WO2021244330A1 - 取栓支架及取栓系统 - Google Patents

取栓支架及取栓系统 Download PDF

Info

Publication number
WO2021244330A1
WO2021244330A1 PCT/CN2021/095217 CN2021095217W WO2021244330A1 WO 2021244330 A1 WO2021244330 A1 WO 2021244330A1 CN 2021095217 W CN2021095217 W CN 2021095217W WO 2021244330 A1 WO2021244330 A1 WO 2021244330A1
Authority
WO
WIPO (PCT)
Prior art keywords
stent
stent body
thrombus
closed
bracket
Prior art date
Application number
PCT/CN2021/095217
Other languages
English (en)
French (fr)
Inventor
王永胜
于鹏
高国庆
程舒宇
Original Assignee
杭州德诺脑神经医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010482816.8A external-priority patent/CN113599034A/zh
Priority claimed from CN202020964918.9U external-priority patent/CN212630979U/zh
Application filed by 杭州德诺脑神经医疗科技有限公司 filed Critical 杭州德诺脑神经医疗科技有限公司
Publication of WO2021244330A1 publication Critical patent/WO2021244330A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/22Implements for squeezing-off ulcers or the like on the inside of inner organs of the body; Implements for scraping-out cavities of body organs, e.g. bones; Calculus removers; Calculus smashing apparatus; Apparatus for removing obstructions in blood vessels, not otherwise provided for
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/82Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/86Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure
    • A61F2/90Stents in a form characterised by the wire-like elements; Stents in the form characterised by a net-like or mesh-like structure characterised by a net-like or mesh-like structure

