WO2021245856A1 - ファイバアレイトレーおよび該トレーを用いた光デバイスの自動光接続方法 - Google Patents

ファイバアレイトレーおよび該トレーを用いた光デバイスの自動光接続方法 Download PDF

Info

Publication number
WO2021245856A1
WO2021245856A1 PCT/JP2020/022016 JP2020022016W WO2021245856A1 WO 2021245856 A1 WO2021245856 A1 WO 2021245856A1 JP 2020022016 W JP2020022016 W JP 2020022016W WO 2021245856 A1 WO2021245856 A1 WO 2021245856A1
Authority
WO
WIPO (PCT)
Prior art keywords
tray
fiber array
semi
optical
fiber
Prior art date
Application number
PCT/JP2020/022016
Other languages
English (en)
French (fr)
Inventor
藍 柳原
賢哉 鈴木
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/022016 priority Critical patent/WO2021245856A1/ja
Priority to JP2022529232A priority patent/JP7389390B2/ja
Publication of WO2021245856A1 publication Critical patent/WO2021245856A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/46Processes or apparatus adapted for installing or repairing optical fibres or optical cables

Definitions

  • the present invention relates to a jig used in an optical mounting process of an optical module including a planar optical wave circuit type optical device used in optical communication and a method of using the jig.
  • the present invention relates to, for example, a tray for fixing an optical fiber array used when connecting an optical fiber array to an optical device, and an automatic optical connection method for the optical device using the tray.
  • PLC planar optical wave circuit
  • An optical fiber array in which a plurality of fiber core wires are bundled is adhered to the end face, which is the optical input / output part of the flat light wave circuit type optical device chip. It is connected using an agent.
  • a UV photocurable adhesive that is cured by irradiation with UV light is often used.
  • Non-Patent Document 1 by using a UV adhesive, high alignment accuracy and highly reliable optical connection are possible even in a multi-core fiber connection.
  • a chip (PLC2) of a planar light wave circuit type device is fixedly mounted on a chip stage 1 capable of 6-axis control, and the input / output path of the PLC 2 is the chip 2. It is arranged on one side surface (the left end surface in FIG. 1).
  • a glass block portion 4 that bundles one end of an optical fiber and aligns the core surface of each optical fiber core wire with the end surface is similarly fixedly placed on the fiber array holder 5.
  • the optical fiber array 3 is branched into each optical fiber core wire by a branch portion 6, the other end of each branched optical fiber core wire is terminated by a connector 9, and any connector 9 is an LD light source device 7 and a power meter device 8. Are connected to each.
  • the positions of the PLC chip 2 and the glass block portion 4 of the fiber array 3 are aligned with submicron accuracy while passing the monitor light. Align).
  • the position alignment between the chip 2 and the fiber array 3 can be automatically aligned using an X, Y, Z, ⁇ , ⁇ , ⁇ 6-axis automatic centering device, and at this time, the input / output used for the centering can be performed.
  • the number of paths is arbitrary. That is, the number of connectors connected to the LD device 7 and the power meter 8 may be one or more.
  • an adhesive is dropped between the chip 2 and the glass block portion 4 of the fiber array 3, and UV light is irradiated as shown by the arrow in FIG. 1 to cure and bond.
  • the case where the input / output waveguide is on one side of the chip has been described, but when the input waveguide and the output waveguide are on the other end faces of the chip, for example, a photodiode connected to the power meter 8 is installed on the output end face side. After centering in the set state and connecting the fiber array for input, the direction of the chip may be changed and the fiber array for output may be connected to the other end surface.
  • This process is itemized as follows. 1. Fix the PLC chip 2 on the chip stage 1 of the centering device. 2. The glass block portion 4 of the fiber array 3 is fixed to the FA holder 5 of the centering device. 3. 3. Connect the connector of any input / output path used for centering to the LD light source 7 and the power meter 8. Four. Performs automatic alignment. 5. Cure with UV adhesive 6. Disconnect the fiber array 3 connector from the LD light source 7 and the power meter (PM) 8. 7. Remove the connected PLC chip 2 and fiber array 3 from the centering device.
  • the fiber array 3 is optically connected to the PLC chip 2 in this way, but conventionally, the processes other than the process 4 were not automated and were manually performed. If all these processes can be automated, it is possible to significantly reduce the mounting cost by improving mass productivity and reducing the number of workers.
  • step 2 it was necessary to take out the fiber array 3 from the delivered tray and fix the glass block portion 4 to the FA holder 5 of the automatic centering device so that the optical fiber portion would not be entangled.
  • step 7 it was necessary to remove the chip 2 after being connected and fixed to the fiber array 3 from the device and store it in a tray so that the fibers would not be entangled.
  • steps 3 and 6 when connecting / disconnecting the connector to / from the LD and PM ports for alignment, it was necessary to handle it carefully so that the long fiber would not get entangled.
  • a jig (tray) is required to simplify the handling of long fibers that can reach several meters.
  • a mechanism for automatically handling the long fiber is required.
  • the present invention proposes a fiber tray and an automatic optical connection method using the fiber tray, which is a jig that simplifies the handling of a fiber array with a long fiber and enables full automation of the optical connection process.
  • this tray it is possible to automate the process of connecting the fiber array to the PLC chip, and it is possible to improve the mass productivity and reduce the cost of the optical device.
  • the concept of this proposal is to facilitate handling by semi-fixing a fiber array, which is irregular and difficult to handle, to a fixed tray with a semi-fixed structure so that it can be easily handled and handled by an automatic device. It is to be. Further, the tray is provided with a sliding mechanism, and the long fiber can be provided with an extra length at the time of alignment.
  • the present invention has been made to solve such a problem, and an example of the embodiment of the present invention is characterized by having the following configuration.
  • (Structure 1) A tray for fixing an optical fiber array used when connecting an optical fiber array to an optical device.
  • a semi-fixed structure that semi-fixes the glass block of the optical fiber array in a detachable manner A semi-fixed structure in which a long fiber is wound and semi-fixed, A tray with a semi-fixed structure that semi-fixes multiple connectors connected to an optical fiber array in a detachable manner.
  • (Structure 2) The tray described in Configuration 1, A tray characterized by having a sliding mechanism for allowing the long fiber to have an extra length when the glass block portion of the optical fiber array and the connector are moved for alignment.
  • the tray described in Configuration 2 The tray described in Configuration 2, The sliding mechanism is a tray characterized by having a structure in which two plate-shaped members are overlapped.
  • the tray according to the configuration 6 The sliding mechanism is a tray characterized by having a rail structure that guides the sliding operation of the two plate-shaped members.
  • the optical connection process can be fully automated, and the mass productivity of the optical connection process can be improved and the mounting cost can be reduced by reducing the number of workers.
  • FIG. 3 shows the optical connection process of the conventional optical fiber array and PLC. It is a top view in the extended state of the optical fiber array tray of this invention. It is a top view in the contraction state of the optical fiber array tray of this invention. It is sectional drawing (IV-IV'in FIG. 3) of the movable part of the optical fiber array tray of this invention. It is a side view (a) and a top view (b) of the notch structure part of the optical fiber array tray of this invention. It is a figure which shows the outline of the automatic optical connection apparatus which carries out the automatic optical connection process using the optical fiber array tray of this invention. It is a figure explaining the general state of the fiber array before storing a tray. (A) to (f) are diagrams showing the state of the optical fiber array tray and the PLC chip in each step of the automatic optical connection method of the present invention.
