WO2022195894A1 - 光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法 - Google Patents

光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法 Download PDF

Info

Publication number
WO2022195894A1
WO2022195894A1 PCT/JP2021/011549 JP2021011549W WO2022195894A1 WO 2022195894 A1 WO2022195894 A1 WO 2022195894A1 JP 2021011549 W JP2021011549 W JP 2021011549W WO 2022195894 A1 WO2022195894 A1 WO 2022195894A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical isolator
polarizer
laser
faraday
optical
Prior art date
Application number
PCT/JP2021/011549
Other languages
English (en)
French (fr)
Inventor
裕基 田丸
泰祐 三浦
亮 安原
Original Assignee
ギガフォトン株式会社
大学共同利用機関法人自然科学研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社, 大学共同利用機関法人自然科学研究機構 filed Critical ギガフォトン株式会社
Priority to PCT/JP2021/011549 priority Critical patent/WO2022195894A1/ja
Priority to JP2023506706A priority patent/JPWO2022195894A1/ja
Priority to CN202180092624.9A priority patent/CN116868108A/zh
Publication of WO2022195894A1 publication Critical patent/WO2022195894A1/ja
Priority to US18/363,651 priority patent/US20230375847A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0064Anti-reflection devices, e.g. optical isolaters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/0401Arrangements for thermal management of optical elements being part of laser resonator, e.g. windows, mirrors, lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • H01S3/2251ArF, i.e. argon fluoride is comprised for lasing around 193 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • H01S3/2256KrF, i.e. krypton fluoride is comprised for lasing around 248 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • H01S3/08009Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10084Frequency control by seeding
    • H01S3/10092Coherent seed, e.g. injection locking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2366Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media comprising a gas as the active medium