Definitions

  • the invention relates to the technical field of medical devices, in particular to a thrombus removal stent and a thrombus removal system.
  • Thrombus is a small piece of blood that forms on the surface of the exfoliated or repaired part of the blood vessel of the cardiovascular system. Thrombosis spreads throughout the cardiovascular system and spreads to tissues and organs throughout the body. It is not limited to myocardial infarction, deep vein thrombosis or cerebrovascular thrombosis. Thrombosis can occur in blood vessels in any part of the body. Intracranial thrombosis is a special clinical type of cerebrovascular disease. It is easy to cause cerebral embolism. It has the characteristics of high morbidity, disability, mortality and recurrence. It is fatal and disabling for middle-aged and elderly people. The main disease.
  • the recanalization of blood vessels is the key to the treatment of acute ischemic stroke.
  • the conventional methods for the treatment of ischemic stroke include two categories: drug thrombolysis or mechanical thrombectomy.
  • Drug thrombolysis is a catheter injecting a thrombolytic agent into the appendages of the lesion in the blood vessel that the lesion refers to, and a high concentration of thrombolytic agent is formed in the local area of the lesion, thereby accelerating the speed of thrombolysis and increasing the chance of vascular recanalization.
  • intravenous thrombolysis should be performed within 3 hours of onset, and the arterial thrombolysis time window is within 6 hours. Therefore, drug thrombolytic therapy is only suitable for smaller blood clots. When the volume of the thrombus is too large, a very large dose is required to dissolve the large blood clot, and it is easy to cause various complications, and the risk is high.
  • Mechanical thrombectomy includes the following methods: thrombectomy, laser thrombectomy, thrombectomy with catcher, thrombectomy with thrombectomy net.
  • the thrombectomy is more thorough in removing the thrombus, but it damages the blood vessel wall too much, which can easily cause various concurrent inflammations.
  • the operation of laser thrombus breaking is very difficult. If the laser energy is too low, it will be ineffective. If the energy is too high, the blood vessels will be damaged, and it is also easy to cause various complications.
  • the operation of the catcher to remove the thrombus is simple, and it does little damage to the blood vessel wall, but it often fails to catch the blood clot.
  • the operation of the thrombus-trapping net to remove the thrombus is simple, but because the thrombus-trapping net is large in size, it cannot be used in intracranial blood vessels.
  • the existing mechanical thrombectomy methods need to restore the normal blood flow of blood vessels after the thrombus is cleared.
  • stroke it is often necessary to quickly restore normal blood flow to prevent the disease from getting worse. Therefore, most of the existing mechanical thrombectomy methods fail to restore the blood flow of the blocked blood vessel before the thrombus is cleared, thereby increasing the risk of thrombectomy.
  • an embodiment of the present invention provides a bolt removal stent, including a stent body, the stent body includes a first stent body and a second stent body disposed at the distal end of the first stent body, the first stent body
  • the two stent bodies include a large pipe diameter section, a small pipe diameter section and a transition section.
  • the large pipe diameter section and the small pipe diameter section are alternately connected, and the large pipe diameter section and the small pipe diameter section pass through the The transition section is connected, the plug-removing stent has a semi-free state and a free state.
  • the semi-free state at least part of the structure of the second stent body is approximately a single-layer tubular structure; in the free state,
  • the second stent body has an approximately double-layer tubular structure.
  • an embodiment of the present invention provides a thrombus retrieval system, including a push rod, a micro catheter, and the thrombus retrieval stent described above, the thrombus retrieval stent includes a stent body and a protective umbrella provided at the distal end of the stent body, The push rod is connected to the proximal end of the stent body, the push rod, the stent body and the protective umbrella are crimped and guided into the micro-catheter, and the stent body and the protective umbrella can pass through the push The push and pull of the rod move inside and outside the micro catheter.
  • the stent body and the protective umbrella are recovered into the micro catheter;
  • the push rod moves in a direction away from the proximal end of the micro catheter, the stent body and the protective umbrella are pushed out of the micro catheter.
  • the thrombus removal stent includes a stent body.
  • the stent body includes a first stent body and a second stent body disposed at the distal end of the first stent body.
  • the second stent body includes a large pipe diameter section, a small pipe diameter section, and a transition section.
  • the diameter section and the small pipe diameter section are alternately connected, and the large pipe diameter section and the small pipe diameter section are connected by a transition section.
  • the bolt removal stent has a semi-free state and a free state.
  • the structure is approximately a single-layer tubular structure; in the free state, the second stent body is approximately a double-layer tubular structure, so that when the thrombus removal stent is in a semi-free state, a blood flow channel can be established to restore the blocked blood vessel before the thrombus is cleared. Flow, improve the safety of thrombectomy surgery.
  • Fig. 1 is a schematic structural diagram of the bolt removal bracket provided in the first embodiment of the present invention in the free state.
  • Fig. 2 is an enlarged view of a part of the structure of the bolt removal bracket in Fig. 1.
  • Fig. 3 is a schematic diagram of the application of the thrombus removal stent in Fig. 1 in a blood vessel.
  • Fig. 4 is a cross-sectional view of the bolt removal bracket in Fig. 3 along the IV-IV direction.
  • Fig. 5 is a schematic structural diagram of the bolt removal bracket in Fig. 1 in the semi-free state.
  • Fig. 6 is a schematic diagram of the structure of the bolt removal bracket provided by the second embodiment of the present invention.
  • Fig. 7 is a schematic structural view of a part of the structure of the bolt removal bracket in Fig. 6.
  • Fig. 8 is a schematic structural view of the bolt removal bracket in Fig. 6 from another angle.
  • Fig. 9 is a schematic structural diagram of a bolt removal bracket provided by the third embodiment of the present invention.
  • Fig. 10 is a schematic structural view of the bolt removal bracket in Fig. 8 from another angle.
  • Fig. 11 is a schematic diagram of the structure of the bolt removal bracket provided by the fourth embodiment of the present invention.
  • Fig. 12 is a schematic diagram of the structure of the bolt removal bracket provided by the fifth embodiment of the present invention.
  • Fig. 13 is a schematic structural diagram of a bolt removal bracket provided by a sixth embodiment of the present invention.
  • Fig. 14 is a schematic structural diagram of the stent body of the bolt removal stent in Fig. 13.
  • Fig. 15 is a schematic diagram of the structure of the protective umbrella of the bolt-removing bracket in Fig. 13.
  • Fig. 16 is a schematic diagram of the structure of the net body of the protective umbrella of the bolt-removing bracket in Fig. 15.
  • Fig. 17 is a bottom view of the net body of the protective umbrella of the bolt-removing bracket in Fig. 16.
  • Fig. 18 is a schematic structural diagram of a bolt removal system provided by an embodiment of the present invention.
  • the end of the instrument that is relatively close to the operator is usually called the proximal end, and the end of the instrument that is relatively far away from the operator is called the distal end.
  • the distal end refers to the end of the instrument that can be freely inserted into the animal or human body.
  • the near end refers to the end used for user or machine operation or the end used to connect to other devices.
  • the purpose of providing the following specific embodiments is to facilitate a clearer and thorough understanding of the disclosure of the present invention, wherein the words indicating directions such as up, down, left, and right are only for the position of the structure shown in the corresponding drawings.
  • the term “axial” refers to the direction in which the thrombus removal stent of the present invention is advanced, that is, the longitudinal axis of the thrombus removal stent and also coincides with the longitudinal axis of the blood vessel.
  • the term “closed” does not mean that a certain element structure is a completely sealed object, its structure only represents a characteristic of the element structure, that is, the mesh body can form a storage space for thrombus, and the thrombus is not easy to escape from the place. The sealing structure of the mesh body is described.
  • Figure 1 shows a schematic diagram of a thrombectomy stent 100 provided by the first embodiment of the present invention
  • Figure 3 shows a schematic diagram of the embolization stent 100 applied in a blood vessel 200
  • Figure 4 shows a cross-sectional view of the bolt removal bracket 100 in Figure 3 along the IV-IV direction.
  • the bolt removal bracket 100 includes a bracket body 101.
  • the stent body 101 includes a first stent body 10 and a second stent body 30 provided at the distal end of the first stent body 10.
  • the second bracket body 30 includes a large pipe diameter section 31, a small pipe diameter section 33 and a transition section 35.
  • the large pipe diameter section 31 and the small pipe diameter section 33 are alternately connected, and the large pipe diameter section 31 and the small pipe diameter section 33 are connected by a transition section 35.
  • the plug-removing stent 100 has a semi-free state and a free state. In the semi-free state, at least part of the structure of the second stent body 30 is a single-layer tubular structure, and in the free state, the second stent body 30 has a double-layer structure. Tubular structure.
  • the structure in the stent body 101 is approximately a single-layer tubular structure, and the grid space on the single-layer tubular structure is small, so as to prevent all thrombus from entering the thrombus removal stent 100
  • the cavity causes the sealing problem of the inner cavity, so the single-layer tubular structure can be used as a blood flow channel.
  • the single-layer tubular structure ensures the radial support force of the entire thrombus retrieval stent 100, so that the thrombus retrieval stent 100 can quickly establish a blood flow channel before the thrombus is removed.
  • the blood flow of the blocked blood vessel is restored, and the blood flow channel pre-cancellation function is realized in the early stage of thrombus removal, so as to improve the safety of thrombus removal operation.
  • the stent body 101 Since in the free state, the stent body 101 has an approximately double-layer tubular structure, the large diameter section 31 has a larger grid structure, and there is a certain space between the large diameter section 31 and the small diameter section 33, Thus, all thrombi are allowed to enter the inner cavity of the thrombus removal stent 100, thereby improving the efficiency of thrombus removal.
  • the plug removal stent 100 adopts a segmented design, that is, the large pipe diameter section 31 and the small pipe diameter section 33 are sequentially spaced and evenly arranged, so as to improve the flexibility of the plug removal device and ensure that the plug removal stent 100 can It adapts to blood vessels of different curved shapes, and at the same time can enhance the anchoring effect of thrombus. For example, when the blood vessel is squeezed, the thrombus removal stent 100 can make greater deformation.
  • the semi-free state refers to the working state where at least part of the structure of the thrombus removal stent 100 is not fully expanded, for example, when the thrombus removal stent 100 is implanted in a blood vessel In the early stage, the stent body 101 is in a working state that is compressed by thrombus; or the stent body 101 of the thrombus removal stent 100 is in a working state that is constrained by other restraining elements.
  • the free state refers to the working state of the stent body 101 of the plug-removing stent 100 in a fully expanded state, or in a completely free state (that is, not restricted by other restraining elements).
  • a part of the structure of the stent body 101 is compressed by thrombus or constrained by constraining elements.
  • the overall structure of the stent body 101 is compressed by thrombus or constrained by constraining elements.
  • the orthographic projection of the large pipe diameter section 31 on the first projection plane partially overlaps the orthographic projection of the small pipe diameter section 33 on the first projection plane.
  • the radial support force of the thrombus removal stent 100 in blood vessels of different diameters is ensured, thereby effectively preventing the thrombus removal stent 100 from collapsing when completely passing through the blood vessel, thereby improving the efficiency of thrombus capture and reducing the thrombus removal process. Damage to the blood vessel wall caused by the embolization stent 100. As shown in FIG.
  • the orthographic projection of the large pipe diameter section 31 on the first projection plane and the orthographic projection of the small pipe diameter section 33 on the first projection plane do not overlap.
  • the first projection plane is a plane parallel to the central axis L of the bolt removal bracket 100.
  • the second stent body 30 may include a first part in the semi-free state and a second part in the free state at the same time.
  • the first part of the second stent body 30 is compressed by the thrombus. , Temporarily in the semi-free state.
  • the first part has a single-layer tubular structure
  • the second part has a double-layer tubular structure.
  • the metal coverage rate of the outer peripheral surface of the single-layer tubular structure is greater than the metal coverage rate of the outer peripheral surface of the double-layer tubular structure.
  • the metal coverage refers to the area ratio of the metal constituting the second bracket body 30 to the outer peripheral surface of the second bracket body 30.
  • the large tube diameter section 31 In the first part in the semi-free state, the large tube diameter section 31 is not fully opened, the diameter of the large tube diameter section 31 is close to the diameter of the small tube diameter section 33, and the free end 3113 of the large tube diameter section 31 is close to the small tube
  • the proximal connection point 3311 of the diameter section 33, the proximal connection point 3111 of the large diameter section 31 is close to the free end 3313 of the small diameter section 33, so that the cross section of the first part of the stent body 101 is approximately a closed loop structure 1011 (see Figure 4), that is, the cross-section of the single-layer tubular structure is approximately a closed-loop structure 1011, so the stent body 101 can maintain a cavity for blood flow inside or on one side of the thrombus, and open the blood flow before removing the thrombus to prevent long Over time, blood flow is not smooth and damages the brain or other tissues.
  • the blood vessel 200 includes a blood vessel wall 201, a blood vessel lumen 202, and a thrombus 203 that blocks the blood vessel lumen 202.
  • the thrombus removal stent 100 is released into the blood vessel 200 with thrombus 203, the structure of the thrombus removal stent 100 that is not compressed by the thrombus 203 can quickly expand and be in a completely released state, while the structure of the thrombus 203 compressed by the thrombus removal stent 100 will not expand. In a partially released state.
  • the proximal and distal ends of the thrombus removal stent 100 are not compressed by the thrombus 203, so that the proximal and distal ends of the thrombus removal stent 100 enter a completely released state.
  • the proximal and distal ends of the stent body 101 are attached to the blood vessel wall 201.
  • the mesh of the stent body 101 is relatively large, and the proximal and distal ends of the thrombus removal stent 100 are in communication with the blood vessel lumen 202.
  • the middle part of the thrombus removal stent 100 is compressed by the thrombus 203, so that the middle part of the thrombus removal stent 100 cannot be fully deployed and is in a partially released state.
  • the partially released state there is a gap between the middle of the stent body 101 and the blood vessel wall 201 of the blood vessel 200.
  • the mesh of the stent body 101 is small, and the middle part of the stent body 101 can form a continuous single-layer tubular structure with an approximate closed-loop structure, and the lumen 1012 of the single-layer tubular structure communicates with the blood vessel lumen 202, that is, take it
  • the embolic stent 100 quickly establishes a blood flow channel and realizes the pre-passing function of the blood flow channel, thereby improving the safety of thrombectomy operation.
  • the middle part of the stent body 101 expands and enters the fully released state, the middle part of the thrombus removal stent 100 is deployed in the thrombus until the middle part of the thrombus removal stent 100 is attached to the blood vessel wall 201, so that the thrombus 203 enters the stent body Therefore, the thrombus 203 can be removed from the blood vessel 200 by retracting the thrombus stent 100.
  • the single-layer tubular structure is a continuous tubular structure formed by the large pipe diameter section 31 and the small pipe diameter section 33, so that the single-layer tubular structure It has a continuous inner cavity 1012, wherein the maximum diameter of the large diameter section 31 is approximately equal to the maximum diameter of the small diameter section 33, so as to realize the blood flow channel pre-opening function in the early stage of thrombus removal.
  • the double-layer tubular structure includes a discontinuous inner tube structure composed of a small diameter section 33 and a discontinuous outer tube structure composed of a large diameter section 31, wherein the maximum diameter of the large diameter section 31 is larger than that of the small diameter section The maximum diameter of 33.
  • the outer diameter of the large pipe diameter section 31 of the single-layer tubular structure is smaller than the minimum outer diameter of the large pipe diameter section 31 of the double-layer tubular structure.
  • the outer diameter of the large pipe diameter section 31 of the single-layer tubular structure is approximately equal to the outer diameter of the small pipe diameter section 33 of the single-layer tubular structure.
  • the outer diameter of the small pipe diameter section 33 of the single-layer tubular structure is smaller than the outer diameter of the small pipe diameter section 33 of the double-layer tubular structure, that is, the outer diameter of the single-layer tubular structure is smaller than the diameter of the inner pipe structure of the double-layer tubular structure.
  • the large pipe diameter section 31, the small pipe diameter section 33 and the transition section 35 are coaxially arranged.
  • the large pipe diameter section 31, the small pipe diameter section 33 and the transition section 35 are integrally formed so as to improve the stability and reliability of the second bracket body 30.
  • the large pipe diameter section 31, the small pipe diameter section 33, and the transition section 35 can also be fixedly connected together by technical means commonly used in the art, such as pressing, hot melting, bonding, welding, or pressure riveting.
  • both the proximal end and the distal end of the second stent body 30 are configured as a large tube diameter section 31, the small tube diameter section 33 is arranged between two adjacent large tube diameter sections 31, and the large tube diameter section 31 sets Set outside the transition section 35.
  • the proximal end of the second stent body 30 is configured as a large diameter section 31, and the distal end of the second stent body 30 is configured as a small diameter section 33.
  • the second stent body 30 includes four large-diameter sections 31 and three small-diameter sections 33.
  • Two of the large diameter sections 31 are located at the proximal and distal ends of the second stent body 30 respectively, and the other two large diameter sections 31 are located in the middle of the second stent body 30.
  • the small pipe diameter section 33 is located between two adjacent large pipe diameter sections 31. In this way, the structural design of the large diameter section 31, the small diameter section 33, and the transition section 35 can improve the flexibility of the thrombus removal stent 100, and can enhance the anchoring effect of thrombus.
  • the thrombus removal stent 100 has a certain radial and axial supporting force, so as to effectively prevent the thrombus removal stent 100 from collapsing when it completely passes through the blood vessel, thereby improving the efficiency of thrombus capture and reducing the amount of thrombus removal during thrombus removal. Damage to the blood vessel wall caused by the embolization stent 100.
  • the thrombus removal stent 100 when squeezed in a blood vessel, it can make greater deformations, so that it can adapt to blood vessels of different bending shapes and different diameters, and can ensure the adhesion of the stent body 101 to the blood vessel wall to further Improve the efficiency of bolt removal.
  • the existing thrombectomy stent requires a large radial size inside the catheter and cannot pass through tortuous intracranial blood vessels, while the thrombectomy stent 100 of the present application requires a small radial size inside the catheter, so it is suitable for smaller intracranial and other smaller diameters. Blood vessel.
  • the large pipe diameter section 31 is configured as an equal-diameter tubular structure. In the semi-free state, the diameter of the large pipe diameter section 31 is approximately equal to the diameter of the small pipe diameter section 33; in the free state, The diameter of the large pipe diameter section 31 is larger than the diameter of the small pipe diameter section 33. In this way, the integrated laser cutting and shaping of the embolization stent 100 is facilitated, and the accommodation space between the large diameter section 31 and the small diameter section 33 is enlarged, so that thrombus can easily enter the internal channel 1010 of the embolization removal stent 100, and Avoid cutting the thrombus, thereby improving the efficiency of capturing the thrombus.
  • the large pipe diameter section 31 is configured as a reduced-diameter tubular structure, and the reduced-diameter tubular structure is an olive-like bidirectional cone-shaped cone with a large middle and small ends.
  • the diameter of the middle area of part of the large pipe diameter section 31 is approximately equal to the diameter of the small pipe diameter section 33; in the free state, the diameter of the middle area of the large pipe diameter section 31 is larger than the diameter of the small pipe diameter section 33.
  • the ratio of the maximum diameter to the minimum diameter of the large diameter section 31 is 1.5:1 To 3:1.
  • FIG. 2 shows an enlarged view of a part of the structure of the bolt removal bracket 100.
  • the large pipe diameter section 31 is formed by a plurality of first closed loop units 311 enclosed.
  • the small pipe diameter section 33 is formed by a plurality of second closed-loop units 331 enclosed.
  • the transition section 35 is formed by enclosing a plurality of supporting rods 350.
  • the plurality of support rods 350 include a plurality of first support rods 351 and a plurality of second support rods 352.
  • the plurality of first support rods 351 and the plurality of second support rods 352 are all arranged at intervals along the circumferential direction of the second bracket body 30.
  • a plurality of first support rods 351 are arranged at the proximal end of the small tube diameter section 33, and a plurality of second support rods 352 are arranged at the distal end of the small tube diameter section 33 at intervals.
  • the first closed loop unit 311 includes a proximal connection point 3111, a middle connection point 3112, and a free end 3113
  • the second closed loop unit 331 includes a proximal connection point 3311, a middle connection point 3312, and a free end 3313.
  • the distal end of the first support rod 351 is connected to the proximal connection point 3311 of the second closed-loop unit 331, the proximal end of the first support rod 351 is connected to the middle connection point 3112 of the first closed-loop unit 311; the distal end of the second support rod 352 is connected The proximal end of the first closed loop unit 311 is connected to the point 3111, and the proximal end of the second support rod 352 is connected to the middle connection point 3312 of the second closed loop unit 331.
  • the free end 3113 of the first closed loop unit 311 is directly opposite to the proximal connection point 3111, and the free end 3313 of the second closed loop unit 331 is directly opposite to the proximal connection point 3311.
  • the free endpoints 3113 and 3313 can be embedded in the thrombus to improve the capture rate of the thrombus.
  • the free end 3113 of the first closed-loop unit 311 is opposite to the second closed-loop unit 311 opposite to the distal end of the first closed-loop unit 311 and adjacent to the first closed-loop unit 311.
  • the radial distance between the proximal connection point 3311 of the closed loop unit 331 gradually increases, and the proximal connection point 3111 of the first closed loop unit 311 is opposite to the proximal end of the first closed loop unit 311 and is opposite to the first closed loop unit 311.
  • the radial distance between the free end points 3313 of adjacent second closed-loop units 331 also gradually increases.
  • the free end 3113 of the first closed-loop unit 311 is opposite to the second closed-loop unit 311 opposite to the distal end of the first closed-loop unit 311 and adjacent to the first closed-loop unit 311.
  • the radial distance between the proximal connection point 3311 of the closed loop unit 331 gradually decreases, and the proximal connection point 3111 of the first closed loop unit 311 is opposite to the proximal end of the first closed loop unit 311 and is opposite to the first closed loop unit 311.
  • the radial distance between the free end points 3313 of adjacent second closed-loop units 331 also gradually decreases.
  • the first closed loop unit 311 and the second closed loop unit 331 together form a continuous tubular structure close to a closed loop with a large metal coverage, thereby forming a blood flow channel in the thrombus for blood flow.
  • the safety of thrombectomy surgery is improved.
  • the free end 3113 of the first closed loop unit 311 is adjacent to the proximal end connection point 3311 of the second closed loop unit 331 adjacent to the distal end of the first closed loop unit 311 , Arranged alternately along the circumferential direction of the second stent body 30 to form a first annular array 3010.
  • the free end points 3313 are alternately arranged along the circumferential direction of the second bracket body 30 to form a second annular array 3012.
  • the radial distance is the linear distance between the adjacent free end 3113 and the proximal connection point 3311 at the junction of the large pipe diameter section 31 and the small pipe diameter section 33 or the large pipe diameter section The linear distance between the adjacent free end 3313 at the junction of 31 and the small pipe diameter section 33 and the proximal connection point 3111.
  • the radial distance is the linear distance between the adjacent free end 3113 and the proximal connection point 3311 in the first annular array 3010; or the adjacent free end 3313 and the proximal connection point 3311 in the second annular array 3012 The linear distance between the proximal connection points 3111.
  • the proximal connection point 3311 and the free end 3113 in the first annular array 3010 are coplanar, and the proximal connection point 3111 and the free end 3313 in the second annular array 3012 are also coplanar to ensure
  • the whole of the thrombus stent 100 has radial and axial supporting forces, while ensuring that the first closed-loop unit 311 and the second closed-loop unit 331 have a relatively small area to prevent thrombus from entering the channel 1010 inside the thrombus removal stent 100, thereby Realize the pre-pass function of the blood flow channel.
  • proximal connection point 3311 and the free end 3113 in the first annular array 3010 are coplanar, meaning that the proximal connection points 3311 in the first annular array 3010 are connected to each other to form a first plane, and the first annular array 3010 The free end points 3113 in are connected to each other to form a second plane, and the first plane and the second plane are coplanar, that is, the first plane and the second plane are located on the same plane and coincide with each other.
  • the proximal connection point 3111 in the second annular array 3012 and the free end 3313 are coplanar, meaning that the proximal connection points 3111 in the second annular array 3012 are connected to each other to form a third plane, and the free end 3313 in the second annular array 3012 They are connected to each other to form a fourth plane, and the third plane and the fourth plane are coplanar, that is, the third plane and the fourth plane are located on the same plane and overlap each other.
  • the first plane, the second plane, the third plane and the fourth plane are perpendicular to the central axis L of the bolt removal bracket 100.
  • the proximal connection point 3311 and the free end 3113 in the first annular array 3010 are not coplanar, and the proximal connection point 3111 and the free end 3313 in the second annular array 3012 are also not coplanar, thereby improving
  • the smoothness of the bolt removal stent 100 to switch from the free state to the semi-free state and ensure that the whole of the bolt removal stent 100 has radial and axial supporting force, while ensuring the first closed loop unit 311 and the second closed loop unit
  • the 331 has a relatively large area so that the thrombus can enter the channel 1010 inside the thrombus removal stent 100, thereby improving the efficiency of capturing the thrombus.
  • proximal connection point 3311 and the free end 3113 in the first circular array 3010 are not coplanar, which means that the proximal connection points 3311 in the first circular array 3010 are connected to each other to form a first plane.
