリアミラー60は部分反射ミラー(反射率50%~90%)であるため、リアミラー60に入射する光の一部はPO26内部へ向かわずにそのままMO22側へ戻ってしまう。PO26のチャンバ62内に進むことなく、リアミラー60によって反射されてMO22側へと戻る光を「MO戻り光」という。
4.1 構成
図4は、実施形態1に係る紫外線レーザ装置100の構成例を概略的に示す。図4に示す構成について、図1と異なる点を説明する。紫外線レーザ装置100は、MO22とPO26との間に第1のファラデー回転子110と、第2のファラデー回転子112とを含む光アイソレータ120が配置される点で図1の構成と異なる。光アイソレータ120は、第1のファラデー回転子110と、第1の偏光子83と、第2のファラデー回転子112と、第2の偏光子88とを、MO22からPO26へレーザ光が進む方向の光路上に、この順で配置されて含む。
まず、MO22からPO26の方向に伝搬するパルスレーザ光について説明する。MO22から出力され、特定の方向に偏光したパルスレーザ光(a点)は、第1のファラデー回転子110により偏光方向が反時計回り方向に45度回転する(b点)。反時計回り方向は本開示における「第1の回転方向」の一例であり、45度は本開示における「第1の角度」の一例である。
図5は、ファラデー回転子130の構成例を概略的に示す断面図である。ファラデー回転子130は、第1のファラデー回転子110及び第2のファラデー回転子112のそれぞれとして適用され得る。ファラデー回転子130は、ファラデー材料135と磁石136とを有する。ファラデー材料135は、紫外線波長において透明で、かつヴェルデ定数の大きな材料である。「透明」という記載は、光透過性を有するという意味である。
第1の偏光子83及び第2の偏光子88のそれぞれの透過軸と、各偏光子に入射させるパルスレーザ光の偏光方向とは平行であることが最も好ましいが、厳密に平行である場合に限らず、実用上目的の機能を果たすことができる範囲で、両者の角度差が許容される。
実施形態1に係る紫外線レーザ装置100によれば、短波長における耐久性が低い1/2波長板81を用いなくても、光アイソレータ120の通過前後でパルスレーザ光の偏光方向を同じにできる。このため、他の偏光方向に依存するモジュールを変更することなく戻り光を抑制することができる。
MOパルスエネルギモニタ54の配置については、第1のファラデー回転子110と第2のファラデー回転子112とをタンデム配置した光アイソレータ120の上流側又は下流側のいずれにも配置することが可能であるが、図4のように、光アイソレータ120の上流側に配置する構成が好ましい。MOパルスエネルギモニタ54は本開示における「エネルギモニタ」の一例である。また、第1のファラデー回転子110と第2のファラデー回転子112とのそれぞれに印加する磁場の方向は、互いに逆向きであればよく、図4に示す例に限らない。例えば、第1のファラデー回転子110に印加する磁場の方向を図4において上向きとし、第2のファラデー回転子112に印加する磁場の方向を図4において下向きとする構成も可能である。
5.1 構成
図9は、実施形態2に係る紫外線レーザ装置102の構成を概略的に示す。図9に示す構成ついて、図4と異なる点を説明する。図9に示す紫外線レーザ装置102は、第2の偏光子88とPO26との間の光路上に、2軸調整可能な平行平面基板202と、2軸調整可能な高反射ミラー52とが配置される点で、図4に示す構成と異なる。平行平面基板202は、直交する2軸のそれぞれを回転軸として角度の調整が可能な2軸角度調整ホルダ204に保持される。
光軸の調整は、2軸調整可能な平行平面基板202と、2軸調整可能な高反射ミラー52とを調整することにより、MO22からのパルスレーザ光がPO26に最も効率的に入射されるように行われる。
実施形態2によれば、実施形態1と同様の効果が得られる。また、実施形態2によれば、PO26に入射させる注入光の光軸調整が実施形態1に比べて容易になる。
6.1 構成
図10は、実施形態3に係る紫外線レーザ装置103の構成を概略的に示す。図10に示す構成について、図4と異なる点を説明する。図10に示す紫外線レーザ装置103は、図4におけるMO22の代わりに、発振段レーザとして紫外線固体レーザ装置232を備え、PO26の代わりに、エキシマ増幅器236を備える。他の構成は、図4に示す構成と同様であってよい。
紫外線固体レーザ装置232から出力されたシード光は、光アイソレータ120を通過して、エキシマ増幅器236に入射する。エキシマ増幅器236に入射した波長約193.4nmのシード光は、凸面シリンドリカルミラー244及び凹面シリンドリカルミラー246で反射することにより、放電電極250a,250bの間の放電空間256を3回通過する。これにより、シード光のビームが拡大されて増幅される。エキシマ増幅器236は本開示における「マルチパス増幅器」の一例である。3パスのエキシマ増幅器236に限らず、各種のマルチパス増幅器を適用可能である。