Definitions

  • the present disclosure relates to an optical isolator, an ultraviolet laser device, and a method of manufacturing an electronic device.
  • a KrF excimer laser device that outputs laser light with a wavelength of about 248 nm and an ArF excimer laser device that outputs laser light with a wavelength of about 193 nm are used.
  • the spectral line width of the spontaneous oscillation light of the KrF excimer laser device and the ArF excimer laser device is as wide as 350-400 pm. Therefore, if the projection lens is made of a material that transmits ultraviolet light, such as KrF and ArF laser light, chromatic aberration may occur. As a result, resolution can be reduced. Therefore, it is necessary to narrow the spectral line width of the laser light output from the gas laser device to such an extent that the chromatic aberration can be ignored. Therefore, in the laser resonator of the gas laser device, a line narrow module (LNM) including a band narrowing element (etalon, grating, etc.) is provided in order to narrow the spectral line width.
  • LNM line narrow module
  • a gas laser device whose spectral line width is narrowed will be referred to as a band-narrowed gas laser device.
  • An optical isolator includes a first polarizer arranged to have a transmission axis having a normalized transmittance of 0.9 or more for linearly polarized incident light having an ultraviolet wavelength; The polarization direction of the light transmitted through the element is rotated in a first rotation direction by a first rotation amount by the magnetic field, and is rotated in a second rotation direction opposite to the first rotation direction by optical activity or birefringence.
  • An ultraviolet laser device includes an oscillation stage laser that outputs linearly polarized pulsed laser light having an ultraviolet wavelength, an amplifier that amplifies and outputs the pulsed laser light, and an oscillation stage laser and the amplifier. and an optical isolator arranged on the optical path between the optical isolator, the optical isolator being arranged so as to have a transmission axis having a normalized transmittance of 0.9 or more for the pulsed laser light output from the oscillation stage laser.
  • 1 polarizer, and the polarization direction of the pulsed laser beam transmitted through the first polarizer is rotated in the first rotation direction by the first rotation amount by the magnetic field, and is rotated by the first rotation by optical activity or birefringence.
  • a method for manufacturing an electronic device includes an oscillation stage laser that outputs linearly polarized pulsed laser light having an ultraviolet wavelength, an amplifier that amplifies and outputs the pulsed laser light, and an oscillation stage laser and the amplifier. and an optical isolator arranged on an optical path between the optical isolator and the optical isolator arranged so as to have a transmission axis having a normalized transmittance of 0.9 or more for the pulsed laser light output from the oscillation stage laser.
  • a second polarizer arranged to have nine or more transmission axes to generate laser light amplified by an amplifier using an ultraviolet laser device, output the amplified laser light to an exposure device, It involves exposing laser light onto a photosensitive substrate in an exposure apparatus to manufacture electronic devices.
  • FIG. 1 is a side view schematically showing the configuration of an ultraviolet laser device according to a comparative example.
  • FIG. 2 is a diagram showing a problem of the ultraviolet laser device according to the comparative example.
  • FIG. 3 schematically shows the configuration of an optical isolator according to a comparative example for suppressing return light.
  • FIG. 4 schematically shows the configuration of an optical isolator according to the first embodiment.
  • FIG. 5 is a chart showing preferable ranges of the magnetic field and the thickness of the Faraday material when the wavelength of the pulsed laser light is the oscillation wavelength of the ArF excimer laser.
  • FIG. 6 is a chart showing preferable ranges of the magnetic field and the thickness of the Faraday material when the wavelength of the pulsed laser light is the oscillation wavelength of the KrF excimer laser.
  • FIG. 7 is a graph showing the relationship between the angle difference between the transmission axis of the polarizer and the polarization direction of the pulsed laser beam and the extinction ratio, and a graph obtained by converting the extinction ratio into normalized transmittance.
  • FIG. 8 schematically shows the configuration of an ultraviolet laser device according to Embodiment 2.
  • FIG. FIG. 9 schematically shows the configuration of an ultraviolet laser device according to Embodiment 3.
  • FIG. 10 is a front view of a Faraday rotator applied to Embodiment 3.
  • FIG. 11 is a cross-sectional view taken along line 11-11 of FIG. 10.
  • FIG. 12 schematically shows the configuration of an ultraviolet laser device according to Embodiment 4.
  • FIG. 13 schematically shows the configuration of an ultraviolet laser device according to Embodiment 5.
  • FIG. 14 schematically shows the configuration of an ultraviolet laser device according to Embodiment 6.
  • FIG. 15 is a top view schematically showing the configuration of an amplification-stage laser applied to Embodiment 6.
  • FIG. FIG. 16 schematically shows a configuration example of an exposure apparatus.
  • Embodiment 4 7.1 Configuration 7.2 Operation 7.3 Action/Effect 8.
  • Embodiment 5 8.1 Configuration 8.2 Operation 8.3 Action/Effect9.
  • Embodiment 6 9.1 Configuration 9.2 Operation 9.3 Action/Effect 10. 11. Method of manufacturing an electronic device. Other application examples of optical isolator 12. Others
  • embodiments of the present disclosure will be described in detail with reference to the drawings. The embodiments described below show some examples of the present disclosure and do not limit the content of the present disclosure. Also, not all the configurations and operations described in each embodiment are essential as the configurations and operations of the present disclosure. In addition, the same reference numerals are given to the same components, and redundant explanations are omitted.
  • a “polarizer” is an optical element that separates light in a specific polarization direction (transmission axis direction) from light whose polarization direction is orthogonal to that.
  • parallel refers to a practically acceptable angle difference that does not lose its technical significance, unless otherwise specified, unless otherwise specified from the context. includes the notion of approximately parallelism, including the range of In addition, the terms “perpendicular” or “perpendicular” in this specification also lose their technical significance, unless explicitly stated otherwise, unless otherwise clear from the context. It includes the concept of substantially perpendicular or substantially perpendicular, including the range of practically acceptable angular differences without .
  • FIG. 1 is a side view schematically showing the configuration of an ultraviolet laser device 20 according to a comparative example.
  • the comparative examples of the present disclosure are forms known by the applicant to be known only by the applicant, and not known examples to which the applicant admits.
  • the ultraviolet laser device 20 is an excimer laser device including a master oscillator (MO) 22 , an MO beam steering unit 24 and a power oscillator (PO) 26 .
  • MO 22 includes a band narrowing module (LNM) 30, a chamber 32, and an output coupling mirror 34.
  • LNM band narrowing module
  • the LNM 30 includes a prism expander 36 for narrowing the spectral width and a grating 38.
  • the prism expander 36 and the grating 38 are arranged in a Littrow arrangement in which the incident angle and the diffraction angle match.
  • Out-coupling mirror 34 is a partially reflective mirror with a reflectivity of 40% to 60%.
  • Output coupling mirror 34 is arranged to form an optical cavity with LNM 30 .
  • a chamber 32 is placed on the optical path of the optical resonator.
  • the chamber 32 includes a pair of discharge electrodes 40a, 40b and two windows 42, 44 through which the laser light is transmitted.
  • the chamber 32 is filled with laser gas.
  • the laser gas includes rare gas, halogen gas, and buffer gas.
  • the rare gas may be argon (Ar) or krypton (Kr) gas, for example.
  • Halogen gas may be, for example, fluorine (F 2 ) gas.
  • the buffer gas may be neon (Ne) gas, for example.
  • a voltage is applied between the discharge electrodes 40a and 40b by a power source (not shown).
  • the power supply may be a pulse power module (PPM) that includes a switch and charging capacitor.
  • PPM pulse power module
  • the MO beam steering unit 24 includes a high reflection mirror 50 and a high reflection mirror 52, and is arranged so that the laser light output from the MO 22 is incident on the PO 26.
  • MO pulse energy monitor 54 is arranged between the high reflection mirror 50 and the high reflection mirror 52 .
  • MO pulse energy monitor 54 includes beam splitter (BS) 55 and optical sensor 56 .
  • the BS 55 is arranged on the optical path of the pulsed laser beam output from the MO 22 and arranged so that the reflected light from the BS 55 is incident on the optical sensor 56 .
  • PO 26 is an amplification stage laser that includes a rear mirror 60 , a chamber 62 and an output coupling mirror 64 .
  • the rear mirror 60 and the output coupling mirror 64 constitute an optical resonator, and a chamber 62 is arranged on the optical path of this optical resonator.
  • the configuration of the chamber 62 may be similar to that of the chamber 32.
  • the chamber 62 includes a pair of discharge electrodes 70a, 70b and two windows 72,74.
  • the chamber 62 is filled with laser gas.
  • Rear mirror 60 may be, for example, a partially reflective mirror with a reflectivity of 50% to 90%.
  • Out-coupling mirror 64 may be a partially reflective mirror with a reflectivity of 10% to 30%.
  • a high voltage pulse is applied between the discharge electrodes 40a and 40b in the chamber 32 from a power source (not shown).
  • a discharge is generated between the discharge electrodes 40a and 40b in the chamber 32, the laser gas is excited, and the ultraviolet wavelength of 150 nm to 380 nm narrowed by the optical resonator composed of the output coupling mirror 34 and the LNM 30. of pulsed laser light is output from the output coupling mirror 34 .
  • the energy of the pulsed laser light output from the output coupling mirror 34 is measured by the MO pulse energy monitor 54 . Also, this pulsed laser light is incident on the rear mirror 60 of the PO 26 as seed light by the MO beam steering unit 24 .
  • a high voltage pulse is applied between the discharge electrodes 70a and 70b in the chamber 62 from a power source (not shown).
  • a discharge is generated between the discharge electrodes 70a and 70b in the chamber 62, the laser gas is excited, and the seed light is amplified by the Fabry-Perot optical resonator composed of the output coupling mirror 64 and the rear mirror 60.
  • the pulsed laser beam is output from the output coupling mirror 64 as an output laser beam.
  • FIG. 2 is a diagram showing a problem of the ultraviolet laser device 20 according to the comparative example. If the return light from PO26 returns to MO22, laser performance will deteriorate.
  • the term "returned light” as used herein refers to the sum of two types of light, that is, the MO returned light and the PO exit light.
  • the light emitted from the MO 22 is incident on the PO 26, but since the rear mirror 60 inside the PO 26 is a partially reflecting mirror (reflectance 50% to 90%), part of the light incident on the rear mirror 60 is inside the PO 26. Instead of going to , it returns to the MO22 side as it is.
  • the light that is reflected by the rear mirror 60 and returns to the MO 22 side without proceeding into the chamber 62 of the PO 26 is called "MO return light".
  • the light incident on the PO 26 from the MO 22 and transmitted through the rear mirror 60 is resonated and amplified within the PO 26 and output.
  • rear mirror 60 in PO 26 is a partially reflective mirror, so some of the light that enters chamber 62 of PO 26 and is amplified returns to MO 22 .
  • the light that passes through the rear mirror 60 and returns to the MO 22 is called "PO light".
  • the returned light becomes a heat load on the LNM 30, etc., and can cause deterioration in line width stability, pulse energy stability, and the like.
  • FIG. 3 shows a configuration example of an optical isolator 80 according to a comparative example that suppresses return light.
  • An optical isolator 80 is placed between MO 22 and PO 26 .
  • the upper part of FIG. 3 shows the operation of the optical isolator 80 with respect to the pulsed laser light (MO injection light: outgoing light) traveling from the MO 22 to the PO 26 .
  • the lower part of FIG. 3 shows the operation of the optical isolator 80 with respect to laser light (return light) traveling from the PO 26 toward the MO 22 .
  • the optical isolator 80 has a half-wave plate 81, a first polarizer 83, a Faraday rotator 84, and a second polarizer 88 arranged in this order from the MO 22 side.
  • Faraday rotator 84 includes Faraday material 85 and magnets 86 .
  • the rightward arrow shown in the Faraday rotator 84 indicates the direction of the magnetic field generated by the magnet 86.
  • a double-headed arrow shown in a dashed circle in the figure represents the direction of the plane of polarization of the pulsed laser beam when the line of sight is aligned with the direction in which the pulsed laser beam travels, that is, the polarization direction.
  • FIG. 4 as well.
  • horizontally polarized, linearly polarized pulsed laser light is output from the MO 22 .
  • the direction of polarization of the horizontally polarized pulsed laser light output from the MO 22 is rotated counterclockwise by 45 degrees by the half-wave plate 81 .
  • the first polarizer 83 has its transmission axis parallel to the polarization direction of the pulsed laser beam output from the half-wave plate 81, and the pulsed laser beam output from the half-wave plate 81 is , is transmitted through the first polarizer 83 .
  • the pulsed laser light transmitted through the first polarizer 83 has its polarization direction rotated 45 degrees clockwise by the Faraday rotator 84 to which the magnetic field is applied. As a result, the pulsed laser light output from the Faraday rotator 84 is horizontally polarized.
  • the second polarizer 88 has its transmission axis parallel to the polarization direction of the pulsed laser light output from the Faraday rotator 84, and the pulsed laser light output from the Faraday rotator 84 is directed to the second After passing through polarizer 88 , it enters PO 26 .
  • the half-wave plate 81 adjusts the polarization direction of the pulsed laser beam from the MO 22 so that the polarization direction of the pulsed laser beam output from the MO 22 and the polarization direction of the pulsed laser beam incident on the PO 26 are the same. . This avoids changing other modules that depend on the polarization direction.