  • the free ends 3113 in 3010 are connected to each other to form a second plane.
  • the first plane and the second plane are not coplanar, that is, the first plane and the second plane are located on different planes and are parallel to each other.
  • the proximal connection point 3111 in the second annular array 3012 and the free end 3313 are not coplanar, meaning that the proximal connection points 3111 in the second annular array 3012 are connected to each other to form a third plane, and the free end in the second annular array 3012 3313 are connected to each other to form a fourth plane, and the third plane and the fourth plane are not coplanar, that is, the third plane and the fourth plane are on different planes and are parallel to each other.
  • the length of the plug-removing bracket 100 gradually decreases, the outer diameter of the plug-removing bracket 100 gradually increases, and the area of the first closed-loop unit 311 and the second The area of the closed loop unit 331 also gradually increases.
  • the plug-removing stent 100 is radially compressed to stretch the length of the plug-removing stent 100, and the plug-removing stent 100 has a relatively small outer diameter, the area of the first closed-loop unit 311 and the second The area of the closed loop unit 331 is relatively small.
  • the plug removal stent 100 expands radially to shorten the length of the plug removal stent 100, and the plug removal stent 100 has a relatively large outer diameter, the area of the first closed loop unit 311 and the area of the second closed loop unit 331 relatively bigger.
  • the plurality of first support rods 351 and the plurality of second support rods 352 are in a straight rod-like structure; when the bracket body 101 is in the free state, the plurality of first support rods 351
  • the second support rods 352 and the plurality of second support rods 352 are curved structures, and are bent inward or outward relative to the second bracket body 30. In this way, in the free state, since the plurality of first support rods 351 and the plurality of second support rods 352 have a curved structure, the cutting of thrombus can be reduced, and more accommodating space can be provided for the thrombus.
  • the area of the first closed-loop unit 311 is larger than the area of the second closed-loop unit 331.
  • the shapes of the first closed-loop unit 311 and the second closed-loop unit 331 include one or more of a rhombus, a circle, an ellipse, a triangle, a trapezoid, and a hexagon.
  • the first closed-loop unit 311 and the second closed-loop unit 331 are both diamond-shaped or nearly diamond-shaped structures.
  • the large pipe diameter section 31 is surrounded by four first closed-loop units 311 to form a tubular structure.
  • Each first closed loop unit 311 has two middle connection points 3112. Two adjacent first closed-loop units 311 are connected together by a middle connection point 3112.
  • the small pipe diameter section 33 is surrounded by three second closed loop units 331 to form a tubular structure.
  • Each second closed loop unit 331 has two middle connection points 3312. Two adjacent second closed-loop units 331 are connected together by a middle connection point 3312.
  • the area of the first closed-loop unit 311 is larger than the area of the second closed-loop unit 331.
  • the plurality of first closed-loop units 311 and the plurality of second closed-loop units 331 are staggered, so that the second closed-loop unit 331 is arranged between two adjacent first closed-loop units 311, so that the bolt removal bracket 100 is more easily compressed and more capable It is suitable for small blood vessels and is easy to introduce into the micro catheter.
  • the distal end of the first closed loop unit 311 forms a first capture unit 3114
  • the distal end of the second closed loop unit 331 forms a second capture unit 3314.
  • the first catching unit 3114 and the first supporting rod 351 are alternately arranged and connected to each other
  • the second catching unit 3314 and the second supporting rod 352 are alternately arranged and connected to each other, which not only ensures the flexibility of the bolt removal bracket 100, but also makes the removal
  • the thrombus stent 100 has a certain supporting force in the radial and axial directions, and the thrombus capture efficiency of the thrombus removal stent 100 is improved.
  • the two middle connection points 3112 of the first closed loop unit 311 are connected to the free end 3113 to form the first catching unit 3114.
  • the two middle connection points 3312 of the second closed loop unit 331 are connected to the free end 3313 to form a second catching unit 3314.
  • the first capturing unit 3114 and the second capturing unit 3314 may have a V-shaped, W-shaped, zigzag, or U-shaped structure to improve the efficiency of capturing thrombus.
  • the first catching unit 3114 and the second catching unit 3314 are alternately arranged, that is, the second catching unit 3314 is arranged between two adjacent first catching units 3114, so as to cover the radial direction of the bolt removal stent 100. Capture unit, thereby improving the anchoring effect of thrombus.
  • the first catching unit 3114 and the second catching unit 3314 and the bracket body 101 respectively form a first storage space 3115 and a second storage space 3315 that are opposed to each other. Both the first catching unit 3114 and the second catching unit 3314 extend outward or inward with respect to the bracket body 101.
  • the bending directions of the first catching unit 3114 and the second catching unit 3314 are opposite to the bending directions of the first support rod 351 and the second support rod 352. In this way, the space of the first accommodating space 3115 and the second accommodating space 3315 is increased, which can provide more accommodating space for the thrombus, so that the thrombus can enter the inner cavity of the thrombus removal stent 100, thereby further improving the resistance of the thrombus removal stent 100 to thrombus.
  • the thrombus removal stent 100 When the thrombus removal stent 100 is in the free state (that is, the expanded state), the first catching unit 3114 and the second catching unit 3314 are inserted into the thrombus, or the thrombus is clamped in the first housing space 3115 and the second housing In the space 3315, the anchorage of the thrombus by the thrombus removal stent 100 is improved. Since the first catching unit 3114 and the second catching unit 3314 are evenly distributed in the circumferential direction of the stent body 101, the flexibility of the thrombus removal stent 100 is enhanced, and the efficiency of catching thrombus is also improved.
  • the first catching unit 3114 and the second catching unit 3314 can move in a direction perpendicular to the axis L of the bolt removal bracket 100. In this way, when the thrombus removal stent 100 moves in the blood vessel, the first capture unit 3114 and the second capture unit 3314 do not directly contact the blood vessel wall, thereby avoiding damage to the blood vessel wall tissue.
  • the distal end of the first capture unit 3114 and the distal end of the second capture unit 3314 are both provided with arc-shaped chamfers to further avoid the distal end of the first capture unit 3114 and the second capture unit 3114. 3314 damages the blood vessel wall.
  • first bracket body 10 and the second bracket body 30 are integrally formed so as to improve the stability and reliability of the connection between the first bracket body 10 and the second bracket body 30.
  • first bracket body 10 and the second bracket body 30 may also be fixedly connected together by technical means commonly used in the art, such as pressing, hot melting, bonding, welding, or pressure riveting.
  • the distal end of the second stent body 30 is completely opened to form a first open end 301
  • the proximal part of the first stent body 10 is opened to form a second open end 15
  • the first open end 301 is at the second open end.
  • the orthographic projection of the projection plane overlaps the orthographic projection of the second opening end 15 on the second projection plane; wherein, the second projection plane is a plane perpendicular to the central axis L of the bolt removal bracket 100. In this way, the flexibility of the proximal and distal ends of the thrombus removal stent 100 is improved.
  • the proximal end of the first stent body 10 is configured as an oblique cone-shaped structure.
  • the proximal end of the first stent body 10 forms a second open end 15 with a slope.
  • the shape of the second open end 15 is tapered, such as a drop shape.
  • the shape of the second open end 15 is a fusiform.
  • the withdrawal force of the retraction bolt removal stent 100 be effectively prevented from being transmitted to the entire circumference of the bolt removal stent 100, but also the first stent body 10 can be avoided
  • the diameter of the tube becomes smaller during the withdrawal of the thrombus removal stent 100, so as to ensure that the thrombus is not easy to fall off when the thrombus removal stent 100 is withdrawn.
  • the proximal end of the first stent body can also be configured as a funnel structure, and the second stent body is configured as a straight tube structure, so that the thrombus can be avoided during the withdrawal of the thrombus removal stent in the direction close to its proximal end.
  • the tube diameter of the first stent body gradually increases from the proximal end to the distal direction, thereby preventing the proximal end of the first stent body from being retracted due to the retraction of the thrombus removal stent during the withdrawal of the thrombus removal stent in the proximal direction.
  • the effect of the withdrawal force causes the overall diameter of the tube to become smaller or kinked, thereby improving the efficiency of thrombus capture, and reducing the damage to the blood vessel wall caused by the thrombus removal stent.
  • a smooth transitional connection between the first stent body and the second stent body is ensured, thereby reducing the damage to the blood vessel wall caused by the thrombus removal stent during the thrombus removal process.
  • the proximal end of the first stent body 10 is provided with a developing positioning element 102 so as to indicate the position of the plug-removing stent 100 through the position of the developing positioning element 102 under instrument detection.
  • the developing positioning member 102 is made of a radiopaque material.
  • the radiopaque material is preferably a precious metal material such as gold, platinum, or tantalum.
  • the developing positioning element 102 can take various forms such as ring shape, wire shape, ribbon shape, or dot shape, and is fixed to the bolt removal bracket 100 by means of pressing, hot melting, bonding, welding, or riveting, etc. commonly used in the art. superior.
  • the developing positioning element 102 may be in a ring shape, and the developing positioning element 102 is sleeved on the proximal end of the plug removal bracket 100.
  • the proximal end of the first stent body 10 is also provided with a connector.
  • the connector extends in a direction parallel to the axis L of the bolt-removing bracket 100.
  • the proximal end of the thrombus retrieval stent 100 is provided with a visualization positioning element 102 to accurately locate the position of the thrombus, the thrombus can be captured during the thrombus retrieval process using the thrombus retrieval stent 100, and during thrombus retrieval During the withdrawal of the stent 100, it is determined whether the thrombus is separated from the thrombus removal stent 100 for real-time observation, and then the specific thrombus removal operation is guided, that is, the thrombus removal stent 100 is instructed to switch between the compressed state and the released state, so that the thrombus removal is more accurate.
  • the middle part of the thrombus removal stent 100 can also be provided with multiple visualization positioning elements to more accurately locate the position of the thrombus.
  • the first stent body 10 and the second stent body 30 are both made of a metal material with a memory effect or a polymer material with elasticity, so that the stent body 101 self-expands to form a tube and/or a cage. structure.
  • the metal material is, for example, but not limited to nickel-titanium alloy or cobalt-based alloy.
  • the first stent body 10 and the second stent body 30 can be formed into a tubular or cage-like structure with a hollow structure by laser cutting a plate-shaped nickel-titanium alloy, which is then crimped and heat-treated to shape.
  • first stent body 10 and the second stent body 30 can also be formed into a tubular or cage-like structure with a hollow structure by weaving a wire-like nickel-titanium alloy.
  • first bracket body 10 and the second bracket body 30 may also be processed by using elastic plastic materials.
  • FIG. 5 is a schematic diagram of the structure in which all the structures of the bolt removal bracket 100 in FIG. 1 are in the semi-free state.
  • the plurality of first support rods 351 and the plurality of second support rods 352 are parallel to the central axis L of the bolt removal bracket 100.
  • the plurality of free end points 3113 corresponding to the plurality of first closed-loop units 311 in the first annular array 3010 are coplanar with the plurality of proximal connection points 3311 corresponding to the plurality of second closed-loop units 331.
  • the multiple proximal connection points 3111 corresponding to the multiple first closed-loop units 311 and the multiple free end points 3313 corresponding to the multiple second closed-loop units 331 are also coplanar.
  • the invention discloses a bolt removal stent, which includes a stent body with a tubular and/or cage-like structure.
  • the stent body includes a first stent body and a second stent body arranged at the distal end of the first stent body.
  • the second stent body is smoothly transitioned and connected.
  • the second stent body includes a large pipe diameter section, a small pipe diameter section and a transition section.
  • the large pipe diameter section and the small pipe diameter section are alternately connected, and the large pipe diameter section and the small pipe diameter section pass
  • the transition sections are connected together, the stent body has a single-layer tubular structure in the semi-free state, and the stent body has a double-layer tubular structure in the free state, so that the thrombus removal stent can establish blood flow in the semi-free state
  • the channel is used to restore the blood flow of the blocked blood vessel before the thrombus is cleared, thereby improving the safety of thrombectomy operation.
  • FIG. 6 is a schematic structural diagram of a peg removal bracket 100b provided by a second embodiment of the present invention
  • FIG. 7 is a peg removal bracket provided by the second embodiment of the present invention
  • FIG. 8 is a schematic structural diagram of another angle of the bolt removal bracket 100b provided by the second embodiment of the present invention.
  • the structure of the bolt removal bracket 100b is similar to the structure of the bolt removal bracket 100 (see FIG. 1) of the first embodiment.
  • the bolt removal stent 100b further includes a third stent body 40b and a protective umbrella 6, and the distal end of the second stent body 30b is a small tube diameter section 33.
  • the third stent body 40b is connected between the second stent body 30b and the protective umbrella 6, the proximal end of the third stent body 40b forms a third open end 401b, and the distal end of the third stent body 40b forms a fourth open end 403b.
  • the proximal end of the protective umbrella 6 forms an umbrella mouth end 601
  • the distal end of the protective umbrella 6 forms a first sealed end 603 directly opposite to the umbrella mouth end 601
  • the mouth end 601 is connected, so that a continuous channel 1010b is formed inside the plug removal stent 100b, and the distal end of the second stent body 30b is configured as a small tube diameter section 33.
  • the distal end of the thrombus removal stent 100b is provided with a protective umbrella 6, thereby effectively preventing the thrombus falling off from the thrombus removal stent 100b from escaping.
  • the distal end of the stent body 101b forms a fourth open end 403b
  • the proximal end of the protective umbrella 6 forms an umbrella mouth end 601 directly opposite to the fourth open end 403b
  • the distal end of the protective umbrella 6 forms an umbrella mouth end 601 directly opposite to the The first sealed end 603, the umbrella end 601 and the fourth open end 403b are connected, so that a continuous channel 1010b is formed inside the bolt removal bracket 100b.
  • the thrombus detached from the thrombus removal stent 100b completely enters the protective umbrella 6 without being blocked, so that the protective umbrella 6 can effectively recover the thrombus detached from the thrombus removal stent 100b, thereby avoiding blood vessels caused by the thrombus falling off the thrombus removal stent 100b Re-embolization problems and prevent complications caused by thrombectomy treatment, thereby increasing the recanalization rate of blood vessels.
  • the protective umbrella 6 is close to the distal end of the stent body 101b, so as to prevent thrombus from escaping, and the thrombus removal stent 100b and the protective umbrella 6 can be released synchronously, thereby protecting the umbrella 6.
  • the protective umbrella 6 can be quickly opened with the help of the radial support force of the stent body 101b until the protective umbrella 6 is deployed to a predetermined state, so as to recover the thrombus detached from the stent body 101b.
  • the proximal end of the third stent body 40b and the distal end of the second stent body 30b are smoothly transitionally connected, and the proximal end of the third stent body 40b and the distal end of the second stent body 30b are connected by a transition section 35 Together.
  • the third bracket body 40 b includes a capturing section 41 b and an extension section 42 b connecting the capturing section 41 b and the protective umbrella 6.
  • the proximal end of the capturing section 41b is connected to the small diameter section 33 of the second stent body 30b through a plurality of second support rods 352, and the distal end of the capturing section 41 is connected to the proximal end of the extension section 42b.
  • the catching section 41b and the extension section 42b are smoothly connected to each other, so as to ensure the overall flexibility of the thrombus removal stent 100b, so as to improve the safety of the thrombus removal operation.
  • the outer diameter of the capturing section 41b is greater than or substantially equal to the maximum outer diameter of the second stent body 30b, and is substantially equal to the outer diameter of the extension section 42b. In this way, the radial and axial supporting force of the thrombus removal stent 100b is ensured, and all thrombi that fall off or overflow in the second stent body 30b can enter the channel 1010b inside the third stent 40b from the capture section 41b.
  • the capturing section 41b includes at least one capturing portion 43b and a plurality of reinforcing portions 44b. At least one catching portion 43b and a plurality of reinforcing portions 44b are connected side by side along the circumferential direction of the third bracket body 40b, and the shape of the catching portion 43b is different from the shape of the reinforcing portion 44b.
  • the number of the capturing portions 43b corresponds to the number of the reinforcing portions 44b, and the capturing portions 43b and the reinforcing portions 44b are alternately connected along the circumferential direction of the third bracket body 40b.
  • the capturing section 41b includes two diametrically opposed capturing portions 43b and two diametrically opposed reinforcing portions 44b, and each capturing portion 43b and each reinforcing portion 44b are arranged side by side and alternately connected along the circumferential direction of the third bracket body 40b.
  • the second mesh port 411b not only improves the capture performance of the second stent body 30b that is not effectively captured by the second stent body 30b, such as hard thrombi such as organic thrombus, calcified thrombus and larger thrombus, but also ensures the third stent body.
  • the radial support force of 40b prevents excessive deformation of the third stent body 40b and reduces the adherence of the capturing section 41b, that is, prevents the capturing section 41b of the third stent body 40b from collapsing, and enhances the adherence of the capturing section 41b , In order to improve the efficiency of capturing thrombus.
  • the bolt removal stent 100b provided by the embodiment of the present invention is provided with a third stent body 40b, and the proximal end of the third stent body 40b is provided with a second network port 411b with a larger network port area, and the proximal end of the second network port 411b
  • the third capture unit 4114b is formed so that the third capture unit 4114b can anchor the thrombus that the second stent body 30b does not effectively capture, such as hard thrombus such as organic thrombus, calcified thrombus and larger thrombus, so as to improve the second stent body.
  • the net port 411b has the ability to capture hard thrombi, so that the hard thrombus can enter the channel 1010b inside the third stent body 40b from the second net port 411b to improve the efficiency of capturing hard thrombus.
  • the number of the capturing portion 43b and the reinforcing portion 44b is based on the diameter of the third stent body 40b, the number of the first closed loop units 311 used to form the large pipe diameter section 31, or the number of the first closed loop unit 311 used to form the small pipe diameter section 33 together.
  • the number of the two closed-loop units 331 is designed based on factors such as the number of the two closed-loop units 331, which is not limited in the present invention.
  • each capturing portion 43b includes a second mesh port 411b
  • each reinforcing portion 44b includes a third mesh port 413b and a skeleton rod 415b arranged at the proximal end of the third mesh port 413b, wherein the area of the second mesh port 411b is larger than The area of the first network port 421b, the first closed-loop unit 311 and the second closed-loop unit 331, the area of the third network port 413b is equal to the area of the first network port 421b and the area of the first closed-loop unit 311, and the third network port 413b
  • the shape of is the same as the shape of the first mesh port 421b and the shape of the first closed loop unit 311 to enhance the overall flexibility of the bolt removal bracket 100b.
  • each reinforcing part may not include a skeleton rod, that is, each reinforcing part may include a plurality of third mesh ports connected in parallel along a direction parallel to the central axis L of the bracket body
  • the extension section 42b is formed by enclosing a plurality of first mesh openings 421b.
  • the capturing section 41b is formed by at least one second mesh port 411b, a plurality of third mesh ports 413b, and a skeleton rod 415b.
  • the first network port 421b, the second network port 411b, the third network port 413b and the skeleton rod 415b are connected to each other to form a third bracket body 40b having a tubular structure or a cage structure.
  • the second network port 411b is directly opposite to the second closed-loop unit 331, that is, the second network port 411b is disposed between two adjacent first closed-loop units 311.
  • the third network port 413b is directly opposite to the second closed-loop unit 311, that is, the second network port 411b is disposed between two adjacent first closed-loop units 311.
  • the second mesh port 411b has a relatively large area, so as to improve the ability of the thrombus removal stent 100b to capture hard thrombi such as organic thrombus, calcified thrombus and larger thrombus, and to ensure the axial direction of the thrombus removal stent 100b Together with the radial support force, the thrombus can more easily enter the channel 1010b inside the third stent body 40b from the second mesh port 411b.
  • each second mesh port 411b is formed with a third catching unit 4114b, the proximal end of the third catching unit 4114b is connected to the distal end of the second support rod 352, and the distal end of the third catching unit 4114b is configured as Free end.
  • the third capturing unit 4114b constitutes a part of the second net port 411b.
  • the third capturing unit 4114b is configured in a V-shaped, W-shaped, zigzag, or U-shaped structure, and the third capturing unit 4114b is disposed between two adjacent second support rods 352.
  • the third catching unit 4114b is directly opposite to the second catching unit 3314, and is arranged between two adjacent first catching units 3114.
  • the third catching unit 4114b is arranged between two adjacent second support rods 352 and connected to each other.
  • the first network port 421b includes a proximal connection point 4211b and two middle connection points 4212b. Two adjacent first network ports 421b are connected by a middle connection point 4212b.
  • the second network port 411b includes two proximal connection points 4111b, a free end 4112b, and a distal connection point 4113b directly opposite to the free end 4112b.
  • the third network port 413b includes a proximal connection point 4131b, two middle connection points 4132b, and a distal connection point 4133b directly opposite to the proximal connection point 4131b.
  • the middle connection point 4212b of the first network port 421b coincides with the remote connection point 4113b of the second network port 411b and the remote connection section 4133b of the third network port 413b.
  • the proximal connection point 4211b of the first network port 421b coincides with the middle connection point 4132b of the third network port 413b.
  • each second network port 411b is approximately heart-shaped.
  • Each proximal connection point 4111b of the capturing section 41b is connected to the distal end of the corresponding second support rod 352.
  • the two proximal connection points 4111b of each second network port 411b and the free end 4112b are connected to form a V-shaped or U-shaped third capturing unit 4114b.
  • the third catching unit 4114b extends outward or inward relative to the bracket body 101b, and forms a third accommodating space 4115b between the bracket body 101b.
  • thrombi that cannot be effectively captured by the second stent body 30b such as hard thrombi such as organic thrombus, calcified thrombus and larger thrombus, can enter the protective umbrella 6 through the second mesh port 411b.
  • the thrombus falling off or overflowing from the second stent body 30b easily enters the protective umbrella 6 through the second mesh port 411b, thereby avoiding the problem of blood vessel re-embolization caused by the thrombus falling off or overflowing from the thrombus removal stent 100b and not effectively grasped.
  • complications caused by thrombus removal treatment, such as vasospasm thereby increasing the recanalization rate of blood vessels.
  • the skeleton rod 415b is configured in a Y-shaped structure.
  • the skeleton rod 415b includes a first reinforcing rod 4151b and a second reinforcing rod 4153b connected between the first reinforcing rod 4151b and the third mesh opening 413b.
  • the first reinforcing rod 4151b is configured in a V-shaped structure.
  • the shape of the first reinforcing rod 4151b is the same as that of the third catching unit 4114b, and the shape of the distal end of the second mesh port 411d is the same as the shape of the distal end of the third mesh port 413d, so as to ensure the radial resistance of the capturing section 41b.
  • the shape of the second reinforcing rod 4153b is the same as that of the second support rod 352, and the shape of the third net port 413b is the same as the shape of the first net port 421b to ensure the flexibility of the bracket body 101b and make the bracket body 101b It has a certain supporting force in the radial and axial directions, and improves the capture efficiency of the stent body 101b for thrombus.
  • the second network port 411b is directly opposite to the second closed-loop unit 331, that is, the second network port 411b is disposed between two adjacent first closed-loop units 311.
  • the number of second network ports 411b is equal to the number of second closed loop units 331.
  • the second catching unit 3314 of the second bracket body 30b is close to the third catching unit 4114b of the third bracket body 40b, and the bending direction of the second catching unit 3314 is consistent with the bending direction of the third catching unit 4114b, so as to ensure
  • the flexibility of the thrombus removal stent 100b is improved, and the anchoring effect on thrombus can be further improved.
  • the second mesh port 411b is parallel to the opposite sides of the central axis L of the bracket body 101b respectively connected with a third mesh port 413b and a skeleton rod 415b connected in parallel along the direction of the central axis L, and each third mesh port 413b is arranged in the skeleton Between the rod 415b and the first mesh port 421b, the radial extension space of the second mesh port 411b is increased to increase the area of the second mesh port 411b, and to enhance the adhesion of the capturing section 41b to The thrombus enters the channel 1010b inside the third stent body 40b from the second mesh port 411b.
  • the stent body 101b and the protective umbrella 6 can be formed by laser cutting a plate-shaped nickel-titanium alloy to form a tubular or cage-like structure with a hollow structure, and then be crimped and heat-treated to shape.
  • the stent body 101b and the protective umbrella 6 can also be formed into a tubular or cage-like structure with a hollow structure by weaving a wire-like nickel-titanium alloy.
  • the bracket body 101 and the protective umbrella 6 can also be processed by using elastic plastic materials.
  • the stent body 101b is laser-engraved from a pipe network material with a shape memory effect; the protective umbrella 6 is woven from a wire-like material with a shape memory effect.
  • the pipe network material or filamentary material includes, but is not limited to, metal materials, elastic polymer materials or elastic plastic materials.
  • the stent body 101b and the protective umbrella 6 can be self-expanded to form a tubular and/or cage-like structure.
  • the metal material is, for example, but not limited to nickel-titanium alloy or cobalt-based alloy.
  • the stent body 101b made of pipe network material has a certain radial and axial supporting force, so as to ensure that the stent body 101b has good adhesion to the wall.
  • the protective umbrella 6 woven from a wire-like material has a mesh unit with a small mesh area, so that a relatively small thrombus can be captured, so as to improve the efficiency of capturing the thrombus.
  • the protective umbrella 6 is relatively soft, thereby reducing damage to the blood vessel wall.
