WO2021244023A1 - 气浮主轴和机床 - Google Patents

气浮主轴和机床 Download PDF

Info

Publication number
WO2021244023A1
WO2021244023A1 PCT/CN2020/141378 CN2020141378W WO2021244023A1 WO 2021244023 A1 WO2021244023 A1 WO 2021244023A1 CN 2020141378 W CN2020141378 W CN 2020141378W WO 2021244023 A1 WO2021244023 A1 WO 2021244023A1
Authority
WO
WIPO (PCT)
Prior art keywords
bearing
shaft
air
aerostatic
shaft hole
Prior art date
Application number
PCT/CN2020/141378
Other languages
English (en)
French (fr)
Inventor
龚展宏
赵聪
汤丽君
汤秀清
Original Assignee
广州市昊志机电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州市昊志机电股份有限公司 filed Critical 广州市昊志机电股份有限公司
Publication of WO2021244023A1 publication Critical patent/WO2021244023A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/70Stationary or movable members for carrying working-spindles for attachment of tools or work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/38Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members using fluid bearings or fluid cushion supports

Definitions

  • This application is used in the field of machine tools, for example, it relates to an air-floating spindle and a machine tool.
  • the air-floating spindle can perform high-precision processing such as high-gloss processing at high speeds.
  • high-precision processing such as high-gloss processing at high speeds.
  • most air-floating spindles have problems such as small bearing capacity and insufficient rigidity.
  • the bearing capacity is increased by increasing the size of the air bearing, which will greatly increase the difficulty and difficulty of processing parts. Cost, and the limit speed of the spindle will also be reduced; in addition, for the spindle with the motor behind, the bearing capacity can be increased by using a fully supported aerostatic bearing.
  • due to the longer length of the fully supported aerostatic bearing its The processing difficulty is also relatively large.
  • the present application provides an air-floating spindle and a machine tool, which simultaneously use a gas dynamic pressure bearing and a gas static pressure bearing, which can ensure that the spindle maintains a high speed while increasing the radial bearing capacity of the spindle, improving product performance, and reducing processing difficulty.
  • an air-floating spindle includes:
  • the body is provided with shaft holes and air flow channels;
  • the shaft core is inserted into the shaft hole, and the shaft core is provided with a thrust flying disc;
  • the aerostatic bearing includes a first aerostatic bearing, a second aerostatic bearing and a thrust bearing.
  • the first aerostatic bearing and the second aerostatic bearing are both arranged in the shaft hole, the The first aerostatic bearing and the second aerostatic bearing are both matched with the outer circular bearing surface of the shaft core, the thrust bearing is matched with the thrust flying disc, the first aerostatic bearing, the second Both the aerostatic bearing and the thrust bearing have an air inlet hole connected to the air flow channel;
  • the gas dynamic pressure bearing is arranged in the shaft hole and is located between the first gas static pressure bearing and the second gas static pressure bearing, and the gas dynamic pressure bearing is matched with the outer circular bearing surface of the shaft core .
  • the body is provided with a groove, and the groove forms a notch on the body for inserting the gas dynamic pressure bearing into the shaft hole ,
  • the shaft hole includes a first shaft hole and a second shaft hole located on both sides of the gap, the first aerostatic bearing is located in the first shaft hole, and the second aerostatic bearing is located at the The second shaft hole.
  • the shaft core has an outer circular bearing surface with an equal outer diameter.
  • first exhaust gap between the first gas static pressure bearing and the gas dynamic pressure bearing, and the second gas static pressure bearing
  • second exhaust gap between the pressure bearing and the gas dynamic pressure bearing
  • the motor assembly is located at one end of the shaft core.
  • the motor assembly includes a stator and a rotor, the stator is located in the first shaft hole, and the stator is connected to the body, The rotor is connected with the shaft core.
  • the thrust frisbee is located at an end of the shaft core away from the motor assembly, and the shaft core is outside the thrust frisbee Form the power output.
  • the body is provided with a cooling water jacket outside the first shaft hole and/or the second shaft hole.
  • the shaft hole is provided with a stepped surface at a position between the first aerostatic bearing and the aerodynamic bearing, so The outer side of the gas dynamic pressure bearing is provided with a detection device.
  • a machine tool in a second aspect, includes the air-floating spindle described in any implementation manner of the first aspect.
  • This application discards the structural form of the fully supported aerostatic bearing in the related technology.
  • the aerodynamic bearing and the aerostatic bearing are applied to the main shaft at the same time, which not only maintains the simple main shaft structure, does not increase It is difficult to process parts, and it can ensure that the spindle maintains a high speed, while increasing the radial load capacity of the spindle, improving product performance, and improving the stability of the spindle.
  • Figure 1 is a structural cross-sectional view of an embodiment of the present application
  • Fig. 2 is a partial enlarged view of A in Fig. 1.
  • “several” means one or more, “multiple” means two or more, “greater than”, “less than”, “exceeding”, etc. are understood to not include the number; “above”, “below”, and “within” “And so on are understood to include the number.