  • the return light from the PO 26 is transmitted through the second polarizer 88 in the same polarization direction as the incident light to the PO 26, and is polarized by the Faraday rotator 84 to which the magnetic field is applied. rotates 45 degrees clockwise.
  • the polarization direction of the return light that has passed through the Faraday rotator 84 is orthogonal to the transmission axis of the first polarizer 83 , and the return light is reflected by the first polarizer 83 and does not enter the MO 22 .
  • the half-wave plate 81 in the optical isolator 80 according to the comparative example has low durability at short wavelengths such as excimer lasers, and is difficult to use stably for a long period of time.
  • FIG. 4 schematically shows the configuration of the optical isolator 120 according to the first embodiment. Regarding the configuration shown in FIG. 4, points different from FIG. 3 will be described.
  • the optical isolator 120 does not use the half-wave plate 81 described with reference to FIG. Two polarizers 88 are arranged in this order.
  • the first polarizer 83 is arranged so that its transmission axis is parallel to the polarization direction of the pulsed laser light output from the MO 22 and polarized in a specific direction.
  • Faraday rotator 112 includes Faraday material 135 and magnets 136 .
  • Faraday material 135 is a material that is transparent at the wavelengths used and has optical activity or birefringence.
  • Faraday material 135 is, for example, quartz or magnesium fluoride (MgF 2 ).
  • the magnet 136 has a hollow structure, and the direction of application of the magnetic field is parallel to the direction of propagation of light. For example, the direction of the applied magnetic field is the direction of the arrow shown in Faraday rotator 112 in FIG.
  • the second polarizer 88 is arranged so that its transmission axis is parallel to the polarization direction of the pulsed laser light output from the Faraday rotator 112 toward the PO 26 .
  • the Faraday material 135 has optical activity or birefringence
  • the plane of polarization is rotated by the Faraday effect when a magnetic field is applied, and the plane of polarization is rotated by the optical activity or birefringence.
  • the outgoing light is transmitted through the Faraday material 135, so that the plane of polarization is rotated +45 degrees (or ⁇ 45 degrees) by the Faraday effect and , the magnetic flux density of the magnetic field and the thickness of the Faraday material 135 are selected such that the optical activity or birefringence rotates the plane of polarization by ⁇ 45 degrees (or +45 degrees) ⁇ (180 ⁇ n) degrees.
  • n is an integer.
  • the magnetic flux density of the applied magnetic field and the thickness of the Faraday material 135 are adjusted so that the angle of rotation of the plane of polarization due to the Faraday effect and the angle of rotation of the plane of polarization due to optical activity or birefringence are offset. is selected.
  • the Faraday rotator 112 satisfying such conditions is used, the polarization direction does not change before and after transmission through the Faraday rotator 112 .
  • the “outgoing light” that passes through the Faraday rotator 112 in the direction from MO 22 to PO 26 rotates the plane of polarization due to the Faraday effect (45 degrees clockwise rotation) and optical activity or birefringence
  • the rotation of the plane of polarization (rotation by 45 degrees in the counterclockwise direction) due to the rotation of the plane of polarization is opposite to each other.
  • the arrow of a thin line that shows a state of 45-degree rotation in the counterclockwise direction in the figure represents the rotation of the plane of polarization due to optical activity or birefringence.
  • the pulsed laser light output from MO 22 passes through first polarizer 83, Faraday rotator 112 and second polarizer 88, respectively, and enters PO 26.
  • the Faraday effect has non-reciprocity with respect to the direction of travel of light because the direction of rotation of the plane of polarization does not depend on the direction of propagation of light, but rather the direction of application of the magnetic field.
  • the direction of rotation of the plane of polarization due to optical activity and birefringence depends on the direction of propagation of light, it is reciprocal to the direction of travel of light.
  • the return light from the PO 26 has its polarization direction rotated 90 degrees clockwise after passing through the Faraday rotator 112 and is reflected by the first polarizer 83 .
  • the return light from the PO 26 rotates the plane of polarization due to the Faraday effect (rotation of 45 degrees) and the rotation of the plane of polarization (rotation of 45 degrees) due to optical activity or birefringence in the same direction. , these rotation angles overlap, and the polarization direction rotates 90 degrees before and after transmission through the Faraday rotator 112 .
  • the direction of rotation of the plane of polarization due to the Faraday effect of the Faraday rotator 112 shown in FIG. 4 is an example of the "first direction of rotation" in the present disclosure. Further, the direction of rotation of the plane of polarization due to the optical activity or birefringence of the Faraday material 135 with respect to the pulsed laser beam traveling in the direction from the first polarizer 83 to the second polarizer 88 is the “second rotation direction” in the present disclosure. An example.
  • the amount ⁇ of rotation of the plane of polarization due to optical activity is represented by formula (1).
  • L in the formula is the length of the medium, which in this example is the length of the crystal (thickness in the direction of the optical axis).
  • Equation (2) the amount ⁇ v by which the plane of polarization rotates due to the Faraday effect is expressed by Equation (2).
  • ⁇ v VBL (2)
  • B in the formula is the magnetic flux density of the applied magnetic field.
  • the amount ⁇ v by which the plane of polarization is rotated by the Faraday effect is 45 degrees according to Equation (2). Therefore, by applying a magnetic field so that the direction in which the plane of polarization rotates due to the Faraday effect is opposite to the direction in which the plane of polarization rotates due to optical activity, the direction of polarization does not change before and after transmission through the Faraday rotator 112 . can be made
  • Ne 1.4414 No is the refractive index for ordinary rays and Ne is the refractive index for extraordinary rays.
  • ⁇ ( ⁇ ) ⁇ n( ⁇ ) ⁇ d ⁇ (360/ ⁇ ) (3)
  • the Verdet constant V of MgF 2 at a wavelength of 193 nm is 38.1 rad/Tm. Therefore, for example, this can be achieved by setting the thickness (medium length) L of MgF 2 in the optical axis direction to 20.62 mm and the magnetic flux density B of the applied magnetic field to 1.00T.
  • the amount ⁇ v by which the plane of polarization is rotated by the Faraday effect is 45 degrees according to Equation (2). Therefore, by applying a magnetic field so that the direction in which the plane of polarization rotates due to the Faraday effect is opposite to the direction in which the plane of polarization rotates due to optical activity, the direction of polarization does not change before and after transmission through the Faraday rotator 112 . can be made
  • FIGS. 5 and 6 show Preferred ranges for the magnetic field and Faraday material 135 thickness.
  • FIG. 5 shows the preferred range when the wavelength of the incident light is 193 nm
  • FIG. 6 shows the preferred range when the wavelength of the incident light is 248 nm.
  • the oscillation wavelength of the ArF excimer laser includes a wavelength of 193 nm.
  • the oscillation wavelength of the KrF excimer laser includes a wavelength of 248 nm.
  • the preferable range was selected based on the ease of realization of the magnetic field.
  • the magnetic field in the most preferable range is the magnetic flux density when a neodymium magnet or the like having strong magnetic force is used.
  • the thickness of the Faraday material 135 is determined based on the selected material, the magnetic flux density of the magnetic field, and the Verdet constant such that the rotation of the plane of polarization due to the Faraday effect and the rotation of the plane of polarization due to optical activity or birefringence are each 45 degrees. It is a value obtained by calculating the thickness of
  • the Faraday material 135 is MgF 2 and the wavelength of the pulsed laser light is 193 nm, which is the oscillation wavelength of the ArF excimer laser, the magnetic field applied to the Faraday rotator 112 and the light of the Faraday material 135
  • the selectable ranges for axial thickness are 0.5T to 3.0T and 6mm to 42mm. More preferably 0.75T to 2.9T and 7mm to 30mm, most preferably 0.8T to 1.5T and 13mm to 26mm.
  • the notation indicating a numerical range such as "0.5T to 3.0T” indicates a range including the numerical value shown before and after " ⁇ ", for example, the notation "0.5T to 3.0T" is " 0.5T or more and 3.0T or less".
  • the magnetic field applied to the Faraday rotator 112 and the thickness of the Faraday material 135 in the optical axis direction can be selected.
  • the ranges are 0.5T to 3.0T and 3mm to 25mm. More preferably 0.75T to 2.9T and 6mm to 20mm, most preferably 0.8T to 1.5T and 8mm to 15mm.
  • the Faraday material 135 is MgF 2 and the wavelength of the pulsed laser light is 248 nm, which is the oscillation wavelength of the KrF excimer laser
  • the magnetic field applied to the Faraday rotator 112 and the Faraday material 135 The selectable ranges for the thickness in the optical axis direction are 0.5T to 3.0T and 13mm to 83mm. More preferably 0.75T to 2.9T and 14mm to 55mm, most preferably 0.8T to 1.5T and 27mm to 52mm.
  • the magnetic field applied to the Faraday rotator 112 and the thickness of the Faraday material 135 in the optical axis direction can be selected.
  • the ranges are 0.5T to 3.0T and 8mm to 53mm. More preferably 0.75T to 2.9T and 10mm to 40mm, most preferably 0.8T to 1.5T and 15mm to 32mm.
  • the Faraday material 135 may be divided into a plurality of pieces, and the sum of these pieces may satisfy the above thickness.
  • the number of divisions may be, for example, two, three, or four.
  • FIG. 7 shows a graph showing the relationship between the angle difference between the transmission axis of the polarizer and the polarization direction of the pulsed laser beam and the extinction ratio (dB), and a graph obtained by converting the extinction ratio into normalized transmittance.
  • the vertical axis on the left side of FIG. 7 represents the extinction ratio, and the vertical axis on the right side represents the normalized transmittance.
  • the normalized transmittance is a value normalized so that the transmittance is 1.0 when the angle difference is 0 degree.
  • the preferable allowable range of the angle difference between the transmission axis of the first polarizer 83 or the second polarizer 88 and the polarization direction of the pulsed laser light is 0.9 or more when the normalized transmittance is 0.9 or more. is a range of ⁇ 17.5 degrees.
  • the polarization direction of the pulsed laser light before and after passing through the optical isolator 120 is changed without using the half-wave plate 81 having low durability at short wavelengths. can be the same. Therefore, return light can be suppressed without changing modules that depend on other polarization directions.
  • the polarization direction of forward light transmitted through the first polarizer 83 and incident on the Faraday rotator 112 is maintained before and after transmission through the Faraday rotator 112 , and transmitted through the second polarizer 88 .
  • the intended function can be achieved in practice without being limited to this example.
  • a range allows for an angular difference in polarization direction before and after transmission through the Faraday rotator 112 .
  • the polarization direction of forward light that passes through the first polarizer 83 and enters the Faraday rotator 112 is maintained within an angle difference of 17.5 degrees before and after the Faraday rotator 112 passes through. and the polarization direction of the return light that passes through the second polarizer 88 and enters the Faraday rotator 112 is rotated within 90 degrees ⁇ 17.5 degrees before and after passing through the Faraday rotator 112 .
  • the polarization direction of forward light incident on the first polarizer 83 and the polarization direction of return light returning from the PO 26 transmitted through the Faraday rotator 112 and incident on the first polarizer 83 are 90 degrees ⁇ 17 degrees. Due to the crossing angle within 0.5 degrees, the return light is reflected by the first polarizer 83 and is suppressed from entering the MO 22 .
  • FIG. 8 schematically shows a configuration example of the ultraviolet laser device 100 according to the second embodiment. Regarding the configuration shown in FIG. 8, points different from FIG. 1 will be described.
  • the ultraviolet laser device 100 differs from the configuration in FIG. 1 in that an optical isolator 120 is arranged on the optical path between the MO 22 and PO 26 .
  • Optical isolator 120 includes first polarizer 83 , Faraday rotator 112 , and second polarizer 88 as described in the first embodiment.
  • the optical isolator 120 further includes a damper 116 for termination of return light.
  • the damper 116 is arranged such that the return light reflected by the first polarizer 83 is incident on the damper 116 .
  • Other configurations may be the same as in FIG.
  • FIG. 8 also shows the polarization direction of the pulsed laser light at points indicated by points a, b, and c on the optical path between the MO 22 and PO 26 .
  • FIG. 8 shows the polarization directions at points a to c of the pulsed laser beam propagating in the direction from MO22 to PO26, and points c and b for the return light returning in the direction from PO26 to MO22. indicates the polarization direction at the point.
  • a pulsed laser beam (point a) output from the MO 22 and polarized in a specific direction is transmitted through the first polarizer 83 (point b).
  • the pulsed laser beam transmitted through the first polarizer 83 enters the Faraday rotator 112, maintains its polarization direction before and after the Faraday rotator 112, and is output from the Faraday rotator 112 (point c).
  • a pulsed laser beam output from the Faraday rotator 112 is transmitted through the second polarizer 88 .
  • the polarization direction at point a and the polarization direction at point d of the pulsed laser beam traveling from MO 22 to PO 26 are the same.
  • the returning light that has passed through the second polarizer 88 has its polarization direction rotated by 90 degrees by the Faraday rotator 112 (point b).
  • the polarization direction of the pulsed laser light propagating in the direction from MO22 to PO26 is orthogonal to the polarization direction of the pulsed laser light returning in the direction from PO26 to MO22. Therefore, the pulsed laser light returning from PO 26 toward MO 22 is reflected by the first polarizer 83 and enters the damper 116 . Damper 116 absorbs and blocks the light reflected by first polarizer 83 .