  • the peripheral edge of the fourth open end 403b is provided with a mounting structure 104
  • the peripheral edge of the umbrella mouth end 601 is provided with a connecting structure 602 matingly connected with the mounting structure.
  • the connection method of the mounting structure 104 and the connection structure 602 is, for example, but not limited to bonding, welding, crimping, or snap connection.
  • the mounting structure 104 and the connecting structure 602 are directly connected together, which not only facilitates processing and molding, but also simplifies the overall structure of the bolt-removing bracket 100b.
  • the bolt removal bracket 100b further includes a connector 8.
  • the mounting structure 104 is connected to the connecting structure 602 through the connecting member 8 so that the umbrella mouth end 601 is connected with the fourth open end 403b.
  • the mounting structure 104 and the connecting structure 602 are connected together by the connecting piece 8, which improves the compactness and stability of the connection between the bracket body 101b and the protective umbrella 6.
  • the fourth open end 403b forms a first bending portion 105 that is continuously bent
  • the mounting structure 104 is disposed on the first bending portion 105
  • the umbrella mouth end 601 forms a second bending portion 604 that is continuously bent
  • the connection structure 602 is disposed on the second bending part 604.
  • the first bending portion 105 and the second bending portion 604 are both wavy or zigzag-shaped.
  • the fourth open end 403b and the umbrella mouth end 601 can provide more connection points to improve the stability and reliability of the connection between the bracket body 101b and the protective umbrella 6, and to ensure that the bracket body 101b and the protective umbrella 6 can be released synchronously, so that The protective umbrella 6 quickly opens the protective umbrella 6 with the help of the radial support force of the stent body 101b, thereby effectively capturing the thrombus in the blood vessel.
  • the fourth open end 403b is formed by enclosing a plurality of first mesh openings 421b, the distal end of each first mesh opening 421b is configured as a first bending structure 1061, and the plurality of first bending structures 1061 are connected to each other to form a first bending structure 1061.
  • the umbrella mouth end 601 is formed by a plurality of first grid units 606, the proximal end of each first grid unit 606 is configured as a second bending structure 6061, and the multiple second bending structures 6061 are connected to each other to form a second bending Fold 604.
  • the first bending structure 1061 and the second bending structure 6061 are V-shaped. Both the first bending portion 105 and the second bending portion 604 are in a zigzag shape.
  • the number of the plurality of first network ports 421b is less than the number of the plurality of first grid units 606, and the area of each first network port 421b is greater than the area of each first grid unit 606. In this way, the protective umbrella 6 can recover a relatively small thrombus, so as to further improve the thrombus capture efficiency of the thrombus removal stent 100b.
  • the shapes of the plurality of first mesh ports 421b and the plurality of first mesh units 606 include, but are not limited to, one or more of a circle, an ellipse, a triangle, a diamond, a trapezoid, and a hexagon.
  • the shapes of the plurality of first network ports 421b and the plurality of first grid units 606 are all rhombuses.
  • the mounting structure 104 is formed by enclosing a plurality of connecting pieces 107 with connecting holes 1071, and the plurality of connecting pieces 107 are respectively arranged on the plurality of first bending structures 1061.
  • the connecting structure 602 is formed by enclosing a plurality of connecting buckles 605, each connecting buckle 605 is arranged on the corresponding second bending structure 6061, the connecting piece 8 is configured as a connecting ring, and the connecting ring passes through the connecting hole 1071 of each connecting piece 107 And a plurality of connecting buckles 605 to connect the protective umbrella 6 and the bracket body 101b.
  • the connecting ring is made of a material with a shape memory effect.
  • the connecting ring can quickly open the protective umbrella 6 with the help of the radial support force of the stent body 101b, and the design of the connecting ring can prevent the mouth end 601 of the protective umbrella 6 from collapsing and enhance the adhesion of the protective umbrella 6 to the blood vessel wall, thereby Improve the efficiency of capturing thrombus.
  • each first mesh port 421b parallel to the central axis L of the bolt removal bracket 100b and the symmetry axis of the corresponding first grid unit 606 parallel to the central axis L of the bolt removal bracket 100b roughly coincide, so as to connect 605 pairs of buckles.
  • the quasi-connection hole 1071 is used to facilitate assembly.
  • the number of connecting buckles 605 is equal to the number of connecting holes 1071.
  • Each connecting buckle 605 is correspondingly disposed on each second bending structure 6061. In this way, it is possible to avoid the collapse of the umbrella mouth end 601 of the protective umbrella 6 causing a gap between the protective umbrella 6 and the blood vessel wall, thereby ensuring the radial support force of the umbrella mouth end 601 and enhancing the adhesion of the protective umbrella 6 to the blood vessel wall. This improves the efficiency of capturing thrombus.
  • the number of connecting buckles 605 is more than the number of connecting holes 1071.
  • Each connecting buckle 605 is arranged at a position of the second bending structure 6061 corresponding to the connecting hole 1071, thereby facilitating the assembly of the protective umbrella 6 and the bracket body 101b.
  • the protective umbrella 6 includes a net body 63 formed by interlacing a plurality of ribs 61, each rib 61 is structured in a petal structure and distributed in a radial shape, and the proximal end of each rib 61 protrudes outward relative to the net body 63.
  • the second bending structure 6061 is structured in a petal structure and distributed in a radial shape, and the proximal end of each rib 61 protrudes outward relative to the net body 63.
  • the connecting buckle 605 and the second bending structure 6061 are integrally formed.
  • the middle of each rib 61 crosses to form a corresponding connecting buckle 605, thereby improving the stability and reliability of the connecting buckle 605, and the processing method is simple.
  • the plurality of connecting buckles 605 may also be formed on the corresponding second bending structure 6061 by mechanical fixing.
  • the mechanical fixing method is, for example, but not limited to bonding, welding, riveting, crimping, or wire-like material winding.
  • the net body 63 includes a cylindrical extension portion 62 and a conical recovery portion 64.
  • the extension portion 62 is provided between the bracket body 101b and the recovery portion 64, and a plurality of connecting buckles 605 are provided on the extension portion 62. Near end.
  • the outer diameter of the extension 62 is approximately equal to the outer diameter of the stent body 101b.
  • the thrombus removal stent 100b can remove the thrombus cleanly, prevent vasospasm, and can quickly restore the blood flow speed.
  • the proximal end of the protective umbrella 6 and the distal end of the stent body 101b are smoothly connected to ensure the flexibility of the thrombus removal stent 100b, thereby reducing damage to the blood vessel wall, and the thrombus removal stent 100b and the protective umbrella 6 can be released simultaneously.
  • the extension 62 is formed by a combination of a plurality of first grid units 606 and a plurality of second grid units 621.
  • the recovery part 64 is formed by enclosing a plurality of third grid units 641, the area of the plurality of second grid units 621 is the same, and the area of the plurality of third grid units 641 gradually increases from the distal end to the proximal end.
  • the area of the second grid unit 621 is larger than the area of the third grid unit 641, smaller than the area of the first grid port 421b, and equal to the area of the first grid unit 606. In this way, before the thrombus removal stent 100b enters the fully released state, the protective umbrella 6 is not expanded to the predetermined state.
  • the mesh design of the mesh body 63 is gradually densified from the proximal end to the distal end to prevent the thrombus entering the mesh body 63 from escaping, thereby recovering the thrombus falling off the thrombus removal stent 100b to increase the blood vessel recanalization rate.
  • the central axis of the embolization stent 100b is collinear with the central axis of the stent body 101b and the central axis of the protective umbrella 6, thus improving the stability of the embolism removing stent 100b and ensuring the smooth movement of the stent body 101b and the protective umbrella 6 in the blood vessel .
  • the maximum outer diameter of the protective umbrella 6 is greater than or equal to the maximum outer diameter of the thrombus removal stent 100b, so that the protective umbrella 6 can capture more thrombi that fall out of the thrombus removal stent 100b.
  • the orthographic projection of the umbrella mouth end 6 on the first open end 301b along the axial direction coincides with the fourth open end 403b. In this way, the adhesion of the protective umbrella 6 to the blood vessel wall is enhanced to improve the efficiency of capturing thrombus.
  • the protective umbrella 6 further includes a protective sleeve 65.
  • the protective sleeve 65 is fixedly sleeved on the distal end of the umbrella rib 61 to wrap and tighten the distal end of the umbrella rib 61. In this way, contact between the distal end of the rib 61 and the blood vessel wall is avoided, thereby reducing damage to the blood vessel wall, and ensuring that the thrombus falling off or overflowing from the thrombus removal stent 100b is always contained in the protective umbrella 6.
  • the protective sleeve 65 of the protective umbrella 6 may be configured as a development positioning element.
  • the imaging positioning element is fixedly sleeved on the distal end of the umbrella rib 61 to wrap and tighten the distal end of the umbrella rib 61.
  • the developing positioning element is, for example, but not limited to, a developing ring or a developing wire.
  • the developing wire is spirally wound at the distal end of the protective umbrella 6.
  • the imaging ring is sleeved on the distal end of the protective umbrella 6.
  • the imaging positioning element is fixed on the distal end of the rib 61 to serve as the distal end mark of the entire thrombus removal stent 100b, so as to more accurately locate the position of the thrombus.
  • the fixing method of the developing positioning element is, for example, but not limited to welding, crimping, hot melting or pressure riveting, and other common technical means in the art to be fixedly connected together.
  • the protective umbrella may include both the imaging positioning element and the protective sleeve disposed at the distal end of the protective umbrella.
  • FIG. 9 is a schematic structural diagram of a plug-removing bracket 100d according to a third embodiment of the present invention
  • FIG. 10 is a schematic structural diagram of the plug-removing bracket 100d from another angle.
  • the structure of the bolt removal bracket 100d is similar to the structure of the bolt removal bracket 100b of the second embodiment. The difference is that the capturing section 41d of the third bracket body 40d is different from the capturing section 41b of the third bracket body 40b in the second embodiment.
  • each second network port 411d is not formed with a third capturing unit.
  • the capturing section 41d does not include a skeleton rod, that is, the skeleton rod is replaced by another third mesh port 413d.
  • each capturing portion 43d includes a second mesh port 411d, and each reinforcing portion 44d of the capturing section 41d includes two third mesh ports 413b connected in parallel along a direction parallel to the central axis L of the bracket body 101d.
  • Each capturing part 43d is roughly olive-shaped.
  • Each reinforcing portion 44d is roughly in the shape of an "8".
  • the capturing section 41d is formed by enclosing at least one second network port 411d and a plurality of third network ports 413d.
  • the first network port 421d, the second network port 411d, and the third network port 413d are connected to each other to form a third bracket body 40d having a tubular structure or a cage structure.
  • the shape of the proximal and distal ends of the second network port 411d is the same as the shapes of the proximal and distal ends of the third network port 413d, so as to ensure the radial force balance of the capturing section 41d and the smoothness of the capturing section 41d, and Enhance the adhesion of the capture section 41d and increase the capture rate of thrombus.
  • the shape of the third net port 413d is the same as the shape of the first net port 421d to ensure the flexibility of the stent body 101b, and to make the stent body 101b have a certain supporting force in the radial and axial directions, and to improve the support of the stent body 101b.
  • the capture efficiency of thrombus is the same as the shapes of the proximal and distal ends of the third network port 413d, so as to ensure the radial force balance of the capturing section 41d and the smoothness of the capturing section 41d, and Enhance
  • the second network port 411d is roughly olive-shaped.
  • Each second network port 411d has a proximal connection point 4111d, and each proximal connection point 4111d of the capturing section 41d is connected to the distal end of the corresponding second support rod 352.
  • the area of the second network port 411d is increased, thereby further improving the ability of the thrombus removal stent 100d to capture hard thrombi such as organizing thrombus, calcified thrombus, and larger thrombus.
  • the second network port 411d is directly opposite to the first closed-loop unit 311, that is, the second network port 411d is disposed between two adjacent second closed-loop units 331.
  • the number of the second network port 411d is equal to the number of the first closed loop unit 311, thereby ensuring the axial and radial supporting force of the thrombus removal stent, while making it easier for thrombus to enter the third stent from the second network port 411d A channel 1010d inside the body 40d.
  • the second mesh port 411d is not provided with a third capturing unit, and the second mesh port 411d is parallel to the stent body 101d on opposite sides of the central axis L respectively connected in parallel along the central axis L
  • Two third network ports 413d thereby increasing the area of the second network port 411d, so that thrombus enters the channel 1010d inside the third stent body 40d from the second network port 411d, and increasing the diameter of the second network port 411d
  • the extended space in the direction increases the area of the second network port 411d and enhances the adhesion of the capturing section 41d.
  • the bolt removal bracket 100d provided by the embodiment of the present invention is provided with a third bracket body 40d, and the proximal end of the third bracket body 40d is provided with a second network port 411d with a larger network port area. Since the third capture unit is not formed at the proximal end of the second mesh port 411d, the area of the second mesh port 411d is increased to further increase the thrombus that the second mesh port 411d does not effectively capture the second stent body 30d.
  • the ability to capture hard thrombi such as organic thrombus, calcified thrombus and larger thrombus, and then the hard thrombus can enter the internal channel 1010d of the third stent body 40d from the second mesh port 411d to improve the resistance to hard thrombus Capture efficiency.
  • FIG. 11 is a schematic structural diagram of a bolt removal bracket 100f provided by the fourth embodiment of the present invention.
  • the structure of the bolt removing bracket 100f is similar to the structure of the bolt removing bracket 100d of the third embodiment. The difference is that the distal end of the third stent body 40f of the plug-removing stent 100f forms a second sealed end 403f that is directly opposite to the third open end 401f.
  • the bolt removal stent 100f further includes a third stent body 40f provided at the distal end of the second stent body 30, the third stent body 40f and the second stent body 30 are smoothly transitionally connected, and the third stent body 40f
  • the proximal end is formed with a third open end 401f
  • the distal end of the third stent body is formed with a second sealed end 403f directly opposite to the third open end 401f.
  • the third stent body 40f can further capture the thrombus that has fallen off or overflowed from the second stent body 30 and can enter the channel 1010f inside the third stent body 40f, thereby effectively preventing the thrombus from detaching from the thrombus removal stent 100f.
  • the first bracket body 10, the second bracket body 30, and the third bracket body 40f are integrally formed, thereby facilitating the production of the bolt-removing bracket 100f, and ensuring the first bracket body 10, the second bracket body 30, and the third bracket body The stability and reliability of the 40f connection to each other.
  • the thrombus removal stent 100f is processed by laser cutting a nickel-titanium tube material, thereby effectively preventing the thrombus from detaching from the embolism removal stent 100f.
  • a third stent body 40f is provided at the distal end of the peg-removing stent 100f, and the capturing section 41f of the third stent body 40f is enclosed by a third mesh 411f with a relatively large mesh area.
  • the extension of the third stent body 40f The section 42f is jointly formed by the fourth mesh 421f with a relatively small mesh area, so that both large-volume thrombus and small-volume thrombus can enter the channel 1010f inside the third stent body 40f from the third mesh 411f, and are formed by The extension 42f accommodates the thrombus captured by the third stent body 40f, thereby further improving the capturing efficiency of the thrombus removal stent 100f.
  • the distal end of the third stent body 40f is also provided with a visualization positioning element 102f, so that the position of the visualization positioning element 102f can be used to indicate the position of the distal end of the third stent body 40f of the plug removal stent 100f under instrument detection. Location.
  • FIG. 12 is a schematic structural diagram of a bolt removing bracket 100g provided by the fifth embodiment of the present invention.
  • the structure of the bolt removing bracket 100g is similar to the structure of the bolt removing bracket 100b of the second embodiment.
  • the difference is that the stent body 101g is not provided with a third stent body, and the protective umbrella 6 is directly connected to the distal end of the second stent body 30g.
  • the distal end of the second stent body 30 forms a first open end 301.
  • the plug-removing bracket 100g includes a protective umbrella 6 connected to the distal end of the second bracket body 30.
  • the proximal end of the protective umbrella 6 forms an umbrella mouth end 601
  • the distal end of the protective umbrella 6 forms a first sealing end 603 opposite to the umbrella mouth end 601.
  • the mouth end 601 is communicated with the first open end 301, so that a continuous channel 1010g is formed inside the plug-removing bracket 100g.
  • FIG. 13 is a schematic structural diagram of a bolt removing bracket 100h provided by a sixth embodiment of the present invention
  • FIG. 14 is a structural diagram of a bracket body 101h of the bolt removing bracket 100h
  • Fig. 15 is a schematic diagram showing the structure of the protective umbrella 6h of the bolt-removing bracket 100h.
  • the structure of the bolt removing bracket 100g is similar to the structure of the bolt removing bracket 100b of the second embodiment.
  • the stent body 101 does not include a third stent body
  • the connection mode of the protective umbrella 6h and the second stent body 30 is different from the protective umbrella 6 and the second stent body 30b in the second embodiment, and the protective umbrella 6h is not provided with a cylindrical shape.
  • the extension is not provided with a cylindrical shape.
  • the mounting structure 104h is formed by enclosing a plurality of fixing rods 107h, and the plurality of fixing rods 107h are respectively arranged on the plurality of first bending structures 1061.
  • the connecting structure 602h is surrounded by a plurality of connecting rods 605h.
  • the connecting rods 605h are scattered on the corresponding second bending structure 6061h, and each connecting rod 605h is adjacent to the corresponding fixed rod 107h.
  • the connecting piece 8 is constructed To connect the wire 8h, the connecting wire 8h is wound around the adjacent fixing rod 107h and the connecting rod 605h to connect the protective umbrella 6h and the bracket body 101h.
  • the structures of the mounting structure 104h and the connecting structure 602h are simplified, and the processing and manufacturing of the bolt-removing bracket 100 is facilitated.
  • the connecting wire 8h wrapping the connecting wire 8h around the adjacent fixing rod 107h and the connecting rod 605h, the stability and reliability of the connection between the bracket body 101h and the protective umbrella 6h are enhanced.
  • the connecting wire 8h may be omitted, that is, the fixing rod 107h and the connecting rod 605h may be directly fixedly connected together.
  • the fixing method of the fixing rod 107h and the connecting rod 605h is, for example, but not limited to welding or bonding.
  • the connecting wire 8h is a developing positioning element.
  • the imaging positioning element is arranged at the junction of the stent body 101h and the protective umbrella 6h as a distal mark of the thrombus removal stent 100h, so as to more accurately locate the position of the thrombus and the protective umbrella 6h.
  • the developing positioning element can be directly fixed on the connecting wire.
  • the developing positioning element is, for example, but not limited to, a developing ring or a developing wire.
  • the fixing method of the developing positioning element is, for example, but not limited to welding, crimping, hot melting or pressure riveting, and other common technical means in the art to be fixedly connected together.
  • the connecting rod 605h includes a plurality of bent sections 6051h and a straight section 6053h, and the straight section 6053h is formed by converging and braiding the plurality of bent sections 6051h to the straight section 6053h. In this way, it is possible to avoid the collapse of the mouth end 601h of the protective umbrella 6h.
  • each bending section 6051h is connected to the middle of the corresponding second bending structure 6061h, and the plurality of bending sections 6051h are symmetrically distributed around the straight section 6053h, and the straight sections 6053h are arranged in two adjacent second bends.
  • the fixed rod 107h and the straight section connecting rod 6053h of the connecting rod 605h both extend in a direction parallel to the central axis L of the bolt removal bracket 100h. In this way, the overall flexibility of the thrombus removal stent 100h is ensured, the smooth movement of the stent body 101h and the protective umbrella 6h in the blood vessel is ensured, and the damage to the blood vessel wall is reduced.
  • the net body 63h is configured as a conical recovery structure.
  • the mesh body 63h is formed by a combination of a plurality of first mesh units 606h and a plurality of third mesh units 641h.
  • the area of the plurality of third grid units 641h gradually increases from the distal end to the proximal end, and is smaller than the area of the first network port 421b. Since the area of the plurality of third grid units 641h gradually increases from the distal end to the proximal end, that is, the grid design of the mesh body 63h is gradually dense from the proximal end to the distal end, preventing the thrombus entering the mesh body 63h from escaping. The thrombus that falls off or overflows in the stent body 101h is recovered to increase the recanalization rate of the blood vessel.
  • FIG. 16 is a schematic diagram of the structure of the net body 63h;
  • FIG. 17 is a bottom view of the net body 63h.
  • the net body 63h is configured in a tapered kaleidoscope pattern.
  • the mesh body 63h is composed of a multi-layer flower-shaped ring structure 631h in the axial direction of the protective umbrella 6h.
  • the multi-layer flower-shaped ring structures 631h are seamlessly connected to each other, and each layer of the flower-shaped ring structure 631h is composed of multiple mesh areas.
  • the same third grid unit 641h is connected.
  • a third grid unit 641h of one layer of flower-shaped ring structure 631h faces the gap between two adjacent third grid units 641h of another layer of flower-shaped ring structure 631h, so as to make the protective umbrella 6 easier Compression can better adapt to small blood vessels.
  • the structural design of the protective umbrella 6h of the bolt removing bracket 100h and the mounting structure 104h of the bracket body 101h of the sixth embodiment is applicable to the bolt removing bracket 100b in the second, third, and fifth embodiments. , 100d and 100g, I won’t repeat them here.
  • FIG. 18 is a schematic structural diagram of a bolt removal system 1000 according to an embodiment of the present invention.
  • the thrombus removal system 1000 includes the above-mentioned thrombus removal stent 100, a push rod 200, and a micro catheter 300.
  • the thrombus removal stent 100 includes a thrombus removal stent 100, a push rod 200 is connected to the proximal end of the thrombus removal stent 100, and the push rod 200 and the thrombus removal stent 100 are crimped and introduced into the microcatheter 300.
  • the thrombus removal stent 100 can move inside and outside the microcatheter 300 by pushing and pulling the push rod 200.
  • the embolization stent 100 When the push rod 200 moves toward the proximal end of the microcatheter 300, the embolization stent 100 is recovered into the microcatheter 300; when the push rod 200 moves away from the proximal end of the microcatheter 300, the embolization stent 100 is moved away from the proximal end of the microcatheter 300 It is pushed out of the microcatheter 300.
  • connection between the proximal end of the bolt-removing bracket 100 and the distal end of the push rod 200 includes welding, sleeve connection, or fixed connection with glue.
  • welding includes, but is not limited to silver welding or gold welding.
  • Adhesives include, but are not limited to UV glue or epoxy glue.
  • the micro catheter 300 is sleeved outside the pushing rod 200.
  • the bolt removal system 1000 further includes a loading tube 400. The loading tube 400 is used to fix the micro catheter 300.
  • the microcatheter 300 When in use, first connect the proximal end of the thrombus removal stent 100 and the distal end of the push rod 200, and then compress the installed thrombus removal stent 100 and the push rod 200 into the microcatheter 300 in advance. During the interventional treatment, the microcatheter 300 is delivered to the diseased part of the blood vessel, and passes through the thrombus to fix the microcatheter 300.
  • the vessel wall is anchored, and then the push rod 200 is slowly pushed forward, and the micro-catheter 300 is retracted under the reaction force at the same time to release the tension of the micro-catheter 300, and repeated several times until the embolization stent 100 is completely released.
  • the thimble retrieval bracket 100 Since the thimble retrieval bracket 100 is made of a shape memory material, the thimble retrieval bracket 100 has elasticity, so that the thimble retrieval bracket 100 can be switched between a compressed state and a released state. By releasing the thrombus removal stent 100, the thrombus removal stent 100 can be completely embedded inside the thrombus. After waiting for a certain period of time, the push rod 200 is pulled back, and the thrombus removal stent 100 is retracted to capture the thrombus, until the embolism removal stent 100 and the micro catheter 300 are retracted and withdrawn from the body to complete the entire thrombus removal process. The embolectomy stent 100 as a whole is crimped and introduced into the microcatheter 300, that is, the embolization stent 100 is delivered to the diseased part of the blood vessel through the microcatheter 300.
  • bolt removal brackets 100b, 100d, 100f, 100g, and 100h in the second embodiment to the sixth embodiment can all be applied to the bolt removal system, which will not be repeated here.
  • the thrombus removal stent further includes a protective umbrella provided at the distal end of the stent body, the push rod is connected to the proximal end of the stent body, the push rod, the stent body and the protective umbrella are crimped into the micro catheter, the stent body and the protective umbrella It can be moved inside and outside the microcatheter through the push and pull of the push rod.
  • the push rod moves toward the proximal end of the microcatheter, the stent body and the protective umbrella are recovered into the microcatheter; when the push rod faces away from the proximal end of the microcatheter When moving in the direction, the stent body and the protective umbrella are pushed out of the micro catheter.
  • the thrombus removal stent and the thrombus removal system include a first stent body and a second stent body disposed at the distal end of the first stent body, and the second stent body includes a large Pipe diameter section, small pipe diameter section and transition section, the large pipe diameter section and the small pipe diameter section are alternately connected, and the large pipe diameter section and the small pipe diameter section are connected by the transition section,
  • the plug-removing stent has a semi-free state and a free state.
  • the structure of the second stent body In the semi-free state, at least part of the structure of the second stent body is approximately a single-layer tubular structure; in the free state, the second stent The body has an approximately double-layer tubular structure, so that the thrombus removal stent can establish a blood flow channel in the semi-free state, so as to restore the blood flow of the blocked blood vessel before the thrombus is removed, thereby improving the safety of the thrombus removal operation.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Surgery (AREA)
  • Public Health (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cardiology (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Media Introduction/Drainage Providing Device (AREA)
  • Surgical Instruments (AREA)