  • FIGS. 2 to 5 show an outline of the structure of the optical fiber array tray of the present invention.
  • the optical fiber array tray of the present invention is partially overlapped and arranged in the longitudinal direction (FIG. 3), as shown in the top views of FIGS. 2 and 3 and the cross-sectional view of the overlapping plate-shaped members of FIG. It is composed of two plate-shaped members 21 and 22 that are slidable in the directions of the left and right arrows) and are slidable on the lower side and the upper side.
  • the two plate-shaped members 21 and 22 are top views in an extended state in which the area of the portion on which FIG. 2 is superimposed is minimized, and are top views in a contracted state in which the area of the portion on which FIG. 3 is superimposed is maximum. ..
  • FIG. 4 shows a cross-sectional view of a plate-shaped member perpendicular to the sliding direction in the sliding portion of the optical fiber array tray of the present invention in which two plate-shaped members 21 and 22 are superimposed. It is sectional drawing of two plate-shaped members 21 and 22 in IV-IV' of FIG. In FIG. 4, two rail structures 21a and 21b facing each other that serve as guides when the upper plate-shaped member 22 slides may be provided on both sides of the upper surface of the lower plate-shaped member 21.
  • the inner surfaces of the two rail structures 21a and 21b facing each other and / or the side surfaces on both sides of the upper plate-shaped member 22 in contact with the inner surfaces of the rail structures 21a and 21b are in contact with the moving distance when sliding at appropriate positions. Processing to increase the coefficient of friction (cuts, cuts, roughening processing, etc.) may be performed so that stoppage and fixing control can be performed.
  • the rail structure may be provided upside down from FIG. 4, in a shape that embraces the lower plate-shaped member 21 on both sides of the lower surface of the upper plate-shaped member 22 so as to face downward.
  • the rail structure is formed so as to sandwich the rail portion extending in the sliding direction provided on the sliding surface of one plate-shaped member and the rail portion, and is provided on the sliding surface of the other plate-shaped member. It may be a rail or the like. If necessary, a rail structure that guides the sliding operation of the two plate-shaped members may be used.
  • the two plate-shaped members 21 and 22 of FIGS. 2 and 3 have a circular winding portion 23 on which a part of a long fiber portion (pig tail portion) of the fiber array can be wound along the circumference on the upper surface thereof.
  • 24 may be provided one by one.
  • the radii of the circles of the winding portions 23 and 24 are R1 and R2, respectively.
  • the circular winding portion 23 (R1) on the lower plate-shaped member 21 is formed in a portion that does not overlap with the upper plate-shaped member 22 in the contracted state (FIG. 3) in which the area of the overlapping portion is maximized. ..
  • the upper plate-shaped member 22 is also formed with notch structure portions 25a and b as a semi-fixed structure in which the glass block portion 4 and the branch portion 6 of the fiber array are semi-fixed in a detachable state.
  • the connector 9 at the end of each core wire fiber in which the fiber array is branched at the branch portion 6 also has a plurality of semi-fixed notch structure portions 25c at the lower left position of the lower plate-shaped member 21 so that light is directed to the left end. It is semi-fixed by aligning vertically in the input / output direction.
  • FIG. 5 shows an outline of a side view (a) and a top view (b) of the notch structure portions 25a, b, and c of FIGS. 2 and 3 as an example of the notch structure portion 25 having a semi-fixed structure. show.
  • FIG. 5A shows a side view of the notch structure portion 25 (a view of a cross section of the plate-shaped member 21 (22) viewed from the optical input / output side of the connector 9).
  • a set of two claw-shaped members are arranged on a plate-shaped member of a tray so that a protrusion serving as a locking portion faces the tip portion, and a glass block, a branch portion, or a branch portion. It has a structure in which the connector is sandwiched and semi-fixed so that it can be mechanically detached.
  • FIG. 5B shows an example of fixing one connector 9 of a branched core wire fiber.
  • the long fiber portion of the fiber array is located on the upper right side of the upper plate-shaped member 22 from the circular winding portion 23 (R1) of the lower plate-shaped member 21.
  • the glass block portion 4 fixed to the notch structure portion 25a is extended to a length that connects them straight.
  • the fiber portion (fan-out portion) up to the connector 9 also extends to a length that connects straight.
  • one guide structure 26a to 26d is substantially perpendicular to the plate surface at an appropriate position on the surface of the plate-shaped members 21 and 22. It is arranged as a protruding structure (protruding structure).
  • Each guide structure 26 is not limited to the number shown in the figure, and an appropriate number can be installed at the required location, and each can be formed of a simple member having a protrusion structure such as a plate or a rod. good. Further, it may be composed of two or more members facing each other at appropriate intervals, if necessary. Further, at the tip portion so as to regulate the vertical distance from the surface of the plate-shaped members 21 and 22 of the tray of the long fiber (to prevent the long fiber from being too far from the plate surface of the plate-shaped member). A structure such as a claw portion may be provided, or the plate-shaped member may be formed or arranged in a shape having a curved surface in a direction within the plate surface or a direction perpendicular to the plate surface.
  • the material of the optical fiber array tray can be made of cardboard or plastic, which is easy to mold and inexpensive.
  • the glass block portion 4 of the fiber array 3 can be attached to the notch structure portion 25a in a form that can be mechanically detached and detached by a robot, for example, and has a recess corresponding to a claw of the notch structure portion 25 in FIG. It may have a stop structure.
  • the notch structure portion 25a has another set of locking structures (not shown) similar to FIG. 5 for mounting the PLC chip 2 after centering and optical connection to the optical fiber array tray together with the glass block portion 4 of the fiber array 3. It may have a semi-fixed structure including a portion.
  • the notch structure portion 25b may have a fixed structure that is not a detachable semi-fixed structure.
  • At least one of the two claw-shaped members shown in FIG. 5 may be a member integrated with an adjacent member. ..
  • a locking structure such as a concave portion corresponding to the protruding portion to be the locking portion is provided on the side of the plurality of connector portions 9 so that the notch structure portion 25c can be attached to the notch structure portion 25c in a detachable manner. good.
  • the long fiber portion can be wound around the circular winding portions 23 and 24 by an arbitrary length (number of windings) required.
  • the two plate-shaped members 21 and 22 of the tray have a plurality of notches (notched) and friction coefficient on the sliding surface so that the moving distance when sliding with each other can be fixed and controlled at an appropriate position.
  • a large roughening surface may be applied.
  • the fiber array By semi-fixing the connector part and the glass block part 4 of the fiber array to the tray in a state where they can be mechanically attached to and detached by the notch structure part 25, the fiber array can be easily detached from the tray mechanically by an automatic device. The extra length of the scale fiber can also be secured.
  • the two plate-shaped members 21 and 22 of the tray are slid so as not to apply a pulling force to the fiber. It is also possible to allow the long optical fiber to have a sufficient extra length.
  • the plate surface on the side of the notch structure 25c of the tray is the connector selected by image recognition. It is desirable that the recognition marker 27 is marked so that the position can be determined.