  • “first” and “second” only for the purpose of distinguishing technical features, it cannot be understood as indicating or implying the relative importance or implicitly indicating the number or quantity of the indicated technical features. Implicitly indicate the sequence of the indicated technical features.
  • the embodiment of the present application provides an air-floating spindle, including a body 1, a shaft core 2, a gas static pressure bearing, and a gas dynamic pressure bearing 3.
  • the body 1 is a carrier for assembling the spindle, and the body 1 is provided with a shaft hole ,
  • the shaft core 2 is inserted in the shaft hole, the shaft core 2 has an outer circular supporting surface, the outer circular supporting surface is the outer circular surface that matches with the bearing, the axial core 2 is provided with a thrust frisbee 21, the outer circular supporting surface and the thrust flying disc 21 is used for the radial and circumferential positioning and support of the shaft core 2.
  • the aerostatic bearing includes a first aerostatic bearing 41, a second aerostatic bearing 42 and a thrust bearing 43.
  • the first aerostatic bearing 41 and the second aerostatic bearing 42 are both arranged in the shaft hole And fixedly connected to the body 1, the first aerostatic bearing 41 and the second aerostatic bearing 42 are matched with the outer circular bearing surface of the shaft core 2, the first aerostatic bearing 41, the second aerostatic bearing 42 and the outer circular bearing surface of the shaft core 2 form an air film gap, the thrust bearing 43 is matched with the thrust flying disc 21, and an air film gap is formed between the thrust bearing 43 and the thrust flying disc 21.
  • the body 1 is provided with an airflow channel (not shown in the figure), and the first aerostatic bearing 41, the second aerostatic bearing 42 and the thrust bearing 43 all have an air inlet 44 connected to the airflow channel.
  • the gas enters the first aerostatic bearing 41, the second aerostatic bearing 42 and the thrust bearing 43 through the gas flow channel, and flows out from the air inlet 44, so that the shaft core 2 and the first aerostatic bearing A pressure air film is formed between the bearing 41, the second aerostatic bearing 42 and the thrust bearing 43, and the supporting shaft 2 is in a suspended state.
  • the thrust bearing 43 can be located on one or both sides of the thrust flying disc 21.
  • the thrust bearing 43 is located on the outside of the thrust flying disc 21 in the axial direction, The inner side cooperates with the second aerostatic bearing 42 to form a gas film gap. That is, in the embodiment shown in FIG. 1, the thrust bearing 43 and the second aerostatic bearing 42 cooperate with the thrust flying disc 21 to provide axial Support and limit.
  • the gas dynamic pressure bearing 3 is arranged in the shaft hole and is located between the first gas static pressure bearing 41 and the second gas static pressure bearing 42.
  • the gas dynamic pressure bearing 3 is matched with the outer circular bearing surface of the shaft core 2.
  • the shaft core 2 is supported by the body 1 through a gas static pressure bearing and a gas dynamic pressure bearing 3, and the shaft core 2 can be driven by a motor or other driving components to rotate at a high speed.
  • the embodiment of the application discards the structural form of the fully supported aerostatic bearing in the related art.
  • the aerodynamic bearing 3 and the aerostatic bearing are applied to the main shaft at the same time, which not only maintains the simple main shaft
  • the structure does not increase the difficulty of parts processing, and it can ensure that the spindle maintains a high speed, while increasing the radial load capacity of the spindle, improving product performance, and improving the stability of the spindle.
  • the first aerostatic bearing 41, the gas dynamic bearing 3, and the second aerostatic bearing 42 are sequentially sleeved on the outer circular bearing surface of the shaft core 2 along the axial direction of the shaft core 2, and the first aerostatic pressure bearing can be installed
  • the bearing 41, the gas dynamic pressure bearing 3, and the second gas static pressure bearing 42 are sequentially inserted into the shaft hole, and then the shaft core 2 is passed through each bearing.
  • the body 1 is provided with a groove 11, and the groove 11 is formed on the body 1 with a gap for inserting the gas dynamic pressure bearing 3 into the shaft hole .
  • the groove 11 cuts the shaft hole at the position where the gas dynamic pressure bearing 3 is placed, and the cross-sectional shape of the groove 11 perpendicular to the axis of the shaft core is semicircular or semicircular.
  • the shaft hole includes a first shaft hole and a second shaft hole located on both sides of the gap, the first aerostatic bearing 41 is located in the first shaft hole, and the second aerostatic bearing 42 is located in the second shaft hole.
  • the gas dynamic pressure bearing 3 can be disassembled and assembled without disassembling the first gas static pressure bearing 41 and the second gas static pressure bearing 42, and the first gas static pressure bearing 41 and the second gas static pressure bearing are ensured. 42 coaxiality.
  • the gas dynamic pressure bearing 3 is provided with detection devices (not shown in the figure) such as sensors on the outside of the gas dynamic pressure bearing 3 for dynamic detection of parameters such as bearing capacity and gas film thickness. , To study the dynamic characteristics of dynamic pressure foil bearings at high speeds. That is, after the installation method of the gas dynamic pressure bearing 3 is modified, it can be used to study the dynamic characteristics of the gas dynamic pressure bearing 3 in the test, which makes the application of this application more extensive.