Abstract

一种取栓支架(100、100b、100d、100f、100g、100h)包括支架本体(101、101b、101d、101f、101g、101h),支架本体(101、101b、101d、101f、101g、101h)包括第一支架本体(10、10d、10f)和设置在第一支架本体(10、10d、10f)的远端的第二支架本体(30、30b),第二支架本体(30、30b)包括大管径段(31)、小管径段(33)和过渡段(35),大管径段(31)和小管径段(33)交替相接,且大管径段(31)和小管径段(33)通过过渡段(35)连接,取栓支架(100、100b、100d、100f、100g、100h)具有半自由状态和自由状态,在半自由状态下,第二支架本体(30、30b)的至少部分结构呈近似单层管状结构;在自由状态下,第二支架本体(30、30b)呈近似双层管状结构。

Description

取栓支架及取栓系统
本申请要求于2020年05月30日提交中国专利局、申请号为CN 202010482816.8、发明名称为“取栓支架及取栓系统”的中国专利申请的优先权和于2020年05月30日提交中国专利局、申请号为CN 202020964918.9、发明名称为“取栓支架及取栓系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及医疗器械技术领域,尤其涉及一种取栓支架及取栓系统。
背景技术
血栓是血流在心血管系统血管内面剥落处或修补处的表面所形成的小块。血栓形成遍布整个心血管系统,波及全身组织器官,不止局限于心肌梗死,深部静脉血栓形成或脑血管血栓形成等病变,血栓可发生在体内任何部位的血管内。颅内血栓形成是脑血管病中的一种特殊临床类型,其容易造成脑栓塞,具有发病率高、致残率高、死亡率高和复发率高的特点,是中老年人致死和致残的主要疾病。
血管的再通是治疗急性缺血性脑卒中的关键。目前,治疗缺血性脑卒中的常规方法包括两大类:药物溶栓或机械取栓。
药物溶栓是导管把溶栓剂注入病变所指的血管内的病灶附件,在病灶局部瞬间形成很高的溶栓剂浓度,从而加快血栓溶解速度,进而增加血管再通的机会。根据美国国立神经疾病与卒中研究院的研究结果,静脉溶栓应在发病3小时内进行,动脉溶栓时间窗为6小时之内,因此药物溶栓治疗只适用于体积较小的血栓。当血栓的体积过大时,需要非常大剂量才能够使大血凝块溶解,且容易引发各种并发症,风险较高。
为了解决上述药物溶栓的问题,采用机械方式消除血栓。机械取栓包括以下方法:血栓切除术、激光碎栓、抓捕器取栓、捕栓网取栓。血栓切除术的取栓较为彻底,但是对血管壁损伤过大,极易引起各种并发炎症。激光碎栓的操作难度大,激光能量过低则无效,能量过高则损伤血管,而且同样易引起各种并发症。抓捕器取栓的操作简单,对血管壁损伤很小,但是经常不能套住血凝块。捕栓网取栓的操作简单,但因捕栓网体积较大而无法在颅内血管内使用。
综上,现有的机械取栓方法需要在血栓清除后才能恢复血管血液正常流动。然而,对于“脑卒中”患者,往往需要快速恢复正常血液流动,以防止病情加重。因此,现有的机械取栓方法多未能在血栓清除前就恢复阻塞血管的血液流动,从而增加了取栓的风险性。
发明内容
有鉴于此,本发明有必要提供一种取栓支架及取栓系统,以解决上述技术问题。
第一方面,本发明实施例提供了一种取栓支架,包括支架本体,所述支架本体包括第一支架本体和设置在所述第一支架本体的远端的第二支架本体,所述第二支架本体包括大管径段、小管径段和过渡段,所述大管径段和所述小管径段交替相接,且所述大管径段和 所述小管径段通过所述过渡段连接,所述取栓支架具有半自由状态和自由状态,在所述半自由状态下,所述第二支架本体的至少部分结构呈近似单层管状结构;在所述自由状态下,所述第二支架本体呈近似双层管状结构。
第二方面,本发明实施例提供了一种取栓系统,包括推送杆、微导管、以及上述取栓支架,所述取栓支架包括支架本体和设置于所述支架本体的远端的保护伞,所述推送杆连接于所述支架本体的近端,所述推送杆、所述支架本体和所述保护伞被压握导入所述微导管内,所述支架本体和所述保护伞可通过所述推送杆的推拉而在所述微导管内外活动,当所述推送杆朝靠近所述微导管的近端的方向活动时,所述支架本体和所述保护伞被回收到所述微导管内;当所述推送杆朝远离所述微导管的近端的方向活动时,所述支架本体和所述保护伞被推出所述微导管外。
相较于现有技术,本发明公开了一种取栓支架和取栓系统。取栓支架包括支架本体,支架本体包括第一支架本体和设置在第一支架本体的远端的第二支架本体,第二支架本体包括大管径段、小管径段和过渡段,大管径段和小管径段交替相接,且大管径段和小管径段通过过渡段连接,取栓支架具有半自由状态和自由状态,在半自由状态下,第二支架本体的至少部分结构呈近似单层管状结构;在自由状态下,第二支架本体呈近似双层管状结构,从而取栓支架在半自由状态时可建立血流通道,以在血栓清除前就恢复阻塞血管的血液流动,提高取栓手术的安全性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其它的附图。
图1是本发明第一实施例提供的取栓支架处于所述自由状态的结构示意图。
图2是图1中的取栓支架的部分结构的放大图。
图3是图1中的取栓支架在血管中应用的示意图。
图4是图3中的取栓支架沿IV-IV方向的剖视图。
图5是图1中的取栓支架处于所述半自由状态的结构示意图。
图6是本发明第二实施例提供的取栓支架的结构示意图。
图7是图6中的取栓支架的部分结构的结构示意图。
图8是图6中的取栓支架的另一角度的结构示意图。
图9是本发明第三实施例提供的取栓支架的结构示意图。
图10是图8中的取栓支架的另一角度的结构示意图。
图11是本发明第四实施例提供的取栓支架的结构示意图。
图12是本发明第五实施例提供的取栓支架的结构示意图。
图13是本发明第六实施例提供的取栓支架的结构示意图。
图14是图13中的取栓支架的支架本体的结构示意图。
图15是图13中的取栓支架的保护伞的结构示意图。
图16是图15中的取栓支架的保护伞的网体的结构示意图。
图17是图16中的取栓支架的保护伞的网体的仰视图。
图18是本发明实施例提供的取栓系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
需要说明的是,在介入医疗领域,通常将器械相对靠近操作者的一端称作近端,将器械相对远离操作者的一端称作远端。具体的,远端是指器械可自由插入到动物或人体体内的一端。近端是指供用户或机器操作的一端或是用于连接其它器件的一端。
可以理解,本发明的说明书和权利要求书及上述附图中的术语仅是为了描述特定实施例,并非要限制本发明。本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等是用于区别不同对象,而非用于描述特定顺序。除非上下文另有明确表述,否则单数形式“一”和“所述”也旨在包括复数形式。术语“包括”以及它们任何变形,意图在于覆盖不排他的包含。此外,本发明可以以多种不同的形式来实现,并不限于本实施例所描述的实施例。提供以下具体实施例的目的是便于对本发明公开内容更清楚透彻的理解,其中上、下、左、右等指示方位的字词仅是针对所示结构在对应附图中位置而言。术语“轴向”是指本发明的取栓支架被推进的方向,即是取栓支架的纵轴,也与血管的纵轴重合。术语“封闭”并不是指某一元件结构是一个完全密封的物体,其结构仅表示该元件结构的一个特性,即是,网体可以形成一个收纳血栓的容置空间,且血栓不易逃出所述网体的密封结构。
说明书后续描述为实施本发明的较佳实施例,然而上述描述乃以说明本发明的一般原则为目的,并非用以限定本发明的范围。本发明的保护范围当视所附权利要求所界定者为准。
请参阅图1、图3和图4,图1所示为本发明第一实施例提供的一种取栓支架100的结构示意图;图3所示为取栓支架100在血管200中应用的示意图;图4所示为图3中的取栓支架100沿IV-IV方向的剖视图。取栓支架100包括支架本体101。支架本体101包括第一支架本体10和设置在第一支架本体10的远端的第二支架本体30。第二支架本体30包括大管径段31、小管径段33和过渡段35。大管径段31和小管径段33交替相接,且大管径段31和小管径段33段通过过渡段35连接。取栓支架100具有半自由状态和自由状态,在所述半自由状态时,第二支架本体30的至少部分结构呈单层管状结构,在所述自由状态时,第二支架本体30呈双层管状结构。
如此,在所述半自由状态时,支架本体101中的至少部分结构呈近似单层管状结构,且单层管状结构上的网格空间较小,从而可避免血栓全部进入取栓支架100的内腔所导致内腔的封堵问题,因此单层管状结构可以作为血流通道。此外,取栓支架100在所述半自由状态时,该单层管状结构保证了整个取栓支架100的径向支撑力,从而使得取栓支架100 可以快速建立血流通道,以在血栓清除前就恢复阻塞血管的血液流动,进而在取栓的早期阶段实现血流通道的预通功能,以提高取栓手术的安全性。由于在所述自由状态时,支架本体101呈近似双层管状结构,大管径段31具有较大的网格结构,且大管径段31与小管径段33之间有一定的空间,从而允许血栓全部进入取栓支架100的内腔,进而提高了取栓效率。进一步的,取栓支架100采用分段式设计,也即大管径段31和小管径段33依次间隔且均匀排布,从而能够提高取栓装置的柔顺性,并确保取栓支架100能适应不同弯曲形态的血管,同时也能增强对血栓块的锚固效果,例如,在血管内受到挤压时,取栓支架100能够做出较大的形变。
需要说明的是,在本实施例中,所述半自由状态(即部分释放状态)是指取栓支架100至少部分结构处于未完全膨胀的工作状态,例如,在取栓支架100植入血管内的早期,支架本体101受血栓压迫的工作状态;或是取栓支架100的支架本体101受其它约束元件约束的工作状态。所述自由状态(即完全释放状态)是指取栓支架100的支架本体101处于完全膨胀的工作状态,或是处于完全自由(即不受其它约束元件约束)的工作状态。在一些实施例中,如图3所示,在所述半自由状态下,支架本体101的部分结构受血栓压迫或受约束元件约束。在其它一些实施例中,如图5所示,在所述半自由状态下,支架本体101的整体结构均受血栓压迫或受约束元件约束。
如图1所示,在本实施例中,在所述自由状态下,大管径段31在第一投影平面的正投影与小管径段33在第一投影平面的正投影部分交叠。如此,保证取栓支架100在不同直径的血管内的径向支撑力,从而有效防止取栓支架100完全通过血管时发生塌陷,进而提高了血栓抓捕效率,以及在取栓过程中减小了取栓支架100对血管壁造成的损伤。如图3所示,在所述半自由状态下,大管径段31在第一投影平面的正投影与小管径段33在第一投影平面的正投影不交叠。其中,第一投影平面为与取栓支架100的中轴线L相平行的平面。如此,取栓支架100处于部分释放状态下,支架本体101的整体结构或部分结构呈具有近似闭环结构的单层管状结构,从而减少血栓进入单层管状结构的内部,从而使得取栓支架在部分释放状态下具有供血流流动的空腔,进而提高取栓手术的安全性。
如图2和图3所示,第二支架本体30可同时包括处于所述半自由状态的第一部分和处于所述自由状态的第二部分,第二支架本体30的第一部分由于受到血栓的压迫,暂时处于所述半自由状态。其中,所述第一部分呈单层管状结构,所述第二部分呈双层管状结构。所述单层管状结构外周面的金属覆盖率大于双层管状结构外周面的金属覆盖率。金属覆盖率是指构成第二支架本体30的金属与第二支架本体30的外周面的面积占比。在处于所述半自由状态的第一部分中,大管径段31未完全打开,大管径段31的直径接近于小管径段33的直径,大管径段31的自由端点3113接近小管径段33的近端连接点3311,大管径段31的近端连接点3111接近小管径段33的自由端点3313,从而形成支架本体101的第一部分的横截面呈近似闭环结构1011(参看图4),即单层管状结构的横截面为近似闭环结构1011,因此支架本体101可以在血栓内部或者一侧保持供血流流动的空腔,在取栓前即开通血流,防止因长时间血流不畅而损伤大脑或其他组织。
请一并参阅图3和图4,血管200包括血管壁201、血管腔道202及堵塞血管腔道202的血栓203。当取栓支架100释放到具有血栓203的血管200时,取栓支架100未受血栓 203压迫的结构可迅速膨胀而处于完全释放状态,而取栓支架100受血栓203压迫的结构不会膨胀而处于部分释放状态。具体的,取栓支架100的近端和远端未受血栓203压迫,从而取栓支架100的近端和远端进入完全释放状态。在完全释放状态下,支架本体101的近端和远端与血管壁201贴合。此时,支架本体101的网孔较大,取栓支架100近端和远端与血管腔道202相连通。取栓支架100的中部受血栓203压迫,从而取栓支架100的中部无法完全展开而处于部分释放状态。在部分释放状态下,支架本体101的中部与血管200的血管壁201之间存在间隙。此时,支架本体101的网孔较小,支架本体101的中部可形成连续的具有近似闭环结构的单层管状结构,且单层管状结构的内腔1012与血管腔道202连通,也即取栓支架100快速建立血流通道,实现血流通道的预通功能,从而提高了取栓手术的安全性。此外,随着支架本体101的中部的膨胀而进入完全释放状态时,取栓支架100的中部在血栓中展开直至取栓支架100的中部与血管壁201贴合,以使血栓203进入到支架本体101内,从而回撤取栓支架100即可将血栓203从血管200内取出。
请再次参阅图1、图3和图4,在本实施例中,单层管状结构为大管径段31和小管径段33共同围合形成的连续的管状结构,以使单层管状结构具有连续的内腔1012,其中,大管径段31的最大直径大致等于小管径段33的最大直径,从而在取栓的早期阶段实现血流通道的预通功能。双层管状结构包括由小管径段33构成的非连续的内管结构和由大管径段31构成的非连续的外管结构,其中,大管径段31的最大直径大于小管径段33的最大直径。
其中,单层管状结构的大管径段31的外径小于双层管状结构的大管径段31的最小外径。单层管状结构的大管径段31的外径大致等于单层管状结构的小管径段33的外径。单层管状结构的小管径段33的外径小于双层管状结构的小管径段33的外径,即单层管状结构的外径小于双层管状结构的内管结构的直径。大管径段31、小管径段33和过渡段35同轴设置。在一些实施例中,大管径段31、小管径段33和过渡段35一体成型,以便提高第二支架本体30的稳定性和可靠性。在其它一些实施例中,大管径段31、小管径段33和过渡段35也可以通过压握、热熔、粘接、焊接或者压铆等本领域常用的技术手段固定连接在一起。
在一些实施例中,第二支架本体30的近端和远端均构造为大管径段31,小管径段33设置在相邻两大管径段31之间,大管径段31套设于过渡段35外。在其它一些实施例中,第二支架本体30的近端构造为大管径段31,第二支架本体30的远端构造成小管径段33。在本实施例中,第二支架本体30包括4个大管径段31和3个小管径段33。其中2个大管径段31分别位于第二支架本体30的近端和远端,其中另外2个大管径段31位于第二支架本体30的中部。小管径段33位于相邻两大管径段31之间。如此,大管径段31、小管径段33和过渡段35的结构设计能够提高取栓支架100的柔顺性,且能够增强对血栓的锚固效果。进一步的,取栓支架100具有一定的径向和轴向的支撑力,从而有效防止取栓支架100完全通过血管时发生塌陷,进而提高了血栓抓捕效率,以及在取栓过程中减小了取栓支架100对血管壁造成的损伤。此外,取栓支架100在血管内受到挤压时,能够做出较大的形变,从而可适应不同弯曲形态和不同直径的血管,并且能保证支架本体101与血管壁的贴合性,以进一步提高取栓效率。因此,现有的取栓支架要求导管内径向尺寸较大而无 法通过迂曲的颅内血管,而本申请的取栓支架100要求导管内径向尺寸较小,从而适用于颅内等更为细小的血管。
需要说明的是,大管径段31和小管径段33的数量可以根据实际需求来设定,本发明不作限定。
在一些实施例中,大管径段31构造为等径管状结构,在所述半自由状态下,大管径段31的直径大致等于小管径段33的直径;在所述自由状态下,大管径段31的直径大于小管径段33的直径。如此,方便取栓支架100的一体式激光切割成型,且增大了大管径段31与小管径段33之间的收容空间,从而血栓容易进入取栓支架100的内部的通道1010,且避免对血栓的切割,进而提高了对血栓的捕捉效率。
在其它一些实施例中,大管径段31构造为变径管状结构,变径管状结构呈中间大且两端小的类橄榄状的双向锥形台体,在所述半自由状态下,至少部分大管径段31的中间区域的直径大致等于小管径段33的直径;在所述自由状态下,大管径段31的中间区域的直径均大于小管径段33的直径。如此,进一步提高了取栓支架100在血管内滑动的柔顺性,从而在取栓过程中可减小了取栓支架100对血管壁造成的损伤。其中,为了兼顾取栓支架100的柔顺性、取栓支架100的捕捉效率及取栓支架100的径向和轴向支撑力,大管径段31的最大直径与最小直径的比值为1.5:1至3:1。
请一并参阅图1和图2,图2所示为取栓支架100的部分结构的放大图。在本实施例中,大管径段31由多个第一闭环单元311合围形成。小管径段33由多个第二闭环单元331合围形成。过渡段35由多个支撑杆350合围形成。
具体的,多个支撑杆350包括多个第一支撑杆351和多个第二支撑杆352。多个第一支撑杆351和多个第二支撑杆352均沿着第二支架本体30的周向方向间隔设置。多个第一支撑杆351设置在小管径段33的近端,多个第二支撑杆352间隔设置在小管径段33的远端。
第一闭环单元311包括近端连接点3111、中部连接点3112和自由端点3113,第二闭环单元331包括近端连接点3311、中部连接点3312和自由端点3313。第一支撑杆351的远端连接第二闭环单元331的近端连接点3311,第一支撑杆351的近端连接第一闭环单元311的中部连接点3112;第二支撑杆352的远端连接第一闭环单元311的近端连接点3111,第二支撑杆352的近端连接第二闭环单元331的中部连接点3312。第一闭环单元311的自由端点3113与近端连接点3111正相对,第二闭环单元331的自由端点3313与近端连接点3311正相对。自由端点3113,3313可嵌入到血栓中,提高对血栓的抓捕率。
在由所述半自由状态切换至所述自由状态的过程中,第一闭环单元311的自由端点3113与相对在第一闭环单元311的远端的且与第一闭环单元311相邻的第二闭环单元331的近端连接点3311之间的径向距离逐渐增大,第一闭环单元311的近端连接点3111与相对在第一闭环单元311的近端的且与第一闭环单元311相邻的第二闭环单元331的自由端点3313之间的径向距离也逐渐增大。
在由所述自由状态切换至所述半自由状态的过程中,第一闭环单元311的自由端点3113与相对在第一闭环单元311的远端的且与第一闭环单元311相邻的第二闭环单元331的近端连接点3311之间的径向距离逐渐减小,第一闭环单元311的近端连接点3111与相 对在第一闭环单元311的近端的且与第一闭环单元311相邻的第二闭环单元331的自由端点3313之间的径向距离也逐渐减小。因此,在半自由状态下,第一闭环单元311与第二闭环单元331共同组成了一个金属覆盖率较大的接近闭环的连续管状结构,从而在血栓中形成一个血流通道,以供血流通过,进而提高了取栓手术的安全性。
其中,在大管径段31和小管径段33的交界处,第一闭环单元311的自由端点3113与第一闭环单元311的远端相邻的第二闭环单元331的近端连接点3311,沿第二支架本体30的周向依次交替布置而形成第一环形阵列3010,第一闭环单元311的近端连接点3111与第一闭环单元311的近端相邻的第二闭环单元331的自由端点3313,沿第二支架本体30的周向依次交替布置而形成第二环形阵列3012。
在本实施例中,所述径向距离为大管径段31和小管径段33的交界处的相邻的自由端点3113与近端连接点3311之间的直线距离或者为大管径段31和小管径段33的交界处的相邻的自由端点3313与近端连接点3111之间的直线距离。具体的,所述径向距离为第一环形阵列3010中的相邻的自由端点3113与近端连接点3311之间的直线距离;或者为第二环形阵列3012中的相邻的自由端点3313与近端连接点3111之间的直线距离。
在所述半自由状态下,第一环形阵列3010中的近端连接点3311和自由端点3113共面,第二环形阵列3012中的近端连接点3111和自由端点3313也共面,以确保取栓支架100的整体具有径向和轴向的支撑力,同时确保第一闭环单元311和第二闭环单元331具有相对较小的面积,以避免血栓进入取栓支架100的内部的通道1010,从而实现血流通道的预通功能。需要说明的是,第一环形阵列3010中的近端连接点3311和自由端点3113共面是指第一环形阵列3010中的近端连接点3311彼此连接而形成第一平面,第一环形阵列3010中的自由端点3113彼此连接而形成第二平面,所述第一平面与所述第二平面共面,即所述第一平面与所述第二平面位于同一平面,且彼此相互重合。第二环形阵列3012中的近端连接点3111和自由端点3313共面是指第二环形阵列3012中的近端连接点3111彼此连接而形成第三平面,第二环形阵列3012中的自由端点3313彼此连接而形成第四平面,所述第三平面与所述第四平面共面,即所述第三平面与所述第四平面位于同一平面,且彼此相互重合。其中,所述第一平面,所述第二平面,所述第三平面及所述第四平面垂直于取栓支架100的中轴线L。