  • the polarization direction can be made the same before and after transmission through the optical isolator 120 without using the half-wave plate 81 having low durability at short wavelengths. can. Therefore, return light can be suppressed without changing modules that depend on other polarization directions.
  • the pulsed laser light returning from the PO 26 in the direction of the MO 22 is reflected by the first polarizer 83 and absorbed by the damper 116, and is incident on the MO 22. is suppressed.
  • the heat load on the MO 22 is reduced, and the energy stability and line width stability are improved as compared with the configuration of the comparative example.
  • the MO pulse energy monitor 54 can be placed either upstream or downstream of the optical isolator 120. However, as shown in FIG. Arranged configurations are preferred.
  • FIG. 9 schematically shows the configuration of an ultraviolet laser device 103 according to the third embodiment. Regarding the configuration shown in FIG. 9, points different from FIG. 8 will be described.
  • the ultraviolet laser device 103 according to the third embodiment uses a temperature-adjustable Faraday rotator 113 instead of the Faraday rotator 112 in the second embodiment, and has a configuration in which the temperature of the Faraday rotator 113 is controlled to a constant temperature.
  • the configuration differs from that of the second embodiment in that it is provided.
  • FIG. 10 is a front view schematically showing the configuration of the Faraday rotator 113
  • FIG. 11 is a cross-sectional view taken along line 11-11 of FIG.
  • a Faraday material 135 is held in a holder 137 and placed inside a hollow magnet 136 .
  • Faraday rotator 113 includes heaters 138 a and 138 b and temperature sensor 139 .
  • Heaters 138 a and 138 b and temperature sensor 139 are attached to holder 137 . It is preferable that the heaters 138a and 138b are arranged at symmetrical positions with the Faraday material 135 interposed therebetween so as to extend parallel to the optical axis direction.
  • a temperature sensor 139 detects the temperature of the Faraday rotator 113 .
  • the ultraviolet laser device 103 includes a heater power source 142 and a processor 144 that controls the temperature of the Faraday rotator 113 (see FIG. 9).
  • a heater power supply 142 supplies power to the heaters 138a and 138b.
  • the processor 144 controls the heater power supply 142 so as to keep the temperature of the Faraday rotator 113 constant. Note that the description of "keep constant" includes keeping within an allowable range.
  • Processor 144 controls heaters 138 a and 138 b via heater power supply 142 to suppress temperature changes in Faraday material 135 .
  • the processor 144 is a processing device that includes a storage device storing a control program and a CPU (Central Processing Unit) that executes the control program.
  • the processor 144 drives the heaters 138a and 138b via the heater power supply 142, monitors the temperature with the temperature sensor 139 of the Faraday rotator 113, and controls the temperature of the Faraday rotator 113 so as to maintain a predetermined temperature. do.
  • the predetermined temperature is, for example, 100° C. or less, preferably room temperature.
  • Other operations are the same as those of the second embodiment.
  • FIG. 12 schematically shows the configuration of an ultraviolet laser device 104 according to Embodiment 4.
  • the ultraviolet laser device 104 shown in FIG. 12 has a biaxially adjustable parallel plane substrate 202 and a biaxially adjustable high reflection mirror 52 arranged on the optical path between the second polarizer 88 and the PO 26 . It differs from the configuration shown in FIG.
  • the plane-parallel substrate 202 is held by a two-axis angle adjustment holder 204 whose angle can be adjusted using each of two orthogonal axes as a rotation axis.
  • a plane-parallel substrate 202 is placed on the optical path between the second polarizer 88 and the highly reflective mirror 52 .
  • the plane-parallel substrate 202 may be a calcium fluoride substrate.
  • the two-axis angle adjustment holder 204 is a holder whose angle can be adjusted using, for example, an axis perpendicular to the plane of FIG. 12 and an axis parallel to the plane of the plane-parallel substrate 202 and the plane of FIG. It's okay.
  • the high-reflection mirror 52 is held by a two-axis angle adjustment holder 208 whose angle can be adjusted using each of two orthogonal axes as a rotation axis.
  • the two-axis angle adjustment holder 208 is a holder whose angle can be adjusted using, for example, an axis perpendicular to the paper surface of FIG. 12 and an axis parallel to the reflecting surface of the high reflection mirror 52 and the paper surface of FIG. It's okay.
  • the optical axis is adjusted by adjusting the biaxially adjustable parallel plane substrate 202 and the biaxially adjustable high reflection mirror 52 so that the pulsed laser beam from the MO 22 reaches the PO 26 most efficiently. It is made to be incident.
  • the biaxially adjustable parallel plane substrate 202 is adjusted so that the pulsed laser light from the MO 22 is shifted parallel to the traveling direction so that the pulsed laser light is most efficiently incident on the PO 26 .
  • the biaxially adjustable high reflection mirror 52 is adjusted so that the pulsed laser light is most efficiently incident on the PO 26 .
  • Each of the biaxial angle adjustment holder 204 and the biaxial angle adjustment holder 208 is an example of the "optical axis adjustment mechanism" in the present disclosure.
  • a configuration that includes both the biaxially adjustable parallel plane substrate 202 and the biaxially adjustable high-reflection mirror 52 is a preferred form, but a configuration that includes only one of these is also possible.
  • the same effects as those of the second embodiment can be obtained. Furthermore, according to the configuration of the fourth embodiment, it becomes easier to adjust the optical axis of the injected light incident on the PO 26 compared to the configuration of the second embodiment.
  • FIG. 13 schematically shows the configuration of an ultraviolet laser device 105 according to Embodiment 5. As shown in FIG. Regarding the configuration shown in FIG. 13, points different from FIG. 8 will be described.
  • An ultraviolet laser device 105 shown in FIG. 13 includes an ultraviolet solid-state laser device 232 as an oscillation stage laser in place of MO22 in FIG. 8, and an excimer amplifier 236 in place of PO26. Other configurations may be similar to the configuration shown in FIG.
  • the ultraviolet solid-state laser device 232 emits, for example, the 4th, 5th or 6th harmonic of a solid-state laser whose fundamental wave is in the near-infrared band (wavelength of 780 nm to 2500 nm) (wavelength range of 150 nm to 380 nm). ).
  • the ultraviolet solid-state laser device 232 is arranged to output seed light with a wavelength of about 193 nm and enter the excimer amplifier 236 .
  • the ultraviolet solid-state laser device 232 may have a configuration including a semiconductor laser system, a titanium-sapphire amplifier, and a wavelength conversion system.
  • the semiconductor laser system includes a distributed feedback (DFB) semiconductor laser that outputs a CW laser beam with a wavelength of about 773.6 nm, and a semiconductor optical amplifier (SOA) that pulses the CW laser beam. It may be a configuration including.
  • the wavelength conversion system includes a plurality of nonlinear optical crystals, wavelength-converts an incident pulsed laser beam, and outputs a quadruple harmonic pulsed laser beam.
  • a wavelength conversion system includes, for example, an LBO crystal and a KBBF crystal.
  • LBO crystal is a nonlinear optical crystal represented by the chemical formula LiB 3 O 5 .
  • a KBBF crystal is a nonlinear optical crystal represented by the chemical formula KBe 2 BO 3 F 2 .
  • the excimer amplifier 236 includes a chamber 242 , a convex cylindrical mirror 244 and a concave cylindrical mirror 246 .
  • the chamber 242 includes a pair of discharge electrodes 250a, 250b and two windows 252, 254 through which laser light is transmitted.
  • the discharge electrodes 250a and 250b are arranged facing each other with a discharge space 256 interposed therebetween. A space between the discharge electrodes 250 a and 250 b becomes a discharge space 256 .
  • the direction in which the discharge electrodes 250a and 250b face each other across the discharge space 256 corresponds to the discharge direction.
  • the chamber 242 is filled with a laser gas similar to the laser gas described in FIG.
  • the convex curved surface of the convex cylindrical mirror 244 and the concave curved surface of the concave cylindrical mirror 246 are each coated with a highly reflective film for a wavelength of about 193 nm.
  • the convex cylindrical mirror 244 and the concave cylindrical mirror 246 are arranged so that the seed light from the solid-state ultraviolet laser device 232 passes through the discharge space 256 of the excimer amplifier 236 three times, thereby expanding and amplifying the beam in the discharge direction. placed.
  • the seed light output from the solid-state ultraviolet laser device 232 passes through the optical isolator 120 and enters the excimer amplifier 236 .
  • the seed light with a wavelength of about 193 nm incident on the excimer amplifier 236 is reflected by the convex cylindrical mirror 244 and the concave cylindrical mirror 246, thereby passing through the discharge space 256 between the discharge electrodes 250a and 250b three times. This expands and amplifies the beam of seed light.
  • Excimer amplifier 236 is an example of a "multipass amplifier" in this disclosure. Various multi-pass amplifiers can be applied without being limited to the 3-pass excimer amplifier 236 .
  • the operation of the optical isolator 120 is the same as in Embodiment 1 described with reference to FIG.
  • the optical isolator 120 prevents amplified spontaneous emission (ASE) or the like generated by the excimer amplifier 236 from entering the ultraviolet solid-state laser device 232 .
  • ASE amplified spontaneous emission
  • the polarization direction can be made the same before and after transmission through the optical isolator 120 without using the half-wave plate 81 having low durability in short wavelengths. can. Therefore, return light can be suppressed without changing modules that depend on other polarization directions.
  • the ultraviolet laser device 105 since the light returning from the excimer amplifier 236 toward the ultraviolet solid-state laser device 232 does not enter the ultraviolet solid-state laser device 232, the heat load on the ultraviolet solid-state laser device 232 is reduced. , energy stability, line width stability, etc. are improved as compared with the configuration of the comparative example.
  • FIG. 14 schematically shows the configuration of an ultraviolet laser device 106 according to the sixth embodiment. Regarding the configuration shown in FIG. 14, points different from FIG. 8 will be described.
  • the ultraviolet laser device 106 according to Embodiment 6 differs from the configuration of Embodiment 1 in the configuration of the amplification stage laser and the configuration of the high reflection mirror that introduces the laser light from the MO 22 into the amplification stage laser.
  • the stage laser differs in that it is PO 266 with a ring resonator 270 .
  • FIG. 15 is a top view schematically showing the configuration of the PO 266 applied to Embodiment 6.
  • FIG. The ring resonator 270 includes a highly reflective mirror 284 , a highly reflective mirror 285 , a highly reflective mirror 286 and a partially reflective mirror 290 .
  • the ultraviolet laser device 106 is provided with a high reflection mirror 283 in order to introduce the laser light output from the MO 22 and reflected by the high reflection mirrors 50 and 52 into the ring resonator 270 .
  • the high reflection mirror 283 is arranged on the optical path between the high reflection mirror 52 and the partial reflection mirror 290 so that the laser beam reflected by the high reflection mirror 52 is incident on the partial reflection mirror 290 .
  • the laser light output from the MO 22 is sequentially reflected by the high reflection mirror 50 , the high reflection mirror 52 and the high reflection mirror 283 , and then enters the ring resonator 270 through the partial reflection mirror 290 .
  • the laser light transmitted through the partial reflection mirror 290 is reflected by the high reflection mirror 284, enters the chamber 62 and is amplified, is then reflected by the high reflection mirrors 285 and 286, and enters the chamber 62 again. is amplified by A part of the laser light output from the chamber 62 is transmitted by the partially reflecting mirror 290 and the other part is reflected and amplified again by the ring resonator 270 .
  • the amplified pulsed laser light that has passed through the partially reflecting mirror 290 is output from the ultraviolet laser device 106 .
  • the optical isolator 120 suppresses return light from the PO 266 from entering the MO 22 .
  • the operation of the optical isolator 120 is the same as that of the second embodiment described with reference to FIG.
  • FIG. 16 schematically shows a configuration example of an exposure apparatus 300 .
  • Exposure apparatus 300 includes illumination optical system 304 and projection optical system 306 .
  • the illumination optical system 304 illuminates a reticle pattern of a reticle (not shown) placed on the reticle stage RT with laser light incident from the ultraviolet laser device 100 .
  • the projection optical system 306 reduces and projects the laser beam transmitted through the reticle to form an image on a workpiece (not shown) placed on the workpiece table WT.
  • the workpiece is a photosensitive substrate, such as a semiconductor wafer, coated with photoresist.
  • the exposure apparatus 300 synchronously translates the reticle stage RT and the workpiece table WT, thereby exposing the workpiece to laser light reflecting the reticle pattern.
  • a semiconductor device can be manufactured through a plurality of processes.
  • a semiconductor device is an example of an "electronic device" in this disclosure.
  • the ultraviolet laser devices 103, 104, 105, or 106 described in the third to sixth embodiments may be used to generate laser light.
  • the optical isolator 120 exemplified in Embodiments 1 to 6 can be applied to various applications other than the ultraviolet laser device.
  • the incident light to the optical isolator 120 is not limited to pulsed laser light, and may be CW laser light or radiation light.
  • an optical isolator 120 may be placed at the exit of the emitted light in the accelerator.
  • the optical isolator 120 may be arranged to suppress stray light of wavelengths in the ultraviolet region in a spectroscope using a deuterium lamp.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Power Engineering (AREA)