  • FIG. 6 shows an outline of an automatic optical connection device showing the entire automatic optical connection process of the present invention.
  • the optical fiber array is supplied to the centering portion of the automatic optical connection device in order from the FA vendor 61 in a state of being housed in the optical fiber array tray of the present invention and in a state where a plurality of the optical fiber arrays are stacked.
  • the PLC chips are housed in the chip vendor 62
  • a plurality of PLC chips are stacked and supplied to the centering portion of the automatic optical connection device in order from the chip vendor 62.
  • the fiber array stored in the tray moves to the centering device 640 by the FA conveyor 63 or the transfer arm (not shown).
  • the PLC chip 2 is also moved from the chip bender 62 to the chip stage 1 of the centering device 640 by a transfer arm (not shown) or the like.
  • the centering device 640 of FIG. 6 is equipped with a camera 642 and a UV lamp 643 in addition to the 6-axis centering mechanism for centering. Further, a transfer hand 644 for grasping the glass block portion of the fiber array 3 by vacuum suction or the like and moving it to the FA stage is also installed near the centering device 640. Further, a conveyor 67 for carrying out the tray 66 stored in a state where the PLC chip 2 and the FA 4 are connected by a UV adhesive and a collector 68 for storing the transported tray 66 are also installed.
  • the hand 644 can be used, but another movable mechanism (robot arm, etc., not shown) can be provided on the FA conveyor 63 and used.
  • the mechanism may be such that a force for shortening the tray acts by moving the optical fiber array tray by the FA conveyor 63.
  • This mechanism is, for example, two rails fixed in an inverted C shape substantially in parallel at a position on the conveyor moving surface of the FA conveyor 63, and moves the conveyor in the longitudinal direction of the optical fiber array tray. Aligned at right angles to the direction, the two rails were arranged so that the distance between the two rails gradually narrowed across the fiber optic array tray as the fiber optic array tray on the FA conveyor 63 moved and approached the centering device 640. It may be a set of two rails or the like. A similar mechanism utilizing the movement of the tray on the conveyor can be used when the tray is slid and extended.
  • the connector used for alignment is selected using the recognition mark 27 (Figs. 2 and 3), etc., removed from the tray by the robot, and connected to the port of LD7 or PM8. do.
  • LD7 and PM8 are not shown in FIG. 6, since the input fiber 651 and the output fiber 652 connected to the patch panel 65 are connected to the LD7 and PM8, they may be connected here.
  • the glass block portion 4 of the fiber array is removed from the tray, moved to the centering stage stand (FA stage 5 in front of the chip stage 1, not shown in FIG. 6) and fixed.
  • the PLC chip 2 is transported onto the centering stage (chip stage 1) and fixed.
  • a UV light curing adhesive is inserted between the end faces of the PLC chip 2 and the glass block portion 4 of the fiber array, and UV light is irradiated from the UV lamp 643 to cure.
  • the connected chip 2 and the fiber array 3 are removed from the centering stage stand (chip stages 1 and 5), and both are stored in the optical fiber array tray.
  • the fiber array tray 66 in which the PLC chip 2 is housed is conveyed by a conveyor 67 or the like, stored in a collector 68, and shipped.
  • FIG. 7 is a diagram illustrating the entire structure of a general fiber array before the tray is stored.
  • the tape fiber portion 71 of the fiber array 3 has a structure in which a plurality of single-core optical fibers are assembled in a tape shape, and is optically connected to a PLC chip or the like by a glass block portion 4 at the right end.
  • the section of each optical fiber branched at the central branch portion 6 of the fiber array 3 in FIG. 7 is called a fan-out portion 72, and is terminated by a plurality of connectors 9 at the left end to perform optical input / output.
  • the tray has a plurality of circular structures (winding portions 23, 24) having different diameters, on which long fibers can be wound.
  • it has two circular structures having different diameters.
  • notch structure 25 (semi-fixed structure, see FIG. 5) capable of semi-fixing a connector, a glass block of a fiber array, a chip after optical connection with the fiber array, and the like. With this semi-fixed structure, the connector, fiber array, and chip can be mechanically removed and attached from above the tray.
  • the tray has a protrusion structure (guide structure 26) for controlling the bending direction of the fiber and for keeping the sliding position of the tray constant.
  • a protrusion structure for controlling the bending direction of the fiber and for keeping the sliding position of the tray constant.
  • the tray has a mark (27) that can be recognized and identified as described above, it is also possible to mark the connector portion 9 side so that it can be recognized by the camera. By using this mark, the connector used at the time of alignment can be image-recognized and identified.
  • Storage of fiber arrays in trays can also be performed mechanically.
  • the fiber array that is aligned and optically connected to the PLC chip is stored in the fiber array tray, then put in the collector 68, and shipped to the mounting manufacturer.
  • the optical fiber array is supplied in a state of being housed in the tray of the present invention and in a state where a plurality of optical fiber arrays are contained in a bender.
  • the fiber array and the PLC chip 2 housed in the tray move to the centering device by a conveyor or a transfer arm.
  • the optical fiber array tray is slid so that the tray is in a contracted state and the fiber has an extra length.
  • the sliding amount can be controlled by a machine and is arbitrary. If it slides too much by mistake, the wound fiber and the connector may be damaged. Therefore, due to the protrusion structure (guide structure 26) shown in FIG. 3, the tray cannot be slid beyond a certain position. It has become like.
  • the connector used for alignment is selected by image recognition by the camera, removed from the tray by a robot, and connected to the port of the LD light source 7 or the power meter (PM) 8.
  • the connector can be inserted straight into the ports of LD7 and PM8.
  • the PLC chip 2 is transported onto the alignment stage 1 and fixed.
  • the glass block portion 4 and the PLC chip 2 of the fiber array are fixed by using a vacuum chuck or the like so that the submicrons do not shift.
  • the positions of the PLC chip 2 and the glass block portion 4 of the fiber array are automatically aligned by 6-axis alignment so that the output power is maximized while the light is passed through the chip 2.
  • a UV curing adhesive is inserted between the end faces of the PLC 2 and the glass block portion 4 of the fiber array, and UV light is irradiated to cure.
  • the optical fiber array tray is extended again, the tray containing the optical module is conveyed by a conveyor or the like, and the tray is shipped to a vendor.
  • the optical fiber array tray of the present invention is used, and the optical fiber array is detachably semi-fixed by a semi-fixed structure, so that at least one of the glass block portion of the optical fiber array and a plurality of connectors is provided. It is possible to realize an automatic optical connection method in which one is removed to allow a long fiber to have an extra length and automatically connect to a planar optical wave circuit type optical device.
  • the sliding mechanism of the optical fiber array tray of the present invention is used, it becomes easy to automatically connect the optical fiber array to the optical device with a sufficient extra length.
  • the optical connection was made to a quartz PLC chip, but the material of the optical device of the planar light wave circuit is arbitrary, such as a semiconductor such as InP or silicon.
  • the type of PLC chip optical device is arbitrary, such as a switch, AWG, splitter, and transmission / reception module.
  • the number of cores of the fiber array that is, the number of input / output waveguides is arbitrary, which simplifies the handling of the fiber array with long fibers and enables the full automation of the optical connection process with the optical device.
  • the material of this fiber tray is arbitrary, such as plastic or cardboard, which is easy to mold and inexpensive.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