在所述自由状态下,第一环形阵列3010中的近端连接点3311和自由端点3113不共面,第二环形阵列3012中的近端连接点3111和自由端点3313也不共面,从而提高取栓支架100从所述自由状态切换至所述半自由状态的顺畅性,并确保取栓支架100的整体具有径向和轴向的支撑力,同时确保第一闭环单元311和第二闭环单元331具有相对较大的面积,以便血栓进入取栓支架100的内部的通道1010,从而提高血栓的抓捕效率。需要说明的是,第一环形阵列3010中的近端连接点3311和自由端点3113不共面是指第一环形阵列3010中的近端连接点3311彼此连接而形成第一平面,第一环形阵列3010中的自由端点3113彼此连接而形成第二平面,所述第一平面与所述第二平面不共面,即所述第一平面与所述第二平面位于不同平面,且彼此相互平行。第二环形阵列3012中的近端连接点3111和自由端点3313不共面是指第二环形阵列3012中的近端连接点3111彼此连接而形成第三平面,第二环形阵列3012中的自由端点3313彼此连接而形成第四平面,所述第三平面与所述第 四平面不共面,即所述第三平面与所述第四平面位于不同平面,且彼此相互平行。
其中,在由所述半自由状态切换至所述自由状态的过程中,取栓支架100的长度逐渐减小,取栓支架100的外径逐渐增大,第一闭环单元311的面积和第二闭环单元331的面积也逐渐增大。具体的,在所述半自由状态,取栓支架100径向压缩而拉伸取栓支架100的长度,且取栓支架100具有相对较小的外径,第一闭环单元311的面积和第二闭环单元331的面积相对较小。在所述自由状态,取栓支架100径向膨胀而缩短取栓支架100的长度,且取栓支架100具有相对较大的外径,第一闭环单元311的面积和第二闭环单元331的面积相对较大。
支架本体101在所述半自由状态时,多个第一支撑杆351和多个第二支撑杆352均呈直杆状结构;支架本体101在所述自由状态时,多个第一支撑杆351和多个第二支撑杆352均呈弯曲状结构,且相对第二支架本体30向内弯曲或向外弯曲。如此,在所述自由状态下,由于多个第一支撑杆351和多个第二支撑杆352均呈弯曲状结构,从而可以减少对血栓的切割,且可以为血栓提供更多的容纳空间,以便血栓进入取栓支架100的内腔,进而提高了取栓支架100对血栓的抓捕效率。在所述半自由状态下,由于多个第一支撑杆351和多个第二支撑杆352均呈直杆状结构,且多个第一支撑杆351和多个第二支撑杆352大致平行第二支架本体30的轴向方向,从而使得整个取栓支架100能压缩形成外径近似相同的具有闭环结构1011的单层管状结构,以实现血流通道的预通功能,减少手术过程中的脑损伤。
第一闭环单元311的面积大于第二闭环单元331的面积。第一闭环单元311和第二闭环单元331的形状包括菱形、圆形、椭圆形、三角形、梯形和六边形中的一种或多种。
在本实施例中,第一闭环单元311和第二闭环单元331均为菱形或近似菱形结构。大管径段31由4个第一闭环单元311合围形成管状结构。每一第一闭环单元311具有2个中部连接点3112。相邻的两第一闭环单元311通过中部连接点3112连接在一起。小管径段33由3个第二闭环单元331合围形成管状结构。每一第二闭环单元331具有2个中部连接点3312。相邻的两第二闭环单元331通过中部连接点3312连接在一起。其中,第一闭环单元311的面积大于第二闭环单元331的面积。多个第一闭环单元311与多个第二闭环单元331错开设置,以使第二闭环单元331设置在相邻两第一闭环单元311之间,以使得取栓支架100更容易压缩,更能适应细小血管,且容易导入微导管内。
第一闭环单元311的远端形成第一抓捕单元3114,第二闭环单元331的远端形成第二抓捕单元3314。第一抓捕单元3114与第一支撑杆351交替设置并彼此连接,第二抓捕单元3314与第二支撑杆352交替设置并彼此连接,不仅确保了取栓支架100的柔顺性,且使取栓支架100的径向和轴向具有一定的支撑力,以及提高了取栓支架100对血栓的抓捕效率。
其中,第一闭环单元311的2个中部连接点3112连接自由端点3113而形成第一抓捕单元3114。第二闭环单元331的2个中部连接点3312连接自由端点3313而形成第二抓捕单元3314。第一抓捕单元3114与第二抓捕单元3314可以为V字形、W字形、锯齿形或者U字形等结构,以提高对血栓的捕捉效率。
第一抓捕单元3114和第二抓捕单元3314交替设置,也即第二抓捕单元3314设置在相邻两第一抓捕单元3114之间,以在取栓支架100的径向布满抓捕单元,从而提高对血栓的锚固效果。第一抓捕单元3114和第二抓捕单元3314分别与支架本体101形成对于的第一 收容空间3115和第二收容空间3315。第一抓捕单元3114和第二抓捕单元3314均相对于支架本体101向外或者向内延伸。第一抓捕单元3114和第二抓捕单元3314的弯曲方向与第一支撑杆351和第二支撑杆352的弯曲方向相反。如此,第一收容空间3115和第二收容空间3315的空间增大,从而能够为血栓提供了更多的容纳空间,以便血栓进入取栓支架100的内腔,进而进一步提高取栓支架100对血栓的抓捕效率。当取栓支架100处于所述自由状态(即膨胀状态)时,第一抓捕单元3114和第二抓捕单元3314插入至血栓中,或将血栓夹持在第一收容空间3115和第二收容空间3315内,从而提高了取栓支架100对血栓的锚固。由于第一抓捕单元3114和第二抓捕单元3314均匀地分布在支架本体101的周向,从而增强了取栓支架100的柔顺性,同时也提高了对血栓的抓捕效率。
第一抓捕单元3114和第二抓捕单元3314可朝垂直于取栓支架100的轴心线L的方向移动。如此,避免取栓支架100在血管内移动时,第一抓捕单元3114和第二抓捕单元3314不与血管壁直接接触,从而避免损伤血管壁组织。
进一步的,第一抓捕单元3114的远端和第二抓捕单元3314的远端均设置有圆弧形的倒角,以进一步避免第一抓捕单元3114的远端和第二抓捕单元3314对血管壁造成损伤。
在一些实施例中,第一支架本体10与第二支架本体30一体成型,以便提高第一支架本体10与第二支架本体30连接的稳定性和可靠性。在其它一些实施例中,第一支架本体10与第二支架本体30也可以通过压握、热熔、粘接、焊接或者压铆等本领域常用的技术手段固定连接在一起。
在本实施例中,第二支架本体30的远端完全开口而形成第一开口端301,第一支架本体10的近端部分开口而形成第二开口端15,第一开口端301在第二投影平面的正投影与第二开口端15在第二投影平面的正投影部分交叠;其中,第二投影平面为与取栓支架100的中轴线L相垂直的平面。如此,提高了取栓支架100的近端和远端的柔顺性。
具体的,第一支架本体10的近端构造为斜圆锥筒型结构。在本实施例中,第一支架本体10的近端形成具有坡度的第二开口端15。第二开口端15的形状是锥形,如水滴状。在本实施例中,第二开口端15的形状是梭形。如此,基于第一支架本体10的第二开口端15的坡度设计,不仅能够有效阻隔回撤取栓支架100的回撤力传递至整个取栓支架100的周向上,且避免第一支架本体10的管径在回撤取栓支架100的过程中变小,从而确保血栓在取栓支架100被回撤过程中不易出现脱落的现象。
在其他一些实施例中,第一支架本体的近端也可构造成漏斗结构,第二支架本体构造成直管结构,从而取栓支架在朝靠近其近端的方向回撤的过程中避免血栓的脱落。其中,第一支架本体的管径由其近端朝远端方向逐渐增大,从而防止第一支架本体的近端在取栓支架朝其近端方向回撤的过程中因取栓支架的回撤力的影响而导致其整体的管径变小或扭结,进而提高了血栓抓捕效率,以及减小了取栓支架对血管壁造成的损伤。如此,确保第一支架本体与第二支架本体之间的平滑过渡连接,进而在取栓过程中减小了取栓支架对血管壁造成的损伤。
在一些实施例中,第一支架本体10的近端设置有显影定位元件102,以便于在仪器检测下通过显影定位元件102的位置指示取栓支架100的位置。显影定位元件102由不透射线的材料制成。不透射线的材料优选为金、铂或钽等贵金属材料。显影定位元件102可以 采用环状、丝状、带状或者点状等多种形式,并且通过压握、热熔、粘接、焊接或者压铆等本领域常用的技术手段固定在取栓支架100上。在一些实施例中,显影定位元件102可以呈环状,显影定位元件102套设在取栓支架100的近端。
在一些实施例中,第一支架本体10的近端还设置有连接头。连接头沿平行取栓支架100的轴心线L的方向延伸。在取栓支架100被回撤过程中,牵引力将集中于连接头所在的延长线上,保证了支架本体101的远端的管径不变,从而提高了血栓抓捕效率。显影定位元件102固定在连接头上。
本实施例中,由于取栓支架100的近端设置有显影定位元件102,以精准定位血栓的位置,从而在采用取栓支架100取栓的过程中可以对血栓的抓捕,以及在取栓支架100回撤过程中判断血栓是否脱离取栓支架100进行实时观察,进而指导具体的取栓操作,也即指导取栓支架100在压缩状态和释放状态之间转换,使得取栓更为精准。在其它一些实施例中,取栓支架100的中部也可以设置多个显影定位元件,以更精准定位血栓的位置。
在本实施例中,第一支架本体10和第二支架本体30均是由具有记忆效应的金属材料或具有弹性的高分子材料制成,以便支架本体101自膨胀而形成管状和/或笼状结构。金属材料例如是,但不局限于镍钛合金或者钴基合金。具体的,第一支架本体10和第二支架本体30可以通过激光切割板状的镍钛合金而形成具有镂空结构的管状或笼状结构,再经过卷曲、热处理定型。在另一实施例中,第一支架本体10和第二支架本体30还可以通过编织丝状的镍钛合金而形成具有镂空结构的管状或笼状结构。在其它一些实施例中,第一支架本体10和第二支架本体30还可以通过使用具有弹性的塑料材料加工而成。
请参阅图5,图5所示为图1中的取栓支架100的全部结构处于所述半自由状态的结构示意图。如图5所示,在所述半自由状态下,多个第一支撑杆351和多个第二支撑杆352平行于取栓支架100的中轴线L。第一环形阵列3010中的多个第一闭环单元311所对应的多个自由端点3113与多个第二闭环单元331所对应的多个近端连接点3311共面,第二环形阵列3012中的多个第一闭环单元311所对应的多个近端连接点3111和多个第二闭环单元331所对应的多个自由端点3313也共面。
本发明公开了一种取栓支架,包括管状和/或笼状结构的支架本体,支架本体包括第一支架本体和设置在第一支架本体的远端的第二支架本体,第一支架本体与第二支架本体平滑过渡连接,第二支架本体包括大管径段、小管径段和过渡段,大管径段和小管径段交替相接,且大管径段和小管径段通过过渡段连接在一起,支架本体在所述半自由状态时呈单层管状结构,支架本体在所述自由状态时呈双层管状结构,从而取栓支架在所述半自由状态时可建立血流通道,以在血栓清除前就恢复阻塞血管的血液流动,提高取栓手术的安全性。进一步的,取栓支架的远端没有大网口形成,从而避免血栓从大网口进入取栓支架100的内部的通道1010所造成血流通道被阻塞的问题。
请一并参阅图6、图7和图8,图6所示为本发明第二实施例提供的取栓支架100b的结构示意图;图7所示为本发明第二实施例提供的取栓支架100b的部分结构的结构示意图;图8所示为本发明第二实施例提供的取栓支架100b的另一角度的结构示意图。在第二实施例中,取栓支架100b的结构与第一实施例的取栓支架100(参看图1)的结构相似。不同的是,取栓支架100b还包括第三支架本体40b和保护伞6,且第二支架本体30b的远端为 小管径段33。
其中,第三支架本体40b连接于第二支架本体30b和保护伞6之间,第三支架本体40b的近端形成第三开口端401b,第三支架本体40b的远端形成第四开口端403b,保护伞6的近端形成伞口端601,保护伞6的远端形成与伞口端601正相对的第一封口端603,第一开口端301b与第三开口端401b、第四开口端403b及伞口端601相连通,以使取栓支架100b的内部形成连续的通道1010b,第二支架本体30b的远端构造成小管径段33。
由于取栓支架100b的远端设置有保护伞6,从而有效防止从取栓支架100b内脱落的血栓发生逃逸。此外,支架本体101b的远端形成第四开口端403b,述保护伞6的近端形成与第四开口端403b正相对的伞口端601,保护伞6的远端形成与伞口端601正相对的第一封口端603,伞口端601与第四开口端403b相连接,以使取栓支架100b的内部形成连续的通道1010b。如此,从取栓支架100b内脱落的血栓不受阻挡而完全进入保护伞6内,从而保护伞6可有效回收从取栓支架100b内脱落的血栓,进而避免从取栓支架100b内脱落血栓所导致血管再栓塞问题,且防止因取栓治疗引起的并发症,从而增加血管的再通率。此外,由于伞口端601与第四开口端403b相连接,也即保护伞6紧贴支架本体101b的远端,从而避免血栓发生逃逸,且取栓支架100b与保护伞6可以同步释放,进而保护伞6可以借助支架本体101b的径向支撑力快速打开保护伞6,直至保护伞6展开到预定型状态,以回收从支架本体101b上脱落的血栓。
在本实施例中,第三支架本体40b的近端与第二支架本体30b的远端平滑过渡连接,且第三支架本体40b的近端与第二支架本体30b的远端通过过渡段35连接在一起。
具体的,如图7和图8所示,第三支架本体40b包括捕捉段41b和连接捕捉段41b和保护伞6之间的延伸段42b。捕捉段41b的近端通过多个第二支撑杆352连接于第二支架本体30b的小管径段33,捕捉段41的远端连接于延伸段42b的近端。其中,捕捉段41b与延伸段42b平滑过渡连接,从而确保取栓支架100b整体的柔顺性,以提高取栓手术的安全性。
在一些实施例中,捕捉段41b的外径大于或大致等于第二支架本体30b的最大外径,且大致等于延伸段42b的外径。如此,确保了取栓支架100b的径向和轴向支撑力,且第二支架本体30b内脱落或溢出的血栓全部能够从捕捉段41b进入第三支架40b的内部的通道1010b。
捕捉段41b包括至少一个捕捉部43b和多个加强部44b。至少一个捕捉部43b和多个加强部44b沿第三支架本体40b的周向并排连接,且捕捉部43b的外形不同于所述加强部44b的外形。在一些实施例中,捕捉部43b的数量和加强部44b的数量相对应,且捕捉部43b和加强部44b沿第三支架本体40b的周向交替连接。在本实施例中,捕捉段41b包括正相对的两捕捉部43b和正相对的两个加强部44b,每一捕捉部43b和每一加强部44b沿第三支架本体40b的周向并排且交替连接。如此,不仅提高了第二网口411b对第二支架本体30b未有效抓捕的血栓,例如机化血栓、钙化血栓等硬血栓及体积较大的血栓的捕捉性能,同时还确保第三支架本体40b的径向支撑力,并且避免第三支架本体40b过度形变而降低了捕捉段41b的贴壁性,即防止第三支架本体40b的捕捉段41b发生坍塌,且增强捕捉段41b的贴壁性,以提高对血栓的捕捉效率。
本发明实施例提供的取栓支架100b,通过增设第三支架本体40b,且第三支架本体40b的近端设置网口面积较大的第二网口411b,且第二网口411b的近端形成第三抓捕单元4114b,从而第三抓捕单元4114b可以锚固第二支架本体30b未有效抓捕的血栓,例如机化血栓、钙化血栓等硬血栓及体积较大的血栓,以提高第二网口411b对硬质血栓的捕捉性能,进而硬质血栓可以从第二网口411b进入第三支架本体40b的内部的通道1010b,以提高对硬质血栓的捕捉效率。
需要说明的是,捕捉部43b和加强部44b的数量根据第三支架本体40b的直径、用于合围形成大管径段31的第一闭环单元311的数量或合围形成小管径段33的第二闭环单元331的数量等因素来设计,本发明不作限定。
其中,每一捕捉部43b包括第二网口411b,每一加强部44b包括第三网口413b和设置在第三网口413b近端的骨架杆415b,其中,第二网口411b的面积大于第一网口421b、第一闭环单元311及第二闭环单元331的面积,第三网口413b的面积等于第一网口421b的面积和第一闭环单元311的面积,且第三网口413b的形状与第一网口421b的形状和第一闭环单元311的形状相同,以增强取栓支架100b的整体的柔顺性。在其它一些实施例中,每一加强部可以不包括骨架杆,即每一加强部可以包括沿平行于支架本体的中轴线L方向并行连接的多个第三网口。
在本实施例中,延伸段42b由多个第一网口421b合围形成。捕捉段41b由至少一个第二网口411b、多个第三网口413b和骨架杆415b合围形成。第一网口421b、第二网口411b、第三网口413b和骨架杆415b彼此相互连接而形成呈管状结构或笼状结构的第三支架本体40b。
第二网口411b与第二闭环单元331正相对,也即第二网口411b设置在相邻两第一闭环单元311之间。第三网口413b与第二闭环单元311正相对,也即第二网口411b设置在相邻两第一闭环单元311之间。如此,确保第二网口411b具有相对较大的面积,以提高取栓支架100b捕获机化血栓、钙化血栓等硬血栓及体积较大的血栓的能力,且确保了取栓支架100b的轴向和径向的支撑力的同时,可使血栓更易从第二网口411b进入第三支架本体40b的内部的通道1010b。
每一第二网口411b的近端形成有第三抓捕单元4114b,第三抓捕单元4114b的近端连接于第二支撑杆352的远端,第三抓捕单元4114b的远端构造为自由端。其中,第三抓捕单元4114b构成第二网口411b的一部分。
在本实施例中,第三抓捕单元4114b构造成V字形、W字形、锯齿形或者U字形等结构,第三抓捕单元4114b设置在相邻两第二支撑杆352之间。第三抓捕单元4114b与第二抓捕单元3314正相对,且设置在相邻两第一抓捕单元3114之间。第三抓捕单元4114b设置在相邻两第二支撑杆352之间且彼此连接。
具体的,第一网口421b包括近端连接点4211b和两个中部连接点4212b。相邻的两第一网口421b通过中部连接点4212b相连接。第二网口411b包括两近端连接点4111b、自由端点4112b和与自由端点4112b正相对的远端连接点4113b。第三网口413b包括近端连接点4131b、两中部连接点4132b和与近端连接点4131b正相对的远端连接点4133b。第一网口421b的中部连接点4212b与第二网口411b的远端连接点4113b及第三网口413b的远端 连接段4133b重合。第一网口421b的近端连接点4211b与第三网口413b的中部连接点4132b重合。
其中,每一第二网口411b的轴向投影大致呈心形。捕捉段41b的每一近端连接点4111b连接对应的第二支撑杆352的远端。每一第二网口411b的两近端连接点4111b和自由端点4112b相连而形成V字型或U字型的第三抓捕单元4114b。第三抓捕单元4114b相对于支架本体101b向外或者向内延伸,且与支架本体101b之间形成第三收容空间4115b。如此,不能被第二支架本体30b有效抓捕的血栓,例如机化血栓、钙化血栓等硬血栓及体积较大的血栓,能够从第二网口411b进入保护伞6内。此外,从第二支架本体30b内脱落或溢出的血栓易从第二网口411b进入保护伞6内,从而避免从取栓支架100b内脱落或溢出及未有效抓取的血栓所导致血管再栓塞问题,且防止因取栓治疗引起的并发症,例如血管痉挛,从而增加血管的再通率。
在本实施例中,骨架杆415b构造成Y字型结构。骨架杆415b包括第一加强杆4151b和连接于第一加强杆4151b和第三网口413b之间的第二加强杆4153b。第一加强杆4151b构造成V字形结构。第一加强杆4151b的外形与第三抓捕单元4114b的外形相同,第二网口411d的远端的外形与第三网口413d的远端的外形相同,从而确保捕捉段41b的径向受力均衡及捕捉段41b的顺滑性,且增强捕捉段41b的贴壁性,提高对血栓的抓捕率。第二加强杆4153b的外形与第二支撑杆352的外形相同,且第三网口413b的外形与第一网口421b的外形相同,以确保支架本体101b的柔顺性,且使支架本体101b的径向和轴向具有一定的支撑力,以及提高了支架本体101b对血栓的抓捕效率。
第二网口411b与第二闭环单元331正相对,也即第二网口411b设置在相邻两第一闭环单元311之间。第二网口411b的数量与第二闭环单元331的数量相等。第二支架本体30b的第二抓捕单元3314靠近第三支架本体40b的第三抓捕单元4114b,且第二抓捕单元3314的弯曲方向和第三抓捕单元4114b的弯曲方向一致,从而确保了取栓支架100b的柔顺性,且能够进一步提高对血栓的锚固作用。第二网口411b平行于支架本体101b的中轴线L的相对两侧分别连接有沿中轴线L方向并行连接的第三网口413b和骨架杆415b,且每一第三网口413b设置在骨架杆415b和第一网口421b之间,从而增大了第二网口411b在径向的延伸空间,以增大第二网口411b的面积,且增强了捕捉段41b的贴壁性,以便血栓从第二网口411b进入第三支架本体40b的内部的通道1010b。
其中,支架本体101b及保护伞6可以通过激光切割板状的镍钛合金而形成具有镂空结构的管状或笼状结构,再经过卷曲、热处理定型。在另一实施例中,支架本体101b及保护伞6还可以通过编织丝状的镍钛合金而形成具有镂空结构的管状或笼状结构。在其它一些实施例中,支架本体101及保护伞6还可以通过使用具有弹性的塑料材料加工而成。