Abstract

本開示の一観点に係る光アイソレータは、紫外線波長の直線偏光の入射光に対する規格化透過率が0.9以上の透過軸となるように配置される第1の偏光子と、第1の偏光子を透過した光の偏光方向を、磁場によって第1の回転方向に第1の回転量で回転させると共に、光学活性もしくは複屈折によって第1の回転方向とは逆方向の第2の回転方向に第2の回転量で回転させるファラデー材料が用いられたファラデー回転子と、ファラデー回転子を透過した入射光に対する規格化透過率が0.9以上の透過軸となるように配置される第2の偏光子とを備える。

Description

光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法
 本開示は、光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法に関する。
 近年、半導体露光装置においては、半導体集積回路の微細化及び高集積化につれて、解像力の向上が要請されている。このため、露光用光源から放出される光の短波長化が進められている。例えば、露光用のガスレーザ装置としては、波長約248nmのレーザ光を出力するKrFエキシマレーザ装置、ならびに波長約193nmのレーザ光を出力するArFエキシマレーザ装置が用いられる。
 KrFエキシマレーザ装置及びArFエキシマレーザ装置の自然発振光のスペクトル線幅は、350~400pmと広い。そのため、KrF及びArFレーザ光のような紫外線を透過する材料で投影レンズを構成すると、色収差が発生してしまう場合がある。その結果、解像力が低下し得る。そこで、ガスレーザ装置から出力されるレーザ光のスペクトル線幅を、色収差が無視できる程度となるまで狭帯域化する必要がある。そのため、ガスレーザ装置のレーザ共振器内には、スペクトル線幅を狭帯域化するために、狭帯域化素子(エタロンやグレーティング等)を含む狭帯域化モジュール(Line Narrow Module:LNM)が備えられる場合がある。以下では、スペクトル線幅が狭帯域化されるガスレーザ装置を狭帯域化ガスレーザ装置という。
特開平6-51242号公報 特開昭61-141189号公報 特開2015-64569号公報
概要
 本開示の一観点に係る光アイソレータは、紫外線波長の直線偏光の入射光に対する規格化透過率が0.9以上の透過軸となるように配置される第1の偏光子と、第1の偏光子を透過した光の偏光方向を、磁場によって第1の回転方向に第1の回転量で回転させると共に、光学活性もしくは複屈折によって第1の回転方向とは逆方向の第2の回転方向に第2の回転量で回転させるファラデー材料が用いられたファラデー回転子と、ファラデー回転子を透過した入射光に対する規格化透過率が0.9以上の透過軸となるように配置される第2の偏光子と、を備える。
 本開示の他の一観点に係る紫外線レーザ装置は、紫外線波長の直線偏光のパルスレーザ光を出力する発振段レーザと、パルスレーザ光を増幅して出力する増幅器と、発振段レーザと増幅器との間の光路上に配置される光アイソレータと、を備え、光アイソレータは、発振段レーザから出力されたパルスレーザ光に対する規格化透過率が0.9以上の透過軸となるように配置される第1の偏光子と、第1の偏光子を透過したパルスレーザ光の偏光方向を、磁場によって第1の回転方向に第1の回転量で回転させると共に、光学活性もしくは複屈折によって第1の回転方向とは逆方向の第2の回転方向に第2の回転量で回転させるファラデー材料が用いられたファラデー回転子と、ファラデー回転子を透過したパルスレーザ光に対する規格化透過率が0.9以上の透過軸となるように配置される第2の偏光子と、を備える。
 本開示の他の一観点に係る電子デバイスの製造方法は、紫外線波長の直線偏光のパルスレーザ光を出力する発振段レーザと、パルスレーザ光を増幅して出力する増幅器と、発振段レーザと増幅器との間の光路上に配置される光アイソレータと、を備え、光アイソレータは、発振段レーザから出力されたパルスレーザ光に対する規格化透過率が0.9以上の透過軸となるように配置される第1の偏光子と、第1の偏光子を透過したパルスレーザ光の偏光方向を、磁場によって第1の回転方向に第1の回転量で回転させると共に、光学活性もしくは複屈折によって第1の回転方向とは逆方向の第2の回転方向に第2の回転量で回転させるファラデー材料が用いられたファラデー回転子と、ファラデー回転子を透過したパルスレーザ光に対する規格化透過率が0.9以上の透過軸となるように配置される第2の偏光子と、を備える紫外線レーザ装置を用いて増幅器により増幅されたレーザ光を生成し、増幅されたレーザ光を露光装置に出力し、電子デバイスを製造するために、露光装置内で感光基板上にレーザ光を露光することを含む。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、比較例に係る紫外線レーザ装置の構成を概略的に示す側面図である。 図2は、比較例に係る紫外線レーザ装置の課題を示す図である。 図3は、戻り光を抑制する比較例に係る光アイソレータの構成を概略的に示す。 図4は、実施形態1に係る光アイソレータの構成を概略的に示す。 図5は、パルスレーザ光の波長がArFエキシマレーザの発振波長の場合における磁場とファラデー材料の厚さの好ましい範囲を示す図表である。 図6は、パルスレーザ光の波長がKrFエキシマレーザの発振波長の場合における磁場とファラデー材料の厚さの好ましい範囲を示す図表である。 図7は、偏光子の透過軸とパルスレーザ光の偏光方向との角度差と消光比との関係を示すグラフ及び消光比を規格化透過率に換算したグラフである。 図8は、実施形態2に係る紫外線レーザ装置の構成を概略的に示す。 図9は、実施形態3に係る紫外線レーザ装置の構成を概略的に示す。 図10は、実施形態3に適用されるファラデー回転子の正面図である。 図11は、図10の11-11線における断面図である。 図12は、実施形態4に係る紫外線レーザ装置の構成を概略的に示す。 図13は、実施形態5に係る紫外線レーザ装置の構成を概略的に示す。 図14は、実施形態6に係る紫外線レーザ装置の構成を概略的に示す。 図15は、実施形態6に適用される増幅段レーザの構成を概略的に示す上面図である。 図16は、露光装置の構成例を概略的に示す。
実施形態
 -目次-
1.用語の説明
2.比較例に係る紫外線レーザ装置の概要
 2.1 構成
 2.2 動作
3.課題
4.実施形態1
 4.1 構成
 4.2 動作
 4.3 ファラデー材料、サイズ及び磁場の磁束密度の選定例
  4.3.1 選定例1
  4.3.2 選定例2
  4.3.3 選定例3
 4.4 磁場及びファラデー材料の厚さの好ましい範囲
 4.5 偏光子の透過軸とレーザ光の偏光方向との許容角度差
 4.6 作用・効果
 4.7 変形例
5.実施形態2
 5.1 構成
 5.2 動作
 5.3 作用・効果
 5.4 変形例
6.実施形態3
 6.1 構成
 6.2 動作
 6.3 作用・効果
7.実施形態4
 7.1 構成
 7.2 動作
 7.3 作用・効果
8.実施形態5
 8.1 構成
 8.2 動作
 8.3 作用・効果
9.実施形態6
 9.1 構成
 9.2 動作
 9.3 作用・効果
10.電子デバイスの製造方法について
11.光アイソレータの他の応用例
12.その他
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
 1.用語の説明
 「偏光子」とは、特定の偏光方向(透過軸方向)の光とそれと偏光方向が直交する光を分離する光学素子をいう。
 本明細書において「平行」という用語は、文脈から明らかな場合を除き、明記がない限り、厳密に平行である場合に限らず、技術的意義が失われることのない実用上許容される角度差の範囲を含む略平行の概念が含まれる。また、本明細書における「直交」又は「垂直」という用語についても、文脈から明らかな場合を除き、明記がない限り、厳密に直交又は垂直である場合に限らず、技術的意義が失われることのない実用上許容される角度差の範囲を含む略直交又は略垂直の概念が含まれる。
 2.比較例に係る紫外線レーザ装置の概要
 2.1 構成
 図1は、比較例に係る紫外線レーザ装置20の構成を概略的に示す側面図である。本開示の比較例とは、出願人のみによって知られていると出願人が認識している形態であって、出願人が自認している公知例ではない。
 紫外線レーザ装置20は、マスターオシレータ(MO)22と、MOビームステアリングユニット24と、パワーオシレータ(PO)26とを含むエキシマレーザ装置である。MO22は、狭帯域化モジュール(LNM)30と、チャンバ32と、出力結合ミラー34とを含む。
 LNM30は、スペクトル幅を狭帯域化するためのプリズムエキスパンダ36と、グレーティング38とを含む。プリズムエキスパンダ36とグレーティング38とは入射角度と回折角度とが一致するリトロー配置とされる。出力結合ミラー34は、反射率が40%~60%の部分反射ミラーである。出力結合ミラー34は、LNM30と共に光共振器を構成するように配置される。
 チャンバ32は、光共振器の光路上に配置される。チャンバ32は、一対の放電電極40a,40bと、レーザ光が透過する2枚のウインドウ42,44とを含む。チャンバ32内には、レーザガスが充填される。レーザガスは、レアガスと、ハロゲンガスと、バッファガスとを含む。レアガスは、例えばアルゴン(Ar)又はクリプトン(Kr)ガスであってよい。ハロゲンガスは、例えばフッ素(F)ガスであってよい。バッファガスは、例えばネオン(Ne)ガスであってよい。放電電極40a,40b間には図示しない電源によって電圧が印加される。電源は、スイッチと充電コンデンサとを含むパルスパワーモジュール(PPM)であってよい。
 MOビームステアリングユニット24は、高反射ミラー50と高反射ミラー52とを含み、MO22から出力されたレーザ光がPO26に入射するように配置される。
 高反射ミラー50と高反射ミラー52との間に、MOパルスエネルギモニタ54が配置される。MOパルスエネルギモニタ54は、ビームスプリッタ(BS)55と、光センサ56とを含む。BS55は、MO22から出力されるパルスレーザ光の光路上に配置され、BS55の反射光は光センサ56に入射するように配置される。
 PO26は、リアミラー60と、チャンバ62と、出力結合ミラー64とを含む増幅段レーザである。リアミラー60と出力結合ミラー64とは光共振器を構成し、この光共振器の光路上にチャンバ62が配置される。
 チャンバ62の構成は、チャンバ32と同様であってもよい。チャンバ62は、一対の放電電極70a,70bと、2枚のウインドウ72,74とを含む。チャンバ62内には、レーザガスが充填される。リアミラー60は、例えば、反射率50%~90%の部分反射ミラーであってよい。出力結合ミラー64は、反射率10%~30%の部分反射ミラーであってよい。
 2.2 動作
 図示しない電源より高電圧パルスがチャンバ32内の放電電極40a,40b間に印加される。チャンバ32内の放電電極40a,40b間で放電が発生すると、レーザガスが励起され、出力結合ミラー34とLNM30とで構成される光共振器によって狭帯域化された、波長が150nmから380nmの紫外線波長のパルスレーザ光が出力結合ミラー34から出力される。
 出力結合ミラー34から出力されたパルスレーザ光のエネルギは、MOパルスエネルギモニタ54で計測される。また、このパルスレーザ光はMOビームステアリングユニット24によってPO26のリアミラー60にシード光として入射する。
 リアミラー60を透過したシード光がチャンバ62に入射するタイミングで、図示しない電源より高電圧パルスがチャンバ62内の放電電極70a,70b間に印加される。チャンバ62内の放電電極70a,70b間で放電が発生すると、レーザガスが励起され、出力結合ミラー64とリアミラー60とで構成されるファブリーペロー型の光共振器によって、シード光が増幅され、増幅されたパルスレーザ光が出力結合ミラー64から出力レーザ光として出力される。
 3.課題
 図2は、比較例に係る紫外線レーザ装置20の課題を示す図である。PO26からの戻り光がMO22まで戻るとレーザ性能が悪化する。ここでいう「戻り光」とは、MO戻り光と、PO抜け光との2種類の光の和を指す。MO22より出射された光は、PO26へと入射されるが、PO26内のリアミラー60は部分反射ミラー(反射率50%~90%)であるため、リアミラー60に入射する光の一部はPO26内部へ向かわずにそのままMO22側へ戻ってしまう。PO26のチャンバ62内に進むことなく、リアミラー60によって反射されてMO22側へと戻る光を「MO戻り光」という。
 一方、MO22よりPO26へ入射され、リアミラー60を透過した光は、PO26内で共振・増幅されて出力される。前述のとおり、PO26内のリアミラー60は部分反射ミラーであるため、PO26のチャンバ62に入射して増幅された光の一部はMO22へ戻ってしまう。PO26で増幅された光のうちリアミラー60を透過してMO22へと戻る光を「PO抜け光」という。
 戻り光は、LNM30などの熱負荷となり、線幅の安定性や、パルスエネルギの安定性等が悪化する原因となり得る。MO22に進入する戻り光を抑制するために、MO22とPO26との間に光アイソレータを配置する方法がある。
 図3は、戻り光を抑制する比較例に係る光アイソレータ80の構成例を示す。光アイソレータ80は、MO22とPO26との間に配置される。図3の上段には、MO22からPO26へと向かって進むパルスレーザ光(MO注入光:行きの光)に対する光アイソレータ80の動作を示す。図3の下段には、PO26からMO22へと向かって進むレーザ光(戻りの光)に対する光アイソレータ80の動作を示す。
 光アイソレータ80は、MO22の側から、1/2波長板81と、第1の偏光子83と、ファラデー回転子84と、第2の偏光子88とがこの順に配置される。ファラデー回転子84は、ファラデー材料85と磁石86とを含む。なお、図3において、ファラデー回転子84中に示す右向きの矢印は、磁石86による磁場の方向を表している。図中の破線円内に示す両向き矢印は、パルスレーザ光が進む方向に視線を合わせたときのパルスレーザ光の偏光面の方向、すなわち偏光方向を表している。図4においても同様である。
 図3の上段に示すように、MO22から水平方向に偏光した直線偏光のパルスレーザ光が出力される。MO22から出力された水平偏光のパルスレーザ光は、1/2波長板81によって偏光方向が反時計回り方向に45度回転する。第1の偏光子83は、その透過軸が1/2波長板81から出力されたパルスレーザ光の偏光方向と平行に配置されており、1/2波長板81から出力されたパルスレーザ光は、第1の偏光子83を透過する。
 第1の偏光子83を透過したパルスレーザ光は、磁場が印加されたファラデー回転子84により偏光方向が時計回り方向に45度回転する。これにより、ファラデー回転子84から出力されたパルスレーザ光は水平偏光となる。第2の偏光子88は、その透過軸がファラデー回転子84から出力されたパルスレーザ光の偏光方向と平行に配置されており、ファラデー回転子84から出力されたパルスレーザ光は、第2の偏光子88を透過した後、PO26に入射する。
 1/2波長板81は、MO22から出力されたパルスレーザ光の偏光方向とPO26に入射するパルスレーザ光の偏光方向とが同じになるように、MO22からのパルスレーザ光の偏光方向を調整する。これにより、偏光方向に依存する他のモジュールを変更しないで済む。
 一方、PO26からの戻り光は、図3の下段に示すように、PO26への入射光と同じ偏光方向で第2の偏光子88を透過し、磁場が印加されたファラデー回転子84により偏光方向が時計回り方向に45度回転する。ファラデー回転子84を通過した戻り光の偏光方向は第1の偏光子83の透過軸と直交しており、戻り光は第1の偏光子83で反射されてMO22に入射しない。比較例に係る光アイソレータ80における1/2波長板81は、エキシマレーザのような短波長における耐久性が低く、長期間安定して使用することが難しい。
 4.実施形態1
 4.1 構成