本発明は長尺ファイバ付きのファイバアレイの取り扱いを簡易にし、光接続工程の全自動化を可能にさせるファイバトレー及びそのファイバトレーを使用した自動光接続方法を提案する。 本発明のトレーは、光デバイスに光ファイバを接続する際に用いる、光ファイバアレイを固定するためのトレーであって、光ファイバアレイのガラスブロック部(4)および光ファイバアレイに接続された複数のコネクタ(9)を脱着可能に半固定する半固定構造(25a,25c)と、長尺ファイバ部を巻きつけて半固定する半固定構造(23,24)と、長尺ファイバ部に余長を持たせることができる摺動機構(21,22)を有するトレー。

Description

ファイバアレイトレーおよび該トレーを用いた光デバイスの自動光接続方法
 本発明は、光通信で用いられる平面光波回路型光デバイスを含む光モジュールの光実装工程で使用する治具及びその使用方法に関する。具体的には例えば、光デバイスに光ファイバアレイを接続する際に用いる、光ファイバアレイを固定するためのトレー、および該トレーを用いた光デバイスの自動光接続方法に関する。
 通信容量の増大に伴い、通信設備やデータセンタなどで用いられる光デバイスの需要も急増している。そしてこれら光デバイスの低コスト化が期待されている。
 通信用光デバイスには、スプリッタ、光スイッチ、AWG、コヒーレントレシーバーなど、平面光波回路(PLC)を含むものが多く存在する。
 平面光波回路の材料は、シリコン、石英、InPなど様々であるが、それら平面光波回路型光デバイスチップの光入出力部となる端面には、複数のファイバ芯線を束ねた光ファイバアレイが、接着剤を用いて接続されている。
 平面光波回路と光ファイバアレイとの接続には、例えば特許文献1に記載されているように、UV光の照射で硬化する、UV光硬化型接着剤用いることが多い。
 また非特許文献1のように、UV接着剤を用いることで、多芯のファイバ接続においても位置合わせ精度が高く高信頼な光接続が可能である。
特許5723335号公報
M. Ishii, Y. Hibino, F. Hanawa, "Multiple 32-fiber array connection to silica waveguides on Si", IEEE PHOTONICS TECHNOLOGY LETTERS, VOL. 8, NO. 3, MARCH 1996
(従来の光接続工程)
 平面光波回路型デバイスのチップに光ファイバアレイを接続する、従来の光接続工程について説明する。
 図1の従来の光ファイバ接続装置では、例えば平面光波回路型デバイスのチップ(PLC2)が、6軸制御可能なチップステージ1の上に固定載置されており、PLC2の入出力パスがチップ2の片側面(図1では左端面)に配置されている。
 PLCチップ2の左側には、光ファイバの一端を束ね、各光ファイバ芯線のコア面を端面に整列させるガラスブロック部4が、ファイバアレイホルダー5の上に同様に固定載置されている。光ファイバアレイ3は分岐部6で各光ファイバ芯線に分岐され、分岐された各光ファイバ芯線の他端はコネクタ9で終端されており、任意のコネクタ9がLD光源装置7とパワーメーター装置8にそれぞれ接続されている。
 ここでLD光源装置7とパワーメーター装置8に接続した入力ポートと出力ポートを用いて、モニタ光を通しながらPLCチップ2とファイバアレイ3のガラスブロック部4の位置をサブミクロンの精度でアライメント(調心)する。
 チップ2とファイバアレイ3の位置のアライメントは、X,Y,Z,θ,α,βの6軸自動調心装置を用いて自動調心することができ、この時、調心に用いる入出力パスの数は任意である。即ちLD装置7とパワーメーター8に接続するコネクタの数は一組以上であってよい。
 自動調心後、チップ2とファイバアレイ3のガラスブロック部4の間に接着剤を滴下し、図1の矢印のようにUV光を照射して硬化接着する。
 ここではチップの片側に入出力導波路がある場合について説明したが、入力導波路と出力導波路がチップの別の端面にある場合は、例えば出力端面側にパワーメーター8に接続したフォトダイオードをセットした状態で調心し、入力用のファイバアレイを接続した後、チップの向きを変えてもう一端面に出力用のファイバアレイを接続すればよい。
 この工程を箇条書きにすると下記の通りである。
1. PLCチップ2を調心装置のチップステージ1上に固定。
2. ファイバアレイ3のガラスブロック部4を調心装置のFAホルダ5に固定。
3.調心に用いる任意の入出力パスのコネクタをLD光源7及びパワーメーター8に接続。
4.自動調心(アライメント)を実行。
5. UV接着剤で硬化
6. ファイバアレイ3のコネクタをLD光源7とパワーメーター(PM)8から外す。
7. 接続されたPLCチップ2とファイバアレイ3を調心装置から外す。
 このようにしてPLCチップ2にファイバアレイ3が光接続されるが、従来は工程4以外の工程は自動化されておらず、手動で実施されていた。これら全工程を自動化できれば、量産性向上と作業員削減による実装費用の大幅な低コスト化が可能である。
 しかしながら、次の理由から従来は全自動化が実現されていなかった。
 一番の理由は、ファイバアレイの長尺ファイバ部(巻かれた状態での形状が豚のしっぽを連想させるためピッグテイルとも呼ばれる)が妨げとなって、自動搬送装置でのファイバアレイの取り扱いが困難だからである。(ハンドリングの難易性)
 例えば工程2では、納品されたトレーからファイバアレイ3を取り出し、光ファイバ部が絡まないようにガラスブロック部4を自動調心装置のFAホルダ5に固定する必要があった。
 同様に工程7でも、ファイバアレイ3に接続固定後のチップ2を装置から取り外して、ファイバが絡まないようにトレーに収納する必要があった。
 また工程3、6で、調心のためコネクタをLDおよびPMポートに接続/脱着する際にも、長尺ファイバが絡まないように取り扱いに注意する必要があった。
 ファイバの絡まりの他にも、長尺ファイバをどこかに引っ掛けて引っ張り力を加えてしまうとファイバの破損につながるので、細心の注意が必要であった。
 その他の理由としては、LD光源7やPM装置8へのコネクタの接続/脱着操作には精密な制御性が必要であること、複数の入出力コネクタの中から調心に用いるコネクタを自動で選択することなどが、全自動化のための困難に挙げられる。
 LD光源やパワーメーター(PM)のポートへのコネクタ脱着操作時には、光源やパワーメーターのポートの枠の中に、まっすぐにコネクタを挿入/抜き取りをする必要がある。斜めや間違った方向に力が加わりながら抜き差しをすると、精密な部品が破損する可能性があり、慎重な取り扱いが必要であった。
 よって光接続工程の全自動化には、数メートルにも及ぶこともある長尺ファイバの取り扱いを簡易にするための治具(トレー)が必要である。また、その長尺ファイバの取り扱いなどを自動で実施するための機構が必要である。
 本発明では長尺ファイバ付きのファイバアレイの取り扱いを簡易にし、光接続工程の全
自動化を可能にさせる治具となる、ファイバトレー及びそのファイバトレーを使用した自動光接続方法について提案する。