在本实施例中,支架本体101b由具有形状记忆效应的管网材料激光雕刻而成;保护伞6由具有形状记忆效应的丝状材料编织而成。其中,管网材料或丝状材料包括,但不局限于金属材料、具有弹性的高分子材料或具有弹性的塑料材料。其它可以使支架本体101b和保护伞6可自膨胀而形成管状和/或笼状结构。金属材料例如是,但不局限于镍钛合金或者钴基合金。由管网材料制成的支架本体101b具有一定的径向和轴向支撑力,从而保证支架本体101b具有良好的贴壁性,因此取栓支架100b在完全释放状态下,可以防止血栓进入 取栓支架100b和血管壁的缝隙里。由丝状材料编织制成的保护伞6具有网孔面积较小的网格单元,从而可以捕捉到体积相对较小的血栓,以提高血栓的捕捉效率。此外,保护伞6相对柔软,从而降低了对血管壁的损伤。
请再次参阅图6和图7,在本实施例中,第四开口端403b的周缘设置有安装结构104,伞口端601的周缘设置有与安装结构配合连接的连接结构602。安装结构104与连接结构602的连接方式例如是,但不局限于粘接、焊接、压握、或卡扣连接。安装结构104与连接结构602直接连接在一起,不仅方便加工成型,且简化了取栓支架100b的整体结构。
在一些实施例中,取栓支架100b还包括连接件8。安装结构104通过连接件8连接于连接结构602,以使伞口端601与第四开口端403b相连接。安装结构104与连接结构602通过连接件8接连接在一起,提高了支架本体101b与保护伞6连接的紧凑性和稳定性。
第四开口端403b形成呈连续弯折的第一弯折部105,安装结构104设置于第一弯折部105上,伞口端601形成呈连续弯折的第二弯折部604,连接结构602设置于第二弯折部604上。其中,第一弯折部105和第二弯折部604均呈波浪状或锯齿状。如此,第四开口端403b和伞口端601可以提供更多的连接点,以提高支架本体101b与保护伞6的连接的稳定性和可靠性,并且确保支架本体101b与保护伞6可以同步释放,以便保护伞6借助支架本体101b的径向支撑力快速打开保护伞6,从而有效捕获血管内的血栓。
具体的,第四开口端403b由多个第一网口421b合围形成,每一第一网口421b的远端构造成第一弯折结构1061,多个第一弯折结构1061彼此连接形成第一弯折部105。伞口端601由多个第一网格单元606合围形成,每一第一网格单元606的近端构造成第二弯折结构6061,多个第二弯折结构6061彼此连接形成第二弯折部604。在本实施例中,第一弯折结构1061和第二弯折结构6061呈V形。第一弯折部105和第二弯折部604均呈锯齿状。
其中,多个第一网口421b的数量少于多个第一网格单元606的数量,且每一第一网口421b的面积大于每一第一网格单元606的面积。如此,保护伞6可以回收体积相对较小的血栓,以进一步提高取栓支架100b对血栓的捕捉效率。
具体的,多个第一网口421b和多个第一网格单元606的形状包括,但不局限于圆形、椭圆形、三角形、菱形、梯形和六边形中的一种或多种。在本实施例中,多个第一网口421b和多个第一网格单元606的形状均为菱形。
安装结构104由具有连接孔1071的多个连接片107合围形成,多个连接片107分别设置在多个第一弯折结构1061上。连接结构602由多个连接扣605合围形成,每一连接扣605设置在对应的第二弯折结构6061上,连接件8构造为连接环,连接环穿过每一连接片107的连接孔1071和多个连接扣605,以将保护伞6和支架本体101b相连接。连接环具有形状记忆效应的材料制成。如此,连接环可以借助支架本体101b的径向支撑力,快速打开保护伞6,且连接环的设计可以避免保护伞6的伞口端601发生坍塌以及增强了保护伞6与血管壁的贴壁性,从而提高了对血栓的捕捉效率。
每一第一网口421b平行于取栓支架100b的中轴线L的对称轴与对应的第一网格单元606平行于取栓支架100b的中轴线L的对称轴大致重合,以便连接扣605对准连接孔1071,从而方便组装。
在一些实施例中,连接扣605的数量等于连接孔1071的数量。每一连接扣605对应设 置在每一第二弯折结构6061上。如此,可以避免保护伞6的伞口端601发生坍塌而导致保护伞6与血管壁之间存在缝隙的问题,从而确保了伞口端601的径向支撑力,增强了保护伞6与血管壁的贴壁性,进而提高了对血栓的捕捉效率。
在其它一些实施例中,连接扣605的数量多于连接孔1071的数量。每一连接扣605设置在第二弯折结构6061对应连接孔1071的位置处,从而方便了保护伞6与支架本体101b的组装。
保护伞6包括由多根伞骨61交错编织而成的网体63,每一伞骨61构造成花瓣结构且呈放射状分布,且每一伞骨61的近端相对网体63向外凸伸形成第二弯折结构6061。
在本实施例中,连接扣605与第二弯折结构6061一体成型。每一伞骨61的中部交叉形成对应的连接扣605,从而提高了连接扣605的稳固性和可靠性,且加工方法简单。
在其它一些实施例中,多个连接扣605还可以通过机械固定方式形成于对应的第二弯折结构6061上。机械固定方式例如是,但不局限于粘接、焊接、铆接、压握或丝状材料缠绕。
在本实施例中,网体63包括圆柱状的延伸部62和圆锥状的回收部64,延伸部62设置于支架本体101b和回收部64之间,多个连接扣605设置于延伸部62的近端。延伸部62的外径大致等于支架本体101b的外径。如此,通过在保护伞6的近端设置有延伸部62,增大了保护伞6的整体面积,从而避免了取栓支架100b内的血栓发生逃逸,进而提高了取栓支架100b对血栓的捕捉性能,以使得取栓支架100b取栓干净,防止血管痉挛,并能快速恢复血流速度。此外,保护伞6的近端与支架本体101b的远端平滑连接,确保了取栓支架100b的柔顺性,从而降低了对血管壁的损伤,且取栓支架100b与保护伞6可以同步释放。
具体的,延伸部62为由多个第一网格单元606和多个第二网格单元621合围形成。回收部64为由多个第三网格单元641合围形成,多个第二网格单元621的面积相同,多个第三网格单641元的面积自远端朝近端逐渐增大,第二网格单元621的面积大于第三网格单元641的面积,小于第一网口421b的面积,且等于第一网格单元606的面积。如此,在取栓支架100b进入完全释放状态之前,保护伞6未展开到预定型状态,此时,较小体积的血栓仍可以从第一网格单元606或第二网格单元621进入延伸部62,然后由回收部64进行回收,以进一步提高血栓的捕捉效率。此外,网体63网格设计从近端向远端逐渐加密,防止进入网体63的血栓逃逸,从而将从取栓支架100b内脱落的血栓进行回收,以增加血管的再通率。
取栓支架100b的中轴线与支架本体101b的中轴线及保护伞6的中轴线共线,如此,提高了取栓支架100b的稳固性,且确保支架本体101b和保护伞6在血管内活动的顺畅性。
其中,保护伞6的最大外径大于或等于取栓支架100b的最大外径,以使保护伞6能够捕捉更多从取栓支架100b内脱落的血栓。伞口端6在第一开口端301b上沿轴向的正投影与第四开口端403b重合。如此,增强了保护伞6与血管壁的贴壁性,以提高对血栓的捕捉效率。
在本实施例中,保护伞6还包括保护套65。保护套65固定地套设于伞骨61的远端,以包裹及收紧伞骨61的远端。如此,避免伞骨61的远端与血管壁的接触,从而降低了对 血管壁的损伤,并且确保从取栓支架100b内脱落或溢出的血栓始终收纳于保护伞6内。
在一些实施例中,保护伞6的保护套65可以构造为显影定位元件。显影定位元件固定地套设于伞骨61的远端,以包裹及收紧伞骨61的远端。显影定位元件例如是,但不局限于显影环或显影丝。在一些实施例中,显影丝在保护伞6的远端呈螺旋绕制而成。在其他一些实施例中,显影环套设于保护伞6的远端。显影定位元件固定在伞骨61的远端,以作为整个取栓支架100b的远端标记,从而更精准地定位血栓的位置。显影定位元件的固定方式例如是,但不局限于焊接、压握、热熔或者压铆等本领域常用的技术手段固定连接在一起。在其它一些实施例中,保护伞可以同时包括设置于保护伞的远端的显影定位元件和保护套。
请一并参阅图9和图10,图9所示为本发明第三实施例提供的一种取栓支架100d的结构示意图;图10所示为取栓支架100d的另一角度的结构示意图。在第三实施例中,取栓支架100d的结构与第二实施例的取栓支架100b的结构相似。不同的是,第三支架本体40d的捕捉段41d不同于第二实施例中的第三支架本体40b的捕捉段41b。
在本实施例中,每一第二网口411d的近端未形成有第三抓捕单元。捕捉段41d不包括骨架杆,即通过另一第三网口413d替代骨架杆。具体的,每一捕捉部43d包括一个第二网口411d,捕捉段41d的每一加强部44d包括沿平行于支架本体101d的中轴线L方向并行连接的两个第三网口413b。每一捕捉部43d大致呈橄榄状。每一加强部44d大致呈“8”字型。捕捉段41d由至少一个第二网口411d和多个第三网口413d合围形成。第一网口421d、第二网口411d和第三网口413d彼此相互连接而形成呈管状结构或笼状结构的第三支架本体40d。
第二网口411d的近端和远端的外形与第三网口413d的近端和远端的外形相同,从而确保捕捉段41d的径向受力均衡及捕捉段41d的顺滑性,且增强捕捉段41d的贴壁性,提高对血栓的抓捕率。相邻两第三网口413d。第三网口413d的外形与第一网口421d的外形相同,以确保支架本体101b的柔顺性,且使支架本体101b的径向和轴向具有一定的支撑力,以及提高了支架本体101b对血栓的抓捕效率。
在本实施例中,第二网口411d大致呈橄榄状。每一第二网口411d具有一个近端连接点4111d,捕捉段41d的每一近端连接点4111d连接对应的第二支撑杆352的远端。如此,增大了第二网口411d的面积,从而进一步提高了取栓支架100d捕获机化血栓、钙化血栓等硬血栓及体积较大的血栓的能力。
第二网口411d与第一闭环单元311正相对,也即第二网口411d设置在相邻两第二闭环单元331之间。第二网口411d的数量与第一闭环单元311的数量相等,从而在确保了取栓支架的轴向和径向的支撑力的同时,可使血栓更易从第二网口411d进入第三支架本体40d的内部的通道1010d。
在本实施例中,基于第二网口411d未设置第三抓捕单元,且第二网口411d平行于支架本体101d的中轴线L的相对两侧分别连接有沿中轴线L方向并行连接的两第三网口413d,从而增大了第二网口411d的面积,以便血栓从第二网口411d进入第三支架本体40d的内部的通道1010d,且增大了第二网口411d在径向的延伸空间,以增大第二网口411d的面积,且增强了捕捉段41d的贴壁性。
本发明实施例提供的取栓支架100d,通过增设第三支架本体40d,且第三支架本体40d的近端设置网口面积较大的第二网口411d。由于第二网口411d的近端未形成第三抓捕单元,从而增大了第二网口411d的面积,以进一步提高第二网口411d对第二支架本体30d未有效抓捕的血栓,例如机化血栓、钙化血栓等硬血栓及体积较大的血栓的捕捉性能,进而硬质血栓可以从第二网口411d进入第三支架本体40d的内部的通道1010d,以提高对硬质血栓的捕捉效率。
请参阅图11,图11所示为本发明第四实施例提供的一种取栓支架100f的结构示意图。在第四实施例中,取栓支架100f的结构与第三实施例的取栓支架100d的结构相似。不同的是,取栓支架100f的第三支架本体40f的远端形成与第三开口端401f正相对的第二封口端403f。
在本实施例中,取栓支架100f还包括设置在第二支架本体30的远端的第三支架本体40f,第三支架本体40f与第二支架本体30平滑过渡连接,第三支架本体40f的近端形成有第三开口端401f,第三支架本体的远端形成与第三开口端401f正相对的第二封口端403f。如此,第三支架本体40f能够进一步捕捉第二支架本体30内脱落或溢出的血栓能够进入第三支架本体40f的内部的通道1010f,从而有效防止血栓从取栓支架100f内的脱离。
其中,第一支架本体10、第二支架本体30及第三支架本体40f一体成型,从而方便取栓支架100f的制作,且保证了第一支架本体10、第二支架本体30及第三支架本体40f彼此连接的稳定性和可靠性。取栓支架100f通过激光切割镍钛管材料加工而成,从而有效防止血栓从取栓支架100f内的脱离。在取栓支架100f的远端设置第三支架本体40f,且第三支架本体40f的捕捉段41f由网孔面积相对较大的第三网孔411f共同围合形成,第三支架本体40f的延伸段42f由网孔面积相对较小的第四网孔421f共同围合形成,从而大体积血栓和小体积血栓均可以从第三网孔411f进入第三支架本体40f的内部的通道1010f,并由延伸段42f收容第三支架本体40f所捕获到的血栓,从而进一步提高了取栓支架100f的捕捉效率。
在一些实施例中,第三支架本体40f的远端也设置有显影定位元件102f,以便于在仪器检测下通过显影定位元件102f的位置指示取栓支架100f的第三支架本体40f的远端的位置。
需要说明的是,第七实施例的取栓支架100f的第三支架40f的结构设计适用于第一实施例中的取栓支架100,此处不再赘述。
请参阅图12,图12所示为本发明第五实施例提供的一种取栓支架100g的结构示意图。在第五实施例中,取栓支架100g的结构与第二实施例的取栓支架100b的结构相似。不同的是,支架本体101g未设置第三支架本体,保护伞6直接连接于第二支架本体30g的远端。
在本实施例中,第二支架本体30的远端形成第一开口端301。取栓支架100g包括连接第二支架本体30的远端的保护伞6,保护伞6的近端形成伞口端601,保护伞6的远端形成与伞口端601正相对的第一封口端603,伞口端601与第一开口端301相连通,以使取栓支架100g的内部形成连续的通道1010g。
请一并参阅图13至图15,图13所示为本发明第六实施例提供的一种取栓支架100h的结构示意图,图14所示为取栓支架100h的支架本体101h的结构示意图;图15所示为 取栓支架100h的保护伞6h的结构示意图。在第六实施例中,取栓支架100g的结构与第二实施例的取栓支架100b的结构相似。不同的是,支架本体101不包括第三支架本体,保护伞6h与第二支架本体30的连接方式不同于第二实施例中的保护伞6与第二支架本体30b,且保护伞6h未设置有圆柱状的延伸部。
在本实施例中,安装结构104h由多个固定杆107h合围形成,多个固定杆107h分别设置在多个第一弯折结构1061上。连接结构602h由多个连接杆605h合围形成,多个连接杆605h分散设置在对应的第二弯折结构6061h上,且每一连接杆605h与对应的固定杆107h相邻接,连接件8构造为连接丝8h,连接丝8h缠绕相邻接的固定杆107h和连接杆605h,以将保护伞6h和支架本体101h相连接。如此,简化了安装结构104h和连接结构602h的结构,方便取栓支架100的加工制造。此外,通过连接丝8h缠绕相邻接的固定杆107h和连接杆605h,增强了支架本体101h与保护伞6h的连接的稳定性和可靠性。
在其他一些实施例中,连接丝8h可以省略,也即固定杆107h和连接杆605h可以直接固定连接在一起。固定杆107h和连接杆605h的固定方式例如是,但不局限于焊接或粘接。
在一些实施例中,连接丝8h为显影定位元件。显影定位元件设置于支架本体101h和保护伞6h的连接处,以作为取栓支架100h的远端标记,从而更精准地定位血栓和保护伞6h的位置。在其它一些实施例中,显影定位元件可以直接固定在连接丝上。显影定位元件例如是,但不局限于显影环或显影丝。显影定位元件的固定方式例如是,但不局限于焊接、压握、热熔或者压铆等本领域常用的技术手段固定连接在一起。
连接杆605h包括多个折弯段6051h和一平直段6053h,平直段6053h由多个折弯段6051h向平直段6053h汇聚编织形成。如此,可以避免保护伞6h的伞口端601h发生坍塌。
每一折弯段6051h的远端连接于对应的第二弯折结构6061h的中部,多个折弯段6051h围绕平直段6053h呈中心对称分布,平直段6053h设置于相邻两第二弯折结构6061h的连接处6062h的外侧。如此,保护伞6h的伞口端601h受到的径向支撑力较均匀,防止保护伞6h发生坍塌,从而确保了保护伞6h的贴壁性,且可以快速打开保护伞6h,进而有效捕获血管内的血栓。
其中,固定杆107h和连接杆605h的平直段连接杆6053h均沿平行于取栓支架100h的中轴线L的方向延伸。如此,确保了取栓支架100h的整体的柔顺性,确保支架本体101h和保护伞6h在血管内活动的顺畅性,并降低对血管壁的损伤。
在本实施例中,网体63h构造成呈圆锥状的回收结构。网体63h由多个第一网格单元606h和多个第三网格单元641h合围形成。多个第三网格单元641h的面积自远端朝近端逐渐增大,且小于第一网口421b的面积。由于多个第三网格单元641h的面积自远端朝近端逐渐增大,即网体63h的网格设计从近端向远端逐渐加密,防止进入网体63h的血栓逃逸,从而将从支架本体101h内脱落或溢出的血栓进行回收,以增加血管的再通率。
请一并参阅图16和图17,图16所示为网体63h的结构示意图;图17所示为网体63h的仰视图。网体63h构造成锥形的万花筒图案。具体的,网体63h在沿保护伞6h的轴向上由多层花型环结构631h构成,多层花型环结构631h彼此无缝连接,每一层花型环结构631h由多个网孔面积相同的第三网格单元641h连接而。具体的,其中一层花型环结构631h的一第三网格单元641h对着其中另一层花型环结构631h的相邻两个第三网格单元641h的空 隙,以使得保护伞6更容易压缩,更能适应细小血管。
需要说明的是,第六实施例的取栓支架100h的保护伞6h和支架本体101h的安装结构104h的结构设计适用于第二实施例、第三实施例、第五实施例中的取栓支架100b、100d和100g,此处不再赘述。
请参阅图18,图18所示为本发明实施例提供的一种取栓系统1000的结构示意图。取栓系统1000包括上述取栓支架100以及推送杆200和微导管300。取栓支架100包括取栓支架100,推送杆200连接于取栓支架100的近端,推送杆200和取栓支架100被压握导入微导管300内。取栓支架100可通过推送杆200的推拉而在微导管300内外活动。当推送杆200朝靠近微导管300的近端的方向活动时,取栓支架100被回收到微导管300内;当推送杆200朝远离微导管300的近端的方向活动时,取栓支架100被推出微导管300外。
在本实施例中,取栓支架100的近端与推送杆200的远端的连接方式包括焊接、套接或粘胶固定连接。可选的,焊接包括,但不局限于银焊或金焊。粘胶包括,但不局限于UV胶或环氧树脂胶。微导管300套设在推送杆200外。取栓系统1000还包括装载管400。装载管400用于固定微导管300。
使用时,先将取栓支架100的近端与推送杆200的远端连接,再将安装好的取栓支架100和推送杆200预先压缩至微导管300内。在介入治疗时,将微导管300输送至血管的病变部位,并穿越血栓,固定微导管300。通过推送杆200将取栓支架100推至根据显影定位元件102确定的血栓所在位置,回撤微导管300使取栓支架100在微导管300的远端释放,取栓支架100在远端弹开锚定住血管壁,随后缓慢前推推送杆200,同时在反作用力下回撤微导管300,释放微导管300的张力,重复多次直至取栓支架100全部释放。
由于取栓支架100由形状记忆材料制成,因此取栓支架100具有弹性,从而取栓支架100可以在压缩状态和释放状态之间转换。通过对取栓支架100的释放,取栓支架100能够完全嵌入血栓内部。等待一定时间后,回拉推送杆200,回撤取栓支架100捕获血栓,直至将取栓支架100连同微导管300一并收回撤出体外,完成整个取栓过程。作为整体的取栓支架100被压握导入微导管300内,也就是取栓支架100通过微导管300输送至血管的病变部位。
需要说明的是,第二实施例至第六实施例中的取栓支架100b、100d、100f、100g、100h均可以应用于取栓系统,此处不再赘述。
在一些实施例中,取栓支架还包括设置于支架本体的远端的保护伞,推送杆连接于支架本体的近端,推送杆、支架本体和保护伞被压握导入微导管内,支架本体和保护伞可通过推送杆的推拉而在微导管内外活动,当推送杆朝靠近微导管的近端的方向活动时,支架本体和保护伞被回收到微导管内;当推送杆朝远离微导管的近端的方向活动时,支架本体和保护伞被推出微导管外。
本发明实施例提供的取栓支架及取栓系统,所述取栓支架包括第一支架本体和设置在所述第一支架本体的远端的第二支架本体,所述第二支架本体包括大管径段、小管径段和过渡段,所述大管径段和所述小管径段交替相接,且所述大管径段和所述小管径段通过所述过渡段连接,所述取栓支架具有半自由状态和自由状态,在所述半自由状态下,所述第二支架本体的至少部分结构呈近似单层管状结构;在所述自由状态下,所述第二支架本体 呈近似双层管状结构,从而取栓支架在所述半自由状态时可建立血流通道,以在血栓清除前就恢复阻塞血管的血液流动,提高取栓手术的安全性。
以上对本发明实施例进行了详细介绍,本文中应用了具体个例对本发明的原理及实施例进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施例及应用范围上均会有改变之处,综上上述,本说明书内容不应理解为对本发明的限制。