実施形態3に係る紫外線レーザ装置103によれば、短波長における耐久性が低い1/2波長板81を用いなくても、光アイソレータ120の通過前後で偏光方向を同じにできる。このため、他の偏光方向に依存するモジュールを変更することなく、戻り光を抑制することができる。
7.1 構成
図11は、実施形態4に係る紫外線レーザ装置104の構成を概略的に示す。図11に示す構成について、図4と異なる点を説明する。実施形態4に係る紫外線レーザ装置104は、実施形態1の構成に対して、増幅段レーザの構成及びMO22からのレーザ光を増幅段レーザに導入する高反射ミラーの構成が異なる。
MO22から出力されたレーザ光は、高反射ミラー50、高反射ミラー52及び高反射ミラー283で順次反射された後、部分反射ミラー290からリング共振器270に入射する。
実施形態4に係る紫外線レーザ装置104によれば、実施形態1と同様の効果が得られる。
図13は、露光装置300の構成例を概略的に示す。露光装置300は、照明光学系304と投影光学系306とを含む。照明光学系304は、紫外線レーザ装置100から入射したレーザ光によって、レチクルステージRT上に配置された図示しないレチクルのレチクルパターンを照明する。投影光学系306は、レチクルを透過したレーザ光を、縮小投影してワークピーステーブルWT上に配置された図示しないワークピースに結像させる。ワークピースはフォトレジストが塗布された半導体ウエハ等の感光基板である。
上記の説明は、制限ではなく単なる例示を意図している。従って、特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかである。また、本開示の実施形態を組み合わせて使用することも当業者には明らかである。
Claims (20)
- 紫外線レーザ装置であって、
紫外線波長の直線偏光のパルスレーザ光を出力する発振段レーザと、
前記パルスレーザ光を増幅して出力する増幅器と、
前記発振段レーザと前記増幅器との間の光路上に配置される光アイソレータと、を備え、
前記光アイソレータは、
前記発振段レーザから出力されたパルスレーザ光の偏光方向を第1の方向の磁場によって第1の回転方向に第1の角度回転させる第1のファラデー回転子と、
前記第1のファラデー回転子から出力されたパルスレーザ光に対する規格化透過率が0.9以上となるように配置される第1の偏光子と、
前記第1の偏光子を透過したパルスレーザ光の偏光方向を、前記第1の方向とは逆方向の第2の方向の磁場によって前記第1の回転方向とは逆方向の第2の回転方向に第2の角度回転させる第2のファラデー回転子と、
前記第2のファラデー回転子から出力されたパルスレーザ光に対する規格化透過率が0.9以上となるように配置される第2の偏光子と、を備える、
紫外線レーザ装置。 - 請求項1に記載の紫外線レーザ装置であって、
前記第1のファラデー回転子から出力されたパルスレーザ光の偏光方向と、前記第1の偏光子の透過軸との角度差は、17.5度以内であり、
前記第2のファラデー回転子から出力されたパルスレーザ光の偏光方向と、前記第2の偏光子の透過軸との角度差は、17.5度以内である、
紫外線レーザ装置。 - 請求項1に記載の紫外線レーザ装置であって、
前記第1の角度と前記第2の角度との角度差は17.5度以内である、
紫外線レーザ装置。 - 請求項1に記載の紫外線レーザ装置であって、
前記第1の角度と前記第2の角度とはそれぞれ45度±17.5度以内であり、
前記発振段レーザから前記増幅器の方向に進むパルスレーザ光が前記第1の偏光子に入射するときの偏光方向と、
前記増幅器から前記発振段レーザの方向に戻るパルスレーザ光が前記第2のファラデー回転子を通過して前記第1の偏光子に入射するときの偏光方向とは90度±17.5度以内の角度で交差しており、
前記第2のファラデー回転子を通過して前記第1の偏光子に入射したパルスレーザ光は前記第1の偏光子によって反射される、
紫外線レーザ装置。 - 請求項1に記載の紫外線レーザ装置であって、
前記第1のファラデー回転子及び前記第2のファラデー回転子のそれぞれに印加される磁場の磁束密度は、0.5T以上3.0T以下である、
紫外線レーザ装置。 - 請求項5に記載の紫外線レーザ装置であって、
前記パルスレーザ光の波長がArFエキシマレーザの発振波長であり、
前記第1のファラデー回転子及び前記第2のファラデー回転子のそれぞれに含まれるファラデー材料がフッ化カルシウムであり、
前記ファラデー材料の光軸方向の厚さは、6mm以上40mm以下である、
紫外線レーザ装置。 - 請求項5に記載の紫外線レーザ装置であって、
前記パルスレーザ光の波長がArFエキシマレーザの発振波長であり、
前記第1のファラデー回転子及び前記第2のファラデー回転子のそれぞれに含まれるファラデー材料が合成石英であり、
前記ファラデー材料の光軸方向の厚さは、3mm以上25mm以下である、