このトレーを使用することにより、PLCチップへのファイバアレイ接続の工程の自動化が可能となり、光デバイスの量産性向上及び低コスト化が可能となる。
 本提案のコンセプトは、不定形でハンドリングが難しいファイバアレイを、半固定構造を備えた定型のトレーに脱着可能に半固定して収納することによってハンドリングを容易にし、自動装置での取り扱いを可能にすることである。さらにトレーに摺動機構を備え、調心の際に長尺ファイバに余長を持たせることもできる。
 本発明は、このような問題点を解決するためになされたものであり、本発明の実施形態の一例は、以下のような構成を備えることを特徴とする。
(構成1)
 光デバイスに光ファイバアレイを接続する際に用いる、光ファイバアレイを固定するためのトレーであって、
 光ファイバアレイのガラスブロック部を脱着可能に半固定する半固定構造と、
 長尺ファイバを巻きつけて半固定する半固定構造と、
 光ファイバアレイに接続された複数のコネクタを脱着可能に半固定する半固定構造を有するトレー。
(構成2)
 構成1に記載のトレーであって、
前記光ファイバアレイの前記ガラスブロック部と前記コネクタを調心のために動かす際に前記長尺ファイバに余長を持たせるための摺動機構を有することを特徴とするトレー。
(構成3)
 構成1に記載のトレーであって、
前記光ファイバアレイの前記ガラスブロック部を脱着可能に半固定する半固定構造と、前記コネクタを脱着可能に半固定する半固定構造とは、機械的に脱着可能なノッチ構造になっていることを特徴とするトレー。
(構成4)
 構成1に記載のトレーであって、
光接続時に調心に用いる前記コネクタの位置を認識するための認識マーカが、前記コネクタを脱着可能に半固定する半固定構造の近傍についていることを特徴とするトレー。
(構成5)
 構成2に記載のトレーであって、
前記摺動機構により前記長尺ファイバをたわませたときに、前記長尺ファイバのたわみ方を制御するための突起構造を有することを特徴とするトレー。
(構成6)
 構成2に記載のトレーであって、
前記摺動機構は、2枚の板状部材を重ね合わせた構造であることを特徴とするトレー。
(構成7)
 構成6に記載のトレーであって、
前記摺動機構は、前記2枚の板状部材の摺動動作をガイドするレール構造を有することを特徴とするトレー。
(構成8)
 構成1ないし7のいずれか1項に記載のトレーを用いた光デバイスの自動光接続方法であって、
 前記光ファイバアレイの前記ガラスブロック部および前記複数のコネクタの少なくとも一つを外して、前記長尺ファイバに余長を持たせて前記光デバイスにファイバアレイを全自動で光接続する自動光接続方法。
 以上記載したように本発明のファイバアレイトレーによれば、光接続工程の全自動化が可能となり、光接続工程の量産性向上と作業員削減による実装費用の低コスト化が可能である。
従来の光ファイバアレイとPLCの光接続工程を示す図である。 本発明の光ファイバアレイトレーの伸長状態における上面図である。 本発明の光ファイバアレイトレーの収縮状態における上面図である。 本発明の光ファイバアレイトレーの可動部の断面図(図3のIV‐IV’)である。 本発明の光ファイバアレイトレーのノッチ構造部の側面図(a)および上面図(b)である。 本発明の光ファイバアレイトレーを用いた自動光接続工程を実施する自動光接続装置の概要を示す図である。 トレー収納前のファイバアレイの一般的な状態を説明する図である。 (a)~(f)は、本発明の自動光接続方法の各工程における光ファイバアレイトレーとPLCチップの状態を示す図である。
 以下、図面を参照しながら本発明の実施形態について詳細に説明する。なお、以下の説明で、図1を含め同じ要素には同じ番号を付与し、説明は省略されることもある。
(本発明の光ファイバアレイトレーの構造)
 まず、図2~図5に本発明の光ファイバアレイトレーの構造の概要を説明する。
 本発明の光ファイバアレイトレーは、図2および図3の上面図および図4の重畳する板状部材の断面図に示すように、部分的に重畳して配置され、長さ方向(図3の左右の両矢印方向)に摺動可能な下側と上側の2枚の板状部材21,22で構成されている。2枚の板状部材21,22は、図2が重畳する部分の面積が最小となる伸長状態における上面図であり、図3が重畳する部分の面積が最大となる収縮状態における上面図である。
 図4には、2枚の板状部材21,22が重畳した本発明の光ファイバアレイトレーの摺動部における、摺動方向に垂直な板状部材の断面図を示す。図3のIV‐IV’における2枚の板状部材21,22の断面図である。図4で、下側の板状部材21の上面の両脇には、上側の板状部材22が摺動する時にガイドとなる向かい合う2つのレール構造21a、21bを設けてもよい。
 向かい合う2つのレール構造21a、21bの内面、および/またはレール構造21a、21bの内面に接する上側の板状部材22の両脇の側面には、摺動する際の移動距離を適宜の位置で係止、固定制御可能なように、摩擦係数を高める加工(刻み目、切り込みや粗面化加工)などを施してもよい。
 またレール構造は図4とは上下逆に、上側の板状部材22の下面の両脇に、下側の板状部材21を抱き込む形状で下向きに設けてもよい。あるいはレール構造は、一方の板状部材の摺動面上に設けた摺動方向に延びたレール部と、該レール部を挟み込むように形成され、他方の板状部材の摺動面上に設けた溝部などであってもよい。要すれば、2枚の板状部材の摺動動作をガイドするレール構造であればよい。
 図2、図3の2枚の板状部材21,22は、それぞれの上面にファイバアレイの長尺ファイバ部(ピッグテイル部)の一部を円周に沿って巻き付け可能な、円形の巻き付け部23、24を1つづつ有していてもよい。巻き付け部23、24の円の半径を、それぞれR1,R2とする。
 下側の板状部材21上の円形の巻き付け部23(R1)は、重畳する部分の面積が最大となる収縮状態(図3)において上側の板状部材22と重畳しない部分に形成されている。
 上側の板状部材22にはまた、ファイバアレイのガラスブロック部4と分岐部6とを脱着可能な状態に半固定する半固定構造として、ノッチ構造部25a、bが形成されている。ファイバアレイが分岐部6で分岐された各芯線ファイバ端部のコネクタ9も、同様な複数の半固定構造のノッチ構造部25cにより下側の板状部材21の左下の位置で、光を左端に入出力する向きで上下方向に整列して半固定されている。
 図5には、図2,3のノッチ構造部25a、b、cを総称して半固定構造をなすノッチ構造部25の例として、その側面図(a)と上面図(b)の概要を示す。
 図5(a)には、ノッチ構造部25の側面図(板状部材21(22)の断面をコネクタ9の光入出力側から見た図)を示す。ノッチ構造部25は、トレーの板状部材の上に2枚1組の爪状の部材が、先端部に係止部となる突起部が向き合うように配置されており、ガラスブロックや分岐部、コネクタを挟持して、機械的に脱着可能な状態に半固定する構造をしている。
 図5(b)の上面図では、分岐された芯線ファイバのコネクタ9を1つ固定する例を示している。