  • the shaft core 2 can adopt an outer circular bearing surface of equal outer diameter or non-equal outer diameter.
  • the shaft core 2 has an outer circular bearing surface of equal outer diameter.
  • the core 2 adopts the design of the whole section of the supporting surface with equal outer diameter, with simple structure and low processing difficulty, and it will not interfere when passing through each bearing.
  • first exhaust gap 51 between the first gas static pressure bearing 41 and the gas dynamic pressure bearing 3
  • second exhaust gap 52 is provided between the second gas static pressure bearing 42 and the gas dynamic pressure bearing 3. That is, an exhaust gap of 0.5 mm or other thickness is left between the first gas static pressure bearing 41, the second gas static pressure bearing 42 and the gas dynamic pressure bearing 3, and the first gas static pressure bearing 41, the second gas static pressure bearing
  • the high-pressure gas of the pressure bearing 42 is discharged from the exhaust gap, and the discharged high-pressure gas can prevent external dust from entering the main shaft through the slot 11 of the body 1 assembly.
  • the first and second aerostatic bearings 41 and 42 are shorter in length and have no exhaust groove 11, which maximizes the use of the supporting surface area, makes the bearing rigidity better, and makes the spindle run more stable.
  • the air-floating spindle further includes a motor assembly, which is connected to the shaft core 2 to form an air-floating electric spindle.
  • the motor assembly is located at one end of the shaft core 2 and adopts a rear-mounted motor structure, that is, a structure in which the air floating positions are separately set on both sides of the motor.
  • the spindle using this structure generally uses a fully supported aerostatic bearing.
  • This type of bearing is the extremely high cylindricity of the inner hole of the bearing, so the radial bearing capacity of the spindle using this bearing will be 10%-20% larger than that of the spindle using the upper and lower split bearings, but the disadvantage is that this type of bearing
  • the length of the inner hole section is long, which is extremely difficult to process, and an exhaust groove is required between the bearing sections, which reduces the area of the bearing surface.
  • the embodiment of the present application can increase the radial bearing capacity of the spindle by simultaneously using the gas dynamic pressure bearing 3 and the gas static bearing
  • the length of the hydrostatic bearing 41 and the second aerostatic bearing 42 are short and there is no exhaust groove, which maximizes the use of the bearing surface area, makes the bearing stiffness better, makes the spindle run more stable, and keeps the spindle running at high speed. , It also reduces the difficulty of air bearing processing.
  • the motor assembly can be independent of the body 1 and/or the shaft core 2, or combined with the body 1 and/or the shaft core 2.
  • the motor assembly includes a stator 61 and a rotor 62, and the stator 61 is located In the first shaft hole, the stator 61 is connected to the body 1, the rotor 62 is located at one end of the shaft core 2, the rotor 62 is connected to the shaft core 2, and the shaft core 2 rotates with the rotor 62 in the shaft hole at high speed. That is, by combining the motor assembly with the body 1 and the shaft core 2, the structure of the air-floating electric spindle is simplified, and the structure is more compact.
  • the thrust frisbee 21 is located at the end of the shaft core 2 away from the motor assembly.
  • the shaft core 2 forms the power output end on the outside of the thrust frisbee 21.
  • the body 1 is provided with a cooling water jacket 12 outside the first shaft hole and/or the second shaft hole.
  • the cooling water jacket 12 and/or the body 1 are provided with a water tank for passing water, and the body 1 and the cooling water jacket 12 together form a closed circulation structure.
  • the cooling liquid enters from the connecting block 14, and the cooling liquid flows in the water tank between the body 1 and the cooling water jacket to provide a cooling effect.
  • the coolant sequentially cools the motor components, the first aerostatic bearing 41, and the second aerostatic bearing 42, and is finally discharged to realize the synchronous cooling of the motor and the bearing.
  • the working temperature of the electric spindle is more controllable, and the accuracy is higher.
  • the life of the spindle is longer.
  • the shaft hole is provided with a stepped surface 13 at a position between the first aerostatic bearing 41 and the gas dynamic pressure bearing 3. That is, the shaft hole adopts a stepped hole, and the end of the first aerostatic bearing 41 abuts the step Surface 13, for axial positioning.
  • a connecting block 14 is provided at one end of the body 1, and the connecting block 14 is provided with a water joint and an air joint.
  • the embodiment of the present application also provides a machine tool, including the air-floating spindle in any of the above embodiments.
  • the shaft core 2 of the air-floating spindle is connected with the tool of the machine tool to transmit the power of the driving parts such as the motor to the tool.
  • the air-floating spindle can perform high-gloss processing at high speed due to its low loss, low friction and error homogenization. And other high-precision processing.
  • the embodiment of the present application uses the air-floating high-speed electric spindle of the gas dynamic pressure bearing 3 and the gas static pressure bearing at the same time, and on the basis of realizing high-speed operation, the bearing capacity of the spindle is increased, and the processing difficulty of the gas bearing is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