紫外線レーザ装置。 - 請求項5に記載の紫外線レーザ装置であって、
前記パルスレーザ光の波長がKrFエキシマレーザの発振波長であり、
前記第1のファラデー回転子及び前記第2のファラデー回転子のそれぞれに含まれるファラデー材料がフッ化カルシウムであり、
前記ファラデー材料の光軸方向の厚さは、13mm以上83mm以下である、
紫外線レーザ装置。 - 請求項5に記載の紫外線レーザ装置であって、
前記パルスレーザ光の波長がKrFエキシマレーザの発振波長であり、
前記第1のファラデー回転子及び前記第2のファラデー回転子のそれぞれに含まれるファラデー材料が合成石英であり、
前記ファラデー材料の光軸方向の厚さは、8mm以上53mm以下である、
紫外線レーザ装置。 - 請求項1に記載の紫外線レーザ装置であって、
前記第1のファラデー回転子及び前記第2のファラデー回転子のそれぞれに含まれるファラデー材料は、分割された複数の材料で構成される、
紫外線レーザ装置。 - 請求項1に記載の紫外線レーザ装置であって、
前記第2の偏光子と前記増幅器との間に、少なくとも2軸の調整機構を含む光軸調整機構を備える、
紫外線レーザ装置。 - 請求項11に記載の紫外線レーザ装置であって、
前記光軸調整機構は、前記調整機構により2軸調整可能な平行平面基板を備える、
紫外線レーザ装置。 - 請求項11に記載の紫外線レーザ装置であって、
前記光軸調整機構は、前記調整機構により2軸調整可能な高反射ミラーを備える、
紫外線レーザ装置。 - 請求項1に記載の紫外線レーザ装置であって、
前記発振段レーザと前記増幅器とのそれぞれは、レーザガスが充填されるチャンバを備える、
紫外線レーザ装置。 - 請求項1に記載の紫外線レーザ装置であって、
前記発振段レーザは紫外線固体レーザである、
紫外線レーザ装置。 - 請求項1に記載の紫外線レーザ装置であって、
前記増幅器は共振器を備える、
紫外線レーザ装置。 - 請求項1に記載の紫外線レーザ装置であって、
前記増幅器は、マルチパス増幅器である、
紫外線レーザ装置。 - 請求項1に記載の紫外線レーザ装置であって、
前記増幅器から前記第2の偏光子及び前記第2のファラデー回転子を経て前記第1の偏光子で反射された光を吸収するダンパーをさらに備える、
紫外線レーザ装置。 - 請求項1に記載の紫外線レーザ装置であって、
前記発振段レーザと前記光アイソレータとの間に、前記発振段レーザのパルスエネルギを計測するエネルギモニタを備える、
紫外線レーザ装置。 - 電子デバイスの製造方法であって、
紫外線波長の直線偏光のパルスレーザ光を出力する発振段レーザと、
前記パルスレーザ光を増幅して出力する増幅器と、
前記発振段レーザと前記増幅器との間の光路上に配置される光アイソレータと、を備え、
前記光アイソレータは、
前記発振段レーザから出力されたパルスレーザ光の偏光方向を第1の方向の磁場によって第1の回転方向に第1の角度回転させる第1のファラデー回転子と、
前記第1のファラデー回転子から出力されたパルスレーザ光に対する規格化透過率が0.9以上となるように配置される第1の偏光子と、
前記第1の偏光子を透過したパルスレーザ光の偏光方向を、前記第1の方向とは逆方向の第2の方向の磁場によって前記第1の回転方向とは逆方向の第2の回転方向に第2の角度回転させる第2のファラデー回転子と、
前記第2のファラデー回転子から出力されたパルスレーザ光に対する規格化透過率が0.9以上となるように配置される第2の偏光子と、を備える紫外線レーザ装置を用いて前記増幅器により増幅されたレーザ光を生成し、
前記増幅されたレーザ光を露光装置に出力し、
電子デバイスを製造するために、前記露光装置内で感光基板上に前記レーザ光を露光すること
を含む、電子デバイスの製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180092630.4A CN116830018A (zh) | 2021-03-19 | 2021-03-19 | 紫外线激光装置和电子器件的制造方法 |
PCT/JP2021/011548 WO2022195893A1 (ja) | 2021-03-19 | 2021-03-19 | 紫外線レーザ装置及び電子デバイスの製造方法 |
JP2023506705A JPWO2022195893A1 (ja) | 2021-03-19 | 2021-03-19 | |