 図4は、実施形態1に係る光アイソレータ120の構成を概略的に示す。図4に示す構成について、図3と異なる点を説明する。光アイソレータ120は、図3で説明した1/2波長板81を用いておらず、MO22とPO26との間の光路上に、MO22の側から第1の偏光子83、ファラデー回転子112及び第2の偏光子88がこの順に配置される。
 第1の偏光子83は、その透過軸がMO22から出力された特定方向に偏光したパルスレーザ光の偏光方向と平行になるように配置される。
 ファラデー回転子112は、ファラデー材料135と磁石136とを含む。ファラデー材料135は、使用波長において透明で、かつ光学活性もしくは複屈折を持つ材料である。ファラデー材料135は、例えば、水晶やフッ化マグネシウム(MgF)である。磁石136は、中空構造であり、磁場の印加方向は光の伝搬方向と平行である。例えば、印加される磁場の方向は、図4においてファラデー回転子112中に示す矢印方向である。
 第2の偏光子88は、その透過軸がファラデー回転子112からPO26に向けて出力されたパルスレーザ光の偏光方向と平行となるように配置される。
 4.2 動作
 ファラデー材料135は、光学活性もしくは複屈折を持つため、磁場を印加することによりファラデー効果で偏光面が回転し、かつ、光学活性もしくは複屈折によって偏光面が回転する。
 実施形態1に係る光アイソレータ120では、図4の上段に示すように、行きの光が、ファラデー材料135を透過することにより、ファラデー効果で偏光面が+45度(又は-45度)回転すると共に、光学活性もしくは複屈折によって偏光面が-45度(又は+45度)±(180×n)度回転するように、磁場の磁束密度及びファラデー材料135の厚みが選択される。ここでnは整数である。
 言い換えると、行きの光においては、ファラデー効果による偏光面の回転角と、光学活性もしくは複屈折による偏光面の回転角とが相殺されるように、印加する磁場の磁束密度及びファラデー材料135の厚みが選択される。このような条件を満たすファラデー回転子112が用いられると、ファラデー回転子112の透過前後で偏光方向は変わらない。
 図4に示す例では、MO22からPO26の方向にファラデー回転子112を透過する「行きの光」は、ファラデー効果による偏光面の回転(時計回り方向に45度回転)と、光学活性もしくは複屈折による偏光面の回転(反時計回り方向に45度回転)とが互いに逆方向の回転となって、互いに打ち消し合しあい、ファラデー回転子112の透過の前後で偏光方向が維持される。図4の上段のファラデー回転子112から出力されたパルスレーザ光の偏光方向を示す図示において、破線円に沿って時計回り方向に45度回転する様子を示す太線の円弧矢印は、ファラデー効果による偏光面の回転を表している。また、同図示の反時計回り方向に45度回転する様子を示す細線の円弧矢印は、光学活性もしくは複屈折による偏光面の回転を表している。こうして、MO22から出力されたパルスレーザ光は、第1の偏光子83、ファラデー回転子112及び第2の偏光子88をそれぞれ透過してPO26に入射する。
 ファラデー効果は、偏光面の回転方向が光の伝搬方向によらず、磁場の印加方向によるため、光の進行方向に対して非相反性をもつ。一方、光学活性や複屈折による偏光面の回転方向は光の伝搬方向に依存するため、光の進行方向に対して相反性を持つ。
 このため、図4の下段に示すように、PO26からの戻り光は、ファラデー回転子112を透過後、偏光方向が時計回り方向に90度回転し、第1の偏光子83で反射される。図4に示す例では、PO26からの戻り光は、ファラデー効果による偏光面の回転(45度回転)と、光学活性もしくは複屈折による偏光面の回転(45度回転)とが同方向の回転となり、これらの回転角度が重なりあって、ファラデー回転子112の透過の前後で偏光方向が90度回転する。図4の下段のファラデー回転子112を透過した戻りのパルスレーザ光の偏光方向を示す図示において、破線円に沿って時計回り方向に45度回転する様子を示す太線の円弧矢印は、ファラデー効果による偏光面の回転を表している。また、同図示の時計回り方向に45度回転する様子を示す細線の円弧矢印は、光学活性もしくは複屈折による偏光面の回転を表している。こうして、PO26からの戻りのパルスレーザ光は、ファラデー回転子112を透過後に第1の偏光子83によって反射され、MO22への入射が抑制される。
 図4に示したファラデー回転子112のファラデー効果による偏光面の回転方向は本開示における「第1の回転方向」の一例である。また、第1の偏光子83から第2の偏光子88の方向に進むパルスレーザ光に対するファラデー材料135の光学活性もしくは複屈折による偏光面の回転方向は本開示における「第2の回転方向」の一例である。
 4.3 ファラデー材料、サイズ及び磁場の磁束密度の選定例
 4.3.1 選定例1
 ファラデー材料135としては、水晶といった光学活性を持つ材料や、MgFといった複屈折を持つ材料が選定される。例えば、パルスレーザ光の波長が193nmであって、ファラデー回転子112のファラデー材料135として水晶を選定した場合、比旋光度ρは331.85deg/mm、ヴェルデ定数Vは70.1rad/Tmである。
 光学活性によって偏光面が回転する量Θρは、式(1)で表される。
 Θρ=ρL      (1)
  式中のLは媒質長であり、本例では水晶の長さ(光軸方向の厚さ)である。
 また、ファラデー効果によって偏光面が回転する量Θvは、式(2)で表される。
 Θv=VBL      (2)
  式中のBは、印加する磁場の磁束密度である。
 例えば、水晶の長さを11.53mm、印加する磁場の磁束密度を0.97Tとすると、光学活性によって偏光面が回転する量Θρは、式(1)より、3825度(=45度+180度×21)となる。ファラデー効果によって偏光面が回転する量Θvは、式(2)より、45度となる。よって、光学活性によって偏光面が回転する方向に対してファラデー効果によって偏光面が回転する方向が逆になるように磁場を印加することにより、ファラデー回転子112の透過前後で偏光の方向が変わらないようにすることができる。
 ファラデー効果による偏光面の回転量として例示した45度は本開示における「第1の回転量」の一例である。また、光学活性による偏光面の回転量として例示した3825度は本開示における「第2の回転量」の一例である。
 4.3.2 選定例2
 パルスレーザ光の波長が193nmであって、ファラデー回転子112のファラデー材料135としてMgFを選定した場合、常光線と異常光線のそれぞれの屈折率は次のとおりである。
 No=1.4277
 Ne=1.4414
 Noは常光線の屈折率であり、Neは異常光線の屈折率である。
 複屈折による偏光の回転を与えるために、次の式(3)において、δ=180+m×360deg(mは整数)となるように、ファラデー材料135の厚みdを設定する。
 δ(λ)=Δn(λ)×d×(360/λ)     (3)
  ここで、Δn=Ne-Noである。λは波長である。
 180度の位相差を与えることで、ファラデー材料135の光学軸をθ回転させると偏光は2θ回転する。
 また、MgFの波長193nmにおけるヴェルデ定数Vは38.1rad/Tmである。よって、例えば、MgFの光軸方向の厚さ(媒質長)Lを20.62mmで、印加する磁場の磁束密度Bを1.00Tとすることで、達成可能である。
 4.3.3 選定例3
 パルスレーザ光の波長が248nmであって、ファラデー回転子112のファラデー材料135として水晶を選定した場合、比旋光度ρは157.45deg/mm、ヴェルデ定数Vは30.4rad/Tmである。
 例えば、水晶の長さを26.58mm、印加する磁場の磁束密度を0.97Tとすると、光学活性によって偏光面が回転する量Θρは、式(1)より、4185度(=45度+180度×23)となる。ファラデー効果によって偏光面が回転する量Θvは、式(2)より、45度となる。よって、光学活性によって偏光面が回転する方向に対してファラデー効果によって偏光面が回転する方向が逆になるように磁場を印加することにより、ファラデー回転子112の透過前後で偏光の方向が変わらないようにすることができる。
 4.4 磁場及びファラデー材料の厚さの好ましい範囲
 磁場及びファラデー材料135の厚さの好ましい範囲を、ファラデー材料135がMgFの場合と、水晶の場合とについて、図5及び図6に示す。図5は、入射光の波長が193nmである場合の好ましい範囲を示し、図6は、入射光の波長が248nmである場合の好ましい範囲を示す。ArFエキシマレーザの発振波長には波長193nmが含まれる。KrFエキシマレーザの発振波長には波長248nmが含まれる。
 好ましい範囲は、磁場の実現しやすさを基に選定した。最も好ましい範囲の磁場は、磁力の強いネオジム磁石等を使用した場合の磁束密度である。ファラデー材料135の厚さは、選択した材料及び磁場の磁束密度と、ヴェルデ定数とを基に、ファラデー効果による偏光面の回転と、光学活性もしくは複屈折による偏光面の回転とがそれぞれ45度となる厚さを算出した値である。
 図5に示すように、ファラデー材料135がMgFであって、パルスレーザ光の波長がArFエキシマレーザの発振波長である193nmである場合、ファラデー回転子112に印加する磁場とファラデー材料135の光軸方向の厚さの選択可能範囲は、0.5T~3.0Tと6mm~42mmとである。さらに好ましくは、0.75T~2.9Tと7mm~30mmとであり、最も好ましくは、0.8T~1.5Tと13mm~26mmである。なお、「0.5T~3.0T」等の数値範囲を示す表記は、「~」の前後に示す数値を含む範囲を示しており、例えば「0.5T~3.0T」の表記は「0.5T以上3.0T以下」を意味する。
 ファラデー材料135が水晶であって、パルスレーザ光の波長がArFエキシマレーザの発振波長である193nmである場合、ファラデー回転子112に印加する磁場とファラデー材料135の光軸方向の厚さの選択可能範囲は、0.5T~3.0Tと3mm~25mmとである。さらに好ましくは、0.75T~2.9Tと6mm~20mmとであり、最も好ましくは、0.8T~1.5Tと8mm~15mmである。
 また、図6に示すように、ファラデー材料135がMgFであって、パルスレーザ光の波長がKrFエキシマレーザの発振波長である248nmである場合、ファラデー回転子112に印加する磁場とファラデー材料135の光軸方向の厚さの選択可能範囲は、0.5T~3.0Tと13mm~83mmとである。さらに好ましくは、0.75T~2.9Tと14mm~55mmとであり、最も好ましくは、0.8T~1.5Tと27mm~52mmである。
 ファラデー材料135が水晶であって、パルスレーザ光の波長がKrFエキシマレーザの発振波長である248nmである場合、ファラデー回転子112に印加する磁場とファラデー材料135の光軸方向の厚さの選択可能範囲は、0.5T~3.0Tと8mm~53mmとである。さらに好ましくは、0.75T~2.9Tと10mm~40mmとであり、最も好ましくは、0.8T~1.5Tと15mm~32mmである。
 なお、ファラデー材料135は、複数個に分割して、これらの合計で上記の厚さを満たしてもよい。分割される個数は、例えば、2個や3個や4個などでもよい。
 4.5 偏光子の透過軸とレーザ光の偏光方向との許容角度差
 第1の偏光子83及び第2の偏光子88のそれぞれの透過軸と、各偏光子に入射させるパルスレーザ光の偏光方向とは平行であることが最も好ましいが、厳密に平行である場合に限らず、実用上目的の機能を果たすことができる範囲で、両者の角度差が許容される。
 図7は、偏光子の透過軸とパルスレーザ光の偏光方向との角度差と消光比(dB)との関係を示すグラフ及び消光比を規格化透過率に換算したグラフを示す。図7の左側の縦軸は消光比を表し、右側の縦軸は規格化透過率を表す。規格化透過率は、角度差が0度のときの透過率が1.0になるように規格化した値である。第1のファラデー回転子110から出力されたパルスレーザ光を透過する第1の偏光子83及び第2のファラデー回転子112から出力されたパルスレーザ光を透過する第2の偏光子88のそれぞれにおいて、入射するパルスレーザ光に対する規格化透過率が0.9以上であれば、実用的に十分有効に機能し得る。したがって、図7によれば、第1の偏光子83又は第2の偏光子88の透過軸とパルスレーザ光の偏光方向との角度差の好ましい許容範囲は、規格化透過率が0.9以上になる±17.5度の範囲である。
 4.6 作用・効果
 実施形態1に係る光アイソレータ120によれば、短波長における耐久性が低い1/2波長板81を用いなくても、光アイソレータ120の透過前後でパルスレーザ光の偏光方向を同じにできる。このため、他の偏光方向に依存するモジュールを変更することなく戻り光を抑制することができる。
 4.7 変形例
 図4では、行きの光に対して、ファラデー材料135のファラデー効果によって偏光面が45度回転し、光学活性もしくは複屈折によって偏光面が逆方向に45度+(180×n)度回転する例を説明したが、この例に限らず、実用上目的の機能を果たすことができる範囲で、両者の回転角の範囲が許容される。図7によれば、行きの光に対するファラデー材料135のファラデー効果による偏光面の回転量は、45度±17.5度以内であってよく、光学活性もしくは複屈折による偏光面の回転量は45度+(180×n)度±17.5度以内であってよい。
 また、図4では、第1の偏光子83を透過してファラデー回転子112に入射する行きの光の偏光方向がファラデー回転子112の透過の前後で維持され、第2の偏光子88を透過してファラデー回転子112に入射する戻り光の偏光方向がファラデー回転子112の透過の前後で90度回転する例を説明したが、この例に限らず、実用上目的の機能を果たすことができる範囲で、ファラデー回転子112の透過の前後における偏光方向の角度差が許容される。図7によれば、第1の偏光子83を透過してファラデー回転子112に入射する行きの光の偏光方向は、ファラデー回転子112の透過の前後で17.5度以内の角度差に維持され、第2の偏光子88を透過してファラデー回転子112に入射する戻り光の偏光方向は、ファラデー回転子112の透過の前後で90度±17.5度以内の角度回転するように構成されてよい。第1の偏光子83に入射する行きの光の偏光方向と、PO26から戻る戻り光がファラデー回転子112を透過して第1の偏光子83に入射するときの偏光方向とが90度±17.5度以内の角度で交差する構成により、戻り光は第1の偏光子83で反射され、MO22への入射が抑制される。
 5.実施形態2
 5.1 構成
 図8は、実施形態2に係る紫外線レーザ装置100の構成例を概略的に示す。図8に示す構成について、図1と異なる点を説明する。紫外線レーザ装置100は、MO22とPO26との間の光路上に光アイソレータ120が配置される点で図1の構成と異なる。光アイソレータ120は、実施形態1で説明したとおり、第1の偏光子83と、ファラデー回転子112と、第2の偏光子88とを含む。
 光アイソレータ120は、さらに戻り光終端用のダンパー116を含む。ダンパー116は、第1の偏光子83によって反射された戻り光がダンパー116に入射するように配置される。他の構成は、図1と同様であってよい。
 図8においては、MO22とPO26との間の光路上のa点、b点及びc点で示す各箇所におけるパルスレーザ光の偏光方向も示す。図8には、MO22からPO26の方向に伝搬するパルスレーザ光についてのa点~c点の各箇所での偏光方向と、PO26からMO22の方向に戻る戻り光についてのc点及びb点の各箇所での偏光方向を示す。
 5.2 動作
 光アイソレータ120の動作は、実施形態1と同様である。MO22から出力され、特定の方向に偏光したパルスレーザ光(a点)は、第1の偏光子83を透過する(b点)。第1の偏光子83を透過したパルスレーザ光はファラデー回転子112に入射し、ファラデー回転子112の前後で偏光方向が維持されて、ファラデー回転子112から出力される(c点)。ファラデー回転子112から出力されたパルスレーザ光は第2の偏光子88を透過する。MO22からPO26に進むパルスレーザ光のa点の偏光方向とd点の偏光方向とは同じである。