一种气浮主轴和机床,气浮主轴包括:机体(1),设有轴孔和气流通道;轴芯(2),穿置于轴孔,轴芯(2)设有止推飞盘(21);气体静压轴承,包括第一气体静压轴承(41)、第二气体静压轴承(42)和止推轴承(43),第一气体静压轴承(41)、第二气体静压轴承(42)均设在轴孔中,止推轴承(43)与止推飞盘(21)配合,第一气体静压轴承(41)、第二气体静压轴承(42)和止推轴承(43)均具有与气流通道接通的进气孔(44);气体动压轴承(3),设在轴孔中,且位于第一气体静压轴承(41)、第二气体静压轴承(42)之间。

Description

气浮主轴和机床
本申请要求申请日为2020年6月5日、申请号为202010506540.2的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请用于机床领域,例如涉及一种气浮主轴和机床。
背景技术
气浮主轴由于其低损耗、摩擦小的特点和误差均化现象,可在高转速下进行高光加工等高精度加工。但是相比滚珠支承或液压支承的主轴,大多数气浮主轴存在承载力小和刚度不足等问题,一般通过增大气浮轴承尺寸来增大承载力,这会极大地增大零件的加工难度和成本,同时主轴的极限转速也会降低;另外对于电机后置的主轴,可通过使用全支承气体静压轴承来增大承载力,同样地,由于全支承气体静压轴承的长度较长,其加工难度也相对较大。
发明内容
本申请提供一种气浮主轴和机床,同时使用气体动压轴承和气体静压轴承,能保证主轴保持高转速的同时,增大主轴的径向承载能力,提高产品性能,降低加工难度。
本申请解决其技术问题所采用的技术方案是:
第一方面,一种气浮主轴,包括:
机体,设有轴孔和气流通道;
轴芯,穿置于所述轴孔,所述轴芯设有止推飞盘;
气体静压轴承,包括第一气体静压轴承、第二气体静压轴承和止推轴承,所述第一气体静压轴承、第二气体静压轴承均设在所述轴孔中,所述第一气体静压轴承、第二气体静压轴承均与所述轴芯的外圆支承面配合,所述止推轴承与所述止推飞盘配合,所述第一气体静压轴承、第二气体静压轴承和止推轴承均具有与所述气流通道接通的进气孔;
气体动压轴承,设在所述轴孔中,且位于所述第一气体静压轴承、第二气体静压轴承之间,所述气体动压轴承与所述轴芯的外圆支承面配合。
结合第一方面,在第一方面的某些实现方式中,所述机体上设有槽,所述槽于所述机体上形成用于将所述气体动压轴承放入所述轴孔的缺口,所述轴孔包括位于所述缺口两侧的第一轴孔和第二轴孔,所述第一气体静压轴承位于所述第一轴孔中,所述第二气体静压轴承位于所述第二轴孔中。
结合第一方面和上述实现方式,在第一方面的某些实现方式中,所述轴芯具有等外径的外圆支承面。
结合第一方面和上述实现方式,在第一方面的某些实现方式中,所述第一气体静压轴承与所述气体动压轴承之间具有第一排气间隙,所述第二气体静压轴承与所述气体动压轴承之间具有第二排气间隙。
结合第一方面和上述实现方式,在第一方面的某些实现方式中,还包括:
电机组件,位于所述轴芯的一端。
结合第一方面和上述实现方式,在第一方面的某些实现方式中,所述电机组件包括定子和转子,所述定子位于所述第一轴孔内,所述定子与所述机体连接,所述转子与所述轴芯连接。
结合第一方面和上述实现方式,在第一方面的某些实现方式中,所述止推飞盘位于所述轴芯远离所述电机组件的一端,所述轴芯在所述止推飞盘的外侧形成动力输出端。
结合第一方面和上述实现方式,在第一方面的某些实现方式中,所述机体于所述第一轴孔和/或所述第二轴孔外侧设有冷却水套。
结合第一方面和上述实现方式,在第一方面的某些实现方式中,所述轴孔于所述第一气体静压轴承和所述气体动压轴承之间的位置设有台阶面,所述气体动压轴承外侧设有检测装置。
第二方面,一种机床,包括第一方面中任一实现方式所述的气浮主轴。
本申请摒弃了相关技术中采用全支承气体静压轴承的结构形式,通过使用双轴承结构,将气体动压轴承和气体静压轴承同时应用于主轴中,不但保持了简单的主轴结构,不增加零件加工难度,而且,能保证主轴保持高转速的同时,增大了主轴的径向承载能力,提高了产品性能,提高了主轴稳定性。
附图说明
图1是本申请一个实施例结构剖面图;
图2是图1中A处局部放大图。
具体实施方式