US18/363,602 US20230378713A1 (en) | 2021-03-19 | 2023-08-01 | Ultraviolet laser apparatus and electronic device manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/011548 WO2022195893A1 (ja) | 2021-03-19 | 2021-03-19 | 紫外線レーザ装置及び電子デバイスの製造方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/363,602 Continuation US20230378713A1 (en) | 2021-03-19 | 2023-08-01 | Ultraviolet laser apparatus and electronic device manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022195893A1 true WO2022195893A1 (ja) | 2022-09-22 |
Family
ID=83322185
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/011548 WO2022195893A1 (ja) | 2021-03-19 | 2021-03-19 | 紫外線レーザ装置及び電子デバイスの製造方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230378713A1 (ja) |
JP (1) | JPWO2022195893A1 (ja) |
CN (1) | CN116830018A (ja) |
WO (1) | WO2022195893A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61141189A (ja) * | 1984-12-13 | 1986-06-28 | Nippon Sekiei Glass Kk | フアラデ−回転子を用いた紫外線レ−ザ−システム |
JPH02108017A (ja) * | 1988-10-18 | 1990-04-19 | Hitachi Metals Ltd | 二段式光アイソレータ |
JPH085960A (ja) * | 1994-06-17 | 1996-01-12 | Tokin Corp | 2段型光アイソレータ |
JP2006119661A (ja) * | 2005-12-06 | 2006-05-11 | Sumitomo Osaka Cement Co Ltd | 光源内蔵型光変調器モジュール |
WO2016142995A1 (ja) * | 2015-03-06 | 2016-09-15 | ギガフォトン株式会社 | レーザ装置及び極端紫外光生成システム |
US20160274305A1 (en) * | 2014-10-14 | 2016-09-22 | Source Photonics (Chengdu) Co., Ltd. | Optical Transmitter and Method of Transmitting an Optical Signal |
-
2021
- 2021-03-19 CN CN202180092630.4A patent/CN116830018A/zh active Pending
- 2021-03-19 JP JP2023506705A patent/JPWO2022195893A1/ja active Pending
- 2021-03-19 WO PCT/JP2021/011548 patent/WO2022195893A1/ja active Application Filing
-
2023
- 2023-08-01 US US18/363,602 patent/US20230378713A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61141189A (ja) * | 1984-12-13 | 1986-06-28 | Nippon Sekiei Glass Kk | フアラデ−回転子を用いた紫外線レ−ザ−システム |
JPH02108017A (ja) * | 1988-10-18 | 1990-04-19 | Hitachi Metals Ltd | 二段式光アイソレータ |
JPH085960A (ja) * | 1994-06-17 | 1996-01-12 | Tokin Corp | 2段型光アイソレータ |
JP2006119661A (ja) * | 2005-12-06 | 2006-05-11 | Sumitomo Osaka Cement Co Ltd | 光源内蔵型光変調器モジュール |
US20160274305A1 (en) * | 2014-10-14 | 2016-09-22 | Source Photonics (Chengdu) Co., Ltd. | Optical Transmitter and Method of Transmitting an Optical Signal |
WO2016142995A1 (ja) * | 2015-03-06 | 2016-09-15 | ギガフォトン株式会社 | レーザ装置及び極端紫外光生成システム |