 図2にある光ファイバアレイトレーの伸長状態では、ファイバアレイの長尺ファイバ部は、下側の板状部材21の円形の巻き付け部23(R1)から、上側の板状部材22の右上にあるノッチ構造部25aに固定されたガラスブロック部4までを、真っ直ぐに結ぶ長さまで伸長している。
 同様に、巻き付け部23(R1)と巻き付け部24(R2)との間の長尺ファイバ部、ファイバアレイの分岐部6からノッチ構造部25cに半固定された分岐された各芯線ファイバ端部のコネクタ9までの間のファイバ部分(ファンアウト部)も、真っ直ぐに結ぶ長さまで伸長している。
 これに対して図3にある光ファイバアレイトレーの収縮状態では、ファイバアレイの長尺ファイバ部は、余長として曲線状に湾曲した状態にある。長尺ファイバ部の湾曲方向を規制する(たわみ方を制御する)ため、それぞれ1枚のガイド構造26a~dが、板状部材21,22の面上の適宜の位置に略板面に垂直に突出した構造(突起構造)として配置されている。
 各ガイド構造26(突起構造)は図示の数にかぎらず、必要な個所に適宜の数を設置することができ、それぞれ単純な1枚の板や棒などの突起構造の部材で形成してもよい。また、それぞれ必要に応じて適宜の間隔で向かい合う2枚以上の部材で構成されてもよい。更に、長尺ファイバのトレーの板状部材21,22の面からの垂直方向の距離を規制する(板状部材の板面から長尺ファイバが離れすぎないようにする)ように、先端部に爪部などの構造を設けたり、板状部材の板面内の方向または板面に垂直な方向で、湾曲する面を有する形状で形成されまたは配置されていてもよい。
 光ファイバアレイトレーの材料は、成型が容易かつ安価なボール紙やプラスチックで形成することができる。
 ファイバアレイ3のガラスブロック部4は、ノッチ構造部25aに例えばロボットで機械的に脱着可能な容易に外せる形で取り付けることができ、図5のノッチ構造部25の爪に対応する凹部などの係止構造を有していてもよい。
 ノッチ構造部25aは特に、調心し光接続した後のPLCチップ2をファイバアレイ3のガラスブロック部4と共に光ファイバアレイトレーに取り付けるため、図5と同様な図示しない別の組の係止構造部を含む半固定構造を有していてもよい。
 ノッチ構造部25bは、本発明の自動光接続方法の範囲では分岐部6を取り外すことは無いので、着脱可能な半固定構造ではない固定構造のものとすることもできる。
 ノッチ構造部25cは、複数のコネクタ9に対応して複数並列に設けられるので、図5にある2枚1組の爪状の部材の少なくとも一方は、隣接部材と一体の部材であってもよい。
 また複数のコネクタ部9の側にも、ノッチ構造部25cにそれぞれ脱着可能な形で取り付けることが可能なように、係止部となる突起部に対応する凹部などの係止構造を設けてもよい。
 長尺ファイバ部は、所要の任意の長さ(巻き付け回数)だけ円型の巻き付け部23,24に巻き付けられることができる。
 トレーの2枚の板状部材21,22には、互いに摺動する際の移動距離を適宜の位置で固定、制御可能なように、摺動面に複数のノッチ加工(刻み目加工)や摩擦係数の大きい粗面化などを施してもよい。
 ノッチ構造部25により、コネクタ部とファイバアレイのガラスブロック部4を、トレーに機械的に脱着可能な状態に半固定することで、自動装置で機械的にトレーから簡単にファイバアレイを脱着でき長尺ファイバの余長も確保できるようになっている。
 さらに、コネクタ9とガラスブロック4をトレーから外してLD/PMポートや固定台に取り付ける際に、ファイバに引っ張り力がかからないよう、トレーの2枚の板状部材21,22を摺動することによって、長尺光ファイバにさらに十分な余長が持てるようにすることもできるなっている。
 また、複数のコネクタの中から調心に用いる(LD7とPM8に接続する)コネクタ9を選択する必要があるので、トレーのノッチ構造25cの脇の板面には、画像認識で選択するコネクタの位置を判別できるように、認識マーカ27が記されているのが望ましい。
(自動光接続装置)
 次に、上記で説明した光ファイバアレイトレーを用いた自動光接続工程について説明する。
 図6に、本発明の自動光接続工程の全体を示す自動光接続装置の概要を示す。
 図6で、光ファイバアレイは本発明の光ファイバアレイトレーに収納された状態で、複数個が重ねられた状態で、FAベンダ61から順に自動光接続装置の調心部に供給される。同様にPLCチップもチップベンダ62に収納された状態で、複数個が重ねられてチップベンダ62から順に自動光接続装置の調心部に供給される。
 トレーに収納されたファイバアレイは、FAコンベア63や搬送アーム(図示せず)で調心装置640まで移動する。PLCチップ2も同様に、チップベンダ62から搬送アーム(図示せず)などで調心装置640のチップステージ1上まで移動される。
 図6の調心装置640には、調心用6軸調心機構の他に、カメラ642、UVランプ643が備わっている。またファイバアレイ3のガラスブロック部をバキューム吸着などでつかみFAステージまで移動させるための搬送ハンド644も調心装置640付近に設置されている。さらに、PLCチップ2とFA4がUV接着剤で接続された状態で収納されたトレー66を搬出するためのコンベア67と、搬送されてきたトレー66を収納するためのコレクタ68も設置されている。
 この状態で、光ファイバアレイトレーを摺動して短縮し、長尺ファイバに図3のような余長を持たせる。トレーを摺動して短縮するためには、ハンド644を用いることもできるが、FAコンベア63上に別の可動機構(ロボットアームなど、図示せず)を設けて用いることもできる。あるいはFAコンベア63による光ファイバアレイトレーの移動により、トレーを短縮させる力が働くような機構であってもよい。
 この機構は例えば、FAコンベア63のコンベア移動面上の位置に、略平行に逆ハの字形に固定して設けられた2本のレールであって、光ファイバアレイトレーの長手方向をコンベアの移動方向に直角に整列させ、FAコンベア63上の光ファイバアレイトレーが移動して調心装置640に近づくにつれて、光ファイバアレイトレーを挟んで2本のレールの間隔が次第に狭くなるように配置された2本のレールの組などであってもよい。トレーを摺動して伸長する際にも同様な、コンベア上でのトレーの移動を利用した機構を用いることができる。
 次にパッチパネル付近に設置されているカメラによる画像認識によって、アライメントに用いるコネクタを認識マーク27(図2,3)などを用いて選別し、ロボットでトレーから取り外してLD7またはPM8のポートに接続する。図6ではLD7、PM8は図示されていないが、パッチパネル65に接続された入力ファイバ651、出力ファイバ652がLD7、PM8に接続されているので、ここに接続してもよい。
 そして、ハンド644でファイバアレイのガラスブロック部4をトレーから取り外し、調心ステージ台(チップステージ1手前のFAステージ5、図6には示せず)に移動して固定する。
 次に、PLCチップ2を調心ステージ(チップステージ1)上に搬送し、固定する。
 図6のこの状態で、PLCチップ2に光を通した状態で出力パワーが最大になるように、PLCチップ2とファイバアレイのガラスブロック部4の位置を、6軸調心で自動で合わせる。