本申请中,如果有描述到方向(上、下、左、右、前及后)时,其仅是为了便于描述本申请的技术方案,而不是指示或暗示所指的技术特征必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
本申请中,“若干”的含义是一个或者多个,“多个”的含义是两个以上,“大于”“小于”“超过”等理解为不包括本数;“以上”“以下”“以内”等理解为包括本数。在本申请的描述中,如果有描述到“第一”“第二”仅用于区分技术特征为目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量或者隐含指明所指示的技术特征的先后关系。
本申请中,除非另有明确的限定,“设置”“安装”“连接”等词语应做广义理解,例如,可以是直接相连,也可以通过中间媒介间接相连;可以是固定连接,也可以是可拆卸连接,还可以是一体成型;可以是机械连接,也可以是电连接或能够互相通讯;可以是两个元件内部的连通或两个元件的相互作用关系。所属技术领域技术人员可以结合技术方案的具体内容合理确定上述词语在本申请中的具体含义。
参见图1,本申请的实施例提供了一种气浮主轴,包括机体1、轴芯2、气体静压轴承和气体动压轴承3,机体1是装配主轴的载体,机体1设有轴孔,轴芯2穿置于轴孔,轴芯2具有外圆支承面,外圆支承面即与轴承配合的外圆面,轴芯2设有止推飞盘21,外圆支承面和止推飞盘21用于轴芯2的径向和周向定位和支撑。
参见图1,气体静压轴承包括第一气体静压轴承41、第二气体静压轴承42和止推轴承43,第一气体静压轴承41、第二气体静压轴承42均设在轴孔中,并与机体1固定连接,第一气体静压轴承41、第二气体静压轴承42均与轴芯2的外圆支承面配合,第一气体静压轴承41、第二气体静压轴承42均与轴芯2的外圆支承面之间形成气膜间隙,止推轴承43与止推飞盘21配合,止推轴承43与止推飞盘21之间形成气膜间隙。其中,机体1设有气流通道(图中未示出),第一气体静压轴承41、第二气体静压轴承42和止推轴承43均具有与气流通道接通的进气孔44。通过外部供气,气体通过气流通道进入第一气体静压轴承41、第二气体静压轴承42和止推轴承43,并由进气孔44流出,从而在轴芯2与第一气体静压轴承41、第二气体静压轴承42和止推轴承43之间形成压力气膜,支承轴芯2处于悬浮状态。
其中,止推轴承43可以位于止推飞盘21的一侧或两侧,例如在图1所示的实施例中,止推轴承43沿轴向位于止推飞盘21的外侧,止推飞盘21的内侧与第二气体静压轴承42配合形成气膜间隙,即在图1所示的实施例中,止推轴承43和第二气体静压轴承42共同与止推飞盘21配合,以提供轴向的支撑、限位。
参见图1,气体动压轴承3设在轴孔中,且位于第一气体静压轴承41、第二气体静压轴承42之间,气体动压轴承3与轴芯2的外圆支承面配合,当轴芯2进行高速旋转时,轴芯2与气体动压轴承3间形成的流体动力楔,对轴芯2产生额外的支承力。
轴芯2通过气体静压轴承和气体动压轴承3支承于机体1,轴芯2能够在电机或其他驱动部件的驱动下进行高速旋转。
本申请的实施例摒弃了相关技术中采用全支承气体静压轴承的结构形式,通过使用双轴承结构,将气体动压轴承3和气体静压轴承同时应用于主轴中,不但保持了简单的主轴结构,不增加零件加工难度,而且,能保证主轴保持高转速的同时,增大了主轴的径向承载能力,提高了产品性能,提高了主轴稳定性。
第一气体静压轴承41、气体动压轴承3和第二气体静压轴承42沿轴芯2的轴向依次套接在轴芯2的外圆支承面,安装时可将第一气体静压轴承41、气体动压轴承3和第二气体静压轴承42依次装入轴孔,然后将轴芯2穿过各轴承。
为了便于安装和更换气体动压轴承3,在一些实施例中,参见图1,机体1上设有槽11,槽11于机体1上形成用于将气体动压轴承3放入轴孔的缺口。换言之,槽11将轴孔在气体动压轴承3放入的位置剖开,槽11垂直于轴芯轴线的截面形状为半圆形或大半圆形。轴孔包括位于缺口两侧的第一轴孔和第二轴孔,第一气体静压轴承41位于第一轴孔中,第二气体静压轴承42位于第二轴孔中。安装时,先将第一气体静压轴承41、第二气体静压轴承42安装于槽11两侧的轴孔中,在固定于机体1前需要进行同轴度校正,当校正完成后,即可在不拆装第一气体静压轴承41、第二气体静压轴承42的情况下进行气体动压轴承3的拆装,并保证了第一气体静压轴承41、第二气体静压轴承42的同轴度。