 PO26からMO22の方向に戻る戻り光については、図4中のd点において、MO22からPO26の方向に伝搬するパルスレーザ光の偏光方向と、PO26からMO22の方向に戻るパルスレーザ光(戻り光)の偏光方向とは同じである。このため、PO26からMO22の方向に戻る戻り光は、第2の偏光子88を透過する(c点)。
 第2の偏光子88を透過した戻り光は、ファラデー回転子112により偏光方向が90度回転する(b点)。b点において、MO22からPO26の方向に伝搬するパルスレーザ光の偏光方向と、PO26からMO22の方向に戻るパルスレーザ光の偏光方向とは直交する。このため、PO26からMO22の方向に戻るパルスレーザ光は、第1の偏光子83により反射されて、ダンパー116に入射する。ダンパー116は、第1の偏光子83で反射された光を吸収し遮断する。
 5.3 作用・効果
 実施形態2に係る紫外線レーザ装置100によれば、短波長における耐久性が低い1/2波長板81を用いなくても、光アイソレータ120の透過前後で偏光方向を同じにできる。このため、他の偏光方向に依存するモジュールを変更することなく戻り光を抑制することができる。
 また、実施形態2に係る紫外線レーザ装置100によれば、PO26からMO22の方向に戻るパルスレーザ光は第1の偏光子83によって反射されてダンパー116に吸収されることになり、MO22への入射が抑制される。これにより、MO22への熱負荷が軽減され、エネルギ安定性や線幅安定性などが比較例の構成よりも向上する。
 5.4 変形例
 MOパルスエネルギモニタ54の配置については、光アイソレータ120の上流側又は下流側のいずれにも配置することが可能であるが、図8のように、光アイソレータ120の上流側に配置する構成が好ましい。
 6.実施形態3
 6.1 構成
 図9は、実施形態3に係る紫外線レーザ装置103の構成を概略的に示す。図9に示す構成について、図8と異なる点を説明する。実施形態3に係る紫外線レーザ装置103は、実施形態2におけるファラデー回転子112に代えて、温度調整が可能なファラデー回転子113が用いられ、ファラデー回転子113を一定の温度に温度制御する構成を備えている点で実施形態2の構成と異なる。
 図10は、ファラデー回転子113の構成を概略的に示す正面図であり、図11は、図10の11-11線における断面図である。ファラデー材料135はホルダ137に保持され、中空構造の磁石136の内部に配置される。ファラデー回転子113は、ヒータ138a,138bと、温度センサ139とを含む。ヒータ138a,138b及び温度センサ139は、ホルダ137に取り付けられている。ヒータ138a,138bは、ファラデー材料135を挟んで対称的な位置に、光軸方向と平行に延在するように配置される構成が好ましい。温度センサ139は、ファラデー回転子113の温度を検出する。
 紫外線レーザ装置103は、ヒータ電源142と、ファラデー回転子113の温度を制御するプロセッサ144とを備える(図9参照)。ヒータ電源142は、ヒータ138a,138bに電力を供給する。
 プロセッサ144は、温度センサ139から得られる情報を基に、ファラデー回転子113の温度を一定に保つようにヒータ電源142を制御する。なお、「一定に保つ」という記載には、許容される範囲内に保つことが含まれる。プロセッサ144は、ファラデー材料135の温度変化を抑制するように、ヒータ電源142を介してヒータ138a,138bを制御する。プロセッサ144は、制御プログラムが記憶された記憶装置と、制御プログラムを実行するCPU(Central Processing Unit)とを含む処理装置である。
 6.2 動作
 プロセッサ144は、ヒータ電源142を介してヒータ138a,138bを駆動し、ファラデー回転子113の温度センサ139によって温度を監視し、所定の温度に保つようにファラデー回転子113を温調する。所定の温度は、例えば、100℃以下で室温が好ましい。他の動作は実施形態2と同様である。
 6.3 作用・効果
 実施形態3に係る紫外線レーザ装置103によれば、実施形態2と同様の効果が得られる。さらに、実施形態3の構成によれば、ファラデー材料135が環境温度の変化やレーザ光の吸収などにより、温度が変化することを抑制できる。この結果、温度変化による光路長の変化が抑制され、偏光の回転角を一定に保つことができ、偏光子での透過率の低下やアイソレーション比の悪化を抑制することができる。
 7.実施形態4
 7.1 構成
 図12は、実施形態4に係る紫外線レーザ装置104の構成を概略的に示す。図12に示す構成について、図8と異なる点を説明する。図12に示す紫外線レーザ装置104は、第2の偏光子88とPO26との間の光路上に、2軸調整可能な平行平面基板202と、2軸調整可能な高反射ミラー52とが配置される点で、図8に示す構成と異なる。平行平面基板202は、直交する2軸のそれぞれを回転軸として角度の調整が可能な2軸角度調整ホルダ204に保持される。
 平行平面基板202は、第2の偏光子88と高反射ミラー52との間の光路上に配置される。平行平面基板202はフッ化カルシウムの基板であってよい。2軸角度調整ホルダ204は、例えば、図12の紙面に垂直な軸と、平行平面基板202の基板面及び図12の紙面に平行な軸とのそれぞれを回転軸として角度調整が可能なホルダであってよい。
 高反射ミラー52は、直交する2軸のそれぞれを回転軸として角度の調整が可能な2軸角度調整ホルダ208に保持される。2軸角度調整ホルダ208は、例えば、図12の紙面に垂直な軸と、高反射ミラー52の反射面及び図12の紙面に平行な軸とのそれぞれを回転軸として角度調整が可能なホルダであってよい。
 7.2 動作
 光軸の調整は、2軸調整可能な平行平面基板202と、2軸調整可能な高反射ミラー52とを調整することにより、MO22からのパルスレーザ光がPO26に最も効率的に入射されるように行われる。
 2軸調整可能な平行平面基板202は、MO22からのパルスレーザ光を進行方向と平行にシフトすることにより、PO26に最も効率的にパルスレーザ光が入射されるように調整される。
 2軸調整可能な高反射ミラー52は、MO22からのパルスレーザ光がPO26に入射される角度を変更することにより、PO26に最も効率的にパルスレーザ光が入射されるように調整される。
 2軸角度調整ホルダ204及び2軸角度調整ホルダ208のそれぞれは本開示における「光軸調整機構」の一例である。2軸調整可能な平行平面基板202と、2軸調整可能な高反射ミラー52とを両方備える構成は好ましい形態であるが、これらのうち1つのみを備える構成も可能である。
 7.3 作用・効果
 実施形態4に係る紫外線レーザ装置104によれば、実施形態2と同様の効果が得られる。さらに、実施形態4の構成によれば、PO26に入射させる注入光の光軸調整が実施形態2の構成に比べて容易になる。
 8.実施形態5
 8.1 構成
 図13は、実施形態5に係る紫外線レーザ装置105の構成を概略的に示す。図13に示す構成について、図8と異なる点を説明する。図13に示す紫外線レーザ装置105は、図8におけるMO22の代わりに、発振段レーザとして紫外線固体レーザ装置232を備え、PO26の代わりに、エキシマ増幅器236を備える。他の構成は、図8に示す構成と同様であってよい。
 紫外線固体レーザ装置232は、例えば、近赤外帯(波長780nm~波長2500nm)を基本波とする固体レーザの第4倍波、第5倍波又は第6倍波(波長150nm~波長380nmの範囲)を出力する。例えば、紫外線固体レーザ装置232は、約193nmの波長のシード光を出力し、エキシマ増幅器236に入射するように配置される。
 一例として、紫外線固体レーザ装置232は、半導体レーザシステムと、チタンサファイヤ増幅器と、波長変換システムとを含む構成であってもよい。半導体レーザシステムは、波長約773.6nmのCWレーザ光を出力する分布帰還型(Distributed Feedback:DFB)の半導体レーザと、CWレーザ光をパルス化する半導体光増幅器(Semiconductor Optical Amplifier:SOA)とを含む構成であってよい。波長変換システムは、複数の非線形光学結晶を含み、入射したパルスレーザ光を波長変換して4倍高調波のパルスレーザ光を出力する。波長変換システムは、例えば、LBO結晶と、KBBF結晶とを含む。LBO結晶は化学式LiBで表される非線形光学結晶である。KBBF結晶は、化学式KBeBOで表される非線形光学結晶である。
 エキシマ増幅器236は、チャンバ242と、凸面シリンドリカルミラー244と、凹面シリンドリカルミラー246とを含む。
 チャンバ242は、1対の放電電極250a,250bと、レーザ光が透過する2枚のウインドウ252,254とを含む。放電電極250a,250bは放電空間256を挟んで対向して配置される。放電電極250a,250bの間の空間が放電空間256となる。放電電極250a,250bが放電空間256を挟んで対向する方向が放電方向に相当する。チャンバ242には、図8で説明したレーザガスと同様のレーザガスが充填される。
 凸面シリンドリカルミラー244の凸曲面及び凹面シリンドリカルミラー246の凹曲面にはそれぞれ波長約193nmに対する高反射膜がコートされている。
 凸面シリンドリカルミラー244と凹面シリンドリカルミラー246とは、紫外線固体レーザ装置232からのシード光が、エキシマ増幅器236の放電空間256を3回通過することによって、放電方向にビーム拡大され、増幅されるように配置される。
 8.2 動作
 紫外線固体レーザ装置232から出力されたシード光は、光アイソレータ120を透過して、エキシマ増幅器236に入射する。エキシマ増幅器236に入射した波長約193nmのシード光は、凸面シリンドリカルミラー244及び凹面シリンドリカルミラー246で反射することにより、放電電極250a,250bの間の放電空間256を3回通過する。これにより、シード光のビームが拡大されて増幅される。エキシマ増幅器236は本開示における「マルチパス増幅器」の一例である。3パスのエキシマ増幅器236に限らず、各種のマルチパス増幅器を適用可能である。
 光アイソレータ120の動作は、図8で説明した実施形態1と同様である。光アイソレータ120は、エキシマ増幅器236で発生した自然放射増幅光(Amplified Spontaneous Emission:ASE)等が紫外線固体レーザ装置232に入射するのを抑制する。
 8.3 作用・効果
 実施形態5に係る紫外線レーザ装置105によれば、短波長における耐久性が低い1/2波長板81を用いなくても、光アイソレータ120の透過前後で偏光方向を同じにできる。このため、他の偏光方向に依存するモジュールを変更することなく、戻り光を抑制することができる。
 実施形態5に係る紫外線レーザ装置105によれば、エキシマ増幅器236から紫外線固体レーザ装置232の方向に戻る光は紫外線固体レーザ装置232に入射しないため、紫外線固体レーザ装置232への熱負荷が軽減され、エネルギ安定性や線幅安定性などが比較例の構成よりも向上する。
 9.実施形態6
 9.1 構成
 図14は、実施形態6に係る紫外線レーザ装置106の構成を概略的に示す。図14に示す構成について、図8と異なる点を説明する。実施形態6に係る紫外線レーザ装置106は、実施形態1の構成に対して、増幅段レーザの構成及びMO22からのレーザ光を増幅段レーザに導入する高反射ミラーの構成が異なる。
 図8に示す実施形態2の増幅段レーザは、リアミラー60と出力結合ミラー64とで構成されるファブリーペロー型の光共振器を有するPO26であるのに対し、図14に示す実施形態6の増幅段レーザは、リング共振器270を有するPO266である点が異なる。
 図15は、実施形態6に適用されるPO266の構成を概略的に示す上面図である。リング共振器270は、高反射ミラー284、高反射ミラー285、高反射ミラー286及び部分反射ミラー290を含んで構成される。
 紫外線レーザ装置106は、MO22から出力され高反射ミラー50と高反射ミラー52とにより反射されたレーザ光をリング共振器270に導入するため、高反射ミラー283が配置される。高反射ミラー283は、高反射ミラー52で反射されたレーザ光を部分反射ミラー290に入射させるように、高反射ミラー52と部分反射ミラー290との間の光路上に配置される。
 9.2 動作
 MO22から出力されたレーザ光は、高反射ミラー50、高反射ミラー52及び高反射ミラー283で順次反射された後、部分反射ミラー290からリング共振器270に入射する。
 部分反射ミラー290を透過したレーザ光は、高反射ミラー284で反射された後にチャンバ62に入射して増幅され、その後、高反射ミラー285及び高反射ミラー286で反射され、再び、チャンバ62に入射して増幅される。そして、チャンバ62から出力されたレーザ光は部分反射ミラー290によって一部は透過し、他の一部は反射されてリング共振器270で再び増幅される。
 部分反射ミラー290を透過した増幅パルスレーザ光は、紫外線レーザ装置106から出力される。
 光アイソレータ120は、PO266からの戻り光がMO22に入射するのを抑制する。光アイソレータ120の動作は図8で説明した実施形態2と同様である。
 9.3 作用・効果
 実施形態6に係る紫外線レーザ装置106によれば、実施形態2と同様の効果が得られる。
 10.電子デバイスの製造方法について
 図16は、露光装置300の構成例を概略的に示す。露光装置300は、照明光学系304と投影光学系306とを含む。照明光学系304は、紫外線レーザ装置100から入射したレーザ光によって、レチクルステージRT上に配置された図示しないレチクルのレチクルパターンを照明する。投影光学系306は、レチクルを透過したレーザ光を、縮小投影してワークピーステーブルWT上に配置された図示しないワークピースに結像させる。ワークピースはフォトレジストが塗布された半導体ウエハ等の感光基板である。
 露光装置300は、レチクルステージRTとワークピーステーブルWTとを同期して平行移動させることにより、レチクルパターンを反映したレーザ光をワークピースに露光する。以上のような露光工程によって半導体ウエハにレチクルパターンを転写後、複数の工程を経ることで半導体デバイスを製造できる。半導体デバイスは本開示における「電子デバイス」の一例である。紫外線レーザ装置100に代えて、実施形態3~6で説明した紫外線レーザ装置103、104、105又は106を用いてレーザ光を生成してもよい。
 11.光アイソレータの他の応用例
 実施形態1~6において例示した光アイソレータ120は、紫外線レーザ装置に限らず、様々な用途に適用可能である。例えば、光アイソレータ120への入射光は、パルスレーザ光に限らず、CWレーザ光であってもよいし、放射光であってもよい。例えば、光アイソレータ120は、加速器における放射光の出口に配置されてもよい。また、光アイソレータ120は、重水素ランプを用いた分光器における紫外域の波長の迷光を抑制するために配置されてもよい。
 12.その他
 上記の説明は、制限ではなく単なる例示を意図している。従って、特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかである。また、本開示の実施形態を組み合わせて使用することも当業者には明らかである。
 本明細書及び特許請求の範囲全体で使用される用語は、明記が無い限り「限定的でない」用語と解釈されるべきである。例えば、「含む」、「有する」、「備える」、「具備する」などの用語は、「記載されたもの以外の構成要素の存在を除外しない」と解釈されるべきである。また、修飾語「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。また、「A、B及びCの少なくとも1つ」という用語は、「A」「B」「C」「A+B」「A+C」「B+C」又は「A+B+C」と解釈されるべきである。さらに、それらと「A」「B」「C」以外のものとの組み合わせも含むと解釈されるべきである。