 位置合わせ後、PLCチップ2とファイバアレイのガラスブロック部4の端面間にUV光硬化接着剤を挿入し、UVランプ643よりUV光を照射して硬化する。
 図6でUV硬化後、LD7、PM8に繋がるコネクタを機械で外し、トレーのノッチ構造部25c(図3)に再度収納する。
 そして、接続されたチップ2とファイバアレイ3を調心ステージ台(チップステージ1、5)から外し、共に、光ファイバアレイトレーに収納する。
 図6で、PLCチップ2が収納されたファイバアレイトレー66は、コンベア67等で搬送され、コレクタ68に格納されて出荷される。
 実施例1では、石英PLCを用いた光スイッチへの自動ファイバ接続について説明する。
ファイバアレイ収容トレーの構造は、基本的に図2~5に示すのと同様である。
 図7は一般的なファイバアレイのトレー収納前の全体の構造を説明する図である。ファイバアレイ3のテープファイバ部71は単心の光ファイバを複数本、テープ状に集成した構造を有しており、右端のガラスブロック部4でPLCチップなどに光接続される。図7のファイバアレイ3の中央の分岐部6で分岐された各光ファイバの区間はファンアウト部72と呼ばれ、左端の複数のコネクタ9でそれぞれ終端され光入出力される。
 また、摺動させて縮める前の伸長状態の光ファイバアレイトレーの上面図は図2、収縮状態の光ファイバアレイトレーの上面図は図3と同じであるので、基本的な説明は省略する。
 トレーには直径の異なる複数の円形構造(巻き付け部23、24)があり、ここに長尺ファイバを巻き付けられるようになっている。本実施例では直径の異なる2つの円形構造を有する。2つの直径を変えておき、それぞれの円盤にファイバを巻き付ける回数を変えておくことで、長さの異なるファイバアレイも1種類のトレーに巻き付けることができる。
 またコネクタ、ファイバアレイのガラスブロック、ファイバアレイと光接続後のチップなどを半固定できるノッチ構造25(半固定構造、図5参照)を有する。この半固定構造により、コネクタやファイバアレイ、チップを、トレーの上方向から機械で取り外し、取り付けできる構造になっている。
 さらにトレーにはファイバのたわみ方向を制御するための、またトレーの摺動位置を一定にするための突起構造(ガイド構造26)を有する。この突起構造により、トレーを摺動させて、余長となる長尺ファイバをたわませたときにも、余長ファイバが絡まらないようにすることができる。
 また、トレーには前述のように認識識別可能なマーク(27)がついているが、コネクタ部9側にもマークを付け、カメラで認識可能とすることもできる。このマークを利用して、調心の時に用いるコネクタを画像認識し識別することができる。
 ファイバアレイのトレーへの収納も機械で実施することができる。
調心してPLCチップと光接続されたファイバアレイは、ファイバアレイトレーに収納されたのちコレクタ68に入れられて実装メーカーに出荷される。
(自動光接続工程)
 図8(a)~(f)には、本発明のファイバアレイトレーを使用した自動光接続工程の流れを示す。
 図8(a)で、光ファイバアレイは本発明のトレーに収納された状態で、複数台がベンダーに入った状態で供給される。
トレーに収納されたファイバアレイとPLCチップ2は、コンベアや搬送アームで調心装置まで移動する。
 図8(b)で、光ファイバアレイトレーを摺動し、トレーを収縮状態としファイバに余長を持たせる。この時、摺動量は機械で制御でき、任意である。
誤って摺動しすぎると、巻き付けられているファイバやコネクタが破損する可能性があるので、図3に示した突起構造(ガイド構造26)により、ある位置以上はトレーを摺動させることができないようになっている。
 図8(c)で、カメラによる画像認識によってアライメントに用いるコネクタを選別し、ロボットでトレーから取り外してLD光源7またはパワーメーター(PM)8のポートに接続する。ポート上側と横方向からカメラで認識しながら操作することで、コネクタがLD7とPM8のポートにまっすぐ挿入できるようになっている。
 また、ファイバアレイのガラスブロック部4をトレーから取り外し、FAステージ5の上に移動して固定する。
 次に、PLCチップ2を調心ステージ1の上に搬送し、固定する。ファイバアレイのガラスブロック部4とPLCチップ2は、バキュームチャックなどを利用してサブミクロンもずれないように固定する。
 図8(d)で、チップ2に光を通した状態で出力パワーが最大になるように、PLCチップ2とファイバアレイのガラスブロック部4の位置を、6軸調心で自動で合わせる。
 位置合わせ後、PLC2とファイバアレイのガラスブロック部4の端面間にUV硬化接着剤を挿入し、UV光を照射して硬化する。
 図8(e)で、UV硬化後、LD7またはPM8に接続するコネクタを外し、トレーに再度収納する。また、チップ2と接続されたファイバアレイをステージから外し、ファイバとチップをトレーに収納する。
 図8(f)で、光ファイバアレイトレーを再び伸長状態とし、光モジュールが収納されたトレーをコンベア等で搬送し、ベンダーに入れて出荷する。
 このような自動光接続工程により、本発明の光ファイバアレイトレーを使用して、光ファイバアレイを脱着可能に半固定する半固定構造により、光ファイバアレイのガラスブロック部および複数のコネクタの少なくとも一つを外して、長尺ファイバに余長を持たせて平面光波回路型光デバイスに自動で光接続する自動光接続方法を実現することができる。
 さらにまた、本発明の光ファイバアレイトレーの摺動機構を使用すれば、より充分な余長を持たせて光ファイバアレイを自動で光デバイスに光接続することが容易となる。
 本実施例では石英PLCチップへの光接続であったが、平面光波回路の光デバイスの材料はInPなどの半導体、シリコンなど任意である。
 またPLCチップ光デバイスの品種も、スイッチ、AWG、スプリッタ、送受信モジュールなど任意である。
 さらにファイバアレイの芯数、即ち入出力導波路の本数も任意であり、長尺ファイバ付きのファイバアレイの取り扱いを簡易にし、光デバイスとの光接続工程の全自動化を可能にできる。
このファイバトレーの材料は成形が容易で安価なプラスチックやボール紙等任意である。
 以上のように、本発明の光実装工程で使用する半固定構造を備えたファイバトレー及びその使用による光接続方法の自動化により、光実装工程の量産性が向上し、組み立てコストの低下を図ることができた。
1 チップステージ
2 PLCチップ
3 光ファイバアレイ
4 ガラスブロック部
5 ファイバアレイホルダー(FAステージ)
6 分岐部
9 コネクタ
7 LD光源装置
8 PM(パワーメーター)装置
21,22 板状部材
21a、21b レール構造
23(R1)、24(R2) 巻き付け部
25、25a、b、c ノッチ構造部
26、26a~d ガイド構造
27 認識マーク
61 FAベンダ
62 チップベンダ
63 コンベア
640 調心装置
642 カメラ
643 UVランプ
644 ハンド
65 パッチパネル
651 入力ファイバ
652 出力ファイバ
66 ファイバトレー
67 コンベア
68 コレクタ
71 テープファイバ部
72 ファンアウト部