Also Published As
Publication number | Publication date |
---|---|
CN116830018A (zh) | 2023-09-29 |
US20230378713A1 (en) | 2023-11-23 |
JPWO2022195893A1 (ja) | 2022-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3343533B2 (ja) | パルスマルチプライヤーを備えるエキシマレーザ | |
US7227881B2 (en) | Master oscillator—power amplifier excimer laser system | |
US5940418A (en) | Solid-state laser system for ultra-violet micro-lithography | |
KR101194231B1 (ko) | 레이저 시스템 | |
US20030219094A1 (en) | Excimer or molecular fluorine laser system with multiple discharge units | |
US7158553B2 (en) | Master oscillator/power amplifier excimer laser system with pulse energy and pointing control | |
US20020101900A1 (en) | Molecular fluorine laser with single spectral line and polarized output | |
JP4907865B2 (ja) | 多段増幅型レーザシステム | |
WO2022195893A1 (ja) | 紫外線レーザ装置及び電子デバイスの製造方法 | |
US10965087B2 (en) | Laser device | |
JP5393725B2 (ja) | 多段増幅型レーザシステム | |
JPH0437181A (ja) | 狭帯域化エキシマレーザ装置 | |
JPWO2019186767A1 (ja) | 波長変換システム及び加工方法 | |
WO2022195894A1 (ja) | 光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法 | |
WO2022195895A1 (ja) | 光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法 | |
US20020018506A1 (en) | Line selection of molecular fluorine laser emission | |
US20170149199A1 (en) | Laser device | |
WO2023286236A1 (ja) | 光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法 | |
WO2023089673A1 (ja) | レーザ装置、及び電子デバイスの製造方法 | |
WO2023007545A1 (ja) | 紫外線レーザ装置及び電子デバイスの製造方法 | |
JP2008124321A (ja) | レーザ装置、光照射装置及び露光装置、並びに光生成方法、光照射方法、露光方法及びデバイス製造方法 | |
US20240291219A1 (en) | Optical pulse stretcher, laser apparatus, and electronic device manufacturing method | |
WO2024201755A1 (ja) | レーザシステム及び電子デバイスの製造方法 | |
JP2688991B2 (ja) | 狭帯域発振エキシマレーザ | |
WO1998022997A2 (en) | Solid state laser system for ultra-violet micro-lithography |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21931638 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180092630.4 Country of ref document: CN Ref document number: 2023506705 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21931638 Country of ref document: EP Kind code of ref document: A1 |