进一步的,在一些实施例中,参见图1、图2,气体动压轴承3外侧设有传感器等检测装置(图中未示出),用于对承载力、气膜厚度等参数进行动态检测,研究动压箔片轴承在高转速情况下的动态特性。即通过对气体动压轴承3的安 装方式进行改装后,可用于试验中进气体动压轴承3的动态特性研究,使本申请的用途更加广泛。
轴芯2可采用等外径或非等外径的外圆支承面,例如在图1所示的实施例中,轴芯2具有等外径的外圆支承面,即该实施例中,轴芯2采用支承面全段等外径设计,结构简单,加工难度小,而且在穿过各轴承时,也不会发生干涉。
参见图2,第一气体静压轴承41与气体动压轴承3之间具有第一排气间隙51,第二气体静压轴承42与气体动压轴承3之间具有第二排气间隙52,即第一气体静压轴承41、第二气体静压轴承42与气体动压轴承3之间留有0.5mm或其它厚度的排气间隙,通入第一气体静压轴承41、第二气体静压轴承42的高压气均从此排气间隙中排出,排出的高压气体能阻挡外部灰尘经机体1组件的开槽11进入主轴内部。而且,第一气体静压轴承41、第二气体静压轴承42段长较短且无设置排气槽11,最大化利用支承面面积,令轴承刚度较优,使主轴运转更稳定。
在一些实施例中,参见图1,气浮主轴还包括电机组件,电机组件与轴芯2连接,形成气浮电主轴。同时,电机组件位于轴芯2的一端,采用电机后置结构,即气浮位非分别设置在电机两侧的结构,相关技术中一般使用此结构的主轴采用的是全支承气体静压轴承,此类轴承的特点在于轴承内孔的圆柱度极高,因此使用此轴承的主轴的径向承载力会比使用上、下分体式轴承的主轴大10%~20%,但缺点在于此类轴承内孔段长较长,加工难度极大,且轴承段间需要设有排气槽,反而减小了支承面的面积。本申请的实施例通过在主轴里同时使用气体动压轴承3和气体静压轴承,能增大主轴的径向承载能力,将主轴的径向承载能力提高20%~30%,并且第一气体静压轴承41、第二气体静压轴承42段长较短且无设置排气槽,最大化利用支承面面积,令轴承刚度较优,使主轴运转更稳定,保持主轴能高转速运转,同时,也降低了气浮轴承加工难度。
电机组件可独立于机体1和/或轴芯2,或者与机体1和/或轴芯2相结合,例如在图1所示的实施例中,电机组件包括定子61和转子62,定子61位于第一轴孔内,定子61与机体1连接,转子62位于轴芯2的一端,转子62与轴芯2连接,轴芯2随转子62在轴孔中高速旋转。即通过将电机组件与机体1和轴芯2相结合,简化了气浮电主轴的结构,使结构更加紧凑。
进一步的,参见图1,止推飞盘21位于轴芯2远离电机组件的一端,轴芯2在止推飞盘21的外侧形成动力输出端,气浮主轴在安装时,先将定子61安装 于第一轴孔的一端,在轴芯2上安装转子62,将第一气体静压轴承41、第二气体静压轴承42安装于槽11两侧的轴孔中,进行同轴度校正,然后将气体动压轴承3通过槽11放入轴孔中,将轴芯2穿置于轴孔中的各轴承,整个安装过程简单便捷。
更进一步的,参见图1,机体1于第一轴孔和/或第二轴孔外侧设有冷却水套12。冷却水套12和/或机体1上设置用于通水的水槽,机体1和冷却水套12共同形成密闭循环的结构。冷却液从连接块14进入,冷却液在机体1与冷却水套间的水槽流动提供冷却作用。冷却液依次对电机组件、第一气体静压轴承41、第二气体静压轴承42进行冷却,最终排出,实现电机和轴承的同步冷却,电主轴的工作温度更加可控,精度更高,电主轴的寿命更长。
参见图2,轴孔于第一气体静压轴承41和气体动压轴承3之间的位置设有台阶面13,即轴孔采用阶梯孔,第一气体静压轴承41的端部抵住台阶面13,进行轴向定位。
参见图1,在一些实施例中,为了方便冷却水、外部供气的引入,在机体1的一端设置连接块14,连接块14上设有水接头和气接头。
本申请的实施例还提供了一种机床,包括以上任一实施例中的气浮主轴。气浮主轴的轴芯2与机床的刀具连接,将电机等驱动部件的动力传递至刀具,气浮主轴由于其低损耗、摩擦小的特点和误差均化现象,可在高转速下进行高光加工等高精度加工。本申请的实施例同时使用气体动压轴承3与气体静压轴承的气浮高速电主轴,在实现高转速运转的基础上,增大主轴的承载能力,降低气体轴承的加工难度。
在本说明书的描述中,参考术语“示例”、“实施例”或“一些实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。