Claims (8)

  1.  光デバイスに光ファイバアレイを接続する際に用いる、光ファイバアレイを固定するためのトレーであって、
     光ファイバアレイのガラスブロック部を脱着可能に半固定する半固定構造と、
     長尺ファイバを巻きつけて半固定する半固定構造と、
     光ファイバアレイに接続された複数のコネクタを脱着可能に半固定する半固定構造を有するトレー。
  2.  請求項1に記載のトレーであって、
    前記光ファイバアレイの前記ガラスブロック部と前記コネクタを調心のために動かす際に前記長尺ファイバに余長を持たせるための摺動機構を有することを特徴とするトレー。
  3.  請求項1に記載のトレーであって、
    前記光ファイバアレイの前記ガラスブロック部を脱着可能に半固定する半固定構造と、前記コネクタを脱着可能に半固定する半固定構造とは、機械的に脱着可能なノッチ構造になっていることを特徴とするトレー。
  4.  請求項1に記載のトレーであって、
    光接続時に調心に用いる前記コネクタの位置を認識するための認識マーカが、前記コネクタを脱着可能に半固定する半固定構造の近傍についていることを特徴とするトレー。
  5.  請求項2に記載のトレーであって、
    前記摺動機構により前記長尺ファイバをたわませたときに、前記長尺ファイバのたわみ方を制御するための突起構造を有することを特徴とするトレー。
  6.  請求項2に記載のトレーであって、
    前記摺動機構は、2枚の板状部材を重ね合わせた構造であることを特徴とするトレー。
  7.  請求項6に記載のトレーであって、
    前記摺動機構は、前記2枚の板状部材の摺動動作をガイドするレール構造を有することを特徴とするトレー。
  8.  請求項1ないし7のいずれか1項に記載のトレーを用いた光デバイスの自動光接続方法であって、
     前記光ファイバアレイの前記ガラスブロック部および前記複数のコネクタの少なくとも一つを外して、前記長尺ファイバに余長を持たせて前記光デバイスにファイバアレイを全自動で光接続する自動光接続方法。
PCT/JP2020/022016 2020-06-03 2020-06-03 ファイバアレイトレーおよび該トレーを用いた光デバイスの自動光接続方法 WO2021245856A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/022016 WO2021245856A1 (ja) 2020-06-03 2020-06-03 ファイバアレイトレーおよび該トレーを用いた光デバイスの自動光接続方法
JP2022529232A JP7389390B2 (ja) 2020-06-03 2020-06-03 ファイバアレイトレーおよび該トレーを用いた光デバイスの自動光接続方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/022016 WO2021245856A1 (ja) 2020-06-03 2020-06-03 ファイバアレイトレーおよび該トレーを用いた光デバイスの自動光接続方法

Publications (1)

Publication Number Publication Date
WO2021245856A1 true WO2021245856A1 (ja) 2021-12-09

Family

ID=78830234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/022016 WO2021245856A1 (ja) 2020-06-03 2020-06-03 ファイバアレイトレーおよび該トレーを用いた光デバイスの自動光接続方法

Country Status (2)

Country Link
JP (1) JP7389390B2 (ja)
WO (1) WO2021245856A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238306A (ja) * 1991-01-22 1992-08-26 Toshiba Mach Co Ltd 自動調芯組立装置およびその方法
JPH07318750A (ja) * 1994-05-20 1995-12-08 Furukawa Electric Co Ltd:The 光部品の接続方法
JP2000131557A (ja) * 1998-10-29 2000-05-12 Hitachi Cable Ltd 光導波路素子−ファイバアレイ接続装置及びそれを用いた光部品の製造方法
JP2002514314A (ja) * 1996-12-10 2002-05-14 ブルーム,キャリー 光ファイバシステム構成要素および光ファイバを含む光ファイバデバイスの自動製造および/または包装および/またはテストのための装置および方法
JP2003194880A (ja) * 2001-12-27 2003-07-09 Anritsu Corp 光デバイス搬送用トレイ、該トレイを用いる光デバイス自動検査装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04238306A (ja) * 1991-01-22 1992-08-26 Toshiba Mach Co Ltd 自動調芯組立装置およびその方法
JPH07318750A (ja) * 1994-05-20 1995-12-08 Furukawa Electric Co Ltd:The 光部品の接続方法
JP2002514314A (ja) * 1996-12-10 2002-05-14 ブルーム,キャリー 光ファイバシステム構成要素および光ファイバを含む光ファイバデバイスの自動製造および/または包装および/またはテストのための装置および方法
JP2000131557A (ja) * 1998-10-29 2000-05-12 Hitachi Cable Ltd 光導波路素子−ファイバアレイ接続装置及びそれを用いた光部品の製造方法
JP2003194880A (ja) * 2001-12-27 2003-07-09 Anritsu Corp 光デバイス搬送用トレイ、該トレイを用いる光デバイス自動検査装置

Also Published As

Publication number Publication date
JP7389390B2 (ja) 2023-11-30
JPWO2021245856A1 (ja) 2021-12-09

Similar Documents

Publication Publication Date Title
US6594434B1 (en) Fiber optic cables management and measurement apparatus
US9696504B2 (en) Electronic apparatus having optical connector connected to waveguide
US5446810A (en) Optical switch, optical fiber arranging member and method of manufacturing the optical fiber arranging member
US6986608B2 (en) Passive alignment connection for fiber optics
EP3171206B1 (en) Optical interface devices and methods employing optical fibers and a support member having a bend section
US20010007199A1 (en) Apparatus for, and method of, automated production, and/or packaging and/or testing of fiber optic devices including optical fiber system components and optical fibers
US5447585A (en) Method of manufacturing and testing integrated optical components
US20020168147A1 (en) Optical circuit pick and place machine
JP6438374B2 (ja) 光ファイバ側方入出力器及び光ファイバ側方入出力方法
WO2021245856A1 (ja) ファイバアレイトレーおよび該トレーを用いた光デバイスの自動光接続方法
US7209629B2 (en) System and method for processing fiber optic connectors
US7068906B2 (en) Fixture for system for processing fiber optic connectors
US20230168434A1 (en) Fiber routing systems and methods
US6879767B2 (en) Method and an arrangement for manufacturing optical fiber assemblies
JP3989316B2 (ja) 光ファイバの接続方法および光ファイバの接続構造
WO2022054258A1 (ja) 多心光コネクタ及びその製造方法
JP2583315B2 (ja) 光コネクタ用フェルールの取付方法
US20200363592A1 (en) Optical fiber mounting method and optical module
WO2002067034A2 (en) Optical circuit pick and place machine
Neilson Development of automated production techniques for the fabrication of fiber optic pigtails
JPH01302213A (ja) 光ファイバコネクタプラグの組立方法及びその組立装置
Bourhis et al. Automatic pigtailing of passive integrated optics components with large number of ports
Steinmann Present and future perspectives of mass-splicing technologies in local-distribution networks
JP2003255145A (ja) 光ファイバ心線の保持構造
JP2006220722A (ja) 光モジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939352

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022529232

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939352

Country of ref document: EP

Kind code of ref document: A1