Claims (20)

  1.  紫外線波長の直線偏光の入射光に対する規格化透過率が0.9以上の透過軸となるように配置される第1の偏光子と、
     前記第1の偏光子を透過した光の偏光方向を、磁場によって第1の回転方向に第1の回転量で回転させると共に、光学活性もしくは複屈折によって前記第1の回転方向とは逆方向の第2の回転方向に第2の回転量で回転させるファラデー材料が用いられたファラデー回転子と、
     前記ファラデー回転子を透過した前記入射光に対する規格化透過率が0.9以上の透過軸となるように配置される第2の偏光子と、
     を備える光アイソレータ。
  2.  請求項1に記載の光アイソレータであって、
    前記入射光の偏光方向と、前記第1の偏光子の透過軸との角度差は、17.5度以内であり、
     前記ファラデー回転子を透過した前記入射光の偏光方向と、前記第2の偏光子の透過軸との角度差は、17.5度以内である、
     光アイソレータ。
  3.  請求項1に記載の光アイソレータであって、
     前記第1の回転量は45度±17.5度以内であり、
     前記第2の回転量は、nを整数として、45度+(180×n)度±17.5度以内である、
     光アイソレータ。
  4.  請求項1に記載の光アイソレータであって、
     前記第1の偏光子から前記第2の偏光子へと進む前記入射光の偏光方向は、前記ファラデー回転子の透過の前後で17.5度以内の角度差に維持され、
     前記第2の偏光子から前記第1の偏光子に向かって進む戻り光の偏光方向は、前記ファラデー回転子の透過の前後で90度±17.5度以内の角度回転し、前記戻り光は前記第1の偏光子によって反射される、
     光アイソレータ。
  5.  請求項1に記載の光アイソレータであって、
     前記ファラデー材料は、水晶又はフッ化マグネシウムである、
     光アイソレータ。
  6.  請求項1に光アイソレータであって、
     前記入射光の波長がArFエキシマレーザの発振波長又はKrFエキシマレーザの発振波長である、
     光アイソレータ。
  7.  請求項1に記載の光アイソレータであって、
     前記ファラデー回転子に印加される磁場の磁束密度は、0.5T以上3.0T以下である、
     光アイソレータ。
  8.  請求項7に記載の光アイソレータであって、
     前記ファラデー材料がフッ化マグネシウムであり、
     前記入射光の波長がArFエキシマレーザの発振波長である場合に、前記ファラデー材料の光軸方向の厚さは、6mm以上42mm以下である、
     光アイソレータ。
  9.  請求項7に記載の光アイソレータであって、
     前記ファラデー材料がフッ化マグネシウムであり、
     前記入射光の波長がKrFエキシマレーザの発振波長である場合に、前記ファラデー材料の光軸方向の厚さは、13mm以上83mm以下である、
     光アイソレータ。
  10.  請求項7に記載の光アイソレータであって、
     前記ファラデー材料が水晶であり、
     前記入射光の波長がArFエキシマレーザの発振波長である場合に、前記ファラデー材料の光軸方向の厚さは、3mm以上25mm以下である、
     光アイソレータ。
  11.  請求項7に記載の光アイソレータであって、
     前記ファラデー材料が水晶であり、
     前記入射光の波長がKrFエキシマレーザの発振波長である場合に、前記ファラデー材料の光軸方向の厚さは、8mm以上53mm以下である、
     光アイソレータ。
  12.  請求項1に記載の光アイソレータであって、
     前記ファラデー材料は、分割された複数の材料で構成される、
     光アイソレータ。
  13.  請求項1に記載の光アイソレータであって、
     前記ファラデー回転子は、ヒータと、温度センサとを備え、前記ファラデー材料の温度が一定に保たれるように制御される、
     光アイソレータ。
  14.  紫外線レーザ装置であって、
     紫外線波長の直線偏光のパルスレーザ光を出力する発振段レーザと、
     前記パルスレーザ光を増幅して出力する増幅器と、
     前記発振段レーザと前記増幅器との間の光路上に配置される光アイソレータと、を備え、
     前記光アイソレータは、
     前記発振段レーザから出力された前記パルスレーザ光に対する規格化透過率が0.9以上の透過軸となるように配置される第1の偏光子と、
     前記第1の偏光子を透過した前記パルスレーザ光の偏光方向を、磁場によって第1の回転方向に第1の回転量で回転させると共に、光学活性もしくは複屈折によって前記第1の回転方向とは逆方向の第2の回転方向に第2の回転量で回転させるファラデー材料が用いられたファラデー回転子と、
     前記ファラデー回転子を透過した前記パルスレーザ光に対する規格化透過率が0.9以上の透過軸となるように配置される第2の偏光子と、を備える、
     紫外線レーザ装置。
  15.  請求項14に記載の紫外線レーザ装置であって、
     前記ファラデー回転子に配置されたヒータと、
     前記ファラデー回転子の温度を検出する温度センサと、
     前記温度センサからの情報に基づき、前記ファラデー材料の温度変化を抑制するように、前記ヒータを制御するプロセッサと、を備える、
     紫外線レーザ装置。
  16.  請求項14に記載の紫外線レーザ装置であって、
     前記第2の偏光子と前記増幅器との間に、少なくとも2軸の調整機構を含む光軸調整機構を備える、
     紫外線レーザ装置。
  17.  請求項14に記載の紫外線レーザ装置であって、
     前記発振段レーザと前記増幅器とのそれぞれは、レーザガスが充填されるチャンバを備える、
     紫外線レーザ装置。
  18.  請求項14に記載の紫外線レーザ装置であって、
     前記発振段レーザは紫外線固体レーザである、
     紫外線レーザ装置。
  19.  請求項14に記載の紫外線レーザ装置であって、
     前記増幅器は、共振器を備える構成、又はマルチパス増幅器である、
     紫外線レーザ装置。
  20.  電子デバイスの製造方法であって、
     紫外線波長の直線偏光のパルスレーザ光を出力する発振段レーザと、
    前記パルスレーザ光を増幅して出力する増幅器と、
    前記発振段レーザと前記増幅器との間の光路上に配置される光アイソレータと、を備え、
    前記光アイソレータは、
     前記発振段レーザから出力された前記パルスレーザ光に対する規格化透過率が0.9以上の透過軸となるように配置される第1の偏光子と、
     前記第1の偏光子を透過した前記パルスレーザ光の偏光方向を、磁場によって第1の回転方向に第1の回転量で回転させると共に、光学活性もしくは複屈折によって前記第1の回転方向とは逆方向の第2の回転方向に第2の回転量で回転させるファラデー材料が用いられたファラデー回転子と、
     前記ファラデー回転子を透過した前記パルスレーザ光に対する規格化透過率が0.9以上の透過軸となるように配置される第2の偏光子と、を備える紫外線レーザ装置を用いて前記増幅器により増幅されたレーザ光を生成し、
     前記増幅されたレーザ光を露光装置に出力し、
     電子デバイスを製造するために、前記露光装置内で感光基板上に前記レーザ光を露光すること
     を含む、電子デバイスの製造方法。
PCT/JP2021/011549 2021-03-19 2021-03-19 光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法 WO2022195894A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2021/011549 WO2022195894A1 (ja) 2021-03-19 2021-03-19 光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法
JP2023506706A JPWO2022195894A1 (ja) 2021-03-19 2021-03-19
CN202180092624.9A CN116868108A (zh) 2021-03-19 2021-03-19 光隔离器、紫外线激光装置和电子器件的制造方法
US18/363,651 US20230375847A1 (en) 2021-03-19 2023-08-01 Optical isolator, ultraviolet laser device, and electronic device manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/011549 WO2022195894A1 (ja) 2021-03-19 2021-03-19 光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/363,651 Continuation US20230375847A1 (en) 2021-03-19 2023-08-01 Optical isolator, ultraviolet laser device, and electronic device manufacturing method

Publications (1)

Publication Number Publication Date
WO2022195894A1 true WO2022195894A1 (ja) 2022-09-22

Family

ID=83322082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011549 WO2022195894A1 (ja) 2021-03-19 2021-03-19 光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法

Country Status (4)

Country Link
US (1) US20230375847A1 (ja)
JP (1) JPWO2022195894A1 (ja)
CN (1) CN116868108A (ja)
WO (1) WO2022195894A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478153A (en) * 1977-12-05 1979-06-22 Nippon Telegr & Teleph Corp <Ntt> Light isolator
JP2015200645A (ja) * 2014-04-04 2015-11-12 株式会社ニューフレアテクノロジー 撮像装置、検査装置および検査方法
WO2016142995A1 (ja) * 2015-03-06 2016-09-15 ギガフォトン株式会社 レーザ装置及び極端紫外光生成システム
US20160274305A1 (en) * 2014-10-14 2016-09-22 Source Photonics (Chengdu) Co., Ltd. Optical Transmitter and Method of Transmitting an Optical Signal

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5478153A (en) * 1977-12-05 1979-06-22 Nippon Telegr & Teleph Corp <Ntt> Light isolator
JP2015200645A (ja) * 2014-04-04 2015-11-12 株式会社ニューフレアテクノロジー 撮像装置、検査装置および検査方法
US20160274305A1 (en) * 2014-10-14 2016-09-22 Source Photonics (Chengdu) Co., Ltd. Optical Transmitter and Method of Transmitting an Optical Signal
WO2016142995A1 (ja) * 2015-03-06 2016-09-15 ギガフォトン株式会社 レーザ装置及び極端紫外光生成システム

Also Published As

Publication number Publication date
US20230375847A1 (en) 2023-11-23
JPWO2022195894A1 (ja) 2022-09-22
CN116868108A (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
JP5393658B2 (ja) ガス放電チャンバ
JP2007012981A (ja) 光学素子の内部全反射面に高反射コーティングを施したレーザ装置
US20020105995A1 (en) Molecular fluorine laser with single spectral line and polarized output
JP4907865B2 (ja) 多段増幅型レーザシステム
WO2022195894A1 (ja) 光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法
US10965087B2 (en) Laser device
JPH0437181A (ja) 狭帯域化エキシマレーザ装置
JP5393725B2 (ja) 多段増幅型レーザシステム
US6868106B1 (en) Resonator optics for high power UV lasers
JP2631567B2 (ja) 狭帯域発振エキシマレーザ
WO2022195893A1 (ja) 紫外線レーザ装置及び電子デバイスの製造方法
JP2006073921A (ja) 紫外線ガスレーザ用光学素子及び紫外線ガスレーザ装置
CN110603695B (zh) 激光装置和光学元件的制造方法
WO2022195895A1 (ja) 光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法
JPWO2019186767A1 (ja) 波長変換システム及び加工方法
JP4822285B2 (ja) ガスレーザ用光学素子及びそれを用いたガスレーザ装置
WO2021049020A1 (ja) 波長変換システム、レーザシステム及び電子デバイスの製造方法
WO2023089673A1 (ja) レーザ装置、及び電子デバイスの製造方法
WO2023007545A1 (ja) 紫外線レーザ装置及び電子デバイスの製造方法
WO2023100293A1 (ja) 光学パルスストレッチャ、レーザ装置及び電子デバイスの製造方法
WO2023286236A1 (ja) 光アイソレータ、紫外線レーザ装置及び電子デバイスの製造方法
JP5162139B2 (ja) 露光装置用狭帯域レーザ装置
JP2013065903A (ja) ガスレーザ装置
WO2024201755A1 (ja) レーザシステム及び電子デバイスの製造方法
JP2688991B2 (ja) 狭帯域発振エキシマレーザ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931639

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180092624.9

Country of ref document: CN

Ref document number: 2023506706

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931639

Country of ref document: EP

Kind code of ref document: A1