Claims (10)

  1. 一种气浮主轴,包括:
    机体,设有轴孔和气流通道;
    轴芯,穿置于所述轴孔,所述轴芯设有止推飞盘;
    气体静压轴承,包括第一气体静压轴承、第二气体静压轴承和止推轴承,所述第一气体静压轴承、第二气体静压轴承均设在所述轴孔中,所述第一气体静压轴承、第二气体静压轴承均与所述轴芯的外圆支承面配合,所述止推轴承与所述止推飞盘配合,所述第一气体静压轴承、第二气体静压轴承和止推轴承均具有与所述气流通道接通的进气孔;
    气体动压轴承,设在所述轴孔中,且位于所述第一气体静压轴承、第二气体静压轴承之间,所述气体动压轴承与所述轴芯的外圆支承面配合。
  2. 根据权利要求1所述的气浮主轴,其中,所述机体上设有槽,所述槽于所述机体上形成用于将所述气体动压轴承放入所述轴孔的缺口,所述轴孔包括位于所述缺口两侧的第一轴孔和第二轴孔,所述第一气体静压轴承位于所述第一轴孔中,所述第二气体静压轴承位于所述第二轴孔中。
  3. 根据权利要求2所述的气浮主轴,其中,所述轴芯具有等外径的外圆支承面。
  4. 根据权利要求2所述的气浮主轴,其中,所述第一气体静压轴承与所述气体动压轴承之间具有第一排气间隙,所述第二气体静压轴承与所述气体动压轴承之间具有第二排气间隙。
  5. 根据权利要求2所述的气浮主轴,还包括:
    电机组件,位于所述轴芯的一端。
  6. 根据权利要求5所述的气浮主轴,其中,所述电机组件包括定子和转子,所述定子位于所述第一轴孔内,所述定子与所述机体连接,所述转子与所述轴芯连接。
  7. 根据权利要求5所述的气浮主轴,其中,所述止推飞盘位于所述轴芯远离所述电机组件的一端,所述轴芯在所述止推飞盘的外侧形成动力输出端。
  8. 根据权利要求2-7中任一项所述的气浮主轴,其中,所述机体于所述第一轴孔和/或所述第二轴孔外侧设有冷却水套。
  9. 根据权利要求1-7中任一项所述的气浮主轴,其中,所述轴孔于所述第一气体静压轴承和所述气体动压轴承之间的位置设有台阶面,所述气体动压轴承外侧设有检测装置。
  10. 一种机床,包括权利要求1-9中任一项所述的气浮主轴。
PCT/CN2020/141378 2020-06-05 2020-12-30 气浮主轴和机床 WO2021244023A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010506540.2A CN111842942B (zh) 2020-06-05 2020-06-05 一种气浮主轴和机床
CN202010506540.2 2020-06-05

Publications (1)

Publication Number Publication Date
WO2021244023A1 true WO2021244023A1 (zh) 2021-12-09

Family

ID=72986088

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141378 WO2021244023A1 (zh) 2020-06-05 2020-12-30 气浮主轴和机床

Country Status (2)

Country Link
CN (1) CN111842942B (zh)
WO (1) WO2021244023A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114992242A (zh) * 2022-06-16 2022-09-02 中国工程物理研究院机械制造工艺研究所 一种抗扰动气浮轴承

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111842942B (zh) * 2020-06-05 2021-09-21 广州市昊志机电股份有限公司 一种气浮主轴和机床
CN112974867A (zh) * 2021-03-02 2021-06-18 广州市昊志机电股份有限公司 一种气浮电主轴和钻机
CN113427400B (zh) * 2021-07-08 2023-08-15 江苏工大金凯高端装备制造有限公司 一种高速气浮磨削主轴
CN113555998A (zh) * 2021-07-29 2021-10-26 中国船舶重工集团公司第七0七研究所 一种带污染过滤装置的动压气浮轴承结构
CN114054786B (zh) * 2021-11-29 2022-12-30 广州市昊志机电股份有限公司 一种电主轴和机床

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU944861A1 (ru) * 1980-06-16 1982-07-23 Одесское специальное конструкторское бюро специальных станков Шпиндель многоцелевого станка
KR20040034948A (ko) * 2002-10-17 2004-04-29 대우종합기계 주식회사 밀링 가공용 고속 주축의 공기 정압 베어링 장치
CN201399720Y (zh) * 2009-03-17 2010-02-10 湖南宇环同心数控机床有限公司 Cbn高速内置式电主轴砂轮架
CN102518667A (zh) * 2011-12-19 2012-06-27 西安威而信精密仪器有限公司 锥形气浮轴系
CN111842942A (zh) * 2020-06-05 2020-10-30 广州市昊志机电股份有限公司 一种气浮主轴和机床