Claims (29)

  1. 一种取栓支架,包括支架本体,所述支架本体包括第一支架本体和设置在所述第一支架本体的远端的第二支架本体,所述第二支架本体包括大管径段、小管径段和过渡段,所述大管径段和所述小管径段交替相接,且所述大管径段和所述小管径段通过所述过渡段连接,所述取栓支架具有半自由状态和自由状态,在所述半自由状态下,所述第二支架本体的至少部分结构呈近似单层管状结构;在所述自由状态下,所述第二支架本体呈近似双层管状结构。
  2. 如权利要求1所述的取栓支架,其特征在于,在所述自由状态下,所述大管径段在第一投影平面的正投影与所述小管径段在所述第一投影平面的正投影部分交叠;在所述半自由状态下,所述大管径段在所述第一投影平面的正投影与所述小管径段在所述第一投影平面的正投影不交叠;其中,所述第一投影平面为与所述取栓支架的中轴线相平行的平面。
  3. 如权利要求1所述的取栓支架,其特征在于,所述单层管状结构为所述大管径段和所述小管径段共同围合形成的连续的管状结构,以使所述单层管状结构具有连续的内腔。
  4. 如权利要求1所述的取栓支架,其特征在于,所述单层管状结构的大管径段的外径小于所述双层管状结构的大管径段的最小外径。
  5. 如权利要求1所述的取栓支架,其特征在于,所述大管径段构造为等径管状结构,在所述半自由状态下,所述等径管状结构的直径等于所述小管径段的直径;在所述自由状态下,所述等径管状结构的直径大于所述小管径段的直径。
  6. 如权利要求1所述的取栓支架,其特征在于,所述大管径段构造为变径管状结构,所述变径管状结构呈中间大且两端小的类橄榄状的双向锥形台体,在所述半自由状态下,至少部分所述大管径段的中间区域的直径等于所述小管径段的直径;在所述自由状态下,所述大管径段的中间区域的直径均大于所述小管径段的直径。
  7. 如权利要求6所述的取栓支架,其特征在于,所述大管径段的最大直径与所述大管径段的最小直径的比值为1.5:1至3:1。
  8. 如权利要求1所述的取栓支架,其特征在于,所述大管径段由多个第一闭环单元合围形成,所述小管径段由多个第二闭环单元合围形成,所述过渡段由多个支撑杆合围形成。
  9. 如权利要求8所述的取栓支架,其特征在于,所述多个支撑杆包括多个第一支撑杆和多个第二支撑杆,所述多个第一支撑杆和所述多个第二支撑杆均沿所述第二支架本体周向间隔设置,所述多个第一支撑杆设置在所述小管径段的近端,所述多个第二支撑杆间隔设置在所述小管径段的远端。
  10. 如权利要求9所述的取栓支架,其特征在于,所述第一闭环单元和所述第二闭环单元均包括近端连接点和中部连接点,所述第一支撑杆的远端连接所述第二闭环单元的近端连接点,所述第一支撑杆的近端连接所述第一闭环单元的中部连接点;所述第二支撑杆的远端连接所述第一闭环单元的近端连接点,所述第二支撑杆的近端连接所述第二闭环单元的中部连接点。
  11. 如权利要求10所述的取栓支架,其特征在于,所述第一闭环单元和所述第二闭环单元均还包括与所述近端连接点正相对的自由端点,在由所述自由状态切换至所述半自由状 态的过程中,所述第一闭环单元的自由端点与所述第一闭环单元的远端相邻的所述第二闭环单元的近端连接点之间的径向距离逐渐减小,所述第一闭环单元的近端连接点与所述第一闭环单元的近端相邻的所述第二闭环单元的自由端点之间的径向距离也逐渐减小。
  12. 如权利要求11所述的取栓支架,其特征在于,所述第一闭环单元的自由端点与所述第一闭环单元的远端相邻的所述第二闭环单元的近端连接点,沿所述第二支架本体的周向依次交替布置而形成第一环形阵列,所述第一闭环单元的近端连接点与所述第一闭环单元近端相邻的所述第二闭环单元的自由端点,沿所述第二支架本体的周向依次交替布置而形成第二环形阵列;在所述半自由状态下,所述第一环形阵列和所述第二环形阵列中的所述近端连接点和所述自由端点均共面;在所述自由状态下,所述第一环形阵列和所述第二环形阵列中的所述近端连接点和所述自由端点均不共面。
  13. 如权利要求9所述的取栓支架,其特征在于,所述支架本体在所述半自由状态时,所述多个第一支撑杆和所述多个第二支撑杆均呈直杆状结构;所述支架本体在所述自由状态时,所述多个第一支撑杆和所述多个第二支撑杆均呈弯曲状结构,且相对所述第二支架本体向内弯曲或向外弯曲。
  14. 如权利要求8所述的取栓支架,其特征在于,所述第一闭环单元的面积大于所述第二闭环单元的面积,所述第一闭环单元和所述第二闭环单元的形状包括圆形、椭圆形、三角形、菱形、梯形和六边形中的一种或多种。
  15. 如权利要求9所述的取栓支架,其特征在于,所述第一闭环单元的远端形成第一抓捕单元,所述第二闭环单元的远端形成第二抓捕单元,所述第一抓捕单元与所述第一支撑杆交替设置并彼此连接,所述第二抓捕单元与所述第二支撑杆交替设置并彼此连接。
  16. 如权利要求15所述的取栓支架,其特征在于,所述第二支架本体的远端完全开口而形成第一开口端,所述第一支架本体的近端部分开口而形成第二开口端,所述第一开口端在第二投影平面的正投影与所述第二开口端在所述第二投影平面的正投影部分交叠;其中,所述第二投影平面为与所述取栓支架的中轴线相垂直的平面。
  17. 如权利要求16所述的取栓支架,其特征在于,所述取栓支架还包括第三支架本体和保护伞,所述第三支架本体连接于所述第二支架本体和所述保护伞之间,所述第三支架本体的近端形成第三开口端,所述第三支架本体的远端形成第四开口端,所述保护伞的近端形成伞口端,所述保护伞的远端形成与所述伞口端正相对的第一封口端,所述第一开口端与所述第三开口端、所述第四开口端及所述伞口端相连通,以使所述取栓支架的内部形成连续的通道。
  18. 如权利要求17所述的取栓支架,其特征在于,所述第三支架本体包括捕捉段和连接所述捕捉段和所述保护伞之间的延伸段,所述捕捉段的近端通过所述多个第二支撑杆连接于所述第二支架本体的小管径段,所述捕捉段的远端连接于所述延伸段的近端。
  19. 如权利要求18所述的取栓支架,其特征在于,所述捕捉段包括至少一个捕捉部和多个加强部,所述至少一个捕捉部和所述多个加强部沿第三支架本体的周向并排连接,且所述捕捉部的外形不同于所述加强部的外形。
  20. 如权利要求19所述的取栓支架,其特征在于,所述延伸段包括相互连接的多个第一网口;每一所述捕捉部包括第二网口,每一所述加强部包括第三网口和设置在所述第三 网口近端的骨架杆,或者每一所述加强部包括沿平行于所述支架本体的中轴线方向并行连接的多个第三网口,其中,所述第二网口的面积大于所述第一网口、所述第一闭环单元及所述第二闭环单元的面积,所述第三网口的面积等于所述第一网口的面积和所述第一闭环单元的面积。
  21. 如权利要求20所述的取栓支架,其特征在于,每一所述第二网口的近端形成有第三抓捕单元,所述第三抓捕单元的近端连接于所述第二支撑杆的远端,所述第三抓捕单元的远端构造为自由端,所述第三抓捕单元设置在相邻两所述第二支撑杆之间。
  22. 如权利要求21所述的取栓支架,其特征在于,所述第一抓捕单元、所述第二抓捕单元和所述第三抓捕单元均相对于所述支架本体向外或者向内延伸,且与所述支架本体之间形成对应的第一收容空间、第二收容空间和第三收容空间。
  23. 如权利要求16所述的取栓支架,其特征在于,所述取栓支架还包括连接所述第二支架本体的远端的保护伞,所述保护伞的近端形成伞口端,所述保护伞的远端形成与所述伞口端正相对的第一封口端,所述伞口端与所述第一开口端相连通,以使所述取栓支架的内部形成连续的通道。
  24. 如权利要求17或23任意一项所述的取栓支架,其特征在于,所述第一开口端或所述第四开口端的周缘设置有安装结构,所述伞口端的周缘设置有与所述安装结构配合连接的连接结构。
  25. 如权利要求24所述的取栓支架,其特征在于,还包括连接件,所述安装结构通过所述连接件连接于所述连接结构,以使所述伞口端与所述第一开口端或所述第四开口端相连接。
  26. 如权利要求25所述的取栓支架,其特征在于,所述连接件构造为连接环,所述安装结构由具有连接孔的多个连接片合围形成,所述连接结构由所述多个连接扣合围形成,所述连接环穿过每一所述连接片的连接孔和所述多个连接扣,以将所述保护伞和所述支架本体相连接。
  27. 如权利要求25所述的取栓支架,其特征在于,所述安装结构由多个固定杆合围形成,所述连接结构由多个连接杆合围形成,且每一所述连接杆与对应的所述固定杆相邻接,所述连接件构造为连接丝,所述连接丝缠绕相邻接的所述固定杆和所述连接杆,以将所述保护伞和所述支架本体相连接。
  28. 如权利要求1所述的取栓支架,其特征在于,所述取栓支架还包括设置在所述第二支架本体的远端的第三支架本体,所述第三支架本体与所述第二支架本体平滑过渡连接,所述第三支架本体的近端形成有第三开口端,所述第三支架本体的远端形成与所述第三开口端正相对的第二封口端。
  29. 一种取栓系统,其特征在于,包括推送杆、微导管、以及如权利要求1-28任意一项所述的取栓支架,所述取栓支架包括支架本体,所述推送杆连接于所述支架本体的近端,所述推送杆和所述支架本体被压握导入所述微导管内,所述支架本体可通过所述推送杆的推拉而在所述微导管内外活动,当所述推送杆朝靠近所述微导管的近端的方向活动时,所述支架本体被回收到所述微导管内;当所述推送杆朝远离所述微导管的近端的方向活动时,所述支架本体被推出所述微导管外。
PCT/CN2021/095217 2020-05-30 2021-05-21 取栓支架及取栓系统 WO2021244330A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202020964918.9 2020-05-30
CN202010482816.8A CN113599034A (zh) 2020-05-30 2020-05-30 取栓支架及取栓系统
CN202010482816.8 2020-05-30
CN202020964918.9U CN212630979U (zh) 2020-05-30 2020-05-30 取栓支架及取栓系统

Publications (1)

Publication Number Publication Date
WO2021244330A1 true WO2021244330A1 (zh) 2021-12-09

Family

ID=78830726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095217 WO2021244330A1 (zh) 2020-05-30 2021-05-21 取栓支架及取栓系统

Country Status (1)

Country Link
WO (1) WO2021244330A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114916993A (zh) * 2022-07-19 2022-08-19 深圳佰特微医疗科技有限公司 取栓装置和取栓系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100131000A1 (en) * 2008-11-21 2010-05-27 Radius Medical Technologies, Inc. System and method for removal of material from a blood vessel
CN104068912A (zh) * 2013-03-26 2014-10-01 上海微创医疗器械(集团)有限公司 颅内血管取栓器及取栓装置
CN107874811A (zh) * 2017-12-06 2018-04-06 北京久事神康医疗科技有限公司 新型脑血栓取出装置及利用该装置取栓的方法
CN108245223A (zh) * 2018-01-22 2018-07-06 翎秀生物科技(上海)有限公司 取栓支架
CN110269730A (zh) * 2019-07-22 2019-09-24 珠海通桥医疗科技有限公司 血管支架
CN212630979U (zh) * 2020-05-30 2021-03-02 杭州诺礼医疗器械有限公司 取栓支架及取栓系统
CN212630980U (zh) * 2020-05-30 2021-03-02 杭州诺礼医疗器械有限公司 取栓支架及取栓系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100131000A1 (en) * 2008-11-21 2010-05-27 Radius Medical Technologies, Inc. System and method for removal of material from a blood vessel
CN104068912A (zh) * 2013-03-26 2014-10-01 上海微创医疗器械(集团)有限公司 颅内血管取栓器及取栓装置
CN107874811A (zh) * 2017-12-06 2018-04-06 北京久事神康医疗科技有限公司 新型脑血栓取出装置及利用该装置取栓的方法
CN108245223A (zh) * 2018-01-22 2018-07-06 翎秀生物科技(上海)有限公司 取栓支架
CN110269730A (zh) * 2019-07-22 2019-09-24 珠海通桥医疗科技有限公司 血管支架
CN212630979U (zh) * 2020-05-30 2021-03-02 杭州诺礼医疗器械有限公司 取栓支架及取栓系统
CN212630980U (zh) * 2020-05-30 2021-03-02 杭州诺礼医疗器械有限公司 取栓支架及取栓系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114916993A (zh) * 2022-07-19 2022-08-19 深圳佰特微医疗科技有限公司 取栓装置和取栓系统

Similar Documents

Publication Publication Date Title
WO2021244332A1 (zh) 取栓支架及取栓系统
CN212630979U (zh) 取栓支架及取栓系统
KR102258237B1 (ko) 허혈성 뇌졸증 장치
US6348056B1 (en) Medical retrieval device with releasable retrieval basket
CN110522539B (zh) 一种血栓取出装置、方法及其应用
CN112890915A (zh) 一种血管内多节段式取栓支架及其输送装置
WO2021136380A1 (zh) 取栓装置及取栓系统
US20040186512A1 (en) Intravascular devices, retrieval systems, and corresponding methods
CN110420046B (zh) 一种微创介入血栓取出器械、应用及其使用方法
WO2014127738A1 (zh) 取栓器及取栓装置
CN107212913B (zh) 一种带有血栓捕获部件的支架取栓器
CN105662533B (zh) 一种带有螺旋结构的血管取栓装置及其血栓治疗仪
CN112568967A (zh) 一种多节段网篮式取栓支架及其取栓装置
CN212630980U (zh) 取栓支架及取栓系统
CN111265280B (zh) 取栓装置和取栓系统
CN113180781A (zh) 一种卷绕式网盘支架及其输送装置
CN110584742A (zh) 脉管栓塞捕获装置
CN212015705U (zh) 取栓装置及取栓系统
CN112089477A (zh) 网篮式血栓清除装置
WO2021244330A1 (zh) 取栓支架及取栓系统
CN115500897A (zh) 一种分段式取栓装置
CN112168286A (zh) 取栓支架、取栓装置及取栓系统
CN113599034A (zh) 取栓支架及取栓系统
CN212369044U (zh) 一种快速交换型血管取栓装置
CN212015704U (zh) 取栓支架及取栓系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21818379

Country of ref document: EP

Kind code of ref document: A1