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1036659A (en) * 1963-10-10 1966-07-20 Barden Corp A gas bearing assembly
JPH069761B2 (ja) * 1984-07-10 1994-02-09 株式会社デイスコ 静圧気体軸受装置
US5462364A (en) * 1993-04-02 1995-10-31 Ford Motor Company Variable speed fluid bearing and method of use
JP2002515963A (ja) * 1996-02-08 2002-05-28 イソップ・インコーポレイテッド 静圧/動圧組み合わせ軸受
JP3569668B2 (ja) * 2000-09-11 2004-09-22 Thk株式会社 空気動圧スピンドル装置
JP5228895B2 (ja) * 2008-12-25 2013-07-03 株式会社ジェイテクト 流体軸受装置の軸受部材の製造方法およびその方法により製造された流体軸受装置の軸受部材
JP5614555B2 (ja) * 2012-12-05 2014-10-29 株式会社安川電機 スピンドル装置
CN103343775A (zh) * 2013-07-08 2013-10-09 上海大学 一种动压和静压集成的气体轴承
JP5888663B2 (ja) * 2013-12-17 2016-03-22 株式会社安川電機 スピンドルモータ
CN103846459B (zh) * 2014-02-25 2016-04-27 上海大学 一种动静压集成气体轴承支承的电主轴
CN104014823A (zh) * 2014-06-24 2014-09-03 上海大学 一种双向人字槽动静压集成气体轴承支承的电主轴
CN110732687A (zh) * 2018-07-20 2020-01-31 东北林业大学 一种微槽孔动静压气浮主轴
CN109763985B (zh) * 2019-03-19 2024-04-19 上海优社动力科技有限公司 一种动静压气体混合轴承支承的高速离心压缩机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU944861A1 (ru) * 1980-06-16 1982-07-23 Одесское специальное конструкторское бюро специальных станков Шпиндель многоцелевого станка
KR20040034948A (ko) * 2002-10-17 2004-04-29 대우종합기계 주식회사 밀링 가공용 고속 주축의 공기 정압 베어링 장치
CN201399720Y (zh) * 2009-03-17 2010-02-10 湖南宇环同心数控机床有限公司 Cbn高速内置式电主轴砂轮架
CN102518667A (zh) * 2011-12-19 2012-06-27 西安威而信精密仪器有限公司 锥形气浮轴系
CN111842942A (zh) * 2020-06-05 2020-10-30 广州市昊志机电股份有限公司 一种气浮主轴和机床

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114992242A (zh) * 2022-06-16 2022-09-02 中国工程物理研究院机械制造工艺研究所 一种抗扰动气浮轴承
CN114992242B (zh) * 2022-06-16 2023-06-20 中国工程物理研究院机械制造工艺研究所 一种抗扰动气浮轴承

Also Published As

Publication number Publication date
CN111842942B (zh) 2021-09-21
CN111842942A (zh) 2020-10-30

Similar Documents

Publication Publication Date Title
WO2021244023A1 (zh) 气浮主轴和机床
WO2022036990A1 (zh) 气浮电主轴和磨削机床
CN102562819B (zh) 推力轴承轴、包括该轴的空气循环机及安装该轴的方法
US7388308B2 (en) Spindle device
CN111365256A (zh) 离心压缩机及空调设备
WO2021248891A1 (zh) 电主轴轴芯组件、气浮电主轴和钻机
US20150008771A1 (en) Motor having cooling means
CN210848347U (zh) 一种高速气浮电主轴
WO2020134430A1 (zh) 轴承支撑组件及其加工方法、离心压缩机
CN114165462B (zh) 一种离心式空压机和燃料电池系统
WO2022105215A1 (zh) 一种电机内嵌轴承式微型燃气轮机
CN214577781U (zh) 一种背靠背式压气机
CN108941623B (zh) 一种复合节流式静压气浮电主轴
CN211343737U (zh) 一种转轴轴向止推结构
CN210115464U (zh) 精密外转子气浮主轴
CN211249608U (zh) 一种交流直流互相转换的划切机气浮主轴结构
CN110863910A (zh) 一种长跨距转子系统及燃气轮机发电机组
WO2022183592A1 (zh) 一种气浮电主轴和钻机
CN217682476U (zh) 鼓风机风冷系统
JP2003239955A (ja) 回転体の軸受支持構造
CN113427400B (zh) 一种高速气浮磨削主轴
CN210307224U (zh) 一种气道前置的划片机气浮主轴结构
CN210435960U (zh) 一种芯轴抗倾覆单元
CN210451818U (zh) 一种电主轴管路布局系统
CN210451007U (zh) 一种超精密液体动静压电主轴

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938895

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938895

Country of ref document: EP

Kind code of ref document: A1